WO2019160095A1 - Mold manufacturing method - Google Patents

Mold manufacturing method Download PDF

Info

Publication number
WO2019160095A1
WO2019160095A1 PCT/JP2019/005618 JP2019005618W WO2019160095A1 WO 2019160095 A1 WO2019160095 A1 WO 2019160095A1 JP 2019005618 W JP2019005618 W JP 2019005618W WO 2019160095 A1 WO2019160095 A1 WO 2019160095A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
mold
horizontal plane
resin
shape
Prior art date
Application number
PCT/JP2019/005618
Other languages
French (fr)
Japanese (ja)
Inventor
石川慎介
藤川武
大西有希
平井義彦
飯田達矢
渡辺謙太
Original Assignee
株式会社ダイセル
国立大学法人東京工業大学
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018174309A external-priority patent/JP2019206165A/en
Application filed by 株式会社ダイセル, 国立大学法人東京工業大学, 公立大学法人大阪府立大学 filed Critical 株式会社ダイセル
Publication of WO2019160095A1 publication Critical patent/WO2019160095A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a method for producing a mold used for molding a resin, a molded body using the mold produced by the method, and the mold design program.
  • This application includes Japanese Patent Application No. 2018-27433, filed in Japan on February 19, 2018, Japanese Patent Application No. 2018-1000085, filed in Japan on May 25, 2018, and Japan on September 18, 2018. Claims the priority of Japanese Patent Application No. 2018-174309, filed in Japanese Patent Application No. 2018-174309, the contents of which are incorporated herein by reference.
  • Imprint is a microfabrication technology that can transfer nano-sized patterns by a very simple process of forming using a mold. If imprint is used, it can be mass-produced at low cost, and has been put to practical use in various fields such as semiconductor devices and optical members.
  • a micromirror array is an optical member in which a large number of square pillars or pyramids having a side of 1-1000 ⁇ m are arranged in a lattice shape, and two adjacent side surfaces of the four side surfaces of the solid shape are used as orthogonal mirrors. Therefore, an accurate angle and high flatness are required.
  • Patent Document 1 describes that a reduction in line width due to resin shrinkage can be corrected by a specific function for a mold used for forming a wiring pattern by molding a resin by an imprint method.
  • Patent Document 1 no consideration is given to the fact that the side surface of the wiring is curved, and even if a mold corrected using the above function is used, the side surface of the obtained wiring pattern is not curved. It was found that the surface accuracy was low.
  • Another object of the present invention is to provide a mold design program that uses a computer to predict deformation associated with hardening or solidification of a resin and to design a mold for obtaining a molded body with very little deformation based on the predicted deformation. There is to do.
  • the present inventors have found that when a resin is molded to produce a desired molded body, the dimensional change rate of the resin and the aspect ratio of the desired molded body are included.
  • the inventors have found a specific function capable of deriving a mold shape in which deformation is compensated, and found that a molded body having excellent surface accuracy can be obtained by using a mold having a shape obtained by the function.
  • the present invention has been completed based on these findings.
  • the present invention is formed by molding a resin to have various aspect ratios, a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prism shape, a spherical shape, or a plane perpendicular to the longitudinal direction
  • a method for manufacturing a mold wherein a prediction function of deformation at the time of molding is obtained, a correction function for compensating for deformation is calculated from the prediction function, and a mold is designed using the correction function.
  • Aspect ratio One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis.
  • the resin is light or thermosetting resin, it is the volume change rate before and after curing. If the resin is a thermoplastic resin, “(thermal It is a value calculated by “Glass transition temperature of plastic resin (° C.) ⁇ Scheduled environment temperature (° C.)) ⁇ Linear expansion coefficient”.
  • the present invention also provides a linear molded body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction, wherein a resin having a dimensional change rate of ⁇ 0 is molded and the aspect ratio defined below is A.
  • a mold manufacturing method for manufacturing wherein a mold recess shape is set to the following shape. Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane.
  • the concave portion In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is set to be bilaterally symmetric in the plane including the x axis and the y axis.
  • the shape of the upper surface of the space formed by the recess is a curve represented by the following formula (1-1), and the shape of the side surface of the space is represented by the following formula (1-2).
  • the resin is light or a thermosetting resin, it is the volume change rate before and after curing, and if the resin is a thermoplastic resin , “(Glass transition temperature (° C) of thermoplastic resin-Expected ambient temperature ( Is a value calculated by)) ⁇ linear expansion coefficient " (Where ⁇ 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and the y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction, and ⁇ x is the horizontal stretching correction factor) (Where ⁇ 0 is the dimensional change rate of the resin, y is the height of the space, ⁇ s is the relaxation coefficient of side shrinkage, A is the aspect ratio, and ⁇ y is
  • the present invention also provides a mold for producing a molded article having a prismatic shape or a truncated pyramid shape, in which a resin having a dimensional change rate of ⁇ 0 is molded and the aspect ratio defined below is A.
  • a method for manufacturing a mold characterized in that the concave shape of the mold is the following shape. Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane.
  • the concave portion In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is set to be bilaterally symmetric in the plane including the x axis and the y axis.
  • the upper surface of the space formed by the horizontal surface and the concave portion and including the bottom surface, the four side surfaces, and the upper surface is indicated by a continuous curve in the z-axis direction represented by the following formula (1-1).
  • the four side surfaces of the space are respectively shown by continuations in the x-axis direction or z-axis direction of the curves represented by the following formulas (1-2-1) to (1-2-4), respectively.
  • the shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, A straight line, a polygonal line, or an arc connecting the point 1 and the point 2 having the same y-axis value;
  • the shape of the corner formed by the side surface parallel to the plane including the x-axis and the y-axis and the top surface is the point 1 ′ on the curve representing the corner-side end portion of the side surface and the curve representing the corner-side end portion of the top surface.
  • a straight line, a polygonal line, or an arc connecting the point 1 ′ and the point 2 ′ having the same x-axis value The shape of the corner formed by the side surface and the upper surface parallel to the plane including the y-axis and the z-axis is the point 1 ′′ on the curve representing the corner end of the side surface and the curve representing the corner end of the upper surface.
  • One direction on the horizontal plane is the x axis, and the horizontal plane
  • the direction perpendicular to the x-axis is the z-axis
  • the direction perpendicular to the x-axis and the z-axis is the y-axis
  • the molded body formed of a mold is on a horizontal plane, includes the x-axis and the y-axis
  • the maximum height of the molded body is Dimensional change is the ratio of the height in the y-axis direction at the cut surface to the width of the cut surface in the x-axis direction in contact with the horizontal plane when the molded body is placed so as to be symmetrical with the cut surface including the indicated point Rate: If the resin is light or thermosetting resin, it is the volume change rate before and after curing, and if the resin is a thermoplastic resin , - is a value calculated by "(glass transition temperature of the thermoplastic resin (°C) scheduled use environment temperature (°C)) ⁇ linear expansion coefficient" (Where ⁇
  • the molded body is a pyramidal trapezoidal shape, a prismatic shape having an aspect ratio of A, or a linear structure having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction.
  • a method for producing the mold having a shape fixed to a base surface at a bottom surface is provided.
  • the present invention also provides the method for producing the mold, wherein b is represented by a function represented by the following formula (b-1).
  • b is represented by a function represented by the following formula (b-1).
  • a in the formula is the same as above, b 1 is a number from 0.21 to 0.84, b 2 is a number from 0.3 to 0.9, b 3 is a number from 1.5 to 2.5, b 4 is a number from 0.06 to 0.24)
  • the present invention also provides the method for producing the mold, wherein c is represented by a function represented by the following formula (c-1). (A in the formula is the same as above. C 1 is a number from 0.2 to 0.8, c 2 is a number from 2.5 to 3.5, and c 3 is a number from 0.5 to 2.0. )
  • tau s is indicated by the function represented by the following formula (tau s -1), provides a method of manufacturing the mold.
  • a in the formula is the same as above.
  • ⁇ s1 is a number between 0.12 and 0.46)
  • the present invention also provides the method for producing the mold, wherein the stretching correction coefficients ⁇ x and ⁇ y are derived by the following procedures 1 to 5.
  • the temporary correction shape g u (x) of the upper surface and the temporary correction shape g s (y) of the side surface are calculated from the following equations.
  • g u (x) 1 / f uy (x)
  • g s (y) (1 / 2A) 2 / f sx (y) 4).
  • the horizontal direction correction coefficient ⁇ x and the vertical direction correction coefficient ⁇ y of the provisional correction shape are calculated from the following equations.
  • ⁇ x x 1 / x 0
  • y y 1 / y 0
  • the present invention also molds a resin having a dimensional change rate of ⁇ 0 to produce a linear shaped product having a triangular cross section in a plane perpendicular to the longitudinal direction and having an aspect ratio A defined below.
  • a method for manufacturing a mold for manufacturing a mold wherein the concave shape of the mold is the following shape. Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane.
  • the concave portion In a state where the concave portion is opened so as to open on the horizontal plane side, the x-axis and the y-axis are included, and the concave portion is installed so as to be symmetrical on the plane including the point indicating the maximum depth of the concave portion.
  • the shape of the hypotenuse when the space formed by the horizontal plane and the concave portion and including the bottom surface and the two inclined surfaces is cut by a plane including the x-axis and the y-axis, the x-coordinate is expressed by the following formula (2-1), and y A coordinate is a curve formed by collecting points represented by the following formula (2-2).
  • one direction on the horizontal plane is the x axis, and on the horizontal plane, the direction perpendicular to the x axis is the z axis, the x axis
  • the y-axis is the direction perpendicular to the z-axis
  • the molded body is symmetrical on the horizontal plane by the cutting plane that includes the point that includes the x-axis and y-axis and indicates the maximum height of the molded body. Is the ratio of the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane in the case where it is installed.
  • the present invention also provides a mold manufacturing method for manufacturing a quadrangular pyramid-shaped molded article having an aspect ratio of A by molding a resin having a dimensional change rate of ⁇ 0 , wherein the concave shape of the mold is defined as follows: Provided is a method for producing a mold, characterized by having a shape. Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane.
  • the concave portion is opened on the horizontal plane side, and the concave portion is set so as to be symmetric with respect to the plane including the point indicating the maximum depth of the concave portion
  • the bottom surface of the space formed by the horizontal plane and the recess is a quadrangle, the four sides of the bottom surface are parallel to the x axis or the z axis, and the four side surfaces of the space have one side of the bottom surface as the bottom side, X of a curve formed by collecting points on the x-coordinate, y-coordinate, and z-coordinate represented by the following formulas (5-1) to (5-4) that connect the base and the vertex of the space.
  • the shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface,
  • a method of manufacturing a mold wherein the mold is a straight line, a polygonal line, or an arc connecting the point 1 and a point 2 having the same y-axis value.
  • Aspect ratio One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis.
  • the resin is a light or thermosetting resin, it is the volume change rate before and after curing.
  • thermoplastic resin The glass transition temperature (° C) minus the expected environmental temperature (° C) x linear expansion coefficient " (Wherein, alpha 0 is the dimensional change of the resin, y is the height of the space, tau s relaxation coefficient aspect shrinkage, A is .k t indicating the aspect ratio is a correction coefficient of contraction of the y-axis direction, The following formula (k t -1) (With respect to q satisfying 0.9q ⁇ k t ⁇ 1.1q)
  • the molded body is a pyramid shape having an aspect ratio of A, or a linear structure having a triangular cross section in a plane perpendicular to the longitudinal direction, and the structure is fixed to the base surface at the bottom surface.
  • a method for manufacturing the mold having a shaped shape is provided.
  • tau t is indicated by the function represented by the following formula (tau t -1), provides a method of manufacturing the mold. (Where ⁇ t1 is a number from 1.0 to 2.0 and ⁇ t2 is a number from 0.2 to 1.0. A is the same as above)
  • the present invention also molds a resin having a dimensional change rate of ⁇ 0 to produce a linear molded body having a spherical section in a plane perpendicular to the longitudinal direction and having an aspect ratio A defined below.
  • a method for manufacturing a mold characterized in that the shape of the concave portion of the mold is the following shape. Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane.
  • the concave portion In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is left-right symmetrical on the plane including the x axis and the y axis and including the point indicating the maximum depth of the mold.
  • the cross-sectional shape of the sphere-shaped side surface when a space including a bottom surface and a sphere-shaped side surface formed by a horizontal plane and a concave portion is cut by a plane including the x-axis and the y-axis, 3-1), and the y-coordinate is a curve formed by collecting points represented by the following formula (3-2). Aspect ratio: One direction on the horizontal plane is the x-axis, and the x-axis is on the horizontal plane.
  • the vertical direction is the z-axis
  • the direction perpendicular to the x-axis and the z-axis is the y-axis
  • the molded body by the mold includes a point that includes the x-axis and the y-axis on the horizontal plane and indicates the maximum height of the molded body. This is the ratio of the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane when the molded body is placed symmetrically by the cut surface.
  • ⁇ 0 is the rate of dimensional change of the resin
  • r is the radius of the sphere
  • y is the height of the space.
  • Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced.
  • ⁇ c is the side shrinkage relaxation coefficient
  • A is the aspect ratio
  • k c is the following formula: (For p that satisfies 0.9p ⁇ k c ⁇ 1.1p)
  • the present invention is also a mold manufacturing method for manufacturing a notched molded article having an aspect ratio of A by molding a resin having a dimensional change rate of ⁇ 0 , wherein the concave shape of the mold is Provided is a method for producing a mold, characterized by having a shape.
  • Mold concave shape x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane.
  • the bottom surface of the space formed by the horizontal plane and the concave portion is a circle, and when the circle is divided into four arcs by the xy plane and the zy plane, points on the four arcs,
  • the line connecting the vertices is a curve formed by collecting points on the x, y, and z coordinates represented by the following formulas (4-1) to (4-4).
  • a direction perpendicular to the x-axis on the horizontal plane is a z-axis
  • a direction perpendicular to the x-axis and the z-axis is a y-axis
  • the compact includes the x-axis and the y-axis.
  • - is a value calculated by "(glass transition temperature of the thermoplastic resin (°C) scheduled use environment temperature (°C)) ⁇ linear expansion coefficient" (Where ⁇ 0 is the rate of dimensional change of the resin, r is the radius of the sphere, and y is the height of the space. Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced.
  • ⁇ c is the side shrinkage relaxation coefficient, A is the aspect ratio, and k c is the following formula: (For p that satisfies 0.9p ⁇ k c ⁇ 1.1p)
  • the molded body is a sphere-shaped structure having an aspect ratio of A, or a line-shaped structure having a sphere-shaped cross section in a plane perpendicular to the longitudinal direction.
  • a method of manufacturing the mold having a shape fixed to the mold is provided.
  • tau c is represented by the function represented by the following formula (tau c -1), it provides a method of manufacturing the mold.
  • tau c10 is a number from 0.05 to 0.2
  • ⁇ c11 is a number from 0.005 to 0.02
  • ⁇ c12 is a number from 2.5 to
  • ⁇ c13 is a number from 10 to 40
  • ⁇ c14 is a number from 2 to 8.
  • A is the same as above
  • the present invention also provides a mold obtained by the method for producing the mold.
  • the present invention also provides a mold manufacturing apparatus for manufacturing a mold by the mold manufacturing method.
  • the present invention also provides a molded body for producing a molded body made of a cured product or a solidified product of the resin through a step of manufacturing a mold by the mold manufacturing method and molding a resin using the obtained mold.
  • a manufacturing method is provided.
  • the present invention also provides a molded body obtained by the method for producing the molded body.
  • the present invention also provides a molded body obtained by manufacturing a mold by the mold manufacturing method and obtaining a molded body made of a cured or solidified product of the resin through a step of molding a resin using the obtained mold.
  • a manufacturing apparatus is provided.
  • the present invention also provides a linear molded body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction, wherein a resin having a dimensional change rate of ⁇ 0 is molded and the aspect ratio defined below is A.
  • a mold for manufacturing wherein the concave shape of the mold is the following shape. Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane.
  • the concave portion In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is set to be bilaterally symmetric in the plane including the x axis and the y axis.
  • the shape of the upper surface of the space formed by the recess is a curve represented by the following formula (1-1), and the shape of the side surface of the space is represented by the following formula (1-2).
  • the resin is light or a thermosetting resin, it is the volume change rate before and after curing, and if the resin is a thermoplastic resin , “(Glass transition temperature (° C) of thermoplastic resin-Expected ambient temperature ( Is a value calculated by)) ⁇ linear expansion coefficient " (Where ⁇ 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and the y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction, and ⁇ x is the horizontal stretching correction factor) (Where ⁇ 0 is the dimensional change rate of the resin, y is the height of the space, ⁇ s is the relaxation coefficient of side shrinkage, A is the aspect ratio, and ⁇ y is
  • the present invention also provides a mold for molding a resin having a dimensional change rate of ⁇ 0 and manufacturing a quadrangular prism shape or a truncated pyramid shaped product having an aspect ratio A defined below.
  • a mold is provided in which the concave shape of the mold is the following shape. Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane.
  • the concave portion In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is set to be bilaterally symmetric in the plane including the x axis and the y axis.
  • the upper surface of the space formed by the horizontal surface and the concave portion and including the bottom surface, the four side surfaces, and the upper surface is indicated by a continuous curve in the z-axis direction represented by the following formula (1-1).
  • the four side surfaces of the space are respectively shown by continuations in the x-axis direction or z-axis direction of the curves represented by the following formulas (1-2-1) to (1-2-4), respectively.
  • the shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, A straight line, a polygonal line, or an arc connecting the point 1 and the point 2 having the same y-axis value;
  • the shape of the corner formed by the side surface parallel to the plane including the x-axis and the y-axis and the top surface is the point 1 ′ on the curve representing the corner-side end portion of the side surface and the curve representing the corner-side end portion of the top surface.
  • a straight line, a polygonal line, or an arc connecting the point 1 ′ and the point 2 ′ having the same x-axis value The shape of the corner formed by the side surface and the upper surface parallel to the plane including the y-axis and the z-axis is the point 1 ′′ on the curve representing the corner end of the side surface and the curve representing the corner end of the upper surface.
  • One direction on the horizontal plane is the x axis, and the horizontal plane
  • the direction perpendicular to the x-axis is the z-axis
  • the direction perpendicular to the x-axis and the z-axis is the y-axis
  • the molded body formed of a mold is on a horizontal plane, includes the x-axis and the y-axis
  • the maximum height of the molded body is Dimensional change is the ratio of the height in the y-axis direction at the cut surface to the width of the cut surface in the x-axis direction in contact with the horizontal plane when the molded body is placed so as to be symmetrical with the cut surface including the indicated point Rate: If the resin is light or thermosetting resin, it is the volume change rate before and after curing, and if the resin is a thermoplastic resin , - is a value calculated by "(glass transition temperature of the thermoplastic resin (°C) scheduled use environment temperature (°C)) ⁇ linear expansion coefficient" (Where ⁇
  • the present invention also molds a resin having a dimensional change rate of ⁇ 0 to produce a linear shaped product having a triangular cross section in a plane perpendicular to the longitudinal direction and having an aspect ratio A defined below.
  • a mold characterized in that the concave shape of the mold is the following shape. Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane.
  • the concave portion In a state where the concave portion is opened so as to open on the horizontal plane side, the x-axis and the y-axis are included, and the concave portion is installed so as to be symmetrical on the plane including the point indicating the maximum depth of the concave portion.
  • the shape of the hypotenuse when the space formed by the horizontal plane and the concave portion and including the bottom surface and the two inclined surfaces is cut by a plane including the x-axis and the y-axis, the x-coordinate is expressed by the following formula (2-1), and y A coordinate is a curve formed by collecting points represented by the following formula (2-2).
  • one direction on the horizontal plane is the x axis, and on the horizontal plane, the direction perpendicular to the x axis is the z axis, the x axis
  • the y-axis is the direction perpendicular to the z-axis
  • the molded body is symmetrical on the horizontal plane by the cutting plane that includes the point that includes the x-axis and y-axis and indicates the maximum height of the molded body. Is the ratio of the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane in the case where it is installed.
  • the present invention is also a mold for molding a resin having a dimensional change rate of ⁇ 0 and manufacturing a quadrangular pyramid shaped article having an aspect ratio of A, and the concave portion of the mold has the following shape.
  • a mold is provided. Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane.
  • the concave portion is opened on the horizontal plane side, and the concave portion is set so as to be symmetric with respect to the plane including the point indicating the maximum depth of the concave portion
  • the bottom surface of the space formed by the horizontal plane and the recess is a quadrangle, the four sides of the bottom surface are parallel to the x axis or the z axis, and the four side surfaces of the space have one side of the bottom surface as the bottom side, X of a curve formed by collecting points on the x-coordinate, y-coordinate, and z-coordinate represented by the following formulas (5-1) to (5-4) that connect the base and the vertex of the space.
  • the shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface,
  • a method of manufacturing a mold wherein the mold is a straight line, a polygonal line, or an arc connecting the point 1 and a point 2 having the same y-axis value.
  • Aspect ratio One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis.
  • the resin is a light or thermosetting resin, it is the volume change rate before and after curing.
  • thermoplastic resin The glass transition temperature (° C) minus the expected environmental temperature (° C) x linear expansion coefficient " (Wherein, alpha 0 is the dimensional change of the resin, y is the height of the space, tau s relaxation coefficient aspect shrinkage, A is .k t indicating the aspect ratio is a correction coefficient of contraction of the y-axis direction, The following formula (k t -1) (With respect to q satisfying 0.9q ⁇ k t ⁇ 1.1q)
  • the present invention also molds a resin having a dimensional change rate of ⁇ 0 to produce a linear molded body having a spherical section in a plane perpendicular to the longitudinal direction and having an aspect ratio A defined below.
  • a mold characterized in that the concave shape of the mold is the following shape. Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane.
  • the concave portion In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is left-right symmetrical on the plane including the x axis and the y axis and including the point indicating the maximum depth of the mold.
  • the cross-sectional shape of the sphere-shaped side surface when a space including a bottom surface and a sphere-shaped side surface formed by a horizontal plane and a concave portion is cut by a plane including the x-axis and the y-axis, 3-1), and the y-coordinate is a curve formed by collecting points represented by the following formula (3-2). Aspect ratio: One direction on the horizontal plane is the x-axis, and the x-axis is on the horizontal plane.
  • the vertical direction is the z-axis
  • the direction perpendicular to the x-axis and the z-axis is the y-axis
  • the molded body by the mold includes a point that includes the x-axis and the y-axis on the horizontal plane and indicates the maximum height of the molded body. This is the ratio of the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane when the molded body is placed symmetrically by the cut surface.
  • ⁇ 0 is the rate of dimensional change of the resin
  • r is the radius of the sphere
  • y is the height of the space.
  • Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced.
  • ⁇ c is the side shrinkage relaxation coefficient
  • A is the aspect ratio
  • k c is the following formula: (For p that satisfies 0.9p ⁇ k c ⁇ 1.1p)
  • the present invention is also a mold for producing a spherically shaped molded body having an aspect ratio of A by molding a resin having a dimensional change rate of ⁇ 0 , and the concave portion of the mold has the following shape.
  • a mold is provided. Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane.
  • the bottom surface of the space formed by the horizontal plane and the concave portion is a circle, and when the circle is divided into four arcs by the xy plane and the zy plane, points on the four arcs,
  • the line connecting the vertices is a curve formed by collecting points on the x, y, and z coordinates represented by the following formulas (4-1) to (4-4).
  • a direction perpendicular to the x-axis on the horizontal plane is a z-axis
  • a direction perpendicular to the x-axis and the z-axis is a y-axis
  • the compact includes the x-axis and the y-axis.
  • - is a value calculated by "(glass transition temperature of the thermoplastic resin (°C) scheduled use environment temperature (°C)) ⁇ linear expansion coefficient" (Where ⁇ 0 is the rate of dimensional change of the resin, r is the radius of the sphere, and y is the height of the space. Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced.
  • ⁇ c is the side shrinkage relaxation coefficient, A is the aspect ratio, and k c is the following formula: (For p that satisfies 0.9p ⁇ k c ⁇ 1.1p)
  • the present invention can also be obtained by molding a resin to have various aspect ratios, such as a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prismatic shape, a spherical shape, or a plane perpendicular to the longitudinal direction.
  • a mold design program for causing a computer to execute a mold design for manufacturing a molded product having a rectangular, trapezoidal, triangular, or spherical shape in cross section, and having a desired molded product shape and aspect ratio A and a first step of inputting a dimensional change rate ⁇ 0 of the resin to be formed
  • a third step of causing the computer to execute correction of the concave shape of the mold by the selected correction function is
  • One direction on the horizontal plane is the x-axis
  • the direction perpendicular to the x-axis on the horizontal plane is the z-axis
  • the direction perpendicular to the x-axis and z-axis is the y-axis.
  • the “cut surface” and “cross section” of the molded body are one direction on the horizontal plane as the x axis, and the direction perpendicular to the x axis on the horizontal plane as the z axis
  • the molded body is set so that the direction perpendicular to the x-axis and the z-axis is the y-axis, and the horizontal plane is symmetrical with respect to the plane including the x-axis and the y-axis, and the point indicating the maximum height is on the y-axis. It is a surface that includes a point that includes the x-axis and the y-axis and indicates the maximum height of the molded body when installed.
  • the design of a silicone mold which has been conventionally performed by repeating trial manufacture and spending enormous time and cost, predicts deformation by calculation using a function and performs necessary corrections. By adding to the design, it can be done faster and more reliably.
  • the mold obtained by the mold manufacturing method of the present invention has a shape in which the expected deformation is compensated, if the mold is used, the molding has excellent shape accuracy (particularly excellent surface accuracy).
  • the body can be obtained efficiently and inexpensively. Therefore, the manufacturing method of the present invention optically inserts fine structures such as optical members such as micromirror arrays, semiconductor lithography, polymer MEMS, flat screens, holograms, waveguides, and precision machine parts that require high surface accuracy. It is suitably used for manufacturing by printing.
  • FIG. 14-a shows the mean square error ⁇ of the deformed upper surface shape predicted value after curing, and the figure showing the mean square error ⁇ of the side surface shape predicted value (14-b) ).
  • FIG. 6B is a diagram in which 6-2) is extended in the z-axis direction and a line intersecting the both side surfaces is a corner (or an end side).
  • FIG. 5 is a diagram showing an analysis system for shrinkage deformation of four side surfaces (5-1) to (5-4) accompanying hardening or solidification of a quadrangular pyramid shaped body. It is a figure which shows the analysis system of the shrinkage deformation accompanying hardening or solidification of a spherical notch-shaped molded object. It is a schematic diagram which shows the correction effect of a molded object of a quadrangular pyramid shape. It is a schematic diagram which shows the correction effect of a molded object of a quadrangular pyramid shape.
  • the method for producing a mold of the present invention comprises forming a resin and having various aspect ratios, such as a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prismatic shape, a spherical shape, or a longitudinal direction.
  • a method for producing a mold for producing a linear shaped body having a rectangular, trapezoidal, triangular or spherical cross section in a vertical plane (for example, molding with an aspect ratio in the range of 0.01 to 5 below) Calculate the aspect ratio dependency of the deformation by simulating the shrinkage deformation of the body accompanying the hardening or solidification of the resin using the finite element analysis method.
  • the resin having an arbitrary dimensional change rate can be arbitrarily selected.
  • Aspect ratio One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis (that is, the height direction) is the y-axis.
  • the body i.e., the body desired to be molded by the mold
  • the body is symmetric on the horizontal plane by a cutting plane that includes a point that includes the x-axis and y-axis and indicates the maximum height of the molded body. Is the ratio of the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane when the resin is installed in the above manner.
  • Dimensional change rate When the resin is light or thermosetting resin, The rate of volume change before and after curing. If the resin is a thermoplastic resin, the value is calculated as “(Glass transition temperature of the thermoplastic resin (° C.) ⁇ Scheduled environment temperature (° C.)) ⁇ Linear expansion coefficient”. Is
  • the sphere notch or the sphere notch shape is a three-dimensional shape obtained by cutting the sphere along one plane.
  • the “scheduled environment temperature (° C.)” is a temperature in an area or environment where the molded product formed by the mold of the present invention is planned to be used. is there. In Japan, it is usually 25 ° C.
  • the material of the mold in the present invention is not particularly limited, and examples thereof include metal, quartz, sapphire, silicone, cycloolefin polymer, and fluorine polymer.
  • the resin is fixed to the base surface at the bottom, and deformation is predicted as shrinkage deformation occurs at a constant rate in the same direction as the resin hardens or solidifies.
  • Embodiment 1 Mold production method for producing a linear shaped body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction
  • a linear shaped body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction due to shrinkage deformation of the resin preferably, a cross section in a plane perpendicular to the longitudinal direction having an aspect ratio of A is rectangular or trapezoidal.
  • Prediction of the shape of a shaped product that is a linear structure and has a shape in which the structure is fixed to the base surface on the bottom surface can be performed by the analysis system illustrated in FIG. In the present invention, the shapes of the upper surface and the side surface of the molded body are examined.
  • the prediction function for the deformation of the upper surface height is expressed by the following equation (1-1) ′.
  • ⁇ 0 is the dimensional change rate of the resin
  • b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction
  • x includes the x-axis and y-axis of the space formed by the recesses
  • c is a parameter relating to the ratio of the contraction in the height direction to the contraction in the width direction
  • the prediction function of the deformation of the side surface width is expressed by the following formula (1-2) ′. (Where ⁇ 0 is the resin dimensional change rate, y is the height of the space, ⁇ s is the side-shrinkage relaxation coefficient, k s is the x-axis direction shrinkage correction coefficient, and A is the aspect ratio)
  • b, c, ⁇ s, k s are obtained by fitting, for example, compacts having various aspect ratios by finite element analysis.
  • the finite element analysis can be performed using, for example, structural analysis software “MARC” (manufactured by MSC Software) or the like.
  • the finite element analysis results are shown in FIGS.
  • the deformation of the side surface of the molded body may be obtained by using, for example, an actual measurement value in addition to the simulation using the structural analysis software “MARC” (manufactured by MSC Software Co., Ltd.).
  • MARC structural analysis software
  • b is represented by a function represented by the following formula (b-1). Further, as shown in FIG. 14, since the prediction error is reduced in a range where the aspect ratio is large, according to the method of the present invention, a molded body having a larger aspect ratio (aspect ratio is preferably 0.1 or more). In this case, it can be seen that better prediction accuracy can be exhibited and the error can be extremely reduced.
  • b 1 is a number of 0.21 to 0.84, preferably 0.42.
  • b 2 is a number of 0.3 to 0.9, preferably 0.6.
  • b 3 is a number of 1.5 to 2.5, preferably 2.0.
  • b 4 is a number from 0.06 to 0.24, preferably 0.12.
  • A is the same as above.
  • c is represented by a function represented by the following formula (c-1).
  • c 1 is a number of 0.2 to 0.8, preferably 1.0.
  • c 2 is a number from 2.5 to 3.5, preferably 3.0.
  • c 3 is a number of 0.5 to 2.0, preferably 1.0.
  • A is the same as above.
  • ⁇ s is represented by a function represented by the following formula ( ⁇ s ⁇ 1). Further, k s is in a range of 0.9r ⁇ k s ⁇ 1.1r with respect to r satisfying the following formula (k s ⁇ 1).
  • ⁇ s1 is a number between 0.12 and 0.46, preferably 0.23.
  • A is the same as above.
  • the upper surface correction function (1-1) and the side surface correction function (1-2) are obtained as follows.
  • Fu ⁇ 1 (x) g u (x / ⁇ x ) Domain ( ⁇ x 1 ⁇ x ⁇ x 1 ) (1-1)
  • Fs ⁇ 1 (y) g s (y / ⁇ y ) range ( ⁇ y 1 ⁇ y ⁇ y 1 ) (1-2)
  • the stretching ratio is a constant value in the horizontal and vertical directions, but may be changed depending on the horizontal and vertical positions.
  • the rate of change includes proportional stretching and moderate stretching.
  • the cross-sectional shape of the mold after correction is obtained by connecting Fu ⁇ 1 and Fs ⁇ 1 (see FIGS. 2 and 3).
  • Mold concave shape [1]: One direction on the horizontal plane is the x axis, the direction perpendicular to the x axis is the z axis, and the direction perpendicular to the x and z axes is the y axis, and the mold is on the horizontal plane
  • the cut surface of the upper surface of the space formed by the recess when the recess of the mold is installed so as to open to the horizontal plane and the recess is installed symmetrically on the plane including the x-axis and the y-axis
  • the shape of the side surface of the space at the cut surface is a curve represented by the following formula (1-2)
  • Aspect ratio one direction on the horizontal plane X axis, a direction perpendicular to the x axis on the horizontal plane as a z axis, a direction perpendicular to the x axis and the z axis as a y axis, and a molded product by a mold including the
  • Mold for producing a linear shaped body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction which is obtained by the above method and molded with a resin having a dimensional change rate of ⁇ 0 and an aspect ratio of A.
  • Embodiment 2 Method for producing a mold for producing a quadrangular prism shape or a truncated pyramid shaped body
  • a quadrangular prism shape or a truncated pyramid shaped molded body by shrinkage deformation of a resin preferably, a quadrangular prism shape or a truncated pyramid shape structure having an aspect ratio of A, and the structure is
  • the shape prediction of the formed body having a shape fixed to the base surface at the bottom surface can be performed by the analysis system shown in FIG. In the present invention, the shapes of the upper surface and the four side surfaces of the molded body are examined.
  • the prediction function of the upper surface deformation is expressed by the following formula (1-1) ′. (Where ⁇ 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the contraction in the height direction to the contraction in the width direction)
  • the four side surfaces (6-1) to (6-4) of the molded body are deformed by a force generated in the horizontal direction and the vertical direction in a state where the base surface interface portion is fixed to the base surface. Therefore, the prediction function of the deformation of the side surface width is expressed by the following formulas (1-2-1) ′ to (1-2-4) ′.
  • ⁇ 0 is the dimensional change rate of the resin
  • y is the height of the space
  • ⁇ s is the relaxation coefficient of side shrinkage
  • A is the aspect ratio
  • k 1 is the correction coefficient for the shrinkage rate in the x-axis direction
  • k 2 represents a correction coefficient for the contraction rate in the z-axis direction
  • k 1 and k 2 are the same or different and are numbers of 1.0 to 2.0
  • the deformation of the side surface of the molded body may be performed using, for example, an actual measurement value in addition to the simulation using the structure analysis software “MARC” (manufactured by MSC Software Co., Ltd.).
  • MARC structure analysis software
  • the correction function of the upper surface and the side surface of the mold can be derived using the prediction function.
  • the corners formed by two adjacent side surfaces are a point on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, And a point having the same y-axis value are connected by a straight line, a polygonal line, an arc, or two adjacent side surfaces are extended, and a line intersecting the both side surfaces is defined as a corner (or an end side). .
  • the shape of the corner formed by the side surface parallel to the plane including the x-axis and the y-axis and the top surface is on the curve representing the corner-side end portion of the side surface and the curve representing the corner-side end portion of the top surface.
  • a point that is the same as the point and has the same x-axis value is connected by a straight line, a polygonal line, or an arc.
  • the shape of the corner formed by the side surface and the upper surface parallel to the surface including the y-axis and the z-axis is on the curve representing the corner-side end portion of the side surface and the curve representing the corner-side end portion of the upper surface.
  • the points that are the same as the z-axis value are connected by straight lines, polygonal lines, or arcs.
  • the concave portion of the mold is installed so as to open on the horizontal plane side, and the concave portion is set to be symmetrical in the plane including the x axis and the y axis
  • the upper surface of the space formed by the horizontal surface and the concave portion and including the bottom surface, the four side surfaces, and the upper surface is indicated by a continuous curve in the z-axis direction represented by the following formula (1-1).
  • the four side surfaces of the space are respectively shown by continuations in the x-axis direction or z-axis direction of the curves represented by the following formulas (1-2-1) to (1-2-4), respectively.
  • the shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, A straight line, a polygonal line, or an arc connecting the point 1 and the point 2 having the same y-axis value;
  • the shape of the corner formed by the side surface parallel to the plane including the x-axis and the y-axis and the top surface is the point 1 ′ on the curve representing the corner-side end portion of the side surface and the curve representing the corner-side end portion of the top surface.
  • a straight line, a polygonal line, or an arc connecting the point 1 ′ and the point 2 ′ having the same x-axis value The shape of the corner formed by the side surface and the upper surface parallel to the plane including the y-axis and the z-axis is the point 1 ′′ on the curve representing the corner end of the side surface and the curve representing the corner end of the upper surface. Which is a straight line, polygonal line, or arc connecting the point 1 ′′ and the point 2 ′′ having the same z-axis value.
  • ⁇ 0 is the dimensional change rate of the resin
  • b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction
  • x includes the x-axis and the y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space
  • c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction
  • ⁇ x is the horizontal stretching correction factor
  • A is the aspect ratio
  • k 1 is the correction coefficient for the shrinkage rate in the x-axis direction
  • k 2 represents a correction coefficient for the contraction rate in the z-axis direction
  • k 1 and k 2 are the same or different and are numbers of 1.0 to 2.0
  • b is represented by a function represented by the following formula (b-1).
  • c is represented by a function represented by the following formula (c-1).
  • ⁇ s is expressed by a function represented by the following formula ( ⁇ s ⁇ 1).
  • the stretching correction coefficient ⁇ x is derived by the same procedure as in the case of a shaped body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction and having an aspect ratio of A, using the prediction function. can do.
  • a mold for producing a molded article having a square columnar shape or a truncated pyramid shape which is obtained by the above method and is molded by molding a resin having a dimensional change rate of ⁇ 0 and having an aspect ratio of A, has the above concave shape [ 2].
  • Embodiment 3 Mold production method for producing a linear shaped product having a triangular cross section in a plane perpendicular to the longitudinal direction
  • a linear shaped product having a triangular cross section in the plane perpendicular to the longitudinal direction due to shrinkage deformation of the resin [preferably, the aspect ratio is A and the cross section in the plane perpendicular to the longitudinal direction is triangular (equilateral triangle or
  • the shape prediction of the molded body having a shape in which the structure is fixed to the base surface at the bottom surface] can be performed by the analysis system illustrated in FIG. The molded body contracts in the vertical direction, the contraction is zero at the most distal end, and the contraction in the height direction is gradually increased toward the center.
  • the x coordinate of the prediction function is expressed by the following formula (2-1) ′
  • the y coordinate of the prediction function is expressed by the following formula (2-2) ′.
  • ⁇ 0 is the dimensional change rate of the resin
  • y is the height of the space
  • ⁇ t is the relaxation coefficient of side shrinkage
  • A is the aspect ratio
  • k t is the following formula (k t ⁇ 1) (With respect to q satisfying 0.9q ⁇ k t ⁇ 1.1q)
  • ⁇ t is a coefficient related to the aspect ratio
  • kt is a correction value for compensating for shrinkage in the x-axis direction.
  • ⁇ t is represented by a function represented by the following formula ( ⁇ t ⁇ 1).
  • K t is in the range of 0.9q ⁇ k t ⁇ 1.1q with respect to q satisfying the above formula (k t ⁇ 1).
  • the molded body having a larger aspect ratio for example, an aspect ratio of 0.7 or less is obtained. In this case, it can be seen that better prediction accuracy can be exhibited and the error can be extremely reduced.
  • ⁇ t1 in the formula is, for example, a number from 1.0 to 2.0, and preferably 1.5.
  • ⁇ t2 in the formula is, for example, a number from 0.2 to 1.0, and preferably 0.5.
  • A is the same as above.
  • the mold correction function F ty ⁇ 1 (x) can be derived by the following equation using the prediction function.
  • F ty ⁇ 1 (x) F ty 2 / f ty (x)
  • the following method is preferable. That is, Mold manufacturing method for molding a resin having a dimensional change rate of ⁇ 0 and manufacturing a linear shaped product having a triangular cross section in a plane perpendicular to the longitudinal direction and having an aspect ratio of A defined below A method for manufacturing a mold, wherein the concave shape [3] of the mold is the following shape.
  • Mold concave shape [3]: One direction on the horizontal plane is the x axis, the direction perpendicular to the x axis is the z axis, and the direction perpendicular to the x axis and the z axis is the y axis, and the mold is on the horizontal plane
  • the concave portion of the mold is installed so as to open to the horizontal plane side, the concave portion is set to be bilaterally symmetric in the plane including the x axis and the y axis and including the point indicating the maximum depth of the concave portion.
  • ⁇ 0 represents the dimensional change rate of the resin
  • y represents the height of the space
  • A represents the aspect ratio
  • ⁇ t is a relaxation coefficient of side contraction.
  • a mold for producing a linear shaped product having a triangular cross section in a plane perpendicular to the longitudinal direction which is obtained by the above method and is molded by a resin having a dimensional change rate of ⁇ 0 and an aspect ratio of A, It has the said recessed part shape [3], It is characterized by the above-mentioned.
  • Embodiment 4 Mold production method for producing a quadrangular pyramid shaped body
  • a linear shaped product having a triangular cross section in a plane perpendicular to the longitudinal direction due to shrinkage deformation of the resin preferably a quadrangular pyramid structure with an aspect ratio of A, and the structure is The shape prediction of the molded body having a shape fixed to the base surface] can be performed by the analysis system shown in FIG.
  • the four side surfaces (5-1) to (5-4) of the molded body are deformed by the force generated in the horizontal direction and the vertical direction with the base surface interface portion fixed to the base surface. Therefore, the x coordinate of the prediction function is expressed by the following formula (2-1) ′, and the y coordinate of the prediction function is expressed by the following formula (2-2) ′.
  • y represents the height of the space
  • tau t represents a relaxation coefficient aspect shrinkage
  • a .k t indicating the aspect ratio is represented by the following formula (k t -1) For q that satisfies the above, the range is 0.9q ⁇ k t ⁇ 1.1q.
  • ⁇ t is represented by a function represented by the following formula ( ⁇ t ⁇ 1).
  • ⁇ t1 in the formula is, for example, a number from 1.0 to 2.0, and preferably 1.5.
  • ⁇ t2 in the formula is, for example, a number from 0.2 to 1.0, and preferably 0.5.
  • A is the same as above.
  • the mold correction function can be derived using the prediction function.
  • the manufacturing method of the mold characterized by the above-mentioned.
  • Mold concave shape [4] One direction on the horizontal plane is the x axis, the direction perpendicular to the x axis is the z axis, and the direction perpendicular to the x and z axes is the y axis, and the mold is on the horizontal plane
  • the concave portion of the mold is opened on the horizontal plane side, and the concave portion is set so as to be symmetric with respect to the plane including the point indicating the maximum depth of the concave portion
  • the bottom surface of the space formed by the horizontal plane and the recess is a quadrangle, the four sides of the bottom surface are parallel to the x axis or the z axis, and the four side surfaces of the space have one side of the bottom surface as the bottom side,
  • the shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface,
  • a method of manufacturing a mold wherein the mold is a straight line, a polygonal line, or an arc connecting the point 1 and a point 2 having the same y-axis value.
  • alpha 0 is the dimensional change of the resin
  • y is the height of the space
  • tau s relaxation coefficient aspect shrinkage A is .k t indicating the aspect ratio is a correction coefficient of contraction of the y-axis direction
  • the following formula (k t -1) (With respect to q satisfying 0.9q ⁇ k t ⁇ 1.1q)
  • a mold for producing a quadrangular pyramid-shaped molded article obtained by molding the resin having a dimensional change rate of ⁇ 0 and having an aspect ratio of A has the concave shape [4].
  • Embodiment 5 Mold production method for producing a linear shaped product having a spherical cross section in a plane perpendicular to the longitudinal direction
  • a linear shaped article having an aspect ratio of A and a section perpendicular to the longitudinal direction and having a sphere-shaped cross section due to shrinkage deformation of the resin [preferably, on a surface perpendicular to the longitudinal direction and having an aspect ratio of A
  • the shape prediction of a shaped body having a shape in which the cross-section is a spherical shape and the structure is fixed to the base surface at the bottom surface can be performed by the analysis system shown in FIG.
  • the molded body shrinks in the vertical direction, the shrinkage is zero at the most distal end, and the shrinkage is considered to gradually increase toward the center. Therefore, the x coordinate of the prediction function is expressed by the following formula (3-1) ′, and the y coordinate of the prediction function is expressed by the following formula (3-2) ′.
  • ⁇ 0 is the rate of dimensional change of the resin
  • r is the radius of the spherical surface
  • y is the height of the space
  • y 0 is on the y-axis at the center of the sphere that includes the molded product to be produced.
  • the y coordinate is shown.
  • ⁇ c is the relaxation coefficient of the spherical surface
  • A is the aspect ratio.
  • k c is the following formula For p satisfying the above condition, 0.9p ⁇ k c ⁇ 1.1p. .
  • ⁇ c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction, and this can be obtained by fitting a molded body having various aspect ratios by finite element analysis.
  • a finite element analysis result is shown in FIG.
  • ⁇ c is represented by a function represented by the following formula ( ⁇ c ⁇ 1). Further, as shown in FIG. 16, since the prediction error is reduced in the range where the aspect ratio is small, according to the method of the present invention, the molded body having a small aspect ratio (for example, an aspect ratio of 0.3 or less) is obtained. In this case, it can be seen that better prediction accuracy can be exhibited and the error can be extremely reduced.
  • ⁇ c1 is a number of 1.0 to 2.0, preferably 1.6.
  • ⁇ c2 is a number from 0.2 to 1.0, preferably 0.6.
  • A is the same as above.
  • the mold correction function F cy ⁇ 1 (x) can be derived from the following equation using the prediction function.
  • F cy ⁇ 1 (x) F cy 2 / f cy (x)
  • the following method is preferable. That is, Manufacturing a mold for molding a resin having a dimensional change rate of ⁇ 0 and manufacturing a linear molded body having a cross section of a sphere in a plane perpendicular to the longitudinal direction and having an aspect ratio A defined below. It is a method, Comprising: The manufacturing method of the mold characterized by making the recessed part shape of a mold into the following shape [5].
  • the concave portion of the mold is installed so as to open on the horizontal plane side, the concave portion is set to be bilaterally symmetrical on the plane including the x axis and the y axis and including the point indicating the maximum depth of the mold.
  • the cross-sectional shape of the sphere-shaped side surface when a space including a bottom surface and a sphere-shaped side surface formed by a horizontal plane and a concave portion is cut by a plane including the x-axis and the y-axis, 3-1) is a curve formed by collecting points whose y-coordinate is expressed by the following formula (3-2).
  • ⁇ 0 is the rate of dimensional change of the resin
  • r is the radius of the sphere
  • y is the height of the space.
  • Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced.
  • ⁇ c is the side shrinkage relaxation coefficient
  • A is the aspect ratio
  • k c is the following formula: (With respect to q satisfying 0.9q ⁇ k t ⁇ 1.1q)
  • a mold for producing a linear shaped product having a cross section of a sphere with a cross section in a plane perpendicular to the longitudinal direction which is obtained by the above-described method, is molded with a resin having a dimensional change rate of ⁇ 0 and an aspect ratio is A. And having the concave shape [5].
  • a spherically-shaped molded body having an aspect ratio of A due to shrinkage deformation of a resin [preferably a spherically-shaped structure having an aspect ratio of A, and the structure is fixed to the base surface at the bottom surface
  • the shape prediction of the formed body having the formed shape can be performed by the analysis system shown in FIG. It is considered that the shrinkage of the molded body gradually increases toward the center.
  • the x coordinate of the prediction function is expressed by the following formula (4-1-1), the y coordinate of the prediction function is expressed by the following formula (4-1-2), and the z coordinate of the prediction function is expressed by the following formula (4) -1-3).
  • ⁇ 0 is the rate of dimensional change of the resin
  • r is the radius of the sphere
  • y is the height of the space.
  • Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced.
  • ⁇ c is the side shrinkage relaxation coefficient
  • A is the aspect ratio
  • k c is the following formula: (For p that satisfies 0.9p ⁇ k c ⁇ 1.1p)
  • the mold correction function can be derived using the prediction function.
  • the manufacturing method of the mold characterized by the above-mentioned.
  • Mold concave shape [6] One direction on the horizontal plane is the x axis, the direction perpendicular to the x axis is the z axis, and the direction perpendicular to the x and z axes is the y axis, and the mold is on the horizontal plane
  • the concave portion of the mold is opened on the horizontal plane side, and the concave portion is set so as to be symmetric with respect to the plane including the point indicating the maximum depth of the concave portion
  • the bottom surface of the space formed by the horizontal plane and the concave portion is a circle, and when the circle is divided into four arcs by the xy plane and the zy plane, points on the four arcs,
  • the line connecting the vertices is a curve formed by collecting points on the x, y, and z coordinates represented by the following formulas (4-1) to (4-4).
  • ⁇ 0 is the rate of dimensional change of the resin
  • r is the radius of the sphere
  • y is the height of the space.
  • Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced.
  • ⁇ c is the side shrinkage relaxation coefficient
  • A is the aspect ratio
  • k c is the following formula: (For p that satisfies 0.9p ⁇ k c ⁇ 1.1p)
  • ⁇ c is represented by a function represented by the above formula ( ⁇ c ⁇ 1).
  • a mold obtained by the above method for molding a resin having a dimensional change rate of ⁇ 0 and producing a spherically-shaped molded body having an aspect ratio of A has the concave shape [6].
  • the mold manufacturing method of the present invention it is possible to appropriately predict shrinkage deformation due to hardening or solidification of a resin for a molded body having various aspect ratios by calculation using a specific function. If a mold is originally designed (or a mold for producing a mold is designed) and a mold is manufactured based on the design, a molded body having a desired shape with a high accuracy in a very short time compared to the conventional case. (For example, a molded article having a shape error of 5% or less (preferably 3% or less, particularly preferably 1% or less, particularly preferably 0.5% or less) using a resin having a dimensional change rate of 10%) You can definitely get it.
  • the mold manufacturing apparatus of the present invention molds a resin and has various aspect ratios, such as a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prism shape, a spherical shape, or a longitudinal direction.
  • a prediction function of deformation at the time of forming into a molded body is obtained, a correction function for compensating for deformation is calculated from the prediction function, and a mold is designed using the correction function.
  • the mold manufacturing apparatus of the present invention obtains a prediction function of deformation when molding a resin having an arbitrary dimensional change rate into a molded body having an arbitrary aspect ratio, and compensates the deformation from the prediction function.
  • the correction function is calculated, and the mold is designed and manufactured using the correction function (for example, the mold of the mold is designed using the correction function, and the mold is manufactured using the obtained mold).
  • the configuration is not particularly limited as long as it has a function.
  • the mold manufacturing apparatus of the present invention If the mold manufacturing apparatus of the present invention is used, shrinkage deformation accompanying the hardening or solidification of the resin is accurately predicted, and the mold is manufactured based on this, so that a mold with deformation compensation can be manufactured.
  • the mold thus obtained is very useful since it can reliably produce a molded body having a desired shape.
  • the mold design program of the present invention forms a resin and has various aspect ratios, such as a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prism shape, a spherical shape, or perpendicular to the longitudinal direction.
  • a mold design program for causing a computer to execute a mold design for manufacturing a molded product having a rectangular, trapezoidal, triangular, or spherically shaped cross section in a simple plane, the shape of a desired molded product, A first step of inputting an aspect ratio A and a dimensional change rate ⁇ 0 of the resin to be formed; A second step of causing the computer to select a correction function in accordance with the desired shape of the molded body from the input shape of the desired molded body, the aspect ratio A, and the dimensional change rate ⁇ 0 of the resin to be formed; And a third step of causing the computer to perform correction of the concave shape of the mold by the selected correction function.
  • the second step is a step of selecting a correction function according to a desired shape of the molded body
  • the desired molded body is made of a cured or solidified resin having a dimensional change rate of ⁇ 0 , an aspect ratio of A, a prismatic shape, a truncated pyramid shape, or a rectangular section in a plane perpendicular to the longitudinal direction.
  • the concave shape of the mold is set such that one direction on the horizontal plane is the x axis, the direction perpendicular to the x axis is the z axis, and the x axis and the z axis are perpendicular to the horizontal plane.
  • the direction is the y axis, and the mold is recessed on the cutting plane including the x axis and the y axis in a state where the mold is opened on the horizontal plane so that the concave portion of the mold opens to the horizontal plane, and the point indicating the maximum depth of the mold.
  • the cross-sectional shape of the upper surface of the space formed by the concave portion is a curve represented by Formula (1-1), and the side surface of the space is
  • the cross-sectional shape is expressed by formula (1-2)
  • the curve be
  • the desired molded body is made of a cured or solidified resin having a dimensional change rate of ⁇ 0 , has an aspect ratio of A, a pyramid shape, or a linear cross section in a plane perpendicular to the longitudinal direction.
  • the concave shape of the mold is an x-axis in one direction on the horizontal plane, a z-axis in a direction perpendicular to the x-axis on the horizontal plane, and a y-axis in a direction perpendicular to the x-axis and z-axis,
  • the concave portion is symmetrical on the cutting plane including the x axis and the y axis and including the point indicating the maximum depth of the mold.
  • the cross-sectional shape in the said cut surface of the side surface of the space formed by the recessed part be a curve represented by Formula (2).
  • the desired molded body is formed of a cured or solidified resin having a dimensional change rate of ⁇ 0 , has a spherical shape with an aspect ratio of A, or a line with a spherical surface in a cross section perpendicular to the longitudinal direction.
  • the concave shape of the mold is defined as an x-axis in one direction on the horizontal plane, a z-axis in a direction perpendicular to the x-axis on the horizontal plane, and a y-axis in a direction perpendicular to the x-axis and z-axis.
  • the recesses are symmetrical on the cutting plane including the x-axis and the y-axis and the point indicating the maximum depth of the mold in a state where the mold is placed on the horizontal plane so that the recesses of the mold open to the horizontal plane side.
  • the cross-sectional shape of the side surface of the space formed by the concave portion in the cut surface is a curve represented by Expression (3).
  • the computer is not particularly limited as long as it is a device that can perform necessary calculations, and for example, an electronic computer or the like is preferably used.
  • a numerically controlled machine tool is preferably used, and a three-dimensional cutting machine having a multi-axis control function is suitable as the numerically controlled machine tool.
  • the mold design program of the present invention can perform the design of the mold with trial and error very efficiently by causing the computer to execute the program.
  • the method for producing a molded article of the present invention is a molded article comprising a cured product or a solidified product of the resin, through a step of producing a mold by the above-described mold production method and molding a resin using the obtained mold. It is characterized by obtaining.
  • the molded body has various aspect ratios, such as a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prismatic shape, a spherical shape, or a cross section in a plane perpendicular to the longitudinal direction, a trapezoid,
  • a triangular or spherically shaped molded body For example, a micromirror array etc. are mentioned as a truncated pyramid shape or a prism-shaped molded object.
  • the micromirror array is an optical member in which a large number of three-dimensional patterns of rectangular pillars and pyramids having a height of 1 to 1000 ⁇ m are arranged in a grid pattern (for example, arranged in a grid pattern with an interval of 1 to 1000 ⁇ m).
  • the mold when a micromirror array is manufactured, the mold preferably has a configuration in which a large number of concave portions having a truncated pyramid shape or a prismatic inverted shape are arranged in a lattice shape.
  • Examples of the method for molding the resin include the following methods (1) and (2).
  • (2) The mold is applied to the resin applied on the base surface (or substrate). Method of releasing the mold after pressing and molding, and curing or solidifying the resin
  • any resin that can form a molded body by curing or solidification can be used without particular limitation.
  • the resin include light or thermosetting resin and thermoplastic resin.
  • the light or thermosetting resin is a resin that forms a cured product by light irradiation or heat treatment, and contains a curable compound and a polymerization initiator.
  • a curable compound for example, solvents, antioxidants, surface conditioners, photosensitizers, antifoaming agents, leveling agents, coupling agents, surfactants, flame retardants, UV absorbers as necessary
  • coloring agents for example, solvents, antioxidants, surface conditioners, photosensitizers, antifoaming agents, leveling agents, coupling agents, surfactants, flame retardants, UV absorbers as necessary.
  • the curable compound includes a cationic polymerizable compound and a radical polymerizable compound
  • the cationic polymerizable monomer includes, for example, an epoxy compound, an oxetane compound, a vinyl ether compound, and the like.
  • the radical polymerizable compound includes, for example, an olefin monomer, a (meth) acrylic monomer, a styrene monomer, and the like.
  • the resin in the present invention for example, when a molded body having excellent heat resistance is desired, it is preferable to use a light or thermosetting resin, and in particular, optical characteristics (particularly transparency), high hardness, and When a molded article having heat resistance is desired, an epoxy resin [particularly, an epoxy group composed of two adjacent carbon atoms and oxygen atoms constituting an alicyclic ring such as a cyclohexene oxide group (that is, an aliphatic group) It is preferable to use a compound having a cyclic epoxy group, for example, a compound represented by the following formula (i).
  • X represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, an alkenylene group in which part or all of a carbon-carbon double bond is epoxidized, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and the like. And a group in which a plurality of are connected.
  • the substituent for example, alkyl group etc.
  • Representative examples of the compound represented by the above formula (i) include 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, (3,4,3 ′, 4′-diepoxy) biphenyl. Cyclohexyl, bis (3,4-epoxycyclohexylmethyl) ether, 1,2-epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 2,2-bis (3,4-epoxy) And cyclohexane-1-yl) propane and 1,2-bis (3,4-epoxycyclohexane-1-yl) ethane.
  • the apparatus for producing a molded body of the present invention is formed of a resin, and has various aspect ratios, a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prismatic shape, a spherical shape, or a longitudinal direction.
  • a deformation prediction function is obtained, a correction function for compensating the deformation is calculated from the prediction function, a mold is designed and manufactured using the correction function, and the resin is obtained using the obtained mold. It is characterized by molding.
  • the apparatus for producing a molded body of the present invention obtains a prediction function of deformation when molding a resin having an arbitrary dimensional change rate into a molded body having an arbitrary aspect ratio, and compensates the deformation from the prediction function.
  • the correction function is calculated, the mold is designed and manufactured using the correction function (for example, the mold of the mold is designed using the correction function, and the mold is manufactured using the obtained mold.
  • the structure is not particularly limited as long as it has a function and a function of molding a resin using the obtained mold.
  • the manufacturing apparatus of the molded body of the present invention is used, shrinkage deformation accompanying resin curing or solidification is accurately predicted, and an ultraviolet curable composition is molded using a mold manufactured based on this, A molded body having a desired shape can be reliably produced.
  • Embodiment [1] According to the following procedure, the shape of the molded body after curing shrinkage is verified by computer simulation, and the design of the mold is changed using this.
  • Procedure 1 Extract parameters based on the results calculated using commercially available software for structural analysis (“MARC”, MSC Software) (FIGS. 6-8)
  • Step 2 Determine the desired aspect ratio of the molded body and the dimensional change rate of the resin to be used.
  • Procedure 3 Extract b and c from the parameters (FIGS. 6 and 7), and the cross-sectional shape of the upper surface of the molded body after shrinkage
  • Step 4 Extract ⁇ s and k s from the parameters (Fig. 8) to determine the approximate function of the cross-sectional shape of the side surface of the compact after shrinkage deformation.
  • the shape of the deformed molded body (a molded body having a linear shape with a rectangular cross section in the plane perpendicular to the longitudinal direction and the structure fixed to the base surface at the bottom) is used.
  • the correction function was calculated using this, and the mold design was changed. The results are shown in FIGS. From FIG. 11, when a resin having a shrinkage deformation rate of about 10% due to curing or solidification is used, the shape error can be suppressed to about 0.29% ( ⁇ value) by performing mold correction by the above method. I understood.
  • Embodiment [2] The mold was corrected as described in FIGS. The results are shown in FIG. From FIG. 21, when the correction was not performed, the side wall surface was distorted, but the distortion was reduced by the correction.
  • the mean square error of the distance between the target surface and the surface after contraction without correction is 4.3 when the height of the structure is 1 (dimensionless) with respect to the contraction ratio of 10%. % Error was reduced to 0.1% by applying the correction.
  • Embodiment [3] Procedure 1: Extract parameters based on the results calculated using commercially available software for structural analysis ("MARC", manufactured by MSC Software) (Fig. 9) Step 2: the aspect ratio of the desired molded body, steps to determine the dimensional change of the resin to be used 3: Parameters extracts from tau t and k t (FIG.
  • Embodiment [4] As shown in FIG. 19, the mold was corrected. The results are shown in FIG. As shown in FIG. 22, when the correction is not performed, the side wall surface is distorted, but the distortion is eliminated by the correction. When the correction is not performed, the mean square error with respect to the target surface has an error of 17.1% when the height of the structure is 1 (non-dimensional) with respect to the contraction ratio of 10%. It was reduced to 0.3% by applying the correction.
  • Procedure 1 Extract parameters based on the results calculated using commercially available software for structural analysis ("MARC", manufactured by MSC Software) (Fig. 10)
  • Step 2 Determine the desired aspect ratio of the molded body and the dimensional change rate of the resin to be used.
  • Procedure 3 Extract ⁇ c from the parameter (Fig. 10) and determine an approximate function of the cross-sectional shape of the molded body after shrinkage.
  • the molded body after shrinkage deformation accompanying hardening or solidification (a linear structure having a cross section in a plane perpendicular to the longitudinal direction and having the structure fixed to the base surface on the bottom surface)
  • the shape of the formed body was calculated using a prediction function, and the correction function was calculated using this to change the design of the mold.
  • the manufacturing method of the present invention it is possible to quickly and surely design a mold used for manufacturing a fine structure such as a micromirror array by optical imprinting. Moreover, if the mold obtained in this way is used, a fine structure excellent in shape accuracy can be efficiently produced.
  • Cut shape of the desired molded body II Cut surface shape after shrinkage deformation due to hardening or solidification III

Abstract

Provided is a method for manufacturing a mold which is to be used for molding a resin through an imprinting method and which enables formation of a highly-precise molded body through compensation for contraction deformation associated with hardening or solidification of the resin. This method is for manufacturing a mold for manufacturing, through molding of a resin, molded bodies having a variety of aspect ratios and having conical shapes, pyramid shapes, frustum shapes, circular cylindrical shapes, prismatic shapes, imperfect spherical shapes, or linear shapes having a rectangular, trapezoidal, triangular, or imperfect spherical cross-section in a plane perpendicular to the longitudinal direction. The method is characterized by determining a prediction function regarding deformation that occur when a resin having an arbitrarily-defined rate of dimensional change is molded into a molded body having an arbitrarily-defined aspect ratio, calculating a correction function for compensating deformation from the prediction function, and designing a mold using the correction function.

Description

モールドの製造方法Mold manufacturing method
 本発明は、樹脂の成形に用いられるモールドの製造方法、前記方法により製造されたモールドを使用した成形体、及び前記モールド設計プログラムに関する。本願は、2018年2月19日に日本に出願した、特願2018-27433号、2018年5月25日に日本に出願した、特願2018-100853号、及び2018年9月18日に日本に出願した、特願2018-174309号の優先権を主張し、その内容をここに援用する。 The present invention relates to a method for producing a mold used for molding a resin, a molded body using the mold produced by the method, and the mold design program. This application includes Japanese Patent Application No. 2018-27433, filed in Japan on February 19, 2018, Japanese Patent Application No. 2018-1000085, filed in Japan on May 25, 2018, and Japan on September 18, 2018. Claims the priority of Japanese Patent Application No. 2018-174309, filed in Japanese Patent Application No. 2018-174309, the contents of which are incorporated herein by reference.
 インプリントはモールドを使用して成形するという非常に単純なプロセスでナノサイズのパターンを転写することができる微細加工技術である。インプリントを利用すれば低コストで量産可能であるため、半導体デバイス、光学部材等の多方面で実用化されている。 Imprint is a microfabrication technology that can transfer nano-sized patterns by a very simple process of forming using a mold. If imprint is used, it can be mass-produced at low cost, and has been put to practical use in various fields such as semiconductor devices and optical members.
 例えばマイクロミラーアレイは、一辺が1~1000μmの四角柱や四角錐の立体形状が格子状に多数配列した光学部材であり、前記立体形状の4側面のうち隣接する2側面は直交ミラーとして利用されるため、正確な角度と高い平面性が要求される。 For example, a micromirror array is an optical member in which a large number of square pillars or pyramids having a side of 1-1000 μm are arranged in a lattice shape, and two adjacent side surfaces of the four side surfaces of the solid shape are used as orthogonal mirrors. Therefore, an accurate angle and high flatness are required.
 しかし、インプリント法によって樹脂を成形する場合、樹脂の硬化若しくは固化に伴う収縮により、モールドの形状が正確に転写された成形体を得ることは困難であった。このため、モールドの寸法や形状を、樹脂の収縮に合わせて補正する必要があるが、これには試行錯誤を繰り返す必要があり、モールド原型の作成に膨大なコストと時間を要していた。 However, when the resin is molded by the imprint method, it is difficult to obtain a molded body in which the shape of the mold is accurately transferred due to shrinkage accompanying the curing or solidification of the resin. For this reason, it is necessary to correct the dimension and shape of the mold in accordance with the shrinkage of the resin. However, this requires repeated trial and error, and enormous costs and time are required to create the mold prototype.
 特許文献1には、インプリント法により樹脂を成形して配線パターンを形成するために使用されるモールドについて、樹脂の収縮による線幅の減少を特定の関数により補正できることが記載されている。 Patent Document 1 describes that a reduction in line width due to resin shrinkage can be corrected by a specific function for a mold used for forming a wiring pattern by molding a resin by an imprint method.
特開2012-183692号公報JP 2012-183692 A
 しかし、特許文献1においては、配線の側面が湾曲することについては検討がされておらず、前記関数を利用して補正されたモールドを使用しても、得られる配線パターンの側面には湾曲が生じ、面精度が低いことが分かった。 However, in Patent Document 1, no consideration is given to the fact that the side surface of the wiring is curved, and even if a mold corrected using the above function is used, the side surface of the obtained wiring pattern is not curved. It was found that the surface accuracy was low.
 従って、本発明の目的は、インプリント法による樹脂の成形に使用されるモールドについて、樹脂の硬化若しくは固化に伴う収縮変形を補償して、高精度の成形体を形成することができるモールドの製造方法を提供することにある。
 本発明の他の目的は、前記モールドを使用して、樹脂の硬化物若しくは固化物からなる、高精度の成形体を製造する方法を提供することにある。
 本発明の他の目的は、樹脂を成形して、所望の成形体を精度良く製造できるモールドを提供することにある。
 本発明の他の目的は、コンピュータを利用して、樹脂の硬化若しくは固化に伴う変形を予測し、それを元に変形の極めて少ない成形体を得るためのモールドを設計する、モールド設計プログラムを提供することにある。
Accordingly, an object of the present invention is to produce a mold capable of forming a highly accurate molded body by compensating for shrinkage deformation accompanying the curing or solidification of the resin for a mold used for molding a resin by an imprint method. It is to provide a method.
Another object of the present invention is to provide a method for producing a high-precision molded article made of a cured or solidified resin using the mold.
Another object of the present invention is to provide a mold capable of accurately producing a desired molded body by molding a resin.
Another object of the present invention is to provide a mold design program that uses a computer to predict deformation associated with hardening or solidification of a resin and to design a mold for obtaining a molded body with very little deformation based on the predicted deformation. There is to do.
 本発明者等は上記課題を解決するため鋭意検討した結果、樹脂をモールド成形して所望の成形体を製造する場合、樹脂の寸法変化率と所望の成形体のアスペクト比を算入すると、樹脂の変形が補償されたモールド形状を導き出せる特定の関数を見いだし、前記関数により得られた形状を有するモールドを使用すれば、面精度に優れる成形体が得られることを見いだした。本発明はこれらの知見に基づいて完成させたものである。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that when a resin is molded to produce a desired molded body, the dimensional change rate of the resin and the aspect ratio of the desired molded body are included. The inventors have found a specific function capable of deriving a mold shape in which deformation is compensated, and found that a molded body having excellent surface accuracy can be obtained by using a mold having a shape obtained by the function. The present invention has been completed based on these findings.
 すなわち、本発明は、樹脂を成形して、種々のアスペクト比を有する、円錐形状、角錐形状、円錐台形状、角錐台形状、円柱形状、角柱形状、球欠形状、又は長手方向に垂直な面における断面が矩形、台形、三角形、若しくは球欠の線形状の成形体を製造するためのモールドの製造方法であって、任意の寸法変化率を有する樹脂を、任意のアスペクト比を有する成形体に成形する際の変形の予測関数を求め、前記予測関数より、変形を補償するための補正関数を算出し、前記補正関数を用いてモールドを設計することを特徴とする、モールドの製造方法を提供する。
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
That is, the present invention is formed by molding a resin to have various aspect ratios, a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prism shape, a spherical shape, or a plane perpendicular to the longitudinal direction A method for producing a mold for producing a linear shaped product having a rectangular, trapezoidal, triangular, or ball-shaped cross section, wherein a resin having an arbitrary dimensional change rate is formed into a molded product having an arbitrary aspect ratio. A method for manufacturing a mold is provided, wherein a prediction function of deformation at the time of molding is obtained, a correction function for compensating for deformation is calculated from the prediction function, and a mold is designed using the correction function. To do.
Aspect ratio: One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis. When the molded body is placed so as to be bilaterally symmetric by a cut surface that includes a point that includes the axis and the y-axis and that indicates the maximum height of the molded body, the height in the y-axis direction on the cut surface and the horizontal plane Dimensional change rate: If the resin is light or thermosetting resin, it is the volume change rate before and after curing. If the resin is a thermoplastic resin, “(thermal It is a value calculated by “Glass transition temperature of plastic resin (° C.) − Scheduled environment temperature (° C.)) × Linear expansion coefficient”.
 本発明は、また、寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が矩形若しくは台形の線形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状とすることを特徴とするモールドの製造方法を提供する。
モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含む面において凹部が左右対称になるように設置した場合における、
凹部によって形成される空間の上面の前記切断面における形状を下記式(1-1)で表される曲線とし、前記空間の側面の前記切断面における形状を下記式(1-2)で表される曲線とする
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
Figure JPOXMLDOC01-appb-M000030
(式中、α0は樹脂の寸法変化率、bは樹脂の弾性率と幅方向の力の比に関係するパラメータ、xは凹部によって形成される空間の、x軸とy軸を含み、且つ空間の最大高さを示す点を含む切断面の半幅、cは高さ方向の収縮と幅方向の収縮の割合の比に関するパラメータ、εxは水平方向の延伸補正係数を示す)
Figure JPOXMLDOC01-appb-M000031
(式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比、εyは垂直方向の延伸補正係数を示す)
The present invention also provides a linear molded body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction, wherein a resin having a dimensional change rate of α 0 is molded and the aspect ratio defined below is A. Provided is a mold manufacturing method for manufacturing, wherein a mold recess shape is set to the following shape.
Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is set to be bilaterally symmetric in the plane including the x axis and the y axis.
The shape of the upper surface of the space formed by the recess is a curve represented by the following formula (1-1), and the shape of the side surface of the space is represented by the following formula (1-2). Aspect ratio: One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis. The height in the y-axis direction at the cut surface when the molded body is placed so as to be bilaterally symmetric by a cut surface including a point that includes the x axis and the y axis and indicates the maximum height of the molded body. Dimensional change rate: If the resin is light or a thermosetting resin, it is the volume change rate before and after curing, and if the resin is a thermoplastic resin , “(Glass transition temperature (° C) of thermoplastic resin-Expected ambient temperature ( Is a value calculated by)) × linear expansion coefficient "
Figure JPOXMLDOC01-appb-M000030
(Where α 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and the y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction, and ε x is the horizontal stretching correction factor)
Figure JPOXMLDOC01-appb-M000031
(Where α 0 is the dimensional change rate of the resin, y is the height of the space, τ s is the relaxation coefficient of side shrinkage, A is the aspect ratio, and ε y is the stretching correction coefficient in the vertical direction)
 本発明は、また、寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、四角柱形状、又は四角錐台形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状とすることを特徴とするモールドの製造方法を提供する。
モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含む面において凹部が左右対称になるように設置した場合における、
水平面と凹部によって形成される、底面と4つの側面と上面面からなる空間の、上面は下記式(1-1)で表される曲線のz軸方向への連続で示され、
前記空間の4つの側面は、それぞれ下記式(1-2-1)~(1-2-4)で表される曲線のx軸方向或いはz軸方向への連続で示され、
隣接する2側面により形成される角の形状は、1つの側面の角側端部を表す曲線上の点1と、隣接する他の側面の角側端部を表す曲線上の点であって、前記点1とy軸の値を同一とする点2とを結ぶ、直線、多角線、或いは円弧であり、
x軸とy軸を含む面に平行な側面と上面により形成される角の形状は、前記側面の角側端部を表す曲線上の点1’と、上面の角側端部を表す曲線上の点であって、前記点1’とx軸の値を同一とする点2’とを結ぶ、直線、多角線、或いは円弧であり、
y軸とz軸を含む面に平行な側面と上面により形成される角の形状は、前記側面の角側端部を表す曲線上の点1”と、上面の角側端部を表す曲線上の点であって、前記点1”とz軸の値を同一とする点2”とを結ぶ、直線、多角線、或いは円弧である
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
Figure JPOXMLDOC01-appb-M000032
(式中、α0は樹脂の寸法変化率、bは樹脂の弾性率と幅方向の力の比に関係するパラメータ、xは凹部によって形成される空間の、x軸とy軸を含み、且つ空間の最大高さを示す点を含む切断面の半幅、cは高さ方向の収縮と幅方向の収縮の割合の比に関するパラメータ、εxは水平方向の延伸補正係数を示す)
Figure JPOXMLDOC01-appb-M000033
(式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比を示す。k1はx軸方向収縮率の補正係数を示し、k2はz軸方向収縮率の補正係数を示す。k1、k2は同一又は異なって、1.0~2.0の数である)
The present invention also provides a mold for producing a molded article having a prismatic shape or a truncated pyramid shape, in which a resin having a dimensional change rate of α 0 is molded and the aspect ratio defined below is A. A method for manufacturing a mold, characterized in that the concave shape of the mold is the following shape.
Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is set to be bilaterally symmetric in the plane including the x axis and the y axis.
The upper surface of the space formed by the horizontal surface and the concave portion and including the bottom surface, the four side surfaces, and the upper surface is indicated by a continuous curve in the z-axis direction represented by the following formula (1-1).
The four side surfaces of the space are respectively shown by continuations in the x-axis direction or z-axis direction of the curves represented by the following formulas (1-2-1) to (1-2-4), respectively.
The shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, A straight line, a polygonal line, or an arc connecting the point 1 and the point 2 having the same y-axis value;
The shape of the corner formed by the side surface parallel to the plane including the x-axis and the y-axis and the top surface is the point 1 ′ on the curve representing the corner-side end portion of the side surface and the curve representing the corner-side end portion of the top surface. A straight line, a polygonal line, or an arc connecting the point 1 ′ and the point 2 ′ having the same x-axis value,
The shape of the corner formed by the side surface and the upper surface parallel to the plane including the y-axis and the z-axis is the point 1 ″ on the curve representing the corner end of the side surface and the curve representing the corner end of the upper surface. A straight line, a polygonal line, or an arc connecting the point 1 ″ and the point 2 ″ having the same z-axis value. Aspect ratio: One direction on the horizontal plane is the x axis, and the horizontal plane The direction perpendicular to the x-axis is the z-axis, the direction perpendicular to the x-axis and the z-axis is the y-axis, the molded body formed of a mold is on a horizontal plane, includes the x-axis and the y-axis, and the maximum height of the molded body is Dimensional change is the ratio of the height in the y-axis direction at the cut surface to the width of the cut surface in the x-axis direction in contact with the horizontal plane when the molded body is placed so as to be symmetrical with the cut surface including the indicated point Rate: If the resin is light or thermosetting resin, it is the volume change rate before and after curing, and if the resin is a thermoplastic resin , - is a value calculated by "(glass transition temperature of the thermoplastic resin (℃) scheduled use environment temperature (℃)) × linear expansion coefficient"
Figure JPOXMLDOC01-appb-M000032
(Where α 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and the y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction, and ε x is the horizontal stretching correction factor)
Figure JPOXMLDOC01-appb-M000033
(Where α 0 is the dimensional change rate of the resin, y is the height of the space, τ s is the relaxation coefficient of side shrinkage, A is the aspect ratio, k 1 is the correction coefficient for the shrinkage rate in the x-axis direction, k 2 represents a correction coefficient for the contraction rate in the z-axis direction, and k 1 and k 2 are the same or different and are numbers of 1.0 to 2.0)
 本発明は、また、成形体が、アスペクト比がAである、角錐台形状、角柱形状、又は長手方向に垂直な面における断面が矩形若しくは台形の線形状の構造物であり、当該構造物が底面において基面に固定された形状を有する、前記モールドの製造方法を提供する。 In the present invention, the molded body is a pyramidal trapezoidal shape, a prismatic shape having an aspect ratio of A, or a linear structure having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction. A method for producing the mold having a shape fixed to a base surface at a bottom surface is provided.
 本発明は、また、bが下記式(b-1)で表される関数で示される、前記モールドの製造方法を提供する。
Figure JPOXMLDOC01-appb-M000034
(式中のAは上記に同じ。b1は0.21~0.84の数、b2は0.3~0.9の数、b3は1.5~2.5の数、b4は0.06~0.24の数である)
The present invention also provides the method for producing the mold, wherein b is represented by a function represented by the following formula (b-1).
Figure JPOXMLDOC01-appb-M000034
(A in the formula is the same as above, b 1 is a number from 0.21 to 0.84, b 2 is a number from 0.3 to 0.9, b 3 is a number from 1.5 to 2.5, b 4 is a number from 0.06 to 0.24)
 本発明は、また、cが下記式(c-1)で表される関数で示される、前記モールドの製造方法を提供する。
Figure JPOXMLDOC01-appb-M000035
(式中のAは上記に同じ。c1は0.2~0.8の数、c2は2.5~3.5の数、c3は0.5~2.0の数である)
The present invention also provides the method for producing the mold, wherein c is represented by a function represented by the following formula (c-1).
Figure JPOXMLDOC01-appb-M000035
(A in the formula is the same as above. C 1 is a number from 0.2 to 0.8, c 2 is a number from 2.5 to 3.5, and c 3 is a number from 0.5 to 2.0. )
 本発明は、また、τsが下記式(τs-1)で表される関数で示される、前記モールドの製造方法を提供する。
Figure JPOXMLDOC01-appb-M000036
(式中のAは上記に同じ。τs1は0.12~0.46の数である)
The present invention is also, tau s is indicated by the function represented by the following formula (tau s -1), provides a method of manufacturing the mold.
Figure JPOXMLDOC01-appb-M000036
(A in the formula is the same as above. Τ s1 is a number between 0.12 and 0.46)
 本発明は、また、延伸補正係数εx、εyが下記1~5の手順で導出される、前記モールドの製造方法を提供する。
1.y=fuy(x)=α0bx2+α0(1-α0)c+(1-α02、と
  x=fsx(y)=(1-α0(1-e-y/τs(A))/2A
 の交点(x0,y0)を求める。
2.上面の暫定補正形状gu(x)、及び側面の暫定補正形状gs(y)を下記式から算出する。
   gu(x)=1/fuy(x)
   gs(y)=(1/2A)2/fsx(y)
4.つぎに、暫定補正形状の水平高さy1=gu(x0)、及び暫定補正形状の半幅x1=gs(y0)を求める。
5.暫定補正形状の水平方向の延伸補正係数εx、及び垂直方向の延伸補正係数εyを下記式から算出する。
   εx=x1/x0
   εy=y1/y0
The present invention also provides the method for producing the mold, wherein the stretching correction coefficients ε x and ε y are derived by the following procedures 1 to 5.
1. y = f uy (x) = α 0 bx 2 + α 0 (1−α 0 ) c + (1−α 0 ) 2 , and x = f sx (y) = (1−α 0 (1−e− y / τs (A) ) / 2A
Find the intersection (x 0 , y 0 ) of
2. The temporary correction shape g u (x) of the upper surface and the temporary correction shape g s (y) of the side surface are calculated from the following equations.
g u (x) = 1 / f uy (x)
g s (y) = (1 / 2A) 2 / f sx (y)
4). Next, the horizontal height y 1 = g u (x 0 ) of the provisional correction shape and the half width x 1 = g s (y 0 ) of the provisional correction shape are obtained.
5. The horizontal direction correction coefficient ε x and the vertical direction correction coefficient ε y of the provisional correction shape are calculated from the following equations.
ε x = x 1 / x 0
ε y = y 1 / y 0
 本発明は、また、寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が三角形の線形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状とすることを特徴とするモールドの製造方法を提供する。
モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含み、且つ前記凹部の最大深さを示す点を含む面において凹部が左右対称になるように設置した場合において、
水平面と凹部によって形成される、底面と2つの斜面からなる空間をx軸とy軸を含む面で切断した際の斜辺の形状が、x座標が下記式(2-1)で表され、y座標が下記式(2-2)で表される点を集合してなる曲線である
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
Figure JPOXMLDOC01-appb-M000037
(式中、ktは、下記式(kt-1)
Figure JPOXMLDOC01-appb-M000038
を満たすqに対して、0.9q≦kt≦1.1qの範囲である。α0は樹脂の寸法変化率、yは空間の高さ、τtは側面収縮の緩和係数、Aはアスペクト比を示す)
The present invention also molds a resin having a dimensional change rate of α 0 to produce a linear shaped product having a triangular cross section in a plane perpendicular to the longitudinal direction and having an aspect ratio A defined below. There is provided a method for manufacturing a mold for manufacturing a mold, wherein the concave shape of the mold is the following shape.
Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In a state where the concave portion is opened so as to open on the horizontal plane side, the x-axis and the y-axis are included, and the concave portion is installed so as to be symmetrical on the plane including the point indicating the maximum depth of the concave portion.
The shape of the hypotenuse when the space formed by the horizontal plane and the concave portion and including the bottom surface and the two inclined surfaces is cut by a plane including the x-axis and the y-axis, the x-coordinate is expressed by the following formula (2-1), and y A coordinate is a curve formed by collecting points represented by the following formula (2-2). Aspect ratio: one direction on the horizontal plane is the x axis, and on the horizontal plane, the direction perpendicular to the x axis is the z axis, the x axis The y-axis is the direction perpendicular to the z-axis, and the molded body is symmetrical on the horizontal plane by the cutting plane that includes the point that includes the x-axis and y-axis and indicates the maximum height of the molded body. Is the ratio of the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane in the case where it is installed. Dimensional change rate: When the resin is light or thermosetting resin , The volume change rate before and after curing, and when the resin is a thermoplastic resin, Is a value calculated by the scheduled use environment temperature (℃)) × linear expansion coefficient "- Temperature (℃)
Figure JPOXMLDOC01-appb-M000037
(Where k t is the following formula (k t −1)
Figure JPOXMLDOC01-appb-M000038
For q that satisfies the above, the range is 0.9q ≦ k t ≦ 1.1q. α 0 is the dimensional change rate of the resin, y is the height of the space, τ t is the relaxation coefficient of side shrinkage, and A is the aspect ratio)
 本発明は、また、寸法変化率がα0の樹脂を成形して、アスペクト比がAである四角錐形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状とすることを特徴とするモールドの製造方法を提供する。
モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口し、且つ前記凹部の最大深さ示す点を含む面によって凹部が左右対称になるように設置した場合において、
水平面と凹部とによって形成される空間の底面は四角形であり、前記底面の4つの辺はx軸又はz軸に平行であり、前記空間の4つの側面は、前記底面における一辺を底辺とし、前記底辺と、前記空間の頂点とを結ぶ、下記式(5-1)~(5-4)で表される、x座標、y座標、及びz座標上の点を集合してなる曲線の、x軸方向或いはz軸方向への連続で示され、
隣接する2側面により形成される角の形状が、1つの側面の角側端部を表す曲線上の点1と、隣接する他の側面の角側端部を表す曲線上の点であって、前記点1とy軸の値を同一とする点2とを結ぶ、直線、多角線、或いは円弧であることを特徴とするモールドの製造方法。
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、成形体を、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように水平面上に設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
Figure JPOXMLDOC01-appb-M000039
(式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比を示す。ktはy軸方向の収縮の補正係数であり、下記式(kt-1)
Figure JPOXMLDOC01-appb-M000040
を満たすqに対して、0.9q≦kt≦1.1qの範囲である)
The present invention also provides a mold manufacturing method for manufacturing a quadrangular pyramid-shaped molded article having an aspect ratio of A by molding a resin having a dimensional change rate of α 0 , wherein the concave shape of the mold is defined as follows: Provided is a method for producing a mold, characterized by having a shape.
Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the case where the concave portion is opened on the horizontal plane side, and the concave portion is set so as to be symmetric with respect to the plane including the point indicating the maximum depth of the concave portion,
The bottom surface of the space formed by the horizontal plane and the recess is a quadrangle, the four sides of the bottom surface are parallel to the x axis or the z axis, and the four side surfaces of the space have one side of the bottom surface as the bottom side, X of a curve formed by collecting points on the x-coordinate, y-coordinate, and z-coordinate represented by the following formulas (5-1) to (5-4) that connect the base and the vertex of the space. Indicated in the axial direction or continuous in the z-axis direction,
The shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, A method of manufacturing a mold, wherein the mold is a straight line, a polygonal line, or an arc connecting the point 1 and a point 2 having the same y-axis value.
Aspect ratio: One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis. X-axis in contact with the height in the y-axis direction on the cut surface and the horizontal plane when the molded product is placed on a horizontal plane so that the molded product is symmetrical with the cut surface including the point indicating the maximum height of the molded product Dimensional change rate: If the resin is a light or thermosetting resin, it is the volume change rate before and after curing. If the resin is a thermoplastic resin, “(thermoplastic resin The glass transition temperature (° C) minus the expected environmental temperature (° C) x linear expansion coefficient "
Figure JPOXMLDOC01-appb-M000039
(Wherein, alpha 0 is the dimensional change of the resin, y is the height of the space, tau s relaxation coefficient aspect shrinkage, A is .k t indicating the aspect ratio is a correction coefficient of contraction of the y-axis direction, The following formula (k t -1)
Figure JPOXMLDOC01-appb-M000040
(With respect to q satisfying 0.9q ≦ k t ≦ 1.1q)
 本発明は、また、成形体が、アスペクト比がAである、角錐形状、又は長手方向に垂直な面における断面が三角形の線形状の構造物であり、当該構造物が底面において基面に固定された形状を有する、前記モールドの製造方法を提供する。 In the present invention, the molded body is a pyramid shape having an aspect ratio of A, or a linear structure having a triangular cross section in a plane perpendicular to the longitudinal direction, and the structure is fixed to the base surface at the bottom surface. There is provided a method for manufacturing the mold having a shaped shape.
 本発明は、また、τtが下記式(τt-1)で表される関数で示される、前記モールドの製造方法を提供する。
Figure JPOXMLDOC01-appb-M000041
(式中、τt1は1.0~2.0の数であり、τt2は0.2~1.0の数である。Aは上記に同じ)
The present invention is also, tau t is indicated by the function represented by the following formula (tau t -1), provides a method of manufacturing the mold.
Figure JPOXMLDOC01-appb-M000041
(Where τ t1 is a number from 1.0 to 2.0 and τ t2 is a number from 0.2 to 1.0. A is the same as above)
 本発明は、また、寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が球欠の線形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状とすることを特徴とするモールドの製造方法を提供する。
モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含み、且つモールドの最大深さを示す点を含む面において凹部が左右対称になるように設置した場合において、
水平面と凹部によって形成される底面と球欠形状の側面からなる空間を、x軸とy軸を含む面で切断した際の、前記球欠形状の側面の断面形状が、x座標が下記式(3-1)で表され、y座標が下記式(3-2)で表される点を集合してなる曲線である
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
Figure JPOXMLDOC01-appb-M000042
(式中、α0は樹脂の寸法変化率、rは球欠面の半径、yは空間の高さを示す。y0は製造する成形体をその一部とする球体の中心のy軸上のy座標を示す。τcは側面収縮の緩和係数、Aはアスペクト比を示す。kcは、下記式
Figure JPOXMLDOC01-appb-M000043
を満たすpに対して、0.9p≦kc≦1.1pの範囲である)
The present invention also molds a resin having a dimensional change rate of α 0 to produce a linear molded body having a spherical section in a plane perpendicular to the longitudinal direction and having an aspect ratio A defined below. There is provided a method for manufacturing a mold, characterized in that the shape of the concave portion of the mold is the following shape.
Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is left-right symmetrical on the plane including the x axis and the y axis and including the point indicating the maximum depth of the mold.
The cross-sectional shape of the sphere-shaped side surface when a space including a bottom surface and a sphere-shaped side surface formed by a horizontal plane and a concave portion is cut by a plane including the x-axis and the y-axis, 3-1), and the y-coordinate is a curve formed by collecting points represented by the following formula (3-2). Aspect ratio: One direction on the horizontal plane is the x-axis, and the x-axis is on the horizontal plane. The vertical direction is the z-axis, the direction perpendicular to the x-axis and the z-axis is the y-axis, and the molded body by the mold includes a point that includes the x-axis and the y-axis on the horizontal plane and indicates the maximum height of the molded body. This is the ratio of the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane when the molded body is placed symmetrically by the cut surface. In the case of a light or thermosetting resin, it is the volume change rate before and after curing, and when the resin is a thermoplastic resin, Is a value calculated by the scheduled use environment temperature (℃)) × linear expansion coefficient "- glass transition temperature of the thermoplastic resin (℃)
Figure JPOXMLDOC01-appb-M000042
(Where α 0 is the rate of dimensional change of the resin, r is the radius of the sphere, and y is the height of the space. Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced. Τ c is the side shrinkage relaxation coefficient, A is the aspect ratio, and k c is the following formula:
Figure JPOXMLDOC01-appb-M000043
(For p that satisfies 0.9p ≦ k c ≦ 1.1p)
 本発明は、また、寸法変化率がα0の樹脂を成形して、アスペクト比がAである球欠形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状とすることを特徴とするモールドの製造方法を提供する。
モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口し、且つ前記凹部の最大深さ示す点を含む面によって凹部が左右対称になるように設置した場合において、
水平面と凹部とによって形成される空間の底面が円であり、前記円をx-y平面とz-y平面により4つの弧に分割した際の、前記4つの弧上の点と、前記空間の頂点とを結ぶ線が、下記式(4-1)~(4-4)で表される、x座標、y座標、及びz座標上の点を集合してなる曲線である
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、成形体を、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように水平面上に設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
Figure JPOXMLDOC01-appb-M000044
(式中、α0は樹脂の寸法変化率、rは球欠面の半径、yは空間の高さを示す。y0は製造する成形体をその一部とする球体の中心のy軸上のy座標を示す。τcは側面収縮の緩和係数、Aはアスペクト比を示す。kcは、下記式
Figure JPOXMLDOC01-appb-M000045
を満たすpに対して、0.9p≦kc≦1.1pの範囲である)
The present invention is also a mold manufacturing method for manufacturing a notched molded article having an aspect ratio of A by molding a resin having a dimensional change rate of α 0 , wherein the concave shape of the mold is Provided is a method for producing a mold, characterized by having a shape.
Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the case where the concave portion is opened on the horizontal plane side, and the concave portion is set so as to be symmetric with respect to the plane including the point indicating the maximum depth of the concave portion,
The bottom surface of the space formed by the horizontal plane and the concave portion is a circle, and when the circle is divided into four arcs by the xy plane and the zy plane, points on the four arcs, The line connecting the vertices is a curve formed by collecting points on the x, y, and z coordinates represented by the following formulas (4-1) to (4-4). Aspect ratio: on the horizontal plane A direction perpendicular to the x-axis on the horizontal plane is a z-axis, a direction perpendicular to the x-axis and the z-axis is a y-axis, and the compact includes the x-axis and the y-axis. The height of the cut surface in the y-axis direction and the cut surface in the x-axis direction in contact with the horizontal surface when the molded body is placed on a horizontal plane so as to be symmetrical with the cut surface including the point indicating the maximum height of Dimensional change rate: The ratio of volume change before and after curing when the resin is light or thermosetting resin. For RESIN, - is a value calculated by "(glass transition temperature of the thermoplastic resin (℃) scheduled use environment temperature (℃)) × linear expansion coefficient"
Figure JPOXMLDOC01-appb-M000044
(Where α 0 is the rate of dimensional change of the resin, r is the radius of the sphere, and y is the height of the space. Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced. Τ c is the side shrinkage relaxation coefficient, A is the aspect ratio, and k c is the following formula:
Figure JPOXMLDOC01-appb-M000045
(For p that satisfies 0.9p ≦ k c ≦ 1.1p)
 本発明は、また、成形体が、アスペクト比がAである、球欠形状、又は長手方向に垂直な面における断面が球欠の線形状の構造物であり、当該構造物が底面において基面に固定された形状を有する、前記モールドの製造方法を提供する。 In the present invention, the molded body is a sphere-shaped structure having an aspect ratio of A, or a line-shaped structure having a sphere-shaped cross section in a plane perpendicular to the longitudinal direction. A method of manufacturing the mold having a shape fixed to the mold is provided.
 本発明は、また、τcが下記式(τc-1)で表される関数で示される、前記モールドの製造方法を提供する。
Figure JPOXMLDOC01-appb-M000046
(式中、τc10は0.05~0.2の数、τc11は0.005~0.02の数、τc12は2.5~10の数、τc13は10~40の数、τc14は2~8の数である。Aは上記に同じ)
The present invention is also, tau c is represented by the function represented by the following formula (tau c -1), it provides a method of manufacturing the mold.
Figure JPOXMLDOC01-appb-M000046
( Wherein τ c10 is a number from 0.05 to 0.2, τ c11 is a number from 0.005 to 0.02, τ c12 is a number from 2.5 to 10, τ c13 is a number from 10 to 40, τ c14 is a number from 2 to 8. A is the same as above)
 本発明は、また、前記モールドの製造方法により得られるモールドを提供する。 The present invention also provides a mold obtained by the method for producing the mold.
 本発明は、また、前記モールドの製造方法によりモールドを製造する、モールドの製造装置を提供する。 The present invention also provides a mold manufacturing apparatus for manufacturing a mold by the mold manufacturing method.
 本発明は、また、前記モールドの製造方法によりモールドを製造し、得られたモールドを利用して樹脂を成形する工程を経て、前記樹脂の硬化物若しくは固化物から成る成形体を得る成形体の製造方法を提供する。 The present invention also provides a molded body for producing a molded body made of a cured product or a solidified product of the resin through a step of manufacturing a mold by the mold manufacturing method and molding a resin using the obtained mold. A manufacturing method is provided.
 本発明は、また、前記成形体の製造方法で得られる成形体を提供する。 The present invention also provides a molded body obtained by the method for producing the molded body.
 本発明は、また、前記モールドの製造方法によりモールドを製造し、得られたモールドを利用して樹脂を成形する工程を経て、前記樹脂の硬化物若しくは固化物から成る成形体を得る、成形体の製造装置を提供する。 The present invention also provides a molded body obtained by manufacturing a mold by the mold manufacturing method and obtaining a molded body made of a cured or solidified product of the resin through a step of molding a resin using the obtained mold. A manufacturing apparatus is provided.
 本発明は、また、寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が矩形若しくは台形の線形状の成形体を製造するためのモールドであって、モールドの凹部形状が下記形状であることを特徴とするモールドを提供する。
モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含む面において凹部が左右対称になるように設置した場合における、
凹部によって形成される空間の上面の前記切断面における形状を下記式(1-1)で表される曲線とし、前記空間の側面の前記切断面における形状を下記式(1-2)で表される曲線とする
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
Figure JPOXMLDOC01-appb-M000047
(式中、α0は樹脂の寸法変化率、bは樹脂の弾性率と幅方向の力の比に関係するパラメータ、xは凹部によって形成される空間の、x軸とy軸を含み、且つ空間の最大高さを示す点を含む切断面の半幅、cは高さ方向の収縮と幅方向の収縮の割合の比に関するパラメータ、εxは水平方向の延伸補正係数を示す)
Figure JPOXMLDOC01-appb-M000048
(式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比、εyは垂直方向の延伸補正係数を示す)
The present invention also provides a linear molded body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction, wherein a resin having a dimensional change rate of α 0 is molded and the aspect ratio defined below is A. Provided is a mold for manufacturing, wherein the concave shape of the mold is the following shape.
Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is set to be bilaterally symmetric in the plane including the x axis and the y axis.
The shape of the upper surface of the space formed by the recess is a curve represented by the following formula (1-1), and the shape of the side surface of the space is represented by the following formula (1-2). Aspect ratio: One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis. The height in the y-axis direction at the cut surface when the molded body is placed so as to be bilaterally symmetric by a cut surface including a point that includes the x axis and the y axis and indicates the maximum height of the molded body. Dimensional change rate: If the resin is light or a thermosetting resin, it is the volume change rate before and after curing, and if the resin is a thermoplastic resin , “(Glass transition temperature (° C) of thermoplastic resin-Expected ambient temperature ( Is a value calculated by)) × linear expansion coefficient "
Figure JPOXMLDOC01-appb-M000047
(Where α 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and the y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction, and ε x is the horizontal stretching correction factor)
Figure JPOXMLDOC01-appb-M000048
(Where α 0 is the dimensional change rate of the resin, y is the height of the space, τ s is the relaxation coefficient of side shrinkage, A is the aspect ratio, and ε y is the stretching correction coefficient in the vertical direction)
 本発明は、また、寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、四角柱形状、又は四角錐台形状の成形体を製造するためのモールドであって、モールドの凹部形状が下記形状であることを特徴とするモールドを提供する。
モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含む面において凹部が左右対称になるように設置した場合における、
水平面と凹部によって形成される、底面と4つの側面と上面面からなる空間の、上面は下記式(1-1)で表される曲線のz軸方向への連続で示され、
前記空間の4つの側面は、それぞれ下記式(1-2-1)~(1-2-4)で表される曲線のx軸方向或いはz軸方向への連続で示され、
隣接する2側面により形成される角の形状は、1つの側面の角側端部を表す曲線上の点1と、隣接する他の側面の角側端部を表す曲線上の点であって、前記点1とy軸の値を同一とする点2とを結ぶ、直線、多角線、或いは円弧であり、
x軸とy軸を含む面に平行な側面と上面により形成される角の形状は、前記側面の角側端部を表す曲線上の点1’と、上面の角側端部を表す曲線上の点であって、前記点1’とx軸の値を同一とする点2’とを結ぶ、直線、多角線、或いは円弧であり、
y軸とz軸を含む面に平行な側面と上面により形成される角の形状は、前記側面の角側端部を表す曲線上の点1”と、上面の角側端部を表す曲線上の点であって、前記点1”とz軸の値を同一とする点2”とを結ぶ、直線、多角線、或いは円弧である
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
Figure JPOXMLDOC01-appb-M000049
(式中、α0は樹脂の寸法変化率、bは樹脂の弾性率と幅方向の力の比に関係するパラメータ、xは凹部によって形成される空間の、x軸とy軸を含み、且つ空間の最大高さを示す点を含む切断面の半幅、cは高さ方向の収縮と幅方向の収縮の割合の比に関するパラメータ、εxは水平方向の延伸補正係数を示す)
Figure JPOXMLDOC01-appb-M000050
(式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比を示す。k1はx軸方向収縮率の補正係数を示し、k2はz軸方向収縮率の補正係数を示す。k1、k2は同一又は異なって、1.0~2.0の数である)
The present invention also provides a mold for molding a resin having a dimensional change rate of α 0 and manufacturing a quadrangular prism shape or a truncated pyramid shaped product having an aspect ratio A defined below. In addition, a mold is provided in which the concave shape of the mold is the following shape.
Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is set to be bilaterally symmetric in the plane including the x axis and the y axis.
The upper surface of the space formed by the horizontal surface and the concave portion and including the bottom surface, the four side surfaces, and the upper surface is indicated by a continuous curve in the z-axis direction represented by the following formula (1-1).
The four side surfaces of the space are respectively shown by continuations in the x-axis direction or z-axis direction of the curves represented by the following formulas (1-2-1) to (1-2-4), respectively.
The shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, A straight line, a polygonal line, or an arc connecting the point 1 and the point 2 having the same y-axis value;
The shape of the corner formed by the side surface parallel to the plane including the x-axis and the y-axis and the top surface is the point 1 ′ on the curve representing the corner-side end portion of the side surface and the curve representing the corner-side end portion of the top surface. A straight line, a polygonal line, or an arc connecting the point 1 ′ and the point 2 ′ having the same x-axis value,
The shape of the corner formed by the side surface and the upper surface parallel to the plane including the y-axis and the z-axis is the point 1 ″ on the curve representing the corner end of the side surface and the curve representing the corner end of the upper surface. A straight line, a polygonal line, or an arc connecting the point 1 ″ and the point 2 ″ having the same z-axis value. Aspect ratio: One direction on the horizontal plane is the x axis, and the horizontal plane The direction perpendicular to the x-axis is the z-axis, the direction perpendicular to the x-axis and the z-axis is the y-axis, the molded body formed of a mold is on a horizontal plane, includes the x-axis and the y-axis, and the maximum height of the molded body is Dimensional change is the ratio of the height in the y-axis direction at the cut surface to the width of the cut surface in the x-axis direction in contact with the horizontal plane when the molded body is placed so as to be symmetrical with the cut surface including the indicated point Rate: If the resin is light or thermosetting resin, it is the volume change rate before and after curing, and if the resin is a thermoplastic resin , - is a value calculated by "(glass transition temperature of the thermoplastic resin (℃) scheduled use environment temperature (℃)) × linear expansion coefficient"
Figure JPOXMLDOC01-appb-M000049
(Where α 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and the y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction, and ε x is the horizontal stretching correction factor)
Figure JPOXMLDOC01-appb-M000050
(Where α 0 is the dimensional change rate of the resin, y is the height of the space, τ s is the relaxation coefficient of side shrinkage, A is the aspect ratio, k 1 is the correction coefficient for the shrinkage rate in the x-axis direction, k 2 represents a correction coefficient for the contraction rate in the z-axis direction, and k 1 and k 2 are the same or different and are numbers of 1.0 to 2.0)
 本発明は、また、寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が三角形の線形状の成形体を製造するためのモールドであって、モールドの凹部形状が下記形状であることを特徴とするモールドを提供する。
モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含み、且つ前記凹部の最大深さを示す点を含む面において凹部が左右対称になるように設置した場合において、
水平面と凹部によって形成される、底面と2つの斜面からなる空間をx軸とy軸を含む面で切断した際の斜辺の形状が、x座標が下記式(2-1)で表され、y座標が下記式(2-2)で表される点を集合してなる曲線である
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
Figure JPOXMLDOC01-appb-M000051
(式中、ktは、下記式(kt-1)
Figure JPOXMLDOC01-appb-M000052
を満たすqに対して、0.9q≦kt≦1.1qの範囲である。α0は樹脂の寸法変化率、yは空間の高さ、τtは側面収縮の緩和係数、Aはアスペクト比を示す)
The present invention also molds a resin having a dimensional change rate of α 0 to produce a linear shaped product having a triangular cross section in a plane perpendicular to the longitudinal direction and having an aspect ratio A defined below. There is provided a mold characterized in that the concave shape of the mold is the following shape.
Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In a state where the concave portion is opened so as to open on the horizontal plane side, the x-axis and the y-axis are included, and the concave portion is installed so as to be symmetrical on the plane including the point indicating the maximum depth of the concave portion.
The shape of the hypotenuse when the space formed by the horizontal plane and the concave portion and including the bottom surface and the two inclined surfaces is cut by a plane including the x-axis and the y-axis, the x-coordinate is expressed by the following formula (2-1), and y A coordinate is a curve formed by collecting points represented by the following formula (2-2). Aspect ratio: one direction on the horizontal plane is the x axis, and on the horizontal plane, the direction perpendicular to the x axis is the z axis, the x axis The y-axis is the direction perpendicular to the z-axis, and the molded body is symmetrical on the horizontal plane by the cutting plane that includes the point that includes the x-axis and y-axis and indicates the maximum height of the molded body. Is the ratio of the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane in the case where it is installed. Dimensional change rate: When the resin is light or thermosetting resin , The volume change rate before and after curing, and when the resin is a thermoplastic resin, Is a value calculated by the scheduled use environment temperature (℃)) × linear expansion coefficient "- Temperature (℃)
Figure JPOXMLDOC01-appb-M000051
(Where k t is the following formula (k t −1)
Figure JPOXMLDOC01-appb-M000052
For q that satisfies the above, the range is 0.9q ≦ k t ≦ 1.1q. α 0 is the dimensional change rate of the resin, y is the height of the space, τ t is the relaxation coefficient of side shrinkage, and A is the aspect ratio)
 本発明は、また、寸法変化率がα0の樹脂を成形して、アスペクト比がAである四角錐形状の成形体を製造するためのモールドであって、モールドの凹部形状が下記形状であることを特徴とするモールドを提供する。
モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口し、且つ前記凹部の最大深さ示す点を含む面によって凹部が左右対称になるように設置した場合において、
水平面と凹部とによって形成される空間の底面は四角形であり、前記底面の4つの辺はx軸又はz軸に平行であり、前記空間の4つの側面は、前記底面における一辺を底辺とし、前記底辺と、前記空間の頂点とを結ぶ、下記式(5-1)~(5-4)で表される、x座標、y座標、及びz座標上の点を集合してなる曲線の、x軸方向或いはz軸方向への連続で示され、
隣接する2側面により形成される角の形状が、1つの側面の角側端部を表す曲線上の点1と、隣接する他の側面の角側端部を表す曲線上の点であって、前記点1とy軸の値を同一とする点2とを結ぶ、直線、多角線、或いは円弧であることを特徴とするモールドの製造方法。
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、成形体を、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように水平面上に設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
Figure JPOXMLDOC01-appb-M000053
(式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比を示す。ktはy軸方向の収縮の補正係数であり、下記式(kt-1)
Figure JPOXMLDOC01-appb-M000054
を満たすqに対して、0.9q≦kt≦1.1qの範囲である)
The present invention is also a mold for molding a resin having a dimensional change rate of α 0 and manufacturing a quadrangular pyramid shaped article having an aspect ratio of A, and the concave portion of the mold has the following shape. A mold is provided.
Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the case where the concave portion is opened on the horizontal plane side, and the concave portion is set so as to be symmetric with respect to the plane including the point indicating the maximum depth of the concave portion,
The bottom surface of the space formed by the horizontal plane and the recess is a quadrangle, the four sides of the bottom surface are parallel to the x axis or the z axis, and the four side surfaces of the space have one side of the bottom surface as the bottom side, X of a curve formed by collecting points on the x-coordinate, y-coordinate, and z-coordinate represented by the following formulas (5-1) to (5-4) that connect the base and the vertex of the space. Indicated in the axial direction or continuous in the z-axis direction,
The shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, A method of manufacturing a mold, wherein the mold is a straight line, a polygonal line, or an arc connecting the point 1 and a point 2 having the same y-axis value.
Aspect ratio: One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis. X-axis in contact with the height in the y-axis direction on the cut surface and the horizontal plane when the molded product is placed on a horizontal plane so that the molded product is symmetrical with the cut surface including the point indicating the maximum height of the molded product Dimensional change rate: If the resin is a light or thermosetting resin, it is the volume change rate before and after curing. If the resin is a thermoplastic resin, “(thermoplastic resin The glass transition temperature (° C) minus the expected environmental temperature (° C) x linear expansion coefficient "
Figure JPOXMLDOC01-appb-M000053
(Wherein, alpha 0 is the dimensional change of the resin, y is the height of the space, tau s relaxation coefficient aspect shrinkage, A is .k t indicating the aspect ratio is a correction coefficient of contraction of the y-axis direction, The following formula (k t -1)
Figure JPOXMLDOC01-appb-M000054
(With respect to q satisfying 0.9q ≦ k t ≦ 1.1q)
 本発明は、また、寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が球欠の線形状の成形体を製造するためのモールドであって、モールドの凹部形状が下記形状であることを特徴とするモールドを提供する。
モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含み、且つモールドの最大深さを示す点を含む面において凹部が左右対称になるように設置した場合において、
水平面と凹部によって形成される底面と球欠形状の側面からなる空間を、x軸とy軸を含む面で切断した際の、前記球欠形状の側面の断面形状が、x座標が下記式(3-1)で表され、y座標が下記式(3-2)で表される点を集合してなる曲線である
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
Figure JPOXMLDOC01-appb-M000055
(式中、α0は樹脂の寸法変化率、rは球欠面の半径、yは空間の高さを示す。y0は製造する成形体をその一部とする球体の中心のy軸上のy座標を示す。τcは側面収縮の緩和係数、Aはアスペクト比を示す。kcは、下記式
Figure JPOXMLDOC01-appb-M000056
を満たすpに対して、0.9p≦kc≦1.1pの範囲である)
The present invention also molds a resin having a dimensional change rate of α 0 to produce a linear molded body having a spherical section in a plane perpendicular to the longitudinal direction and having an aspect ratio A defined below. There is provided a mold characterized in that the concave shape of the mold is the following shape.
Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is left-right symmetrical on the plane including the x axis and the y axis and including the point indicating the maximum depth of the mold.
The cross-sectional shape of the sphere-shaped side surface when a space including a bottom surface and a sphere-shaped side surface formed by a horizontal plane and a concave portion is cut by a plane including the x-axis and the y-axis, 3-1), and the y-coordinate is a curve formed by collecting points represented by the following formula (3-2). Aspect ratio: One direction on the horizontal plane is the x-axis, and the x-axis is on the horizontal plane. The vertical direction is the z-axis, the direction perpendicular to the x-axis and the z-axis is the y-axis, and the molded body by the mold includes a point that includes the x-axis and the y-axis on the horizontal plane and indicates the maximum height of the molded body. This is the ratio of the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane when the molded body is placed symmetrically by the cut surface. In the case of a light or thermosetting resin, it is the volume change rate before and after curing, and when the resin is a thermoplastic resin, Is a value calculated by the scheduled use environment temperature (℃)) × linear expansion coefficient "- glass transition temperature of the thermoplastic resin (℃)
Figure JPOXMLDOC01-appb-M000055
(Where α 0 is the rate of dimensional change of the resin, r is the radius of the sphere, and y is the height of the space. Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced. Τ c is the side shrinkage relaxation coefficient, A is the aspect ratio, and k c is the following formula:
Figure JPOXMLDOC01-appb-M000056
(For p that satisfies 0.9p ≦ k c ≦ 1.1p)
 本発明は、また、寸法変化率がα0の樹脂を成形して、アスペクト比がAである球欠形状の成形体を製造するためのモールドであって、モールドの凹部形状が下記形状であることを特徴とするモールドを提供する。
モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口し、且つ前記凹部の最大深さ示す点を含む面によって凹部が左右対称になるように設置した場合において、
水平面と凹部とによって形成される空間の底面が円であり、前記円をx-y平面とz-y平面により4つの弧に分割した際の、前記4つの弧上の点と、前記空間の頂点とを結ぶ線が、下記式(4-1)~(4-4)で表される、x座標、y座標、及びz座標上の点を集合してなる曲線である
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、成形体を、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように水平面上に設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
Figure JPOXMLDOC01-appb-M000057
(式中、α0は樹脂の寸法変化率、rは球欠面の半径、yは空間の高さを示す。y0は製造する成形体をその一部とする球体の中心のy軸上のy座標を示す。τcは側面収縮の緩和係数、Aはアスペクト比を示す。kcは、下記式
Figure JPOXMLDOC01-appb-M000058
を満たすpに対して、0.9p≦kc≦1.1pの範囲である)
The present invention is also a mold for producing a spherically shaped molded body having an aspect ratio of A by molding a resin having a dimensional change rate of α 0 , and the concave portion of the mold has the following shape. A mold is provided.
Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the case where the concave portion is opened on the horizontal plane side, and the concave portion is set so as to be symmetric with respect to the plane including the point indicating the maximum depth of the concave portion,
The bottom surface of the space formed by the horizontal plane and the concave portion is a circle, and when the circle is divided into four arcs by the xy plane and the zy plane, points on the four arcs, The line connecting the vertices is a curve formed by collecting points on the x, y, and z coordinates represented by the following formulas (4-1) to (4-4). Aspect ratio: on the horizontal plane A direction perpendicular to the x-axis on the horizontal plane is a z-axis, a direction perpendicular to the x-axis and the z-axis is a y-axis, and the compact includes the x-axis and the y-axis. The height of the cut surface in the y-axis direction and the cut surface in the x-axis direction in contact with the horizontal surface when the molded body is placed on a horizontal plane so as to be symmetrical with the cut surface including the point indicating the maximum height of Dimensional change rate: The ratio of volume change before and after curing when the resin is light or thermosetting resin. For RESIN, - is a value calculated by "(glass transition temperature of the thermoplastic resin (℃) scheduled use environment temperature (℃)) × linear expansion coefficient"
Figure JPOXMLDOC01-appb-M000057
(Where α 0 is the rate of dimensional change of the resin, r is the radius of the sphere, and y is the height of the space. Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced. Τ c is the side shrinkage relaxation coefficient, A is the aspect ratio, and k c is the following formula:
Figure JPOXMLDOC01-appb-M000058
(For p that satisfies 0.9p ≦ k c ≦ 1.1p)
 本発明は、また、樹脂を成形して、種々のアスペクト比を有する、円錐形状、角錐形状、円錐台形状、角錐台形状、円柱形状、角柱形状、球欠形状、又は長手方向に垂直な面における断面が矩形、台形、三角形、若しくは球欠の線形状の成形体を製造するためのモールドの設計を、コンピュータに実行させるためのモールド設計プログラムであって、所望の成形体の形状、アスペクト比A、及び形成する樹脂の寸法変化率α0を入力する第1ステップと、
入力された、所望の成形体の形状、アスペクト比A、及び形成する樹脂の寸法変化率α0から、コンピュータに、所望の成形体の形状に応じた補正関数の選択を実行させる第2ステップと、コンピュータに、選択された補正関数によるモールドの凹部形状の補正を実行させる第3ステップとを含む、モールド設計プログラムを提供する。
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
The present invention can also be obtained by molding a resin to have various aspect ratios, such as a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prismatic shape, a spherical shape, or a plane perpendicular to the longitudinal direction. A mold design program for causing a computer to execute a mold design for manufacturing a molded product having a rectangular, trapezoidal, triangular, or spherical shape in cross section, and having a desired molded product shape and aspect ratio A and a first step of inputting a dimensional change rate α 0 of the resin to be formed
A second step of causing the computer to select a correction function in accordance with the desired shape of the molded body from the input shape of the desired molded body, the aspect ratio A, and the dimensional change rate α 0 of the resin to be formed; And a third step of causing the computer to execute correction of the concave shape of the mold by the selected correction function.
Aspect ratio: One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis. When the molded body is placed so as to be bilaterally symmetric by a cut surface that includes a point that includes the axis and the y-axis and that indicates the maximum height of the molded body, the height in the y-axis direction on the cut surface and the horizontal plane Dimensional change rate: If the resin is light or thermosetting resin, it is the volume change rate before and after curing. If the resin is a thermoplastic resin, “(thermal It is a value calculated by “Glass transition temperature of plastic resin (° C.) − Scheduled environment temperature (° C.)) × Linear expansion coefficient”.
 尚、本明細書においては、特に断りがない場合、成形体の「切断面」や「断面」は、水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、当該水平面上に、x軸とy軸を含む面について左右対称となり、且つ最大高さを示す点がy軸上にくるように成形体を設置した場合における、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む面のことである。 In the present specification, unless otherwise specified, the “cut surface” and “cross section” of the molded body are one direction on the horizontal plane as the x axis, and the direction perpendicular to the x axis on the horizontal plane as the z axis, The molded body is set so that the direction perpendicular to the x-axis and the z-axis is the y-axis, and the horizontal plane is symmetrical with respect to the plane including the x-axis and the y-axis, and the point indicating the maximum height is on the y-axis. It is a surface that includes a point that includes the x-axis and the y-axis and indicates the maximum height of the molded body when installed.
 本発明のモールドの製造方法によれば、従来は試作を繰り返し行い膨大な時間やコストをかけて行われていたシリコーンモールドの設計を、関数を用いた演算により変形を予測して必要な補正を設計に加えることで、より早く、確実に行うことができる。
 また、本発明のモールドの製造方法で得られるモールドは、予測される変形が補償された形状を有するため、当該モールドを使用すれば、形状精度に優れた(特に、面精度に優れた)成形体を効率よく、且つ安価に得られる。
 従って、本発明の製造方法は、マイクロミラーアレイ等の光学部材、半導体のリソグラフィー、ポリマーMEMS、フラットスクリーン、ホログラム、導波路、精密機械部品などの高い面精度が要求される微細構造物を光インプリントで製造するのに好適に用いられる。
According to the mold manufacturing method of the present invention, the design of a silicone mold, which has been conventionally performed by repeating trial manufacture and spending enormous time and cost, predicts deformation by calculation using a function and performs necessary corrections. By adding to the design, it can be done faster and more reliably.
In addition, since the mold obtained by the mold manufacturing method of the present invention has a shape in which the expected deformation is compensated, if the mold is used, the molding has excellent shape accuracy (particularly excellent surface accuracy). The body can be obtained efficiently and inexpensively.
Therefore, the manufacturing method of the present invention optically inserts fine structures such as optical members such as micromirror arrays, semiconductor lithography, polymer MEMS, flat screens, holograms, waveguides, and precision machine parts that require high surface accuracy. It is suitably used for manufacturing by printing.
断面が矩形の線形状の成形体の硬化若しくは固化に伴う収縮変形の解析系を示す図である。It is a figure which shows the analysis system of the shrinkage deformation accompanying hardening or solidification of the linear-shaped molded object whose cross section is a rectangle. 断面が矩形の線形状の成形体の、硬化後の変形した上面と側面の断面形状、及び前記変形した上面と側面の形状を元にした補正線を示す図の関数である。It is a function of the figure which shows the correction | amendment line based on the cross-sectional shape of the deform | transformed upper surface and side surface after hardening of the linear-shaped molded object whose cross section is a rectangle, and the said deformed upper surface and side surface shape. 断面が矩形の線形状の成形体の補正線を延伸した図である。It is the figure which extended | stretched the correction | amendment line of the linear shaped molded object whose cross section is a rectangle. 断面が二等辺三角形の線形状の成形体の変形の予測を示す図である。It is a figure which shows the prediction of a deformation | transformation of the molded object of a linear shape whose cross section is an isosceles triangle. 断面が球欠の線形状の成形体の変形の予測を示す図である。It is a figure which shows the prediction of a deformation | transformation of the linear shaped molded object whose cross section is spherical. 断面が矩形の線形状の成形体の有限要素解析による、アスペクト比の変化に伴うbの変化を示す図である。It is a figure which shows the change of b accompanying the change of the aspect ratio by the finite element analysis of the linear shaped molded object whose cross section is a rectangle. 断面が矩形の線形状の成形体の有限要素解析による、アスペクト比の変化に伴うcの変化を示す図である。It is a figure which shows the change of c accompanying the change of the aspect ratio by the finite element analysis of the linear shaped molded object whose cross section is a rectangle. 断面が矩形の線形状の成形体の有限要素解析による、アスペクト比の変化に伴うτsの変化を示す図(8-a)と、アスペクト比の変化に伴うksの変化を示す図(8-b)である。Figure showing the change in τ s with the change in aspect ratio and the change in k s with the change in aspect ratio (8-a) by finite element analysis of a linear shaped product with a rectangular cross section (8) -b). 断面が二等辺三角形の線形状の成形体の有限要素解析による、アスペクト比の変化に伴うτtの変化を示す図(9-a)と、アスペクト比の変化に伴うktの変化を示す図(9-b)である。It shows a section along a finite element analysis of the linear shaped body of an isosceles triangle, graph showing changes in the associated tau t change the aspect ratio (9-a), a change in the k t with changes in aspect ratio (9-b). 断面が球欠の線形状の成形体の有限要素解析による、アスペクト比の変化に伴うτcの変化を示す図である。It is a figure which shows the change of (tau) c accompanying the change of an aspect-ratio by the finite element analysis of the linear shaped molded object where a cross section is a spherical shape. 断面が矩形の線形状の成形体の補正効果を示す模式図である。It is a schematic diagram which shows the correction | amendment effect of the molded object of a linear shape whose cross section is a rectangle. 断面が二等辺三角形の線形状の成形体の補正効果を示す模式図である。It is a schematic diagram which shows the correction effect of the molded object of a linear shape whose cross section is an isosceles triangle. 断面が球欠の線形状の成形体の補正効果を示す模式図である。It is a schematic diagram which shows the correction | amendment effect of the linear shaped molded object whose cross section is a spherical part. 断面が矩形の線形状の成形体の、硬化後の変形した上面形状予測値の平均二乗誤差σを示す図(14-a)と側面形状予測値の平均二乗誤差σを示す図(14-b)である。Figure (14-a) showing the mean square error σ of the deformed upper surface shape predicted value after curing, and the figure showing the mean square error σ of the side surface shape predicted value (14-b) ). 断面が二等辺三角形の線形状の成形体の、硬化後の変形した側面形状予測値の平均二乗誤差σを示す図である。It is a figure which shows the mean square error (sigma) of the deformed side surface shape prediction value after hardening of the molded object of a linear shape whose cross section is an isosceles triangle. 断面が球欠の線形状の成形体の、硬化後の変形した側面形状予測値の平均二乗誤差σを示す図である。It is a figure which shows the mean-square error (sigma) of the deformed side surface shape prediction value after hardening of the linear shaped body with a spherical section. 四角柱形状の成形体の硬化若しくは固化に伴う、上面と側面の収縮変形の解析系を示す図である。It is a figure which shows the analysis system of the shrinkage deformation of an upper surface and a side surface accompanying hardening or solidification of a quadratic prism shape molded object. 四角柱形状の成形体の硬化若しくは固化に伴い収縮変形した側面(6-1)と側面(6-2)により形成される角の補正方法を示す図であり、(1)は側面(6-1)の角側端部を表す曲線上の点(Rb)と、側面(6-2)の角側端部を表す曲線上の点(Rc)とを円弧により結ぶ図であり、(2)は前記円弧に代えて多角線で結ぶ図であり、(3)は前記円弧に代えて直線で結ぶ図であり、(4)は側面(6-1)をx軸方向に延長し、側面(6-2)をz軸方向に延長して、前記両側面が交差する線を角(若しくは、端辺)とする図である。It is a figure which shows the correction | amendment method of the angle | corner formed by the side surface (6-1) and the side surface (6-2) which contracted and deform | transformed with hardening or solidification of a square columnar shaped molded object, (1) is a side surface (6- The point (Rb) on the curve representing the corner end of 1) and the point (Rc) on the curve representing the corner end of the side surface (6-2) are connected by an arc, (2) (3) is a diagram connecting with a straight line instead of the arc, (4) is a diagram (4) extending the side surface (6-1) in the x-axis direction, FIG. 6B is a diagram in which 6-2) is extended in the z-axis direction and a line intersecting the both side surfaces is a corner (or an end side). 四角錐形状の成形体の硬化若しくは固化に伴う、4つの側面(5-1)~(5-4)の収縮変形の解析系を示す図である。FIG. 5 is a diagram showing an analysis system for shrinkage deformation of four side surfaces (5-1) to (5-4) accompanying hardening or solidification of a quadrangular pyramid shaped body. 球欠形状の成形体の硬化若しくは固化に伴う収縮変形の解析系を示す図である。It is a figure which shows the analysis system of the shrinkage deformation accompanying hardening or solidification of a spherical notch-shaped molded object. 四角錐形状の成形体の補正効果を示す模式図である。It is a schematic diagram which shows the correction effect of a molded object of a quadrangular pyramid shape. 四角錐形状の成形体の補正効果を示す模式図である。It is a schematic diagram which shows the correction effect of a molded object of a quadrangular pyramid shape.
 [モールドの製造方法]
 本発明のモールドの製造方法は、樹脂を成形して、種々のアスペクト比を有する、円錐形状、角錐形状、円錐台形状、角錐台形状、円柱形状、角柱形状、球欠形状、又は長手方向に垂直な面における断面が矩形、台形、三角形、若しくは球欠の線形状の成形体を製造するためのモールドの製造方法であって、(例えば、下記アスペクト比が0.01~5の範囲の成形体の、樹脂の硬化若しくは固化に伴う収縮変形を有限要素解析法によりシミュレートすることにより変形のアスペクト比依存性を算出し、これを元に)、任意の寸法変化率を有する樹脂を、任意のアスペクト比を有する成形体に成形する際の変形の予測関数を求め、前記予測関数より、変形を補償するための補正関数を算出し、前記補正関数を用いてモールドを設計することを特徴とする。
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向(すなわち、高さ方向)をy軸とし、モールドによる成形体(すなわち、モールドによって成形することを所望する成形体)を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
[Mold manufacturing method]
The method for producing a mold of the present invention comprises forming a resin and having various aspect ratios, such as a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prismatic shape, a spherical shape, or a longitudinal direction. A method for producing a mold for producing a linear shaped body having a rectangular, trapezoidal, triangular or spherical cross section in a vertical plane (for example, molding with an aspect ratio in the range of 0.01 to 5 below) Calculate the aspect ratio dependency of the deformation by simulating the shrinkage deformation of the body accompanying the hardening or solidification of the resin using the finite element analysis method. Based on this, the resin having an arbitrary dimensional change rate can be arbitrarily selected. Obtaining a prediction function of deformation at the time of forming into a molded article having an aspect ratio of the above, calculating a correction function for compensating the deformation from the prediction function, and designing a mold using the correction function And butterflies.
Aspect ratio: One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis (that is, the height direction) is the y-axis. The body (i.e., the body desired to be molded by the mold) is symmetric on the horizontal plane by a cutting plane that includes a point that includes the x-axis and y-axis and indicates the maximum height of the molded body. Is the ratio of the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane when the resin is installed in the above manner. Dimensional change rate: When the resin is light or thermosetting resin, The rate of volume change before and after curing. If the resin is a thermoplastic resin, the value is calculated as “(Glass transition temperature of the thermoplastic resin (° C.) − Scheduled environment temperature (° C.)) × Linear expansion coefficient”. Is
 尚、本明細書において、球欠、若しくは球欠形状とは球を1つの平面で切断した立体形状である。
 前記「使用予定環境温度(℃)」とは、本発明のモールドによって成形される成形体の使用が予定されている地域若しくは環境における温度であり、例えば寒冷値や熱帯地域ではその地域の温度である。日本では、通常25℃である。
In this specification, the sphere notch or the sphere notch shape is a three-dimensional shape obtained by cutting the sphere along one plane.
The “scheduled environment temperature (° C.)” is a temperature in an area or environment where the molded product formed by the mold of the present invention is planned to be used. is there. In Japan, it is usually 25 ° C.
 本発明におけるモールドの材質は特に制限がなく、例えば、金属、石英、サファイア、シリコーン、シクロオレフィンポリマー、フッ素系ポリマー等が挙げられる。 The material of the mold in the present invention is not particularly limited, and examples thereof include metal, quartz, sapphire, silicone, cycloolefin polymer, and fluorine polymer.
 本発明では、樹脂は底面において基面に固着しており、硬化若しくは固化に伴い、等方向に一定割合で収縮変形が生じるものとして変形を予測する。 In the present invention, the resin is fixed to the base surface at the bottom, and deformation is predicted as shrinkage deformation occurs at a constant rate in the same direction as the resin hardens or solidifies.
 [実施態様1:長手方向に垂直な面における断面が矩形若しくは台形の線形状の成形体を製造するためのモールド製造方法]
 例えば、樹脂の収縮変形による、長手方向に垂直な面における断面が矩形若しくは台形の線形状の成形体[好ましくは、アスペクト比がAである、長手方向に垂直な面における断面が矩形若しくは台形の線形状の構造物であり、当該構造物が底面において基面に固定された形状を有する成形体]の形状予測は、図1に記載の解析系によって行うことができる。本発明では、成形体の上面と側面の形状についてそれぞれ検討を行う。
[Embodiment 1: Mold production method for producing a linear shaped body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction]
For example, a linear shaped body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction due to shrinkage deformation of the resin [preferably, a cross section in a plane perpendicular to the longitudinal direction having an aspect ratio of A is rectangular or trapezoidal. Prediction of the shape of a shaped product that is a linear structure and has a shape in which the structure is fixed to the base surface on the bottom surface can be performed by the analysis system illustrated in FIG. In the present invention, the shapes of the upper surface and the side surface of the molded body are examined.
 前記成形体の上面においては、垂直方向に生じる力と水平方向に生じる力により変形が生じると考えられる。そのため、上面の高さの変形の予測関数は、下記式(1-1)’で表される。
Figure JPOXMLDOC01-appb-M000059
(式中、α0は樹脂の寸法変化率、bは樹脂の弾性率と幅方向の力の比に関係するパラメータ、xは凹部によって形成される空間の、x軸とy軸を含み、且つ空間の最大高さを示す点を含む切断面の半幅、cは高さ方向の収縮と幅方向の収縮の割合の比に関するパラメータを示す)
It is considered that the upper surface of the molded body is deformed by a force generated in the vertical direction and a force generated in the horizontal direction. Therefore, the prediction function for the deformation of the upper surface height is expressed by the following equation (1-1) ′.
Figure JPOXMLDOC01-appb-M000059
(Where α 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the contraction in the height direction to the contraction in the width direction)
 前記成形体の側面は、基面界面部が基面に固定された状態で、横方向に生じる力により変形が生じると考えられる。そのため、側面の幅の変形の予測関数は、下記式(1-2)’で表される。
Figure JPOXMLDOC01-appb-M000060
(式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、ksはx軸方向の収縮率の補正係数、Aはアスペクト比を示す)
It is considered that the side surface of the molded body is deformed by the force generated in the lateral direction with the base surface interface portion fixed to the base surface. Therefore, the prediction function of the deformation of the side surface width is expressed by the following formula (1-2) ′.
Figure JPOXMLDOC01-appb-M000060
(Where α 0 is the resin dimensional change rate, y is the height of the space, τ s is the side-shrinkage relaxation coefficient, k s is the x-axis direction shrinkage correction coefficient, and A is the aspect ratio)
 上記式中のb、c、τs、sは、例えば有限要素解析により種々のアスペクト比を有する成形体についてフィッティングすることによって求められる。ここで、有限要素解析は、例えば、構造解析用ソフトウェア「MARC」(MSC Software 社製)等を用いて、実施することができる。有限要素解析結果を図6~8に示す。 In the above formula, b, c, τ s, k s are obtained by fitting, for example, compacts having various aspect ratios by finite element analysis. Here, the finite element analysis can be performed using, for example, structural analysis software “MARC” (manufactured by MSC Software) or the like. The finite element analysis results are shown in FIGS.
 尚、前記成形体の側面の変形は、構造解析用ソフトウェア「MARC」(MSC Software 社製)等を用いてシミュレートする以外にも、例えば、実測値を利用することもできる。 In addition, the deformation of the side surface of the molded body may be obtained by using, for example, an actual measurement value in addition to the simulation using the structural analysis software “MARC” (manufactured by MSC Software Co., Ltd.).
 図6より、bは下記式(b-1)で表される関数で示される。また、図14より、アスペクト比が大きい範囲において予測誤差が小さくなることから、本発明の方法によれば、アスペクト比がより大きい成形体(アスペクト比が、好ましくは0.1以上)の成形体の場合に、より優れた予測精度を発揮することができ、誤差を極めて小さくすることができることがわかる。
Figure JPOXMLDOC01-appb-M000061
From FIG. 6, b is represented by a function represented by the following formula (b-1). Further, as shown in FIG. 14, since the prediction error is reduced in a range where the aspect ratio is large, according to the method of the present invention, a molded body having a larger aspect ratio (aspect ratio is preferably 0.1 or more). In this case, it can be seen that better prediction accuracy can be exhibited and the error can be extremely reduced.
Figure JPOXMLDOC01-appb-M000061
 上記式(b-1)中のb1は0.21~0.84の数であり、好ましくは0.42である。b2は0.3~0.9の数であり、好ましくは0.6である。b3は1.5~2.5の数であり、好ましくは2.0である。b4は0.06~0.24の数であり、好ましくは0.12である。尚、Aは上記に同じ。 In the above formula (b-1), b 1 is a number of 0.21 to 0.84, preferably 0.42. b 2 is a number of 0.3 to 0.9, preferably 0.6. b 3 is a number of 1.5 to 2.5, preferably 2.0. b 4 is a number from 0.06 to 0.24, preferably 0.12. A is the same as above.
 図7より、cは下記式(c-1)で表される関数で示される。
Figure JPOXMLDOC01-appb-M000062
From FIG. 7, c is represented by a function represented by the following formula (c-1).
Figure JPOXMLDOC01-appb-M000062
 式中のc1は0.2~0.8の数であり、好ましくは1.0である。c2は2.5~3.5の数であり、好ましくは3.0である。c3は0.5~2.0の数であり、好ましくは1.0である。尚、Aは上記に同じ。 In the formula, c 1 is a number of 0.2 to 0.8, preferably 1.0. c 2 is a number from 2.5 to 3.5, preferably 3.0. c 3 is a number of 0.5 to 2.0, preferably 1.0. A is the same as above.
 図8より、τsは下記式(τs-1)表される関数で示される。また、ksは下記式(ks-1)を満たすrに対し、0.9r≦ks≦1.1rの範囲である。
Figure JPOXMLDOC01-appb-M000063
From FIG. 8, τ s is represented by a function represented by the following formula (τ s −1). Further, k s is in a range of 0.9r ≦ k s ≦ 1.1r with respect to r satisfying the following formula (k s −1).
Figure JPOXMLDOC01-appb-M000063
 式中のτs1は0.12~0.46の数であり、好ましくは0.23である。尚、Aは上記に同じ。 In the formula, τ s1 is a number between 0.12 and 0.46, preferably 0.23. A is the same as above.
 そして、延伸補正係数εx、εyは、上記予測関数を利用して、例えば、次の手順で導出することができる。
1.y=fuy(x),x=fsx(y)の交点(x0,y0)を求める。
2.上面の暫定補正形状gu(x)、及び側面の暫定補正形状gs(y)を下記式から算出する。
   gu(x)=1/fuy(x)
   gs(y)=(1/2A)2/fsx(y)
4.つぎに、暫定補正形状の水平高さy1=gu(x0)、及び暫定補正形状の半幅x1=gs(y0)を求める。
5.暫定補正形状の水平方向の延伸率εx、及び垂直方向の延伸率εyを下記式から算出する。
   εx=x1/x0
   εy=y1/y0
6.以上より、下記の通り、上面の補正関数(1-1)、側面の補正関数(1-2)が得られる。
   Fu-1(x)=gu(x/εx)  定義域(-x1≦x≦x1)  (1-1)
   Fs-1(y)=gs(y/εy)   値域(-y1≦y≦y1)   (1-2)
 ここで、延伸率は水平ならびに垂直方向に一定値としたが、水平ならびに垂直位置によって変化させてもよい。その変化割合は、比例的な延伸、緩和的な延伸などがある。
The stretching correction coefficients ε x and ε y can be derived, for example, by the following procedure using the prediction function.
1. y = f uy (x), determining the point of intersection of x = f sx (y) ( x 0, y 0).
2. The temporary correction shape g u (x) of the upper surface and the temporary correction shape g s (y) of the side surface are calculated from the following equations.
g u (x) = 1 / f uy (x)
g s (y) = (1 / 2A) 2 / f sx (y)
4). Next, the horizontal height y 1 = g u (x 0 ) of the provisional correction shape and the half width x 1 = g s (y 0 ) of the provisional correction shape are obtained.
5. The horizontal stretching ratio ε x and the vertical stretching ratio ε y of the provisional correction shape are calculated from the following equations.
ε x = x 1 / x 0
ε y = y 1 / y 0
6). As described above, the upper surface correction function (1-1) and the side surface correction function (1-2) are obtained as follows.
Fu −1 (x) = g u (x / ε x ) Domain (−x 1 ≦ x ≦ x 1 ) (1-1)
Fs −1 (y) = g s (y / ε y ) range (−y 1 ≦ y ≦ y 1 ) (1-2)
Here, the stretching ratio is a constant value in the horizontal and vertical directions, but may be changed depending on the horizontal and vertical positions. The rate of change includes proportional stretching and moderate stretching.
 更に、Fu-1とFs-1をつなぎ合わせることにより、補正後のモールドの断面形状が得られる(図2、3参照)。 Furthermore, the cross-sectional shape of the mold after correction is obtained by connecting Fu −1 and Fs −1 (see FIGS. 2 and 3).
 以上より、本実施態様[1]の場合におけるモールド製造方法としては、以下の方法が好ましい。
 すなわち、
寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が矩形若しくは台形の線形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状[1]とすることを特徴とするモールドの製造方法。
モールドの凹部形状[1]:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含む面において凹部が左右対称になるように設置した場合における、凹部によって形成される空間の上面の前記切断面における形状を下記式(1-1)で表される曲線とし、前記空間の側面の前記切断面における形状を下記式(1-2)で表される曲線とする
 アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
 寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
Figure JPOXMLDOC01-appb-M000064
(式中、α0は樹脂の寸法変化率、bは樹脂の弾性率と幅方向の力の比に関係するパラメータ、xは凹部によって形成される空間の、x軸とy軸を含み、且つ空間の最大高さを示す点を含む切断面の半幅、cは高さ方向の収縮と幅方向の収縮の割合の比に関するパラメータ、εxは水平方向の延伸補正係数を示す)
Figure JPOXMLDOC01-appb-M000065
(式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比、εyは垂直方向の延伸補正係数を示す)
From the above, the following method is preferable as the mold manufacturing method in the case of the present embodiment [1].
That is,
A mold for manufacturing a resin having a dimension change rate of α 0 and manufacturing a linear shaped body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction and having an aspect ratio A defined below. A method for manufacturing a mold, characterized in that the shape of the recess of the mold is the following shape [1].
Mold concave shape [1]: One direction on the horizontal plane is the x axis, the direction perpendicular to the x axis is the z axis, and the direction perpendicular to the x and z axes is the y axis, and the mold is on the horizontal plane In addition, the cut surface of the upper surface of the space formed by the recess when the recess of the mold is installed so as to open to the horizontal plane and the recess is installed symmetrically on the plane including the x-axis and the y-axis And the shape of the side surface of the space at the cut surface is a curve represented by the following formula (1-2) Aspect ratio: one direction on the horizontal plane X axis, a direction perpendicular to the x axis on the horizontal plane as a z axis, a direction perpendicular to the x axis and the z axis as a y axis, and a molded product by a mold including the x axis and the y axis on the horizontal plane, and The molded body is left by the cut surface including the point indicating the maximum height of the molded body. It is the ratio between the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane when installed so as to be right-symmetric. Dimensional change rate: resin is light or thermosetting resin Is the volume change rate before and after curing, and when the resin is a thermoplastic resin, “(Glass transition temperature of the thermoplastic resin (° C.) − Scheduled environment temperature (° C.)) × Linear expansion coefficient” Is the calculated value
Figure JPOXMLDOC01-appb-M000064
(Where α 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and the y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction, and ε x is the horizontal stretching correction factor)
Figure JPOXMLDOC01-appb-M000065
(Where α 0 is the dimensional change rate of the resin, y is the height of the space, τ s is the relaxation coefficient of side shrinkage, A is the aspect ratio, and ε y is the stretching correction coefficient in the vertical direction)
 上記方法により得られる、寸法変化率がα0の樹脂を成形して、アスペクト比がAである、長手方向に垂直な面における断面が矩形若しくは台形の線形状の成形体を製造するためのモールドは、上記凹部形状[1]を有することを特徴とする。 Mold for producing a linear shaped body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction, which is obtained by the above method and molded with a resin having a dimensional change rate of α 0 and an aspect ratio of A. Has the concave shape [1].
 [実施態様2:四角柱形状又は四角錐台形状の成形体を製造するためのモールドの製造方法]
 例えば、樹脂の収縮変形による、四角柱形状、又は四角錐台形状の成形体[好ましくは、アスペクト比がAである、四角柱形状、又は四角錐台形状の構造物であり、当該構造物が底面において基面に固定された形状を有する成形体]の形状予測は、図17に記載の解析系によって行うことができる。本発明では、成形体の上面と4つの側面の形状についてそれぞれ検討を行う。
[Embodiment 2: Method for producing a mold for producing a quadrangular prism shape or a truncated pyramid shaped body]
For example, a quadrangular prism shape or a truncated pyramid shaped molded body by shrinkage deformation of a resin [preferably, a quadrangular prism shape or a truncated pyramid shape structure having an aspect ratio of A, and the structure is The shape prediction of the formed body having a shape fixed to the base surface at the bottom surface can be performed by the analysis system shown in FIG. In the present invention, the shapes of the upper surface and the four side surfaces of the molded body are examined.
 -1/2A≦x≦1/2A、0≦y≦1、-1/2A≦z≦1/2Aの四角柱形状の成形体について考える。
上面及び4つの側面は、図17に示されるように、何れも面の中央部に向けて収縮が徐々に大きくなっていると考えられる。
Consider a quadrangular prism shaped compact with −1 / 2A ≦ x ≦ 1 / 2A, 0 ≦ y ≦ 1, and −1 / 2A ≦ z ≦ 1 / 2A.
As shown in FIG. 17, the upper surface and the four side surfaces are considered to be gradually contracted toward the center of the surface.
 上面の変形の予測関数は、下記式(1-1)’で表される。
Figure JPOXMLDOC01-appb-M000066
(式中、α0は樹脂の寸法変化率、bは樹脂の弾性率と幅方向の力の比に関係するパラメータ、xは凹部によって形成される空間の、x軸とy軸を含み、且つ空間の最大高さを示す点を含む切断面の半幅、cは高さ方向の収縮と幅方向の収縮の割合の比に関するパラメータを示す)
The prediction function of the upper surface deformation is expressed by the following formula (1-1) ′.
Figure JPOXMLDOC01-appb-M000066
(Where α 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the contraction in the height direction to the contraction in the width direction)
 前記成形体の4つの側面(6-1)~(6-4)は、基面界面部が基面に固定された状態で、横方向及び縦方向に生じる力により変形が生じると考えられる。そのため、側面の幅の変形の予測関数は、下記式(1-2-1)’~(1-2-4)’で表される。
Figure JPOXMLDOC01-appb-M000067
(式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比を示す。k1はx軸方向収縮率の補正係数を示し、k2はz軸方向収縮率の補正係数を示す。k1、k2は同一又は異なって、1.0~2.0の数である)
It is considered that the four side surfaces (6-1) to (6-4) of the molded body are deformed by a force generated in the horizontal direction and the vertical direction in a state where the base surface interface portion is fixed to the base surface. Therefore, the prediction function of the deformation of the side surface width is expressed by the following formulas (1-2-1) ′ to (1-2-4) ′.
Figure JPOXMLDOC01-appb-M000067
(Where α 0 is the dimensional change rate of the resin, y is the height of the space, τ s is the relaxation coefficient of side shrinkage, A is the aspect ratio, k 1 is the correction coefficient for the shrinkage rate in the x-axis direction, k 2 represents a correction coefficient for the contraction rate in the z-axis direction, and k 1 and k 2 are the same or different and are numbers of 1.0 to 2.0)
 尚、前記成形体の側面の変形は、構造解析用ソフトウェア「MARC」(MSC Software 社製)等を用いてを用いてシミュレートする以外にも、例えば、実測値を利用することもできる。 In addition, the deformation of the side surface of the molded body may be performed using, for example, an actual measurement value in addition to the simulation using the structure analysis software “MARC” (manufactured by MSC Software Co., Ltd.).
 そして、モールドの上面と側面の補正関数は、上記予測関数を利用して導出することができる。 And, the correction function of the upper surface and the side surface of the mold can be derived using the prediction function.
 更に、モールドの角は、図18の(1)~(4)に示されるように補正する。
・隣接する2側面により形成される角は、1つの側面の角側端部を表す曲線上の点と、隣接する他の側面の角側端部を表す曲線上の点であって、前記点とy軸の値を同一とする点とを、直線、多角線、円弧で結ぶ、或いは隣接する2側面をそれぞれ延長して、前記両側面が交差する線を角(若しくは、端辺)とする。
・x軸とy軸を含む面に平行な側面と上面により形成される角の形状は、前記側面の角側端部を表す曲線上の点と、上面の角側端部を表す曲線上の点であって、前記点とx軸の値を同一とする点とを、直線、多角線、或いは円弧で結ぶ。
・y軸とz軸を含む面に平行な側面と上面により形成される角の形状は、前記側面の角側端部を表す曲線上の点と、上面の角側端部を表す曲線上の点であって、前記点とz軸の値を同一とする点とを、直線、多角線、或いは円弧で結ぶ。
Further, the corners of the mold are corrected as shown in (1) to (4) of FIG.
The corners formed by two adjacent side surfaces are a point on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, And a point having the same y-axis value are connected by a straight line, a polygonal line, an arc, or two adjacent side surfaces are extended, and a line intersecting the both side surfaces is defined as a corner (or an end side). .
The shape of the corner formed by the side surface parallel to the plane including the x-axis and the y-axis and the top surface is on the curve representing the corner-side end portion of the side surface and the curve representing the corner-side end portion of the top surface. A point that is the same as the point and has the same x-axis value is connected by a straight line, a polygonal line, or an arc.
The shape of the corner formed by the side surface and the upper surface parallel to the surface including the y-axis and the z-axis is on the curve representing the corner-side end portion of the side surface and the curve representing the corner-side end portion of the upper surface. The points that are the same as the z-axis value are connected by straight lines, polygonal lines, or arcs.
 以上より、本実施態様[2]の場合におけるモールド製造方法としては、以下の方法が好ましい。
 すなわち、
 寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、四角柱形状、又は四角錐台形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状[2]とすることを特徴とするモールドの製造方法。
モールドの凹部形状[2]:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含む面において凹部が左右対称になるように設置した場合における、
水平面と凹部によって形成される、底面と4つの側面と上面面からなる空間の、上面は下記式(1-1)で表される曲線のz軸方向への連続で示され、
前記空間の4つの側面は、それぞれ下記式(1-2-1)~(1-2-4)で表される曲線のx軸方向或いはz軸方向への連続で示され、
隣接する2側面により形成される角の形状は、1つの側面の角側端部を表す曲線上の点1と、隣接する他の側面の角側端部を表す曲線上の点であって、前記点1とy軸の値を同一とする点2とを結ぶ、直線、多角線、或いは円弧であり、
x軸とy軸を含む面に平行な側面と上面により形成される角の形状は、前記側面の角側端部を表す曲線上の点1’と、上面の角側端部を表す曲線上の点であって、前記点1’とx軸の値を同一とする点2’とを結ぶ、直線、多角線、或いは円弧であり、
y軸とz軸を含む面に平行な側面と上面により形成される角の形状は、前記側面の角側端部を表す曲線上の点1”と、上面の角側端部を表す曲線上の点であって、前記点1”とz軸の値を同一とする点2”とを結ぶ、直線、多角線、或いは円弧である
Figure JPOXMLDOC01-appb-M000068
(式中、α0は樹脂の寸法変化率、bは樹脂の弾性率と幅方向の力の比に関係するパラメータ、xは凹部によって形成される空間の、x軸とy軸を含み、且つ空間の最大高さを示す点を含む切断面の半幅、cは高さ方向の収縮と幅方向の収縮の割合の比に関するパラメータ、εxは水平方向の延伸補正係数を示す)
Figure JPOXMLDOC01-appb-M000069
(式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比を示す。k1はx軸方向収縮率の補正係数を示し、k2はz軸方向収縮率の補正係数を示す。k1、k2は同一又は異なって、1.0~2.0の数である)
As mentioned above, as a mold manufacturing method in the case of this embodiment [2], the following method is preferable.
That is,
A method for producing a mold for producing a molded article having a dimensional change rate of α 0 and having an aspect ratio defined below of A, a quadrangular prism shape, or a truncated pyramid shape, A method for producing a mold, characterized in that the concave shape of the mold is the following shape [2].
Mold concave shape [2]: One direction on the horizontal plane is the x axis, the direction perpendicular to the x axis is the z axis, and the direction perpendicular to the x and z axes is the y axis, and the mold is on the horizontal plane In the case where the concave portion of the mold is installed so as to open on the horizontal plane side, and the concave portion is set to be symmetrical in the plane including the x axis and the y axis,
The upper surface of the space formed by the horizontal surface and the concave portion and including the bottom surface, the four side surfaces, and the upper surface is indicated by a continuous curve in the z-axis direction represented by the following formula (1-1).
The four side surfaces of the space are respectively shown by continuations in the x-axis direction or z-axis direction of the curves represented by the following formulas (1-2-1) to (1-2-4), respectively.
The shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, A straight line, a polygonal line, or an arc connecting the point 1 and the point 2 having the same y-axis value;
The shape of the corner formed by the side surface parallel to the plane including the x-axis and the y-axis and the top surface is the point 1 ′ on the curve representing the corner-side end portion of the side surface and the curve representing the corner-side end portion of the top surface. A straight line, a polygonal line, or an arc connecting the point 1 ′ and the point 2 ′ having the same x-axis value,
The shape of the corner formed by the side surface and the upper surface parallel to the plane including the y-axis and the z-axis is the point 1 ″ on the curve representing the corner end of the side surface and the curve representing the corner end of the upper surface. Which is a straight line, polygonal line, or arc connecting the point 1 ″ and the point 2 ″ having the same z-axis value.
Figure JPOXMLDOC01-appb-M000068
(Where α 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and the y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction, and ε x is the horizontal stretching correction factor)
Figure JPOXMLDOC01-appb-M000069
(Where α 0 is the dimensional change rate of the resin, y is the height of the space, τ s is the relaxation coefficient of side shrinkage, A is the aspect ratio, k 1 is the correction coefficient for the shrinkage rate in the x-axis direction, k 2 represents a correction coefficient for the contraction rate in the z-axis direction, and k 1 and k 2 are the same or different and are numbers of 1.0 to 2.0)
 上記式(1-1)、(1-2-1)~(1-2-4)中における、bは下記式(b-1)で表される関数で示される。cは下記式(c-1)で表される関数で示される。τsは下記式(τs-1)で表される関数で示される。また、延伸補正係数εxは、上記予測関数を利用して、アスペクト比がAである、長手方向に垂直な面における断面が矩形若しくは台形の線形状の成形体の場合と同様の手順で導出することができる。 In the above formulas (1-1) and (1-2-1) to (1-2-4), b is represented by a function represented by the following formula (b-1). c is represented by a function represented by the following formula (c-1). τ s is expressed by a function represented by the following formula (τ s −1). Further, the stretching correction coefficient ε x is derived by the same procedure as in the case of a shaped body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction and having an aspect ratio of A, using the prediction function. can do.
 上記方法により得られる、寸法変化率がα0の樹脂を成形して、アスペクト比がAである、四角柱形状、又は四角錐台形状の成形体を製造するためのモールドは、上記凹部形状[2]を有することを特徴とする。 A mold for producing a molded article having a square columnar shape or a truncated pyramid shape, which is obtained by the above method and is molded by molding a resin having a dimensional change rate of α 0 and having an aspect ratio of A, has the above concave shape [ 2].
 [実施態様3:長手方向に垂直な面における断面が三角形の線形状の成形体を製造するためのモールド製造方法]
 例えば、樹脂の収縮変形による、長手方向に垂直な面における断面が三角形の線形状の成形体[好ましくは、アスペクト比がAである、長手方向に垂直な面における断面が三角状(正三角形や二等辺三角形を含む)の構造物であり、当該構造物が底面において基面に固定された形状を有する成形体]の形状予測は、図4に記載の解析系によって行うことができる。前記成形体は、垂直方向に収縮し、最末端部では前記収縮がゼロであり、中央部に向けて高さ方向の収縮が徐々に大きくなっていると考えられる。そのため、予測関数のx座標は下記式(2-1)’で表され、予測関数のy座標は下記式(2-2)’で表される。
Figure JPOXMLDOC01-appb-M000070
(式中、α0は樹脂の寸法変化率、yは空間の高さを示し、τtは側面収縮の緩和係数を示し、Aはアスペクト比を示す。ktは、下記式(kt-1)
Figure JPOXMLDOC01-appb-M000071
を満たすqに対して、0.9q≦kt≦1.1qの範囲である)
[Embodiment 3: Mold production method for producing a linear shaped product having a triangular cross section in a plane perpendicular to the longitudinal direction]
For example, a linear shaped product having a triangular cross section in the plane perpendicular to the longitudinal direction due to shrinkage deformation of the resin [preferably, the aspect ratio is A and the cross section in the plane perpendicular to the longitudinal direction is triangular (equilateral triangle or The shape prediction of the molded body having a shape in which the structure is fixed to the base surface at the bottom surface] can be performed by the analysis system illustrated in FIG. The molded body contracts in the vertical direction, the contraction is zero at the most distal end, and the contraction in the height direction is gradually increased toward the center. Therefore, the x coordinate of the prediction function is expressed by the following formula (2-1) ′, and the y coordinate of the prediction function is expressed by the following formula (2-2) ′.
Figure JPOXMLDOC01-appb-M000070
(Where α 0 is the dimensional change rate of the resin, y is the height of the space, τ t is the relaxation coefficient of side shrinkage, A is the aspect ratio, and k t is the following formula (k t − 1)
Figure JPOXMLDOC01-appb-M000071
(With respect to q satisfying 0.9q ≦ k t ≦ 1.1q)
 上記式中のτtはアスペクト比に関係する係数であり、ktはx軸方向の収縮を補償するための補正値である。これは有限要素解析により種々のアスペクト比を有する成形体についてフィッティングすることにより求められる。有限要素解析結果を図9に示す。 In the above equation, τ t is a coefficient related to the aspect ratio, and kt is a correction value for compensating for shrinkage in the x-axis direction. This is obtained by fitting a molded body having various aspect ratios by finite element analysis. The finite element analysis results are shown in FIG.
 図9より、τtは下記式(τt-1)で表される関数で示される。またktは、上記式(kt-1)を満たすqに対して、0.9q≦kt≦1.1qの範囲である。また、図15より、アスペクト比が小さい範囲において予測誤差が小さくなることから、本発明の方法によれば、アスペクト比がより大きい成形体(例えば、アスペクト比が0.7以下)の成形体の場合に、より優れた予測精度を発揮することができ、誤差を極めて小さくすることができることがわかる。
Figure JPOXMLDOC01-appb-M000072
From FIG. 9, τ t is represented by a function represented by the following formula (τ t −1). K t is in the range of 0.9q ≦ k t ≦ 1.1q with respect to q satisfying the above formula (k t −1). Further, as shown in FIG. 15, since the prediction error is reduced in the range where the aspect ratio is small, according to the method of the present invention, the molded body having a larger aspect ratio (for example, an aspect ratio of 0.7 or less) is obtained. In this case, it can be seen that better prediction accuracy can be exhibited and the error can be extremely reduced.
Figure JPOXMLDOC01-appb-M000072
 式中のτt1は、例えば1.0~2.0の数であり、好ましくは1.5である。また、式中のτt2は、例えば0.2~1.0の数であり、好ましくは0.5である。尚、Aは上記に同じ。 Τ t1 in the formula is, for example, a number from 1.0 to 2.0, and preferably 1.5. Further, τ t2 in the formula is, for example, a number from 0.2 to 1.0, and preferably 0.5. A is the same as above.
 図9より、収縮変形後の成形体断面fty(x)を定める。 From FIG. 9, the cross-section f ty (x) of the compact after shrinkage deformation is determined.
 そして、モールドの補正関数Fty -1(x)は、上記予測関数を利用して下記式によって導出することができる。
 Fty -1(x)=Fty 2/fty(x)
The mold correction function F ty −1 (x) can be derived by the following equation using the prediction function.
F ty −1 (x) = F ty 2 / f ty (x)
 以上より、本実施態様[3]の場合におけるモールド製造方法としては、以下の方法が好ましい。
 すなわち、
寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が三角形の線形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状[3]を下記形状とすることを特徴とするモールドの製造方法。
モールドの凹部形状[3]:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含み、且つ前記凹部の最大深さを示す点を含む面において凹部が左右対称になるように設置した場合において、
水平面と凹部によって形成される、底面と2つの斜面からなる空間をx軸とy軸を含む面で切断した際の斜辺の形状が、x座標が下記式(2-1)で表され、y座標が下記式(2-2)で表される点を集合してなる曲線である
Figure JPOXMLDOC01-appb-M000073
As mentioned above, as a mold manufacturing method in the case of this embodiment [3], the following method is preferable.
That is,
Mold manufacturing method for molding a resin having a dimensional change rate of α 0 and manufacturing a linear shaped product having a triangular cross section in a plane perpendicular to the longitudinal direction and having an aspect ratio of A defined below A method for manufacturing a mold, wherein the concave shape [3] of the mold is the following shape.
Mold concave shape [3]: One direction on the horizontal plane is the x axis, the direction perpendicular to the x axis is the z axis, and the direction perpendicular to the x axis and the z axis is the y axis, and the mold is on the horizontal plane In addition, when the concave portion of the mold is installed so as to open to the horizontal plane side, the concave portion is set to be bilaterally symmetric in the plane including the x axis and the y axis and including the point indicating the maximum depth of the concave portion. ,
The shape of the hypotenuse when the space formed by the horizontal plane and the concave portion and including the bottom surface and the two inclined surfaces is cut by a plane including the x-axis and the y-axis, the x-coordinate is expressed by the following formula (2-1), and y It is a curve formed by collecting points whose coordinates are represented by the following formula (2-2)
Figure JPOXMLDOC01-appb-M000073
 式中、ktは、下記式(kt-1)
Figure JPOXMLDOC01-appb-M000074
を満たすqに対して、0.9q≦kt≦1.1qの範囲である。
Where k t is the following formula (k t −1)
Figure JPOXMLDOC01-appb-M000074
For q that satisfies the above, the range is 0.9q ≦ k t ≦ 1.1q.
 式中、α0は樹脂の寸法変化率、yは空間の高さを示し、Aはアスペクト比を示す。τtは側面収縮の緩和係数である。 In the formula, α 0 represents the dimensional change rate of the resin, y represents the height of the space, and A represents the aspect ratio. τ t is a relaxation coefficient of side contraction.
 上記方法により得られる、寸法変化率がα0の樹脂を成形して、アスペクト比がAである、長手方向に垂直な面における断面が三角形の線形状の成形体を製造するためのモールドは、上記凹部形状[3]を有することを特徴とする。 A mold for producing a linear shaped product having a triangular cross section in a plane perpendicular to the longitudinal direction, which is obtained by the above method and is molded by a resin having a dimensional change rate of α 0 and an aspect ratio of A, It has the said recessed part shape [3], It is characterized by the above-mentioned.
 [実施態様4:四角錐形状の成形体を製造するためのモールド製造方法]
 例えば、樹脂の収縮変形による、長手方向に垂直な面における断面が三角形の線形状の成形体[好ましくは、アスペクト比がAである、四角錐形状の構造物であり、当該構造物が底面において基面に固定された形状を有する成形体]の形状予測は、図19に記載の解析系によって行うことができる。
[Embodiment 4: Mold production method for producing a quadrangular pyramid shaped body]
For example, a linear shaped product having a triangular cross section in a plane perpendicular to the longitudinal direction due to shrinkage deformation of the resin [preferably a quadrangular pyramid structure with an aspect ratio of A, and the structure is The shape prediction of the molded body having a shape fixed to the base surface] can be performed by the analysis system shown in FIG.
 x、y、z座標軸上の4つの点[(x、y、z)=(0,1,0)、(-1/2A、0,1/2A)、(1/2A,0,1/2A)、(1/2A,0,-1/2A)、(-1/2A,0,-1/2A)]を頂点とする四角錐形状の成形体について考える。 Four points on the x, y, z coordinate axes [(x, y, z) = (0, 1, 0), (−1 / 2A, 0, 1 / 2A), (1 / 2A, 0, 1 / 2A), (1 / 2A, 0, -1 / 2A), (-1 / 2A, 0, -1 / 2A)] are considered as quadrangular pyramid shaped compacts.
 前記成形体の4つの側面(5-1)~(5-4)は、基面界面部が基面に固定された状態で、横方向及び縦方向に生じる力により変形が生じると考えられる。そそのため、予測関数のx座標は下記式(2-1)’で表され、予測関数のy座標は下記式(2-2)’で表される。
Figure JPOXMLDOC01-appb-M000075
(式中、yは空間の高さを示し、τtは側面収縮の緩和係数を示し、Aはアスペクト比を示す。ktは、下記式(kt-1)
Figure JPOXMLDOC01-appb-M000076
を満たすqに対して、0.9q≦kt≦1.1qの範囲である。
It is considered that the four side surfaces (5-1) to (5-4) of the molded body are deformed by the force generated in the horizontal direction and the vertical direction with the base surface interface portion fixed to the base surface. Therefore, the x coordinate of the prediction function is expressed by the following formula (2-1) ′, and the y coordinate of the prediction function is expressed by the following formula (2-2) ′.
Figure JPOXMLDOC01-appb-M000075
(Wherein, y represents the height of the space, tau t represents a relaxation coefficient aspect shrinkage, A .k t indicating the aspect ratio is represented by the following formula (k t -1)
Figure JPOXMLDOC01-appb-M000076
For q that satisfies the above, the range is 0.9q ≦ k t ≦ 1.1q.
 τtは下記式(τt-1)で表される関数で示される。
Figure JPOXMLDOC01-appb-M000077
τ t is represented by a function represented by the following formula (τ t −1).
Figure JPOXMLDOC01-appb-M000077
 式中のτt1は、例えば1.0~2.0の数であり、好ましくは1.5である。また、式中のτt2は、例えば0.2~1.0の数であり、好ましくは0.5である。尚、Aは上記に同じ。 Τ t1 in the formula is, for example, a number from 1.0 to 2.0, and preferably 1.5. Further, τ t2 in the formula is, for example, a number from 0.2 to 1.0, and preferably 0.5. A is the same as above.
 そして、モールドの補正関数は、上記予測関数を利用して導出することができる。 The mold correction function can be derived using the prediction function.
 以上より、本実施態様[4]の場合におけるモールド製造方法としては、以下の方法が好ましい。
 すなわち、
 寸法変化率がα0の樹脂を成形して、アスペクト比がAである四角錐形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状[4]とすることを特徴とするモールドの製造方法。
モールドの凹部形状[4]:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口し、且つ前記凹部の最大深さ示す点を含む面によって凹部が左右対称になるように設置した場合において、
水平面と凹部とによって形成される空間の底面は四角形であり、前記底面の4つの辺はx軸又はz軸に平行であり、前記空間の4つの側面は、前記底面における一辺を底辺とし、前記底辺と、前記空間の頂点とを結ぶ、下記式(5-1)~(5-4)で表される、x座標、y座標、及びz座標上の点を集合してなる曲線の、x軸方向或いはz軸方向への連続で示され、
隣接する2側面により形成される角の形状が、1つの側面の角側端部を表す曲線上の点1と、隣接する他の側面の角側端部を表す曲線上の点であって、前記点1とy軸の値を同一とする点2とを結ぶ、直線、多角線、或いは円弧であることを特徴とするモールドの製造方法。
Figure JPOXMLDOC01-appb-M000078
(式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比を示す。ktはy軸方向の収縮の補正係数であり、下記式(kt-1)
Figure JPOXMLDOC01-appb-M000079
を満たすqに対して、0.9q≦kt≦1.1qの範囲である)
As mentioned above, as a mold manufacturing method in the case of this embodiment [4], the following method is preferable.
That is,
A mold manufacturing method for manufacturing a quadrangular pyramid-shaped molded body having an aspect ratio of A by molding a resin having a dimensional change rate of α 0 , wherein the concave shape of the mold is the following shape [4]. The manufacturing method of the mold characterized by the above-mentioned.
Mold concave shape [4]: One direction on the horizontal plane is the x axis, the direction perpendicular to the x axis is the z axis, and the direction perpendicular to the x and z axes is the y axis, and the mold is on the horizontal plane In the case where the concave portion of the mold is opened on the horizontal plane side, and the concave portion is set so as to be symmetric with respect to the plane including the point indicating the maximum depth of the concave portion,
The bottom surface of the space formed by the horizontal plane and the recess is a quadrangle, the four sides of the bottom surface are parallel to the x axis or the z axis, and the four side surfaces of the space have one side of the bottom surface as the bottom side, X of a curve formed by collecting points on the x-coordinate, y-coordinate, and z-coordinate represented by the following formulas (5-1) to (5-4) that connect the base and the vertex of the space. Indicated in the axial direction or continuous in the z-axis direction,
The shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, A method of manufacturing a mold, wherein the mold is a straight line, a polygonal line, or an arc connecting the point 1 and a point 2 having the same y-axis value.
Figure JPOXMLDOC01-appb-M000078
(Wherein, alpha 0 is the dimensional change of the resin, y is the height of the space, tau s relaxation coefficient aspect shrinkage, A is .k t indicating the aspect ratio is a correction coefficient of contraction of the y-axis direction, The following formula (k t -1)
Figure JPOXMLDOC01-appb-M000079
(With respect to q satisfying 0.9q ≦ k t ≦ 1.1q)
 上記方法により得られる、寸法変化率がα0の樹脂を成形して、アスペクト比がAである、四角錐形状の成形体を製造するためのモールドは、上記凹部形状[4]を有することを特徴とする。 A mold for producing a quadrangular pyramid-shaped molded article obtained by molding the resin having a dimensional change rate of α 0 and having an aspect ratio of A has the concave shape [4]. Features.
 [実施態様5:長手方向に垂直な面における断面が球欠の線形状の成形体を製造するためのモールド製造方法]
 例えば、樹脂の収縮変形による、アスペクト比がAである、長手方向に垂直な面における断面が球欠の線形状の成形体[好ましくは、アスペクト比がAである、長手方向に垂直な面における断面が球欠の線形状の構造物であり、当該構造物が底面において基面に固定された形状を有する成形体]の形状予測は、図5に記載の解析系によって行うことができる。前記成形体は垂直方向に収縮し、最末端部では前記収縮がゼロであり、中央部に向けて前記収縮が徐々に大きくなっていると考えられる。そのため、予測関数のx座標は下記式(3-1)’で表され、予測関数のy座標は下記式(3-2)’で表される。
Figure JPOXMLDOC01-appb-M000080
[Embodiment 5: Mold production method for producing a linear shaped product having a spherical cross section in a plane perpendicular to the longitudinal direction]
For example, a linear shaped article having an aspect ratio of A and a section perpendicular to the longitudinal direction and having a sphere-shaped cross section due to shrinkage deformation of the resin [preferably, on a surface perpendicular to the longitudinal direction and having an aspect ratio of A The shape prediction of a shaped body having a shape in which the cross-section is a spherical shape and the structure is fixed to the base surface at the bottom surface can be performed by the analysis system shown in FIG. The molded body shrinks in the vertical direction, the shrinkage is zero at the most distal end, and the shrinkage is considered to gradually increase toward the center. Therefore, the x coordinate of the prediction function is expressed by the following formula (3-1) ′, and the y coordinate of the prediction function is expressed by the following formula (3-2) ′.
Figure JPOXMLDOC01-appb-M000080
 式中、α0は樹脂の寸法変化率、rは球欠面の半径、yは空間の高さを示し、y0は製造する成形体をその一部とする球体の中心のy軸上のy座標を示す。τcは球欠面の緩和係数、Aはアスペクト比を示す。kcは、下記式
Figure JPOXMLDOC01-appb-M000081
を満たすpに対して、0.9p≦kc≦1.1pの範囲である。。
In the formula, α 0 is the rate of dimensional change of the resin, r is the radius of the spherical surface, y is the height of the space, and y 0 is on the y-axis at the center of the sphere that includes the molded product to be produced. The y coordinate is shown. τ c is the relaxation coefficient of the spherical surface, and A is the aspect ratio. k c is the following formula
Figure JPOXMLDOC01-appb-M000081
For p satisfying the above condition, 0.9p ≦ k c ≦ 1.1p. .
 前記式中のrは、球欠面の半径を示し、下記式を満たす。
   r=1/2[(1/2A)2+1]
   (式中、Aはアスペクト比を示す)
In the above formula, r represents the radius of the spherical surface and satisfies the following formula.
r = 1/2 [(1 / 2A) 2 +1]
(Where A represents the aspect ratio)
 上記式中のτcは高さ方向の収縮と幅方向の収縮の割合の比に関するパラメータであり、これは有限要素解析により種々のアスペクト比を有する成形体についてフィッティングすることにより求められる。有限要素解析結果を図10に示す。 In the above equation, τ c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction, and this can be obtained by fitting a molded body having various aspect ratios by finite element analysis. A finite element analysis result is shown in FIG.
 図10より、τcは下記式(τc-1)で表される関数で示される。また、図16より、アスペクト比が小さい範囲において予測誤差が小さくなることから、本発明の方法によれば、アスペクト比が小さい成形体(例えば、アスペクト比が例えば0.3以下)の成形体の場合に、より優れた予測精度を発揮することができ、誤差を極めて小さくすることができることがわかる。
Figure JPOXMLDOC01-appb-M000082
From FIG. 10, τ c is represented by a function represented by the following formula (τ c −1). Further, as shown in FIG. 16, since the prediction error is reduced in the range where the aspect ratio is small, according to the method of the present invention, the molded body having a small aspect ratio (for example, an aspect ratio of 0.3 or less) is obtained. In this case, it can be seen that better prediction accuracy can be exhibited and the error can be extremely reduced.
Figure JPOXMLDOC01-appb-M000082
 式(τc-1)中、τc1は1.0~2.0の数であり、好ましくは1.6である。τc2は0.2~1.0の数であり、好ましくは0.6である。尚、Aは上記に同じ。 In the formula (τ c −1), τ c1 is a number of 1.0 to 2.0, preferably 1.6. τ c2 is a number from 0.2 to 1.0, preferably 0.6. A is the same as above.
 図10より、収縮変形後の成形体断面fcy(x)を定める。 From FIG. 10, the molded product cross section f cy (x) after shrinkage deformation is determined.
 そして、モールドの補正関数Fcy -1(x)は、上記予測関数を利用して下記式によって導出することができる。
 Fcy -1(x)=Fcy 2/fcy(x)
The mold correction function F cy −1 (x) can be derived from the following equation using the prediction function.
F cy −1 (x) = F cy 2 / f cy (x)
 以上より、本実施態様[5]の場合におけるモールド製造方法としては、以下の方法が好ましい。
 すなわち、
 寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が球欠の線形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状[5]とすることを特徴とするモールドの製造方法。
モールドの凹部形状[5]:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含み、且つモールドの最大深さを示す点を含む面において凹部が左右対称になるように設置した場合において、
水平面と凹部によって形成される底面と球欠形状の側面からなる空間を、x軸とy軸を含む面で切断した際の、前記球欠形状の側面の断面形状が、x座標が下記式(3-1)で表され、y座標が下記式(3-2)で表される点を集合してなる曲線である
Figure JPOXMLDOC01-appb-M000083
(式中、α0は樹脂の寸法変化率、rは球欠面の半径、yは空間の高さを示す。y0は製造する成形体をその一部とする球体の中心のy軸上のy座標を示す。τcは側面収縮の緩和係数、Aはアスペクト比を示す。kcは、下記式
Figure JPOXMLDOC01-appb-M000084
を満たすqに対して、0.9q≦kt≦1.1qの範囲である)
As mentioned above, as a mold manufacturing method in the case of this embodiment [5], the following method is preferable.
That is,
Manufacturing a mold for molding a resin having a dimensional change rate of α 0 and manufacturing a linear molded body having a cross section of a sphere in a plane perpendicular to the longitudinal direction and having an aspect ratio A defined below. It is a method, Comprising: The manufacturing method of the mold characterized by making the recessed part shape of a mold into the following shape [5].
Mold concave shape [5]: One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis. In addition, when the concave portion of the mold is installed so as to open on the horizontal plane side, the concave portion is set to be bilaterally symmetrical on the plane including the x axis and the y axis and including the point indicating the maximum depth of the mold.
The cross-sectional shape of the sphere-shaped side surface when a space including a bottom surface and a sphere-shaped side surface formed by a horizontal plane and a concave portion is cut by a plane including the x-axis and the y-axis, 3-1) is a curve formed by collecting points whose y-coordinate is expressed by the following formula (3-2).
Figure JPOXMLDOC01-appb-M000083
(Where α 0 is the rate of dimensional change of the resin, r is the radius of the sphere, and y is the height of the space. Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced. Τ c is the side shrinkage relaxation coefficient, A is the aspect ratio, and k c is the following formula:
Figure JPOXMLDOC01-appb-M000084
(With respect to q satisfying 0.9q ≦ k t ≦ 1.1q)
 上記方法により得られる、寸法変化率がα0の樹脂を成形して、アスペクト比がAである、長手方向に垂直な面における断面が球欠の線形状の成形体を製造するためのモールドは、上記凹部形状[5]を有することを特徴とする。 A mold for producing a linear shaped product having a cross section of a sphere with a cross section in a plane perpendicular to the longitudinal direction, which is obtained by the above-described method, is molded with a resin having a dimensional change rate of α 0 and an aspect ratio is A. And having the concave shape [5].
 [実施態様6:球欠形状の成形体を製造するためのモールド製造方法]
 例えば、樹脂の収縮変形による、アスペクト比がAである、球欠形状の成形体[好ましくは、アスペクト比がAである球欠形状の構造物であり、当該構造物が底面において基面に固定された形状を有する成形体]の形状予測は、図20に記載の解析系によって行うことができる。前記成形体は中央部に向けて前記収縮が徐々に大きくなっていると考えられる。
[Embodiment 6: Mold manufacturing method for manufacturing a spherically shaped molded body]
For example, a spherically-shaped molded article having an aspect ratio of A due to shrinkage deformation of a resin [preferably a spherically-shaped structure having an aspect ratio of A, and the structure is fixed to the base surface at the bottom surface The shape prediction of the formed body having the formed shape] can be performed by the analysis system shown in FIG. It is considered that the shrinkage of the molded body gradually increases toward the center.
 そのため、予測関数のx座標は下記式(4-1-1)で表され、予測関数のy座標は下記式(4-1-2)で表され、予測関数のz座標は下記式(4-1-3)で表される。
Figure JPOXMLDOC01-appb-M000085
(式中、α0は樹脂の寸法変化率、rは球欠面の半径、yは空間の高さを示す。y0は製造する成形体をその一部とする球体の中心のy軸上のy座標を示す。τcは側面収縮の緩和係数、Aはアスペクト比を示す。kcは、下記式
Figure JPOXMLDOC01-appb-M000086
を満たすpに対して、0.9p≦kc≦1.1pの範囲である)
Therefore, the x coordinate of the prediction function is expressed by the following formula (4-1-1), the y coordinate of the prediction function is expressed by the following formula (4-1-2), and the z coordinate of the prediction function is expressed by the following formula (4) -1-3).
Figure JPOXMLDOC01-appb-M000085
(Where α 0 is the rate of dimensional change of the resin, r is the radius of the sphere, and y is the height of the space. Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced. Τ c is the side shrinkage relaxation coefficient, A is the aspect ratio, and k c is the following formula:
Figure JPOXMLDOC01-appb-M000086
(For p that satisfies 0.9p ≦ k c ≦ 1.1p)
 そして、モールドの補正関数は、上記予測関数を利用して導出することができる。 The mold correction function can be derived using the prediction function.
 以上より、本実施態様[6]の場合におけるモールド製造方法としては、以下の方法が好ましい。
 すなわち、
 寸法変化率がα0の樹脂を成形して、アスペクト比がAである球欠形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状[6]とすることを特徴とするモールドの製造方法。
モールドの凹部形状[6]:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口し、且つ前記凹部の最大深さ示す点を含む面によって凹部が左右対称になるように設置した場合において、
水平面と凹部とによって形成される空間の底面が円であり、前記円をx-y平面とz-y平面により4つの弧に分割した際の、前記4つの弧上の点と、前記空間の頂点とを結ぶ線が、下記式(4-1)~(4-4)で表される、x座標、y座標、及びz座標上の点を集合してなる曲線である
Figure JPOXMLDOC01-appb-M000087
(式中、α0は樹脂の寸法変化率、rは球欠面の半径、yは空間の高さを示す。y0は製造する成形体をその一部とする球体の中心のy軸上のy座標を示す。τcは側面収縮の緩和係数、Aはアスペクト比を示す。kcは、下記式
Figure JPOXMLDOC01-appb-M000088
を満たすpに対して、0.9p≦kc≦1.1pの範囲である)
As mentioned above, as a mold manufacturing method in the case of this embodiment [6], the following method is preferable.
That is,
A mold manufacturing method for molding a resin having a dimensional change rate of α 0 and manufacturing a spherically-shaped molded body having an aspect ratio of A, wherein the concave shape of the mold is the following shape [6]. The manufacturing method of the mold characterized by the above-mentioned.
Mold concave shape [6]: One direction on the horizontal plane is the x axis, the direction perpendicular to the x axis is the z axis, and the direction perpendicular to the x and z axes is the y axis, and the mold is on the horizontal plane In the case where the concave portion of the mold is opened on the horizontal plane side, and the concave portion is set so as to be symmetric with respect to the plane including the point indicating the maximum depth of the concave portion,
The bottom surface of the space formed by the horizontal plane and the concave portion is a circle, and when the circle is divided into four arcs by the xy plane and the zy plane, points on the four arcs, The line connecting the vertices is a curve formed by collecting points on the x, y, and z coordinates represented by the following formulas (4-1) to (4-4).
Figure JPOXMLDOC01-appb-M000087
(Where α 0 is the rate of dimensional change of the resin, r is the radius of the sphere, and y is the height of the space. Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced. Τ c is the side shrinkage relaxation coefficient, A is the aspect ratio, and k c is the following formula:
Figure JPOXMLDOC01-appb-M000088
(For p that satisfies 0.9p ≦ k c ≦ 1.1p)
 τcは上記式(τc-1)で表される関数で示される。 τ c is represented by a function represented by the above formula (τ c −1).
 上記方法により得られる、寸法変化率がα0の樹脂を成形して、アスペクト比がAである球欠形状の成形体を製造するためのモールドは、上記凹部形状[6]を有することを特徴とする。 A mold obtained by the above method for molding a resin having a dimensional change rate of α 0 and producing a spherically-shaped molded body having an aspect ratio of A has the concave shape [6]. And
 本発明のモールドの製造方法によれば、種々のアスペクト比を有する成形体について、樹脂の硬化若しくは固化に伴う収縮変形を特定の関数を利用した演算により適切に予測することができ、この予測を元にモールドを設計(若しくは、モールドを製造する為の金型を設計)し、前記設計に基づいてモールドを製造すれば、従来に比べて極めて短時間で、所望の形状を精度良く有する成形体(例えば、寸法変化率が10%の樹脂を使用して、形状誤差が5%以下(好ましくは3%以下、特に好ましくは1%以下、とりわけ好ましくは0.5%以下)の成形体)を確実に得ることができる。 According to the mold manufacturing method of the present invention, it is possible to appropriately predict shrinkage deformation due to hardening or solidification of a resin for a molded body having various aspect ratios by calculation using a specific function. If a mold is originally designed (or a mold for producing a mold is designed) and a mold is manufactured based on the design, a molded body having a desired shape with a high accuracy in a very short time compared to the conventional case. (For example, a molded article having a shape error of 5% or less (preferably 3% or less, particularly preferably 1% or less, particularly preferably 0.5% or less) using a resin having a dimensional change rate of 10%) You can definitely get it.
 [モールドの製造装置]
 本発明のモールドの製造装置は、樹脂を成形して、種々のアスペクト比を有する、円錐形状、角錐形状、円錐台形状、角錐台形状、円柱形状、角柱形状、球欠形状、又は長手方向に垂直な面における断面が矩形、台形、三角形、若しくは球欠の線形状の成形体を製造するためのモールドの製造装置であって、任意の寸法変化率を有する樹脂を、任意のアスペクト比を有する成形体に成形する際の変形の予測関数を求め、前記予測関数より、変形を補償するための補正関数を算出し、前記補正関数を用いてモールドを設計することを特徴とする。
[Mold manufacturing equipment]
The mold manufacturing apparatus of the present invention molds a resin and has various aspect ratios, such as a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prism shape, a spherical shape, or a longitudinal direction. An apparatus for manufacturing a mold for manufacturing a linear shaped body having a rectangular, trapezoidal, triangular, or sphere-shaped cross section in a vertical plane, wherein a resin having an arbitrary dimensional change rate has an arbitrary aspect ratio A prediction function of deformation at the time of forming into a molded body is obtained, a correction function for compensating for deformation is calculated from the prediction function, and a mold is designed using the correction function.
 本発明のモールドの製造装置は、任意の寸法変化率を有する樹脂を、任意のアスペクト比を有する成形体に成形する際の変形の予測関数を求め、前記予測関数より、変形を補償するための補正関数を算出し、前記補正関数を用いてモールドを設計し、製造する(例えば、補正関数を用いてモールドの金型の設計を行い、得られた金型を利用してモールドを製造する)機能を有するものであれば、その構成は特に制限されない。 The mold manufacturing apparatus of the present invention obtains a prediction function of deformation when molding a resin having an arbitrary dimensional change rate into a molded body having an arbitrary aspect ratio, and compensates the deformation from the prediction function. The correction function is calculated, and the mold is designed and manufactured using the correction function (for example, the mold of the mold is designed using the correction function, and the mold is manufactured using the obtained mold). The configuration is not particularly limited as long as it has a function.
 本発明のモールドの製造装置を利用すれば、樹脂の硬化若しくは固化に伴う収縮変形を正確に予測し、これを元にモールドを製造するため、変形の補償がなされたモールドが製造できる。このようにして得られたモールドは、これを使用すれば、所望の形状の成形体を確実に製造することができるため大変有用である。 If the mold manufacturing apparatus of the present invention is used, shrinkage deformation accompanying the hardening or solidification of the resin is accurately predicted, and the mold is manufactured based on this, so that a mold with deformation compensation can be manufactured. The mold thus obtained is very useful since it can reliably produce a molded body having a desired shape.
 [モールド設計プログラム]
 本発明のモールド設計プログラムは、樹脂を成形して、種々のアスペクト比を有する、円錐形状、角錐形状、円錐台形状、角錐台形状、円柱形状、角柱形状、球欠形状、又は長手方向に垂直な面における断面が矩形、台形、三角形、若しくは球欠の線形状の成形体を製造するためのモールドの設計を、コンピュータに実行させるためのモールド設計プログラムであって、所望の成形体の形状、アスペクト比A、及び形成する樹脂の寸法変化率α0を入力する第1ステップと、
入力された、所望の成形体の形状、アスペクト比A、及び形成する樹脂の寸法変化率α0から、コンピュータに、所望の成形体の形状に応じた補正関数の選択を実行させる第2ステップと、コンピュータに、選択された補正関数によるモールドの凹部形状の補正を実行させる第3ステップとを含む。
[Mold design program]
The mold design program of the present invention forms a resin and has various aspect ratios, such as a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prism shape, a spherical shape, or perpendicular to the longitudinal direction. A mold design program for causing a computer to execute a mold design for manufacturing a molded product having a rectangular, trapezoidal, triangular, or spherically shaped cross section in a simple plane, the shape of a desired molded product, A first step of inputting an aspect ratio A and a dimensional change rate α 0 of the resin to be formed;
A second step of causing the computer to select a correction function in accordance with the desired shape of the molded body from the input shape of the desired molded body, the aspect ratio A, and the dimensional change rate α 0 of the resin to be formed; And a third step of causing the computer to perform correction of the concave shape of the mold by the selected correction function.
 前記第2ステップは、所望の成形体の形状に応じた補正関数を選択するステップであり、
 例えば、所望の成形体が、寸法変化率がα0の樹脂の硬化物若しくは固化物からなる、アスペクト比がAである、角柱形状、角錐台形状、又は長手方向に垂直な面における断面が矩形若しくは台形の線形状の成形体である場合は、モールドの凹部形状を、水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含み、且つモールドの最大深さを示す点を含む切断面において凹部が左右対称になるように設置した場合における、凹部によって形成される空間の上面の前記切断面における断面形状を式(1-1)で表される曲線とし、前記空間の側面の前記切断面における断面形状を式(1-2)で表される曲線とする。
 例えば、所望の成形体が、寸法変化率がα0の樹脂の硬化物若しくは固化物からなる、アスペクト比がAである、角錐形状、又は長手方向に垂直な面における断面が三角形の線形状の成形体である場合は、モールドの凹部形状を、水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含み、且つモールドの最大深さを示す点を含む切断面において凹部が左右対称になるように設置した場合における、凹部によって形成される空間の側面の前記切断面における断面形状を式(2)で表される曲線とする。
 例えば、所望の成形体が、寸法変化率がα0の樹脂の硬化物若しくは固化物からなる、アスペクト比がAである、球欠形状、又は長手方向に垂直な面における断面が球欠の線形状の成形体である場合、モールドの凹部形状を、水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含み、且つモールドの最大深さを示す点を含む切断面において凹部が左右対称になるように設置した場合における、凹部によって形成される空間の側面の前記切断面における断面形状を式(3)で表される曲線とする。
The second step is a step of selecting a correction function according to a desired shape of the molded body,
For example, the desired molded body is made of a cured or solidified resin having a dimensional change rate of α 0 , an aspect ratio of A, a prismatic shape, a truncated pyramid shape, or a rectangular section in a plane perpendicular to the longitudinal direction. Alternatively, in the case of a trapezoidal linear shaped product, the concave shape of the mold is set such that one direction on the horizontal plane is the x axis, the direction perpendicular to the x axis is the z axis, and the x axis and the z axis are perpendicular to the horizontal plane. The direction is the y axis, and the mold is recessed on the cutting plane including the x axis and the y axis in a state where the mold is opened on the horizontal plane so that the concave portion of the mold opens to the horizontal plane, and the point indicating the maximum depth of the mold. When the cross-sectional shape of the upper surface of the space formed by the concave portion is a curve represented by Formula (1-1), and the side surface of the space is The cross-sectional shape is expressed by formula (1-2) Let the curve be
For example, the desired molded body is made of a cured or solidified resin having a dimensional change rate of α 0 , has an aspect ratio of A, a pyramid shape, or a linear cross section in a plane perpendicular to the longitudinal direction. In the case of a molded body, the concave shape of the mold is an x-axis in one direction on the horizontal plane, a z-axis in a direction perpendicular to the x-axis on the horizontal plane, and a y-axis in a direction perpendicular to the x-axis and z-axis, In a state where the mold is placed on a horizontal plane so that the concave portion of the mold opens to the horizontal plane side, the concave portion is symmetrical on the cutting plane including the x axis and the y axis and including the point indicating the maximum depth of the mold. Let the cross-sectional shape in the said cut surface of the side surface of the space formed by the recessed part be a curve represented by Formula (2).
For example, the desired molded body is formed of a cured or solidified resin having a dimensional change rate of α 0 , has a spherical shape with an aspect ratio of A, or a line with a spherical surface in a cross section perpendicular to the longitudinal direction. In the case of a molded body having a shape, the concave shape of the mold is defined as an x-axis in one direction on the horizontal plane, a z-axis in a direction perpendicular to the x-axis on the horizontal plane, and a y-axis in a direction perpendicular to the x-axis and z-axis. The recesses are symmetrical on the cutting plane including the x-axis and the y-axis and the point indicating the maximum depth of the mold in a state where the mold is placed on the horizontal plane so that the recesses of the mold open to the horizontal plane side. In this case, the cross-sectional shape of the side surface of the space formed by the concave portion in the cut surface is a curve represented by Expression (3).
 前記コンピュータとしては、必要な演算を行うことができる装置であれば特に制限されることがなく、例えば電子計算機等が好適に用いられる。また、数値制御工作機械を使用することが好ましく、数値制御工作機械としては、多軸制御機能を有する三次元形状の切削加工機が適している。 The computer is not particularly limited as long as it is a device that can perform necessary calculations, and for example, an electronic computer or the like is preferably used. A numerically controlled machine tool is preferably used, and a three-dimensional cutting machine having a multi-axis control function is suitable as the numerically controlled machine tool.
 本発明のモールド設計プログラムは、これをコンピュータに実行させることによって、試行錯誤を伴うモールドの設計を極めて効率的に行うことができる。 The mold design program of the present invention can perform the design of the mold with trial and error very efficiently by causing the computer to execute the program.
 [成形体の製造方法]
 本発明の成形体の製造方法は、上記のモールドの製造方法によりモールドを製造し、得られたモールドを利用して樹脂を成形する工程を経て、前記樹脂の硬化物若しくは固化物から成る成形体を得ることを特徴とする。
[Method for producing molded article]
The method for producing a molded article of the present invention is a molded article comprising a cured product or a solidified product of the resin, through a step of producing a mold by the above-described mold production method and molding a resin using the obtained mold. It is characterized by obtaining.
 成形体としては、種々のアスペクト比を有する、円錐形状、角錐形状、円錐台形状、角錐台形状、円柱形状、角柱形状、球欠形状、又は長手方向に垂直な面における断面が矩形、台形、三角形、若しくは球欠の線形状の成形体であれば特に制限されない。例えば、角錐台形状又は角柱形状の成形体としては、マイクロミラーアレイ等が挙げられる。マイクロミラーアレイは、高さが1~1000μmの四角柱や四角錐の立体パターンが格子状に多数配列(例えば、1~1000μmの間隔を開けて格子状に配列)した光学部材である。 The molded body has various aspect ratios, such as a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prismatic shape, a spherical shape, or a cross section in a plane perpendicular to the longitudinal direction, a trapezoid, There is no particular limitation as long as it is a triangular or spherically shaped molded body. For example, a micromirror array etc. are mentioned as a truncated pyramid shape or a prism-shaped molded object. The micromirror array is an optical member in which a large number of three-dimensional patterns of rectangular pillars and pyramids having a height of 1 to 1000 μm are arranged in a grid pattern (for example, arranged in a grid pattern with an interval of 1 to 1000 μm).
 例えば、マイクロミラーアレイを製造する場合、モールドとしては、角錐台形状又は角柱形状の反転形状を有する凹部が格子状に多数配列した構成を有することが好ましい。 For example, when a micromirror array is manufactured, the mold preferably has a configuration in which a large number of concave portions having a truncated pyramid shape or a prismatic inverted shape are arranged in a lattice shape.
 樹脂を成形する方法としては、例えば、下記(1)、(2)の方法等が挙げられる。
(1)モールドに樹脂を塗布し、その上から基板を押し付け、樹脂を硬化若しくは固化させた後、モールドを剥離する方法
(2)基面(若しくは、基板)上に塗布された樹脂にモールドを押し付けて成形し、樹脂を硬化若しくは固化させた後、モールドを離型する方法
Examples of the method for molding the resin include the following methods (1) and (2).
(1) A method in which a resin is applied to a mold, a substrate is pressed from above, the resin is cured or solidified, and then the mold is peeled off. (2) The mold is applied to the resin applied on the base surface (or substrate). Method of releasing the mold after pressing and molding, and curing or solidifying the resin
 前記樹脂としては、硬化又は固化により成形体が形成できる樹脂であれば特に制限なく使用することができる。前記樹脂には、例えば、光又は熱硬化性樹脂や熱可塑性樹脂が含まれる。 As the resin, any resin that can form a molded body by curing or solidification can be used without particular limitation. Examples of the resin include light or thermosetting resin and thermoplastic resin.
 前記光又は熱硬化性樹脂は、光照射又は加熱処理を施すことにより硬化物を形成する樹脂であり、硬化性化合物や重合開始剤を含有する。その他、必要に応じて周知慣用の添加剤(例えば、溶剤、酸化防止剤、表面調整剤、光増感剤、消泡剤、レベリング剤、カップリング剤、界面活性剤、難燃剤、紫外線吸収剤、着色剤等)を含有していても良い。 The light or thermosetting resin is a resin that forms a cured product by light irradiation or heat treatment, and contains a curable compound and a polymerization initiator. In addition, known and commonly used additives (for example, solvents, antioxidants, surface conditioners, photosensitizers, antifoaming agents, leveling agents, coupling agents, surfactants, flame retardants, UV absorbers as necessary) , Coloring agents, etc.).
 前記硬化性化合物にはカチオン重合性化合物やラジカル重合性化合物が含まれ、カチオン重合性モノマーには、例えば、エポキシ化合物、オキセタン化合物、ビニルエーテル化合物等が含まれる。また、ラジカル重合性化合物には、例えば、オレフィン系モノマー、(メタ)アクリル系モノマー、スチレン系モノマー等が含まれる。 The curable compound includes a cationic polymerizable compound and a radical polymerizable compound, and the cationic polymerizable monomer includes, for example, an epoxy compound, an oxetane compound, a vinyl ether compound, and the like. Further, the radical polymerizable compound includes, for example, an olefin monomer, a (meth) acrylic monomer, a styrene monomer, and the like.
 本発明における樹脂としては、例えば、耐熱性に優れた成形体を所望する場合は、光又は熱硬化性樹脂を使用することが好ましく、特に、光学特性(特に、透明性)、高硬度、及び耐熱性を兼ね備えた成形体を所望する場合には、エポキシ樹脂[特に、シクロヘキセンオキシド基等の、脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(すなわち、脂環エポキシ基)を有する化合物、例えば、下記式(i)で表される化合物等]を使用することが好ましい。 As the resin in the present invention, for example, when a molded body having excellent heat resistance is desired, it is preferable to use a light or thermosetting resin, and in particular, optical characteristics (particularly transparency), high hardness, and When a molded article having heat resistance is desired, an epoxy resin [particularly, an epoxy group composed of two adjacent carbon atoms and oxygen atoms constituting an alicyclic ring such as a cyclohexene oxide group (that is, an aliphatic group) It is preferable to use a compound having a cyclic epoxy group, for example, a compound represented by the following formula (i).
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
 上記式(i)中、Xは単結合又は連結基(1以上の原子を有する二価の基)を示す。上記連結基としては、例えば、二価の炭化水素基、炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、これらが複数個連結した基等が挙げられる。尚、式(i)中のシクロヘキセンオキシド基には、置換基(例えば、アルキル基等)が結合していてもよい。 In the above formula (i), X represents a single bond or a linking group (a divalent group having one or more atoms). Examples of the linking group include a divalent hydrocarbon group, an alkenylene group in which part or all of a carbon-carbon double bond is epoxidized, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and the like. And a group in which a plurality of are connected. In addition, the substituent (for example, alkyl group etc.) may couple | bond with the cyclohexene oxide group in Formula (i).
 上記式(i)で表される化合物の代表的な例としては、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(3,4,3’,4’-ジエポキシ)ビシクロヘキシル、ビス(3,4-エポキシシクロヘキシルメチル)エーテル、1,2-エポキシ-1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパン、1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン等が挙げられる。 Representative examples of the compound represented by the above formula (i) include 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, (3,4,3 ′, 4′-diepoxy) biphenyl. Cyclohexyl, bis (3,4-epoxycyclohexylmethyl) ether, 1,2-epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 2,2-bis (3,4-epoxy) And cyclohexane-1-yl) propane and 1,2-bis (3,4-epoxycyclohexane-1-yl) ethane.
 [成形体の製造装置]
 本発明の成形体の製造装置は、樹脂を成形して、種々のアスペクト比を有する、円錐形状、角錐形状、円錐台形状、角錐台形状、円柱形状、角柱形状、球欠形状、又は長手方向に垂直な面における断面が矩形、台形、三角形、若しくは球欠の線形状の成形体の製造装置であって、任意の寸法変化率を有する樹脂を、任意のアスペクト比を有する成形体に成形する際の変形の予測関数を求め、前記予測関数より、変形を補償するための補正関数を算出し、前記補正関数を用いてモールドを設計、製造し、得られたモールドを使用して前記樹脂を成形することを特徴とする。
[Molded product manufacturing equipment]
The apparatus for producing a molded body of the present invention is formed of a resin, and has various aspect ratios, a cone shape, a pyramid shape, a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prismatic shape, a spherical shape, or a longitudinal direction. Is a device for manufacturing a linear shaped product having a rectangular, trapezoidal, triangular, or spherical notched cross section in a plane perpendicular to the surface, and molding a resin having an arbitrary dimensional change rate into a molded product having an arbitrary aspect ratio. A deformation prediction function is obtained, a correction function for compensating the deformation is calculated from the prediction function, a mold is designed and manufactured using the correction function, and the resin is obtained using the obtained mold. It is characterized by molding.
 本発明の成形体の製造装置は、任意の寸法変化率を有する樹脂を、任意のアスペクト比を有する成形体に成形する際の変形の予測関数を求め、前記予測関数より、変形を補償するための補正関数を算出し、前記補正関数を用いてモールドを設計し、製造する(例えば、補正関数を用いてモールドの金型の設計を行い、得られた金型を利用してモールドを製造する)機能、及び得られたモールドを使用して樹脂を成型する機能を有するものであれば、その構成は特に制限されない。 The apparatus for producing a molded body of the present invention obtains a prediction function of deformation when molding a resin having an arbitrary dimensional change rate into a molded body having an arbitrary aspect ratio, and compensates the deformation from the prediction function. The correction function is calculated, the mold is designed and manufactured using the correction function (for example, the mold of the mold is designed using the correction function, and the mold is manufactured using the obtained mold. The structure is not particularly limited as long as it has a function and a function of molding a resin using the obtained mold.
 本発明の成形体の製造装置を利用すれば、樹脂の硬化若しくは固化に伴う収縮変形を正確に予測し、これを元に製造されたモールドを使用して紫外線硬化性組成物を成形するため、所望の形状の成形体を確実に製造することができる。 If the manufacturing apparatus of the molded body of the present invention is used, shrinkage deformation accompanying resin curing or solidification is accurately predicted, and an ultraviolet curable composition is molded using a mold manufactured based on this, A molded body having a desired shape can be reliably produced.
 <シミュレーション結果の説明>
 次に、各実施態様についてのシミュレーション方法、およびその結果を以下に記載する。
<Explanation of simulation results>
Next, a simulation method and results for each embodiment will be described below.
 実施態様[1]
 以下の手順に従って、硬化収縮後の成形体形状を計算機シミュレーションによって検証し、これを利用してモールドの設計を変更する。
手順1:市販の構造解析用ソフトウェア(「MARC」、MSC Software 社製)を用いて計算した結果に基づき、パラメータを抽出する(図6~8)
 手順2:所望する成形体のアスペクト比と、使用する樹脂の寸法変化率を決定する
 手順3:パラメータ(図6、7)よりb、cを抽出して、収縮後の成形体上面の断面形状の近似関数を定める
 手順4:パラメータ(図8)よりτsならびにksを抽出して、収縮変形後の成形体側面の断面形状の近似関数を定める
 上述の方法に従って、硬化若しくは固化に伴う収縮変形後の成形体(長手方向に垂直な面における断面が矩形の線形状の構造物であり、当該構造物が底面において基面に固定された形状を有する成形体)の形状を予測関数を用いて算出し、これを利用して補正関数を算出し、モールドの設計を変更した。
 上記結果を図11、14に示す。図11より、硬化若しくは固化に伴う収縮変形率が約10%の樹脂を使用した場合において、上記方法でモールドの補正を行うことにより、形状誤差を約0.29%(σ値)に抑制できることが分かった。
Embodiment [1]
According to the following procedure, the shape of the molded body after curing shrinkage is verified by computer simulation, and the design of the mold is changed using this.
Procedure 1: Extract parameters based on the results calculated using commercially available software for structural analysis (“MARC”, MSC Software) (FIGS. 6-8)
Step 2: Determine the desired aspect ratio of the molded body and the dimensional change rate of the resin to be used. Procedure 3: Extract b and c from the parameters (FIGS. 6 and 7), and the cross-sectional shape of the upper surface of the molded body after shrinkage Step 4: Extract τ s and k s from the parameters (Fig. 8) to determine the approximate function of the cross-sectional shape of the side surface of the compact after shrinkage deformation. Shrinkage accompanying hardening or solidification according to the above-mentioned method Using the prediction function, the shape of the deformed molded body (a molded body having a linear shape with a rectangular cross section in the plane perpendicular to the longitudinal direction and the structure fixed to the base surface at the bottom) is used. The correction function was calculated using this, and the mold design was changed.
The results are shown in FIGS. From FIG. 11, when a resin having a shrinkage deformation rate of about 10% due to curing or solidification is used, the shape error can be suppressed to about 0.29% (σ value) by performing mold correction by the above method. I understood.
 実施態様[2]
 図17、18に記載のとおり、モールドの補正を行った。
 上記結果を図21に示す。図21より、補正を施さない場合には側壁面に歪が生じていたが、補正によって歪が低減された。補正を施さない場合の目標面と収縮後の面の間の距離の二乗平均誤差は、10%の収縮割合に対して、構造物の高さを1(無次元)とした場合は4.3%の誤差を生じたが、補正を施すことにより0.1%に減少した。
Embodiment [2]
The mold was corrected as described in FIGS.
The results are shown in FIG. From FIG. 21, when the correction was not performed, the side wall surface was distorted, but the distortion was reduced by the correction. The mean square error of the distance between the target surface and the surface after contraction without correction is 4.3 when the height of the structure is 1 (dimensionless) with respect to the contraction ratio of 10%. % Error was reduced to 0.1% by applying the correction.
 実施態様[3]
 手順1:市販の構造解析用ソフトウェア(「MARC」、MSC Software 社製)を用いて計算した結果に基づき、パラメータを抽出する(図9)
 手順2:所望する成形体のアスペクト比と、使用する樹脂の寸法変化率を決定する
 手順3:パラメータ(図9)よりτtならびにktを抽出して、収縮後の成形体断面形状の近似関数を定める
 上述の方法に従って、硬化若しくは固化に伴う収縮変形後の成形体(長手方向に垂直な面における断面が二等辺三角形の線形状の構造物であり、当該構造物が底面において基面に固定された形状を有する成形体)の形状を予測関数を用いて算出し、これを利用して補正関数を算出し、モールドの設計を変更した。
 上記結果を図12、15に示す。図12より、硬化若しくは固化に伴う収縮変形率が約10%の樹脂を使用した場合において、上記方法でモールドの補正を行うことにより、形状誤差(σ値;y軸方向での標準偏差)を1.6×10-2に抑制できることが分かった。
Embodiment [3]
Procedure 1: Extract parameters based on the results calculated using commercially available software for structural analysis ("MARC", manufactured by MSC Software) (Fig. 9)
Step 2: the aspect ratio of the desired molded body, steps to determine the dimensional change of the resin to be used 3: Parameters extracts from tau t and k t (FIG. 9), approximation shaped body the cross-sectional shape after shrinking Determine the function According to the method described above, the compact after shrinkage deformation due to hardening or solidification (a linear structure with a cross section in the plane perpendicular to the longitudinal direction isosceles triangles, and the structure on the bottom surface The shape of the molded body having a fixed shape) was calculated using a prediction function, and a correction function was calculated using this, thereby changing the mold design.
The results are shown in FIGS. From FIG. 12, when a resin having a shrinkage deformation rate of about 10% due to hardening or solidification is used, the shape error (σ value; standard deviation in the y-axis direction) is obtained by correcting the mold by the above method. It turned out that it can suppress to 1.6 * 10 <-2 >.
 実施態様[4]
 図19に記載のとおり、モールドの補正を行った。
 上記結果を図22に示す。図22より、補正を施さない場合には、側壁面に歪が生じていたが,補正によって歪が解消された。補正を施さない場合の目標面に対する距離二乗平均誤差は、10%の収縮割合に対して、構造物の高さを1(無次元)とした場合は17.1%の誤差を生じたが、補正を施すことにより0.3%に減少した。
Embodiment [4]
As shown in FIG. 19, the mold was corrected.
The results are shown in FIG. As shown in FIG. 22, when the correction is not performed, the side wall surface is distorted, but the distortion is eliminated by the correction. When the correction is not performed, the mean square error with respect to the target surface has an error of 17.1% when the height of the structure is 1 (non-dimensional) with respect to the contraction ratio of 10%. It was reduced to 0.3% by applying the correction.
 実施態様[5]
 手順1:市販の構造解析用ソフトウェア(「MARC」、MSC Software 社製)を用いて計算した結果に基づき、パラメータを抽出する(図10)
 手順2:所望する成形体のアスペクト比と、使用する樹脂の寸法変化率を決定する
 手順3:パラメータ(図10)よりτcを抽出して、収縮後の成形体断面形状の近似関数を定める
 上述の方法に従って、硬化若しくは固化に伴う収縮変形後の成形体(長手方向に垂直な面における断面が球欠の線形状の構造物であり、当該構造物が底面において基面に固定された形状を有する成形体)の形状を予測関数を用いて算出し、これを利用して補正関数を算出し、モールドの設計を変更した。
 上記結果を図13、16に示す。図13より、硬化若しくは固化に伴う収縮変形率が約10%の樹脂を使用した場合において、上記方法でモールドの補正を行うことにより、形状誤差(σ値;y軸方向での標準偏差)を1.9×10-2に抑制できることが分かった。
Embodiment [5]
Procedure 1: Extract parameters based on the results calculated using commercially available software for structural analysis ("MARC", manufactured by MSC Software) (Fig. 10)
Step 2: Determine the desired aspect ratio of the molded body and the dimensional change rate of the resin to be used. Procedure 3: Extract τ c from the parameter (Fig. 10) and determine an approximate function of the cross-sectional shape of the molded body after shrinkage. According to the above-mentioned method, the molded body after shrinkage deformation accompanying hardening or solidification (a linear structure having a cross section in a plane perpendicular to the longitudinal direction and having the structure fixed to the base surface on the bottom surface) The shape of the formed body) was calculated using a prediction function, and the correction function was calculated using this to change the design of the mold.
The results are shown in FIGS. From FIG. 13, when a resin having a shrinkage deformation rate of about 10% due to curing or solidification is used, the shape error (σ value; standard deviation in the y-axis direction) is obtained by correcting the mold by the above method. It turned out that it can suppress to 1.9 * 10 <-2 >.
 本発明の製造方法によれば、マイクロミラーアレイ等の微細構造物を光インプリントで製造するのに使用されるモールドの設計を、早く、確実に行うことができる。また、このようにして得られるモールドを使用すれば、形状精度に優れた微細構造物を効率よく製造することができる。 According to the manufacturing method of the present invention, it is possible to quickly and surely design a mold used for manufacturing a fine structure such as a micromirror array by optical imprinting. Moreover, if the mold obtained in this way is used, a fine structure excellent in shape accuracy can be efficiently produced.
I   所期成形体の切断面形状
II   硬化若しくは固化に伴う収縮変形後の切断面形状
III   硬化若しくは固化に伴う収縮変形を補償したモールド凹部の空間断面形状
IV   硬化若しくは固化に伴う収縮変形を補償したモールドを使用して得られた成形体の断面形状
I Cut shape of the desired molded body
II Cut surface shape after shrinkage deformation due to hardening or solidification
III Spatial sectional shape of mold recess that compensates for shrinkage deformation due to hardening
IV Cross-sectional shape of a molded product obtained using a mold that compensates for shrinkage deformation due to hardening or solidification

Claims (28)

  1.  樹脂を成形して、種々のアスペクト比を有する、円錐形状、角錐形状、円錐台形状、角錐台形状、円柱形状、角柱形状、球欠形状、又は長手方向に垂直な面における断面が矩形、台形、三角形、若しくは球欠の線形状の成形体を製造するためのモールドの製造方法であって、任意の寸法変化率を有する樹脂を、任意のアスペクト比を有する成形体に成形する際の変形の予測関数を求め、前記予測関数より、変形を補償するための補正関数を算出し、前記補正関数を用いてモールドを設計することを特徴とする、モールドの製造方法。
     アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
     寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
    Molded resin with various aspect ratios, cone shape, pyramid shape, truncated cone shape, truncated pyramid shape, cylindrical shape, prismatic shape, spherical notch shape, or rectangular cross section in the plane perpendicular to the longitudinal direction, trapezoid A method of manufacturing a mold for manufacturing a linear shaped product having a triangular or spherical shape, wherein a resin having an arbitrary dimensional change rate is deformed when formed into a molded product having an arbitrary aspect ratio. A method for manufacturing a mold, comprising: obtaining a prediction function, calculating a correction function for compensating for deformation from the prediction function, and designing the mold using the correction function.
    Aspect ratio: One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis. When the molded body is placed so as to be bilaterally symmetric by a cut surface that includes a point that includes the axis and the y-axis and that indicates the maximum height of the molded body, the height in the y-axis direction on the cut surface and the horizontal plane Dimensional change rate: If the resin is light or thermosetting resin, it is the volume change rate before and after curing. If the resin is a thermoplastic resin, “(thermal It is a value calculated by “Glass transition temperature of plastic resin (° C.) − Scheduled environment temperature (° C.)) × Linear expansion coefficient”.
  2.  寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が矩形若しくは台形の線形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状とすることを特徴とするモールドの製造方法。
    モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含む面において凹部が左右対称になるように設置した場合における、
    凹部によって形成される空間の上面の前記切断面における形状を下記式(1-1)で表される曲線とし、前記空間の側面の前記切断面における形状を下記式(1-2)で表される曲線とする
     アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
     寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
    Figure JPOXMLDOC01-appb-M000001
    (式中、α0は樹脂の寸法変化率、bは樹脂の弾性率と幅方向の力の比に関係するパラメータ、xは凹部によって形成される空間の、x軸とy軸を含み、且つ空間の最大高さを示す点を含む切断面の半幅、cは高さ方向の収縮と幅方向の収縮の割合の比に関するパラメータ、εxは水平方向の延伸補正係数を示す)
    Figure JPOXMLDOC01-appb-M000002
    (式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比、εyは垂直方向の延伸補正係数を示す)
    A mold for forming a resin having a dimension change rate of α 0 and manufacturing a linear shaped body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction and having an aspect ratio A defined below. A method for manufacturing a mold, characterized in that the concave shape of the mold is the following shape.
    Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is set to be bilaterally symmetric in the plane including the x axis and the y axis.
    The shape of the upper surface of the space formed by the recess is a curve represented by the following formula (1-1), and the shape of the side surface of the space is represented by the following formula (1-2). Aspect ratio: One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis. The height in the y-axis direction at the cut surface when the molded body is placed so as to be bilaterally symmetric by a cut surface including a point that includes the x axis and the y axis and indicates the maximum height of the molded body. Dimensional change rate: If the resin is light or a thermosetting resin, it is the volume change rate before and after curing, and if the resin is a thermoplastic resin , “(Glass transition temperature (° C) of thermoplastic resin-Expected ambient temperature ( Is a value calculated by)) × linear expansion coefficient "
    Figure JPOXMLDOC01-appb-M000001
    (Where α 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and the y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction, and ε x is the horizontal stretching correction factor)
    Figure JPOXMLDOC01-appb-M000002
    (Where α 0 is the dimensional change rate of the resin, y is the height of the space, τ s is the relaxation coefficient of side shrinkage, A is the aspect ratio, and ε y is the stretching correction coefficient in the vertical direction)
  3.  寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、四角柱形状、又は四角錐台形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状とすることを特徴とするモールドの製造方法。
    モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含む面において凹部が左右対称になるように設置した場合における、
    水平面と凹部によって形成される、底面と4つの側面と上面面からなる空間の、上面は下記式(1-1)で表される曲線のz軸方向への連続で示され、
    前記空間の4つの側面は、それぞれ下記式(1-2-1)~(1-2-4)で表される曲線のx軸方向或いはz軸方向への連続で示され、
    隣接する2側面により形成される角の形状は、1つの側面の角側端部を表す曲線上の点1と、隣接する他の側面の角側端部を表す曲線上の点であって、前記点1とy軸の値を同一とする点2とを結ぶ、直線、多角線、或いは円弧であり、
    x軸とy軸を含む面に平行な側面と上面により形成される角の形状は、前記側面の角側端部を表す曲線上の点1’と、上面の角側端部を表す曲線上の点であって、前記点1’とx軸の値を同一とする点2’とを結ぶ、直線、多角線、或いは円弧であり、
    y軸とz軸を含む面に平行な側面と上面により形成される角の形状は、前記側面の角側端部を表す曲線上の点1”と、上面の角側端部を表す曲線上の点であって、前記点1”とz軸の値を同一とする点2”とを結ぶ、直線、多角線、或いは円弧である
     アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
     寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
    Figure JPOXMLDOC01-appb-M000003
    (式中、α0は樹脂の寸法変化率、bは樹脂の弾性率と幅方向の力の比に関係するパラメータ、xは凹部によって形成される空間の、x軸とy軸を含み、且つ空間の最大高さを示す点を含む切断面の半幅、cは高さ方向の収縮と幅方向の収縮の割合の比に関するパラメータ、εxは水平方向の延伸補正係数を示す)
    Figure JPOXMLDOC01-appb-M000004
    (式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比を示す。k1はx軸方向収縮率の補正係数を示し、k2はz軸方向収縮率の補正係数を示す。k1、k2は同一又は異なって、1.0~2.0の数である)
    A method for producing a mold for producing a molded article having a dimensional change rate of α 0 and having an aspect ratio A defined as follows: A method for manufacturing a mold, wherein the concave shape of the mold is as follows.
    Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is set to be bilaterally symmetric in the plane including the x axis and the y axis.
    The upper surface of the space formed by the horizontal surface and the concave portion and including the bottom surface, the four side surfaces, and the upper surface is indicated by a continuous curve in the z-axis direction represented by the following formula (1-1).
    The four side surfaces of the space are respectively shown by continuations in the x-axis direction or z-axis direction of the curves represented by the following formulas (1-2-1) to (1-2-4), respectively.
    The shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, A straight line, a polygonal line, or an arc connecting the point 1 and the point 2 having the same y-axis value;
    The shape of the corner formed by the side surface parallel to the plane including the x-axis and the y-axis and the top surface is the point 1 ′ on the curve representing the corner-side end portion of the side surface and the curve representing the corner-side end portion of the top surface. A straight line, a polygonal line, or an arc connecting the point 1 ′ and the point 2 ′ having the same x-axis value,
    The shape of the corner formed by the side surface and the upper surface parallel to the plane including the y-axis and the z-axis is the point 1 ″ on the curve representing the corner end of the side surface and the curve representing the corner end of the upper surface. A straight line, a polygonal line, or an arc connecting the point 1 ″ and the point 2 ″ having the same z-axis value. Aspect ratio: One direction on the horizontal plane is the x axis, and the horizontal plane The direction perpendicular to the x-axis is the z-axis, the direction perpendicular to the x-axis and the z-axis is the y-axis, the molded body formed of a mold is on a horizontal plane, includes the x-axis and the y-axis, and the maximum height of the molded body is Dimensional change is the ratio of the height in the y-axis direction at the cut surface to the width of the cut surface in the x-axis direction in contact with the horizontal plane when the molded body is placed so as to be symmetrical with the cut surface including the indicated point Rate: If the resin is light or thermosetting resin, it is the volume change rate before and after curing, and if the resin is a thermoplastic resin , - is a value calculated by "(glass transition temperature of the thermoplastic resin (℃) scheduled use environment temperature (℃)) × linear expansion coefficient"
    Figure JPOXMLDOC01-appb-M000003
    (Where α 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and the y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction, and ε x is the horizontal stretching correction factor)
    Figure JPOXMLDOC01-appb-M000004
    (Where α 0 is the dimensional change rate of the resin, y is the height of the space, τ s is the relaxation coefficient of side shrinkage, A is the aspect ratio, k 1 is the correction coefficient for the shrinkage rate in the x-axis direction, k 2 represents a correction coefficient for the contraction rate in the z-axis direction, and k 1 and k 2 are the same or different and are numbers of 1.0 to 2.0)
  4.  成形体が、アスペクト比がAである、角錐台形状、角柱形状、又は長手方向に垂直な面における断面が矩形若しくは台形の線形状の構造物であり、当該構造物が底面において基面に固定された形状を有する、請求項2又は3に記載のモールドの製造方法。 The shaped body is a truncated pyramid shape, prismatic shape, or a linear structure having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction with an aspect ratio of A, and the structure is fixed to the base surface at the bottom surface The method for producing a mold according to claim 2 or 3, wherein the mold has a shaped shape.
  5.  bが下記式(b-1)で表される関数で示される、請求項2~4の何れか1項に記載のモールドの製造方法。
    Figure JPOXMLDOC01-appb-M000005
    (式中のAは上記に同じ。b1は0.21~0.84の数、b2は0.3~0.9の数、b3は1.5~2.5の数、b4は0.06~0.24の数である)
    The method for producing a mold according to any one of claims 2 to 4, wherein b is represented by a function represented by the following formula (b-1).
    Figure JPOXMLDOC01-appb-M000005
    (A in the formula is the same as above, b 1 is a number from 0.21 to 0.84, b 2 is a number from 0.3 to 0.9, b 3 is a number from 1.5 to 2.5, b 4 is a number from 0.06 to 0.24)
  6.  cが下記式(c-1)で表される関数で示される、請求項2~5の何れか1項に記載のモールドの製造方法。
    Figure JPOXMLDOC01-appb-M000006
    (式中のAは上記に同じ。c1は0.2~0.8の数、c2は2.5~3.5の数、c3は0.5~2.0の数である)
    The method for producing a mold according to any one of claims 2 to 5, wherein c is represented by a function represented by the following formula (c-1).
    Figure JPOXMLDOC01-appb-M000006
    (A in the formula is the same as above. C 1 is a number from 0.2 to 0.8, c 2 is a number from 2.5 to 3.5, and c 3 is a number from 0.5 to 2.0. )
  7.  τsが下記式(τs-1)で表される関数で示される、請求項2~6の何れか1項に記載のモールドの製造方法。
    Figure JPOXMLDOC01-appb-M000007
    (式中のAは上記に同じ。τs1は0.12~0.46の数である)
    The method for producing a mold according to any one of claims 2 to 6, wherein τ s is represented by a function represented by the following formula (τ s -1).
    Figure JPOXMLDOC01-appb-M000007
    (A in the formula is the same as above. Τ s1 is a number between 0.12 and 0.46)
  8.  延伸補正係数εx、εyが下記1~5の手順で導出される、請求項2~7の何れか1項に記載のモールドの製造方法。
    1.y=fuy(x)=α0bx2+α0(1-α0)c+(1-α02、と
      x=fsx(y)=(1-α0(1-e-y/τs(A))/2A
     の交点(x0,y0)を求める。
    2.上面の暫定補正形状gu(x)、及び側面の暫定補正形状gs(y)を下記式から算出する。
       gu(x)=1/fuy(x)
       gs(y)=(1/2A)2/fsx(y)
    4.つぎに、暫定補正形状の水平高さy1=gu(x0)、及び暫定補正形状の半幅x1=gs(y0)を求める。
    5.暫定補正形状の水平方向の延伸補正係数εx、及び垂直方向の延伸補正係数εyを下記式から算出する。
       εx=x1/x0
       εy=y1/y0
    The method for producing a mold according to any one of claims 2 to 7, wherein the stretching correction coefficients ε x and ε y are derived by the following procedures 1 to 5.
    1. y = f uy (x) = α 0 bx 2 + α 0 (1−α 0 ) c + (1−α 0 ) 2 , and x = f sx (y) = (1−α 0 (1−e− y / τs (A) ) / 2A
    Find the intersection (x 0 , y 0 ) of
    2. The temporary correction shape g u (x) of the upper surface and the temporary correction shape g s (y) of the side surface are calculated from the following equations.
    g u (x) = 1 / f uy (x)
    g s (y) = (1 / 2A) 2 / f sx (y)
    4). Next, the horizontal height y 1 = g u (x 0 ) of the provisional correction shape and the half width x 1 = g s (y 0 ) of the provisional correction shape are obtained.
    5. The horizontal direction correction coefficient ε x and the vertical direction correction coefficient ε y of the provisional correction shape are calculated from the following equations.
    ε x = x 1 / x 0
    ε y = y 1 / y 0
  9.  寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が三角形の線形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状とすることを特徴とするモールドの製造方法。
    モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含み、且つ前記凹部の最大深さを示す点を含む面において凹部が左右対称になるように設置した場合において、
    水平面と凹部によって形成される、底面と2つの斜面からなる空間をx軸とy軸を含む面で切断した際の斜辺の形状が、x座標が下記式(2-1)で表され、y座標が下記式(2-2)で表される点を集合してなる曲線である
     アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
     寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
    Figure JPOXMLDOC01-appb-M000008
    (式中、ktはy軸方向の収縮の補正係数であり、下記式(kt-1)
    Figure JPOXMLDOC01-appb-M000009
    を満たすqに対して、0.9q≦kt≦1.1qの範囲である。α0は樹脂の寸法変化率、yは空間の高さ、τtは側面収縮の緩和係数、Aはアスペクト比を示す)
    Mold manufacturing method for molding a resin having a dimensional change rate of α 0 and manufacturing a linear shaped product having a triangular cross section in a plane perpendicular to the longitudinal direction and having an aspect ratio of A defined below And the manufacturing method of the mold characterized by making the recessed part shape of a mold into the following shape.
    Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In a state where the concave portion is opened so as to open on the horizontal plane side, the x-axis and the y-axis are included, and the concave portion is installed so as to be symmetrical on the plane including the point indicating the maximum depth of the concave portion.
    The shape of the hypotenuse when the space formed by the horizontal plane and the concave portion and including the bottom surface and the two inclined surfaces is cut by a plane including the x-axis and the y-axis, the x-coordinate is expressed by the following formula (2-1), and y A coordinate is a curve formed by collecting points represented by the following formula (2-2). Aspect ratio: one direction on the horizontal plane is the x axis, and on the horizontal plane, the direction perpendicular to the x axis is the z axis, the x axis The y-axis is the direction perpendicular to the z-axis, and the molded body is symmetrical on the horizontal plane by the cutting plane that includes the point that includes the x-axis and y-axis and indicates the maximum height of the molded body. Is the ratio of the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane in the case where it is installed. Dimensional change rate: When the resin is light or thermosetting resin , The volume change rate before and after curing, and when the resin is a thermoplastic resin, Is a value calculated by the scheduled use environment temperature (℃)) × linear expansion coefficient "- Temperature (℃)
    Figure JPOXMLDOC01-appb-M000008
    (Wherein, k t is a correction coefficient of contraction of the y-axis direction, the following formula (k t -1)
    Figure JPOXMLDOC01-appb-M000009
    For q that satisfies the above, the range is 0.9q ≦ k t ≦ 1.1q. α 0 is the dimensional change rate of the resin, y is the height of the space, τ t is the relaxation coefficient of side shrinkage, and A is the aspect ratio)
  10.  寸法変化率がα0の樹脂を成形して、アスペクト比がAである四角錐形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状とすることを特徴とするモールドの製造方法。
    モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口し、且つ前記凹部の最大深さ示す点を含む面によって凹部が左右対称になるように設置した場合において、
    水平面と凹部とによって形成される空間の底面は四角形であり、前記底面の4つの辺はx軸又はz軸に平行であり、前記空間の4つの側面は、前記底面における一辺を底辺とし、前記底辺と、前記空間の頂点とを結ぶ、下記式(5-1)~(5-4)で表される、x座標、y座標、及びz座標上の点を集合してなる曲線の、x軸方向或いはz軸方向への連続で示され、
    隣接する2側面により形成される角の形状が、1つの側面の角側端部を表す曲線上の点1と、隣接する他の側面の角側端部を表す曲線上の点であって、前記点1とy軸の値を同一とする点2とを結ぶ、直線、多角線、或いは円弧であることを特徴とするモールドの製造方法。
     アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、成形体を、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように水平面上に設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
     寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
    Figure JPOXMLDOC01-appb-M000010
    (式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比を示す。ktはy軸方向の収縮の補正係数であり、下記式(kt-1)
    Figure JPOXMLDOC01-appb-M000011
    を満たすqに対して、0.9q≦kt≦1.1qの範囲である)
    A mold manufacturing method for manufacturing a quadrangular pyramid-shaped molded body having an aspect ratio of A by molding a resin having a dimensional change rate of α 0 , wherein the concave shape of the mold is as follows: A method for manufacturing a mold.
    Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the case where the concave portion is opened on the horizontal plane side, and the concave portion is set so as to be symmetric with respect to the plane including the point indicating the maximum depth of the concave portion,
    The bottom surface of the space formed by the horizontal plane and the recess is a quadrangle, the four sides of the bottom surface are parallel to the x axis or the z axis, and the four side surfaces of the space have one side of the bottom surface as the bottom side, X of a curve formed by collecting points on the x-coordinate, y-coordinate, and z-coordinate represented by the following formulas (5-1) to (5-4) that connect the base and the vertex of the space. Indicated in the axial direction or continuous in the z-axis direction,
    The shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, A method of manufacturing a mold, wherein the mold is a straight line, a polygonal line, or an arc connecting the point 1 and a point 2 having the same y-axis value.
    Aspect ratio: One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis. X-axis in contact with the height in the y-axis direction on the cut surface and the horizontal plane when the molded product is placed on a horizontal plane so that the molded product is symmetrical with the cut surface including the point indicating the maximum height of the molded product Dimensional change rate: If the resin is a light or thermosetting resin, it is the volume change rate before and after curing. If the resin is a thermoplastic resin, “(thermoplastic resin The glass transition temperature (° C) minus the expected environmental temperature (° C) x linear expansion coefficient "
    Figure JPOXMLDOC01-appb-M000010
    (Wherein, alpha 0 is the dimensional change of the resin, y is the height of the space, tau s relaxation coefficient aspect shrinkage, A is .k t indicating the aspect ratio is a correction coefficient of contraction of the y-axis direction, The following formula (k t -1)
    Figure JPOXMLDOC01-appb-M000011
    (With respect to q satisfying 0.9q ≦ k t ≦ 1.1q)
  11.  成形体が、アスペクト比がAである、角錐形状、又は長手方向に垂直な面における断面が三角形の線形状の構造物であり、当該構造物が底面において基面に固定された形状を有する、請求項9又は10に記載のモールドの製造方法。 The shaped body is a pyramid shape having an aspect ratio of A, or a linear structure having a triangular cross section in a plane perpendicular to the longitudinal direction, and the structure is fixed to the base surface at the bottom surface. The method for producing a mold according to claim 9 or 10.
  12.  τtが下記式(τt-1)で表される関数で示される、請求項9~11の何れか1項に記載のモールドの製造方法。
    Figure JPOXMLDOC01-appb-M000012
    (式中、τt1は1.0~2.0の数であり、τt2は0.2~1.0の数である。Aは上記に同じ)
    The method for producing a mold according to any one of claims 9 to 11, wherein τ t is represented by a function represented by the following formula (τ t -1).
    Figure JPOXMLDOC01-appb-M000012
    (Where τ t1 is a number from 1.0 to 2.0 and τ t2 is a number from 0.2 to 1.0. A is the same as above)
  13.  寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が球欠の線形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状とすることを特徴とするモールドの製造方法。
    モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含み、且つモールドの最大深さを示す点を含む面において凹部が左右対称になるように設置した場合において、
    水平面と凹部によって形成される底面と球欠形状の側面からなる空間を、x軸とy軸を含む面で切断した際の、前記球欠形状の側面の断面形状が、x座標が下記式(3-1)で表され、y座標が下記式(3-2)で表される点を集合してなる曲線である
     アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
     寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
    Figure JPOXMLDOC01-appb-M000013
    (式中、α0は樹脂の寸法変化率、rは球欠面の半径、yは空間の高さを示す。y0は製造する成形体をその一部とする球体の中心のy軸上のy座標を示す。τcは側面収縮の緩和係数、Aはアスペクト比を示す。kcは、下記式
    Figure JPOXMLDOC01-appb-M000014
    を満たすpに対して、0.9p≦kc≦1.1pの範囲である)
    Manufacturing a mold for molding a resin having a dimensional change rate of α 0 and manufacturing a linear molded body having a cross section of a sphere in a plane perpendicular to the longitudinal direction and having an aspect ratio of A defined below. It is a method, Comprising: The manufacturing method of the mold characterized by making the recessed part shape of a mold into the following shape.
    Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is left-right symmetrical on the plane including the x axis and the y axis and including the point indicating the maximum depth of the mold.
    The cross-sectional shape of the sphere-shaped side surface when a space including a bottom surface and a sphere-shaped side surface formed by a horizontal plane and a concave portion is cut by a plane including the x-axis and the y-axis, 3-1), and the y-coordinate is a curve formed by collecting points represented by the following formula (3-2). Aspect ratio: One direction on the horizontal plane is the x-axis, and the x-axis is on the horizontal plane. The vertical direction is the z-axis, the direction perpendicular to the x-axis and the z-axis is the y-axis, and the molded body by the mold includes a point that includes the x-axis and the y-axis on the horizontal plane and indicates the maximum height of the molded body. This is the ratio of the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane when the molded body is placed symmetrically by the cut surface. In the case of a light or thermosetting resin, it is the volume change rate before and after curing, and when the resin is a thermoplastic resin, Is a value calculated by the scheduled use environment temperature (℃)) × linear expansion coefficient "- glass transition temperature of the thermoplastic resin (℃)
    Figure JPOXMLDOC01-appb-M000013
    (Where α 0 is the rate of dimensional change of the resin, r is the radius of the sphere, and y is the height of the space. Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced. Τ c is the side shrinkage relaxation coefficient, A is the aspect ratio, and k c is the following formula:
    Figure JPOXMLDOC01-appb-M000014
    (For p that satisfies 0.9p ≦ k c ≦ 1.1p)
  14.  寸法変化率がα0の樹脂を成形して、アスペクト比がAである球欠形状の成形体を製造するためのモールドの製造方法であって、モールドの凹部形状を下記形状とすることを特徴とするモールドの製造方法。
    モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口し、且つ前記凹部の最大深さ示す点を含む面によって凹部が左右対称になるように設置した場合において、
    水平面と凹部とによって形成される空間の底面が円であり、前記円をx-y平面とz-y平面により4つの弧に分割した際の、前記4つの弧上の点と、前記空間の頂点とを結ぶ線が、下記式(4-1)~(4-4)で表される、x座標、y座標、及びz座標上の点を集合してなる曲線である
     アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、成形体を、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように水平面上に設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
     寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
    Figure JPOXMLDOC01-appb-M000015
    (式中、α0は樹脂の寸法変化率、rは球欠面の半径、yは空間の高さを示す。y0は製造する成形体をその一部とする球体の中心のy軸上のy座標を示す。τcは側面収縮の緩和係数、Aはアスペクト比を示す。kcは、下記式
    Figure JPOXMLDOC01-appb-M000016
    を満たすpに対して、0.9p≦kc≦1.1pの範囲である)
    A mold manufacturing method for manufacturing a spherically shaped molded body having an aspect ratio of A by molding a resin having a dimensional change rate of α 0 , wherein the concave portion of the mold has the following shape: A method for manufacturing a mold.
    Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the case where the concave portion is opened on the horizontal plane side, and the concave portion is set so as to be symmetric with respect to the plane including the point indicating the maximum depth of the concave portion,
    The bottom surface of the space formed by the horizontal plane and the concave portion is a circle, and when the circle is divided into four arcs by the xy plane and the zy plane, points on the four arcs, The line connecting the vertices is a curve formed by collecting points on the x, y, and z coordinates represented by the following formulas (4-1) to (4-4). Aspect ratio: on the horizontal plane A direction perpendicular to the x-axis on the horizontal plane is a z-axis, a direction perpendicular to the x-axis and the z-axis is a y-axis, and the compact includes the x-axis and the y-axis. The height of the cut surface in the y-axis direction and the cut surface in the x-axis direction in contact with the horizontal surface when the molded body is placed on a horizontal plane so as to be symmetrical with the cut surface including the point indicating the maximum height of Dimensional change rate: The ratio of volume change before and after curing when the resin is light or thermosetting resin. For RESIN, - is a value calculated by "(glass transition temperature of the thermoplastic resin (℃) scheduled use environment temperature (℃)) × linear expansion coefficient"
    Figure JPOXMLDOC01-appb-M000015
    (Where α 0 is the rate of dimensional change of the resin, r is the radius of the sphere, and y is the height of the space. Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced. Τ c is the side shrinkage relaxation coefficient, A is the aspect ratio, and k c is the following formula:
    Figure JPOXMLDOC01-appb-M000016
    (For p that satisfies 0.9p ≦ k c ≦ 1.1p)
  15.  成形体が、アスペクト比がAである、球欠形状、又は長手方向に垂直な面における断面が球欠の線形状の構造物であり、当該構造物が底面において基面に固定された形状を有する、請求項13又は14に記載のモールドの製造方法。 The molded body has a spherical shape with an aspect ratio of A, or a linear structure with a spherical section in a plane perpendicular to the longitudinal direction, and the structure is fixed to the base surface at the bottom surface. The manufacturing method of the mold of Claim 13 or 14 which has.
  16.  τcが下記式(τc-1)で表される関数で示される、請求項13~15の何れか1項に記載のモールドの製造方法。
    Figure JPOXMLDOC01-appb-M000017
    (式中、τc10は0.05~0.2の数、τc11は0.005~0.02の数、τc12は2.5~10の数、τc13は10~40の数、τc14は2~8の数である。Aは上記に同じ)
    The method for producing a mold according to any one of claims 13 to 15, wherein τ c is represented by a function represented by the following formula (τ c -1).
    Figure JPOXMLDOC01-appb-M000017
    ( Wherein τ c10 is a number from 0.05 to 0.2, τ c11 is a number from 0.005 to 0.02, τ c12 is a number from 2.5 to 10, τ c13 is a number from 10 to 40, τ c14 is a number from 2 to 8. A is the same as above)
  17.  請求項1~16の何れか1項に記載のモールドの製造方法により得られるモールド。 A mold obtained by the mold manufacturing method according to any one of claims 1 to 16.
  18.  請求項1~16の何れか1項に記載のモールドの製造方法によりモールドを製造する、モールドの製造装置。 A mold manufacturing apparatus for manufacturing a mold by the mold manufacturing method according to any one of claims 1 to 16.
  19.  請求項1~16の何れか1項に記載のモールドの製造方法によりモールドを製造し、得られたモールドを利用して樹脂を成形する工程を経て、前記樹脂の硬化物若しくは固化物から成る成形体を得る成形体の製造方法。 A molding comprising a cured product or a solidified product of the resin through a step of producing a mold by the method for producing a mold according to any one of claims 1 to 16 and molding a resin using the obtained mold. The manufacturing method of the molded object which obtains a body.
  20.  請求項19に記載の成形体の製造方法で得られる成形体。 A molded body obtained by the method for producing a molded body according to claim 19.
  21.  請求項1~16の何れか1項に記載のモールドの製造方法によりモールドを製造し、得られたモールドを利用して樹脂を成形する工程を経て、前記樹脂の硬化物若しくは固化物から成る成形体を得る、成形体の製造装置。 A molding comprising a cured product or a solidified product of the resin through a step of producing a mold by the method for producing a mold according to any one of claims 1 to 16 and molding a resin using the obtained mold. An apparatus for producing a molded body for obtaining a body.
  22.  寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が矩形若しくは台形の線形状の成形体を製造するためのモールドであって、モールドの凹部形状が下記形状であることを特徴とするモールド。
    モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含む面において凹部が左右対称になるように設置した場合における、
    凹部によって形成される空間の上面の前記切断面における形状を下記式(1-1)で表される曲線とし、前記空間の側面の前記切断面における形状を下記式(1-2)で表される曲線とする
     アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
     寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
    Figure JPOXMLDOC01-appb-M000018
    (式中、α0は樹脂の寸法変化率、bは樹脂の弾性率と幅方向の力の比に関係するパラメータ、xは凹部によって形成される空間の、x軸とy軸を含み、且つ空間の最大高さを示す点を含む切断面の半幅、cは高さ方向の収縮と幅方向の収縮の割合の比に関するパラメータ、εxは水平方向の延伸補正係数を示す)
    Figure JPOXMLDOC01-appb-M000019
    (式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比、εyは垂直方向の延伸補正係数を示す)
    A mold for molding a resin having a dimensional change rate of α 0 and manufacturing a linear shaped body having a rectangular or trapezoidal cross section in a plane perpendicular to the longitudinal direction and having an aspect ratio A defined below. The mold is characterized in that the concave shape of the mold is the following shape.
    Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is set to be bilaterally symmetric in the plane including the x axis and the y axis.
    The shape of the upper surface of the space formed by the recess is a curve represented by the following formula (1-1), and the shape of the side surface of the space is represented by the following formula (1-2). Aspect ratio: One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis. The height in the y-axis direction at the cut surface when the molded body is placed so as to be bilaterally symmetric by a cut surface including a point that includes the x axis and the y axis and indicates the maximum height of the molded body. Dimensional change rate: If the resin is light or a thermosetting resin, it is the volume change rate before and after curing, and if the resin is a thermoplastic resin , “(Glass transition temperature (° C) of thermoplastic resin-Expected ambient temperature ( Is a value calculated by)) × linear expansion coefficient "
    Figure JPOXMLDOC01-appb-M000018
    (Where α 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and the y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction, and ε x is the horizontal stretching correction factor)
    Figure JPOXMLDOC01-appb-M000019
    (Where α 0 is the dimensional change rate of the resin, y is the height of the space, τ s is the relaxation coefficient of side shrinkage, A is the aspect ratio, and ε y is the stretching correction coefficient in the vertical direction)
  23.  寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、四角柱形状、又は四角錐台形状の成形体を製造するためのモールドであって、モールドの凹部形状が下記形状であることを特徴とするモールド。
    モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含む面において凹部が左右対称になるように設置した場合における、
    水平面と凹部によって形成される、底面と4つの側面と上面面からなる空間の、上面は下記式(1-1)で表される曲線のz軸方向への連続で示され、
    前記空間の4つの側面は、それぞれ下記式(1-2-1)~(1-2-4)で表される曲線のx軸方向或いはz軸方向への連続で示され、
    隣接する2側面により形成される角の形状は、1つの側面の角側端部を表す曲線上の点1と、隣接する他の側面の角側端部を表す曲線上の点であって、前記点1とy軸の値を同一とする点2とを結ぶ、直線、多角線、或いは円弧であり、
    x軸とy軸を含む面に平行な側面と上面により形成される角の形状は、前記側面の角側端部を表す曲線上の点1’と、上面の角側端部を表す曲線上の点であって、前記点1’とx軸の値を同一とする点2’とを結ぶ、直線、多角線、或いは円弧であり、
    y軸とz軸を含む面に平行な側面と上面により形成される角の形状は、前記側面の角側端部を表す曲線上の点1”と、上面の角側端部を表す曲線上の点であって、前記点1”とz軸の値を同一とする点2”とを結ぶ、直線、多角線、或いは円弧である
     アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
     寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
    Figure JPOXMLDOC01-appb-M000020
    (式中、α0は樹脂の寸法変化率、bは樹脂の弾性率と幅方向の力の比に関係するパラメータ、xは凹部によって形成される空間の、x軸とy軸を含み、且つ空間の最大高さを示す点を含む切断面の半幅、cは高さ方向の収縮と幅方向の収縮の割合の比に関するパラメータ、εxは水平方向の延伸補正係数を示す)
    Figure JPOXMLDOC01-appb-M000021
    (式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比を示す。k1はx軸方向収縮率の補正係数を示し、k2はz軸方向収縮率の補正係数を示す。k1、k2は同一又は異なって、1.0~2.0の数である)
    A mold for manufacturing a resin having a dimensional change rate of α 0 and manufacturing a quadrangular prism shape or a truncated pyramid shape molded body having an aspect ratio of A defined below, and a concave portion of the mold A mold having the following shape.
    Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is set to be bilaterally symmetric in the plane including the x axis and the y axis.
    The upper surface of the space formed by the horizontal surface and the concave portion and including the bottom surface, the four side surfaces, and the upper surface is indicated by a continuous curve in the z-axis direction represented by the following formula (1-1).
    The four side surfaces of the space are respectively shown by continuations in the x-axis direction or z-axis direction of the curves represented by the following formulas (1-2-1) to (1-2-4), respectively.
    The shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, A straight line, a polygonal line, or an arc connecting the point 1 and the point 2 having the same y-axis value;
    The shape of the corner formed by the side surface parallel to the plane including the x-axis and the y-axis and the top surface is the point 1 ′ on the curve representing the corner-side end portion of the side surface and the curve representing the corner-side end portion of the top surface. A straight line, a polygonal line, or an arc connecting the point 1 ′ and the point 2 ′ having the same x-axis value,
    The shape of the corner formed by the side surface and the upper surface parallel to the plane including the y-axis and the z-axis is the point 1 ″ on the curve representing the corner end of the side surface and the curve representing the corner end of the upper surface. A straight line, a polygonal line, or an arc connecting the point 1 ″ and the point 2 ″ having the same z-axis value. Aspect ratio: One direction on the horizontal plane is the x axis, and the horizontal plane The direction perpendicular to the x-axis is the z-axis, the direction perpendicular to the x-axis and the z-axis is the y-axis, the molded body formed of a mold is on a horizontal plane, includes the x-axis and the y-axis, and the maximum height of the molded body is Dimensional change is the ratio of the height in the y-axis direction at the cut surface to the width of the cut surface in the x-axis direction in contact with the horizontal plane when the molded body is placed so as to be symmetrical with the cut surface including the indicated point Rate: If the resin is light or thermosetting resin, it is the volume change rate before and after curing, and if the resin is a thermoplastic resin , - is a value calculated by "(glass transition temperature of the thermoplastic resin (℃) scheduled use environment temperature (℃)) × linear expansion coefficient"
    Figure JPOXMLDOC01-appb-M000020
    (Where α 0 is the dimensional change rate of the resin, b is a parameter related to the ratio of the elastic modulus of the resin and the force in the width direction, x includes the x-axis and the y-axis of the space formed by the recesses, and The half width of the cut surface including the point indicating the maximum height of the space, c is a parameter relating to the ratio of the shrinkage in the height direction and the shrinkage in the width direction, and ε x is the horizontal stretching correction factor)
    Figure JPOXMLDOC01-appb-M000021
    (Where α 0 is the dimensional change rate of the resin, y is the height of the space, τ s is the relaxation coefficient of side shrinkage, A is the aspect ratio, k 1 is the correction coefficient for the shrinkage rate in the x-axis direction, k 2 represents a correction coefficient for the contraction rate in the z-axis direction, and k 1 and k 2 are the same or different and are numbers of 1.0 to 2.0)
  24.  寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が三角形の線形状の成形体を製造するためのモールドであって、モールドの凹部形状が下記形状であることを特徴とするモールド。
    モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含み、且つ前記凹部の最大深さを示す点を含む面において凹部が左右対称になるように設置した場合において、
    水平面と凹部によって形成される、底面と2つの斜面からなる空間をx軸とy軸を含む面で切断した際の斜辺の形状が、x座標が下記式(2-1)で表され、y座標が下記式(2-2)で表される点を集合してなる曲線である
     アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
     寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
    Figure JPOXMLDOC01-appb-M000022
    (式中、ktは、下記式(kt-1)
    Figure JPOXMLDOC01-appb-M000023
    を満たすqに対して、0.9q≦kt≦1.1qの範囲である。α0は樹脂の寸法変化率、yは空間の高さ、τtは側面収縮の緩和係数、Aはアスペクト比を示す)
    A mold for producing a linear shaped product having a triangular cross section in a plane perpendicular to the longitudinal direction, in which a resin having a dimensional change rate of α 0 is molded and the aspect ratio defined below is A. The mold is characterized in that the concave shape of the mold is the following shape.
    Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In a state where the concave portion is opened so as to open on the horizontal plane side, the x-axis and the y-axis are included, and the concave portion is installed so as to be symmetrical on the plane including the point indicating the maximum depth of the concave portion.
    The shape of the hypotenuse when the space formed by the horizontal plane and the concave portion and including the bottom surface and the two inclined surfaces is cut by a plane including the x-axis and the y-axis, the x-coordinate is expressed by the following formula (2-1), and y A coordinate is a curve formed by collecting points represented by the following formula (2-2). Aspect ratio: one direction on the horizontal plane is the x axis, and on the horizontal plane, the direction perpendicular to the x axis is the z axis, the x axis The y-axis is the direction perpendicular to the z-axis, and the molded body is symmetrical on the horizontal plane by the cutting plane that includes the point that includes the x-axis and y-axis and indicates the maximum height of the molded body. Is the ratio of the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane in the case where it is installed. Dimensional change rate: When the resin is light or thermosetting resin , The volume change rate before and after curing, and when the resin is a thermoplastic resin, Is a value calculated by the scheduled use environment temperature (℃)) × linear expansion coefficient "- Temperature (℃)
    Figure JPOXMLDOC01-appb-M000022
    (Where k t is the following formula (k t −1)
    Figure JPOXMLDOC01-appb-M000023
    For q that satisfies the above, the range is 0.9q ≦ k t ≦ 1.1q. α 0 is the dimensional change rate of the resin, y is the height of the space, τ t is the relaxation coefficient of side shrinkage, and A is the aspect ratio)
  25.  寸法変化率がα0の樹脂を成形して、アスペクト比がAである四角錐形状の成形体を製造するためのモールドであって、モールドの凹部形状が下記形状であることを特徴とするモールド。
    モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口し、且つ前記凹部の最大深さ示す点を含む面によって凹部が左右対称になるように設置した場合において、
    水平面と凹部とによって形成される空間の底面は四角形であり、前記底面の4つの辺はx軸又はz軸に平行であり、前記空間の4つの側面は、前記底面における一辺を底辺とし、前記底辺と、前記空間の頂点とを結ぶ、下記式(5-1)~(5-4)で表される、x座標、y座標、及びz座標上の点を集合してなる曲線の、x軸方向或いはz軸方向への連続で示され、
    隣接する2側面により形成される角の形状が、1つの側面の角側端部を表す曲線上の点1と、隣接する他の側面の角側端部を表す曲線上の点であって、前記点1とy軸の値を同一とする点2とを結ぶ、直線、多角線、或いは円弧であることを特徴とするモールドの製造方法。
     アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、成形体を、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように水平面上に設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
     寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
    Figure JPOXMLDOC01-appb-M000024
    (式中、α0は樹脂の寸法変化率、yは空間の高さ、τsは側面収縮の緩和係数、Aはアスペクト比を示す。ktはy軸方向の収縮の補正係数であり、下記式(kt-1)
    Figure JPOXMLDOC01-appb-M000025
    を満たすqに対して、0.9q≦kt≦1.1qの範囲である)
    A mold for producing a quadrangular pyramid shaped article having an aspect ratio of A by molding a resin having a dimensional change rate of α 0 , wherein the mold has a concave shape of the following shape .
    Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the case where the concave portion is opened on the horizontal plane side, and the concave portion is set so as to be symmetric with respect to the plane including the point indicating the maximum depth of the concave portion,
    The bottom surface of the space formed by the horizontal plane and the recess is a quadrangle, the four sides of the bottom surface are parallel to the x axis or the z axis, and the four side surfaces of the space have one side of the bottom surface as the bottom side, X of a curve formed by collecting points on the x-coordinate, y-coordinate, and z-coordinate represented by the following formulas (5-1) to (5-4) that connect the base and the vertex of the space. Indicated in the axial direction or continuous in the z-axis direction,
    The shape of the corner formed by two adjacent side surfaces is a point 1 on the curve representing the corner end of one side surface and a point on the curve representing the corner end of the other side surface, A method of manufacturing a mold, wherein the mold is a straight line, a polygonal line, or an arc connecting the point 1 and a point 2 having the same y-axis value.
    Aspect ratio: One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis. X-axis in contact with the height in the y-axis direction on the cut surface and the horizontal plane when the molded product is placed on a horizontal plane so that the molded product is symmetrical with the cut surface including the point indicating the maximum height of the molded product Dimensional change rate: If the resin is a light or thermosetting resin, it is the volume change rate before and after curing. If the resin is a thermoplastic resin, “(thermoplastic resin The glass transition temperature (° C) minus the expected environmental temperature (° C) x linear expansion coefficient "
    Figure JPOXMLDOC01-appb-M000024
    (Wherein, alpha 0 is the dimensional change of the resin, y is the height of the space, tau s relaxation coefficient aspect shrinkage, A is .k t indicating the aspect ratio is a correction coefficient of contraction of the y-axis direction, The following formula (k t -1)
    Figure JPOXMLDOC01-appb-M000025
    (With respect to q satisfying 0.9q ≦ k t ≦ 1.1q)
  26.  寸法変化率がα0の樹脂を成形して、下記で規定されるアスペクト比がAである、長手方向に垂直な面における断面が球欠の線形状の成形体を製造するためのモールドであって、モールドの凹部形状が下記形状であることを特徴とするモールド。
    モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口するよう設置した状態でx軸とy軸を含み、且つモールドの最大深さを示す点を含む面において凹部が左右対称になるように設置した場合において、
    水平面と凹部によって形成される底面と球欠形状の側面からなる空間を、x軸とy軸を含む面で切断した際の、前記球欠形状の側面の断面形状が、x座標が下記式(3-1)で表され、y座標が下記式(3-2)で表される点を集合してなる曲線である
     アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
     寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
    Figure JPOXMLDOC01-appb-M000026
    (式中、α0は樹脂の寸法変化率、rは球欠面の半径、yは空間の高さを示す。y0は製造する成形体をその一部とする球体の中心のy軸上のy座標を示す。τcは側面収縮の緩和係数、Aはアスペクト比を示す。kcは、下記式
    Figure JPOXMLDOC01-appb-M000027
    を満たすpに対して、0.9p≦kc≦1.1pの範囲である)
    This is a mold for molding a resin having a dimensional change rate of α 0 and manufacturing a linear shaped molded article having a spherical cross section in a plane perpendicular to the longitudinal direction and having an aspect ratio A defined below. The mold has a concave shape as described below.
    Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the state where the concave portion is installed so as to open to the horizontal plane side, the concave portion is left-right symmetrical on the plane including the x axis and the y axis and including the point indicating the maximum depth of the mold.
    The cross-sectional shape of the sphere-shaped side surface when a space including a bottom surface and a sphere-shaped side surface formed by a horizontal plane and a concave portion is cut by a plane including the x-axis and the y-axis, 3-1), and the y-coordinate is a curve formed by collecting points represented by the following formula (3-2). Aspect ratio: One direction on the horizontal plane is the x-axis, and the x-axis is on the horizontal plane. The vertical direction is the z-axis, the direction perpendicular to the x-axis and the z-axis is the y-axis, and the molded body by the mold includes a point that includes the x-axis and the y-axis on the horizontal plane and indicates the maximum height of the molded body. This is the ratio of the height in the y-axis direction at the cut surface and the width of the cut surface in the x-axis direction in contact with the horizontal plane when the molded body is placed symmetrically by the cut surface. In the case of a light or thermosetting resin, it is the volume change rate before and after curing, and when the resin is a thermoplastic resin, Is a value calculated by the scheduled use environment temperature (℃)) × linear expansion coefficient "- glass transition temperature of the thermoplastic resin (℃)
    Figure JPOXMLDOC01-appb-M000026
    (Where α 0 is the rate of dimensional change of the resin, r is the radius of the sphere, and y is the height of the space. Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced. Τ c is the side shrinkage relaxation coefficient, A is the aspect ratio, and k c is the following formula:
    Figure JPOXMLDOC01-appb-M000027
    (For p that satisfies 0.9p ≦ k c ≦ 1.1p)
  27.  寸法変化率がα0の樹脂を成形して、アスペクト比がAである球欠形状の成形体を製造するためのモールドであって、モールドの凹部形状が下記形状であることを特徴とするモールド。
    モールドの凹部形状:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドを、水平面上に、モールドの凹部が水平面側に開口し、且つ前記凹部の最大深さ示す点を含む面によって凹部が左右対称になるように設置した場合において、
    水平面と凹部とによって形成される空間の底面が円であり、前記円をx-y平面とz-y平面により4つの弧に分割した際の、前記4つの弧上の点と、前記空間の頂点とを結ぶ線が、下記式(4-1)~(4-4)で表される、x座標、y座標、及びz座標上の点を集合してなる曲線である
     アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、成形体を、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように水平面上に設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
     寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
    Figure JPOXMLDOC01-appb-M000028
    (式中、α0は樹脂の寸法変化率、rは球欠面の半径、yは空間の高さを示す。y0は製造する成形体をその一部とする球体の中心のy軸上のy座標を示す。τcは側面収縮の緩和係数、Aはアスペクト比を示す。kcは、下記式
    Figure JPOXMLDOC01-appb-M000029
    を満たすpに対して、0.9p≦kc≦1.1pの範囲である)
    A mold for producing a spherically shaped molded body having an aspect ratio of A by molding a resin having a dimensional change rate of α 0 , wherein the concave shape of the mold is the following shape .
    Mold concave shape: x direction is one direction on the horizontal plane, z axis is the direction perpendicular to the x axis on the horizontal plane, y axis is the direction perpendicular to the x and z axes, and the mold is molded on the horizontal plane. In the case where the concave portion is opened on the horizontal plane side, and the concave portion is set so as to be symmetric with respect to the plane including the point indicating the maximum depth of the concave portion,
    The bottom surface of the space formed by the horizontal plane and the concave portion is a circle, and when the circle is divided into four arcs by the xy plane and the zy plane, points on the four arcs, The line connecting the vertices is a curve formed by collecting points on the x, y, and z coordinates represented by the following formulas (4-1) to (4-4). Aspect ratio: on the horizontal plane A direction perpendicular to the x-axis on the horizontal plane is a z-axis, a direction perpendicular to the x-axis and the z-axis is a y-axis, and the compact includes the x-axis and the y-axis. The height of the cut surface in the y-axis direction and the cut surface in the x-axis direction in contact with the horizontal surface when the molded body is placed on a horizontal plane so as to be symmetrical with the cut surface including the point indicating the maximum height of Dimensional change rate: The ratio of volume change before and after curing when the resin is light or thermosetting resin. For RESIN, - is a value calculated by "(glass transition temperature of the thermoplastic resin (℃) scheduled use environment temperature (℃)) × linear expansion coefficient"
    Figure JPOXMLDOC01-appb-M000028
    (Where α 0 is the rate of dimensional change of the resin, r is the radius of the sphere, and y is the height of the space. Y 0 is on the y-axis at the center of the sphere that is part of the molded product to be produced. Τ c is the side shrinkage relaxation coefficient, A is the aspect ratio, and k c is the following formula:
    Figure JPOXMLDOC01-appb-M000029
    (For p that satisfies 0.9p ≦ k c ≦ 1.1p)
  28.  樹脂を成形して、種々のアスペクト比を有する、円錐形状、角錐形状、円錐台形状、角錐台形状、円柱形状、角柱形状、球欠形状、又は長手方向に垂直な面における断面が矩形、台形、三角形、若しくは球欠の線形状の成形体を製造するためのモールドの設計を、コンピュータに実行させるためのモールド設計プログラムであって、所望の成形体の形状、アスペクト比A、及び形成する樹脂の寸法変化率α0を入力する第1ステップと、
    入力された、所望の成形体の形状、アスペクト比A、及び形成する樹脂の寸法変化率α0から、コンピュータに、所望の成形体の形状に応じた補正関数の選択を実行させる第2ステップと、コンピュータに、選択された補正関数によるモールドの凹部形状の補正を実行させる第3ステップとを含む、モールド設計プログラム。
     アスペクト比:水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をz軸、x軸とz軸に垂直な方向をy軸とし、モールドによる成形体を水平面上に、x軸とy軸を含み、且つ成形体の最大高さを示す点を含む切断面によって成形体が左右対称になるように設置した場合における、前記切断面でのy軸方向の高さと水平面に接するx軸方向の切断面の幅との比である
     寸法変化率:樹脂が光又は熱硬化性樹脂の場合は、硬化前後の体積変化率であり、樹脂が熱可塑性樹脂の場合は、「(熱可塑性樹脂のガラス転移温度(℃)-使用予定環境温度(℃))×線膨張係数」にて算出される値である
    Molded resin with various aspect ratios, cone shape, pyramid shape, truncated cone shape, truncated pyramid shape, cylindrical shape, prismatic shape, spherical notch shape, or rectangular cross section in the plane perpendicular to the longitudinal direction, trapezoid , A mold design program for causing a computer to execute a mold design for producing a molded product having a triangular shape or a spherical shape, and a resin to be formed. A first step of inputting a dimensional change rate α 0 of
    A second step of causing the computer to select a correction function in accordance with the desired shape of the molded body from the input shape of the desired molded body, the aspect ratio A, and the dimensional change rate α 0 of the resin to be formed; And a third step of causing the computer to correct the concave shape of the mold by the selected correction function.
    Aspect ratio: One direction on the horizontal plane is the x-axis, the direction perpendicular to the x-axis on the horizontal plane is the z-axis, and the direction perpendicular to the x-axis and z-axis is the y-axis. When the molded body is placed so as to be bilaterally symmetric by a cut surface that includes a point that includes the axis and the y-axis and that indicates the maximum height of the molded body, the height in the y-axis direction on the cut surface and the horizontal plane Dimensional change rate: If the resin is light or thermosetting resin, it is the volume change rate before and after curing. If the resin is a thermoplastic resin, “(thermal It is a value calculated by “Glass transition temperature of plastic resin (° C.) − Scheduled environment temperature (° C.)) × Linear expansion coefficient”.
PCT/JP2019/005618 2018-02-19 2019-02-15 Mold manufacturing method WO2019160095A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-027433 2018-02-19
JP2018027433 2018-02-19
JP2018100853 2018-05-25
JP2018-100853 2018-05-25
JP2018-174309 2018-09-18
JP2018174309A JP2019206165A (en) 2018-02-19 2018-09-18 Manufacturing method of mold

Publications (1)

Publication Number Publication Date
WO2019160095A1 true WO2019160095A1 (en) 2019-08-22

Family

ID=67619943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005618 WO2019160095A1 (en) 2018-02-19 2019-02-15 Mold manufacturing method

Country Status (1)

Country Link
WO (1) WO2019160095A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09277260A (en) * 1996-04-11 1997-10-28 Kao Corp Method and apparatus for designing mold
JP2005104093A (en) * 2003-10-02 2005-04-21 Canon Inc Method for producing diffractive optical element, and the diffractive optical element
JP2007253577A (en) * 2006-03-27 2007-10-04 Toppan Printing Co Ltd Mold member for imprint, manufacturing method therefor, and imprint method
JP2008006639A (en) * 2006-06-28 2008-01-17 Toppan Printing Co Ltd Imprinting mold and its manufacturing method
JP2015037152A (en) * 2013-08-15 2015-02-23 株式会社東芝 Mold manufacturing method, mold manufacturing device, and pattern forming method
JP2016078266A (en) * 2014-10-14 2016-05-16 三菱レイヨン株式会社 Production method of mold, mold, production method of film, and film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09277260A (en) * 1996-04-11 1997-10-28 Kao Corp Method and apparatus for designing mold
JP2005104093A (en) * 2003-10-02 2005-04-21 Canon Inc Method for producing diffractive optical element, and the diffractive optical element
JP2007253577A (en) * 2006-03-27 2007-10-04 Toppan Printing Co Ltd Mold member for imprint, manufacturing method therefor, and imprint method
JP2008006639A (en) * 2006-06-28 2008-01-17 Toppan Printing Co Ltd Imprinting mold and its manufacturing method
JP2015037152A (en) * 2013-08-15 2015-02-23 株式会社東芝 Mold manufacturing method, mold manufacturing device, and pattern forming method
JP2016078266A (en) * 2014-10-14 2016-05-16 三菱レイヨン株式会社 Production method of mold, mold, production method of film, and film

Similar Documents

Publication Publication Date Title
CN101221358A (en) Curved substrate multi-phase micro-optical element processing method based on flexible ultraviolet die mold
Hubbard et al. Emergent faces in crystal etching
CN110304816A (en) A kind of glass lens manufacturing method that array formation is cut one by one
EP2225096B1 (en) Manufacturing optical elements
JP2017165084A (en) Three-dimensional printing apparatus
JP2019206165A (en) Manufacturing method of mold
WO2019160095A1 (en) Mold manufacturing method
Sonne et al. Modeling and simulation of the deformation process of PTFE flexible stamps for nanoimprint lithography on curved surfaces
US10942398B1 (en) Continuous liquid crystal alignment patterns for geometric phase optics
JP6732735B2 (en) Manufacturing of optical elements by replication and corresponding replication tools and optical devices
KR100911908B1 (en) Method for producing die and molding obtained by it
CN112068397A (en) Simulation method and apparatus, storage medium, film forming method, and cured product manufacturing method
Hubbard MEMS design: The geometry of silicon micromachining
JP2019142206A (en) Manufacturing method of mold, and manufacturing method of molding using same
Cowan Magnetically induced actuation and optimization of the Miura-ori structure
WO2019160166A1 (en) Mold production method, and molded article production method using same
Mi et al. Fabrication of circular sawtooth gratings using focused UV lithography
US10739583B2 (en) Method for obtaining at least one structure approximating a sought structure by reflow
JP2003255828A (en) Method for preparing tomographicla map
JP5821409B2 (en) Mold for nanoimprint lithography
JPH10180882A (en) Manufacture of highly elastic body by stereo lithography and highly elastic body manufactured by stereo lithography
JP4541675B2 (en) Method for manufacturing diffractive optical element
JP7475222B2 (en) Simulation method, program, simulation device, database, film forming device, and article manufacturing method
JP7475221B2 (en) Simulation method, program, simulation device, database, film forming device, and article manufacturing method
Wang et al. Influence of template modulus of elasticity on polymer filling, deformation and stress distribution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754252

Country of ref document: EP

Kind code of ref document: A1