WO2019160184A1 - 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나 - Google Patents

360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나 Download PDF

Info

Publication number
WO2019160184A1
WO2019160184A1 PCT/KR2018/002232 KR2018002232W WO2019160184A1 WO 2019160184 A1 WO2019160184 A1 WO 2019160184A1 KR 2018002232 W KR2018002232 W KR 2018002232W WO 2019160184 A1 WO2019160184 A1 WO 2019160184A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
antenna
plate
moving body
antenna assembly
Prior art date
Application number
PCT/KR2018/002232
Other languages
English (en)
French (fr)
Inventor
박동권
Original Assignee
주식회사 팔콘
주식회사 지엔에스모바일언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팔콘, 주식회사 지엔에스모바일언스 filed Critical 주식회사 팔콘
Publication of WO2019160184A1 publication Critical patent/WO2019160184A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation

Definitions

  • the present technology relates to satellite signals and terrestrial receiving antennas.
  • the present invention relates to a satellite signal and a terrestrial wave receiving antenna which automatically receive a signal within a 360 degree range so as to automatically receive satellite signals and a terrestrial wave receiving antenna from the outside.
  • Satellite broadcasting refers to TV and radio broadcasting that receives and receives stationary satellite signals in space, and transmits and receives electrons in outer space so that there are no radio interferences depending on the terrain, so you can watch clear channels of various fields. have.
  • Satellite broadcasting is generally used in moving vehicles or ships.
  • satellite broadcasting may be implemented in a form in which an antenna is mounted on a vehicle, a train, a ship, or the like to receive a broadcast in a moving situation.
  • satellite broadcasting may be implemented in a form in which an antenna is installed in a mobile dwelling, such as a motorhome or a caravan, to receive a signal transmitted from a satellite.
  • the signal waveforms (vertical polarization, horizontal polarization, left hand circular polarization (LHCP), right hand circular polarization (RHCP)) at the appropriate positions of the satellite from which the antenna transmits the signal
  • LHCP left hand circular polarization
  • RHCP right hand circular polarization
  • the antenna must be placed in the direction of the satellite.
  • a method of identifying and tracking existing satellite broadcasts a method of confirming whether an antenna receiving satellite broadcasts is aimed at a satellite to be tracked through satellite downlink frequency spectrum analysis is used.
  • the reason why the antenna should be tilted is as an example. If the satellite transmits a vertical or horizontal polarization in a position where the antenna and the satellite are not shifted by one degree, the signal should be incident at the 12 o'clock and 3 o'clock directions. .
  • the distance between the antenna and the satellite is very long so that the signal transmitted from the satellite in the slightly twisted position is transmitted to the antenna in a twisted state. For this reason, the antenna must be in the wrong position even if it is placed at the same longitude and latitude as the satellite. Therefore, the antenna should be tilted to the tilted degree of the satellite signal, but the antenna could not be tilted freely.
  • 1 illustrates a problem of a conventional antenna.
  • the conventional antenna is installed in the upper frame of the vehicle, the antenna for receiving the signal of the satellite is bound to have a very large size.
  • the antenna is tilted at a set height or more than a set angle due to its set size, the antenna collides with the frame of the vehicle so that it cannot be tilted anymore. This tilt angle should be tilted to +90 and -90 in severe cases.
  • the antenna in order to realize a clear satellite broadcast screen, the antenna should not be limited to the tilted angle as necessary, but in the related art, there is a problem in that the tilted angle of the antenna is limited.
  • An object of the present invention is to provide an auto tracking antenna that is installed on a moving moving body and simultaneously receives a satellite and terrestrial wave having a 360 degree azimuth rotation structure that can automatically and accurately track the position of the satellite.
  • an object of the present invention is to provide an auto tracking antenna capable of simultaneously receiving satellites and terrestrial waves having a 360-degree azimuth rotation structure in which the tilt angle of the antenna is not generated.
  • Satellite and terrestrial wave simultaneous receiving auto tracking antenna having a 360-degree azimuth rotation structure installed on the moving body receives a signal from a predetermined number of satellites for Global Navigation Satellite System (GNS) to calculate the moving position coordinates of the moving body
  • a calculator configured to calculate a tilted angle of the antenna assembly using a sensor installed in the antenna assembly installed on the moving body
  • a satellite position storage unit for storing broadcast position coordinates which are position coordinates of a broadcast satellite
  • a module position calculator configured to set a rotation, height, and tilt angle of the antenna assembly by calculating a target vector that is a vector to the broadcast position coordinates based on the moving position coordinates;
  • a module control operation unit which rotates the antenna assembly, adjusts the height, and tilts the antenna assembly according to the calculation value of the module position calculation unit.
  • the satellite automatic tracking antenna device includes a signal strength check unit for measuring a signal of the satellite, the signal strength check unit whenever the module control operation unit operates to tilt the antenna assembly by a predetermined angle in a first direction
  • the strength of the signal of the satellite is measured, and when there is a point where the strength of the satellite signal increases and decreases, the reverse operation signal is output to the module control operation unit to tilt the antenna assembly at a predetermined angle in a second direction. It is characterized by.
  • the module control operation unit converts the height of the antenna assembly to the set angle according to the change of the strength of the satellite signal detected by the signal strength checking unit.
  • the antenna assembly characterized in that it comprises a fixed bracket is manufactured having a height set so as not to be disturbed by the moving body when installed on the moving body.
  • the antenna assembly may include a rotation change module including a first control motor and a first plate that is rotated according to an operation of the first control motor, and a second control motor and the second control installed on the first plate.
  • a height changing module including a second plate moving in an arc shape according to the operation of the motor, and a third installed on the second plate and tilted at an angle set according to the operation of the third control motor and the third control motor.
  • a tilt change module comprising a plate.
  • the rotation change module is installed on the first plate and the first plate having a set area and spaced apart from the rotary gear and the rotary gear rotatably connected to the first plate and on the first plate It characterized in that it comprises a first control motor and a rotation connecting gear is installed on the shaft of the first control motor and the rotation connecting belt is engaged with the circumference of the rotary connecting gear and the circumference of the rotary gear.
  • the tilt change module the tilt gear is rotatably installed on the second plate and the tilt plate is rotatably installed on the tilt gear and the antenna is mounted on the third plate and the mounting hole formed in the second plate shaft
  • a third control motor is installed on the second plate and the tilt control gear is installed on the shaft of the third control motor and the tilt connection gear is fitted around the tilt control gear and the tilt gear and penetrates.
  • the height change module has a length set with the second control motor disposed on the outside of the first plate and is installed on the shaft of the second control motor in a direction crossing the rotation axis of the shaft to provide the second control motor.
  • the shaft includes an arm part that moves in an arc when the shaft is set, and a second plate that is installed in the arm part and moves according to the movement of the arm part.
  • the lower case is installed on the outside of the rotation change module and the upper case is installed on the outside of the height change module and the tilt change module is installed, the lower case is the position and the distance set outside the second control motor is installed
  • a first seating protrusion is formed to protrude from the second case, and a second seating protrusion is formed at a position corresponding to the bottom case in the upper case, and the second control motor is set between the first seating protrusion and the second seating protrusion.
  • a lower case is installed outside of the rotation change module, and the lower case includes a first lower case having a guide groove having a set shape on an opposite surface of the surface facing the moving body, and the first plate outside. It characterized in that it comprises a second lower case to protect from.
  • the first lower case is provided with a block wall for blocking the sensor signal at a position spaced apart from the guide groove, the first plate, the roller is inserted into the guide groove on one side is moved along the guide groove
  • the roller is disposed in the guide groove at a position spaced from the roller, the roller is disposed in the guide groove and outputs a sensor signal to the outside, and detects a rotation angle when the sensor signal is blocked on the block wall blocking the sensor signal. It characterized in that the rotation sensor is installed.
  • the module control operation unit is connected to the rotation sensor to operate the antenna assembly by rotating the antenna assembly in a first direction.
  • the module assembly operating part rotates the antenna assembly according to the satellite signal.
  • the antenna assembly may be rotated in a second direction opposite to the first direction.
  • a groove having a shape corresponding to a portion of the arm portion is formed at one side of the upper case, and the arm portion is inserted into the groove.
  • the position of the moving body may be accurately measured, and the position of the moving body and the satellite may be accurately calculated so that the antenna assembly may be oriented in the direction of the satellite.
  • the antenna assembly since the antenna assembly is installed to have a height set in the frame of the moving body, the antenna assembly does not hit the moving body even when tilted at 90 degrees.
  • the present invention can receive not only satellite broadcasting but also terrestrial digital signals at the same time and rotate in the first direction and rotate in the second direction opposite to the first direction when rotated 360 degrees. It is possible.
  • 1 illustrates a problem of a conventional antenna.
  • FIG. 2 is a block diagram illustrating a satellite and terrestrial simultaneous receiving auto tracking antenna having a 360 degree azimuth rotation structure installed on a moving body of the present invention.
  • Figure 3 is a perspective view of a satellite and terrestrial simultaneous reception auto tracking antenna having a 360-degree azimuth rotation structure installed on the moving body of the present invention.
  • FIG. 4 is an enlarged view of a first seating protrusion of a satellite and terrestrial simultaneous reception auto tracking antenna having a 360 degree azimuth rotation structure installed on a moving body of the present invention.
  • FIG. 5 is an enlarged view of a groove of an upper case of a satellite and terrestrial simultaneous reception auto tracking antenna having a 360 degree azimuth rotation structure installed on a moving body of the present invention.
  • Figure 6 is an enlarged view of the lower case and the first plate of the satellite and terrestrial simultaneous reception auto tracking antenna having a 360-degree azimuth rotation structure installed on the moving body of the present invention.
  • FIG. 7A illustrates a rotation change module, a height change module, and a tilt change module in a satellite and terrestrial simultaneous receiving auto tracking antenna having a 360 degree azimuth rotation structure installed on a moving body of the present invention
  • FIG. 7B illustrates a moving object of the present invention according to the present invention.
  • FIG. 8 illustrates a pattern formed for terrestrial signal reception in a satellite and terrestrial simultaneous reception auto tracking antenna having a 360 degree azimuth rotation structure installed on a moving body of the present invention.
  • FIG. 2 is a block diagram illustrating a satellite and terrestrial simultaneous receiving auto tracking antenna having a 360 degree azimuth rotation structure installed on a moving body of the present invention.
  • Satellite and terrestrial wave simultaneous receiving auto tracking antenna having a 360-degree azimuth rotation structure of the present invention is installed on the moving body to move with the moving body.
  • Satellite and terrestrial simultaneous receiving auto tracking antenna having a 360 degree azimuth rotation structure of the present invention is a position calculation unit 100, tilt angle measurement unit 200, satellite position storage unit 300, module position operation unit 400, module control operation
  • the unit 700 includes a signal strength checking unit 500, a rotation sensor 800, and an antenna assembly 600.
  • the location calculation unit 100 detects satellites for a global navigation satellite system (GNSS) at a set period, and checks whether or not satellites for the satellite navigation system are more than a set number.
  • Position calculation unit 100 may include an antenna 670 for receiving a signal (satellite navigation signal) of a satellite for a separate satellite navigation system, with the antenna 670 can determine the number of satellites for satellite navigation system have.
  • the number of satellites for the satellite navigation system (preset number) measured by the position calculating unit 100 may be preset according to a user, and may be four as an example.
  • the location calculation unit 100 repeats the detection until the number of satellites for the satellite navigation system becomes more than a predetermined number.
  • the position calculating unit 100 calculates a moving position coordinate which is a position of the moving body.
  • the moving position coordinates of the moving body may be represented by X, Y, and Z.
  • the position calculating unit 100 uses time information included in a signal (satellite navigation signal) received from a plurality of satellite navigation system satellites and a time information received from the satellites and a moving body for a plurality of satellite navigation system. Find distance. A virtual sphere having a radius of the obtained distance (the distance between the satellite for the satellite navigation system and the moving object) can be generated, and the coordinates of the moving object can be specifically determined based on this.
  • the tilt angle measuring unit 200 may calculate the tilted angle of the antenna 670 of the antenna assembly 600 by using a sensor installed in the antenna 670 of the antenna assembly 600 installed on the moving body.
  • the sensor installed in the antenna 670 may measure how tilted in three axes, how much azimuth, and how rotated by the AHRS (Attitude & Heading Reference System).
  • the satellite position storage unit 300 stores broadcast position coordinates which are position coordinates of a broadcast satellite transmitting a broadcast signal.
  • the broadcast satellite may be a satellite that transmits a broadcast that the user of the moving body wants to watch.
  • the broadcast position coordinates are stored to be represented by X, Y, and Z like moving position coordinates. Since the broadcast satellite is a fixed satellite on the equator, the broadcast position coordinate is not changed. Therefore, the satellite position storage unit 300 stores a plurality of broadcast position coordinates which are positions of a plurality of broadcast satellites.
  • the module position calculating unit 400 calculates a position of the antenna 670 of the antenna assembly 600 by calculating a target vector, which is a vector from a moving position coordinate to a broadcast position coordinate.
  • a target vector which is a vector from a moving position coordinate to a broadcast position coordinate.
  • the target vector K is as follows. Can be calculated.
  • the module position calculation unit 400 may calculate the elevation and elevation angles of the broadcast satellite based on the moving body using the moving position coordinates, the broadcast position coordinates, and the target vector.
  • the module position calculating unit 400 may calculate the azimuth angle E and the altitude angle A using Equations 2 and 3 below.
  • Equation 1, 2, 3, K is the target vector in the X, Y, Z coordinate axes, A is the moving position coordinate, B is the broadcasting position coordinate, Is the unit body vector on the X-axis, Is the unit eye vector on the Y axis, Is the unit eye vector on the Z axis, E is the elevation angle of the broadcast satellite, and A is the azimuth angle based on the moving object of the target vector)
  • the position calculation unit 100 determines that the satellite navigation system is less than the predetermined number while the operation for detecting the satellite for satellite navigation system is repeated more than a predetermined number of times, the surrounding environment is determined to be a poor environment, the module The position calculator 400 performs a blind scan operation on the broadcast satellite.
  • the blind scan is a technology of searching for a satellite signal (frequency) for a channel input by a user, confirming that the broadcast satellite is a desired broadcast satellite, and receiving a satellite broadcast signal from the desired broadcast satellite.
  • the module position calculator 400 checks the latitude and longitude through the position calculator 100 and calculates the tilt angle of the antenna assembly 600 through the latitude and longitude of the moving body.
  • the tilt angle should be calculated because the broadcast satellite is located at a long distance and the waves transmitted by the broadcast satellite are tilted and received.
  • the module calculation unit calculates the rotation angle, the degree of height (altitude), and the tilt angle at which the antenna 670 is tilted to direct the antenna assembly 600 to the position of the broadcast satellite.
  • the module control operation unit 700 rotates, adjusts, and tilts the antenna assembly 600 according to the operation value calculated by the module position operation unit 400.
  • the module control operation unit 700 rotates the shaft (shaft) of the first control motor 621, the second control motor 631, the third control motor 641 to be described later to rotate the antenna assembly 600. And adjust the height and tilt the antenna 670.
  • the signal strength checking unit 500 measures the strength of the satellite signal of the broadcast satellite.
  • the module control operation unit 700 may precisely control the movement of the antenna assembly 600 by using the signal strength checking unit 500.
  • the module control operation unit 700 For example, each time the module control operation unit 700 operates to tilt the antenna 670 of the antenna assembly 600 by a predetermined angle in the first direction, the strength of the received satellite signal is measured and the satellite signal is measured. When the point where the strength is increased and decreased is measured, the reverse operation signal may be output to the module control operation unit 700 to control the antenna 670 of the antenna assembly 600 to be tilted at a predetermined angle in the second direction. .
  • the module control operation unit 700 may change the height of the antenna assembly 600 at the set angle by the set height. That is, the module control operation unit 700 moves the height of the antenna 670 of the antenna assembly 600 upward by a set height, and then the intensity of the signal measured by the signal strength checking unit 500 decreases at a specific position. In this case, the reverse operation signal is output to the module control operation unit 700 to control the height of the antenna 670 of the antenna assembly 600.
  • the rotation sensor 800 measures the azimuth angle of the antenna assembly 600.
  • the rotation sensor 800 measures that the antenna assembly 600 rotates 360 degrees in the first direction.
  • the module control operation unit 700 receives the signal from the rotation sensor 800 and when the antenna assembly 600 is rotated 360 degrees in the first direction, thereafter, the antenna assembly 600 in the second direction opposite to the first direction. ) To rotate.
  • Figure 3 is a perspective view of a satellite and terrestrial simultaneous reception auto tracking antenna having a 360-degree azimuth rotation structure installed on the moving body of the present invention.
  • FIG. 8 illustrates a pattern formed for terrestrial signal reception in a satellite and terrestrial simultaneous reception auto tracking antenna having a 360 degree azimuth rotation structure installed on a moving body of the present invention.
  • the antenna assembly 600 includes an antenna 670, an upper case 650, a lower case 660, a fixing bracket 610, a rotation change module 620, a height change module 630, and a tilt change module 640. Include.
  • the antenna 670 receives a broadcast signal.
  • the antenna 670 may be simultaneously installed with a satellite antenna 670 for receiving a signal of a broadcast satellite and a terrestrial antenna 670 having a pattern set for terrestrial broadcast reception at the same time.
  • the antenna 670 may be formed in the form of a multi-loop pattern to receive the terrestrial broadcast.
  • the antenna 670 having the form of a multi-loop pattern may receive a frequency in the range of 470 to 680 MHZ in a non-directional manner as compared to the antenna having the form of a single loop pattern.
  • the multi-loop pattern includes a feeding electrode 1100 and a pattern electrode 1200.
  • the multi-loop pattern of the antenna of the present invention is formed on the base substrate 1000. It is preferable that the base substrate is a substrate having a dielectric property having a desirable thickness.
  • the multi-loop pattern includes a feeding electrode 1100 and a pattern electrode 1200.
  • any one feeding electrode 1100 will be referred to as a first feeding electrode 1101 and the other feeding electrode 1100.
  • the pattern electrode 1200 is also referred to as a pattern electrode 1200 connected to the first feeding electrode 1101 as a first pattern electrode 1201 for convenience of description and a pattern connected to the first pattern electrode 1201.
  • the electrode 1200 will be referred to as a second pattern electrode 1202. That is, as described above, the name of the pattern electrode 1200 will be named starting from the first and increasing the number.
  • the feeding electrodes 1100 are arranged at a pair set interval.
  • the first feeding electrode 1101 and the second feeding electrode 1102 are arranged horizontally but obliquely.
  • the first feeding electrode 1101 is connected to the first pattern electrode 1201.
  • One side of the first pattern electrode 1201 is connected to the first feeding electrode 1101 in a direction opposite to the second feeding electrode 1102 and is formed along the horizontal direction.
  • One side of the second pattern electrode 1202 is connected to the first pattern electrode 1201 and is formed along a vertical direction.
  • One side of the third pattern electrode 1203 is connected to the second pattern electrode 1202 and is formed along the horizontal direction.
  • the length of the third pattern electrode 1203 is preferably formed longer than the length of the first pattern electrode 1201.
  • One side of the fourth pattern electrode 1204 is connected to the third pattern electrode 1203 and is disposed along the vertical direction.
  • the fourth pattern electrode 1204 is preferably formed to have a shorter length than the second pattern electrode 1202.
  • One side of the fifth pattern electrode 1205 is connected to the fourth pattern electrode 1204 and is disposed along the horizontal direction.
  • the fifth pattern electrode 1205 is preferably formed longer than the third pattern electrode 1203.
  • One side of the sixth pattern electrode is connected to the fifth pattern electrode 1205 and is disposed along the vertical direction.
  • the sixth pattern electrode to the ninth pattern electrode are formed in a shape corresponding to the second pattern electrode 1202 to the fifth pattern electrode 1205, respectively.
  • the tenth pattern electrode to the thirteenth pattern electrode are formed to correspond to the sixth pattern electrode to the ninth pattern electrode, and the fourteenth pattern electrode to the seventeenth pattern electrode are the same as described above, and the eighteenth pattern electrode to the twentieth pattern The same applies to the electrode, but the twenty-first pattern electrode is connected to the second feeding electrode 1102.
  • the present invention can form a multi-loop pattern to receive the 470 to 698 MHZ frequency band.
  • the antenna 670 may be fixed to the tilt change module 640 through the bracket on the rear side. Therefore, the antenna 670 may be tilted according to the tilting operation of the tilt changing module 640. Since the reason why the antenna 670 is to be tilted has been described above, the reason will be omitted below.
  • FIG. 4 is an enlarged view of a first seating protrusion of a satellite and terrestrial simultaneous reception auto tracking antenna having a 360 degree azimuth rotation structure installed on a moving body of the present invention.
  • the height changing module 630 and the tilt changing module 640 are disposed to prevent breakage of each module.
  • the arm 633 of the height change module 630 to be described later is disposed outside the upper case 650.
  • the lower case 660 is provided with a rotation change module 620 to prevent breakage of the module.
  • the first mounting protrusion 652 is formed on the upper case 650
  • the second mounting protrusion 661 is formed on the lower case 660.
  • the first seating protrusion 652 and the second seating protrusion 661 are formed at positions corresponding to each other when the height change module 630 is operated to move the antenna 670 in a folded form.
  • the first seating protrusion 652 and the second seating protrusion 661 are formed to correspond to the shape of each control motor to protect the first control motor 621 and the third control motor 641, respectively. However, by using this, it is possible to stably support the antenna 670.
  • the support part 680 may be installed in the second mounting protrusion part 661.
  • the support 680 is made of a material having elastic force. Accordingly, the first seating protrusion 652 may be seated on the support 680. When the antenna 670 of the antenna assembly 600 is folded through this configuration, the antenna assembly 600 may be stably supported and seated.
  • FIG. 5 is an enlarged view of a groove of an upper case of a satellite and terrestrial simultaneous reception auto tracking antenna having a 360 degree azimuth rotation structure installed on a moving body of the present invention.
  • grooves 651 are formed on both side surfaces of the upper case 650.
  • the groove 651 of the upper case 650 includes a first groove 653 and a second groove 654.
  • the arm 633 of the height change module 630 which will be described later, is disposed and fixed in the groove 651 of the upper case 650. This is because the tilt change module 640 must be stably moved together with the height change module 630.
  • the third plate 642 on which the antenna 670 is mounted, and the second plate 632 on which the tilt gear 643 is rotatably connected to the third plate 642 should be stably connected.
  • the arm portion 633 is composed of a length portion 634 and the bent portion 635. A portion of the length portion 634 of the arm portion 633 is disposed in the first groove 653.
  • the second groove 654 is connected to the first groove 653 and formed inward. Accordingly, the bent portion 635 formed by bending the length portion 634 is disposed in the second groove 654. Therefore, even if the upper case 650, the arm portion 633 may be connected to the second plate 632.
  • Arm portion 633 of the height change module 630 as described above can be fixed to the upper case 650 and the second plate 632, the tilt change module 640 can be stably connected to the height change module 630.
  • the arm 633 and the upper case 650 and the second plate 632 may be connected through a bolt, a nut, or the like.
  • the fixing bracket 610 includes a leg 612 and a support plate 611.
  • Leg 612 has a set height.
  • the rotation change module 620 is disposed on the support plate 611 to be stably supported.
  • the leg 612 has a set height to overcome the problem of hitting the moving body when tilted due to the set size of the antenna 670 of the antenna assembly 600.
  • the support plate 611 may include a support plate below.
  • a fixing groove 613 is formed in the leg 612. Therefore, when the leg 612 is unfolded, the support plate may be fitted into the fixing groove 613. Therefore, the leg 612 is supported by the support plate can be fixed stably.
  • the leg 612 may be stably fixed to the frame of the moving body by installing a separate coupling means or the like on the moving body.
  • Figure 6 is an enlarged view of the lower case and the first plate of the satellite and terrestrial simultaneous reception auto tracking antenna having a 360-degree azimuth rotation structure installed on the moving body of the present invention.
  • FIG. 7A illustrates a rotation change module, a height change module, and a tilt change module in a satellite and terrestrial simultaneous receiving auto tracking antenna having a 360 degree azimuth rotation structure installed on a moving body of the present invention
  • FIG. 7B illustrates a moving object of the present invention according to the present invention.
  • the rotation change module 620 includes a first control motor 621, a first plate 622, a rotation gear 623, a rotation connection gear 624, and a rotation connection belt 625.
  • the first plate 622 has a set area.
  • the rotary gear 623 is installed on the first plate 622.
  • the rotary gear 623 is installed to be rotatable with the first plate 622.
  • the first control motor 621 is installed on the first plate 622 to be spaced apart from the rotary gear 623.
  • the rotary connecting gear 624 is installed on the shaft of the first control motor 621.
  • the rotary connecting gear 624 and the rotary gear 623 are connected via the rotary connecting belt 625.
  • connection between the rotary gear 623 and the rotary connecting gear 624 through the rotary connection belt 625 is to take advantage of the limited space of the first plate 622.
  • the rotation change module 620 is disposed surrounded by the lower case 660.
  • the lower case 660 is composed of a first lower case 661 and a second lower case 662.
  • the second lower case 662 may be integrally formed with the fixing bracket 610.
  • the second lower case 662 has a guide groove 664 formed on an opposite surface (upper surface) of the surface facing the moving body.
  • Guide groove 664 is formed in the shape of a circle.
  • the second lower case 662 is provided with a block wall 665.
  • the block wall 665 blocks the sensor signal.
  • the block wall 665 serves as a reference for the rotation sensor 800.
  • the roller 900 is installed on the first plate 622.
  • the roller 900 is disposed in the guide groove 664 in the first plate 622 and supports the first plate 622 from the first lower case 662.
  • the roller 900 assists rotation when the first plate 622 rotates together with the rotary gear 623 by the operation of the first control motor 621.
  • the rotation sensor 800 is installed on the first plate 622 in the corresponding shape. Therefore, when the roller 900 is disposed in the guide groove 664, the rotation sensor 800 is also disposed in the guide groove 664.
  • the rotation sensor 800 may be, for example, an optical sensor. Therefore, as an example, the rotation sensor 800 irradiates light in one direction.
  • the rotation sensor 800 is connected to the module control operation unit 700.
  • the module control operation unit 700 operates the first control motor 621 to rotate the signal of the broadcast satellite to rotate 360 degrees while changing the direction to the first direction and the second direction.
  • the reason why the module control operation unit 700 operates the first control motor 621 in this way is that when the control motor 621 rotates only in the first direction to track the satellite signal, the wires not shown are continuously twisted and damaged. Because it becomes. Therefore, the module control operation unit 700 controls the first control motor 621 to rotate only 360 degrees.
  • the module control operation unit 700 operates the first control motor 621 to rotate the first plate 622 in the first direction.
  • the roller 900 rotates and supports the first plate 622 along the guide groove 664.
  • the rotation sensor 800 installed on the first plate 622 also rotates along the guide groove 644.
  • the gap between the first plate 622 and the guide groove 644 is formed by the roller 900 so as not to block the sensor signal of the rotation sensor 800.
  • the rotation sensor 800 applies a signal to the module control operation unit 700. Then, the module control operation unit 700 causes the first control motor 621 to operate in a second direction opposite to the first direction when operating the first control motor 621 to track the satellite signal. In this case, when the first plate 622 is rotated in the second direction and the sensor signal of the rotation sensor 800 is blocked by the block wall 665 again, the module control operation unit 700 controls the first signal when tracking the satellite signal. The motor 621 is operated in the first direction again to allow the first plate 622 to rotate in the first direction.
  • the height change module 630 includes a second control motor 631, a second plate 632, and an arm 633.
  • the second control motor 631 is disposed on an outer side of the upper surface of the first plate 622.
  • the second control motor 631 is installed to have a direction intersecting with the first control motor 621. That is, the rotation direction of the shaft of the second control motor 631 is disposed in a direction not penetrating the first plate 622.
  • two second control motors 631 are installed.
  • the two second control motor 631 is preferably installed in the opposite direction. That is, the angle connecting the shaft of the second control motor 631 is preferably 180 degrees. This is because the arm part 633 is installed on the shaft of the second control motor 631, and the arm part 633 preferably supports the tilt change module 640 on both sides.
  • the arm part 633 includes a length part 634 and a bent part 635.
  • One side of the arm 633 is connected to the second control motor 631, the other side is connected to the second plate 632.
  • the bent portion 635 of the arm portion 633 is fixed to the lower surface of the second plate 632.
  • the shaft of the second control motor 631 is rotated so that the arm portion 633 is moved in an arc.
  • the second plate 632 moves in an arc.
  • the tilt change module 640 includes a third control motor 641, a third plate 642, a tilt gear 643, a tilt medium gear 644, and a tilt connection belt 645.
  • the tilt gear 643 is rotatably installed on the second plate 632. That is, although the second plate 632 is fixed, the tilt gear 643 is installed to rotate on the upper surface of the second plate 632.
  • the third plate 642 is disposed on the tilt gear 643. The third plate 642 is rotated together as the tilt gear 643 rotates.
  • An installation hole is formed at one side of the second plate 632.
  • the third control motor 641 is installed on the second plate 632 so that the shaft passes through the installation hole. That is, the third control motor 641 is installed between the second plate 632 and the third plate 642 so that the shaft passing through the mounting hole of the second plate 632 is disposed.
  • the tilt mediated gear 644 is installed on the shaft of the third control motor 641.
  • the tilt mediated gear 644 is rotated according to the rotation of the shaft of the third control motor 641.
  • the tilt mediating gear 644 and the tilt gear 643 are connected via the tilt connection belt 645.
  • the third plate 642 may be provided with a separate bracket to install the antenna 670.
  • the antenna 670 may be manufactured to receive both satellite broadcast signals and terrestrial signals.
  • the first control motor 621, the second control motor 631, and the third control motor 641 are operated according to the module control operation unit 700.
  • the tilt angle measuring unit 200 may accurately measure and control the tilt angle.
  • the position calculation unit 100, the satellite position storage unit 300, the module position operation unit 400, the signal strength check unit 500, the module control operation unit 700 is a PCB substrate on the first plate 622. Can be installed.
  • the present invention can prevent the twisted wires connected to the antenna through the unique rotation detection and rotation operation when rotating 360 degrees to track the signal with a satellite and terrestrial reception auto tracking antenna having a 360-degree azimuth rotation structure
  • terrestrial broadcast signals can be received.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

기설정된 개수의 GNSS(Global Navigation Satellite System)용 위성으로부터 신호를 수신하여 무빙체의 무빙위치좌표를 연산하는 위치연산부; 상기 무빙체에 설치된 안테나어셈블리에 설치된 센서를 이용하여 상기 안테나어셈블리의 틸트된 각도를 연산하는 틸트각도측정부; 방송위성의 위치좌표인 방송위치좌표가 저장된 위성위치저장부; 상기 무빙위치좌표를 기준으로 설정하여 상기 방송위치좌표까지의 벡터인 목표벡터를 연산하여 상기 안테나어셈블리의 회전, 높이 및 틸트각도를 설정하는 모듈위치연산부; 및 상기 모듈위치연산부의 연산값에 따라 상기 안테나어셈블리를 회전시키고, 높이를 조절하며, 틸트시키는 모듈제어동작부 를 포함하는 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나가 개시된다.

Description

360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나
본 기술은 위성 신호 및 지상파 수신 안테나에 관한 것이다.
특히 외부에서 위성 신호 및 지상파 수신 안테나를 자동으로 수신할 수 있도록 360도 범주 내에서 자동으로 신호를 수신하는 위성 신호 및 지상파 수신 안테나에 관한 것이다.
현대인에게 가장 필요한 것은 휴식이다. 휴식은 하던 일을 중단하고, 권태감이나 피로를 예방하기 위하여 편안한 자세로 있는 것을 의미한다. 현대의 사람들은 주어진 시간 동안 특정일(日)은 일을 하고, 여분의 일(日)에는 권태감을 예방하기 위하여 여가를 즐긴다.
여가를 즐기는 방법은 다양한 방법이 있겠지만, 최근에는 급박하게 변화되는 도시를 떠나 시외 지역에서 캠핑 및 레저활동이 각광받고 있다. 즉, 시외로 이동하여 많은 시간을 보낸다. 이에 따라 여가를 보내는 도중 시간을 한가롭게 보내기 위하여 위성방송(Broadcasting Satellite, BS)에 대한 수요도 증가되고 있는 실정이다.
위성방송은 우주에 정지된 정지위성의 신호를 수신하여 방송되는 TV, 라디오 방송을 의미하며, 우주공간에서 전자를 송신하고, 수신하므로 지형에 따른 전파 장애가 없어서 다양 분야의 채널을 선명한 화질을 시청할 수 있다.
또한, 위성방송은 우주에서 전파를 송신하기 때문에 전파가 미치는 지역이 넓어 국경에 제한없이 다양한 방송을 시청할 수 있으며, 자연재해 또는 전쟁 등의 상황에 구애 받지 않고 방송될 수 있다.
이러한 위성방송은 대체로 이동중인 차량이나 선박 등에서 이용된다. 예컨대, 위성방송은 차량, 기차, 선박 등 운송수단에 안테나가 장착되어 이동 중인 상황에서 방송을 수신하는 형태로 구현될 수 있다. 또한, 위성방송은 캠핑카, 카라반 등 이동형 주거지에 안테나가 설치되어 위성에서 송신되는 신호를 수신하는 형태로 구현될 수 있다.
한편, 깨끗한 화질의 위성방송을 시청하기 위하여는 안테나가 신호를 송신하는 위성의 적합한 위치에서 신호의 파형(수직편파, 수평편파, LHCP(Left Hand Circular Polarization), RHCP(Right Hand Circular Polariztion))에 맞추어 신호를 수신하여야 한다.
그러기 위해서는 안테나가 위성을 지향하는 방향으로 배치되어야 한다. 기존의 위성방송을 식별하고 추적하는 방법으로는 위성 다운링크 주파수 스펙트럼 분석을 통해 위성방송을 수신하는 안테나가 추적하고자 하는 위성을 지향하고 있는지를 확인하는 방법이 이용된다.
하지만 이 방법은 고유 다운링크 주파수 스펙트럼을 비교 분석해야 하는 번거로움과 설치 및 운용에 어려움이 있다. 또한, 위성을 자동으로 추적하는 능동형 위성안테나 시스템은 단일 위성만 추적이 가능해서 동시에 여러 위성방송)을 수신할 수 없어 방송 수신 채널이 매우 제한적인 문제점이 있었다.
위와 같은 분석방법의 문제점과 더불어 안테나의 구조적인 문제도 대두되고 있는 추세인데, 특히나, 안테나의 틸트에 대한 문제가 지적되고 있다.
안테나가 틸트되어야 하는 이유를 예를 들어 설명하면 일예시로 안테나와 위성이 1도도 틀어지지 않은 위치에서 위성이 수직편파 또는 수평편파를 송신하면 안테나에는 12시, 3시 방향으로 신호가 입사되어야 한다.
그러나 안테나와 위성 사이의 거리는 매우 길어서 실제로는 살짝 틀어진 위치에서 위성에서 송신된 신호는 비틀어진 상태로 안테나에 전달된다. 이러한 이유때문에 안테나는 위성과 동일한 경도, 위도에 배치되어도 틀어진 상태로 되어야 한다. 따라서 안테나를 이러한 위성 신호의 틸트된 정도에 맞추어 틸트하여야 하는데, 안테나가 자유자제로 틸트되지 못하였다.
도 1은 종래의 안테나의 문제점을 도시한 것이다.
도 1에서 도시된 것과 같이 차량에 설치된 안테나를 통하여 종래의 안테나의 문제점을 설명하면 종래의 안테나는 차량의 상측 프레임에 설치되어 있는데 위성의 신호를 수신하는 안테나는 매우 큰 크기를 가질 수밖에 없다. 안테나는 그 설정된 크기때문에 설정된 높이에서 설정된 각도 이상으로 틸트되게 되면 차량의 프레임과 부딪혀 더 이상 틸트되지 못하는 문제점이 발생되었다. 이 틸트 각도는 심한 경우 +90, -90까지 틸트되어야 한다.
즉, 깨끗한 위성방송 화면이 구현되기 위하여 안테나는 필요에 따라 이 틸트되는 각도에 제한이 발생되면 안되는데, 종래에는 안테나가 틸트되는 각도가 제한되는 문제점이 발생되었다.
본 발명은 이동하는 무빙체에 설치되어 위성의 위치를 자동으로 정확하게 추적할 수 있는 360도 방위각 회전구조를 가지는 위성 및 지상파를 동시에 수신할 수 있는 오토 트래킹 안테나를 제공하는데 목적이 있다.
또한, 본 발명은 안테나의 틸트 각도에 제한이 발생되지 않는 360도 방위각 회전구조를 가지는 위성 및 지상파를 동시에 수신할 수 있는 오토 트래킹 안테나를 제공하는데 목적이 있다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나는 기설정된 개수의 GNSS(Global Navigation Satellite System)용 위성으로부터 신호를 수신하여 무빙체의 무빙위치좌표를 연산하는 위치연산부; 상기 무빙체에 설치된 안테나어셈블리에 설치된 센서를 이용하여 상기 안테나어셈블리의 틸트된 각도를 연산하는 틸트각도측정부; 방송위성의 위치좌표인 방송위치좌표가 저장된 위성위치저장부; 상기 무빙위치좌표를 기준으로 설정하여 상기 방송위치좌표까지의 벡터인 목표벡터를 연산하여 상기 안테나어셈블리의 회전, 높이 및 틸트각도를 설정하는 모듈위치연산부; 및 상기 모듈위치연산부의 연산값에 따라 상기 안테나어셈블리를 회전시키고, 높이를 조절하며, 틸트시키는 모듈제어동작부를 포함한다.
여기서, 위성 자동 추적 안테나 장치는, 위성의 신호를 측정하는 신호강도확인부를 포함하고, 상기 신호강도확인부는 상기 모듈제어동작부가 동작하여 상기 안테나어셈블리를 제1방향으로 기설정된 각도만큼 틸트시킬 때마다 상기 위성의 신호의 강도를 측정하고, 상기 위성 신호의 강도가 증가하다가 감소되는 지점이 있는 경우 역동작 신호를 상기 모듈제어동작부로 출력하여 상기 안테나어셈블리를 제2방향으로 기설정된 각도로 틸트되도록 하는 것을 특징으로 한다.
여기서, 모듈제어동작부는, 상기 안테나어셈블리의 틸트각도가 설정되면, 상기 신호강도확인부에서 감지되는 위성 신호의 강도의 변화에 따라 상기 안테나어셈블리의 높이를 설정된 각도로 변환하는 것을 특징으로 한다.
여기서, 안테나어셈블리는, 상기 무빙체에 설치될 때 상기 무빙체에 의하여 움직임을 방해받지 않도록 설정된 높이를 가지며 제조되는 고정브라켓을 포함하는 것을 특징으로 한다.
여기서, 상기 안테나어셈블리는, 제1제어모터 및 상기 제1제어모터의 동작에 따라 로테이션되는 제1플레이트를 포함하는 회전변경모듈과 상기 제1플레이트 상에 설치되어 제2제어모터 및 상기 제2제어모터의 동작에 따라 호의 형태를 그리며 이동되는 제2플레이트를 포함하는 높이변경모듈과 상기 제2플레이트 상에 설치되어 제3제어모터 및 상기 제3제어모터의 동작에 따라 설정된 각도로 틸트되는 제3플레이트를 포함하는 틸트변경모듈을 포함한다.
여기서, 회전변경모듈은, 설정된 면적을 가지는 제1플레이트와 상기 제1플레이트 상에 설치되어 상기 제1플레이트와 회전 가능하게 연결되는 회전기어와 상기 회전기어와 이격되어 배치되며 상기 제1플레이트상에 배치되는 제1제어모터와 상기 제1제어모터의 샤프트에 설치되는 회전연결기어 및 상기 회전연결기어의 둘레와 상기 회전기어의 둘레에 치합되며 설치되는 회전연결벨트를 포함하는 것을 특징으로 한다.
여기서, 틸트변경모듈은, 상기 제2플레이트 상에 회전 가능하게 설치되는 틸트기어와 상기 틸트기어 상에 회전 가능하게 설치되며 안테나가 안착되는 제3플레이트와 상기 제2플레이트에 형성된 설치홀에 샤프트가 관통하며 상기 제2플레이트에 설치되는 제3제어모터와 상기 제3제어모터의 샤프트에 설치되는 틸트매개기어와 상기 틸트매개기어와 상기 틸트기어의 둘레에 치합되며 설치되는 틸트연결벨트를 포함하는 것을 특징으로 한다.
여기서, 높이변경모듈은, 상기 제1플레이트의 외측에 배치되는 제2제어모터와 설정된 길이를 가지고 상기 제2제어모터의 샤프트에 상기 샤프트의 회전축과 교차되는 방향으로 설치되어 상기 제2제어모터의 샤프트가 설정된 회전을 하면 호를 그리며 이동되는 암부와 상기 암부에 설치되어 상기 암부의 이동에 따라 이동되는 제2플레이트를 포함한다.
여기서, 상기 회전변경모듈의 외측에 설치되는 하부케이스와 상기 높이변경모듈 및 틸트변경모듈의 외측에 설치되는 상부케이스가 설치되며, 상기 하부케이스는 상기 제2제어모터가 설치된 외측의 위치와 설정된 거리를 두고 돌출된 제1안착돌출부가 형성되고, 상기 상부케이스에서 상기 하부케이스와 대응되는 위치에는 제2안착돌출부가 형성되며 상기 제1안착돌출부와 제2안착돌출부 사이에는 상기 제2제어모터가 설정된 각도로 회전되는 경우 상기 제2안착돌출부와 맞닿으며 지지하는 지지부가 설치되는 것을 특징으로 한다.
여기서, 상기 회전변경모듈의 외측에는 하부케이스가 설치되며, 상기 하부케이스는, 상기 무빙체와 대향하는 면의 반대면에는 설정된 형상의 가이드홈이 형성된 제1하부케이스와, 상기 제1플레이트를 외부에서 보호하는 제2하부케이스를 포함하는 것을 특징으로 한다.
여기서, 상기 제1하부케이스에는 상기 가이드홈과 이격된 위치에 센서신호를 차단하는 블럭벽이 설치되고, 상기 제1플레이트에는, 일측면에는 상기 가이드홈에 끼워져서 가이드홈을 따라 이동되는 롤러가 설치되고, 상기 롤러와 이격된 위치에 상기 롤러가 가이드홈에 배치되면 가이드 홈에 배치되며 센서신호를 외부로 출력하되, 상기 센서신호를 차단하는 블럭벽에 상기 센서신호가 차단되면 회전각도를 감지하는 회전센서가 설치되는 것을 특징으로 한다.
여기서, 상기 모듈제어동작부는, 상기 회전센서와 연결되어 상기 안테나어셈블리를 제1방향으로 회전시켜 동작시키다 상기 센서신호가 상기 블럭벽에 차단되면 상기 위성의 신호에 따라 상기 안테나어셈블리를 회전시킬 때 상기 제1방향과 반대방향인 제2방향으로 상기 안테나어셈블리를 회전시키는 것을 특징으로 한다.
여기서, 상기 상부케이스의 일측에는 상기 암부의 일부분과 대응되는 형상의 홈이 형성되고, 상기 암부는 상기 홈에 끼워지는 것을 특징으로 한다.
본 발명은 무빙체의 위치를 정확하게 측정하고, 무빙체와 위성의 위치를 정확하게 연산하여 안테나어셈블리가 위성의 방향으로 지향되도록 무빙될 수 있다.
또한, 본 발명은 안테나어셈블리가 무빙체의 프레임에 설정된 높이를 가지고 설치되므로 90도로 틸트되어도 무빙체에 부딪히지 않는다.
또한, 본 발명은 위성방송뿐만 아니라, 지상파 디지털 신호를 동시에 수신할 수 있으며 제1방향으로 회전하다 360도 회전 시 제1방향과 반대방향인 제2방향으로 회전되어 360도 방위각 회전이 가능한 구조가 가능하다.
도 1은 종래의 안테나의 문제점을 도시한 것이다.
도 2는 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나를 블록도로 도시한 것이다.
도 3은 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나의 사시도이다.
도 4는 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나의 제1안착돌출부를 확대 도시한 것이다.
도 5은 본 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나의 상부케이스의 홈을 확대 도시한 것이다.
도 6는 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나의 하부케이스 및 제1플레이트를 확대 도시한 것이다.
도 7a는 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나에서 회전변경모듈, 높이변경모듈, 틸트변경모듈을 도시한 것이며, 도 7b는 본 발명인 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나의 틸트변경모듈을 확대 도시한 것이다.
도 8은 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나에서 지상파 신호 수신을 위하여 형성된 패턴을 도시한 것이다.
이하, 본 발명의 일실시예를 예시적인 도면을 통해 상세하게 설명한다. 그러나 이는 본 발명의 범위를 한정하려고 의도된 것은 아니다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 본 발명의 실시예를 설명하기 위한 것일 뿐이고, 본 발명의 범위를 한정하는 것이 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈", "장치" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 및/또는 소프트웨어의 결합으로 구현될 수 있다.
도 2는 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나를 블록도로 도시한 것이다.
본 발명인 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나는 무빙체에 설치되어 무빙체와 함께 이동한다. 본 발명인 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나는 위치연산부(100), 틸트각도측정부(200), 위성위치저장부(300), 모듈위치연산부(400), 모듈제어동작부(700), 신호강도확인부(500), 회전센서(800) 및 안테나어셈블리(600)를 포함한다.
위치연산부(100)는 설정된 주기로 위성항법시스템(GNSS, Global Navigation Satellite System)용 위성을 탐지하며, 위성항법시스템용 위성이 설정된 개수 이상인지를 확인한다. 위치연산부(100)는 별도의 위성항법시스템용 위성의 신호(위성항법 신호)을 수신하는 안테나(670)를 포함할 수 있으며, 이 안테나(670)를 가지고 위성항법시스템용 위성의 개수를 확인할 수 있다. 여기서, 위치연산부(100)가 측정하는 위성항법시스템용 위성의 개수(기설정된 수)는 사용자에 따라서 기설정될 수 있으며, 일예시적으로 4개일 수 있다.
위치연산부(100)가 탐지한 위성항법시스템용 위성의 개수가 기설정된 수 미만인 경우 위치연산부(100)는 위성항법시스템용 위성의 개수가 기설정된 수 이상이 될 때까지 탐지를 반복한다.
위치연산부(100)가 기설정된 수 이상의 위성항법시스템용 위성을 탐지한 경우, 이를 기반으로 무빙체의 위치인 무빙위치좌표를 연산한다. 여기서 무빙체의 무빙위치좌표는 X, Y, Z로 표현될 수 있다. 구체적으로 위치연산부(100)는 복수의 위성항법시스템용 위성으로부터 수신되는 신호(위성항법 신호)에 포함된 시간 정보와 이를 수신한 시간 정보를 이용하여 복수의 위성항법시스템용 위성과 무빙체 사이의 거리를 구할 수 있다. 이 구해진 거리(위성항법시스템용 위성과 무빙체 사이의 거리)를 반지름으로 하는 가상의 구를 생성하고, 이를 기반으로 무빙체의 좌표를 구체적으로 결정할 수 있다.
틸트각도측정부(200)는 무빙체에 설치된 안테나어셈블리(600)의 안테나(670)에 설치된 센서를 이용하여 안테나어셈블리(600)의 안테나(670)의 틸트된 각도를 연산할 수 있다. 여기서 안테나(670)에 설치된 센서는 AHRS(Attitude & Heading Reference System)으로 3축으로 어느 정도 기울어져 있는지, 방위각이 어느 정도인지, 어느정도 회전되어 있는지를 측정할 수 있다.
위성위치저장부(300)는 방송신호를 송신하는 방송위성의 위치좌표인 방송위치좌표가 저장되어 있다. 여기서, 방송위성은 무빙체의 사용자가 시청을 원하는 방송을 송출하는 위성일 수 있다. 또한, 여기서, 방송위치좌표는 무빙위치좌표와 마찬가지로 X, Y, Z로 표현되도록 저장되어 있다. 방송위성은 적도선상 고정되어 있는 위성이므로 방송위치좌표는 변경되지 않는다. 따라서 위성위치저장부(300)에는 복수의 방송위성의 위치인 방송위치좌표가 복수개 저장되어 있다.
모듈위치연산부(400)는 무빙위치좌표에서 방송위치좌표까지의 벡터인 목표벡터를 연산하여 안테나어셈블리(600)의 안테나(670)의 위치를 연산한다. 일예시적으로 무빙위치좌표를 A(X1, Y1, Z1)이라고 가정하고, 시청자가 선택한 방송위성의 방송위치좌표를 B(X2, Y2, Z2)라고 가정하면 목표벡터(K)는 다음과 같이 연산될 수 있다.
(수학식 1)
Figure PCTKR2018002232-appb-I000001
모듈위치연산부(400)는 무빙위치좌표, 방송위치좌표, 목표벡터를 이용하여 무빙체를 기준으로 방송위성의 방위각(Elevation)과 고도각(Azimuth)을 연산할 수 있다. 모듈위치연산부(400)는 아래의 수학식 2, 3을 이용하여 방위각(E)과 고도각(A)을 연산할 수 있다.
(수학식 2)
Figure PCTKR2018002232-appb-I000002
(수학식 3)
Figure PCTKR2018002232-appb-I000003
(수학식 1, 2, 3에서 K는 X, Y, Z좌표축에서의 목표벡터, A는 무빙위치좌표, B는 방송위치좌표,
Figure PCTKR2018002232-appb-I000004
는 X축 상의 단위시신벡터,
Figure PCTKR2018002232-appb-I000005
는 Y축 상의 단위시선벡터,
Figure PCTKR2018002232-appb-I000006
는 Z축 상의 단위시선벡터, E는 목표벡터의 이동체를 기준으로 방송위성의 고도각이고, A는 방위각임)
한편, 위치연산부(100)는 위성항법시스템용 위성을 탐지하는 동작이 기설정된 횟수 이상으로 반복되는 동안 위성항법시스템용 위성이 설정된 수 미만으로 모니터링된 경우, 주변 환경이 열악한 환경으로 판단하고, 모듈위치연산부(400)는 방송위성에 대한 블라인드 스캔 동작을 수행한다.
여기서, 블라인드 스캔은 사용자가 입력한 채널에 대한 위성 신호(주파수)를 검색하고, 검색 결과 원하는 방송위성인지 주파수로 확인한 후, 원하는 방송위성으로부터 위성방송 신호를 수신하는 기술이다.
또한, 모듈위치연산부(400)는 위치연산부(100)를 통하여 위도와 경도를 확인하고, 무빙체의 위도와 경도를 통하여 안테나어셈블리(600)의 틸트각도를 연산한다. 여기서, 틸트각도가 연산되어야 함은 앞서서 설명하였듯이, 방송위성이 원거리에 위치되어 방송위성이 송신하는 파들이 틸트되며 수신되기 때문이다.
이를 통하여 모듈연산부는 안테나어셈블리(600)를 방송위성의 위치로 향하는 회전각도, 높이(고도)의 정도, 그리고 안테나(670)가 틸트되는 틸트각도를 연산한다.
모듈제어동작부(700)는 모듈위치연산부(400)가 연산한 연산값에 따라 안테나어셈블리(600)를 회전시키고, 높이를 조절하며, 틸트시킨다. 여기서, 모듈제어동작부(700)는 후술할 제1제어모터(621), 제2제어모터(631), 제3제어모터(641)의 축(샤프트)를 회전시켜 안테나어셈블리(600)를 회전시키고, 높이를 조절하며, 안테나(670)를 틸트시킬 수 있다.
신호강도확인부(500)는 방송위성의 위성신호의 강도를 측정한다. 모듈제어동작부(700)는 신호강도확인부(500)를 이용하여 안테나어셈블리(600)의 이동을 정밀하게 제어할 수 있다.
일예시적으로 모듈제어동작부(700)가 동작하여 안테나어셈블리(600)의 안테나(670)를 제1방향으로 기설정된 각도만큼 틸트시킬 때마다 수신되는 위성의 신호의 강도를 측정하고, 위성신호의 강도가 증가하다 감소되는 지점이 측정되면 역동작신호를 모듈제어동작부(700)로 출력하여 안테나어셈블리(600)의 안테나(670)가 제2방향으로 기설정된 각도로 틸트되도록 제어할 수 있다.
또한, 모듈제어동작부(700)는 설정된 각도로 안테나어셈블리(600)의 높이를 설정된 높이만큼 변경할 수 있다. 즉, 모듈제어동작부(700)는 상측으로 안테나어셈블리(600)의 안테나(670)의 높이를 설정된 높이만큼 이동시키다가 신호강도확인부(500)가 측정하는 신호의 강도가 특정 위치에서 작아지는 경우 역동작신호를 모듈제어동작부(700)로 출력하여 안테나어셈블리(600)의 안테나(670)의 높이를 제어한다.
회전센서(800)는 안테나어셈블리(600)의 방위각을 측정한다. 회전센서(800)는 제1방향으로 안테나어셈블리(600)가 360도로 회전하는 것을 측정한다. 모듈제어동작부(700)는 회전센서(800)의 신호를 수신하여 안테나어셈블리(600)가 제1방향으로 360도 회전되면 그 후에는 제1방향과 반대방향인 제2방향으로 안테나어셈블리(600)가 회전되도록 한다.
이는 안테나어셈블리(600)가 일방향으로 지속 회전하는 경우, 안테나어셈블리(600)의 전선들이 꼬이게 되어 파손될 수 있기 때문이다.
도 3은 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나의 사시도이다.
도 8은 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나에서 지상파 신호 수신을 위하여 형성된 패턴을 도시한 것이다.
안테나어셈블리(600)는 안테나(670), 상부케이스(650), 하부케이스(660), 고정브라켓(610), 회전변경모듈(620), 높이변경모듈(630), 틸트변경모듈(640)을 포함한다.
안테나(670)는 방송신호를 수신한다. 안테나(670)는 방송위성의 신호를 수신하는 위성용 안테나(670)와 동시에 내측에는 지상파 방송 수신을 위하여 설정된 패턴을 가지는 지상파용 안테나(670)가 동시에 설치되어 있을 수 있다.
안테나(670)는 지상파 방송을 수신하기 위하여 멀티루프패턴의 형태로 형성될 수 있다. 멀티루프패턴의 형태를 가지는 안테나(670)는 싱글 루프 패턴의 형태를 가지는 안테나에 비하여 무지향성으로 470 내지 680 MHZ 대역의 주파수를 수신할 수 있다.
멀티루프패턴은 피딩전극(1100)와 패턴전극(1200)을 포함한다.
본 발명의 안테나의 멀티루프패턴은 베이스기판(1000)에 형성된다. 베이스 기판은 바람직한 두께를 가지는 유전체 특성을 가지는 기판임이 바람직하다.
멀티루프패턴은 피딩전극(1100)과 패턴전극(1200)을 포함한다. 설명의 편의를 위하여 어느 하나의 피딩전극(1100)을 제1피딩전극(1101), 다른 하나의 피딩전극(1100)이라고 명명하겠다. 또한, 패턴전극(1200)도 설명의 편의를 위하여 제1피딩전극(1101)과 연결되는 패턴전극(1200)을 제1패턴전극(1201)이라 명명하며 제1패턴전극(1201)과 연결되는 패턴전극(1200)을 제2패턴전극(1202)이라 하겠다. 즉, 이와 같은 방식처럼 패턴전극(1200)을 명명 시 제1에서 시작하여 수를 증가시키며 명명하도록 하겠다.
피딩전극(1100)은 한쌍으로 설정된 간격을 가지고 배치된다.
제1피딩전극(1101)과 제2피딩전극(1102)은 수평으로 배치되되 비스듬하게 배치된다. 제1피딩전극(1101)은 제1패턴전극(1201)과 연결된다. 제1패턴전극(1201)은 제2피딩전극(1102)의 반대방향으로 일측이 제1피딩전극(1101)과 연결되며 수평방향을 따라 형성된다. 제2패턴전극(1202)은 일측이 제1패턴전극(1201)과 연결되고 수직방향을 따라 형성된다. 제3패턴전극(1203)은 일측이 제2패턴전극(1202)과 연결되고, 수평방향을 따라서 형성된다. 여기서, 제3패턴전극(1203)의 길이는 제1패턴전극(1201)의 길이보다 길게 형성됨이 바람직하다. 제4패턴전극(1204)은 일측이 제3패턴전극(1203)과 연결되고 수직방향을 따라 배치된다. 제4패턴전극(1204)은 제2패턴전극(1202)보다 짧은 길이를 가지도록 형성됨이 바람직하다. 제5패턴전극(1205)은 일측이 제4패턴전극(1204)에 연결되고 수평방향을 따라 배치된다. 제5패턴전극(1205)은 제3패턴전극(1203)보다 길게 형성됨이 바람직하다.
제6패턴전극은 일측이 제5패턴전극(1205)과 연결되고, 수직방향을 따라 배치된다. 여기서, 제6패턴전극 내지 제9패턴전극은 각각 제2패턴전극(1202) 내지 제5패턴전극(1205)과 대응되는 형상으로 형성된다.
또한, 10패턴전극 내지 제13패턴전극은 제6패턴전극 내지 제9패턴전극과 대응되도록 형성되며, 제14패턴전극 내지 제17패턴전극도 전술한 것과 마찬가지이며, 제18패턴전극 내지 제20패턴전극도 마찬가지이다가, 제21패턴전극은 제2피딩전극(1102)과 연결된다. 이를 통하여 본 발명은 멀티루프패턴을 형성하여 470 내지 698 MHZ 주파수 대역을 수신할 수 있다.
안테나(670)는 후측에 브라켓을 통하여 틸트변경모듈(640)에 고정될 수 있다. 따라서 안테나(670)는 틸트변경모듈(640)의 틸트동작에 따라 틸트될 수 있다. 안테나(670)가 틸트되어야 하는 이유는 앞서서 설명하였음으로 이하에서는 그 이유를 생략하도록 하겠다.
도 4는 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나의 제1안착돌출부를 확대 도시한 것이다.
상부케이스(650)에는 높이변경모듈(630), 틸트변경모듈(640)이 배치되어 이 각 모듈의 파손을 방지한다. 다만 후술할 높이변경모듈(630)의 암부(633)는 상부케이스(650)의 외측에 배치된다.
하부케이스(660)에는 회전변경모듈(620)이 배치되어 이 모듈의 파손을 방지한다. 상부케이스(650)에는 제1안착돌출부(652)가 형성되고, 하부케이스(660)에는 제2안착돌출부(661)가 형성된다. 제1안착돌출부(652)와 제2안착돌출부(661)는 높이변경모듈(630)이 동작되어 안테나(670)가 접히는 형태로 이동되면 서로 대응되는 위치에 형성된다.
제1안착돌출부(652)와 제2안착돌출부(661)는 각각 제1제어모터(621)와 제3제어모터(641)를 보호하기 위하여 각각의 제어모터의 형태에 대응되도록 형성된 것이다. 그러나 이를 활용하여 안테나(670)를 안정적으로 지지할 수 있다.
제2안착돌출부(661)에는 지지부(680)가 설치될 수 있다. 지지부(680)는 탄성력을 가지는 재료로 제조된다. 따라서 제1안착돌출부(652)는 지지부(680)에 안착될 수 있다. 이러한 구성을 통하여 안테나어셈블리(600)의 안테나(670)가 접히는 경우 안테나어셈블리(600)는 안정적으로 지지되며 안착될 수 있다.
도 5은 본 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나의 상부케이스의 홈을 확대 도시한 것이다.
또한, 상부케이스(650)의 양측면에는 홈(651)이 형성된다. 상부케이스(650)의 홈(651)은 제1홈(653), 제2홈(654)으로 구성된다. 상부케이스(650)의 홈(651)에는 후술할 높이변경모듈(630)의 암부(633)가 배치되어 고정된다. 이는 틸트변경모듈(640)이 높이변경모듈(630)과 함께 안정적으로 이동되어야 하기 때문이다.
본 발명은 틸트변경모듈(640)에 높이변경모듈(630)이 함께 안정적으로 이동되기 위하여 높이변경모듈(630)의 암부(633)가 틸트변경모듈(640)의 외측을 둘러싸고 있는 상부케이스(650)와 동시에 안테나(670)가 장착되는 제3플레이트(642), 제3플레이트(642)와 회전 가능하도록 연결되는 틸트기어(643)가 배치되는 제2플레이트(632)와 안정적으로 연결되어야 한다. 암부(633)는 길이부(634)와 절곡부(635)로 구성된다. 암부(633)의 길이부(634)의 일부는 제1홈(653)에 배치된다. 제2홈(654)은 제1홈(653)과 연결되어 내측으로 형성된다. 따라서 제2홈(654)에는 길이부(634)에서 절곡되어 형성된 절곡부(635)가 배치된다. 따라서 상부케이스(650)가 있어도 암부(633)는 제2플레이트(632)에 연결될 수 있다.
위와 같이 높이변경모듈(630)의 암부(633)는 상부케이스(650)와 제2플레이트(632)에 고정될 수 있어서 틸트변경모듈(640)이 안정적으로 높이변경모듈(630)에 연결될 수 있다. 여기서, 암부(633)와 상부케이스(650), 제2플레이트(632)의 연결은 볼트, 너트 등을 통하여 연결될 수 있음은 당연할 것이다.
고정브라켓(610)은 레그(612), 지지플레이트(611)를 포함한다. 레그(612)는 설정된 높이를 갖는다. 지지플레이트(611)에는 회전변경모듈(620)이 배치되어 안정적으로 지지될 수 있다. 레그(612)는 설정된 높이를 갖는 이유는 안테나어셈블리(600)의 안테나(670)의 설정된 크기 때문에 틸트될 때 무빙체에 부딪히는 문제점을 극복하기 위한 것이다.
레그(612)는 지지플레이트(611)에 회전 가능하게 연결되어 폴딩될 수 있다. 지지플레이트(611)의 하측에는 지지판을 포함할 수 있다. 레그(612)에는 고정홈(613)이 형성되어 있다. 따라서 레그(612)가 언폴딩되면 고정홈(613)에 지지판이 끼워질 수 있다. 따라서 레그(612)는 지지판에 의하여 지지되어서 안정적으로 고정될 수 있다.
한편, 미도시되어 있지만 레그(612)는 무빙체에 별도의 결합수단 등이 설치되어 무빙체의 프레임에 안정적으로 고정될 수 있다.
도 6는 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나의 하부케이스 및 제1플레이트를 확대 도시한 것이다.
도 7a는 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나에서 회전변경모듈, 높이변경모듈, 틸트변경모듈을 도시한 것이며, 도 7b는 본 발명인 본 발명인 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나의 틸트변경모듈을 확대 도시한 것이다.
회전변경모듈(620)은 제1제어모터(621), 제1플레이트(622), 회전기어(623), 회전연결기어(624), 회전연결벨트(625)를 포함한다.
제1플레이트(622)는 설정된 면적을 가지고 형성된다. 제1플레이트(622) 상에는 회전기어(623)가 설치된다. 회전기어(623)는 제1플레이트(622)와 함께 회전 가능하도록 설치된다. 제1플레이트(622) 상에는 회전기어(623)와 이격되어 제1제어모터(621)가 설치된다. 제1제어모터(621)의 샤프트에는 회전연결기어(624)가 설치된다. 회전연결기어(624)와 회전기어(623)는 회전연결밸트(625)를 통하여 연결된다.
이처럼 회전기어(623)와 회전연결기어(624)를 바로 연결하지 않고 회전연결밸트(625)를 통하여 연결한 것은 제1플레이트(622)의 한정된 공간을 활용하기 위함이다. 또한, 이러한 구성을 활용하여 앞서서 설명한 제2안착돌출부(661)를 하부케이스(660)에 형성함도 가능하다.
회전변경모듈(620)은 하부케이스(660)에 둘러싸이며 배치된다. 하부케이스(660)는 제1하부케이스(661) 및 제2하부케이스(662)로 구성된다. 제2하부케이스(662)는 고정브라켓(610)과 일체로 형성될 수 있다.
제2하부케이스(662)는 무빙체와 대향하는 면의 반대면(상면)에는 가이드홈(664)이 형성된다. 가이드홈(664)는 원형의 형태로 형성된다. 또한, 제2하부케이스(662)에는 블럭벽(665)이 설치된다. 블럭벽(665)은 센서신호를 차단한다. 블럭벽(665)은 회전센서(800)의 기준이 된다.
한편, 제1플레이트(622)에는 롤러(900)가 설치된다. 롤러(900)는 제1플레이트(622)에 가이드홈(664)에 배치되며 제1플레이트(622)를 제1하부케이스(662)로부터 지지한다. 그러면서 롤러(900)는 제1제어모터(621)의 동작에 의하여 제1플레이트(622)가 회전기어(623)와 함께 회전 시 회전을 보조한다.
한편, 제1플레이트(622)에 설치된 롤러(900)가 가이드홈(664)과 대응되는 형태로 배치되면 그 대응되는 형태에 제1플레이트(622)에 회전센서(800)가 설치된다. 따라서 롤러(900)가 가이드홈(664)에 배치될 때 회전센서(800)도 가이드홈(664)에 배치된다. 회전센서(800)는 일예시적으로 광센서일 수 있다. 따라서 일예시적으로 회전센서(800) 일방향으로 빛을 조사한다.
회전센서(800)는 모듈제어동작부(700)와 연결되어 있다. 모듈제어동작부(700)는 제1제어모터(621)를 동작하여 방송위성의 신호를 추적 시 360도로 회전하되 방향을 제1방향과 제2방향으로 바꿔가며 회전시킨다. 모듈제어동작부(700)가 이와 같이 제1제어모터(621)를 동작시키는 이유는 제1방향으로만 제어모터(621)가 회전되어 위성 신호를 추적하는 경우 미도시되어 있는 전선들이 계속 꼬여서 파손되기 때문이다. 따라서 모듈제어동작부(700)는 제1제어모터(621)를 360도만 회전하도록 제어한다.
이를 설명하면, 모듈제어동작부(700)는 제1제어모터(621)를 동작시켜 제1방향으로 제1플레이트(622)를 회전시킨다. 여기서 롤러(900)는 가이드홈(664)을 따라 제1플레이트(622)를 회전 지지한다. 여기서 제1플레이트(622)에 설치된 회전센서(800)도 가이드홈(644)을 따라 회전한다. 제1플레이트(622)와 가이드홈(644)은 롤러(900)에 의하여 갭(GAP)이 형성되어 회전센서(800)의 센서신호를 차단하지 않는다.
제1플레이트(622)가 회전되어 회전센서(800)의 센서신호가 블럭벽(665)에 의하여 차단되면 회전센서(800)는 모듈제어동작부(700)에 신호를 인가한다. 그러면 모듈제어동작부(700)는 위성신호를 추적하려고 제1제어모터(621)를 동작 시 제1방향과 반대되는 제2방향으로 동작되도록 한다. 이 경우 제2방향으로 제1플레이트(622)가 회전되어 다시 회전센서(800)의 센서신호가 블럭벽(665)에 의하여 차단되면 모듈제어동작부(700)는 위성신호를 추적 시 제1제어모터(621)를 다시 제1방향으로 동작되도록 하여 제1플레이트(622)가 제1방향으로 회전되도록 한다.
이를 통하여 전선들이 꼬여지는 것을 방지할 수 있다.
높이변경모듈(630)은 제2제어모터(631), 제2플레이트(632), 암부(633)를 포함한다. 제2제어모터(631)는 제1플레이트(622)의 상면의 외곽 일측에 배치된다. 제2제어모터(631)는 제1제어모터(621)와 교차되는 방향을 가지고 설치된다. 즉, 제2제어모터(631)의 샤프트의 회전방향은 제1플레이트(622)를 관통하지 않는 방향으로 배치된다. 제2제어모터(631)는 두 개가 설치됨이 바람직하다. 두 개의 제2제어모터(631)는 반대방향을 가지고 설치됨이 바람직하다. 즉, 제2제어모터(631)의 샤프트를 연결한 각은 180도임이 바람직하다. 이는 제2제어모터(631)의 샤프트에 암부(633)가 설치되기 때문이며, 암부(633)는 양측에서 틸트변경모듈(640)을 지지함이 바람직하기 때문이다.
암부(633)는 길이부(634)와 절곡부(635)를 포함한다. 암부(633)의 일측은 제2제어모터(631)와 연결되고, 타측은 제2플레이트(632)와 연결된다. 여기서, 암부(633)의 절곡부(635)는 제2플레이트(632)의 하면에 고정된다.
여기서, 제2제어모터(631)의 샤프트는 회전되므로 암부(633)는 호를 그리며 이동된다. 암부(633)의 이동에 따라 제2플레이트(632)는 호를 그리며 이동된다.
틸트변경모듈(640)은 제3제어모터(641), 제3플레이트(642), 틸트기어(643), 틸트매개기어(644), 틸트연결밸트(645)를 포함한다.
틸트기어(643)는 제2플레이트(632) 상에 회전 가능하게 설치된다. 즉, 제2플레이트(632)는 고정되어 있으나, 틸트기어(643)는 제2플레이트(632) 상면에서 회전되도록 설치된다. 틸트기어(643) 상에는 제3플레이트(642)가 배치된다. 제3플레이트(642)는 틸트기어(643)의 회전에 따라 함께 회전된다. 제2플레이트(632)에는 일측에 설치홀이 형성되어 있다. 제3제어모터(641)는 샤프트가 설치홀을 관통하도록 제2플레이트(632)에 설치된다. 즉, 제2플레이트(632)와 제3플레이트(642) 사이에 제2플레이트(632)의 설치홀을 관통한 샤프트가 배치되도록 제3제어모터(641)가 설치된다.
제3제어모터(641)의 샤프트에는 틸트매개기어(644)가 설치된다. 틸트매개기어(644)는 제3제어모터(641)의 샤프트의 회전에 따라 회전된다. 틸트매개기어(644)와 틸트기어(643)는 틸트연결밸트(645)를 매개로 연결된다.
제3플레이트(642)는 별도의 브라켓이 설치되어 안테나(670)가 설치될 수 있다. 이 안테나(670)는 전술 하였듯이 위성방송 신호와 지상파 신호를 모두 수신하도록 제조될 수 있다.
제1제어모터(621), 제2제어모터(631), 제3제어모터(641)는 모듈제어동작부(700)에 따라 동작된다. 또한, 틸트각도측정부(200)를 통하여 틸트각도를 정확하게 측정하며 제어할 수 있다.
또한, 위치연산부(100), 위성위치저장부(300), 모듈위치연산부(400), 신호강도확인부(500), 모듈제어동작부(700)는 PCB기판으로 제1플레이트(622) 상에 설치될 수 있다.
위의 설명에서 각각의 구성들이 설치되기 위하여 필요한 브라켓, 볼트, 전선들은 설명의 편의를 위하여 생략하였음에 유의하여 본 발명을 해석하여야 할 것이다.
본 발명은 특정한 실시 예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다.
본 발명은 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나로 신호를 추적하기 위하여 360도로 회전 시 특유의 회전감지 및 회전동작을 통하여 안테나에 연결된 전선이 꼬이는 것을 방지할 수 있으며 또한 위성신호뿐만 아니라 지상파 방송신호를 수신할 수 있다.

Claims (13)

  1. 기설정된 개수의 GNSS(Global Navigation Satellite System)용 위성으로부터 신호를 수신하여 무빙체의 무빙위치좌표를 연산하는 위치연산부;
    상기 무빙체에 설치된 안테나어셈블리에 설치된 센서를 이용하여 상기 안테나어셈블리의 틸트된 각도를 연산하는 틸트각도측정부;
    방송위성의 위치좌표인 방송위치좌표가 저장된 위성위치저장부;
    상기 무빙위치좌표를 기준으로 설정하여 상기 방송위치좌표까지의 벡터인 목표벡터를 연산하여 상기 안테나어셈블리의 회전, 높이 및 틸트각도를 설정하는 모듈위치연산부; 및
    상기 모듈위치연산부의 연산값에 따라 상기 안테나어셈블리를 회전시키고, 높이를 조절하며, 틸트시키는 모듈제어동작부
    를 포함하는 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나.
  2. 제1항에 있어서,
    상기 위성 자동 추적 안테나 장치는,
    위성의 신호를 측정하는 신호강도확인부를 포함하고,
    상기 신호강도확인부는 상기 모듈제어동작부가 동작하여 상기 안테나어셈블리를 제1방향으로 기설정된 각도만큼 틸트시킬 때마다 상기 위성의 신호의 강도를 측정하고, 상기 위성 신호의 강도가 증가하다가 감소되는 지점이 있는 경우 역동작 신호를 상기 모듈제어동작부로 출력하여 상기 안테나어셈블리를 제2방향으로 기설정된 각도로 틸트되도록 하는 것
    을 특징으로 하는 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나.
  3. 제2항에 있어서,
    상기 모듈제어동작부는,
    상기 안테나어셈블리의 틸트각도가 설정되면, 상기 신호강도확인부에서 감지되는 위성 신호의 강도의 변화에 따라 상기 안테나어셈블리의 높이를 설정된 각도로 변환하는 것
    을 특징으로 하는 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나.
  4. 제1항에 있어서,
    상기 안테나어셈블리는,
    상기 무빙체에 설치될 때 상기 무빙체에 의하여 움직임을 방해받지 않도록 설정된 높이를 가지며 제조되는 고정브라켓을 포함하는 것
    을 특징으로 하는 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나.
  5. 제4항에 있어서,
    상기 안테나어셈블리는,
    제1제어모터 및 상기 제1제어모터의 동작에 따라 로테이션되는 제1플레이트를 포함하는 회전변경모듈과
    상기 제1플레이트 상에 설치되어 제2제어모터 및 상기 제2제어모터의 동작에 따라 호의 형태를 그리며 이동되는 제2플레이트를 포함하는 높이변경모듈과
    상기 제2플레이트 상에 설치되어 제3제어모터 및 상기 제3제어모터의 동작에 따라 설정된 각도로 틸트되는 제3플레이트를 포함하는 틸트변경모듈
    을 포함하는 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나.
  6. 제5항에 있어서,
    상기 회전변경모듈은,
    설정된 면적을 가지는 제1플레이트와 상기 제1플레이트 상에 설치되어 상기 제1플레이트와 회전 가능하게 연결되는 회전기어와 상기 회전기어와 이격되어 배치되며 상기 제1플레이트상에 배치되는 제1제어모터와 상기 제1제어모터의 샤프트에 설치되는 회전연결기어 및 상기 회전연결기어의 둘레와 상기 회전기어의 둘레에 치합되며 설치되는 회전연결벨트를 포함하는 것
    을 특징으로 하는 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나.
  7. 제6항에 있어서,
    상기 틸트변경모듈은,
    상기 제2플레이트 상에 회전 가능하게 설치되는 틸트기어와 상기 틸트기어상에 회전 가능하게 설치되며 안테나가 안착되는 제3플레이트와 상기 제2플레이트에 형성된 설치홀에 샤프트가 관통하며 상기 제2플레이트에 설치되는 제3제어모터와 상기 제3제어모터의 샤프트에 설치되는 틸트매개기어와 상기 틸트매개기어와 상기 틸트기어의 둘레에 치합되며 설치되는 틸트연결벨트를 포함하는 것
    을 특징으로 하는 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나.
  8. 제5항에 있어서,
    상기 높이변경모듈은,
    상기 제1플레이트의 외측에 배치되는 제2제어모터와 설정된 길이를 가지고 상기 제2제어모터의 샤프트에 상기 샤프트의 회전축과 교차되는 방향으로 설치되어 상기 제2제어모터의 샤프트가 설정된 회전을 하면 호를 그리며 이동되는 암부와 상기 암부에 설치되어 상기 암부의 이동에 따라 이동되는 제2플레이트를 포함하는 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나.
  9. 제8항에 있어서,
    상기 회전변경모듈의 외측에 설치되는 하부케이스와 상기 높이변경모듈 및 틸트변경모듈의 외측에 설치되는 상부케이스가 설치되며,
    상기 하부케이스는 상기 제2제어모터가 설치된 외측의 위치와 설정된 거리를 두고 돌출된 제1안착돌출부가 형성되고, 상기 상부케이스에서 상기 하부케이스와 대응되는 위치에는 제2안착돌출부가 형성되며 상기 제1안착돌출부와 제2안착돌출부 사이에는 상기 제2제어모터가 설정된 각도로 회전되는 경우 상기 제2안착돌출부와 맞닿으며 지지하는 지지부가 설치되는 것
    을 특징으로 하는 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나.
  10. 제6항에 있어서,
    상기 회전변경모듈의 외측에는 하부케이스가 설치되며,
    상기 하부케이스는,
    상기 무빙체와 대향하는 면의 반대면에는 설정된 형상의 가이드홈이 형성된 제1하부케이스와,
    상기 제1플레이트를 외부에서 보호하는 제2하부케이스를 포함하는 것
    을 특징으로 하는 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나.
  11. 제10항에 있어서,
    상기 제1하부케이스에는 상기 가이드홈과 이격된 위치에 센서신호를 차단하는 블럭벽이 설치되고,
    상기 제1플레이트에는,
    일측면에는 상기 가이드홈에 끼워져서 가이드홈을 따라 이동되는 롤러가 설치되고, 상기 롤러와 이격된 위치에 상기 롤러가 가이드홈에 배치되면 가이드 홈에 배치되며 센서신호를 외부로 출력하되, 상기 센서신호를 차단하는 블럭벽에 상기 센서신호가 차단되면 회전각도를 감지하는 회전센서가 설치되는 것
    을 특징으로 하는 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나.
  12. 제11항에 있어서,
    상기 모듈제어동작부는,
    상기 회전센서와 연결되어 상기 안테나어셈블리를 제1방향으로 회전시켜 동작시키다 상기 센서신호가 상기 블럭벽에 차단되면 상기 위성의 신호에 따라 상기 안테나어셈블리를 회전시킬 때 상기 제1방향과 반대방향인 제2방향으로 상기 안테나어셈블리를 회전시키는 것
    을 특징으로 하는 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나.
  13. 제9항에 있어서,
    상기 상부케이스의 일측에는 상기 암부의 일부분과 대응되는 형상의 홈이 형성되고, 상기 암부는 상기 홈에 끼워지는 것
    을 특징으로 하는 무빙체에 설치된 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나.
PCT/KR2018/002232 2018-02-19 2018-02-23 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나 WO2019160184A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0019448 2018-02-19
KR1020180019448A KR102031250B1 (ko) 2018-02-19 2018-02-19 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나

Publications (1)

Publication Number Publication Date
WO2019160184A1 true WO2019160184A1 (ko) 2019-08-22

Family

ID=67618734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002232 WO2019160184A1 (ko) 2018-02-19 2018-02-23 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나

Country Status (2)

Country Link
KR (1) KR102031250B1 (ko)
WO (1) WO2019160184A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276818A (zh) * 2020-04-14 2020-06-12 深圳市威富通讯技术有限公司 天线对准目标位置的控制装置及控制方法
CN114430507A (zh) * 2021-12-27 2022-05-03 亚太卫星宽带通信(深圳)有限公司 一种卫星间链路基带收发器
CN115149265A (zh) * 2022-09-06 2022-10-04 西安华运天成通讯科技有限公司 一种卫星导航的信号增强天线

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102347776B1 (ko) * 2020-09-22 2022-01-07 (주)인텔리안테크놀로지스 편파 제어 장치
KR20220089008A (ko) 2020-12-21 2022-06-28 주식회사 팔콘 멀티캐스팅 및 인공지능 기반 음성 인식 오토 트래킹이 가능한 스마트 위성 안테나를 포함하는 장치 및 동작 방법
KR20220089062A (ko) 2020-12-21 2022-06-28 주식회사 팔콘 음성 및 소리 인식을 포함하는 멀티 센싱 기반 긴급 상황 감지 및 구조 신호 전송이 가능한 스마트 위성 안테나를 포함하는 장치 및 동작 방법
WO2022138998A1 (ko) * 2020-12-21 2022-06-30 주식회사 팔콘 멀티캐스팅 및 멀티 센싱 기반 긴급 상황 감지가 가능한 스마트 위성 안테나를 포함하는 장치 및 동작 방법
KR102457254B1 (ko) * 2020-12-30 2022-10-20 우리항행기술(주) 이동형 위성추적시스템 및 이동형 위성추적방법
KR102620234B1 (ko) * 2022-01-12 2024-01-02 주식회사 지엔에스모바일언스 태양광 패널을 이용해 전력 공급 가능한 위성 안테나 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094353A (ja) * 2004-09-27 2006-04-06 Japan Radio Co Ltd アンテナ装置
KR100857536B1 (ko) * 2007-04-19 2008-09-08 주식회사 이큐브테크놀로지 이동형 위성추적안테나시스템 및 위성추적 방법
KR20090081628A (ko) * 2008-01-24 2009-07-29 인하대학교 산학협력단 시선벡터의 연속 회전이 가능한 피치-롤 기반의 안테나추적 짐발 시스템
KR20170073118A (ko) * 2015-12-18 2017-06-28 재단법인대구경북과학기술원 위성항법시스템을 이용한 자동 방송위성 추적 장치 및 그 동작 방법
KR101802658B1 (ko) * 2016-06-30 2017-11-29 (주)인텔리안테크놀로지스 저회전중심을 구비하는 페데스탈 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3508531B2 (ja) * 1998-02-17 2004-03-22 三菱電機株式会社 方位検出装置
KR20160004839A (ko) * 2014-07-04 2016-01-13 주식회사 팔콘 위성 항법 장치를 이용하는 멀티 위성 신호 추적이 가능한 이동 차량용 위성방송수신시스템
KR20160036441A (ko) * 2014-09-25 2016-04-04 주식회사 팔콘 모바일 단말의 위성항법정보 및 자세정보를 이용하는 위성방송수신장치
KR101788831B1 (ko) * 2016-05-19 2017-10-20 (주)인텔리안테크놀로지스 위성 통신 안테나의 페데스탈 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094353A (ja) * 2004-09-27 2006-04-06 Japan Radio Co Ltd アンテナ装置
KR100857536B1 (ko) * 2007-04-19 2008-09-08 주식회사 이큐브테크놀로지 이동형 위성추적안테나시스템 및 위성추적 방법
KR20090081628A (ko) * 2008-01-24 2009-07-29 인하대학교 산학협력단 시선벡터의 연속 회전이 가능한 피치-롤 기반의 안테나추적 짐발 시스템
KR20170073118A (ko) * 2015-12-18 2017-06-28 재단법인대구경북과학기술원 위성항법시스템을 이용한 자동 방송위성 추적 장치 및 그 동작 방법
KR101802658B1 (ko) * 2016-06-30 2017-11-29 (주)인텔리안테크놀로지스 저회전중심을 구비하는 페데스탈 장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276818A (zh) * 2020-04-14 2020-06-12 深圳市威富通讯技术有限公司 天线对准目标位置的控制装置及控制方法
CN114430507A (zh) * 2021-12-27 2022-05-03 亚太卫星宽带通信(深圳)有限公司 一种卫星间链路基带收发器
CN114430507B (zh) * 2021-12-27 2024-02-23 亚太卫星宽带通信(深圳)有限公司 一种卫星间链路基带收发器
CN115149265A (zh) * 2022-09-06 2022-10-04 西安华运天成通讯科技有限公司 一种卫星导航的信号增强天线
CN115149265B (zh) * 2022-09-06 2023-02-07 西安华运天成通讯科技有限公司 一种卫星导航的信号增强天线

Also Published As

Publication number Publication date
KR20190099692A (ko) 2019-08-28
KR102031250B1 (ko) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2019160184A1 (ko) 360도 방위각 회전구조를 가지는 위성 및 지상파 동시 수신 오토 트래킹 안테나
US11303006B2 (en) Antenna with sensors for accurate pointing
JP4067510B2 (ja) テレビジョン受信装置
US9544476B2 (en) Omnidirectional camera
RU2257675C2 (ru) Надпалубный блок для автоматической системы опознования
KR20010020390A (ko) 이동 위성 성단을 위한 터미널-안테나 장치
WO2017196097A1 (ko) 안테나 정렬 가이드 장치
EP1414104B1 (en) Antenna stabilization system for two antennas
JP3508531B2 (ja) 方位検出装置
JP2002262166A (ja) 自動アンテナ追尾装置
JP2021097403A (ja) 衛星捕捉装置および衛星捕捉方法
WO2022119400A1 (ko) 이동통신 기지국 안테나의 지향 방향을 관리하는 방법 및 시스템
KR20210075523A (ko) 짐벌 구조를 이용한 해양용 위성방송 안테나 및 시스템
JP3522910B2 (ja) 移動体sng装置
JPH0260208A (ja) Bsアンテナ等の取付装置
JP2011082648A (ja) パラボラアンテナおよびパラボラアンテナ方向照準装置
KR20180020404A (ko) 가시성 분석 장치를 이용한 위성항법 시스템 기준국 선정을 위한 가시성 분석 방법
CN219981058U (zh) 一种定位基站及定位系统
US20230417867A1 (en) Tilt and direction detecting apparatus and antenna assembly using same
JPH10276027A (ja) カーナビゲーション装置のアンテナユニット
CN116636084A (zh) 移动通信基站天线的取向方向的管理方法和系统
JP2513438B2 (ja) 人工衛星搭載用アンテナの指向誤差検出方式
JP3306758B2 (ja) 衛星放送移動受信装置
JPH07131228A (ja) アンテナ方向調整装置
JP5787475B2 (ja) 衛星捕捉装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906607

Country of ref document: EP

Kind code of ref document: A1