JPH03170838A - Concentration analysis method and apparatus - Google Patents

Concentration analysis method and apparatus

Info

Publication number
JPH03170838A
JPH03170838A JP1311617A JP31161789A JPH03170838A JP H03170838 A JPH03170838 A JP H03170838A JP 1311617 A JP1311617 A JP 1311617A JP 31161789 A JP31161789 A JP 31161789A JP H03170838 A JPH03170838 A JP H03170838A
Authority
JP
Japan
Prior art keywords
carrier gas
gas
tube
analyzer
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1311617A
Other languages
Japanese (ja)
Other versions
JP2858143B2 (en
Inventor
Yoshiaki Utsunomiya
宇都宮 良明
Takashi Yada
矢田 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP1311617A priority Critical patent/JP2858143B2/en
Publication of JPH03170838A publication Critical patent/JPH03170838A/en
Application granted granted Critical
Publication of JP2858143B2 publication Critical patent/JP2858143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To enable highly accurate analysis with a prevention of entry of atmospheric air and simplify a piping system by supplying a carrier gas through refining device to perform a passage switching between a carrier gas and a sample gas with a multi-way cock with a seal. CONSTITUTION:A carrier gas C is made to pass through a refining device 20 with that packed into a high pressure vessel decompressed through a decompression valve 1 to remove impurities therein C beforehand. As a result, even when the gas C flows through a concentrating tube 6 controlled to a low temperature together with a sample gas S during a concentration process, as the impurities in the gas C decreases extremely, there is little low-temperature absorption by an adsorbent in the concentrating tube 6, which achieves a higher sensitivity with a reduction in background during a measurement. In addition, when a passage switching is performed between the gas C and the gas S with a multi- way cock E with a seal, the entry of atmospheric air can be prevented into the cock E in the switching of the passage thereby achieving a higher sensitivity.

Description

【発明の詳細な説明】 〔産業上の利川分野〕 本発明は、桔製装置から導出される高純度ガス、又は容
器内に充填された高純度ガス等を拭料ガスとし、該ガス
中に含まれる微量の不純物(被分析成分)を濃縮分析方
法によって高感度に分析する方法及びその装置に関する
[Detailed Description of the Invention] [Industrial field in Icheon] The present invention uses a high-purity gas derived from a steamer or a high-purity gas filled in a container as a wiping gas, and uses the gas contained in the gas as a cleaning gas. The present invention relates to a method and apparatus for highly sensitively analyzing trace amounts of impurities (components to be analyzed) using a concentration analysis method.

〔従来の技術〕[Conventional technology]

前記濃縮分析方法は、試料ガス中の被分析戊分を低温に
1.11御した濃縮管山の吸着剤に低温吸着させて濃縮
した後、該濃縮管にキャリアガスを流しつつ該濃縮管を
加熱して前記被分析或分を脱着させて該キャリアガスに
同f″1′させ、分Jl7AIに導入して被分析成分を
lIIJ定するもので、1111定Ill位がppmか
らppb  (ippm − 1 000ppb )へ
、更に、ppbからppL  (IF)pb − 1 
000ppL )へと進行している近時の微量分析の要
求によく適応するものである。
In the concentration analysis method, the fraction to be analyzed in the sample gas is concentrated by being adsorbed at a low temperature on the adsorbent of the concentrator tube, which is kept at a low temperature. The analyte is desorbed by heating to the carrier gas and introduced into the carrier gas to determine the analyte component. 1 000ppb) and then from ppb to ppL (IF) pb − 1
000 ppL), which is well suited to the recent demands for microanalysis.

以′ド、第2図に従来の濃縮分析装置のフローシートを
例示して従来の濃縮分析方法を説明する。
Hereinafter, a conventional concentration analysis method will be explained by illustrating a flow sheet of a conventional concentration analysis apparatus in FIG.

図中、LSMは本体の摘みを操作することにより6つの
流路を同時に切り替えられるよう構或した六方コックで
、太線側に切り替えることにより各ポートL+ ’=L
6,M+〜M6が実線で表示したように連通し、また、
破線側に切り替えることにより破線で表示したように連
通ずるようになっており、各ポートL,〜L6、M,〜
M6に各種ガス源及び機器が図のように連設されている
In the figure, LSM is a hexagonal cock designed to switch six channels at the same time by operating the knob on the main body, and by switching to the thick line side, each port L + ' = L
6, M+ to M6 communicate as shown by solid lines, and
By switching to the dashed line side, communication is established as indicated by the dashed line, and each port L, ~L6, M, ~
Various gas sources and equipment are connected to M6 as shown in the figure.

即ち、六方コックLのボートL1には減圧弁1を介して
高圧容器内にヘリウムガスを充填してなるキャリアガス
源Cが、ボートL3には元弁2を介して試料ガス源Sが
、ボートL4には稍密な流以計3が、ボートL 6には
試料ガス中の披分析成分の分離に適した充填剤を充填し
てなる分離力ラム4と被分析成分を検出する検出器5と
からなる分析計Dが各々連設され、また、六方コックM
のボートM,は六方コックLのボー1・L2に、ポトM
6は六方コックLのボートL,に夫々連設し、ボートM
2とボートM qの間には濃縮膏6が、ボートM,には
連成317,元弁8を介して真空ポンプVが、ポートM
4には古M9が各々連設されている。
That is, the boat L1 of the six-way cock L is connected to the carrier gas source C, which is a high-pressure container filled with helium gas, through the pressure reducing valve 1, and the sample gas source S is connected to the boat L3 through the main valve 2. L4 is equipped with a dense flow meter 3, boat L6 is equipped with a separation force ram 4 filled with a packing material suitable for separating the analyte components in the sample gas, and a detector 5 for detecting the analyte components. Analyzers D consisting of
Boat M, has six-way cock L on boats 1 and L2, and pot M
6 is connected to boat L with six-way cock L, and boat M
2 and boat Mq, a vacuum pump V is connected to the boat M via a coupling 317 and a main valve 8, and a vacuum pump V is connected to the boat M.
Old M9s are connected to each of the 4s.

濃縮管6は、吸着温度以下の低温下で試料ガス中の被分
析成分を100%吸着できるように適宜選択された吸着
剤を充填してなるもので、冷却用コイル6aと加熱川ヒ
ータ6bを有する。
The concentrating tube 6 is filled with an adsorbent appropriately selected to adsorb 100% of the analyte in the sample gas at a low temperature below the adsorption temperature, and is equipped with a cooling coil 6a and a heating heater 6b. have

以下、この装置を用いた従来の分析方法を工程順に説明
する。
Hereinafter, a conventional analysis method using this device will be explained step by step.

まず六方コックL,Mを実線側に切り替え、キャリアガ
スMCのヘリウムガスをキャリアガスとして減圧弁1で
所定の圧力に減圧した後、六方コックLのボートt,,
 l  Ll2 、六方コックMのボー}M.,M.、
再び六方コックLのボートL,、L6を介して分析計D
に導入して該分析計Dを安定状態に保持した後排気系1
0へ排気すると共に、試料ガスを元弁2から六方コック
LのボートL,,L4、流量計3を介して排気系10へ
排気する。
First, switch the hexagonal cocks L and M to the solid line side, and reduce the pressure to a predetermined pressure with the pressure reducing valve 1 using helium gas of the carrier gas MC as the carrier gas.
l Ll2, Bo of six-way cock M. ,M. ,
Analyzer D is connected again via boats L, L6 of hexagonal cock L.
After introducing the analyzer D into a stable state and maintaining the analyzer D, the exhaust system 1
At the same time, the sample gas is exhausted from the main valve 2 to the exhaust system 10 via the boats L, L4 of the six-way cock L and the flow meter 3.

また、この状態と併行して真空ボンブ■を作動し、真空
ボンブ■から元弁8、六方コックMのボートM,,M2
、濃縮?T6、ボートM,,M4、盲蓋9に至る配管内
に残留する大気成分(酸素及び窒素)を排除した後停止
する。(待機工程)次に、冷却用コイル6aに液化窒素
専の寒冷を流して濃縮管6を所定の温度以ドに冷却する
In addition, in parallel with this state, the vacuum bomb ■ is operated, and from the vacuum bomb ■, the main valve 8, the boats M, , M2 of the six-way cock M,
,concentrated? After eliminating atmospheric components (oxygen and nitrogen) remaining in the piping leading to T6, boats M, M4, and blind lid 9, the operation is stopped. (Standby step) Next, cold water exclusively for liquefied nitrogen is passed through the cooling coil 6a to cool the concentrating tube 6 to a predetermined temperature or lower.

( iaN青冷却[程) そして、該冷却工捏のまま、六方コックL, Mをノ(
に破線側に切り替え、キャリアガスをポートL,,L6
を介して分析計Dに導入した後排気系10に排気すると
共に、試料ガスを、ボートL 3 ,L2,M.,M,
を介して濃縮竹6に導入し、該試料ガス中の被分析成分
を濃縮管6内の吸着剤にa(m 吸着サセ、ポ }Mq
 ,M.,L 5,L4、流W413を介して排気系1
0に排気する。(濃縮1’. l.’A ) 次いで、六方コックLを破線側にしたまま六方コックM
を実線側に切り替えて真空ボンプVを再起動し、前記濃
縮].程で被分析或分と共に濃縮骨6に低温吸着された
試料ガスの主成分を、ポートM2,M,を介して排出し
た後停I卜する。(主成分排出工捏) 次に、加熱ヒータ6bを作動して濃縮管6を加熱し、該
濃縮管6内に低温吸着された被分析成分を脱着した後、
六方コックLを実線側に、六方コックMを破線側に切り
替えてキャリアガスをボートL+ ,L2 ,M+ ,
M2を介して濃縮′rpr6ニ流通して披分析成分をキ
ャリアガスに同佇させてボ}MS ,M6,L5 ,L
6を介して分析計Dに導入する。これにより、披分17
成分は分離カラム4で各々分離されて検1イ1器5に順
次導入され、該検出器5での検?H値と前記濃縮−11
f呈特に流量計3により計量された試料ガス量とから濃
度が定量される。(分析王糧) 〔発明が角q決しようとする課題〕 しかし、前記従来方法では、待機111時の真空俳気に
よっても濃縮管6を含む配管系の速成計7,合蓋9等の
溜り部の大気成分が排出されずに残留するため濃縮工程
時に濃縮萱6内の吸着剤に吸着され、後に脱着して分析
計Dで測定されること、また、前記主威分排出工程を真
空排気により行い、かつ、前記六方コックL,Mを頻繁
に開閉操作すること等により大気成分が主に六方コック
L, Mのシート部等を透過して僅かに侵入すること等
によりバックグラウンドが大きくなり、ppb以下のレ
ベルの濃度を11確に測定することは困難だった。
( iaN blue cooling process) Then, with the cooling process as it is, turn the six-way cocks L and M (
switch to the dashed line side and transfer the carrier gas to ports L,, L6.
After introducing the sample gas into the analyzer D via the exhaust system 10, the sample gas is introduced into the analyzer D through the boats L 3 , L2, M. ,M,
The sample gas is introduced into the concentrating tube 6 through the sample gas, and the analyte component in the sample gas is transferred to the adsorbent in the concentrating tube 6 by
,M. , L 5, L4, exhaust system 1 via flow W413
Exhaust to 0. (Concentration 1'.l.'A) Next, turn the hexagonal cock M while leaving the hexagonal cock L on the dotted line side.
to the solid line side, restart the vacuum pump V, and perform the concentration]. At this point, the main component of the sample gas adsorbed at a low temperature on the concentrated bone 6 together with a certain amount of the sample to be analyzed is discharged through ports M2, M, and then the process is stopped. (Main component discharge process) Next, the heater 6b is activated to heat the concentrating tube 6, and after desorbing the component to be analyzed that has been adsorbed at low temperature in the concentrating tube 6,
Switch the six-way cock L to the solid line side and the six-way cock M to the broken line side to supply carrier gas to the boats L+, L2, M+,
The analyte is passed through M2 to the concentrated RPR6 to keep the analyte components present in the carrier gas.MS, M6, L5, L
6 into analyzer D. As a result, 17
The components are separated in the separation column 4 and sequentially introduced into the detector 5, where they are detected. H value and the concentration-11
The concentration is determined from the sample gas amount measured by the flow meter 3. (Analysis King Food) [Problem that the invention attempts to solve] However, in the conventional method, the vacuum exhaust during standby 111 also causes accumulations in the rapid conversion meter 7, cover 9, etc. of the piping system including the concentrating tube 6. Since some of the atmospheric components remain without being discharged, they are adsorbed by the adsorbent in the concentrator 6 during the concentration process, and are later desorbed and measured with the analyzer D. In addition, by frequently opening and closing the hexagonal cocks L and M, atmospheric components mainly pass through the seats of the hexagonal cocks L and M and enter slightly, resulting in a large background. , it has been difficult to accurately measure concentrations below the ppb level.

また、分析tfxでは、濃縮管6を加熱して披分析成分
を脱青した後、該濃縮管6にキャリアガスを流通して波
分析成分をキャリアガスに同(’Fさせるため、被分O
T成分の一部が真空ボンブVの系統にpm留して被分析
成分の全量を分Hj at Dに導入することができず
、また、主成分排出上捏で脱着しなかった主成分がノJ
1熱によって脱着し、これによって濃縮管系の圧力か上
昇して披分析成分の一部が主成分とノ(に大気に漏洩す
ることもあり正確な測定を困難にしていた。
In addition, in the analysis TFX, after heating the concentrating tube 6 to deblue the analyte components, a carrier gas is passed through the concentrating tube 6 to convert the analyte components into the carrier gas.
Part of the T component was distilled into the system of the vacuum bomb V, making it impossible to introduce the entire amount of the component to be analyzed into the component Hj at D. Also, the main component that was not desorbed during the main component discharge and mixing was removed. J
The desorption occurs due to heat, which increases the pressure in the concentrator tube system, causing some of the analyzed components to leak into the atmosphere along with the main components, making accurate measurements difficult.

本発明はこのtiな不都合を解決することを11的とし
た濃縮分析方法及びその装置を11Δ1』(ずるにある
The present invention is directed to a concentration analysis method and an apparatus for the same, which are aimed at solving this serious disadvantage.

〔課題を解決するための丁段〕[Dingdan for solving problems]

前記11的を達成する本発明の濃縮分析方法は、キャリ
アガスを濃縮管に流通した後分析別を介して排気する詩
機工程、濃縮管を所定の温度以下に冷却する濃縮管冷却
玉捏、前記キャリアガスを前記濃縮管を介さずに前記分
析計に導入した後排気すると共に試料ガスを該濃縮管に
流通して該試料ガス中の披分析成分を該濃縮管内の吸着
剤に低温眼着させた後排出す・る濃縮工程、前記キャリ
アガスを濃縮管に流通して前記濃縮工程で被分析或分と
共に低温吸着された主或分を同伴させて分FrIに導入
した後排出する主威分排Hi ’!.−. l、該主或
分排出−[捏のまま濃縮管を所定の温度以上に加熱して
該濃縮管に低温吸着された前記被分析或分を脱着させて
キャリアガスに同1fさせて分析計に導入する分析工程
を順次行うことを特徴とし、また、前記キャリアガスは
、帖製器を介して供給されていることを特徴とし、更に
、前記キャリアガスと試料ガスの流路切り替えをシール
付多方コックで行うことを特徴とする。
The concentration analysis method of the present invention which achieves the above-mentioned 11 objectives includes a step of discharging a carrier gas through a concentrating tube and then exhausting it through an analysis chamber, a concentrating tube cooling process that cools the concentrating tube to a predetermined temperature or lower, The carrier gas is introduced into the analyzer without going through the concentrator tube and then evacuated, and the sample gas is passed through the concentrator tube to transfer the analyte components in the sample gas to the adsorbent in the concentrator tube. A concentration step in which the carrier gas is passed through a concentrating tube to bring together the main fraction adsorbed at a low temperature with the fraction to be analyzed in the concentration step, and the main fraction is introduced into the fraction FrI and then discharged. Separation Hi'! .. −. l. Discharge of the main fraction - [heat the concentrating tube as it is kneaded to a predetermined temperature or higher to desorb the fraction to be analyzed that has been adsorbed at low temperature to the concentrating tube, and transfer it to the carrier gas to the analyzer. The method is characterized in that the analysis steps for introduction are carried out sequentially, and the carrier gas is supplied through a maker, and the flow path switching between the carrier gas and the sample gas is performed in multiple directions with a seal. It is characterized by being performed with a cook.

また、本発明の濃縮分析装置は、多方コックの各ボート
に、キャリアガス源に接続されるキャリアガス菅路と、
試料ガス源に接続される拭料ガス菅路と、冷却手段及び
加熱手段を備えた濃縮管の導入部及び導出部にそれぞれ
接続される濃縮管導八管路及び濃縮管導出管路と、分析
計に接続される分析管路と、流量計に接続される流量測
定管路とをそれぞれ接続するとJ(に、該多方コックは
、少なくとも、キャリアガスを濃縮骨に流通した後に分
析別に導入する経路と、キャリアガスを濃縮管を介さず
に分析31に導入する経路と、試料ガスを濃縮管に流通
した後に流量計に導入する経路とを切り替えiiJ能に
備えていることを特徴としている。
In addition, the concentration analysis device of the present invention includes a carrier gas channel connected to a carrier gas source in each boat of the multi-way cock;
A wiping gas pipe connected to a sample gas source, a concentrating tube conduit and a concentrating tube outlet conduit respectively connected to an inlet and an outlet of a concentrating tube equipped with a cooling means and a heating means, and an analyzer. When the analysis pipe line connected to J and the flow measurement pipe line connected to the flow meter are respectively connected, the multi-way cock at least serves as a route for introducing the carrier gas for each analysis after passing through the concentrated bone. It is characterized by the ability to switch between a route for introducing the carrier gas into the analysis 31 without going through the concentrator tube and a route for introducing the sample gas into the flowmeter after passing through the concentrator tube.

〔作 川〕[Written by Kawa]

本発明方法及び装置によれば、待機+’−taでの濃縮
管系統の人気成分の排除を、濃縮管出にキャリアガスを
流して行うので確実に排除できる。
According to the method and apparatus of the present invention, the removal of popular components from the concentrating tube system in standby +'-ta is carried out by flowing carrier gas to the concentrating tube outlet, so that the components can be reliably eliminated.

また、主成分排出玉捏での主成分の排除を、濃縮管内に
キャリアガスを流して行うので、主威分の排除を真空排
只で行うより効率的に実施できると共に、主成分の脱着
による急激な圧力上昇を抑制して被分析成分の漏洩を防
+1することができる。
In addition, since the main component is removed by flowing the carrier gas into the concentrating tube, the main component can be removed more efficiently than by vacuum evacuation. By suppressing a sudden pressure rise, leakage of the analyzed component can be prevented by +1.

史には、主成分をキャリアガスに同1′Fシて分析計に
送るようにしたのでコックの[17Jり替え操作を減少
でき、大気成分の侵入を大幅に減少できる。分析工捏で
は、主成分排出]−捏の状態のまま濃縮管を加熱して被
分析成分を脱着するので被分析成分の全量がキャリアガ
スに同伴されて分析計に導入される。
Historically, the main components were sent to the analyzer at the same 1'F as the carrier gas, which reduced the need to change the cock and greatly reduced the intrusion of atmospheric components. In analytical processing, the main component is discharged] - The concentrating tube is heated in the kneaded state to desorb the analyte component, so that the entire amount of the analyte component is introduced into the analyzer along with the carrier gas.

このように、本発明方法によれば、従来の真空排気を不
要として装置構或を簡略化すると共に、大気成分の侵入
をより効果的に防lトしたので従来よりバックグラウン
ドを低減でき高感度の測定が可能になる〇 次に、キャリナガスは、通常、前記のように高圧容器出
に充填されたものを用いるので減圧弁を介して減圧して
使用するが、この場合、発明者の知見によると、キャリ
アガスは減圧弁通過時に大気成分の侵入を受ける。従っ
て、高江容器内のガスが極めて高純度のものであっても
減圧弁通過時に一部汚染されるので、減圧弁通過後のキ
ャリアガスを精製器に流通し、該キャリアガス中の不純
物を予め除去しておくと、濃縮工程時に試料ガスと共に
キャリアガスを低温に制御された濃縮管に流しても該キ
ャリアガス中の不純物は極めて減少しているので濃縮管
内の吸着剤に代温吸着されることがほとんどな<、測定
時におけるバックグラウンドを史に0(減して、感度を
史に向上することができる。
As described above, the method of the present invention simplifies the device structure by eliminating the need for conventional vacuum evacuation, and more effectively prevents the intrusion of atmospheric components, resulting in lower background and higher sensitivity than in the past. It becomes possible to measure When the carrier gas passes through the pressure reducing valve, atmospheric components enter the carrier gas. Therefore, even if the gas in the Takae container is of extremely high purity, it will be partially contaminated when it passes through the pressure reducing valve, so the carrier gas after passing through the pressure reducing valve is passed through a purifier to remove impurities in the carrier gas. If they are removed in advance, even if the carrier gas is flowed together with the sample gas into the concentrator tube controlled at low temperature during the concentration process, the impurities in the carrier gas will be extremely reduced, so that they will be adsorbed thermothermally by the adsorbent in the concentrator tube. In most cases, the background during measurement can be reduced to zero, and the sensitivity can be dramatically improved.

また、キャリアガスと試料ガスの流踏切り替えをシール
付多方コックで行うと、該コックを操作して流路切り替
えを行う際の該コック内への人気の侵入を防ILできる
ので感度向上にH効である。
In addition, if the carrier gas and sample gas flows are switched using a multi-way cock with a seal, it is possible to prevent the intrusion into the cock when operating the cock to switch the flow paths, thereby improving sensitivity. It is effective.

特に、前記li製器とシール付多方コックの両ノjをO
F用すると、不純物を含まない消浄なキャリアガスが消
浄なまま濃縮膏内を流通するので濃縮管内にキャリアガ
ス中の不純物がamせず感度の向上に極めて効果的であ
る。
In particular, both the nozzles of the li maker and the multi-way cock with seals are
When F is used, a clean carrier gas containing no impurities flows through the concentrate in a clean state, so that impurities in the carrier gas do not enter the concentration tube, which is extremely effective in improving sensitivity.

〔火施例〕[Fire example]

第1図は、本発明方法に係る大施例装置のフローシ一ト
で、図中前記第2図と同一安索には同一付号を付してあ
る。
FIG. 1 is a flowchart of a large-scale embodiment of the apparatus according to the method of the present invention, in which the same cables as in FIG. 2 are given the same reference numbers.

本実施例装置は、シール付六方コックEの各ボートE1
〜E6に、キャリアガス源Cに接続されるキャリアガス
管路11と、拭料ガス源Sに接続される試料ガス管路1
2と、冷却f段である冷却コイル6a及び加熱手段であ
る加熱ヒータ6bを備えた濃縮管6の導入部及び導出部
にそれぞれ接続される濃縮管導入管路13及び濃縮管導
出管路14と、分析計Dに接続される分析管路15と、
流量計3に接続される流m測定管路16とをそれぞれ接
続してなるもので、前記キャリアガス管路11に、該キ
ャリアガス中の不純物成分を除去するlrff製器20
が設けられている。
This embodiment device has a hexagonal cock E with a seal for each boat E1.
~E6, a carrier gas line 11 connected to a carrier gas source C, and a sample gas line 1 connected to a wiping gas source S.
2, and a concentrating tube inlet line 13 and a concentrating tube outlet line 14 connected to the inlet and outlet parts of the concentrator tube 6, respectively, which are equipped with a cooling coil 6a as a cooling stage F and a heater 6b as a heating means. , an analysis pipe line 15 connected to the analyzer D;
A flow meter measuring pipe 16 connected to the flow meter 3 is connected to the carrier gas pipe 11, and an lrff device 20 for removing impurity components in the carrier gas is connected to the carrier gas pipe 11.
is provided.

このシール付六方コックEは、内部の切り替え流路をケ
ーシングECで気密に覆い、かつ、該ケーシングECと
切り替え流路との間に形成される空間にキャリアガスと
同等のガスを導入管21,導出骨22を介して流通する
ようにして大気の侵入をより完全に防11−できるよう
にしたものである。
This hexagonal cock E with a seal has an internal switching channel airtightly covered with a casing EC, and a gas equivalent to a carrier gas is introduced into the space formed between the casing EC and the switching channel through an introduction pipe 21, By allowing the air to flow through the derived bone 22, the intrusion of the atmosphere can be more completely prevented.

また、精製器20は、キャリアガス導入.導出部を有す
る適宜な気密容器内にモレキュラシーブス,活性炭等の
吸着剤を充填すると共に冷却手段(図示略)を設けてな
るもので、キャリアがス中の不純物を除上ずるものであ
る。
Further, the purifier 20 is configured to introduce a carrier gas. An appropriate airtight container having an outlet part is filled with an adsorbent such as molecular sieves or activated carbon, and a cooling means (not shown) is provided so that the carrier removes impurities in the gas.

通常、本発明が対象とするような微量分析にあっては、
キャリアガスは直純度のものを用いるので、キャリアガ
ス源Cのキャリアガス中には不純物は殆どないのである
が、キャリアガス源Cのキャリアガスは、通堂ボンベ専
の高圧容器内に高圧で充填されているため、前記減圧弁
1を用いて所定の圧力まで減圧して使用する。そして、
キャリアガスが減圧弁1を通過した際に人気が侵入する
ので、これによる不純物を除去するのである。
Normally, in the kind of microanalysis targeted by the present invention,
Since the carrier gas used is of direct purity, there are almost no impurities in the carrier gas of carrier gas source C. However, the carrier gas of carrier gas source C is filled at high pressure into a high-pressure container made exclusively for Tsudo cylinders. Therefore, the pressure is reduced to a predetermined pressure using the pressure reducing valve 1 before use. and,
When the carrier gas passes through the pressure reducing valve 1, impurities that enter the carrier gas are removed.

なお、減庄弁通過後のキャリアガスの圧力は、大気圧よ
り高いので、通常大気は侵入しないものと考えられるが
、ppb以ドの1111定では桔製器を設けた場合と設
けなかった場合とで測定値が異なることから、キャリア
ガスを、たとえ人気圧より高い状態で減圧したとしても
大気かわずがに侵入することを知見したものである。更
に、前記減圧弁1と拭料ガス源Sの元弁2のような通常
の仕切弁とを比較すると、減圧弁1の方が人気の侵入程
度が大きいが、これは、減圧弁1が減江機構を有し複雑
な構成になることと、この減圧機構が機械的に作動する
ためであろうと推定される。
Note that the pressure of the carrier gas after passing through the pressure reduction valve is higher than atmospheric pressure, so normally it is thought that the atmosphere does not enter, but at 1111 constants of less than ppb, there are two cases with and without a pressure regulator. Since the measured values were different between the two, it was discovered that even if the carrier gas was depressurized to a level higher than human pressure, it would infiltrate into the atmosphere. Furthermore, when comparing the pressure reducing valve 1 with a normal gate valve such as the main valve 2 of the wiping gas source S, the pressure reducing valve 1 has a greater degree of popularity. It is presumed that this is because the mechanism is complicated and the pressure reducing mechanism operates mechanically.

次に、上記のように構成した実施例装置の操作方法を説
明すると、まず六方コックEを実線側にし、キャリアガ
スを減圧弁1を介してLf !’2 姦2 0に導入し
、該キャリアガス中の不純物を除大した後、六方コック
EのポートE+ ,E2+ 16縮管6,ボートE−,
,E6を介して分析31Dに導入し、該分tlF 61
’ Dを安に状態に保持した後排気系1〔}に排}I1
する。一方、試料ガスを元弁2からボー}E,,E4を
介して流量計3に流したあと排出し系内のパージを行な
う。(待機−L捏) 次に、上記待機−[程の状態のまま、冷却コイル6aに
液化窒素等の寒冷を流して濃縮管6を所定の温度まで冷
却する。(濃縮管冷却E−. fff )次に、六方コ
ックEを破線側に切り替えて、キャリアガスをボートE
,,E,,を介して分IF J’ Dに導入すると共に
、試料ガスをボートE.,E2を介して濃縮管6に導入
し、該試料ガス中の波分析成分を該濃縮管6内の吸着剤
に低温吸着させた後、ボートE5,E.、流量計3を介
して排気系10から排出する。(a縮■二捏) 次に、六h′コックEを再び実線側に切り替え、前連の
ごとく濃縮管61ノ4にキャリアガスを導入して披分i
1?成分と共に吸着された主成分を脱着して分析,:1
に導入する。(主成分排出L程)所定11与間後、加熱
ヒータ6bを作動して濃縮管6を所定温度以上に加熱し
、前記濃縮1二捏で濃縮管6に吸着された披分析成分を
キャリアガスに同11lシてボー}E,,E,,を介し
て分析alDに導入する。これにより、披分析成分は分
離カラム4で各々分離されて検出器5に順次導入され、
該検出器5での検出値と前記濃縮[程時に流量羽3によ
り÷1量された試料ガス量とから濃度が定量される。
Next, the operating method of the embodiment device configured as described above will be explained. First, the six-way cock E is set to the solid line side, and the carrier gas is supplied through the pressure reducing valve 1 to Lf! '2 After introducing the carrier gas into the carrier gas and removing impurities in the carrier gas, port E+ of the six-way cock E, E2+ 16 contraction tube 6, boat E-,
, E6 into analysis 31D, and the fraction tIF 61
' After holding D in a stable state, exhaust to exhaust system 1 [} I1
do. On the other hand, the sample gas is passed from the main valve 2 to the flow meter 3 via bows E, , E4 and then discharged to purge the system. (Standby-L kneading) Next, while in the above-mentioned standby state, cold such as liquefied nitrogen is flowed through the cooling coil 6a to cool the concentrating tube 6 to a predetermined temperature. (Concentrator tube cooling E-. fff) Next, switch the hexagonal cock E to the dotted line side and supply the carrier gas to the boat E.
, , E, , into minute IF J' D, and the sample gas is introduced into boat E. , E2 into the concentrating tube 6, and the wave analysis components in the sample gas are adsorbed at low temperature on the adsorbent in the concentrating tube 6, and then transferred to the boats E5, E2. , is discharged from the exhaust system 10 via the flow meter 3. (a reduction ■2) Next, switch the 6h' cock E to the solid line side again, and introduce the carrier gas into the concentrating tube 61-4 as in the previous series.
1? Desorb and analyze the main components adsorbed together with the components: 1
to be introduced. (Main component discharge L step) After a predetermined 11 minutes, the heater 6b is activated to heat the concentrating tube 6 to a predetermined temperature or higher, and the analyte components adsorbed on the concentrating tube 6 during the concentration 12 times are transferred to the carrier gas. Then, the same 11l is introduced into the analysis alD via }E,,E,,. As a result, the analyte components are separated by the separation column 4 and sequentially introduced into the detector 5.
The concentration is determined from the detected value by the detector 5 and the sample gas amount divided by 1 by the flow rate vane 3 during the concentration.

なお、試料ガスは前記待機工程と同様に排気系1{)に
排出される。(分析[程) 本発明に係る濃縮分析方法は前記の如く実施されるが、
コックの切り替え操作を従来方法と比較したものを第1
表に示す。なお、表中〔一〕は尖線側、〔・・・〕は破
線側への切り替えを、また「1」は切り替え操作を示す
Note that the sample gas is discharged to the exhaust system 1{) similarly to the standby process. (Analysis) The concentration analysis method according to the present invention is carried out as described above.
The first comparison of the cock switching operation with the conventional method
Shown in the table. In the table, [1] indicates switching to the pointed line side, [...] indicates switching to the broken line side, and "1" indicates switching operation.

第1表 上記第1表から明らかなように、従来の方法では、コッ
クの切り替えを5回行って測定するのに対し、本発明方
法では2同の切り替え操作で測定することができる。
Table 1 As is clear from Table 1 above, in the conventional method, measurement is performed by switching the cock five times, whereas in the method of the present invention, measurement can be performed by switching the cock twice.

次に、高純度水素ガスを拭料ガスとして第1図の実施例
装置を用いて不純物をaP1定した場合と、前記第2図
に例示した従来装置を用いてall定した場八との測定
限界を比較する丈験を行った。大施例装置を川いた測定
では、稍製器20を使用した場合と、使用しなかった場
合、及びシール付コックEを使用した場合と通常の六方
コックを使用した場合もそれぞれ比較した。
Next, we will compare the measurement limits when impurities are determined by aP1 using the example device shown in FIG. We conducted an experiment to compare the In measurements taken using the large example device, comparisons were made between using and not using the fine molding device 20, and between using a cock with a seal E and using a normal six-way cock.

検出器5には熱伝導度検出器を用い、梢製器20には内
径4關で長さ1mのカラムにモレキュラシーブス5Aを
充填したものを、また、濃縮管6には、内径3llmで
長さ150llIのカラムにポーラスボリマービーズを
充填したものを用いて各々液化窒素でマイナス185℃
以下に冷却した。また、濃縮後の濃縮汀6の加熱は該濃
縮管6に巻き付けたヒータにより行い、昇温速度は毎分
150℃とした。この実験桔果を第2表に示す。
A thermal conductivity detector was used as the detector 5, a column with an inner diameter of 4 mm and a length of 1 m filled with molecular sieves 5A was used as the column maker 20, and a long column with an inner diameter of 3 llm was used for the concentrator tube 6. Using a 150llI column filled with porous polymer beads, each was heated to -185°C with liquefied nitrogen.
Cooled below. Further, the concentrated sludge 6 after concentration was heated by a heater wrapped around the concentrating tube 6, and the temperature rising rate was 150° C./min. The results of this experiment are shown in Table 2.

m2表 第2表から明らかなように、本発明方法によれば、精製
器20,  シール付コックEの両方を使用しなくとも
、従来より高感度の測定ができ、情製”J:4 2 0
 ,  シール付コックEの一方を用いれば更に感度を
向上でき、両方川いると更に感度が向上することがiり
る。
As is clear from Table 2, according to the method of the present invention, even without using both the purifier 20 and the seal cock E, it is possible to perform measurements with higher sensitivity than before. 0
If one of the cocks with a seal E is used, the sensitivity can be further improved, and if both are used, the sensitivity can be further improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、濃縮管Iqにキ
ャリアガスを流しつつ該濃縮管を冷却するので大気の侵
入を防止して従来より高T+’t度の濃縮分析を実施す
ることができ、また、配青系統を簡略化することができ
る。
As explained above, according to the present invention, since the concentrating tube Iq is cooled while the carrier gas is flowing through the concentrating tube Iq, it is possible to prevent the intrusion of the atmosphere and perform concentration analysis at a higher T+'t degree than before. In addition, the blue distribution system can be simplified.

また、従来の真空排気を不要として装置構成を簡略化す
ると共に、大気或分の侵入をより効果的に防止したので
従来よりバックグラウンドを低減でき高感度のAtJ定
か可能になる。
In addition, the device configuration is simplified by eliminating the need for conventional vacuum evacuation, and the intrusion of atmospheric air to a certain extent is more effectively prevented, so that background can be reduced and AtJ with high sensitivity can be determined.

特に、濃縮管に流す前のキャリアガスをllff製器に
通して該キャリアガス中の不純物を除去するか、又は、
シール付多方コックを使用することにより測定感度を高
めることができ、両方設けることにより史に高感度の測
定がiiJ能になる。
In particular, impurities in the carrier gas are removed by passing the carrier gas through an llff device before flowing into the concentrator tube, or
By using a multi-way cock with a seal, measurement sensitivity can be increased, and by providing both, it is possible to perform measurements with the highest sensitivity ever.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一丈施例を示す濃縮分IF装置のブロ
ーシーj・、第2図は従来の濃縮分#lτ装11奮のフ
ローシートである。 C・・・キャリアガス源  D・・・分1i jlE・
・シール付六Jjコック  S・・・試料ガス源  3
・・・流抗1:1   6・・冒農縮青   20・・
・L’i製器特 苧′1 出 46  人 11本酸素
株式会li代pp人 井Pp十   木  戸  傳一
郎同 木    F          +J同 小   川   眞
FIG. 1 is a flow sheet of a concentrated fraction IF device showing one embodiment of the present invention, and FIG. 2 is a flow sheet of a conventional concentrated fraction #lτ system. C...Carrier gas source D...minute 1i jlE・
・6 Jj cock with seal S...Sample gas source 3
...Flow resistance 1:1 6...Farming shrinkage 20...
・L'i Seiki Toku 苧'1 Output 46 people 11 Oxygen Co., Ltd. pp people I Pp 10 Kido Denichiro Doki F + J Dou Makoto Ogawa

Claims (1)

【特許請求の範囲】 1、キャリアガスを濃縮管に流通した後分析計を介して
排気する待機工程、濃縮管を所定の温度以下に冷却する
濃縮管冷却工程、前記キャリアガスを前記濃縮管を介さ
ずに前記分析計に導入した後排気すると共に試料ガスを
濃縮管に流通して該試料ガス中の被分析成分を該濃縮管
内の吸着剤に低温吸着させた後排出する濃縮工程、前記
キャリアガスを濃縮管に流通して前記濃縮工程で被分析
成分と共に低温吸着された主成分を同伴させて分析計に
導入した後排出する主成分排出工程、該主成分排出工程
のまま濃縮管を所定の温度以上に加熱して該濃縮管に低
温吸着された前記被分析成分を脱着させてキャリアガス
に同伴させて分析計に導入する分析工程を順次行うこと
を特徴とする濃縮分析方法。 2、前記キャリアガスは、精製器を介して供給されるこ
とを特徴とする請求項1記載の濃縮分析方法。 3、前記キャリアガスと試料ガスの流路切り替えをシー
ル付多方コックで行うことを特徴とする請求項1記載の
濃縮分析方法。 4、多方コックの各ポートに、キャリアガス源に接続さ
れるキャリアガス管路と、試料ガス源に接続される試料
ガス管路と、冷却手段及び加熱手段を備えた濃縮管の導
入部及び導出部にそれぞれ接続される濃縮管導入管路及
び濃縮管導出管路と、分析計に接続される分析管路と、
流量計に接続される流量測定管路とをそれぞれ接続する
と共に、該多方コックは、少なくとも、キャリアガスを
濃縮管に流通した後に分析計に導入する経路と、キャリ
アガスを濃縮管を介さずに分析計に導入する経路と、試
料ガスを濃縮管に流通した後に流量計に導入する経路と
を切り替え可能に備えていることを特徴とする濃縮分析
装置。
[Claims] 1. A standby step in which the carrier gas is passed through the concentrating tube and then exhausted through an analyzer; a concentrating tube cooling step in which the concentrating tube is cooled to a predetermined temperature or below; and the carrier gas is passed through the concentrating tube. a concentration step in which the sample gas is introduced into the analyzer without passing through the analyzer and then evacuated, and the sample gas is passed through a concentrator tube to cause the analyte components in the sample gas to be adsorbed at a low temperature on an adsorbent in the concentrator tube, and then discharged; A main component discharge step in which the gas is passed through a concentrating tube and the main component adsorbed at a low temperature along with the analyzed component in the concentration step is introduced into the analyzer and then discharged; 1. A concentration analysis method comprising successively performing an analysis step of heating the component to a temperature higher than or equal to the temperature of the concentration tube to desorb the component to be analyzed that has been adsorbed at a low temperature in the concentration tube, and introducing the desorbed component into a carrier gas into an analyzer. 2. The concentration analysis method according to claim 1, wherein the carrier gas is supplied through a purifier. 3. The concentration analysis method according to claim 1, wherein the flow path switching between the carrier gas and the sample gas is performed using a multi-way cock with a seal. 4. Each port of the multi-way cock has a carrier gas line connected to a carrier gas source, a sample gas line connected to a sample gas source, and an inlet and outlet of a concentrator tube equipped with a cooling means and a heating means. a concentrating tube introduction conduit and a concentrating tube deriving conduit respectively connected to the section, and an analysis conduit connected to the analyzer;
In addition to connecting the flow rate measuring pipes connected to the flowmeter, the multi-way cock also connects at least a route for introducing the carrier gas into the analyzer after passing through the concentrator pipe, and a route for introducing the carrier gas into the analyzer without passing through the concentrator pipe. A concentration analysis device characterized by being switchable between a path for introducing the sample gas into the analyzer and a path for introducing the sample gas into the flowmeter after passing through the concentration tube.
JP1311617A 1989-11-30 1989-11-30 Concentration analysis method and apparatus therefor Expired - Lifetime JP2858143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1311617A JP2858143B2 (en) 1989-11-30 1989-11-30 Concentration analysis method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311617A JP2858143B2 (en) 1989-11-30 1989-11-30 Concentration analysis method and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH03170838A true JPH03170838A (en) 1991-07-24
JP2858143B2 JP2858143B2 (en) 1999-02-17

Family

ID=18019409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311617A Expired - Lifetime JP2858143B2 (en) 1989-11-30 1989-11-30 Concentration analysis method and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2858143B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435169A (en) * 1993-06-14 1995-07-25 New Jersey Institute Of Technology Continuous monitoring of organic pollutants
WO2002063275A1 (en) * 2001-02-07 2002-08-15 Japan Tobacco Inc. Apparatus and method of extracting volatime components
US7031520B2 (en) 2003-07-24 2006-04-18 Sap Ag Method and system for identifying multiple questionnaire pages
JP2009236590A (en) * 2008-03-26 2009-10-15 Yazaki Corp Gas chromatograph device and gas component desorption method
JP2011106873A (en) * 2009-11-13 2011-06-02 Japan Agengy For Marine-Earth Science & Technology Pretreatment apparatus for elemental analysis, and elemental analyzer
CN110095541A (en) * 2019-05-06 2019-08-06 南京工业大学 Gas separation characterization device and mixed gas separation performance detection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348540B1 (en) * 2007-02-22 2014-01-07 동우 화인켐 주식회사 Outgas Analysis Apparatus Having Concentrating Device
KR101707864B1 (en) * 2015-09-07 2017-02-17 한국표준과학연구원 Low temperature pre-concentrator comprising adsorption trap for chemical analysis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435169A (en) * 1993-06-14 1995-07-25 New Jersey Institute Of Technology Continuous monitoring of organic pollutants
WO2002063275A1 (en) * 2001-02-07 2002-08-15 Japan Tobacco Inc. Apparatus and method of extracting volatime components
US7082849B2 (en) 2001-02-07 2006-08-01 Japan Tobacco Inc. Apparatus and method for extracting volatile constituents
US7031520B2 (en) 2003-07-24 2006-04-18 Sap Ag Method and system for identifying multiple questionnaire pages
US7684621B2 (en) 2003-07-24 2010-03-23 Sap Ag Method and system for identifying multiple questionnaire pages
JP2009236590A (en) * 2008-03-26 2009-10-15 Yazaki Corp Gas chromatograph device and gas component desorption method
JP2011106873A (en) * 2009-11-13 2011-06-02 Japan Agengy For Marine-Earth Science & Technology Pretreatment apparatus for elemental analysis, and elemental analyzer
CN110095541A (en) * 2019-05-06 2019-08-06 南京工业大学 Gas separation characterization device and mixed gas separation performance detection method

Also Published As

Publication number Publication date
JP2858143B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
CN106501125B (en) Gas adsorption and desorption testing device and testing method
US5457316A (en) Method and apparatus for the detection and identification of trace gases
WO2021056943A1 (en) System and method for purification, collection and preparation of isotope sample and use thereof
US11927572B2 (en) Water removal method for gas concentration sampling, sampling method and device therefor
KR19980071582A (en) Method and apparatus for removing siloxane contained in silicon compound gas, Method and analyzer for analyzing content of siloxane
EP1101732A1 (en) Method and apparatus for continuously generating highly concentrated ozone gas
JPH03170838A (en) Concentration analysis method and apparatus
CN115089993A (en) Gas pre-concentration equipment and control method
JP2014059204A (en) Gas sampling device
CN114235941A (en) Direct detection device and method for non-methane total hydrocarbons in ambient air
US6397660B1 (en) Gas analyzing apparatus
CN218726967U (en) Gas preconcentrator
CN112881593A (en) On-line extraction device and method for gaseous hydrocarbon isotopes in gas and mineral inclusion
CN114034795B (en) Method and device for separating and analyzing argon krypton-xenon full-component gas chromatography in atmosphere based on multidimensional chromatography, center cutting and reverse purging
CN218188003U (en) Gas pre-concentration equipment
US20230068184A1 (en) Purification System for Nitrogen Gas and Xenon Gas in Water and Isotope Static Analysis Method Thereof
CN115436545A (en) Gas preconcentrator
US5304796A (en) Atmospheric pressure ionization mass spectroscopy method including a silica gel drying step
CN113155552B (en) Sample acquisition device applied to online detection
CN212301505U (en) Online sampling device
JPH04278458A (en) Method and apparatus for concentration analysis
CN113866281A (en) Device and method for testing adsorption and desorption characteristics of full-pressure material in cross-temperature region
JP2004354332A (en) Enrichment analyzer and method for enrichment analysis
JP2007263905A (en) Concentration analyzer of liquefied gas
JPH04291151A (en) Analysis method of carbon monoxide and/or carbon dioxide

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091204

Year of fee payment: 11

EXPY Cancellation because of completion of term