JP2858143B2 - Concentration analysis method and apparatus therefor - Google Patents

Concentration analysis method and apparatus therefor

Info

Publication number
JP2858143B2
JP2858143B2 JP1311617A JP31161789A JP2858143B2 JP 2858143 B2 JP2858143 B2 JP 2858143B2 JP 1311617 A JP1311617 A JP 1311617A JP 31161789 A JP31161789 A JP 31161789A JP 2858143 B2 JP2858143 B2 JP 2858143B2
Authority
JP
Japan
Prior art keywords
carrier gas
tube
concentrating
analyzer
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1311617A
Other languages
Japanese (ja)
Other versions
JPH03170838A (en
Inventor
良明 宇都宮
孝 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sanso Corp
Original Assignee
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sanso Corp filed Critical Nippon Sanso Corp
Priority to JP1311617A priority Critical patent/JP2858143B2/en
Publication of JPH03170838A publication Critical patent/JPH03170838A/en
Application granted granted Critical
Publication of JP2858143B2 publication Critical patent/JP2858143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、精製装置から導出される高純度ガス、又は
容器内に充填された高純度ガス等を試料ガスとし、該ガ
ス中に含まれる微量の不純物(被分析成分)を濃縮分析
方法によって高感度に分析する方法及びその装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention uses a high-purity gas derived from a purification device or a high-purity gas filled in a container as a sample gas and contained in the gas. The present invention relates to a method and an apparatus for analyzing a trace amount of impurities (analyte) with high sensitivity by a concentration analysis method.

〔従来の技術〕[Conventional technology]

前記濃縮分析方法は、試料ガス中の被分析成分を低温
に制御した濃縮管内の吸着剤に低温吸着させて濃縮した
後、該濃縮管にキャリアガスを流しつつ該濃縮管を加熱
して前記被分析成分を脱着させて該キャリアガスに同伴
させ、分析計に導入して被分析成分を測定するもので、
測定単位がppmからppb(1ppm=1000ppb)へ、更に、ppb
からppt(1ppb=1000ppt)へと進行している近時の微量
分析の要求によく適応するものである。
The concentration analysis method comprises the steps of: adsorbing a component to be analyzed in a sample gas at a low temperature to an adsorbent in a concentrating tube controlled at a low temperature; concentrating the sample; and heating the concentrating tube while flowing a carrier gas through the concentrating tube. The component to be analyzed is desorbed and entrained in the carrier gas and introduced into the analyzer to measure the component to be analyzed.
The measurement unit is from ppm to ppb (1ppm = 1000ppb), and ppb
It is well adapted to the recent demand for microanalysis, which is progressing from ppt to 1ppb (1ppb = 1000ppt).

以下、第2図に従来の濃縮分析装置のフローシートを
例示して従来の濃縮分析方法を説明する。
Hereinafter, a conventional concentration analysis method will be described with reference to FIG. 2 exemplifying a flow sheet of the conventional concentration analysis apparatus.

図中、L、Mは本体の摘みを操作することにより6つ
の流路を同時に切り替えられるよう構成した六方コック
で、実線側に切り替えることにより各ポートL1〜L6,M1
〜M6が実線で表示したように連通し、また、破線側に切
り替えることにより破線で表示したように連通するよう
になっており、各ポートL1〜L6、M1〜M6に各種ガス源及
び機器が図のように連設されている。
In the figure, L and M are hexagonal cocks configured so that the six flow paths can be simultaneously switched by operating the knob of the main body, and by switching to the solid line side, each port L 1 to L 6 , M 1
Communication as ~M 6 is displayed by a solid line, also by switching to the broken line side is adapted to communicate as indicated by broken lines, each port L 1 ~L 6, M 1 ~M 6 in various Gas sources and equipment are connected in series as shown in the figure.

即ち、六方コックLのポートL1には減圧弁1を介して
高圧容器内にヘリウムガスを充填してなるキャリアガス
源Cが、ポートL3には元弁2を介して試料ガス源Sが、
ポートL4には精密な流量計3が、ポートL6には試料ガス
中の被分析成分の分離に適した充填剤を充填してなる分
離カラム4と被分析成分を検出する検出器5とからなる
分析計Dが各々連設され、また、六方コックMのポート
M1は六方コックLのポートL2に、ポートM6は六方コック
LのポートL5に夫々連設し、ポートM2とポートM5の間に
は濃縮間6が、ポートM3には連成計7,元弁8を介して真
空ポンプVが、ポートM4には盲蓋9が各々連設されてい
る。
That is, the port L 1 of the hexagonal cock L receives a carrier gas source C filled with helium gas in a high-pressure vessel via the pressure reducing valve 1, and the port L 3 receives a sample gas source S via the main valve 2. ,
The port L 4 has a precision flow meter 3, the port L 6 has a separation column 4 filled with a filler suitable for separating the analyte in the sample gas, and a detector 5 for detecting the analyte. Analyzers D are connected to each other.
M 1 to the port L 2 of hexagonal cock L, port M 6 is respectively provided continuously to the port L 5 of hexagonal cock L, concentration between 6 between the port M 2 and Port M 5 is, the port M 3 are RenNarukei 7, a vacuum pump V through the main valve 8 is, to the port M 4 blind cover 9 are respectively provided continuously.

濃縮管6は、吸着温度以下の低温下で試料ガス中の被
分析成分を100%吸着できるように適宜選択された吸着
剤を充填してなるもので、冷却用コイル6aと加熱用ヒー
タ6bを有する。
The concentrating tube 6 is filled with an adsorbent appropriately selected so as to be able to adsorb 100% of the analyte in the sample gas at a low temperature equal to or lower than the adsorption temperature. The condensing tube 6 includes a cooling coil 6a and a heater 6b. Have.

以下、この装置を用いた従来の分析方法を工程順に説
明する。
Hereinafter, a conventional analysis method using this apparatus will be described in the order of steps.

まず六方コックL,Mを実線側に切り替え、キャリアガ
ス源Cのヘリウムガスをキャリアガスとして減圧弁1で
所定の圧力に減圧した後、六方コックLのポートL1,
L2、六方コックMのポートM1,M6、再び六方コックLの
ポートL5、L6を介して分析計Dに導入して該分析系Dを
安定状態に保持した後排気計10へ排気すると共に、試料
ガスを元弁2から六方コックLのポートL3,L4、流量計
3を介して排気系10へ排気する。
First switching hexagonal cock L, and M in the solid lines, the pressure was reduced helium gas of the carrier gas source C to a predetermined pressure in the pressure reducing valve 1 as a carrier gas, port L 1 of hexagonal cock L,
L 2 , the ports M 1 , M 6 of the hexagonal cock M and the ports L 5 , L 6 of the hexagonal cock L are again introduced into the analyzer D to keep the analysis system D in a stable state, and then to the exhaust meter 10. At the same time, the sample gas is exhausted from the main valve 2 to the exhaust system 10 via the ports L 3 and L 4 of the hexagonal cock L and the flow meter 3.

また、この状態と併行して真空ポンプVを作動し、真
空ポンプVから元弁8、六方コックMのポートM3,M2
濃縮管6、ポートM5,M4、盲蓋9に至る配管内に残留す
る大気成分(酸素及び窒素)を排除した後停止する。
(待機工程) 次に、冷却用コイル6aに液化窒素等の寒冷を流して濃
縮管6を所定の温度以下に冷却する。(濃縮管冷却工
程) そして、該冷却工程のまま、六方コックL,Mを共に破
線側に切り替え、キャリアガスをポートL1,L6を介して
分析計Dに導入した後排気系10に排気すると共に、試料
ガスを、ポートL3,L2,M1,M2を介して濃縮管6に導入
し、該試料ガス中の被分析成分を濃縮管6内の吸着剤に
低温吸着させ、ポートM5,M6,L5,L4、流量計3を介して
排気系10に排気する。(濃縮工程) 次いで、六方コックLを破線側にしたまま六方コック
Mを実線側に切り替えて真空ポンプVを再起動し、前記
濃縮工程で被分析成分と共に濃縮管6に低温吸着された
試料ガスの主成分を、ポートM2,M3を介して排出した後
停止する。(主成分排出工程) 次に、加熱ヒータ6bを作動して濃縮管6を加熱し、該
濃縮管6内に低温吸着された被分析成分を脱着した後、
六方コックLを実線側に、六方コックMを破線側に切り
替えてキャリアガスをポートL1,L2,M1,M2を介して濃縮
管6に流通して被分析成分をキャリアガスに同伴させて
ポートM5,M6,L5,L6を介して分析計Dに導入する。これ
により、被分析成分は分離カラム4で各々分離されて検
出器5に順次導入され、該検出器5での検出値と前記濃
縮工程時に流量計3により計量された試料ガス量とから
濃度が定量される。(分析工程) 〔発明が解決しようとする課題〕 しかし、前記従来方法では、待機工程時の真空排気に
よっても濃縮管6を含む配管系の連成計7,盲蓋9等の溜
り部の大気成分が排出されずに残留するため濃縮工程時
に濃縮管6内の吸着剤に吸着され、後に脱着して分析計
Dで測定されること、また、前記主成分排出工程を真空
排気により行い、かつ、前記六方コックL,Mを頻繁に開
閉操作すること等により大気成分が主に六方コックL,M
のシート部等を通過して僅かに侵入すること等によりバ
ックグラウンドが大きくなり、ppb以下のレベルの濃度
を正確に測定することは困難だった。
Simultaneously with this state, the vacuum pump V is operated, and the main valve 8 and the ports M 3 , M 2 ,
Concentrated pipe 6, ports M 5, M 4, and stops after the elimination atmospheric components (oxygen and nitrogen) remaining in the piping leading to the blind cover 9.
(Standby Step) Next, cooling such as liquefied nitrogen is passed through the cooling coil 6a to cool the concentrating tube 6 to a predetermined temperature or lower. (Condenser tube cooling step) Then, while keeping the cooling step, both the hexagonal cocks L and M are switched to the broken line side, and the carrier gas is introduced into the analyzer D via the ports L 1 and L 6 and then exhausted to the exhaust system 10. At the same time, the sample gas is introduced into the concentration tube 6 through the ports L 3 , L 2 , M 1 , and M 2, and the analyte in the sample gas is adsorbed at a low temperature on the adsorbent in the concentration tube 6, Air is exhausted to the exhaust system 10 through the ports M 5 , M 6 , L 5 , L 4 and the flow meter 3. (Concentration step) Next, the hexagonal cock M is switched to the solid line side while the hexagonal cock L is kept on the broken line side, and the vacuum pump V is restarted. Is stopped after discharging the main components of through the ports M 2 and M 3 . (Main component discharging step) Next, the heating heater 6b is operated to heat the concentrating tube 6, and the analyte to be analyzed which has been low-temperature adsorbed in the concentrating tube 6 is desorbed.
The hexagonal cock L is switched to the solid line side, and the hexagonal cock M is switched to the dashed line side, and the carrier gas flows through the ports L 1 , L 2 , M 1 , M 2 to the concentrating tube 6 to entrain the components to be analyzed with the carrier gas. Then, it is introduced into the analyzer D via the ports M 5 , M 6 , L 5 , L 6 . As a result, the components to be analyzed are each separated by the separation column 4 and sequentially introduced into the detector 5, and the concentration is determined from the detection value of the detector 5 and the amount of the sample gas measured by the flow meter 3 during the concentration step. Quantified. (Analysis Step) [Problems to be Solved by the Invention] However, in the conventional method, even in the standby step, the atmosphere in the reservoir such as the combined meter 7 and the blind lid 9 of the piping system including the concentrating pipe 6 can be obtained even by evacuation during the standby step. Since the components remain without being discharged, they are adsorbed by the adsorbent in the concentration tube 6 during the concentration step, are later desorbed and are measured by the analyzer D, and the main component discharge step is performed by evacuation, and By opening and closing the six-way cocks L and M frequently, the atmospheric components are mainly the six-way cocks L and M.
The background becomes large due to a slight intrusion through the sheet portion or the like, and it has been difficult to accurately measure the concentration at the level of ppb or less.

また、分析工程では、濃縮管6を加熱して被分析成分
を脱着した後、該濃縮管6にキャリアガスを流通して被
分析成分をキャリアガスに同伴させるため、被分析成分
の一部が真空ポンプVの系統に滞留して被分析成分の全
量を分析計Dに導入することができず、また、主成分排
出工程で脱着しなかった主成分が加熱により脱着し、こ
れによって濃縮管系の圧力が上昇して被分析成分の一部
が主成分と共に大気に漏洩することもあり正確な測定を
困難にしていた。
In the analysis step, since the analyte is desorbed by heating the concentration tube 6, a carrier gas flows through the concentration tube 6 to cause the analyte to accompany the carrier gas. The total amount of the components to be analyzed cannot be introduced into the analyzer D due to the stagnation in the system of the vacuum pump V, and the main components that have not been desorbed in the main component discharge step are desorbed by heating, and thereby the concentrating tube system , And a part of the analyte component may leak to the atmosphere together with the main component, making accurate measurement difficult.

本発明はこの様な不都合を解決することを目的とした
濃縮分析方法及びその装置を提供するにある。
An object of the present invention is to provide a concentration analysis method and an apparatus thereof for solving such a disadvantage.

〔課題を解決するための手段〕[Means for solving the problem]

前記目的を達成する本発明の濃縮分析方法は、キャリ
アガスを濃縮管に流通した後分析系を介して排気する待
機工程、濃縮管を所定の温度以下に冷却する濃縮管冷却
工程、前記キャリアガスを前記濃縮管を介さずに前記分
析計に導入した後排気すると共に試料ガスを該濃縮管に
流通して該試料ガス中の被分析成分を該濃縮管内の吸着
剤に低温吸着させた後排出する濃縮工程、前記キャリア
ガスを濃縮管に流通して前記濃縮工程で被分析成分と共
に低温吸着された主成分を同伴させて分析計に導入した
後排出する主成分排出工程、該主成分排出工程のまま濃
縮管を所定の温度以上に加熱して該濃縮管に低温吸着さ
れた前記被分析成分を脱着させてキャリアガスに同伴さ
せて分析計に導入する分析工程を順次行うことを特徴と
し、また、前記キャリアガスは、精製器を介して供給さ
れていることを特徴とし、更に、前記キャリアガスと試
料ガスの流路切り替えをシール付多方コックで行うこと
を特徴とする。
In order to achieve the above object, the concentration analysis method of the present invention comprises a standby step in which a carrier gas is circulated through a concentration pipe and then exhausted through an analysis system; a concentration pipe cooling step of cooling the concentration pipe to a predetermined temperature or lower; Is introduced into the analyzer without passing through the concentrating tube and then exhausted, and the sample gas is circulated through the concentrating tube so that the components to be analyzed in the sample gas are adsorbed on the adsorbent in the concentrating tube at low temperature and then discharged. A main component discharging step in which the carrier gas is passed through a concentrating tube, a main component adsorbed at a low temperature together with a component to be analyzed in the concentrating process is introduced into the analyzer together with the analyte, and then discharged. Characterized by sequentially performing an analysis step of heating the concentrator tube to a predetermined temperature or higher, desorbing the analyte to be adsorbed at a low temperature on the concentrator tube, and accompanying the carrier gas to introduce it into the analyzer, In addition, the Agasu is characterized by being supplied via a purifier, further characterized by performing a channel switching of the carrier gas and the sample gas seal with multi-way cock.

また、本発明の濃縮分析装置は、多方コックの各ポー
トに、キャリアガス源に接続されるキャリアガス管路
と、試料ガス源に接続される試料ガス管路と、冷却手段
及び加熱手段を備えた濃縮管の導入部及び導出部にそれ
ぞれ接続される濃縮管導入管路及び濃縮管導出管路と、
分析計に接続される分析管路と、流量計に接続される流
量測定管路とをそれぞれ接続すると共に、該多方コック
は、少なくとも、キャリアガスを濃縮管に流通した後に
分析計に導入する経路と、キャリアガスを濃縮管を介さ
ずに分析計に導入する経路と、試料ガスを濃縮管に流通
した後に流量計に導入する経路とを切り替え可能に備え
ていることを特徴としている。
In addition, the concentration analyzer of the present invention includes, at each port of the multi-way cock, a carrier gas pipe connected to the carrier gas source, a sample gas pipe connected to the sample gas source, a cooling unit and a heating unit. A concentrator tube inlet line and a concentrator tube outlet line connected to the inlet and outlet of the concentrator tube,
An analysis pipe line connected to the analyzer and a flow measurement pipe line connected to the flow meter are respectively connected, and the multi-way cock has at least a path for introducing the carrier gas into the concentration meter after flowing through the concentration pipe. And a path for introducing the carrier gas into the analyzer without passing through the concentration pipe, and a path for introducing the sample gas into the flow meter after flowing through the concentration pipe.

〔作 用〕(Operation)

本発明方法及び装置によれば、待機工程での濃縮管系
統の大気成分の排除を、濃縮管内にキャリアガスを流し
て行うので確実に排除できる。
ADVANTAGE OF THE INVENTION According to the method and apparatus of this invention, since the elimination of the atmospheric component of a concentrating tube system in a standby process is performed by flowing a carrier gas into a concentrating tube, it can be reliably excluded.

また、主成分排出工程での主成分の排除を、濃縮管内
にキャリアガスを流して行うので、主成分の排除を真空
排気で行うより効率的に実施できると共に、主成分の脱
着による急激な圧力上昇を抑制して被分析成分の漏洩を
防止することができる。更には、主成分をキャリアガス
に同伴して分析計に送るようにしたのでコックの切り替
え操作を減少でき、大気成分の侵入を大幅に減少でき
る。分析工程では、主成分排出工程の状態のまま濃縮管
を加熱して被分析成分を脱着するので被分析成分の全量
がキャリアガスに同伴されて分析計に導入される。
In addition, since the elimination of the main component in the main component discharging step is performed by flowing a carrier gas into the concentrating tube, the elimination of the main component can be performed more efficiently than performing the elimination of the main component by vacuum evacuation, and the rapid pressure due to the desorption of the main component can be achieved. It is possible to prevent the analyte from leaking by suppressing the rise. Further, since the main component is sent to the analyzer along with the carrier gas, the switching operation of the cock can be reduced, and the intrusion of atmospheric components can be greatly reduced. In the analysis step, the concentration tube is heated in the state of the main component discharge step to desorb the analyte, so that the entire amount of the analyte is introduced into the analyzer together with the carrier gas.

このように、本発明方法によれば、従来の真空排気を
不要として装置構成を簡略化すると共に、大気成分の侵
入をより効果的に防止したので従来よりバックグラウン
ドを低減でき高感度の測定が可能になる。
As described above, according to the method of the present invention, the conventional vacuum evacuation is unnecessary, and the apparatus configuration is simplified, and the invasion of atmospheric components is more effectively prevented. Will be possible.

次に、キャリアガスは、通常、前記のように高圧容器
内に充填されたものを用いるので減圧弁を介して減圧し
て使用するが、この場合、発明者の知見によると、キャ
リアガスは減圧弁通過時に大気成分の侵入を受ける。従
って、高圧容器内のガスが極めて高純度のものであって
も減圧弁通過時に一部汚染されるので、減圧通過後のキ
ャリアガスを精製器に流通し、該キャリアガス中の不純
物を予め除去しておくと、濃縮工程時に試料ガスと共に
キャリアガスを低温に制御された濃縮管に流しても該キ
ャリアガス中の不純物は極めて減少しているので濃縮管
内の吸着剤に低温吸着されることがほとんどなく、測定
時におけるバックグラウンドを更に低減して、感度を更
に向上することができる。
Next, as described above, the carrier gas is usually used after being filled in the high-pressure container, so that the carrier gas is used under reduced pressure through the pressure reducing valve. Atmospheric components enter when passing through the valve. Therefore, even if the gas in the high-pressure vessel is of extremely high purity, it is partially contaminated when passing through the pressure reducing valve, so that the carrier gas after passing through the reduced pressure is passed through a purifier to remove impurities in the carrier gas in advance. By doing so, even if the carrier gas flows together with the sample gas into the concentration tube controlled at a low temperature during the concentration step, the impurities in the carrier gas are extremely reduced, so that the carrier gas can be adsorbed at a low temperature by the adsorbent in the concentration tube. Almost no background during measurement can be further reduced, and sensitivity can be further improved.

また、キャリアガスと試料ガスの流路切り替えをシー
ル付多方コックで行うと、該コックを操作して流路切り
替えを行う際の該コック内への大気の侵入を防止できる
ので感度向上に有効である。
Further, when the flow path switching between the carrier gas and the sample gas is performed by a multi-way cock with a seal, it is possible to prevent the intrusion of the atmosphere into the cock when the flow path is switched by operating the cock, which is effective in improving the sensitivity. is there.

特に、前記精製器とシール付多方コックの両方を併用
すると、不純物を含まない清浄なキャリアガスが清浄な
まま濃縮管内を流通するので濃縮管内にキャリアガス中
の不純物が濃縮せず感度の向上に極めて効果的である。
In particular, when both the purifier and the multi-way cock with seal are used in combination, the carrier gas containing no impurities flows through the concentrating tube while being clean, so that the impurities in the carrier gas are not concentrated in the concentrating tube and the sensitivity is improved. Extremely effective.

〔実施例〕〔Example〕

第1図は、本発明方法に係る実施例装置のフローシー
トで、図中前記第2図と同一要素には同一付号を付して
ある。
FIG. 1 is a flow sheet of an apparatus according to an embodiment of the present invention, in which the same elements as those in FIG. 2 are denoted by the same reference numerals.

本実施例装置は、シール付六方コックEの各ポートE1
〜E6に、キャリアガス源Cに接続されるキャリアガス管
路11と、試料ガス源Sに接続される試料ガス管路12と、
冷却手段である冷却コイル6a及び加熱手段である加熱ヒ
ータ6bを備えた濃縮管6の導入部及び導出部にそれぞれ
接続される濃縮管導入管路13及び濃縮管導出管路14と、
分析計Dに接続される分析管路15と、流量計3に接続さ
れる流量測定管路16とをそれぞれ接続してなるもので、
前記キャリアガス管路11に、該キャリアガス中の不純物
成分を除去する精製器20が設けられている。
The device of the present embodiment is a device for each port E 1 of a hexagonal cock E with a seal.
To to E 6, and the carrier gas conduit 11 connected to the carrier gas source C, the sample gas line 12 connected to the sample gas source S,
A concentrating tube introducing line 13 and a concentrating tube deriving line 14, which are respectively connected to the inlet and outlet of the concentrating tube 6 having a cooling coil 6a as a cooling means and a heater 6b as a heating means,
An analysis pipe 15 connected to the analyzer D and a flow measurement pipe 16 connected to the flow meter 3 are connected to each other.
The carrier gas pipe 11 is provided with a purifier 20 for removing impurity components in the carrier gas.

このシール付六方コックEは、内部の切り替え流路を
ケーシングECで気密に覆い、かつ、該ケーシングECと切
り替え流路との間に形成される空間にキャリアガスと同
等のガスを導入管21,導出管22を介して流通するように
して大気の侵入をより完全に防止できるようにしたもの
である。
This hexagonal cock E with a seal hermetically covers the internal switching flow path with a casing E C and introduces a gas equivalent to a carrier gas into a space formed between the casing E C and the switching flow path. 21, the air is circulated through the outlet pipe 22, so that the invasion of the atmosphere can be more completely prevented.

また、精製器20は、キャリアガス導入,導出部を有す
る適宜な気密容器内にモレキュラシーブス,活性炭等の
吸着剤を充填すると共に冷却手段(図示略)を設けてな
るもので、キャリアガス中の不純物を除去するものであ
る。
Further, the purifier 20 is configured by filling an adsorbent such as molecular sieves, activated carbon and the like in an appropriate airtight container having a carrier gas introduction / extraction section and providing a cooling means (not shown). This is to remove impurities.

通常、本発明が対象とするような微量分析にあって
は、キャリアガスは高純度のものを用いるので、キャリ
アガス源Cのキャリアガス中には不純物は殆どないので
あるが、キャリアガス源Cのキャリアガスは、通常ボン
ベ等の高圧容器内に高圧で充填されているため、前記減
圧弁1を用いて所定の圧力まで減圧して使用する。そし
て、キャリアガスが減圧弁1を通過した際に大気が侵入
するので、これによる不純物を除去するのである。
Normally, in the case of microanalysis as the object of the present invention, since the carrier gas is of high purity, the carrier gas of the carrier gas source C contains almost no impurities. Since the carrier gas is usually filled at a high pressure in a high-pressure container such as a cylinder, the carrier gas is used by reducing the pressure to a predetermined pressure using the pressure reducing valve 1. Then, when the carrier gas passes through the pressure reducing valve 1, the atmosphere enters, so that impurities due to this are removed.

なお、減圧弁通過後のキャリアガスの圧力は、大気圧
より高いので、通常大気は侵入しないものと考えられる
が、ppb以下の測定では精製器を設けた場合と設けなか
った場合とで測定値が異なることから、キャリアガス
を、たとえ大気圧より高い状態で減圧したとしても大気
がわずかに侵入することを知見したものである。更に、
前記減圧弁1と試料ガス源Sの元弁2のような通常の仕
切弁とを比較すると、減圧弁1の方が大気の侵入程度が
大きいが、これは、減圧弁1が減圧機構を有し複雑な構
成になることと、この減圧機構が機械的に作動するため
であろうと推定される。
Since the pressure of the carrier gas after passing through the pressure reducing valve is higher than the atmospheric pressure, it is generally considered that the atmosphere does not enter.However, in the measurement at ppb or less, the measured values were obtained with and without the purifier. It was found that even if the carrier gas was depressurized at a pressure higher than the atmospheric pressure, the air slightly penetrated. Furthermore,
Comparing the pressure reducing valve 1 with a normal gate valve such as the main valve 2 of the sample gas source S, the pressure reducing valve 1 has a greater degree of invasion of the atmosphere. This is because the pressure reducing valve 1 has a pressure reducing mechanism. It is presumed that this is because of the complicated structure and the mechanical operation of the pressure reducing mechanism.

次に、上記のように構成した実施例装置の操作方法を
説明すると、まず六方コックEを実線側にし、キャリア
ガスを減圧弁1を介して精製器20に導入し、該キャリア
ガス中の不純物を除去した後、六方コックEのポート
E1,E2,濃縮管6,ポートE5,E6を介して分析計Dに導入
し、該分析計Dを安定状態に保持した後排気系10に排出
する。一方、試料ガスを元弁2からポートE3,E4を介し
て流量計3に流したあと排出し系内のパージを行なう。
(待機工程) 次に、上記待機工程の状態のまま、冷却コイル6aに液
化窒素等の寒冷を流して濃縮管6を所定の温度まで冷却
する。(濃縮管冷却工程) 次に、六方コックEを破線側に切り替えて、キャリア
ガスをポートE1,E6を介して分析計Dに導入すると共
に、試料ガスをポートE3,E2を介して濃縮管6に導入
し、該試料ガス中の被分析成分を該濃縮管6内の吸着剤
に低温吸着させた後、ポートE5,E4、流量計3を介して
排気系10から排出する。(濃縮工程) 次に、六方コックEを再び実線側に切り替え、前述の
ごとく濃縮管6内にキャリアガスを導入して被分析成分
と共に吸着された主成分を脱着して分析計に導入する。
(主成分排出工程) 所定時間後、加熱ヒータ6bを作動して濃縮管6を所定
温度以上に加熱し、前記濃縮工程で濃縮管6に吸着され
た被分析成分をキャリアガスに同伴してポートE5,E6
介して分析計Dに導入する。これにより、被分析成分は
分離カラム4で各々分離されて検出器5に順次導入さ
れ、該検出器5での検出値と前記濃縮工程時に流量計3
により計量された試料ガス量とから濃度が定量される。
なお、試料ガスは前記待機工程と同様に排気系10に排出
される。(分析工程) 本発明に係る濃縮分析方法は前記の如く実施される
が、コックの切り替え操作を従来方法と比較したものを
第1表に示す。なお、表中〔−〕は実線側、〔…〕は破
線側への切り替えを、また「↓」は切り替え操作を示
す。
Next, a description will be given of an operation method of the embodiment apparatus configured as described above. First, the six-way cock E is set to the solid line side, a carrier gas is introduced into the purifier 20 through the pressure reducing valve 1, and impurities in the carrier gas are removed. After removing the port
The gas is introduced into the analyzer D via E 1 , E 2 , the concentration tube 6, and the ports E 5 and E 6 , and is discharged to the exhaust system 10 after the analyzer D is maintained in a stable state. On the other hand, the sample gas flows from the main valve 2 to the flow meter 3 via the ports E 3 and E 4, and then is discharged to purge the system.
(Standby Step) Next, in the state of the above-described standby step, cooling such as liquefied nitrogen is passed through the cooling coil 6a to cool the concentrating tube 6 to a predetermined temperature. (Condenser tube cooling step) Next, the hexagonal cock E is switched to the broken line side, the carrier gas is introduced into the analyzer D through the ports E 1 and E 6 , and the sample gas is introduced through the ports E 3 and E 2 . After the analyte in the sample gas is adsorbed on the adsorbent in the concentrating tube 6 at low temperature, it is discharged from the exhaust system 10 through the ports E 5 and E 4 and the flow meter 3. I do. (Concentration Step) Next, the six-way cock E is switched to the solid line side again, and the carrier gas is introduced into the concentration tube 6 as described above, and the adsorbed main component is desorbed together with the analyte, and is introduced into the analyzer.
(Main component discharging step) After a predetermined time, the heater 6b is operated to heat the concentrating tube 6 to a predetermined temperature or more, and the analyte to be adsorbed on the concentrating tube 6 in the concentrating step is entrained with the carrier gas and is ported It is introduced into the analyzer D via E 5 and E 6 . As a result, the components to be analyzed are each separated in the separation column 4 and sequentially introduced into the detector 5, and the detected value from the detector 5 and the flow meter 3 during the concentration step are used.
The concentration is determined from the sample gas amount measured by the above.
Note that the sample gas is discharged to the exhaust system 10 in the same manner as in the standby step. (Analysis Step) The concentration analysis method according to the present invention is carried out as described above. Table 1 shows a comparison of the cock switching operation with the conventional method. In the table, [-] indicates switching to the solid line side, [...] indicates switching to the broken line side, and "↓" indicates switching operation.

上記第1表から明らかなように、従来の方法では、コ
ックの切り替えを5回行って測定するのに対し、本発明
方法では2回の切り替え操作で測定することができる。
As is clear from the above Table 1, the conventional method measures by switching the cock five times, whereas the method of the present invention can measure by two switching operations.

次に、高純度水素ガスを試料ガスとして第1図の実施
例装置を用いて不純物を測定した場合と、前記第2図に
例示した従来装置を用いて測定した場合との測定限界を
比較する実験を行った。実施例装置を用いた測定では、
精製器20を使用した場合と、使用しなかった場合、及び
シール付コックEを使用した場合と通常の六方コックを
使用した場合もそれぞれ比較した。
Next, the measurement limits of the case where impurities are measured using the apparatus of the embodiment of FIG. 1 using high-purity hydrogen gas as a sample gas and the case where measurement is performed using the conventional apparatus illustrated in FIG. 2 will be compared. An experiment was performed. In the measurement using the example apparatus,
The case where the purifier 20 was used, the case where it was not used, and the case where the cock E with a seal was used and the case where a normal hexagonal cock were used were compared.

検出器5には熱伝導度検出器を用い、精製器20には内
径4mmで長さ1mのカラムにモレキュラシーブス5Aを充填
したものを、また、濃縮管6には、内径3mmで長さ150mm
のカラムにポーラスポリマービーズを充填したものを用
いて各々液化窒素でマイナス185℃以下に冷却した。ま
た、濃縮後の濃縮管6の加熱は該濃縮管6に巻き付けた
ヒータにより行い、昇温速度は毎分150℃とした。この
実験結果を第2表に示す。
A thermal conductivity detector was used as the detector 5, a purifier 20 was a column having an inner diameter of 4 mm and a length of 1 m filled with molecular sieves 5A, and a concentrating tube 6 was an inner diameter of 3 mm and a length of 150 mm.
Each column was filled with porous polymer beads, and each was cooled to −185 ° C. or lower with liquefied nitrogen. The heating of the concentrating tube 6 after concentration was performed by a heater wound around the concentrating tube 6, and the temperature was raised at a rate of 150 ° C. per minute. Table 2 shows the results of this experiment.

第2表から明らかなように、本発明方法によれば、精
製器20,シール付コックEの両方を使用しなくとも、従
来より高感度の測定ができ、精製器20,シール付コック
Eの一方を用いれば更に感度を向上でき、両方用いると
更に感度が向上することが判る。
As is clear from Table 2, according to the method of the present invention, it is possible to measure with higher sensitivity than before, without using both the purifier 20 and the cock E with a seal. It can be seen that the sensitivity can be further improved by using one of them, and the sensitivity can be further improved by using both.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、濃縮管内にキ
ャリアガスを流しつつ該濃縮管を冷却するので大気の侵
入を防止して従来より高精度の濃縮分析を実施すること
ができ、また、配管系統を簡略化することができる。
As described above, according to the present invention, since the concentrating tube is cooled while flowing the carrier gas into the concentrating tube, the invasion of the atmosphere can be prevented, and the concentration analysis can be performed with higher precision than before, and The piping system can be simplified.

また、従来の真空排気を不要として装置構成を簡略化
すると共に、大気成分の侵入をより効果的に防止したの
で従来よりバックグラウンドを低減でき高感度の測定が
可能になる。
In addition, since conventional vacuum evacuation is not required, the apparatus configuration is simplified, and the intrusion of atmospheric components is more effectively prevented, so that the background can be reduced compared to the conventional art, and high-sensitivity measurement can be performed.

特に、濃縮管に流す前のキャリアガスを精製器に通し
て該キャリアガス中の不純物を除去するか、又は、シー
ル付多方コックを使用することにより測定感度を固める
ことができ、両方設けることにより更に高感度の測定が
可能になる。
In particular, the carrier gas before flowing through the concentrating tube is passed through a purifier to remove impurities in the carrier gas, or the measurement sensitivity can be solidified by using a sealed multi-way cock. Further, highly sensitive measurement becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す濃縮分析装置のフロー
シート、第2図は従来の濃縮分析装置のフローシートで
ある。 C……キャリアガス源、D……分析計、E……シール付
六方コック、S……試料ガス源、3……流量計、6……
濃縮管、20……精製器
FIG. 1 is a flow sheet of a concentration analyzer showing one embodiment of the present invention, and FIG. 2 is a flow sheet of a conventional concentration analyzer. C: carrier gas source, D: analyzer, E: hexagonal cock with seal, S: sample gas source, 3: flow meter, 6:
Concentrator tube, 20 …… Purifier

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭49−48392(JP,A) 特開 昭52−88088(JP,A) 特開 平1−265157(JP,A) 実開 昭57−156101(JP,U) 実開 昭60−83957(JP,U) 実開 昭60−31663(JP,U) (58)調査した分野(Int.Cl.6,DB名) G01N 1/22 G01N 1/28──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-49-48392 (JP, A) JP-A-52-88088 (JP, A) JP-A-1-265157 (JP, A) 156101 (JP, U) Japanese Utility Model 60-83957 (JP, U) Japanese Utility Model 60-31663 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) G01N 1/22 G01N 1 / 28

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】キャリアガスを濃縮管に流通した後分析計
を介して排気する待機工程、濃縮管を所定の温度以下に
冷却する濃縮管冷却工程、前記キャリアガスを前記濃縮
管を介さずに前記分析計に導入した後排気すると共に試
料ガスを濃縮管に流通して該試料ガス中の被分析成分を
該濃縮管内の吸着剤に低温吸着させた後排出する濃縮工
程、前記キャリアガスを濃縮管に流通して前記濃縮工程
で被分析成分と共に低温吸着された主成分を同伴させて
分析計に導入した後排出する主成分排出工程、該主成分
排出工程のまま濃縮管を所定の温度以上に加熱して該濃
縮管に低温吸着された前記被分析成分を脱着させてキャ
リアガスに同伴させて分析計に導入する分析工程を順次
行うことを特徴とする濃縮分析方法。
1. A standby step in which a carrier gas is circulated through a concentrating tube and then exhausted through an analyzer, a condensing tube cooling step in which the condensing tube is cooled to a predetermined temperature or lower, and the carrier gas is supplied without passing through the concentrating tube. A concentration step of exhausting the gas after being introduced into the analyzer, flowing the sample gas through the concentrating tube, adsorbing the analyte in the sample gas at a low temperature to the adsorbent in the concentrating tube, and discharging the sample gas; A main component discharging step in which the main component adsorbed at a low temperature together with the component to be analyzed in the concentrating step is introduced into the analyzer and discharged after the concentrating step. A desorption step of desorbing the analyte adsorbed at a low temperature on the concentrating tube and accompanying the carrier gas to introduce the analyte into a spectrometer.
【請求項2】前記キャリアガスは、精製器を介して供給
されることを特徴とする請求項1記載の濃縮分析方法。
2. The method according to claim 1, wherein the carrier gas is supplied via a purifier.
【請求項3】前記キャリアガスと試料ガスの流路切り替
えをシール付多方コックで行うことを特徴とする請求項
1記載の濃縮分析方法。
3. The concentration analysis method according to claim 1, wherein the flow path of the carrier gas and the sample gas is switched by a multi-way cock with a seal.
【請求項4】多方コックの各ポートに、キャリアガス源
に接続されるキャリアガス管路と、試料ガス源に接続さ
れる試料ガス管路と、冷却手段及び加熱手段を備えた濃
縮管の導入部及び導出部にそれぞれ接続される濃縮管導
入管路及び濃縮管導出管路と、分析計に接続される分析
管路と、流量計に接続される流量測定管路とをそれぞれ
接続すると共に、該多方コックは、少なくとも、キャリ
アガスを濃縮管に流通した後に分析計に導入する経路
と、キャリアガスを濃縮管を介さずに分析計に導入する
経路と、試料ガスを濃縮管に流通した後に流量計に導入
する経路とを切り替え可能に備えていることを特徴とす
る濃縮分析装置。
4. Introducing, into each port of the multi-way cock, a carrier gas line connected to a carrier gas source, a sample gas line connected to a sample gas source, and a concentration tube provided with cooling means and heating means. Concentrator tube introduction line and concentrator tube outlet line connected to the section and the outlet section, respectively, and an analysis line connected to the analyzer and a flow rate measurement line connected to the flow meter, respectively, The multi-way cock has at least a path for introducing the carrier gas into the analyzer after flowing through the concentrating tube, a path for introducing the carrier gas into the analyzer without passing through the concentrating tube, and a method for flowing the sample gas through the concentrating tube. A concentration analyzer characterized by being provided so that a path to be introduced into a flow meter can be switched.
JP1311617A 1989-11-30 1989-11-30 Concentration analysis method and apparatus therefor Expired - Lifetime JP2858143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1311617A JP2858143B2 (en) 1989-11-30 1989-11-30 Concentration analysis method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311617A JP2858143B2 (en) 1989-11-30 1989-11-30 Concentration analysis method and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH03170838A JPH03170838A (en) 1991-07-24
JP2858143B2 true JP2858143B2 (en) 1999-02-17

Family

ID=18019409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311617A Expired - Lifetime JP2858143B2 (en) 1989-11-30 1989-11-30 Concentration analysis method and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2858143B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348540B1 (en) * 2007-02-22 2014-01-07 동우 화인켐 주식회사 Outgas Analysis Apparatus Having Concentrating Device
KR101707864B1 (en) * 2015-09-07 2017-02-17 한국표준과학연구원 Low temperature pre-concentrator comprising adsorption trap for chemical analysis

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435169A (en) * 1993-06-14 1995-07-25 New Jersey Institute Of Technology Continuous monitoring of organic pollutants
JP3416121B2 (en) * 2001-02-07 2003-06-16 日本たばこ産業株式会社 Apparatus and method for extracting volatile components
US7031520B2 (en) 2003-07-24 2006-04-18 Sap Ag Method and system for identifying multiple questionnaire pages
JP5362242B2 (en) * 2008-03-26 2013-12-11 矢崎総業株式会社 Gas chromatograph apparatus and gas component desorption method
JP5396245B2 (en) * 2009-11-13 2014-01-22 独立行政法人海洋研究開発機構 Pretreatment device for elemental analysis and elemental analysis device
CN110095541A (en) * 2019-05-06 2019-08-06 南京工业大学 Gas separation characterization device and mixed gas separation performance detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348540B1 (en) * 2007-02-22 2014-01-07 동우 화인켐 주식회사 Outgas Analysis Apparatus Having Concentrating Device
KR101707864B1 (en) * 2015-09-07 2017-02-17 한국표준과학연구원 Low temperature pre-concentrator comprising adsorption trap for chemical analysis

Also Published As

Publication number Publication date
JPH03170838A (en) 1991-07-24

Similar Documents

Publication Publication Date Title
US5457316A (en) Method and apparatus for the detection and identification of trace gases
US20140311220A1 (en) System and Method of Quantifying Impurities Mixed within a Sample of Hydrogen Gas
JP2858143B2 (en) Concentration analysis method and apparatus therefor
EP1595132B1 (en) Method for analysis of contaminants in a process fluid stream
CN114235941A (en) Direct detection device and method for non-methane total hydrocarbons in ambient air
JP3539080B2 (en) Water quality analyzer
JPH05312796A (en) Apparatus for semi-continuous measurement and monitoring of chlorobenzene as alternate index for dioxine in exhaust gas
WO2006031905A1 (en) Molten metal gas sampling
CN109323909B (en) Gas automatic separation system for inertness in small-gas-volume environment sample
JP3103985B2 (en) Concentration analysis method and equipment
JP3097031B2 (en) Method and apparatus for analyzing impurities in gas
CN112285259B (en) Ion mobility spectrometry device
JP3051231B2 (en) Method and apparatus for analyzing oxygen in hydride gas-containing gas
JP3103943B2 (en) Method for analyzing carbon monoxide and / or carbon dioxide
JP3492248B2 (en) Method for measuring trace helium in metals
JP2004514137A (en) Method for measuring nitrogen concentration in argon by ion mobility spectrum analysis
JP2006023137A (en) Device for separating/analyzing trace hydrogen molecule and hydrogen isotope molecule
JP2004264282A (en) Method for concentrating gaseous substance, and apparatus for concentrating and analyzing carrier gas
JPH07198562A (en) Gas sampling method
JP2004354332A (en) Enrichment analyzer and method for enrichment analysis
KR910008102B1 (en) Method and device for evaluating capacity of gas refiner
WO2023063300A1 (en) Method and device for measuring concentration of trace gas component in water
KR20040012806A (en) A method of measuring the concentration of hydrogen and methane in nitrogen by means of ion mobility spectrometry
CN211205971U (en) Isotope sample purification and collection preparation system
JP2005265666A (en) Analyzing apparatus and analyzing method of gas in oil

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091204

Year of fee payment: 11

EXPY Cancellation because of completion of term