JP2006214870A - Shape measuring system, method, and program - Google Patents

Shape measuring system, method, and program Download PDF

Info

Publication number
JP2006214870A
JP2006214870A JP2005027997A JP2005027997A JP2006214870A JP 2006214870 A JP2006214870 A JP 2006214870A JP 2005027997 A JP2005027997 A JP 2005027997A JP 2005027997 A JP2005027997 A JP 2005027997A JP 2006214870 A JP2006214870 A JP 2006214870A
Authority
JP
Japan
Prior art keywords
evaluation
measurement
contour shape
shape
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005027997A
Other languages
Japanese (ja)
Other versions
JP4683324B2 (en
Inventor
Isao Ishida
勲 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005027997A priority Critical patent/JP4683324B2/en
Publication of JP2006214870A publication Critical patent/JP2006214870A/en
Application granted granted Critical
Publication of JP4683324B2 publication Critical patent/JP4683324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape measuring system, a shape measuring method, and a shape measuring program capable of calculating automatically a dimension such as a radius, a distance and an angle of a corner R in a specified portion requiring high dimensional precision. <P>SOLUTION: This shape measuring system of the present invention includes an outline shape image generating means for generating an outline shape image from a read-in outline shape data; an evaluation area setting means for setting the first evaluation area and the second evaluation area in a prescribed peripheral position of the measured objective portion found by executing geometrical pattern matching (called as PM in some cases) in the outline shape image; a measuring area setting means for setting a measuring area, using as a reference an intersection of two straight lines linear-approximated based on the outline shape data within the first evaluation area and the second evaluation area; and a shape evaluation means for finding a physical quantity of a geometric element in the outline shape data within the measuring area in response to a kind of set shape evaluation, and for executing prescribed dimension measuring processing. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば内燃機関で用いられるピストンリング材の特定部位におけるコーナーR半径、距離、角度等の寸法を高い精度で算出し評価することを目的とした形状測定システム、形状測定方法及び形状測定プログラムに関するものである。   The present invention relates to a shape measuring system, a shape measuring method, and a shape measuring for the purpose of calculating and evaluating dimensions such as corner radius, distance, and angle at a specific portion of a piston ring material used in an internal combustion engine with high accuracy. It is about the program.

従来の被測定対象の寸法測定を行う手段が、例えば下記特許文献1、特許文献2に開示されている。特許文献1によれば、2台の対向配置したレーザ距離計を水平方向に走行させてH型鋼の形状を測定し、得られた4つの輪郭形状データに対して同じ個所の測定情報を基に合成して同一空間座標に置き換え、この空間座標からH型鋼フランジ幅、脚長等の断面寸法を自動で算出するものである。この方法では、得られた輪郭形状データから寸法を算出するための幾何要素当てはめに直線近似を利用しており、直線近似によって求めた直線式を使って交点を算出しH型鋼フランジ幅、脚長等のように直線で構成される部分の寸法測定を行い、最終的には求めたフランジ幅、脚長等を用いて被測定対象の断面寸法を求めている。   Conventional means for measuring the dimensions of an object to be measured are disclosed in, for example, Patent Document 1 and Patent Document 2 below. According to Patent Literature 1, two oppositely arranged laser distance meters are run in the horizontal direction to measure the shape of the H-shaped steel, and the obtained four contour shape data are based on the measurement information at the same location. It is synthesized and replaced with the same spatial coordinates, and the cross-sectional dimensions such as the H-shaped steel flange width and leg length are automatically calculated from the spatial coordinates. In this method, linear approximation is used for geometric element fitting to calculate dimensions from the obtained contour shape data, and the intersection point is calculated using a linear equation obtained by linear approximation, and the H-shaped steel flange width, leg length, etc. Thus, the dimension of the portion constituted by a straight line is measured, and finally the cross-sectional dimension of the object to be measured is obtained using the obtained flange width, leg length, and the like.

特許文献2によれば、撮像した被測定対象画像に対して、画像内の設定された初期ウインドウ位置からエッジに沿って自立的に移動しながら必要なエッジ点をサンプリングして輪郭形状データを得る。その後、オペレータは求めたい物理量に対応した形状評価種類を選択する。形状評価種類とは、円、直線、ピーク点、接線、垂線などの幾何要素自体の物理量、又は交角、距離、半径、面積などの幾何要素と他の幾何要素との間の物理量のことである。そして、選択された形状評価種類に対応した測定領域の入力や幾何要素の選択がオペレータに促される。オペレータはこれに応答してマウスで測定領域の指定等を行うと、形状評価処理が実行され所望の寸法を得ることができるとされている。
特開平8−327329号公報(段落番号0045〜0047) 特開平11−118444号公報(段落番号0036〜0040、0045)
According to Patent Literature 2, necessary edge points are sampled while moving independently along an edge from a set initial window position in an image to be measured, and contour shape data is obtained. . Thereafter, the operator selects a shape evaluation type corresponding to the physical quantity to be obtained. A shape evaluation type is a physical quantity of a geometric element itself such as a circle, a straight line, a peak point, a tangent, or a perpendicular line, or a physical quantity between a geometric element such as an intersection angle, a distance, a radius, or an area, and another geometric element. . Then, the operator is prompted to input a measurement region corresponding to the selected shape evaluation type or to select a geometric element. When the operator designates a measurement area with the mouse in response to this, the shape evaluation process is executed and a desired dimension can be obtained.
JP-A-8-327329 (paragraph numbers 0045 to 0047) JP 11-118444 A (paragraph numbers 0036 to 0040, 0045)

ピストンリング材は内燃機関に用いられる部品であるため、シリンダと接触する面部の形状が特に重要となり、高い寸法精度が要求される。しかしながら、ピストンリング材の測定に特許文献1の方法を用いようとすると、幾何要素の当てはめが直線のみのために、ピストンリング材のようにRが付いた場合の寸法算出には対応できない。更には、直線から円に変化する変曲点や円と直線の交点を使って距離を求めるといったような多彩な寸法算出方法に対応できない。
また、特許文献2の方法は測定領域を手作業で入力して測定を行う方法であるため、ピストンリング材のように求めたい寸法が多数存在して自動測定を行うことが必要となる場合には対応できない。そこで、一度行った操作を記憶して置き、その操作をトレースして自動寸法測定を行うとするとしても、毎回同じ位置に設定した測定領域内にある輪郭形状データを使って形状評価を行うこととなる。そのために、例えばピストンリング材のR部を円近似する場合には、同じ製品でも物が変れば輪郭形状も少なからず変化するために円弧部位ばかりか、直線部位の輪郭形状データをも測定領域内に含めて近似してしまい、誤った形状評価となる恐れがある。また、特許文献2に開示された二次元ベストフィット処理も、設計値データとして与えたデータと輪郭形状データとの照合度合いを定量的に評価するのみの手法であるため、適切な位置に測定領域を設定するものではない。仮に、ベストフィットで測定領域を設定したとしても大まかな位置検出でしかなく、ピストンリング材のような高い寸法精度が要求される自動測定には対応が難しい。
Since the piston ring material is a component used in an internal combustion engine, the shape of the surface portion that contacts the cylinder is particularly important, and high dimensional accuracy is required. However, if the method of Patent Document 1 is used to measure the piston ring material, the geometrical element is only fitted with a straight line, so that it is not possible to cope with the calculation of dimensions when R is attached as in the piston ring material. Furthermore, it cannot cope with various dimensional calculation methods such as obtaining the distance using an inflection point that changes from a straight line to a circle or an intersection of a circle and a straight line.
Further, since the method of Patent Document 2 is a method in which measurement is performed by manually inputting a measurement region, when there are many dimensions to be obtained such as a piston ring material, it is necessary to perform automatic measurement. Can not respond. Therefore, even if the operation once performed is stored and stored, and the automatic dimension measurement is performed by tracing the operation, the shape evaluation is performed using the contour shape data in the measurement region set at the same position every time. It becomes. Therefore, for example, when the R part of the piston ring material is approximated by a circle, the contour shape will change not only if the same product changes, but not only the arc portion but also the contour shape data of the straight portion within the measurement region. And there is a risk of incorrect shape evaluation. In addition, the two-dimensional best fit processing disclosed in Patent Document 2 is also a method for quantitatively evaluating the degree of matching between data given as design value data and contour shape data. Is not set. Even if the measurement area is set by the best fit, it is only a rough position detection, and it is difficult to cope with automatic measurement such as a piston ring material that requires high dimensional accuracy.

本発明は、上記した問題に鑑み、高い寸法精度が要求される特定部位のコーナーRの半径、距離又は角度等の寸法を、自動で算出することができる形状測定システム、形状測定方法及び形状測定プログラムを提供することを目的としている。   In view of the above-described problems, the present invention provides a shape measurement system, a shape measurement method, and a shape measurement that can automatically calculate the radius, distance, angle, and other dimensions of a corner R of a specific part that requires high dimensional accuracy. The purpose is to provide a program.

本発明に係る形状測定システムは、読み込んだ輪郭形状データから輪郭形状画像を生成する輪郭形状画像生成手段と、前記輪郭形状画像に対して、幾何学的パターンマッチング(以下PMと略する場合がある。)を行って求めた被測定対象部位の周辺所定位置に第1評価領域、第2評価領域を設定する評価領域設定手段と、第1評価領域,2評価領域内の輪郭形状データに基づき直線近似した2直線の交点を基準として測定領域を設定する測定領域設定手段と、設定した形状評価の種類に応じて測定領域内の輪郭形状データに対して幾何要素の物理量を求め、所定の寸法測定処理を実行する形状評価手段とを備えたことを特徴としている。   The shape measuring system according to the present invention includes a contour shape image generating means for generating a contour shape image from the read contour shape data, and geometric pattern matching (hereinafter abbreviated as PM) for the contour shape image. )), A straight line based on the evaluation area setting means for setting the first evaluation area and the second evaluation area at a predetermined position around the measurement target site and the contour shape data in the first evaluation area and the second evaluation area. Measurement area setting means for setting a measurement area based on the intersection of two approximated straight lines, and a physical quantity of a geometric element for the contour shape data in the measurement area in accordance with the set shape evaluation type, and a predetermined dimension measurement It is characterized by comprising shape evaluation means for executing processing.

前記評価領域設定手段は、予め任意の輪郭形状画像から特定部位の画像を切り出して登録したマスター画像を、予め設定しておいたサーチ領域内で測定対象の前記輪郭形状画像とPMをさせて、被測定対象部位を探索するとともに、その時のマスター画像の所定位置を基準として探索した被測定対象部位の輪郭形状画像の所定周辺部に第1評価領域、第2評価領域を設定するものである。第1評価領域、第2評価領域は、輪郭形状が直線状である部分を囲うように設定している。   The evaluation region setting means causes a master image obtained by cutting out and registering an image of a specific part from an arbitrary contour shape image in advance to cause the contour shape image and PM to be measured in a preset search region, While searching for the measurement target region, the first evaluation region and the second evaluation region are set in a predetermined peripheral portion of the contour shape image of the measurement target region searched using the predetermined position of the master image at that time as a reference. The first evaluation area and the second evaluation area are set so as to surround a portion whose contour shape is linear.

前記形状評価手段は、設定した形状評価の種類に応じて、前記測定領域内の輪郭形状データに対して幾何要素の物理量を求め、所定の寸法測定処理を実行するものであり、その処理結果を表示手段に出力するようにすると良い。   The shape evaluation means calculates a physical quantity of a geometric element for the contour shape data in the measurement region according to the set shape evaluation type, and executes a predetermined dimension measurement process. It is preferable to output to the display means.

前記、形状評価の種類は、例えばピーク点、接線、垂線、平行線、円、直線等の幾何要素自体の物理量や、例えば交点、距離、交角、半径等の一つの幾何要素と他の幾何要素との間で算出される物理量のことを言う。   The types of shape evaluation include physical quantities of geometric elements themselves such as peak points, tangent lines, perpendicular lines, parallel lines, circles, straight lines, and other geometric elements such as intersection points, distances, intersection angles, and radii. The physical quantity calculated between and.

また、本発明の形状測定システムは、測定すべき特定部位に係わるマスター画像、評価領域、測定領域、形状評価種類等のデータを測定箇所分予め記憶する外部記憶装置を備えると、複数の測定部位を順次自動的に測定することができるので好ましい。   In addition, the shape measurement system of the present invention includes an external storage device that stores data such as a master image, an evaluation region, a measurement region, and a shape evaluation type related to a specific region to be measured in advance for a plurality of measurement locations. Can be measured automatically in sequence, which is preferable.

本発明に係る形状測定方法は、被測定対象の輪郭形状データを読み込む輪郭形状入力段階と、読み込んだ輪郭形状データから輪郭形状画像を生成する輪郭形状画像生成段階と、輪郭画像にパターンマッチングを行って求めた被測定対象部位の周辺所定位置に第1評価領域,第2評価領域を設定する評価領域設定段階と、第1評価領域,第2評価領域内の輪郭形状データに基づき直線近似した2直線の交点を基準として測定領域を設定する測定領域設定段階と、設定した形状評価の種類に応じて測定領域内の輪郭形状データに対して幾何要素の物理量を求め所定の寸法測定処理を実行する形状評価段階とを備えたことを特徴としている。   The shape measurement method according to the present invention includes a contour shape input step for reading contour shape data of a measurement target, a contour shape image generation step for generating a contour shape image from the read contour shape data, and pattern matching for the contour image. The evaluation area setting step for setting the first evaluation area and the second evaluation area at a predetermined position around the measurement target site obtained in this way, and linear approximation 2 based on the contour shape data in the first evaluation area and the second evaluation area A measurement area setting stage for setting a measurement area based on the intersection of straight lines, and a physical quantity of a geometric element is obtained for contour shape data in the measurement area according to the set shape evaluation type, and a predetermined dimension measurement process is executed. And a shape evaluation stage.

本発明に係る形状測定プログラムは、コンピュータによって被測定対象の輪郭形状データを基に被測定対象部位の寸法を測定するための形状測定プログラムであって、輪郭形状データから輪郭形状画像を作成する輪郭形状画像生成ステップと、輪郭形状画像にパターンマッチングを行って求めた被測定対象部位の周辺所定位置に第1評価領域,第2評価領域を算出するステップと、第1評価領域,第2評価領域内の輪郭形状データに基づき直線近似した2直線の交点を基準として測定領域を算出するステップと、設定した形状評価の種類に応じて測定領域内の輪郭形状データに対して幾何要素の物理量を求め所定の寸法測定処理を実行するステップとを備えたことを特徴としている。   A shape measurement program according to the present invention is a shape measurement program for measuring a dimension of a measurement target region based on contour shape data of a measurement target by a computer, and creates a contour shape image from the contour shape data. A step of generating a shape image, a step of calculating a first evaluation region and a second evaluation region at a predetermined peripheral position of a region to be measured obtained by performing pattern matching on the contour shape image, and a first evaluation region and a second evaluation region A step of calculating a measurement region based on the intersection of two straight lines approximated based on the contour shape data inside, and obtaining physical quantities of geometric elements for the contour shape data in the measurement region according to the set shape evaluation type And a step of executing a predetermined dimension measurement process.

本発明によれば、上記のような構成の形状測定システムとしたので、被測定物の形状を測定するにあたり、パターンマッチングを用いて設定した第1、第2評価領域中に含まれる形状変化が起こり難い直線状部分を直線近似してなる2の直線の交点を基準として、測定すべき部位が含まれるように自動的に測定領域を設定し、測定領域に含まれる当該部位の幾何要素の物理量を測定するので、所定の形状に対して被測定物の形状に変化が生じている場合でも精度よく形状測定を行うことができる。   According to the present invention, since the shape measuring system configured as described above is used, the shape change included in the first and second evaluation regions set using pattern matching is measured when measuring the shape of the object to be measured. The measurement area is automatically set so that the part to be measured is included on the basis of the intersection of two straight lines obtained by linearly approximating a straight line part that hardly occurs, and the physical quantity of the geometric element of the part included in the measurement area Therefore, even when there is a change in the shape of the object to be measured with respect to the predetermined shape, the shape can be accurately measured.

本発明について、その実施態様に基づき図面を参照しつつ説明する。なお、以下、計測の対象をエンジン等に装着されるピストンリングとし、該ピストンリングとシリンダとの接する面に存する、図6において符号31eで示す幾何要素が円であり物理量が円の半径である角部のRの寸法計測を例に説明する。   The present invention will be described based on the embodiments with reference to the drawings. Hereinafter, the measurement target is a piston ring attached to an engine or the like, and the geometric element indicated by reference numeral 31e in FIG. 6 on the surface where the piston ring and the cylinder are in contact is a circle and the physical quantity is the radius of the circle. An example of measuring the dimension of the corner R will be described.

本発明の形状測定システムに係るコンピュータ装置は、コンピュータ本体、キーボード、マウス、及びディスプレイを備えて構成されている。コンピュータ本体は例えば、図2に示すように構成されている。即ち、CPU11と、本発明の形状測定システムを収納したプログラムメモリ12と、CPU11での各種処理のための作業領域を提供するワークメモリ13と、プログラムメモリ12に格納されたプログラムに従って変換された画像情報を格納する画像メモリ14と、画像メモリ14に格納された画像情報をディスプレイに表示する表示制御部15と、測定アイテム等の各種情報をマウス等で入力するインターフェース16と、輪郭形状データやマスター画像、測定手順等を保存しておくための外部記憶装置17を備えており、各種情報はバスを介してやり取りされる。   A computer apparatus according to the shape measurement system of the present invention is configured to include a computer main body, a keyboard, a mouse, and a display. For example, the computer main body is configured as shown in FIG. That is, the CPU 11, the program memory 12 containing the shape measurement system of the present invention, the work memory 13 that provides a work area for various processes in the CPU 11, and the image converted according to the program stored in the program memory 12. An image memory 14 for storing information, a display control unit 15 for displaying the image information stored in the image memory 14 on a display, an interface 16 for inputting various information such as measurement items with a mouse, etc., contour shape data and a master An external storage device 17 is provided for storing images, measurement procedures, and the like, and various types of information are exchanged via a bus.

図1は、上記プログラムメモリ12に格納された形状測定システムの構成を示す機能ブロック図である。輪郭形状画像生成手段21は、CPU11からの読み出し要求に従い読み出された輪郭形状データを画像に変換し画像メモリ14に格納する。評価領域設定手段22は、画像メモリ14に格納された画像に対してPMを実行してマスター画像と合致する部位を求め、その部位を基準にして予め設定しておいた相対位置に第1評価領域、第2評価領域を設定する。測定領域設定手段23は、第1評価領域、第2評価領域内にある輪郭形状データに対して直線近似を行い、2直線の交点を求め、交点から予め設定しておいた相対位置に測定領域を設定する。形状評価手段24は、測定領域内の輪郭形状データに対して、指定された形状評価のための各種の演算処理を実行し、例えば結果をディスプレイに表示したり、別のシステムに出力したりする。   FIG. 1 is a functional block diagram showing the configuration of the shape measuring system stored in the program memory 12. The contour shape image generation means 21 converts the contour shape data read according to the read request from the CPU 11 into an image and stores it in the image memory 14. The evaluation area setting means 22 performs PM on the image stored in the image memory 14 to obtain a part that matches the master image, and performs the first evaluation at a relative position set in advance with reference to the part. An area and a second evaluation area are set. The measurement area setting means 23 performs straight line approximation on the contour shape data in the first evaluation area and the second evaluation area, obtains the intersection of the two straight lines, and sets the measurement area at a preset relative position from the intersection. Set. The shape evaluation unit 24 executes various arithmetic processes for the designated shape evaluation on the contour shape data in the measurement region, and displays the result on a display or outputs it to another system, for example. .

図3は、上記形状測定システムの全体の動作を示すフローチャートである。まず、本システムは、前処理としてマスター画像や評価領域の相対位置や測定領域の相対位置等の各種設定情報を読み込む(S1)。次に、本システムは、図4のフォーマットに従ってデータ個数と輪郭点情報を出力した輪郭形状データを読み込む(S2)。輪郭形状画像生成手段21が輪郭形状データを画像に変換して画像メモリに格納する(S3)。次に、評価領域設定手段22がPMによる位置検出にてマスター画像と合致する位置を検出し、第1評価領域と第2評価領域を算出する(S4)。続いて、測定領域設定手段23が測定領域を算出する(S5)。測定領域が求まったら、形状評価手段24が輪郭形状の評価処理を実行する(S6)。
以下、評価領域設定手段22、測定領域設定手段23及び形状評価手段24の構成及び動作について具体的に説明する。なお、輪郭形状画像生成手段21は周知の画像処理手段で構成することが可能であり詳細な説明を省略する。
FIG. 3 is a flowchart showing the overall operation of the shape measuring system. First, the system reads various setting information such as a master image, a relative position of an evaluation area, and a relative position of a measurement area as preprocessing (S1). Next, the system reads contour shape data that outputs the number of data and contour point information in accordance with the format of FIG. 4 (S2). The contour shape image generation means 21 converts the contour shape data into an image and stores it in the image memory (S3). Next, the evaluation area setting means 22 detects a position that matches the master image by position detection by PM, and calculates a first evaluation area and a second evaluation area (S4). Subsequently, the measurement area setting means 23 calculates a measurement area (S5). When the measurement region is obtained, the shape evaluation unit 24 executes the contour shape evaluation process (S6).
Hereinafter, the configuration and operation of the evaluation region setting unit 22, the measurement region setting unit 23, and the shape evaluation unit 24 will be specifically described. Note that the contour shape image generating means 21 can be constituted by a well-known image processing means, and detailed description thereof will be omitted.

[評価領域設定手段]
評価領域設定手段22について図5〜図9を参照し説明する。図5は評価領域設定手段22の処理手順を示すフローチャートを示す図である。図6〜9は、図5の各ステップ(S41〜44)に対応する処理を可視的に示す概念図であり、図中の符号31は、読み込まれた輪郭形状データを輪郭形状画像生成手段21が変換してなるピストンリングの画像の輪郭であるワーク輪郭である。
[Evaluation area setting means]
The evaluation area setting means 22 will be described with reference to FIGS. FIG. 5 is a flowchart showing the processing procedure of the evaluation area setting means 22. 6 to 9 are conceptual diagrams visually showing processing corresponding to the steps (S41 to S44) in FIG. 5. Reference numeral 31 in the drawing denotes the read contour shape data as contour shape image generation means 21. FIG. Is a workpiece outline which is an outline of an image of a piston ring obtained by converting.

まず、図6に示すように、原点Gを基準として所定の大きさを持つX,Y平面P内の任意の位置に置かれたワーク輪郭31の鉛直に伸びた第1の稜線31aと、水平に伸びた第2の稜線31bを直線近似してなる直線の交点を求め第1基準点34とする(図5のS41)。次に、図7に示すように、第1基準点34が平面Pの中心に位置するようにワーク輪郭31を移動する。その後、例えば予め設定された座標(Ix、Iy)にサーチ領域35の左側上方端点が位置するように、測定すべき角部のRの稜線(以下測定稜線と称する。)31eを含むワーク輪郭31の左突端部の所定部位にサーチ領域35を設定する(同S42)。ここで、サーチ領域35とは、所望の測定部位を含み後述するPMを行うための所定の大きさを有する矩形の領域である。   First, as shown in FIG. 6, the first ridge line 31a extending vertically of the workpiece contour 31 placed at an arbitrary position in the X, Y plane P having a predetermined size with respect to the origin G, and the horizontal An intersection of straight lines obtained by linearly approximating the second ridge line 31b extending in the straight line is obtained and set as the first reference point 34 (S41 in FIG. 5). Next, as shown in FIG. 7, the workpiece contour 31 is moved so that the first reference point 34 is located at the center of the plane P. Thereafter, for example, a workpiece contour 31 including an R ridgeline (hereinafter referred to as a measurement ridgeline) 31e of a corner to be measured so that the upper left end point of the search area 35 is positioned at preset coordinates (Ix, Iy). The search area 35 is set at a predetermined part of the left protruding end (S42). Here, the search area 35 is a rectangular area including a desired measurement site and having a predetermined size for performing PM described later.

図8に示すように、サーチ領域35内においてマスター画像37を動かして、該サーチ領域35内のワーク輪郭31とマスター画像37とのPMを所定のルールで行う。そして、マスター画像37とワーク輪郭31とが最も合致する位置におけるマスター画像37の左側上方端点の位置(SAx、SAy)を第2基準点36とする(同S43)。ここで、本態様のマスター画像37は、事前に基準となるピストンリングの形状を計測し、それから得られた測定稜線31eに対応する所定部位の画像を取得しておいたものである。なお、マスター画像としては設計データを画像化したものなども使用することができる。   As shown in FIG. 8, the master image 37 is moved in the search area 35, and PM between the workpiece contour 31 and the master image 37 in the search area 35 is performed according to a predetermined rule. Then, the position (SAx, SAy) of the upper left end point of the master image 37 at the position where the master image 37 and the workpiece outline 31 most closely match is set as the second reference point 36 (S43). Here, the master image 37 of this aspect is obtained by measuring the shape of the piston ring as a reference in advance and acquiring an image of a predetermined portion corresponding to the measurement ridge line 31e obtained therefrom. As the master image, an image of design data can be used.

次に、図9に示すように、第1評価領域38を設定する(同S44)。ここで、第1評価領域38は、測定稜線31eの右方につながる水平な第3の稜線31cの一部を包含するように、また、第2評価領域39は、測定稜線31eの下方につながる第1の稜線31aを含むように設定される。これは、第3の稜線31cと第1の稜線31aとを直線近似してなる直線との交点が測定稜線31eの計測における基準点となるためである。なお、本態様では、第1、第2評価領域38、39は、第2基準点36から第1、第2評価領域38、39の左側上方端点までの距離が上記の条件を満たすような大きさとなるように設定される。すなわち、図示するように、第1評価領域38についてはX、Y軸方向にHAx、HAyと、第2評価領域39についてはX、Y軸方向にHBx、HByとなるように、第1、第2評価領域38、39の位置が設定される。なお、本態様では角部のRの寸法を計測するため第3の稜線31c及び第1の稜線31aを含むように第1、2評価領域38,39を設定したが、例えば符号31dで示す傾斜した稜線を含むように評価領域を設定するようにしてもよい。   Next, as shown in FIG. 9, the first evaluation area 38 is set (S44). Here, the first evaluation area 38 includes a part of the horizontal third ridge line 31c connected to the right side of the measurement ridge line 31e, and the second evaluation area 39 is connected below the measurement ridge line 31e. It is set so as to include the first ridgeline 31a. This is because the intersection of the third ridge line 31c and the straight line obtained by linearly approximating the first ridge line 31a is a reference point in the measurement of the measurement ridge line 31e. In this aspect, the first and second evaluation areas 38 and 39 are large so that the distance from the second reference point 36 to the upper left end point of the first and second evaluation areas 38 and 39 satisfies the above condition. Is set to be That is, as shown in the figure, the first evaluation area 38 is HAx and HAy in the X and Y axis directions, and the second evaluation area 39 is HBx and HBy in the X and Y axis directions. 2 The positions of the evaluation areas 38 and 39 are set. In this aspect, the first and second evaluation regions 38 and 39 are set so as to include the third ridge line 31c and the first ridge line 31a in order to measure the R dimension of the corner portion. The evaluation area may be set so as to include the ridgeline.

上記のように第1、第2評価領域38、39は、計測されたピストンリングのワーク輪郭31の形状とマスター画像37を所定のルールでPMさせ、PMで位置決めされたマスター画像37の所定点を基準として設定される。したがって、計測されたピストンリングのワーク輪郭31とマスター画像37のピストンリングの輪郭とが完全に合致しない場合でも、第1、第2評価領域38、39が設定される。   As described above, the first and second evaluation areas 38 and 39 cause the measured shape of the workpiece contour 31 of the piston ring and the master image 37 to be PM according to a predetermined rule, and the predetermined point of the master image 37 positioned by PM. Is set as a reference. Therefore, even when the measured piston ring workpiece contour 31 and the piston ring contour of the master image 37 do not completely match, the first and second evaluation regions 38 and 39 are set.

[測定領域設定手段]
測定領域設定手段23について図10〜12を参照し説明する。図10は測定領域設定手段22の処理手順を示すフローチャートを示す図である。図11、12は、図10の各ステップ(S51、52)に対応する処理を可視的に示す概念図である。
[Measurement area setting means]
The measurement area setting means 23 will be described with reference to FIGS. FIG. 10 is a flowchart showing the processing procedure of the measurement area setting means 22. 11 and 12 are conceptual diagrams visually showing processing corresponding to the steps (S51 and S52) in FIG.

まず、図11に示すように、第1評価領域38に包含された第3の稜線31cを直線近似してなる直線40を求める。また、同様にして、第2評価領域39に包含された第3の稜線31aを直線近似してなる直線41を求める。そして、この2つの直線40,41の交点を求め、第3基準点42とする(図10のS51)。   First, as shown in FIG. 11, a straight line 40 obtained by linearly approximating the third ridgeline 31c included in the first evaluation region 38 is obtained. Similarly, a straight line 41 obtained by linearly approximating the third ridge line 31a included in the second evaluation region 39 is obtained. And the intersection of these two straight lines 40 and 41 is calculated | required, and it is set as the 3rd reference point 42 (S51 of FIG. 10).

次に、図12に示すように、第3基準点42を基準として所定の範囲に測定領域43を設定する。ここで、測定領域43は、測定稜線31eを含むように設定される。本態様では、第3基準点42から測定領域43の左側上方端点までの距離が、X軸方向においてP0x、Y軸方向においてP0yとなるように設定されている(S52)。   Next, as shown in FIG. 12, the measurement region 43 is set in a predetermined range with the third reference point 42 as a reference. Here, the measurement region 43 is set to include the measurement ridgeline 31e. In this aspect, the distance from the third reference point 42 to the upper left end point of the measurement region 43 is set to be P0x in the X-axis direction and P0y in the Y-axis direction (S52).

この測定領域43は、上記した評価領域設定手段22によりPMで設定された第2基準点36を基準として設定することも可能である。しかしながら、測定領域設定手段23により設定された第3基準点42は、実際に測定されたピストンリングのワーク輪郭31を基準として設定されるものである。したがって、第3基準点42は実際のワーク輪郭31の形状を反影したものとなるので、よりピストンリングの形状の変化に対応し精度よく寸法を計測することが可能となる。   The measurement area 43 can be set with the second reference point 36 set by PM by the above-described evaluation area setting means 22 as a reference. However, the third reference point 42 set by the measurement region setting means 23 is set with reference to the workpiece contour 31 of the piston ring actually measured. Therefore, since the third reference point 42 is a reflection of the actual shape of the workpiece contour 31, it is possible to measure the dimensions with high accuracy in response to changes in the shape of the piston ring.

[形状評価手段]
形状評価手段24は、前記測定領域43内のワーク輪郭31に対し演算処理を行う。形状評価手段は、例えば任意の幾何要素を当てはめ、幾何要素自体の物理量の算出及び幾何要素と他の幾何要素との間の物理量の算出を実行する。ここで、幾何要素とは、例えばピーク点、接線、垂線、平行線、円、直線等のうちの少なくとも一つを含み、幾何要素自体の物理量及び幾何要素と他の幾何要素との間の物理量とは、例えば交点、距離、交角、半径等の少なくとも一つを含むものである。本態様においては、形状評価手段24は、測定領域43内の測定稜線31eに対して円近似を行い、Rの半径を算出する。
[Shape evaluation means]
The shape evaluation unit 24 performs arithmetic processing on the workpiece contour 31 in the measurement region 43. The shape evaluation unit applies, for example, an arbitrary geometric element, and calculates a physical quantity of the geometric element itself and calculates a physical quantity between the geometric element and another geometric element. Here, the geometric element includes, for example, at least one of a peak point, a tangent line, a perpendicular line, a parallel line, a circle, a straight line, etc., and a physical quantity of the geometric element itself and a physical quantity between the geometric element and another geometric element. Includes, for example, at least one of an intersection, a distance, an intersection angle, a radius, and the like. In this aspect, the shape evaluation means 24 performs a circular approximation to the measurement ridge line 31e in the measurement region 43, and calculates the radius of R.

以上、角部のRの半径を求めるために、該Rを形成する測定稜線31eができるだけ多く含まれるように測定領域43を設定し、その測定稜線31eに対して円近似するという方法を説明したが、測定領域設定手段23においては、Rの半径を求めるため変曲点を用いることもできる。   The method of setting the measurement region 43 so as to include as many measurement ridgelines 31e forming the R as possible and approximating the circle with respect to the measurement ridgelines 31e has been described above in order to obtain the radius of the corner R. However, in the measurement area setting means 23, an inflection point can be used to obtain the radius of R.

図13は円近似を行う場合に変曲点を用いた例である。図13に示すように、第3の稜線31cに直線近似させた水平方向に伸びる直線40に沿い第3基準点42を基準に所定の位置に第1の測定領域61を設定する。また、同様に、第1の稜線31aに直線近似させた鉛直直線41に沿い第3基準点42を基準に所定の位置に第2の測定領域62を設定する。次に、第1の測定領域61内のワーク輪郭31に対して直線40から所定の距離だけ離れた最初の点を第1の変曲点63とし、第2の測定領域62内のワーク輪郭31に対して直線41から所定の距離離れた最初の点を第2の変曲点64とする。そして、第1の変曲点63と第2の変曲点64の間に存在するワーク輪郭31、すなわち測定稜線31eに対して形状評価手段24が円近似をし、Rの半径を求める。このように変曲点を用いRの半径を求めることで、Rを形成する測定稜線31e以外のデータを除外できるので、更に精度良く角部のRの半径を求めることが可能となる。   FIG. 13 shows an example in which inflection points are used when performing circular approximation. As shown in FIG. 13, the first measurement region 61 is set at a predetermined position along the straight line 40 extending in the horizontal direction that is linearly approximated to the third ridge line 31 c with reference to the third reference point 42. Similarly, the second measurement region 62 is set at a predetermined position along the vertical straight line 41 that is linearly approximated to the first ridge line 31a with the third reference point 42 as a reference. Next, the first point that is a predetermined distance away from the straight line 40 with respect to the workpiece contour 31 in the first measurement region 61 is defined as a first inflection point 63, and the workpiece contour 31 in the second measurement region 62. The first point away from the straight line 41 by a predetermined distance is defined as a second inflection point 64. Then, the shape evaluation means 24 approximates the circle with respect to the workpiece contour 31 existing between the first inflection point 63 and the second inflection point 64, that is, the measurement ridge line 31e, and obtains the radius of R. By obtaining the radius of R using the inflection point in this way, data other than the measurement ridge line 31e forming R can be excluded, so that the radius of R at the corner can be obtained with higher accuracy.

次に、図14に基づいて、ピストンリングの幅80を求める方法を説明する。本形状計測システムによれば、まず、上記説明と同様にして両突端部における外側の角部の第3基準点を求める。具体的には、左側突端部に設定した一方のサーチ領域35内において一方のマスター画像37を使いPMで求めた一方の第2基準点36に基づいて一方の第1の測定領域71及び第2の測定領域72を設定し、一方の第3基準点73を求める。同様に、右側突端部に設定した他方のサーチ領域79内において他方のマスター画像77を使いPMで求めた他方の第2基準点78に基づいて他方の第1の測定領域74及び第2の測定領域75を設定し、他方の第3基準点76を求める。そして、一方の第3基準点73と他方の第3基準点76の間の距離80を求める。離れた2点間の距離を求める場合には、この例のようにサーチ領域を分けて各々で点を求める事で形状変化に追従した距離寸法の測定が可能となる。   Next, a method for obtaining the piston ring width 80 will be described with reference to FIG. According to the present shape measurement system, first, the third reference point of the outer corner at both projecting ends is obtained in the same manner as described above. Specifically, in one search area 35 set at the left end, one first measurement area 71 and second area based on one second reference point 36 obtained by PM using one master image 37. Measurement region 72 is set, and one third reference point 73 is obtained. Similarly, the other first measurement region 74 and the second measurement based on the other second reference point 78 obtained by PM using the other master image 77 in the other search region 79 set at the right end. A region 75 is set, and the other third reference point 76 is obtained. Then, a distance 80 between one third reference point 73 and the other third reference point 76 is obtained. In the case of obtaining the distance between two distant points, it is possible to measure the distance dimension following the shape change by dividing the search area and obtaining each point as in this example.

以上、一つの幾何要素の物理量を求めた例を説明したが、例えば交点、距離、交角、半径等測定すべき形状評価項目が複数ある場合でも、所定の幾何要素の物理量に対する輪郭形状画像内でのサーチ領域の場所とPMに使うマスター画像、第1評価領域,第2評価領域,測定領域の相対位置、形状評価の種類等を外部記憶装置17に記憶させておけば、図2に示す本形状評価システムの処理を順次実行させることで、設定した複数の形状測定を自動的に行うことができる。   The example in which the physical quantity of one geometric element has been described has been described above. For example, even when there are a plurality of shape evaluation items to be measured such as intersections, distances, intersection angles, and radii, If the location of the search area and the master image used for PM, the first evaluation area, the second evaluation area, the relative position of the measurement area, the type of shape evaluation, etc. are stored in the external storage device 17, the book shown in FIG. A plurality of set shape measurements can be automatically performed by sequentially executing the processing of the shape evaluation system.

本発明に係る形状計測システムの機能ブロック図である。It is a functional block diagram of the shape measurement system concerning the present invention. 図1のシステムが内蔵されたコンピュータ装置の構成を示す構成図である。It is a block diagram which shows the structure of the computer apparatus incorporating the system of FIG. 図1のシステムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the system of FIG. 図1のシステムで読み込まれる輪郭形状のデータ形式である。It is a data format of the outline shape read by the system of FIG. 図1のシステムにおける評価領域の設定処理方法を説明するフローチャートである。It is a flowchart explaining the setting process method of the evaluation area | region in the system of FIG. 図5のフローにおいて輪郭形状画像の座標系での基準点の算出方法を説明する図である。It is a figure explaining the calculation method of the reference point in the coordinate system of an outline shape image in the flow of FIG. 図5のフローにおいてサーチ領域を設定する方法を説明する図である。It is a figure explaining the method to set a search area | region in the flow of FIG. 図5のフローにおいてPMを用いて位置を検出する方法を説明する図である。It is a figure explaining the method of detecting a position using PM in the flow of FIG. 図5のフローにおいて評価領域を設定する方法を説明する図である。It is a figure explaining the method to set an evaluation area | region in the flow of FIG. 図1のシステムにおける測定領域を設定処理方法を説明するフローチャートである。It is a flowchart explaining the setting process method of the measurement area | region in the system of FIG. 図10のフローにおいて測定領域の基準点を算出する方法を説明する図である。It is a figure explaining the method of calculating the reference point of a measurement area in the flow of FIG. 図10のフローにおいて測定領域を設定する方法を説明する図である。It is a figure explaining the method of setting a measurement area | region in the flow of FIG. 図1のシステムにおける変曲点を利用した円近似方法を説明する図である。It is a figure explaining the circle approximation method using the inflection point in the system of FIG. 図1のシステムにおける2点間の距離の算出方法を説明する図である。It is a figure explaining the calculation method of the distance between two points in the system of FIG.

符号の説明Explanation of symbols

11 CPU
12 プログラムメモリ
13 ワーキングメモリ
14 画像メモリ
15 表示制御部
16 インターフェース
17 外部記憶装置
21 輪郭形状画像生成手段
22 評価領域設定手段
23 測定領域設定手段
24 形状評価手段
31 ワーク輪郭
32 第1の稜線
33 第2の稜線
34 第1基準点
35 サーチ領域(一方のサーチ領域)
36 第2基準点(一方の第2基準点)
37 マスター画像(一方のマスター画像)
38 第1の評価領域
39 第2の評価領域
40 近似直線
41 近似直線
42 第3基準点
43 測定領域
61 第1の測定領域
62 第2の測定領域
63 第1の変曲点
64 第2の変曲点
71 一方の第1の測定領域
72 一方の第2の測定領域
73 一方の第3基準点
74 他方の第1の測定領域
75 他方の第2の測定領域
76 他方の第3基準点
77 他方のマスター画像
78 他方の第2基準点
79 他方のサーチ領域
80 ピストンリングの幅
11 CPU
DESCRIPTION OF SYMBOLS 12 Program memory 13 Working memory 14 Image memory 15 Display control part 16 Interface 17 External storage device 21 Contour shape image generation means 22 Evaluation area setting means 23 Measurement area setting means 24 Shape evaluation means 31 Work outline 32 1st edge 33 Second Ridgeline 34 First reference point 35 Search area (one search area)
36 Second reference point (one second reference point)
37 Master image (one master image)
38 First Evaluation Area 39 Second Evaluation Area 40 Approximate Line 41 Approximate Line 42 Third Reference Point 43 Measurement Area 61 First Measurement Area 62 Second Measurement Area 63 First Inflection Point 64 Second Variation Inflection point 71 One first measurement area 72 One second measurement area 73 One third reference point 74 The other first measurement area 75 The other second measurement area 76 The other third reference point 77 The other Master image of 78 The other second reference point 79 The other search area 80 Piston ring width

Claims (3)

コンピュータシステムを用いて被測定対象の輪郭形状データを基に被測定対象部位の寸法を測定する形状測定システムにおいて、
輪郭形状データから輪郭形状画像を生成する輪郭形状画像生成手段と、
輪郭形状画像にパターンマッチングを行って求めた被測定対象部位の周辺所定位置に第1評価領域,第2評価領域を設定する評価領域設定手段と、
第1評価領域,第2評価領域内の輪郭形状データを直線近似した2直線の交点を基準として測定領域を設定する測定領域設定手段と、
設定した形状評価の種類に応じて測定領域内の輪郭形状データに対して幾何要素の物理量を求め所定の寸法測定処理を実行する形状評価手段とを備えたことを特徴とする形状測定システム。
In the shape measurement system for measuring the dimension of the measurement target part based on the contour shape data of the measurement target using a computer system,
Contour shape image generating means for generating a contour shape image from the contour shape data;
An evaluation area setting means for setting the first evaluation area and the second evaluation area at a predetermined position around the measurement target site obtained by performing pattern matching on the contour shape image;
Measurement area setting means for setting the measurement area with reference to the intersection of two straight lines obtained by linear approximation of the contour shape data in the first evaluation area and the second evaluation area;
A shape measuring system comprising shape evaluating means for obtaining a physical quantity of a geometric element for contour shape data in a measurement region in accordance with a set shape evaluation type and executing a predetermined dimension measuring process.
コンピュータシステムを用いて被測定対象の輪郭形状データを基に被測定対象部位の寸法を測定する方法において、
輪郭形状データを読み込む輪郭形状入力段階と、
輪郭形状データから輪郭形状画像を作成する輪郭形状画像生成段階と、
輪郭画像にパターンマッチングを行って求めた被測定対象部位の周辺所定位置に第1評価領域,第2評価領域を設定する評価領域設定段階と、
第1評価領域,第2評価領域内の輪郭形状データに基づき直線近似した2直線の交点を基準として測定領域を設定する測定領域設定段階と、
設定した形状評価の種類に応じて測定領域内の輪郭形状データに対して幾何要素の物理量を求め所定の寸法測定処理を実行する形状評価段階とを備えたことを特徴とする形状測定方法。
In a method for measuring a dimension of a measurement target portion based on contour shape data of a measurement target using a computer system,
Contour shape input stage for reading contour shape data;
A contour shape image generation stage for creating a contour shape image from the contour shape data;
An evaluation area setting step for setting the first evaluation area and the second evaluation area at a predetermined position around the measurement target site obtained by performing pattern matching on the contour image;
A measurement region setting stage for setting a measurement region on the basis of the intersection of two straight lines approximated based on contour shape data in the first evaluation region and the second evaluation region;
A shape measurement method comprising: a shape evaluation step of obtaining a physical quantity of a geometric element for contour shape data in a measurement region in accordance with a set shape evaluation type and executing a predetermined dimension measurement process.
コンピュータによって被測定対象の輪郭形状データを基に被測定対象部位の寸法を測定するための形状測定プログラムであって、
輪郭形状データから輪郭形状画像を作成する輪郭形状画像生成ステップと、
輪郭形状画像にパターンマッチングを行って求めた被測定対象部位の周辺所定位置に第1評価領域,第2評価領域を算出するステップと、
第1評価領域,第2評価領域内の輪郭形状データに基づき直線近似した2直線の交点を基準として測定領域を算出するステップと、
設定した形状評価の種類に応じて測定領域内の輪郭形状データに対して幾何要素の物理量を求め所定の寸法測定処理を実行するステップとを備えたことを特徴とする形状測定プログラム。
A shape measurement program for measuring the dimensions of a measurement target part based on contour shape data of the measurement target by a computer,
A contour shape image generation step for creating a contour shape image from the contour shape data;
Calculating a first evaluation region and a second evaluation region at a predetermined position around the measurement target region obtained by performing pattern matching on the contour shape image;
Calculating a measurement region on the basis of an intersection of two straight lines approximated based on contour shape data in the first evaluation region and the second evaluation region;
A shape measurement program comprising: calculating a physical quantity of a geometric element for contour shape data in a measurement region according to a set shape evaluation type, and executing a predetermined dimension measurement process.
JP2005027997A 2005-02-03 2005-02-03 Shape measuring system, shape measuring method and shape measuring program Expired - Fee Related JP4683324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027997A JP4683324B2 (en) 2005-02-03 2005-02-03 Shape measuring system, shape measuring method and shape measuring program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027997A JP4683324B2 (en) 2005-02-03 2005-02-03 Shape measuring system, shape measuring method and shape measuring program

Publications (2)

Publication Number Publication Date
JP2006214870A true JP2006214870A (en) 2006-08-17
JP4683324B2 JP4683324B2 (en) 2011-05-18

Family

ID=36978224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027997A Expired - Fee Related JP4683324B2 (en) 2005-02-03 2005-02-03 Shape measuring system, shape measuring method and shape measuring program

Country Status (1)

Country Link
JP (1) JP4683324B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300125A (en) * 2008-06-10 2009-12-24 Keyence Corp Image measuring device, image measuring method, and computer program
JP2011075301A (en) * 2009-09-29 2011-04-14 Koike Sanso Kogyo Co Ltd System and method for inspecting dimensions
JP2013170838A (en) * 2012-02-17 2013-09-02 Keyence Corp Optical displacement meter
DE102013011063A1 (en) 2012-07-02 2014-01-02 Mitutoyo Corp. Form analysis method and form analysis program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280771A (en) * 1985-10-04 1987-04-14 Hitachi Ltd Picture quality evaluation system based upon shape of image
JPH02101613A (en) * 1988-10-07 1990-04-13 Hitachi Metals Ltd Measuring machine for gap depth core slider
JPH07198334A (en) * 1993-12-28 1995-08-01 Honda Motor Co Ltd Imaging processing method in optical measuring apparatus
JP2000339458A (en) * 1999-05-25 2000-12-08 Sharp Corp Image processor
JP2001264020A (en) * 2000-03-22 2001-09-26 Sony Corp End point coordinate detector, dimension measuring instrument, end point coordinate detecting method, and dimension-measuring method
JP2002286426A (en) * 2001-03-27 2002-10-03 Matsushita Electric Works Ltd Dimension measurement method and apparatus by image processing
JP2004158041A (en) * 1998-12-16 2004-06-03 Fujitsu Ltd Surface image processor and its program storage medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280771A (en) * 1985-10-04 1987-04-14 Hitachi Ltd Picture quality evaluation system based upon shape of image
JPH02101613A (en) * 1988-10-07 1990-04-13 Hitachi Metals Ltd Measuring machine for gap depth core slider
JPH07198334A (en) * 1993-12-28 1995-08-01 Honda Motor Co Ltd Imaging processing method in optical measuring apparatus
JP2004158041A (en) * 1998-12-16 2004-06-03 Fujitsu Ltd Surface image processor and its program storage medium
JP2000339458A (en) * 1999-05-25 2000-12-08 Sharp Corp Image processor
JP2001264020A (en) * 2000-03-22 2001-09-26 Sony Corp End point coordinate detector, dimension measuring instrument, end point coordinate detecting method, and dimension-measuring method
JP2002286426A (en) * 2001-03-27 2002-10-03 Matsushita Electric Works Ltd Dimension measurement method and apparatus by image processing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300125A (en) * 2008-06-10 2009-12-24 Keyence Corp Image measuring device, image measuring method, and computer program
JP2011075301A (en) * 2009-09-29 2011-04-14 Koike Sanso Kogyo Co Ltd System and method for inspecting dimensions
JP2013170838A (en) * 2012-02-17 2013-09-02 Keyence Corp Optical displacement meter
DE102013011063A1 (en) 2012-07-02 2014-01-02 Mitutoyo Corp. Form analysis method and form analysis program
JP2014010103A (en) * 2012-07-02 2014-01-20 Mitsutoyo Corp Shape analysis method and shape analysis program
US9983001B2 (en) 2012-07-02 2018-05-29 Mitutoyo Corporation Shape analysis method and shape analysis program
DE102013011063B4 (en) 2012-07-02 2023-06-29 Mitutoyo Corp. Shape analysis method and shape analysis program

Also Published As

Publication number Publication date
JP4683324B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
US7724380B2 (en) Method and system for three-dimensional measurement
US20030090483A1 (en) Simulation apparatus for working machine
KR20060132454A (en) Image process apparatus
US20200033109A1 (en) Workpiece measurement device, workpiece measurement method and non-transitory computer readable medium recording a program
JP2014527663A (en) Coordinate measurement system data organization
JP6576664B2 (en) Edge detection bias correction value calculation method, edge detection bias correction method, and program
EP2003526A1 (en) Method and device for controlling and monitoring a position of a holding element
Germani et al. CAD-based environment to bridge the gap between product design and tolerance control
US20090289953A1 (en) System and method for adjusting view of a measuring report of an object
JP4683324B2 (en) Shape measuring system, shape measuring method and shape measuring program
JP5916052B2 (en) Alignment method
Mehdi-Souzani et al. Scan planning strategy for a general digitized surface
JP2001141441A (en) Method and device for evaluating cylindrical processed article
KR101403377B1 (en) Method for calculating 6 dof motion of object by using 2d laser scanner
Sliusarenko et al. Constant probe orientation for fast contact-based inspection of 3D free-form surfaces using (3+ 2)-axis inspection machines
JP6280425B2 (en) Image processing apparatus, image processing system, three-dimensional measuring instrument, image processing method, and image processing program
CN111352630B (en) Measuring program compiling device and measuring program compiling method
KR101644512B1 (en) Apparatus and method for modelling 3d shape
EP1899676B1 (en) Mapping a surface profile
Sýkora et al. Freeform digital twin approach to develop the HP 300 freeform verification standard
JP6202875B2 (en) Image measuring apparatus and control program therefor
JP2012063310A (en) Defect dimension measuring apparatus, defect dimension measurement method, and program
Minetola et al. Contactless inspection of castings: analysis of alignment procedures
JP2004045231A (en) Three-dimensional measuring machine, calibration method therefor, and computer-readable storage medium stored with program for executing the method
JP7133821B1 (en) Automatic measurement program, automatic measurement device and automatic measurement method by arbitrary coordinate system point cloud

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees