JP2005104093A - Method for producing diffractive optical element, and the diffractive optical element - Google Patents

Method for producing diffractive optical element, and the diffractive optical element Download PDF

Info

Publication number
JP2005104093A
JP2005104093A JP2003343914A JP2003343914A JP2005104093A JP 2005104093 A JP2005104093 A JP 2005104093A JP 2003343914 A JP2003343914 A JP 2003343914A JP 2003343914 A JP2003343914 A JP 2003343914A JP 2005104093 A JP2005104093 A JP 2005104093A
Authority
JP
Japan
Prior art keywords
shape
mold
optical element
base surface
diffractive optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003343914A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Iwakura
信義 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003343914A priority Critical patent/JP2005104093A/en
Publication of JP2005104093A publication Critical patent/JP2005104093A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3835Designing moulds, e.g. using CAD-CAM
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Abstract

<P>PROBLEM TO BE SOLVED: To produce a diffractive optical element having high shape accuracy by effectively correcting the shape of a molding die. <P>SOLUTION: In the step 3 to 6, an error of the base face shape of the die is obtained by measuring the three-dimensional shape of the die for molding a diffraction optical element, obtaining the base face shape from which a diffraction lattice shape is removed and comparing it with a design value. On the basis of the error of the base face shape thus obtained, mold machining condition is changed and a return to the step 2 is made for remachining the die. The steps 3 to 6 are repeated. If the error of the base face shape of the die is within a tolerance of specification, the diffraction optical element is molded by using the die, and in the steps 9 to 11, the same steps as described above are executed to extract an error of the base face shape of a molded product. If necessary, the machining shape of the die is corrected in the step 15, and a return to the step 2 and the die is reprocessed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体測定装置の測定光学系や、カメラ、レーザビームプリンタ、複写機、ヘッドマウントディスプレイおよび液晶プロジェクタ等の光学部品として用いられる回折光学素子を、金型によるモールド成形により製造する回折光学素子の製造方法および回折光学素子に関するものである。   The present invention relates to a diffractive optical element for manufacturing a diffractive optical element used as an optical component of a measuring optical system of a semiconductor measuring apparatus, a camera, a laser beam printer, a copying machine, a head-mounted display, a liquid crystal projector, etc. The present invention relates to an element manufacturing method and a diffractive optical element.

平面、球面、または非球面をベース面形状とし、位相関数により定義される回折格子(レリーフ)形状がベース面形状上に形成される回折光学素子の製造方法においては、従来、連続面形状で形成されるレンズ等各種光学素子の製造方法と同様に、回折光学素子を成形加工する金型について、金型製作加工後に同金型の三次元形状測定を行うことで、公差規格に対する形状評価が行われている。また、前記金型を用いた成形加工によって製造された回折光学素子に対しても、金型と同様に三次元形状測定を行い、回折光学素子形状について形状評価が行われている。   In a diffractive optical element manufacturing method in which a flat, spherical, or aspherical surface is used as a base surface shape, and a diffraction grating (relief) shape defined by a phase function is formed on the base surface shape, a conventional continuous surface shape is used. Similar to the manufacturing method of various optical elements such as lenses, the shape of the diffractive optical element can be evaluated by measuring the three-dimensional shape of the mold after the mold is manufactured. It has been broken. Further, the three-dimensional shape measurement is performed on the diffractive optical element manufactured by the molding process using the mold, and the shape evaluation is performed on the shape of the diffractive optical element.

金型やその成形品に対する測定形状評価の結果、公差規格などの仕様を満足していない場合には、加工条件を改めるなどして金型を再加工し、再加工後の金型を使用して改めて成形加工を行うことになる。また、金型形状は三次元形状測定結果が仕様を満足しているにもかかわらず、その金型を用いたモールド成形により製造された光学素子の測定形状が仕様を満たしていない場合には、同じ金型を用いて成形条件を改めるなどして再度モールド成形を行うといった方法が採られている。   If the measurement shape evaluation of the mold or its molded product does not satisfy the specifications such as tolerance standards, rework the mold by changing the machining conditions, etc., and use the reworked mold. Thus, the molding process is performed again. In addition, when the measurement shape of the optical element manufactured by molding using the mold does not satisfy the specification, even though the mold shape satisfies the specification of the three-dimensional shape measurement result, A method is employed in which molding is performed again by changing molding conditions using the same mold.

ここで、従来技術による回折光学素子の製造工程において金型や光学素子の三次元形状測定を行う方法としては、例えば以下の特許文献1に開示されている測定方法が挙げられる。すなわち、図10に示すように、触針式の三次元形状測定装置により回折光学素子の表面形状に対し触針をトレースすることで回折格子形状の測定を行い、トレースによって得られた断面測定形状R100についてまずベース面の設計形状R101に対し最小二乗法などを用いてフィッティング処理を行い、断面測定形状R100からベース面設計形状R101を除去した残差形状R102をもとに回折効率などの計算を実施し、被測定物である回折光学素子の形状評価を行っていた。
特開平11−167013号公報
Here, as a method for measuring a three-dimensional shape of a mold or an optical element in a manufacturing process of a diffractive optical element according to the conventional technique, for example, a measuring method disclosed in Patent Document 1 below can be cited. That is, as shown in FIG. 10, the shape of the diffraction grating is measured by tracing the stylus with respect to the surface shape of the diffractive optical element with a stylus type three-dimensional shape measuring device, and the cross-sectional measurement shape obtained by the trace For R100, first, a fitting process is performed on the base surface design shape R101 using a least square method or the like, and calculation of diffraction efficiency and the like is performed based on the residual shape R102 obtained by removing the base surface design shape R101 from the cross-section measurement shape R100. The shape of the diffractive optical element that is the object to be measured was evaluated.
Japanese Patent Laid-Open No. 11-167013

前述の従来技術による回折光学素子の製造方法においては、回折光学素子をモールド成形するための金型の加工形状、および同金型により成形された回折光学素子の表面形状の測定評価を行うのみでは、回折格子形状の形状評価の高い回折光学素子を効率的に製造することは困難である。その理由は以下の通りである。   In the method of manufacturing a diffractive optical element according to the above-described prior art, it is only necessary to measure and evaluate the processing shape of a mold for molding the diffractive optical element and the surface shape of the diffractive optical element formed by the mold. It is difficult to efficiently manufacture a diffractive optical element having a high shape evaluation of the diffraction grating shape. The reason is as follows.

触針式の三次元形状測定装置の触針(プローブ)によりトレースした測定形状について、上記従来例では平面、球面、あるいは非球面で形成されるベース面設計形状に対してフィッティング処理を行い、フィッティングしたベース面設計形状を測定形状から差し引くことで、回折格子形状を求めている。つまり、被測定物である回折光学素子あるいは同素子をモールド成形する金型の形状からベース面設計形状を差し引いた除去形状を、回折格子形状として取り扱っている。しかしながら、このような従来技術による測定形状評価方法を採用すると、被測定物のベース面形状に、図10の(b)に示すような形状誤差R103が存在していた場合に、この形状誤差R103は測定形状から導出される前記回折格子形状の中に含まれてしまうことになる。   For the measurement shape traced by the stylus (probe) of the stylus type three-dimensional shape measuring device, in the above conventional example, a fitting process is performed on the base surface design shape formed by a flat surface, a spherical surface, or an aspherical surface. The diffraction grating shape is obtained by subtracting the designed base surface shape from the measurement shape. That is, the removed shape obtained by subtracting the base surface design shape from the shape of the diffractive optical element or the mold for molding the element to be measured is handled as the diffraction grating shape. However, when such a measurement shape evaluation method according to the prior art is adopted, when a shape error R103 as shown in FIG. 10B exists in the shape of the base surface of the object to be measured, this shape error R103. Is included in the diffraction grating shape derived from the measurement shape.

その結果、従来技術による回折格子測定形状をもとにした回折効率評価など、回折格子測定形状に対する形状評価が、同測定形状に含まれるベース面の形状誤差のために信頼性の低いものとなる傾向があった。   As a result, shape evaluation for the diffraction grating measurement shape, such as diffraction efficiency evaluation based on the diffraction grating measurement shape according to the prior art, becomes unreliable due to the shape error of the base surface included in the measurement shape. There was a trend.

なお、一般的に平面、球面、あるいは非球面の連続面形状で形成されるレンズ等の光学素子を、金型を用いた成形加工により形状創成する製造方法においては、金型形状やモールド成形された光学素子形状に対し三次元形状測定を行い、設計形状に対する測定形状の形状誤差を導出し、金型を形状補正することで、設計形状の公差規格を満足する所望の光学素子を製造する手法がよく知られているが、平面、球面、あるいは非球面をベース面形状とし、位相関数により定義される回折格子形状が前記ベース面形状に重ねて形成される回折光学素子の製造方法においては、前述のような連続面形状の光学素子製造方法において採用されている金型の形状補正は行われておらず、上記従来例でも、成形品である回折光学素子に対して三次元形状測定を行うことで形状評価を行うのみである。   Incidentally, in a manufacturing method for creating a shape of an optical element such as a lens, which is generally formed of a flat, spherical, or aspherical continuous surface, by molding using a mold, the mold shape or molding is performed. A method of manufacturing a desired optical element that satisfies the tolerance standard of the design shape by measuring the three-dimensional shape of the measured optical element shape, deriving the shape error of the measured shape with respect to the design shape, and correcting the shape of the mold However, in a method of manufacturing a diffractive optical element in which a plane, spherical surface, or aspherical surface is a base surface shape, and a diffraction grating shape defined by a phase function is formed to overlap the base surface shape, The shape correction of the mold used in the above-described method for manufacturing an optical element having a continuous surface shape is not performed. Even in the above-described conventional example, the three-dimensional shape measurement is performed on the diffractive optical element which is a molded product. Only carry out the shape evaluation by performing.

本発明は、上記従来の技術の有する未解決の課題に鑑みてなされたものであり、回折格子のベース面形状誤差を抽出して金型形状の補正を行うことで、モールド成形される回折光学素子の形状精度を向上させ、安定した高い光学性能を得ることのできる回折光学素子の製造方法および回折光学素子を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and the diffractive optics molded by extracting the base surface shape error of the diffraction grating and correcting the mold shape. An object of the present invention is to provide a diffractive optical element manufacturing method and a diffractive optical element that can improve the shape accuracy of the element and obtain stable and high optical performance.

本発明の回折光学素子の製造方法は、平面、球面または非球面の連続面形状をベース面形状とし、前記ベース面形状に重ねて回折格子形状が形成された回折光学素子の製造方法において、回折光学素子のモールド成形に用いる金型の三次元形状を計測して金型の三次元形状データを得る工程と、得られた金型の三次元形状データに基づいて金型のベース面形状誤差を算出する工程と、算出された金型のベース面形状誤差に基づいて金型の形状補正を行う工程と、形状補正を行った金型を用いて回折光学素子をモールド成形する工程と、を有することを特徴とする。   The method of manufacturing a diffractive optical element according to the present invention is a method of manufacturing a diffractive optical element in which a planar, spherical, or aspherical continuous surface shape is a base surface shape, and a diffraction grating shape is formed on the base surface shape. The process of obtaining the 3D shape data of the mold by measuring the 3D shape of the mold used for molding the optical element, and the base surface shape error of the mold based on the obtained 3D shape data of the mold A step of calculating, a step of correcting the shape of the mold based on the calculated base surface shape error of the mold, and a step of molding the diffractive optical element using the mold subjected to the shape correction. It is characterized by that.

また、平面、球面または非球面の連続面形状をベース面形状とし、前記ベース面形状に重ねて回折格子形状が形成された回折光学素子の製造方法において、回折光学素子のモールド成形に用いる金型の三次元形状を計測して金型の三次元形状データを得る工程と、得られた金型の三次元形状データに基づいて金型のベース面形状誤差を算出する工程と、算出された金型のベース面形状誤差に基づいて金型の形状補正を行う工程と、形状補正を行った金型を用いて回折光学素子をモールド成形する工程と、モールド成形された回折光学素子の三次元形状を計測して成形品の三次元形状データを得る工程と、得られた成形品の三次元形状データに基づいて成形品のベース面形状誤差を算出する工程と、算出された成形品のベース面形状誤差に基づいて金型の形状補正を行う工程と、形状補正を行った金型を用いて回折光学素子をモールド成形する工程と、を有することを特徴とする回折光学素子の製造方法でもよい。   In addition, in a method for manufacturing a diffractive optical element in which a planar, spherical or aspherical continuous surface shape is a base surface shape and a diffraction grating shape is formed on the base surface shape, a mold used for molding the diffractive optical element Measuring the three-dimensional shape of the mold to obtain three-dimensional shape data of the mold, calculating the base surface shape error of the mold based on the obtained three-dimensional shape data of the mold, and the calculated mold A step of correcting the shape of the mold based on the shape error of the base surface of the mold, a step of molding the diffractive optical element using the mold subjected to the shape correction, and the three-dimensional shape of the molded diffractive optical element To obtain the three-dimensional shape data of the molded product by measuring the shape, the step of calculating the base surface shape error of the molded product based on the obtained three-dimensional shape data of the molded product, and the calculated base surface of the molded product Based on shape error And performing mold shape correction Te, or in the manufacturing method of the diffractive optical element and a step of molding the diffractive optical element using a mold subjected to shape correction, a.

また、平面、球面または非球面の連続面形状をベース面形状とし、前記ベース面形状に重ねて回折格子形状が形成された回折光学素子の製造方法において、金型を用いてモールド成形された回折光学素子の三次元形状を計測して成形品の三次元形状データを得る工程と、得られた成形品の三次元形状データに基づいて成形品のベース面形状誤差を算出する工程と、算出された成形品のベース面形状誤差に基づいて金型の形状補正を行う工程と、形状補正を行った金型を用いて回折光学素子をモールド成形する工程と、を有することを特徴とする回折光学素子の製造方法でもよい。   Further, in a method of manufacturing a diffractive optical element in which a flat, spherical, or aspherical continuous surface shape is a base surface shape and a diffraction grating shape is formed on the base surface shape, a diffraction formed by using a mold is used. The step of obtaining the three-dimensional shape data of the molded product by measuring the three-dimensional shape of the optical element, the step of calculating the base surface shape error of the molded product based on the three-dimensional shape data of the obtained molded product, A diffractive optical system, comprising: a step of correcting a shape of a mold based on a shape error of a base surface of a molded product; and a step of molding a diffractive optical element using the mold subjected to the shape correction. An element manufacturing method may be used.

接触式または非接触式プローブを備えた三次元形状測定装置によって金型または回折光学素子またはその双方の三次元形状を測定するとよい。   The three-dimensional shape of the mold and / or the diffractive optical element may be measured by a three-dimensional shape measuring apparatus having a contact or non-contact type probe.

計測された金型または成形品の三次元形状データからベース面設計形状を差し引いた残差形状について、位相関数によって定義される回折格子形状を除去することでベース面形状誤差を算出するとよい。   For the residual shape obtained by subtracting the base surface design shape from the measured three-dimensional shape data of the mold or molded product, the base surface shape error may be calculated by removing the diffraction grating shape defined by the phase function.

金型およびその成形品である回折光学素子の三次元形状を計測し、ベース面設計形状や、位相関数によって定義される回折格子形状を差し引いたベース面形状誤差を求めて金型の形状補正を行う。このようなベース面形状に対する形状補正を行った金型を用いて回折光学素子をモールド成形することで、極めて形状精度の高い回折光学素子を製造することができる。   Measures the three-dimensional shape of the mold and the diffractive optical element that is the molded product, and calculates the base surface shape error by subtracting the base surface design shape and the diffraction grating shape defined by the phase function to correct the shape of the mold. Do. A diffractive optical element with extremely high shape accuracy can be manufactured by molding a diffractive optical element using a mold that has been subjected to shape correction for such a base surface shape.

図1は一実施の形態による回折光学素子の製造方法を説明するための工程図であり、平面、球面、あるいは非球面のいずれかの連続面をベース面形状とし、位相関数により定義される回折格子(レリーフ)形状が前記ベース面上に形成される回折光学素子の製造工程において、金型のベース面形状の補正工程であるステップ2ないしステップ7を含むことを特徴とする。   FIG. 1 is a process diagram for explaining a method of manufacturing a diffractive optical element according to an embodiment, in which a continuous surface of a plane, a sphere, or an aspheric surface is a base surface shape, and is defined by a phase function. The manufacturing process of the diffractive optical element in which the grating (relief) shape is formed on the base surface includes steps 2 to 7 which are steps for correcting the base surface shape of the mold.

すなわち、ステップ1の製造開始後一番目の工程であるステップ2で、回折光学素子のモールド成形用の金型の製作加工を行う。つぎに、ステップ3で、加工が完了した金型について、図2に示す接触式あるいは非接触式のプローブを備えた三次元形状測定装置を用いて、回折格子形状の加工面に対し前記プローブを走査することにより、金型の三次元形状の測定を実施する。   That is, in Step 2, which is the first process after the start of manufacture in Step 1, a mold for forming a diffractive optical element is manufactured. Next, in step 3, using the three-dimensional shape measuring apparatus provided with the contact-type or non-contact-type probe shown in FIG. By scanning, the three-dimensional shape of the mold is measured.

ステップ4で、金型形状測定ステップ3により得られた金型の三次元形状データである測定形状データに対して、前記ベース面形状の抽出演算処理を行う。すなわち、従来技術と同様に測定形状データから金型のベース面設計形状を除去する演算処理を行う。つぎに、ステップ5で金型のベース面形状誤差の抽出処理を行う。すなわち、ステップ4で金型のベース面設計形状を除去して算出された残差形状に対し、後述する演算処理を実施することにより、金型のベース面形状誤差を抽出する。   In step 4, the base surface shape extraction calculation process is performed on the measurement shape data which is the three-dimensional shape data of the mold obtained in the mold shape measurement step 3. That is, similarly to the conventional technique, a calculation process for removing the base surface design shape of the mold from the measured shape data is performed. Next, in step 5, a mold base surface shape error extraction process is performed. That is, the base surface shape error of the mold is extracted by performing arithmetic processing described later on the residual shape calculated by removing the base surface design shape of the mold in Step 4.

ステップ6では、ステップ5で抽出した金型のベース面形状誤差をもとに前記測定形状データに対する形状評価を実施する。ここでは、ベース面形状について設計値として規定された公差規格に対し、ベース面形状誤差が同規格を満足しているかについて判定する。金型の測定形状データから抽出したベース面形状誤差が、同形状誤差に関する公差規格(例えば形状誤差のPV値など)よりも値が小さい場合には、ステップ8の回折光学素子成形工程に進む。他方、前記条件を満足しない場合には、ステップ7で金型の加工条件の修正を行う。   In step 6, shape evaluation is performed on the measurement shape data based on the base surface shape error of the mold extracted in step 5. Here, it is determined whether the base surface shape error satisfies the standard against the tolerance standard defined as the design value for the base surface shape. When the base surface shape error extracted from the measurement shape data of the mold is smaller than a tolerance standard (for example, PV value of the shape error) related to the shape error, the process proceeds to the diffractive optical element forming step in Step 8. On the other hand, if the above condition is not satisfied, the machining conditions of the mold are corrected in step 7.

なお、ベース面形状誤差に関する公差規格評価を行う工程では、金型の加工形状評価としてベース面形状誤差以外の回折格子形状に対する測定形状評価等についてもあわせて実施することは言うまでもない。例えば、ベース面形状誤差が公差規格を満足している場合においても、回折格子形状に加工ミスがあり所望の形状が得られていない際には、ステップ8の回折光学素子成形の工程には進まずにステップ7の加工条件修正工程に進む。   Needless to say, in the process of evaluating the tolerance standard regarding the base surface shape error, the measurement shape evaluation for the diffraction grating shape other than the base surface shape error is also performed as the processing shape evaluation of the mold. For example, even when the base surface shape error satisfies the tolerance standard, if there is a processing error in the diffraction grating shape and the desired shape is not obtained, the process proceeds to the step of forming the diffractive optical element in step 8. First, the process proceeds to the machining condition correcting step in step 7.

加工条件修正後は、前述のステップ2の金型加工に戻り、金型の再加工を実施する。金型再加工後については、ステップ3の金型形状測定、ステップ4の金型ベース面設計形状除去、ステップ5の金型ベース面形状誤差抽出を順に実施し、ステップ6で再度金型のベース面形状誤差について公差規格に対する形状評価、および前述のような他の形状公差規格に関する測定形状評価を実施し、ステップ8の回折光学素子成形工程に進めるかどうかを判定する。   After the modification of the machining conditions, the process returns to the above-described mold machining in step 2 and the mold is reworked. After the mold reworking, the mold shape measurement in step 3, the mold base surface design shape removal in step 4, and the mold base surface shape error extraction in step 5 are performed in order, and in step 6 the mold base is again performed. The surface shape error is evaluated with respect to the tolerance standard, and the measurement shape evaluation with respect to another shape tolerance standard as described above is performed to determine whether or not to proceed to the diffractive optical element molding step in Step 8.

ステップ8の回折光学素子成形工程では、前工程で金型のベース面形状誤差について公差規格を満足した金型を使用し、回折光学素子のモールド成形を行う。このとき、成形材はプラスチック樹脂材料やガラス材料など、金型によるモールド成形可能な材料であればいかなるものでも使用できる。つぎに、ステップ9で、ステップ3の金型に対する形状測定と同様に、図2に示す接触式あるいは非接触式プローブを備えた三次元形状測定装置を使用して成形品の形状測定を実施する。   In the diffractive optical element molding step of Step 8, the diffractive optical element is molded by using a mold that satisfies the tolerance standard for the mold base surface shape error in the previous process. At this time, the molding material may be any material that can be molded by a mold, such as a plastic resin material or a glass material. Next, in step 9, as in the shape measurement for the mold in step 3, the shape measurement of the molded product is performed using the three-dimensional shape measurement apparatus provided with the contact type or non-contact type probe shown in FIG. .

ステップ9の成形品形状測定により得られた成形品の三次元形状データである測定形状データに対し、前記金型形状測定時と同様にステップ10で成形品のベース面形状抽出演算処理を行う。すなわち、ステップ9で得られた成形品の測定形状データから成形品のベース面設計形状除去の演算処理を行う。つぎに、ステップ11で、ステップ10のベース面設計形状除去工程において算出された残差形状に対し、後述する演算処理を実施することにより、成形品のベース面形状誤差抽出を実施する。   For the measurement shape data, which is the three-dimensional shape data of the molded product obtained by the measurement of the molded product shape in step 9, the base surface shape extraction calculation process of the molded product is performed in step 10 in the same manner as in the mold shape measurement. That is, the base surface design shape removal processing of the molded product is performed from the measured shape data of the molded product obtained in step 9. Next, in step 11, the base surface shape error of the molded product is extracted by performing arithmetic processing described later on the residual shape calculated in the base surface design shape removing process in step 10.

その後、ステップ12で、ステップ11において抽出した成形品のベース面形状誤差をもとに成形品の測定形状データに対する形状評価を実施する。そして、成形品の測定形状データより抽出したベース面形状誤差について、同形状誤差に関する公差規格を満足する場合には、ステップ14で終了となり、設計上の光学性能を満たす回折格子形状が創成された回折光学素子が成形品として得られたことになる。他方、前記条件を満足しない場合には、ステップ13で成形品のベース面形状誤差を用いた金型加工形状の補正を実施する。金型加工形状補正後は、ステップ2の金型加工に戻り、金型の再加工を実施する。以後の工程については、前述した工程を同様に繰り返す。   Thereafter, in step 12, the shape evaluation is performed on the measured shape data of the molded product based on the base surface shape error of the molded product extracted in step 11. When the base surface shape error extracted from the measured shape data of the molded product satisfies the tolerance standard related to the shape error, the process ends in step 14 and a diffraction grating shape that satisfies the design optical performance is created. The diffractive optical element is obtained as a molded product. On the other hand, if the above condition is not satisfied, in step 13, the die machining shape is corrected using the base surface shape error of the molded product. After the mold machining shape correction, the process returns to the mold machining in step 2 and the mold is reworked. For the subsequent steps, the above-described steps are repeated in the same manner.

ステップ13の金型加工形状補正を一回以上繰り返すことにより、ステップ12の成形品のベース面形状誤差に関する測定形状評価において、条件を満足する回折光学素子成形品を得ることが可能である。すなわち、従来技術による回折光学素子の製造方法と比較して、平面、球面、あるいは非球面いずれかの連続面で定義されるベース面形状に対する形状補正を実施していることから、より設計形状に近い高精度な回折格子形状を有する回折光学素子を製造することができる。   By repeating the mold machining shape correction in step 13 one or more times, it is possible to obtain a diffractive optical element molded product that satisfies the conditions in the measurement shape evaluation related to the base surface shape error of the molded product in step 12. In other words, compared to the manufacturing method of the diffractive optical element according to the prior art, since the shape correction is performed on the base surface shape defined by the continuous surface of either a flat surface, a spherical surface, or an aspherical surface, the design shape is further improved. A diffractive optical element having a nearly highly accurate diffraction grating shape can be manufactured.

図2は、三次元形状測定装置を示す概略図であって、プローブ1は、ステージ2に保持された被測定物Wの表面に垂直に接するように支持され、ステージ2はステージ制御装置3によってX軸方向の走査とY軸方向の送りが行われる。プローブ1は、プローブ制御装置4によって、被測定物Wの表面形状にならってZ軸方向に移動する。演算装置5は、ステージ制御装置3とプローブ制御装置4の出力に基づいて被測定物Wの三次元形状データを算出し、ハードディスクドライブ6には、コンピュータを用いて回折格子形状等を計算するプログラムが記録されており、キーボード7によって入力された設計データと比較してベース面形状誤差等を求める。演算結果はディスプレイ8に表示される。なお、接触式のプローブ1に替えて、非接触式のプローブを用いる場合も同様である。   FIG. 2 is a schematic diagram showing a three-dimensional shape measuring apparatus, in which the probe 1 is supported so as to be in perpendicular contact with the surface of the workpiece W held on the stage 2, and the stage 2 is supported by the stage controller 3. Scanning in the X-axis direction and feeding in the Y-axis direction are performed. The probe 1 is moved in the Z-axis direction by the probe control device 4 in accordance with the surface shape of the workpiece W. The arithmetic device 5 calculates the three-dimensional shape data of the object W to be measured based on the outputs of the stage control device 3 and the probe control device 4, and the hard disk drive 6 uses a computer to calculate the diffraction grating shape and the like. Is recorded, and the base surface shape error or the like is obtained by comparison with the design data input by the keyboard 7. The calculation result is displayed on the display 8. The same applies when a non-contact type probe is used instead of the contact type probe 1.

なお、図2に示す三次元形状測定装置は、本発明における一例であり、同装置の構成はこれに限定するものではない。たとえば、図2に示すステージ2およびステージ制御装置3は装備せず、三次元形状測定装置に固定された被測定物Wの表面形状をプローブ1が倣い走査する方式の図示しない三次元形状測定装置であってもよい。この場合、プローブ1はXYZ各軸方向の駆動装置により被測定物W上を移動する。さらに、プローブ1には三次元形状測定装置内の三次元座標を検出するセンサが備えられており、同センサの出力に基づいて三次元形状データを算出する。座標検出用のセンサは、具体的にはレーザー測長機あるいはリニアスケールなどであり、その他のセンサであってもよい。   The three-dimensional shape measuring apparatus shown in FIG. 2 is an example in the present invention, and the configuration of the apparatus is not limited to this. For example, the stage 2 and the stage control device 3 shown in FIG. 2 are not equipped, but the three-dimensional shape measuring device (not shown) of the type in which the probe 1 follows the surface shape of the workpiece W fixed to the three-dimensional shape measuring device. It may be. In this case, the probe 1 is moved on the workpiece W by a driving device in the XYZ axial directions. Further, the probe 1 is provided with a sensor for detecting a three-dimensional coordinate in the three-dimensional shape measuring apparatus, and calculates three-dimensional shape data based on the output of the sensor. The coordinate detection sensor is specifically a laser length measuring device or a linear scale, and may be other sensors.

また、図2に示す三次元形状測定装置においても同様に、ステージ制御装置3とプローブ制御装置4の出力からではなく、図示しないプローブ1に備えられた座標検出用のセンサの出力信号に基づき、被測定物Wの三次元形状データを算出する装置構成であってもよい。   Similarly, in the three-dimensional shape measuring apparatus shown in FIG. 2, not based on the outputs of the stage control device 3 and the probe control device 4 but based on the output signal of the sensor for detecting the coordinates provided in the probe 1 (not shown), The apparatus structure which calculates the three-dimensional shape data of the to-be-measured object W may be sufficient.

図3および図4は、金型形状測定ステップ3、金型ベース面設計形状除去ステップ4および金型ベース面形状誤差抽出ステップ5における金型のベース面形状誤差の抽出方法と、同じく成形品についての成形品形状測定ステップ9、成形品ベース面設計形状除去ステップ10および成形品ベース面形状誤差抽出ステップ11における回折光学素子成形品のベース面形状誤差の抽出方法を説明するもので、一方の座標軸であるX軸は、回折光学素子成形加工用の金型あるいはその成形品に対し、図2の接触式または非接触式プローブを備える三次元形状測定装置により形状測定を実施した際の、プローブ走査方向に対して設定した座標軸である。すなわち、被測定物である金型または回折光学素子の成形品に対し、プローブを1ラインのみ走査させることにより断面形状測定を行った場合は、同プローブの走査方向とX軸は同一方向を示す。また、被測定物に対し前記プローブを複数ライン走査させて面形状測定を実施した場合には、同プローブが走査した複数ラインの内のある1ラインについて取り出した際のプローブ走査方向に、X軸の方向は一致する。他方の座標軸はX軸に直交する方向に設定したZ軸である。   FIGS. 3 and 4 show the mold base surface shape error extraction method in the mold shape measurement step 3, the mold base surface design shape removal step 4 and the mold base surface shape error extraction step 5, and the molded product. The method of extracting the base surface shape error of the diffractive optical element molded product in the molded product shape measurement step 9, the molded product base surface design shape removal step 10 and the molded product base surface shape error extraction step 11 will be described. The X-axis is a probe scan when shape measurement is performed on a die for diffractive optical element molding or a molded product thereof by a three-dimensional shape measuring apparatus including the contact type or non-contact type probe shown in FIG. This is the coordinate axis set for the direction. That is, when the cross-sectional shape measurement is performed by scanning only one line of the probe on the mold or the diffractive optical element molded product, the scanning direction of the probe and the X axis indicate the same direction. . Further, when surface shape measurement is performed by scanning a plurality of lines of the probe with respect to the object to be measured, the X axis is set in the probe scanning direction when one of the plurality of lines scanned by the probe is taken out. The direction of is the same. The other coordinate axis is a Z axis set in a direction orthogonal to the X axis.

この座標軸X、Zで規定される座標系において、図4に示すように、被測定物Wである金型または回折光学素子の測定形状Rは、ベース面設計形状R1と回折格子形状R2を加算した形状となっている。この測定形状Rに対し、ベース面設計形状R1を最小二乗法などを用いてフィッティング処理し、フィッティング後に測定形状Rからベース面設計形状R1を除去演算することにより、図4の(b)に示すような回折格子形状R2を残差形状として算出すると、図4の(c)に示すようなベース面形状誤差R3が含まれる。そこで、三次元形状測定装置による測定形状データから、図5または図6に示す方法で回折格子形状R2を除去演算処理することで、ベース面形状誤差R3を抽出する。   In the coordinate system defined by the coordinate axes X and Z, as shown in FIG. 4, the measurement shape R of the mold or the diffractive optical element as the workpiece W is obtained by adding the base surface design shape R1 and the diffraction grating shape R2. It has a shape. The base surface design shape R1 is fitted to the measurement shape R by using the least square method or the like, and the base surface design shape R1 is removed from the measurement shape R after the fitting to obtain the result shown in FIG. When such a diffraction grating shape R2 is calculated as a residual shape, a base surface shape error R3 as shown in FIG. 4C is included. In view of this, the base surface shape error R3 is extracted from the measurement shape data obtained by the three-dimensional shape measurement apparatus by removing the diffraction grating shape R2 by the method shown in FIG. 5 or FIG.

図5は、回折光学素子の測定形状Rから回折格子形状R2を分離する第1の演算処理方法を説明するもので、測定形状Rは、図2に示す三次元形状測定装置により連続的に測定された点群データR4として表される。点群データR4の各測定点座標は、座標軸Xにより規定される任意の点座標データp1 、および座標軸Zで規定される図示しない座標値(座標データ)により表されることになる。 FIG. 5 illustrates a first calculation processing method for separating the diffraction grating shape R2 from the measurement shape R of the diffractive optical element. The measurement shape R is continuously measured by the three-dimensional shape measuring apparatus shown in FIG. Is represented as point cloud data R4. Each measurement point coordinate of the point group data R4 is represented by arbitrary point coordinate data p 1 defined by the coordinate axis X and a coordinate value (coordinate data) (not shown) defined by the coordinate axis Z.

ここで、図示するX、Z座標系において、回折格子設計形状R0は座標軸Xより規定される前記点座標データp1 に対して、同位置における座標軸Z方向の高さΔZが回折格子の位相関数から一意に求まる。これより、ベース面形状誤差がゼロの場合について、この演算を三次元形状測定装置によって連続的に測定させる全点群データR4に対して行うことで、回折格子設計形状R0が得られる。 Here, in the X and Z coordinate systems shown in the drawing, the diffraction grating design shape R0 has a height ΔZ in the coordinate axis Z direction at the same position relative to the point coordinate data p 1 defined by the coordinate axis X, and the phase function of the diffraction grating. Uniquely obtained from Thus, when the base surface shape error is zero, the diffraction grating design shape R0 is obtained by performing this calculation on all point group data R4 that is continuously measured by the three-dimensional shape measuring apparatus.

前述のとおり、回折光学素子の測定形状Rにはベース面形状誤差R3が必ず含まれているため、測定形状Rの点群データR4はベース面形状誤差をゼロとして算出される回折格子設計形状R0の線上にはのらない。ここで、座標軸Xで規定される全ての測定点座標値に対し、位相関数に基づき算出される座標軸Z方向の高さΔZを各測定点ごとに求め、この値を座標軸Zで規定される測定点座標値から差し引く演算処理を行う。すなわち、座標軸Xで規定される点座標データp1 においては、座標軸Z方向の高さΔZを同じく座標軸Zで規定される測定点座標値から差し引くことにより、ベース面形状誤差R3を含む測定点Z1が求められる。同様な演算処理を全測定点に対し行うことで、回折光学素子の測定形状Rに対するベース面形状誤差R3を点群データとして抽出する。 As described above, since the measurement shape R of the diffractive optical element always includes the base surface shape error R3, the point cloud data R4 of the measurement shape R is calculated with the base surface shape error being zero, the diffraction grating design shape R0. Do not ride on the line. Here, for all measurement point coordinate values defined by the coordinate axis X, the height ΔZ in the coordinate axis Z direction calculated based on the phase function is obtained for each measurement point, and this value is measured by the coordinate axis Z. An arithmetic process is performed to subtract from the point coordinate value. That is, in the point coordinate data p 1 defined by the coordinate axis X, the measurement point Z1 including the base surface shape error R3 is obtained by subtracting the height ΔZ in the coordinate axis Z direction from the measurement point coordinate value similarly defined by the coordinate axis Z. Is required. By performing the same calculation process for all measurement points, the base surface shape error R3 with respect to the measurement shape R of the diffractive optical element is extracted as point group data.

図6は別の演算方法を示すもので、回折光学素子の測定形状Rは図5の場合と同様に図2の三次元形状測定装置により測定された点群データR4として表される。この測定形状Rに対して、座標軸Xで規定される測定点座標値をもとに、位相関数で定義される回折格子設計形状(ベース面形状誤差ゼロ)R0を求めるに当り、各輪帯形状ごとに測定形状Rの点群データR4を、回折格子設計形状に最小二乗法などを用いてフィッティングする演算処理を行い、設計形状に対する測定形状Rの位置および姿勢誤差を座標変換情報として求める。同座標変換情報に基づき、設計形状について前記座標変換の逆変換を行うことで、回折格子設計形状R0が得られる。ベース面形状についても同様に前記座標変換の逆変換を行うことで、座標変換後のベース面形状R5が求まる。この演算処理を各輪帯形状ごとに全測定形状(全輪帯形状)に対し実施することで、全体のベース面形状が算出される。   FIG. 6 shows another calculation method, and the measurement shape R of the diffractive optical element is represented as point cloud data R4 measured by the three-dimensional shape measurement apparatus of FIG. 2 as in the case of FIG. In determining the diffraction grating design shape (base surface shape error zero) R0 defined by the phase function based on the measurement point coordinate value defined by the coordinate axis X for this measurement shape R, each annular shape Every time, the point cloud data R4 of the measurement shape R is subjected to a calculation process for fitting the diffraction grating design shape using the least square method or the like, and the position and orientation error of the measurement shape R with respect to the design shape is obtained as coordinate conversion information. Based on the coordinate transformation information, the diffraction grating design shape R0 is obtained by performing the inverse transformation of the coordinate transformation on the design shape. Similarly, the base surface shape R5 after the coordinate conversion is obtained by performing the inverse conversion of the coordinate conversion for the base surface shape. By executing this calculation process for all the measured shapes (all annular shapes) for each annular shape, the entire base surface shape is calculated.

このようにフィッティング演算処理に基づいた座標変換を実施した全体のベース面形状は、同座標変換情報が回折格子設計形状に対する同測定形状の形状誤差(位置および姿勢誤差から発生する形状誤差)を表現していることから、ベース面形状誤差R3を表していることになる。このように、回折光学素子の測定形状Rにおいて、輪帯形状単位で回折格子設計形状に対しフィッティング演算処理を実施することでベース面形状誤差R3を抽出することができる。   In this way, the entire base surface shape that has been subjected to coordinate transformation based on the fitting calculation processing represents the shape error of the same measured shape with respect to the diffraction grating design shape (shape error caused by position and orientation errors). Therefore, the base surface shape error R3 is represented. As described above, in the measurement shape R of the diffractive optical element, the base surface shape error R3 can be extracted by performing the fitting calculation process on the diffraction grating design shape in the annular zone unit.

なお、上記のフィッティング処理を一輪帯形状ごとに実施する代わりに、隣接する複数の輪帯形状単位で前記フィッティング処理を行い、前述した座標変換演算によりベース面形状誤差を抽出する方法を採ってもよい。このとき、算出されるベース面形状R5は、フィッティング演算対象を一輪帯形状ずつずらしながら複数輪帯形状ごとに行うため、重なり合う部分ができる。この場合には、前記重なり合う部分について各輪帯形状単位で平均形状を算出し、全輪帯形状についてこの平均化されたベース面形状誤差を並べることでベース面形状誤差R3を抽出する。   Instead of performing the above-described fitting process for each annular zone shape, the fitting process may be performed for a plurality of adjacent annular zone units, and the base surface shape error may be extracted by the above-described coordinate transformation calculation. Good. At this time, since the calculated base surface shape R5 is performed for each of the plurality of annular zones while shifting the fitting calculation target by one annular zone, overlapping portions are formed. In this case, the average shape is calculated for each annular zone shape for the overlapping portion, and the base surface shape error R3 is extracted by arranging the averaged base surface shape errors for all the annular zone shapes.

なお、図5および図6について説明したベース面形状誤差抽出方法においては、上記の演算処理を三次元形状測定により測定データとして得られる全ての断面測定形状に対し同様に行うことで、面形状としてベース面形状誤差が算出できることは言うまでもない。すなわち、図示したベース面形状誤差は直交二軸の座標系で規定される二次元データとなっているが、実際の測定形状処理においては、ベース面形状誤差データを三次元データとして抽出可能であり、三次元データをもとに金型の形状補正を実施するものである。   In the base surface shape error extraction method described with reference to FIGS. 5 and 6, the above-described arithmetic processing is similarly performed on all cross-sectional measurement shapes obtained as measurement data by three-dimensional shape measurement, thereby obtaining a surface shape. Needless to say, the base surface shape error can be calculated. That is, the illustrated base surface shape error is two-dimensional data defined by an orthogonal two-axis coordinate system, but in actual measurement shape processing, the base surface shape error data can be extracted as three-dimensional data. The mold shape is corrected based on the three-dimensional data.

図7は、図1の金型加工形状補正ステップ13について、具体的な実施方法を説明する工程図である。図5または図6の方法により抽出した成形品のベース面形状誤差データについて、ステップ17で、図4の座標軸Z方向に対し正負反転演算処理(形状誤差データ正負反転)を行う。つぎにステップ18で、ステップ17で求めたデータに対し、金型形状に対する成形品の形状収縮率分を拡大する演算処理(成形品収縮率分拡大処理)を実施する。ステップ19でステップ18の演算処理で算出した金型形状補正データと金型設計形状データを加算処理する(金型設計形状データと加算)。ステップ19の演算処理を実施した結果算出された形状データを、ステップ20で金型形状補正加工形状データとして取り扱う。すなわち、ステップ20の金型形状補正加工形状データを形状補正時の加工形状データとして加工装置に入力し、図1のステップ2で同金型の再加工を行うことで金型の形状補正を実施する。   FIG. 7 is a process diagram for explaining a specific implementation method of the die machining shape correction step 13 of FIG. With respect to the base surface shape error data of the molded product extracted by the method of FIG. 5 or FIG. 6, in step 17, positive / negative inversion calculation processing (shape error data positive / negative inversion) is performed in the coordinate axis Z direction of FIG. Next, in step 18, a calculation process for expanding the shape shrinkage rate of the molded product with respect to the mold shape (enlargement process for the molded product shrinkage rate) is performed on the data obtained in step 17. In step 19, the mold shape correction data calculated in the calculation process in step 18 and the mold design shape data are added (added with the mold design shape data). The shape data calculated as a result of performing the arithmetic processing in step 19 is handled as mold shape correction processed shape data in step 20. That is, the die shape correction machining shape data in step 20 is input to the machining apparatus as machining shape data at the time of shape correction, and the die shape is corrected by reworking the die in step 2 in FIG. To do.

図8は、図7の金型の形状補正工程を一部変更したものである。図5または図6の方法で抽出したベース面形状誤差について、ステップ16の成形品のベース面形状誤差データに対する正負反転演算処理(形状誤差データ正負反転)を行うステップ17と、金型形状に対する成形品の形状収縮率分を拡大する演算処理(成形品収縮率分拡大処理)を行うステップ18までは、図7と同様である。そしてステップ21で、金型に対する加工形状測定の結果求められた金型のベース面形状誤差データについても、成形品のベース面形状誤差データに対する正負反転処理17と同様な演算処理を行うステップ22を設ける。すなわち、図7の方法では、金型設計形状データに対し成形品のベース面形状誤差データをもとに算出される形状補正データを加算することで金型形状補正データを導出したのに対して、図8の方法においてはステップ21の金型のベース面形状誤差データをもとに算出される形状補正データについても加算することで、金型の加工形状誤差についても同時に形状補正するものである。この方法は、金型加工形状誤差が公差規格に対し大きい場合において、特に有効である。   FIG. 8 shows a partial modification of the mold shape correction process of FIG. For the base surface shape error extracted by the method of FIG. 5 or FIG. 6, step 17 for performing positive / negative reversal calculation processing (shape error data positive / negative reversal) on the base surface shape error data of the molded product in step 16, and molding for the mold shape The process up to step 18 for performing the calculation process for expanding the shape shrinkage rate of the product (enlargement process for the molded product shrinkage rate) is the same as in FIG. In step 21, step 22 is performed for the base surface shape error data of the mold obtained as a result of the measurement of the processing shape for the mold, in the same manner as the positive / negative inversion processing 17 for the base surface shape error data of the molded product. Provide. That is, in the method of FIG. 7, the mold shape correction data is derived by adding the shape correction data calculated based on the base surface shape error data of the molded product to the mold design shape data. In the method shown in FIG. 8, the shape correction data calculated based on the die base surface shape error data in step 21 is also added to simultaneously correct the shape error of the machining shape of the die. . This method is particularly effective when the die machining shape error is large with respect to the tolerance standard.

図9は、一変形例を示す。これは、回折格子形状R2が形状創成されている光学有効面の他に、連続面で形状創成されている光学有効面R6を有する多面体の回折光学素子であって、この場合の形状補正方法は以下のとおりである。   FIG. 9 shows a modification. This is a polyhedral diffractive optical element having an optically effective surface R6 whose shape is a continuous surface in addition to the optically effective surface on which the diffraction grating shape R2 is formed. In this case, the shape correction method is as follows: It is as follows.

まず、前述と同様にベース面設計形状R1についてベース面形状誤差R3を抽出する。また、連続面で形状創成されている光学有効面R6についても三次元形状測定を実施し、設計形状に対する測定形状の形状誤差を導出する。このときの光学有効面R6における形状誤差導出方法については、最小二乗法などを用いた面形状のフィッティング処理を実施することで求められることがよく知られているので、ここでは詳細については省略する。   First, the base surface shape error R3 is extracted for the base surface design shape R1 as described above. In addition, the three-dimensional shape measurement is also performed on the optically effective surface R6 whose shape is created by the continuous surface, and the shape error of the measured shape with respect to the design shape is derived. Since it is well known that the shape error deriving method on the optical effective surface R6 at this time is obtained by performing a surface shape fitting process using a least square method or the like, the details are omitted here. .

つぎに、ベース面設計形状R1に関するベース面形状誤差R3、および光学有効面R6の形状誤差をもとに、回折格子が形状創成されていない光学有効面R6の形状に対し形状補正を行う。ここで、形状補正量の算出に際し、前記ベース面形状誤差R3については形状補正を実施せずに、回折格子が形状創成されていない光学有効面R6のみを形状補正する。   Next, based on the base surface shape error R3 related to the base surface design shape R1 and the shape error of the optical effective surface R6, shape correction is performed on the shape of the optical effective surface R6 in which the shape of the diffraction grating is not created. Here, when calculating the shape correction amount, the shape correction is not performed for the base surface shape error R3, and only the optical effective surface R6 in which the shape of the diffraction grating is not created is corrected.

これによって、各面単体の光学性能ではなく回折光学素子全体としての光学性能を満足させる。すなわち、ベース面形状誤差R3が図9の光学素子の光学性能に与える影響をうち消す性能を有する光学有効面R6の形状を、光学解析により求め、光学有効面R6の金型のみを再加工し形状補正を行う。これにより、当初の設計形状とは異なる素子形状において、光学性能に関しては設計形状から理論上規定される光学性能を得るものである。   This satisfies the optical performance of the entire diffractive optical element rather than the optical performance of each surface alone. That is, the shape of the optical effective surface R6 having the performance of eliminating the influence of the base surface shape error R3 on the optical performance of the optical element in FIG. 9 is obtained by optical analysis, and only the mold of the optical effective surface R6 is reprocessed. Perform shape correction. Thereby, in the element shape different from the initial design shape, the optical performance theoretically defined from the design shape is obtained with respect to the optical performance.

この方法は、連続面で形状創成される光学有効面と比較して、製造タクトおよびコストが多くかかる回折格子を有する光学有効面の金型再加工を行わずに、所望の光学素子性能が得られるために低コストであるという利点を有する。   This method achieves the desired optical element performance without reworking the optically effective surface having a diffraction grating, which requires much manufacturing tact and cost, as compared with the optically effective surface whose shape is created by a continuous surface. Has the advantage of being low cost.

一実施の形態による回折光学素子の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the diffractive optical element by one embodiment. 図1の回折光学素子の製造方法に用いられる三次元形状測定装置を説明する図である。It is a figure explaining the three-dimensional shape measuring apparatus used for the manufacturing method of the diffractive optical element of FIG. 回折光学素子形状を説明する図である。It is a figure explaining a diffractive optical element shape. ベース面形状誤差を説明する図である。It is a figure explaining a base surface shape error. ベース面形状誤差を抽出する具体的な方法を説明する図である。It is a figure explaining the specific method of extracting a base surface shape error. ベース面形状誤差を抽出する別の具体的な方法を説明する図である。It is a figure explaining another specific method of extracting a base surface shape error. 回折光学素子成形用の金型の加工形状を補正する具体的な方法を説明する工程図である。It is process drawing explaining the specific method of correct | amending the process shape of the metal mold | die for diffractive optical element shaping | molding. 回折光学素子成形用の金型の加工形状を補正する別の具体的な方法を説明する工程図である。It is process drawing explaining another specific method of correct | amending the process shape of the metal mold | die for diffractive optical element shaping | molding. 一変形例による回折光学素子を説明する図である。It is a figure explaining the diffractive optical element by one modification. 一従来例を説明する図である。It is a figure explaining a prior art example.

符号の説明Explanation of symbols

1 プローブ
2 ステージ
3 ステージ制御装置
4 プローブ制御装置
5 演算装置
6 ハードディスクドライブ
R 測定形状
R1 ベース面設計形状
R2 回折格子形状
R3 ベース面形状誤差
DESCRIPTION OF SYMBOLS 1 Probe 2 Stage 3 Stage control device 4 Probe control device 5 Arithmetic device 6 Hard disk drive R Measurement shape R1 Base surface design shape R2 Grating shape R3 Base surface shape error

Claims (6)

平面、球面または非球面の連続面形状をベース面形状とし、前記ベース面形状に重ねて回折格子形状が形成された回折光学素子の製造方法において、
回折光学素子のモールド成形に用いる金型の三次元形状を計測して金型の三次元形状データを得る工程と、
得られた金型の三次元形状データに基づいて金型のベース面形状誤差を算出する工程と、
算出された金型のベース面形状誤差に基づいて金型の形状補正を行う工程と、
形状補正を行った金型を用いて回折光学素子をモールド成形する工程と、を有することを特徴とする回折光学素子の製造方法。
In the method of manufacturing a diffractive optical element in which a plane, spherical or aspherical continuous surface shape is a base surface shape, and a diffraction grating shape is formed on the base surface shape,
Measuring the three-dimensional shape of the mold used to mold the diffractive optical element to obtain the three-dimensional shape data of the mold; and
Calculating the base surface shape error of the mold based on the obtained three-dimensional shape data of the mold;
A step of performing mold shape correction based on the calculated mold base surface shape error;
And a step of molding the diffractive optical element using a mold whose shape has been corrected.
平面、球面または非球面の連続面形状をベース面形状とし、前記ベース面形状に重ねて回折格子形状が形成された回折光学素子の製造方法において、
回折光学素子のモールド成形に用いる金型の三次元形状を計測して金型の三次元形状データを得る工程と、
得られた金型の三次元形状データに基づいて金型のベース面形状誤差を算出する工程と、
算出された金型のベース面形状誤差に基づいて金型の形状補正を行う工程と、
形状補正を行った金型を用いて回折光学素子をモールド成形する工程と、
モールド成形された回折光学素子の三次元形状を計測して成形品の三次元形状データを得る工程と、
得られた成形品の三次元形状データに基づいて成形品のベース面形状誤差を算出する工程と、
算出された成形品のベース面形状誤差に基づいて金型の形状補正を行う工程と、
形状補正を行った金型を用いて回折光学素子をモールド成形する工程と、を有することを特徴とする回折光学素子の製造方法。
In the method of manufacturing a diffractive optical element in which a plane, spherical or aspherical continuous surface shape is a base surface shape, and a diffraction grating shape is formed on the base surface shape,
Measuring the three-dimensional shape of the mold used for molding the diffractive optical element to obtain the three-dimensional shape data of the mold; and
Calculating the base surface shape error of the mold based on the obtained three-dimensional shape data of the mold;
A step of performing mold shape correction based on the calculated mold base surface shape error;
A step of molding a diffractive optical element using a mold subjected to shape correction;
Measuring the three-dimensional shape of the molded diffractive optical element to obtain three-dimensional shape data of the molded product;
A step of calculating a base surface shape error of the molded product based on the three-dimensional shape data of the obtained molded product;
Correcting the mold shape based on the calculated base surface shape error of the molded product;
And a step of molding the diffractive optical element using a mold whose shape has been corrected, and a method for producing the diffractive optical element.
平面、球面または非球面の連続面形状をベース面形状とし、前記ベース面形状に重ねて回折格子形状が形成された回折光学素子の製造方法において、
金型を用いてモールド成形された回折光学素子の三次元形状を計測して成形品の三次元形状データを得る工程と、
得られた成形品の三次元形状データに基づいて成形品のベース面形状誤差を算出する工程と、
算出された成形品のベース面形状誤差に基づいて金型の形状補正を行う工程と、
形状補正を行った金型を用いて回折光学素子をモールド成形する工程と、を有することを特徴とする回折光学素子の製造方法。
In the method of manufacturing a diffractive optical element in which a plane, spherical or aspherical continuous surface shape is a base surface shape, and a diffraction grating shape is formed on the base surface shape,
Measuring the three-dimensional shape of the diffractive optical element molded using a mold to obtain three-dimensional shape data of the molded product;
A step of calculating a base surface shape error of the molded product based on the three-dimensional shape data of the obtained molded product;
Correcting the mold shape based on the calculated base surface shape error of the molded product;
And a step of molding the diffractive optical element using a mold whose shape has been corrected.
接触式または非接触式プローブを備えた三次元形状測定装置によって金型または回折光学素子またはその双方の三次元形状を測定することを特徴とする請求項1ないし3いずれか1項記載の回折光学素子の製造方法。   4. The diffractive optical system according to claim 1, wherein the three-dimensional shape of the mold and / or the diffractive optical element is measured by a three-dimensional shape measuring apparatus having a contact type or non-contact type probe. Device manufacturing method. 計測された金型または成形品の三次元形状データからベース面設計形状を差し引いた残差形状について、位相関数によって定義される回折格子形状を除去することでベース面形状誤差を算出することを特徴とする請求項1ないし4いずれか1項記載の回折光学素子の製造方法。   The base surface shape error is calculated by removing the diffraction grating shape defined by the phase function for the residual shape obtained by subtracting the base surface design shape from the measured 3D shape data of the mold or molded product. A method for manufacturing a diffractive optical element according to any one of claims 1 to 4. 請求項1ないし5いずれか1項記載の回折光学素子の製造方法によって製造されたことを特徴とする回折光学素子。   6. A diffractive optical element manufactured by the method for manufacturing a diffractive optical element according to claim 1.
JP2003343914A 2003-10-02 2003-10-02 Method for producing diffractive optical element, and the diffractive optical element Pending JP2005104093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343914A JP2005104093A (en) 2003-10-02 2003-10-02 Method for producing diffractive optical element, and the diffractive optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343914A JP2005104093A (en) 2003-10-02 2003-10-02 Method for producing diffractive optical element, and the diffractive optical element

Publications (1)

Publication Number Publication Date
JP2005104093A true JP2005104093A (en) 2005-04-21

Family

ID=34537704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343914A Pending JP2005104093A (en) 2003-10-02 2003-10-02 Method for producing diffractive optical element, and the diffractive optical element

Country Status (1)

Country Link
JP (1) JP2005104093A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225984A (en) * 2006-02-24 2007-09-06 Hoya Corp Improved tolerance determining method for inspection of progressive refractive power spectacle lens
JP2008006639A (en) * 2006-06-28 2008-01-17 Toppan Printing Co Ltd Imprinting mold and its manufacturing method
JP2008265018A (en) * 2007-04-16 2008-11-06 Toshiba Mach Co Ltd Attitude control device for movable mold in injection molding machine
JP2010137402A (en) * 2008-12-10 2010-06-24 Canon Inc Method for manufacturing optical element
JP2013057564A (en) * 2011-09-07 2013-03-28 Canon Inc Shape evaluation method, shape evaluation apparatus, program, and recording medium
EP2645155A2 (en) * 2012-03-26 2013-10-02 Hoya Corporation Manufacturing method for mold die, mold and eyeglass lens
WO2019160095A1 (en) * 2018-02-19 2019-08-22 株式会社ダイセル Mold manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225984A (en) * 2006-02-24 2007-09-06 Hoya Corp Improved tolerance determining method for inspection of progressive refractive power spectacle lens
JP4711853B2 (en) * 2006-02-24 2011-06-29 Hoya株式会社 Improved tolerance determination method for progressive power eyeglass lens inspection
JP2008006639A (en) * 2006-06-28 2008-01-17 Toppan Printing Co Ltd Imprinting mold and its manufacturing method
JP2008265018A (en) * 2007-04-16 2008-11-06 Toshiba Mach Co Ltd Attitude control device for movable mold in injection molding machine
JP2010137402A (en) * 2008-12-10 2010-06-24 Canon Inc Method for manufacturing optical element
JP2013057564A (en) * 2011-09-07 2013-03-28 Canon Inc Shape evaluation method, shape evaluation apparatus, program, and recording medium
EP2645155A2 (en) * 2012-03-26 2013-10-02 Hoya Corporation Manufacturing method for mold die, mold and eyeglass lens
CN103364964A (en) * 2012-03-26 2013-10-23 Hoya株式会社 Manufacturing method for mold die, mold and eyeglass lens
EP2645155A3 (en) * 2012-03-26 2014-05-07 Hoya Corporation Manufacturing method for mold die, mold and eyeglass lens
US9676157B2 (en) 2012-03-26 2017-06-13 Hoya Corporation Manufacturing method for mold die, mold and eyeglass lens
WO2019160095A1 (en) * 2018-02-19 2019-08-22 株式会社ダイセル Mold manufacturing method

Similar Documents

Publication Publication Date Title
JP5342665B2 (en) Lens shape processing method and lens shape processing apparatus for measuring along spiral measurement path
US10599124B2 (en) Tool path generating method
Shao et al. A new calibration method for line-structured light vision sensors based on concentric circle feature
JP2005104093A (en) Method for producing diffractive optical element, and the diffractive optical element
JP4704897B2 (en) 3D measurement data inspection method using parametric tolerance
JP2007294739A (en) Method of evaluating pattern shape, program, and method of manufacturing semiconductor device
JP6064871B2 (en) Thickness measurement method
EP2851648A1 (en) Shape measurement method and shape measurement apparatus
JP4541675B2 (en) Method for manufacturing diffractive optical element
Galanulis et al. Optical digitizing by ATOS for press parts and tools
KR20000000530A (en) Device for measuring vent pipe member for noncontact typed vessel mixed with camera and laser displacement sensor
Halkacı et al. Evaluation of form error at semi-spherical tools by use of image processing
US20230030807A1 (en) Deriving metrology data for an instance of an object
JP2006214870A (en) Shape measuring system, method, and program
Qiang et al. Calibration of laser scanning system based on a 2D ball plate
Chian et al. Determination of tool nose radii of cutting inserts using machine vision
JP2007333442A (en) Shape measurement method
JP2006162266A (en) On-machine shape measuring method
JPH06344121A (en) Teaching method for robot
KR101008328B1 (en) Grating moving apparatus and method for measuring three-dimensional using moire
CN112595256B (en) Shape evaluation method, component manufacturing method, and shape evaluation system
KR102434419B1 (en) Precision 3D scanning device and method using multi-point markers and stereo vision
KR20040009550A (en) Efficient digitizing in reverse engineering by sensor fusion
JP2005182529A (en) Cae analysis algorithm verification method and cae
Góral et al. Precise 3D vision based measurements of gear wheels