WO2019160166A1 - Mold production method, and molded article production method using same - Google Patents

Mold production method, and molded article production method using same Download PDF

Info

Publication number
WO2019160166A1
WO2019160166A1 PCT/JP2019/006929 JP2019006929W WO2019160166A1 WO 2019160166 A1 WO2019160166 A1 WO 2019160166A1 JP 2019006929 W JP2019006929 W JP 2019006929W WO 2019160166 A1 WO2019160166 A1 WO 2019160166A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
curable composition
ultraviolet curable
deformation
curing
Prior art date
Application number
PCT/JP2019/006929
Other languages
French (fr)
Japanese (ja)
Inventor
慎介 石川
武 藤川
有希 大西
平井 義彦
Original Assignee
株式会社ダイセル
国立大学法人東京工業大学
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018174162A external-priority patent/JP2019142206A/en
Application filed by 株式会社ダイセル, 国立大学法人東京工業大学, 公立大学法人大阪府立大学 filed Critical 株式会社ダイセル
Priority to EP19754456.2A priority Critical patent/EP3756847A4/en
Priority to US16/970,844 priority patent/US20200376720A1/en
Priority to KR1020207026730A priority patent/KR20200119872A/en
Priority to CN201980014198.XA priority patent/CN111741840A/en
Publication of WO2019160166A1 publication Critical patent/WO2019160166A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing

Definitions

  • the present invention relates to a method for producing a mold made of an elastic body used for molding an ultraviolet curable composition, and a method for producing a molded body using the mold produced by the above method.
  • Imprint is a microfabrication technology that can transfer nano-sized patterns with a very simple process. If imprint is used, it can be mass-produced at low cost, and has been put to practical use in various fields such as semiconductor devices and optical members.
  • a micromirror array is an optical member in which a large number of three-dimensional shapes of quadrangular columns and pyramids with sides of 100 to 1000 ⁇ m are arranged in a lattice shape, and two adjacent side surfaces of the four side surfaces of the three-dimensional shape are used as orthogonal mirrors. Therefore, an accurate angle and high flatness (that is, high surface accuracy) are required.
  • Imprint includes thermal imprint that is transferred to a thermoplastic composition and optical imprint that is transferred to an ultraviolet curable composition.
  • thermal imprint that is transferred to a thermoplastic composition
  • optical imprint that is transferred to an ultraviolet curable composition.
  • a change in shape (expansion or contraction) during solidification or curing is required to be small.
  • thermoplastic compositions that use thermoplastic compositions are excellent in terms of transferability because the shape change of the thermoplastic composition is extremely small, but it takes a long time to solidify and the work efficiency is poor.
  • the problem is that the cost increases because of the use of a molded mold.
  • the ultraviolet curable composition is economical because a resin mold such as a mold can be used.
  • the working efficiency is also good.
  • various studies have been made on the composition in order to suppress the curing shrinkage of the ultraviolet curable composition, but this is also a limit.
  • Patent Document 1 describes that a reduction in line width due to resin shrinkage can be corrected by a specific function for a mold used for forming a wiring pattern by molding a resin by an imprint method.
  • Patent Document 1 no consideration is given to the fact that the side surface of the wiring is curved, and even if a mold corrected using the above function is used, the side surface of the obtained wiring pattern is not curved. It was found that the surface accuracy was low.
  • an object of the present invention is to provide a mold manufacturing method capable of accurately molding an ultraviolet curable composition by photoimprinting. Another object of the present invention is to provide a mold capable of reliably producing a molded article having excellent shape accuracy (particularly excellent in surface accuracy). Another object of the present invention is to provide a method for producing a highly accurate (particularly excellent in surface precision) molded article comprising a cured product of an ultraviolet curable composition using the mold. . Another object of the present invention is to provide a highly accurate (particularly excellent in surface accuracy) molded article made of a cured product of an ultraviolet curable composition. Another object of the present invention is to provide a simulation apparatus that can accurately predict curing shrinkage of an ultraviolet curable composition and accompanying mold deformation.
  • the present inventors have found that when performing a photoimprint molding using a mold, the mold and the ultraviolet curable composition are in close contact during curing.
  • the ultraviolet curable composition filled in the mold gradually increases in hardness with the progress of the curing reaction, and finally becomes harder than the mold. Therefore, the elastic mold is a deformation of the cured product that is in close contact with the mold wall surface. It was found that the molded body obtained was deformed following the movement of the mold, and the deformation of the mold was transferred to the cured product, so that the obtained molded body had a curved side surface and a low surface accuracy.
  • the mold is designed so as to compensate for the deformation in consideration of the curing shrinkage of the ultraviolet curable composition and the accompanying deformation of the mold, and manufactured according to the design. It has been found that if an ultraviolet curable composition is molded by an imprint method using the molded mold, a molded body having a desired shape can be produced with high accuracy, efficiency and low cost. The present invention has been completed based on these findings.
  • the present invention relates to a method for producing a mold made of an elastic material used for molding an ultraviolet curable composition, wherein the deformation accompanying the curing of the ultraviolet curable composition is caused by curing shrinkage of the ultraviolet curable composition [ 1) and a deformation [2] of the mold associated therewith are simulated by a finite element analysis method, and a mold is designed based on the simulation, and a mold manufacturing method is provided.
  • the present invention also replaces the curing shrinkage [1] of the ultraviolet curable composition with the shrinkage accompanying cooling of the thermoviscoelastic body, and the model is obtained by increasing the thermal expansion coefficient of the thermoviscoelastic body and the viscosity relaxation time accompanying cooling.
  • a method for producing the mold is provided.
  • the present invention also provides a method for manufacturing the mold, wherein the deformation [2] of the mold is modeled by a superelastic body.
  • the present invention also provides a mold obtained by the above-described mold manufacturing method.
  • the present invention also provides a mold comprising the cured product of the ultraviolet curable composition through a step of producing a mold by the mold production method and molding the ultraviolet curable composition using the obtained mold.
  • a method for producing a molded body to obtain a body is provided.
  • the present invention also provides a method for producing the molded body, wherein the molded body is a micromirror array.
  • the present invention also provides a molded body obtained by the method for producing a molded body.
  • the present invention also simulates the deformation accompanying the curing of the ultraviolet curable composition by a finite element analysis method considering the curing shrinkage [1] of the ultraviolet curable composition and the accompanying mold deformation [2]. Providing equipment.
  • the present invention is also an apparatus for producing a mold used for molding an ultraviolet curable composition, wherein the deformation accompanying the curing of the ultraviolet curable composition is caused by the curing shrinkage [1] of the ultraviolet curable composition and the accompanying deformation.
  • a mold manufacturing apparatus characterized by simulating by a finite element analysis method considering the deformation [2] of a mold, and designing and manufacturing the mold based on the simulation.
  • the present invention also simulates the deformation accompanying the curing of the ultraviolet curable composition by a finite element analysis method considering the curing shrinkage [1] of the ultraviolet curable composition and the accompanying mold deformation [2].
  • an apparatus for producing a molded body wherein the ultraviolet curable composition is molded using a mold designed and manufactured based on the mold.
  • the mold manufacturing method of the present invention it is possible to predict the deformation by simulation and reflect the necessary correction to the design, which has been done in the past by repeating trial manufacture and spending enormous time and cost. Can be done faster and more reliably.
  • the ultraviolet curable composition is analyzed as a thermo-viscoelastic body, and the curing and shrinkage (hereinafter sometimes referred to as “curing behavior”) of the UV-curable composition are determined for each thermoviscoelastic body.
  • Curing behavior the curing and shrinkage of the UV-curable composition are determined for each thermoviscoelastic body.
  • Modeling by replacing with shrinkage and solidification due to cooling hereinafter sometimes referred to as “solidification behavior”
  • solidification behavior enables quantitative analysis of mold deformation, such as side curvature, caused by the curing behavior of the UV-curable composition.
  • the mold shape can be optimized in consideration of the curvature in advance.
  • the mold obtained by the mold manufacturing method of the present invention has a shape corrected so as to cancel out the expected deformation, if the mold is used, the shape accuracy is excellent, especially the surface accuracy is excellent.
  • a molded body can be obtained efficiently and inexpensively. Therefore, the mold obtained by the mold manufacturing method of the present invention is required to have high surface accuracy such as an optical member such as a micromirror array, semiconductor lithography, polymer MEMS, flat screen, hologram, waveguide, and precision mechanical parts. It is suitably used for applications in which a fine structure is produced by optical imprinting.
  • the side surface is curved and displaced. It is a figure which shows the bending displacement of the micromirror side surface after mold release by finite element analysis. It is a figure which shows the x direction displacement in the cut surface perpendicular
  • vertical to a y-axis in the time t 50s of Step2 of the molded object obtained in Example 1. FIG. It is a figure which shows the x direction displacement in the cut surface perpendicular
  • vertical to a y-axis in the time t 100s of Step2 of the molded object obtained in Example 1.
  • FIG. 5B is a diagram illustrating the displacement of the side surface in the y-axis direction.
  • FIG. 5B is a diagram illustrating the displacement of the side surface in the y-axis direction.
  • vertical to a y-axis in the time t 100s of Step2 of the molded object obtained in Example 4 (a), The y-axis direction displacement in the cross section perpendicular
  • FIG. 5B is a diagram illustrating the displacement of the side surface in the y-axis direction.
  • vertical to a y-axis in the time t 100s of Step2 of the molded object obtained in Example 5 (a), The y-axis direction displacement in the cross section perpendicular
  • FIG. It is a figure which shows the curvature displacement distribution of the mirror surface in the analysis result before mold shape optimization of the ultraviolet curable composition in Example 6.
  • FIG. It is a figure which shows the outline of the physical-property measurement experiment of the ultraviolet curable composition by a rotational vibration type rheometer.
  • the mold production method of the present invention is a method for producing a mold made of an elastic material, which is used for molding an ultraviolet curable composition. Simulation is performed by a finite element analysis method that takes into account hardening shrinkage [1] and accompanying mold deformation [2], and a mold is designed based on this (for example, mold correction is performed based on this and the mold gold The mold is designed, and a mold is manufactured using the design).
  • the mold in the present invention is a mold made of an elastic body. That is, it is a mold having elasticity and a property of being deformed by an external force.
  • the material of the mold is not particularly limited as long as it has elasticity, and examples thereof include silicone (for example, polydimethylsiloxane), acrylic polymer, cycloolefin polymer, and fluorine-based polymer.
  • the curing behavior by irradiating the ultraviolet curable composition of [1] with ultraviolet rays is, for example, the temperature dependence of the thermal expansion coefficient of a thermo-viscoelastic body (for example, thermoplastic resin) and the viscosity accompanying cooling. Can be modeled by increasing relaxation time.
  • the deformation of the mold of [2] can be modeled by, for example, a super elastic body (for example, a neo-hook elastic body).
  • the curing reaction that proceeds by UV irradiation of the ultraviolet curable composition can be modeled by replacing it with a solidification reaction by cooling the thermoviscoelastic body (for example, cooling from 100 ° C. to 0 ° C.).
  • the progress of the curing reaction of the ultraviolet curable composition can replace the increase in the integrated UV irradiation amount per unit volume with the temperature decrease of the thermoviscoelastic body.
  • the shrinkage rate of the ultraviolet curable composition depending on the integrated UV irradiation amount can be replaced with the thermal expansion coefficient of the thermo-viscoelastic material depending on the temperature.
  • the thickening of the ultraviolet curable composition that depends on the integrated UV irradiation amount can be replaced with an increase in the viscosity relaxation time of the thermoviscoelastic body that depends on the temperature.
  • thermoviscoelastic body can be expressed by a generalized Maxwell model (see FIG. 1).
  • the shear elastic modulus having time dependence of the thermo-viscoelastic body based on the generalized Maxwell model is expressed by the following equation.
  • g ⁇ is the long-term shear elastic modulus
  • g i and ⁇ i are the i-th shear elastic modulus and relaxation time in FIG. 1, respectively.
  • thermoviscoelastic body can be expressed by the WLF rule.
  • WLF law the time first temperature conversion rule is expressed using a shift factor A theta represented by the following formula.
  • represents temperature.
  • ⁇ 0 , C 1 and C 2 are model parameters of the WLF rule, and in particular, ⁇ 0 indicates a reference temperature.
  • ⁇ 0 can be set to about ⁇ g ⁇ ⁇ 0 ⁇ ⁇ g +50 (° C.).
  • the curing behavior by irradiating the ultraviolet curable composition used in the molded product with ultraviolet rays is measured, and the physical properties (temperature-dependent thermal expansion coefficient, temperature-dependent Shift factors, Prony series coefficients, immediate transverse (or longitudinal) elastic modulus and immediate Poisson's ratio can also be identified and used.
  • a rotational vibration rheometer can be used to measure the curing behavior of the ultraviolet curable composition. More specifically, a transverse viscoelasticity is obtained by sandwiching an ultraviolet curable composition in a gap of about several hundred microns between a glass plate and a cylinder rod, and irradiating ultraviolet rays from the glass plate side and at the same time vibrating the rod slightly. The time history of characteristics is measured (see FIG. 24). In addition, the time history of the shrinkage characteristics of the ultraviolet curable composition is also measured by making the vertical position of the rod follow the change in the gap due to the shrinkage of the ultraviolet curable composition.
  • UV irradiation condition it is desirable to adjust the UV irradiation condition so that it is almost the same as the molding condition of the molded body, and always keep it constant, and the characteristics according to the frequency of each rotational vibration by changing the frequency of the rotational vibration in various ways
  • a physical property value can be identified by measuring the value.
  • the finite element analysis can be performed, for example, by the following procedure using, for example, an ABAQUIS / Standard tetrahedral secondary modified hybrid element (C3D10MH).
  • Fig. 2 shows a mesh division diagram of the tetrahedral element used in the analysis
  • Fig. 3 shows a two-dimensional sectional view.
  • the mold shape is optimized by the following means (for example, one direction on the horizontal plane is the x axis, the direction perpendicular to the x axis on the horizontal plane is the y axis, x
  • the z-axis is a direction perpendicular to the axis and the y-axis
  • the quadrangular pyramid shaped molded body is placed on a horizontal plane and cut by a plane including the x-axis and the z-axis (FIG. 3)
  • the left side is the z-axis
  • the mold shape can be optimized so as to be parallel straight lines (FIG. 4). 1.
  • Sub-analysis static analysis for mold shape change
  • ⁇ x (i) is given to the node i as a forced displacement in the x direction.
  • no displacement is applied in the y direction. 6).
  • the coordinates of all nodes are acquired from the results of the sub-analysis, and are substituted and updated as initial coordinates of the main analysis.
  • Curing shrinkage of an ultraviolet curable composition is a complicated phenomenon including a phase transition and is difficult to analyze.
  • the mold manufacturing method of the present invention the curing behavior of an ultraviolet curable composition is changed to a thermoviscoelastic body.
  • the deformation of the UV curable composition can be simulated by a finite element analysis method, and the mold for manufacturing the mold is designed based on this. Filling the mold obtained on the basis of a liquid mold forming material (for example, silicone resin such as polydimethylsiloxane) and curing it, the desired shape can be obtained in an extremely short time compared to the conventional case.
  • a liquid mold forming material for example, silicone resin such as polydimethylsiloxane
  • the simulation apparatus of the present invention simulates the deformation accompanying the curing of the ultraviolet curable composition by a finite element analysis method considering the curing shrinkage [1] of the ultraviolet curable composition and the mold deformation [2] associated therewith. (Or implement a simulation).
  • the apparatus of the present invention has a particularly limited configuration as long as it has a function of simulating by a finite element analysis method in consideration of cure shrinkage [1] of the ultraviolet curable composition and accompanying mold deformation [2].
  • a computer type eg, CPU, memory, hard disk, etc.
  • an operating system e.g., an operating system
  • a finite element analysis software solver, preprocessor, postprocessor
  • the simulation apparatus of the present invention it is possible to accurately predict the curing shrinkage of the ultraviolet curable composition, which is a complicated phenomenon including a phase transition, and the deformation of the mold associated therewith. Accurate prediction of deformation obtained using the simulation apparatus of the present invention is very useful because a molded body having a desired shape can be reliably manufactured if a mold is manufactured based on this.
  • the mold of the present invention is obtained by the above-described mold manufacturing method.
  • deformation due to curing shrinkage of the ultraviolet curable composition is predicted in advance by simulation, and this is reflected in the design. Therefore, if the mold of the present invention is used, it is possible to reliably produce a molded body made of a cured product of an ultraviolet curable composition and having excellent shape accuracy (particularly excellent surface accuracy). it can.
  • the mold manufacturing apparatus of the present invention is a mold manufacturing apparatus used for molding an ultraviolet curable composition, and the deformation accompanying the curing of the ultraviolet curable composition is cured by shrinkage of the ultraviolet curable composition [1]. And a mold is designed and manufactured based on the simulation by the finite element analysis method considering the deformation [2] of the mold associated therewith.
  • the mold manufacturing apparatus of the present invention simulates the deformation accompanying the curing of the ultraviolet curable composition by a finite element analysis method considering the curing shrinkage [1] of the ultraviolet curable composition and the mold deformation [2] associated therewith. Then, mold is designed and manufactured based on this (for example, the mold is designed by making necessary corrections based on this, and the mold is manufactured using the obtained mold)
  • the configuration is not particularly limited as long as it has a function. For example, it is a computer type as a hard wafer (eg, CPU, memory, hard disk, etc.), an operating system as software, and a finite element analysis software (solver, preprocessor) , A post processor).
  • the shrinkage of the ultraviolet curable composition which is a complicated phenomenon including phase transition, and the deformation of the mold accompanying it are accurately predicted.
  • a mold with deformation compensation can be manufactured. The mold thus obtained is very useful since it can reliably produce a molded body having a desired shape.
  • the molded body examples include a micromirror array.
  • the micromirror array is an optical member in which a large number of three-dimensional patterns such as a quadrangular column, a truncated pyramid, and a quadrangular pyramid having a height of 10 to 1000 ⁇ m are arranged in a grid pattern (for example, arranged in a grid pattern at intervals of 10 to 1000 ⁇ m) (See FIG. 5).
  • a mold for manufacturing a micromirror array it is preferable to have a configuration in which a large number of concave portions having a reversed shape of a quadrangular prism or a quadrangular pyramid are arranged in a lattice shape.
  • Examples of the method for molding the ultraviolet curable composition include the following methods (1) and (2).
  • a substrate having a light transmittance of a wavelength of 400 nm of 90% or more is preferably used, and a substrate made of quartz or glass can be suitably used.
  • the light transmittance of the said wavelength is calculated
  • the method for applying the ultraviolet curable composition is not particularly limited, and examples thereof include a method using a dispenser or a syringe.
  • Curing of the ultraviolet curable composition can be performed by irradiating with ultraviolet rays.
  • a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, or the like is used as a light source for ultraviolet irradiation.
  • the irradiation time varies depending on the type of light source, the distance between the light source and the coating surface, and other conditions, it is several tens of seconds at the longest.
  • the illuminance is about 5 to 200 mW.
  • curing may be promoted by heating (post-cure) as necessary.
  • the ultraviolet curable composition in the present invention includes a cationic curable composition and a radical curable composition.
  • a cationic curable composition is preferable in that it does not undergo curing inhibition by oxygen.
  • the cationic curable composition is a composition containing a cationic curable compound and is excellent in curability.
  • a composition containing an epoxy resin as a cationic curable compound is preferable in that a cured product having excellent curability and optical characteristics (particularly transparency), high hardness, and heat resistance can be obtained.
  • an alicyclic epoxy compound having one or more epoxy groups (oxirane ring) in the molecule can be used as the epoxy resin.
  • an alicyclic epoxy compound, an aromatic epoxy compound, an aliphatic epoxy compound, etc. Can be mentioned.
  • an alicyclic epoxy compound having an alicyclic structure and an epoxy group as a functional group in the molecule is capable of forming a cured product excellent in heat resistance and transparency.
  • Particularly preferred are polyfunctional alicyclic epoxy compounds.
  • polyfunctional alicyclic epoxy compound (I) A compound having an epoxy group (that is, an alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring (II) An epoxy group bonded directly to the alicyclic ring with a single bond Compound (III) having an alicyclic ring and a glycidyl group.
  • the compound (I) which has an alicyclic epoxy group is preferable at the point from which the cure shrinkage rate is low and the hardened
  • Representative examples of the compound represented by the above formula (1) include 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, (3,4,3 ′, 4′-diepoxy) biphenyl. Cyclohexyl, bis (3,4-epoxycyclohexylmethyl) ether, 1,2-epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 2,2-bis (3,4-epoxy) Cyclohexane-1-yl) propane, 1,2-bis (3,4-epoxycyclohexane-1-yl) ethane and the like.
  • the ultraviolet curable composition in the present invention may contain other curable compounds in addition to the epoxy resin as the curable compound.
  • one or two cationic curable compounds such as oxetane compounds and vinyl ether compounds may be used. More than one species can be contained.
  • the ultraviolet curable composition in the present invention preferably contains an epoxy resin as a curable compound, and particularly 50% by weight (particularly preferably 60% by weight or more, most preferably 70% by weight or more) of the total amount of the curable compound.
  • an epoxy resin containing a polyfunctional alicyclic epoxy compound is preferably an epoxy resin containing a polyfunctional alicyclic epoxy compound.
  • the ultraviolet curable composition preferably contains one or more photopolymerization initiators together with the curable compound.
  • the content of the photopolymerization initiator is, for example, in a range of 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the curable compound (particularly, cationic curable compound) contained in the ultraviolet curable composition. .
  • content of a polymerization initiator is less than the said range, there exists a possibility of causing a curing defect.
  • the content of the polymerization initiator exceeds the above range, the cured product tends to be colored.
  • the ultraviolet curable composition in the present invention comprises the curable compound, a photopolymerization initiator, and other components as necessary (for example, a solvent, an antioxidant, a surface conditioner, a photosensitizer, an antifoaming agent, And a leveling agent, a coupling agent, a surfactant, a flame retardant, an ultraviolet absorber, a colorant, and the like).
  • the blending amount of the other components is, for example, 20% by weight or less, preferably 10% by weight or less, particularly preferably 5% by weight or less, based on the total amount of the ultraviolet curable composition.
  • the molded body manufacturing apparatus of the present invention uses a finite element analysis method that takes into account the deformation accompanying the curing of the ultraviolet curable composition by taking into account the curing shrinkage [1] of the ultraviolet curable composition and the accompanying mold deformation [2].
  • the ultraviolet curable composition is molded using a mold that is simulated and designed and manufactured based on the simulation.
  • the molded body manufacturing apparatus of the present invention uses a finite element analysis method that takes into account the deformation accompanying the curing of the ultraviolet curable composition by taking into account the curing shrinkage [1] of the ultraviolet curable composition and the accompanying mold deformation [2].
  • the structure is not particularly limited as long as it has a function of forming the ultraviolet curable composition using a mold that is simulated and designed and manufactured based on the simulation. It is preferable to include an operating system (such as a CPU, a memory, and a hard disk), and finite element analysis software (solver, preprocessor, postprocessor) as software.
  • the manufacturing apparatus of the molded body of the present invention is used, the curing shrinkage of the ultraviolet curable composition, which is a complicated phenomenon including phase transition, and the deformation of the mold accompanying it are accurately predicted, and the manufacturing is based on this. Since an ultraviolet curable composition is shape
  • the mold contains an ultraviolet curable composition (trade name “CELVENUS OUH106”, a cationic curable compound and a photocationic polymerization initiator, and 80% by weight of the total amount of the cationic curable compound is epoxy resin (polyfunctional alicyclic epoxy). (Including a compound), manufactured by Daicel Corporation), and the mold was closed with a transparent substrate from above. Thereafter, UV irradiation (80 mW ⁇ 30 seconds) was performed, followed by release to obtain a molded body (FIG. 6). The obtained molded body was bent and displaced from the central part of the side surface to the central lower part.
  • Example 1 (examination of the curve from the center to the bottom of the side of the molded body) Curing shrinkage caused by irradiating the ultraviolet curable composition with ultraviolet rays was replaced with shrinkage solidification caused by cooling the thermo-viscoelastic body.
  • C 1 10 C 2 : 100 ° C.
  • the mold was modeled with a neo-hook elastic body.
  • neo-hook elastic body ⁇ Physical properties of neo-hook elastic body> Initial Young's modulus: 5Mpa Initial Poisson's ratio: 0.49
  • the thickness of the remaining film layer had little influence on the transfer accuracy. More specifically, if the thickness of the remaining film layer is less than 100 ⁇ m, the flow resistance may increase and the curvature may be affected. However, the remaining film layer may have a thickness of 100 ⁇ m or more. It has been found that the effect of improving the transfer accuracy cannot be obtained even if the thickness of the layer is increased to 200 ⁇ m or more. Therefore, it was confirmed that it was not necessary to add the element of the residual film layer thickness to the simulation by the finite element analysis method.
  • Example 6 (Examination using physical property value identification method by measurement of curing behavior) Curing behavior (gap change rate, storage lateral elasticity) of the ultraviolet curable composition (trade name “CELVENUS OUH106”, manufactured by Daicel Corporation) used in Experimental Example 1 using an Anton Paar rheometer (MCR-301). The rate (G ′) and the loss transverse elastic modulus (G ′′)) were measured for each rotational vibration frequency (0.1 to 10 Hz).
  • the UV irradiation conditions in the measurement were adjusted to be the same as in Experimental Example 1 (80 mW ⁇ 30 seconds).
  • the UV irradiation conditions are always constant, and the gap change rate does not depend on the frequency.
  • a typical result of the gap change rate is shown in FIG.
  • the results of the transverse elastic modulus differ for each frequency, the results of three typical conditions (10 Hz, 1 Hz, and 0.1 Hz) are shown in FIGS.
  • the ultraviolet curable composition used in this measurement continues to shrink and cure even after 30 seconds of UV irradiation, indicating that dark curing proceeds.
  • the “temperature” set here is a virtual value that is not related to the actual temperature.
  • the temperature-dependent thermal expansion coefficient was identified from the time history of the gap change rate obtained by the measurement. Note that the volume expansion coefficient ⁇ is three times the linear expansion coefficient ⁇ , and when the linear expansion coefficient ⁇ ( ⁇ ) depending on the temperature is obtained from the initial state as a reference, the graph of FIG. As obtained.
  • the shift factor of the time-temperature conversion rule was identified using the time history of the transverse elastic modulus obtained by the measurement.
  • the shift factor A ( ⁇ ) depending on the temperature is varied so that the master curve ( ⁇ : angular frequency) of G ′ ( ⁇ ) and G ′′ ( ⁇ ) becomes a smooth function after the reference temperature ⁇ ref is determined. It can be obtained by determining the shift factor at various sample temperatures.
  • the time-temperature conversion does not use the WLF rule or the like, and performs conversion using table data that can be applied more generally.
  • the coefficient of the Prony series was identified using the obtained master curve.
  • the bulk modulus is not viscous and only the transverse modulus is viscous. Since an ultraviolet curable composition undergoes a phase change from a fluid to a solid, it is necessary to identify Prony series coefficients over a wide range of time constants in order to accurately reproduce its deformation behavior.
  • the immediate transverse elastic modulus, the immediate Poisson's ratio, and the like are obtained by conducting a material test on the bulk specimen after being completely cured.
  • the long-term transverse elastic modulus is a physical property value that is difficult to obtain experimentally.
  • the behavior close to the fluid was reproduced by setting the long-term lateral elastic modulus to a value that can be regarded as sufficiently small in light of the measurement range with the rheometer (for example, a value of immediate lateral elastic modulus ⁇ 10 ⁇ 6 or so).
  • the physical property value data of the mold was the same as in Example 1, and finite element analysis was performed. From the cross-sectional view of the molded body reproduced by numerical analysis (FIG. 23), it was found that the curvature from the center to the center lower part quantitatively coincided with the result of the above experimental example.
  • the mold manufacturing method of the present invention it is possible to predict the deformation by simulation and reflect the necessary correction to the design, which has been done in the past by repeating trial manufacture and spending enormous time and cost. Can be done faster and more reliably. Further, since the mold obtained by the above method has a shape corrected so as to cancel out the expected deformation, a molded body having excellent shape accuracy can be obtained efficiently and inexpensively by using the mold. Therefore, it is suitably used for the purpose of producing a fine structure such as a micromirror array that requires high surface accuracy by optical imprinting.

Abstract

Provided is a mold production method whereby it is possible to mold a UV-curable composition with excellent accuracy by means of photoimprinting. This mold production method is a production method for a mold comprising an elastic body and used in molding a UV-curable composition, and is characterized in that deformation accompanying curing of the UV-curable composition is simulated using finite element analysis taking into consideration curing shrinkage [1] of the UV-curable composition and deformation [2] of the mold accompanying the shrinkage, and the mold is designed on the basis of the simulation results.

Description

モールドの製造方法、及びこれを利用した成形体の製造方法Mold manufacturing method and molded body manufacturing method using the same
 本発明は、紫外線硬化性組成物の成形に用いられる、弾性体からなるモールドの製造方法、及び前記方法により製造されたモールドを使用した成形体の製造方法に関する。本願は、2018年2月19日に日本に出願した、特願2018−27432号、及び2018年9月18日に日本に出願した、特願2018−174162号の優先権を主張し、その内容をここに援用する。 The present invention relates to a method for producing a mold made of an elastic body used for molding an ultraviolet curable composition, and a method for producing a molded body using the mold produced by the above method. This application claims the priority of Japanese Patent Application No. 2018-27432, filed in Japan on February 19, 2018, and Japanese Patent Application No. 2018-174162, filed in Japan on September 18, 2018, and its contents Is hereby incorporated by reference.
 インプリントは非常に単純なプロセスでナノサイズのパターンを転写することができる微細加工技術である。インプリントを利用すれば低コストで量産可能であるため、半導体デバイス、光学部材等の多方面で実用化されている。 Imprint is a microfabrication technology that can transfer nano-sized patterns with a very simple process. If imprint is used, it can be mass-produced at low cost, and has been put to practical use in various fields such as semiconductor devices and optical members.
 例えばマイクロミラーアレイは、一辺が100~1000μmの四角柱や四角錐の立体形状が格子状に多数配列した光学部材であり、前記立体形状の4側面のうち隣接する2側面は直交ミラーとして利用されるため、正確な角度と高い平面性(すなわち、高い面精度)が要求される。 For example, a micromirror array is an optical member in which a large number of three-dimensional shapes of quadrangular columns and pyramids with sides of 100 to 1000 μm are arranged in a lattice shape, and two adjacent side surfaces of the four side surfaces of the three-dimensional shape are used as orthogonal mirrors. Therefore, an accurate angle and high flatness (that is, high surface accuracy) are required.
 インプリントには熱可塑性組成物に転写する熱インプリントと、紫外線硬化性組成物に転写する光インプリントがある。特にマイクロミラーアレイのような転写精度が要求される分野においては、固化若しくは硬化の際の形状の変化(膨張或いは収縮)が小さいことが求められる。 Imprint includes thermal imprint that is transferred to a thermoplastic composition and optical imprint that is transferred to an ultraviolet curable composition. In particular, in a field where transfer accuracy is required, such as a micromirror array, a change in shape (expansion or contraction) during solidification or curing is required to be small.
 熱可塑性組成物は形状の変化が極めて小さいため、熱可塑性組成物を使用する熱インプリントは、転写性の点では優れているが、固化に長時間を要し作業効率が悪いことや、金属製のモールドを利用するため、コストが嵩むことが問題であった。 Thermoplastic compositions that use thermoplastic compositions are excellent in terms of transferability because the shape change of the thermoplastic composition is extremely small, but it takes a long time to solidify and the work efficiency is poor. The problem is that the cost increases because of the use of a molded mold.
 一方、紫外線硬化性組成物はモールド等の樹脂製モールドを利用することができるため経済的である。また、速硬化性を有するため作業効率も良好である。しかし、硬化収縮率が大きく、高精度な三次元転写形状を所望する場合には問題があった。また、紫外線硬化性組成物の硬化収縮率を抑制すべく、組成について種々検討がなされてきたが、それも限界であった。 On the other hand, the ultraviolet curable composition is economical because a resin mold such as a mold can be used. In addition, since it has fast curability, the working efficiency is also good. However, there is a problem when a high-accuracy three-dimensional transfer shape is desired with a high cure shrinkage rate. Further, various studies have been made on the composition in order to suppress the curing shrinkage of the ultraviolet curable composition, but this is also a limit.
 特許文献1には、インプリント法により樹脂を成形して配線パターンを形成するために使用されるモールドについて、樹脂の収縮による線幅の減少を特定の関数により補正できることが記載されている。 Patent Document 1 describes that a reduction in line width due to resin shrinkage can be corrected by a specific function for a mold used for forming a wiring pattern by molding a resin by an imprint method.
特開2012−183692号公報JP 2012-183692 A
 しかし、特許文献1においては、配線の側面が湾曲することについては検討がされておらず、前記関数を利用して補正されたモールドを使用しても、得られる配線パターンの側面には湾曲が生じ、面精度が低いことが分かった。 However, in Patent Document 1, no consideration is given to the fact that the side surface of the wiring is curved, and even if a mold corrected using the above function is used, the side surface of the obtained wiring pattern is not curved. It was found that the surface accuracy was low.
 従って、本発明の目的は、光インプリントによって、紫外線硬化性組成物を精度良く成形することができるモールドの製造方法を提供することにある。
 本発明の他の目的は、形状精度に優れた(特に、面精度に優れた)成形体を確実に製造できるモールドを提供することにある。
 本発明の他の目的は、前記モールドを使用して、紫外線硬化性組成物の硬化物からなる、高精度の(特に、面精度に優れた)成形体を製造する方法を提供することにある。
 本発明の他の目的は、紫外線硬化性組成物の硬化物からなる、高精度の(特に、面精度に優れた)成形体を提供することにある。
 本発明の他の目的は、紫外線硬化性組成物の硬化収縮と、それに伴うモールドの変形を正確に予測できる、シミュレーション装置を提供することにある。
 本発明の他の目的は、形状精度に優れた(特に、面精度に優れた)成形体を確実に製造するためのモールドの製造装置を提供することにある。
 本発明の他の目的は、紫外線硬化性組成物の硬化物からなる、高精度の(特に、面精度に優れた)成形体を製造することができる、成形体の製造装置を提供することにある。
Accordingly, an object of the present invention is to provide a mold manufacturing method capable of accurately molding an ultraviolet curable composition by photoimprinting.
Another object of the present invention is to provide a mold capable of reliably producing a molded article having excellent shape accuracy (particularly excellent in surface accuracy).
Another object of the present invention is to provide a method for producing a highly accurate (particularly excellent in surface precision) molded article comprising a cured product of an ultraviolet curable composition using the mold. .
Another object of the present invention is to provide a highly accurate (particularly excellent in surface accuracy) molded article made of a cured product of an ultraviolet curable composition.
Another object of the present invention is to provide a simulation apparatus that can accurately predict curing shrinkage of an ultraviolet curable composition and accompanying mold deformation.
Another object of the present invention is to provide a mold manufacturing apparatus for reliably manufacturing a molded body excellent in shape accuracy (particularly excellent in surface accuracy).
Another object of the present invention is to provide a molded body production apparatus capable of producing a highly accurate molded body (particularly excellent in surface accuracy) made of a cured product of an ultraviolet curable composition. is there.
 本発明者等は上記課題を解決するため鋭意検討した結果、モールドを使用して光インプリント成形を行う場合、硬化の際にモールドと紫外線硬化性組成物は密着していることが分かった。そして、モールドに充填された紫外線硬化性組成物は硬化反応の進行に伴い徐々に硬さが増し、ついにはモールドより硬くなるため、弾性を有するモールドは、モールドの壁面に密着した硬化物の変形に追従して変形し、更にモールドの変形が硬化物に転写されることにより、得られる成形体は側面が湾曲して面精度が低いものとなることがわかった。 As a result of intensive studies to solve the above problems, the present inventors have found that when performing a photoimprint molding using a mold, the mold and the ultraviolet curable composition are in close contact during curing. The ultraviolet curable composition filled in the mold gradually increases in hardness with the progress of the curing reaction, and finally becomes harder than the mold. Therefore, the elastic mold is a deformation of the cured product that is in close contact with the mold wall surface. It was found that the molded body obtained was deformed following the movement of the mold, and the deformation of the mold was transferred to the cured product, so that the obtained molded body had a curved side surface and a low surface accuracy.
 そして、成形体の面精度を向上させるためには、紫外線硬化性組成物の硬化収縮と、それに伴うモールドの変形を予め考慮し、前記変形を補償するようにモールドを設計し、その設計に従って製造されたモールドを使用して、紫外線硬化性組成物をインプリント法で成形すれば、面精度に優れ、所望の形状の成形体が高精度に、効率よく、且つ安価に製造できることを見いだした。本発明はこれらの知見に基づいて完成させたものである。 In order to improve the surface accuracy of the molded body, the mold is designed so as to compensate for the deformation in consideration of the curing shrinkage of the ultraviolet curable composition and the accompanying deformation of the mold, and manufactured according to the design. It has been found that if an ultraviolet curable composition is molded by an imprint method using the molded mold, a molded body having a desired shape can be produced with high accuracy, efficiency and low cost. The present invention has been completed based on these findings.
 すなわち、本発明は、紫外線硬化性組成物の成形に用いられる、弾性体からなるモールドの製造方法であって、紫外線硬化性組成物の硬化に伴う変形を、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートし、これを元にモールドを設計することを特徴とする、モールドの製造方法を提供する。 That is, the present invention relates to a method for producing a mold made of an elastic material used for molding an ultraviolet curable composition, wherein the deformation accompanying the curing of the ultraviolet curable composition is caused by curing shrinkage of the ultraviolet curable composition [ 1) and a deformation [2] of the mold associated therewith are simulated by a finite element analysis method, and a mold is designed based on the simulation, and a mold manufacturing method is provided.
 本発明は、また、紫外線硬化性組成物の硬化収縮[1]を熱粘弾性体の冷却に伴う収縮に置き換え、熱粘弾性体の熱膨張係数と、冷却に伴う粘性緩和時間の増加によってモデル化する、前記のモールドの製造方法を提供する。 The present invention also replaces the curing shrinkage [1] of the ultraviolet curable composition with the shrinkage accompanying cooling of the thermoviscoelastic body, and the model is obtained by increasing the thermal expansion coefficient of the thermoviscoelastic body and the viscosity relaxation time accompanying cooling. A method for producing the mold is provided.
 本発明は、また、モールドの変形[2]を超弾性体によってモデル化する、前記のモールドの製造方法を提供する。 The present invention also provides a method for manufacturing the mold, wherein the deformation [2] of the mold is modeled by a superelastic body.
 本発明は、また、前記のモールドの製造方法により得られるモールドを提供する。 The present invention also provides a mold obtained by the above-described mold manufacturing method.
 本発明は、また、前記のモールドの製造方法によりモールドを製造し、得られたモールドを利用して紫外線硬化性組成物を成形する工程を経て、前記紫外線硬化性組成物の硬化物から成る成形体を得る、成形体の製造方法を提供する。 The present invention also provides a mold comprising the cured product of the ultraviolet curable composition through a step of producing a mold by the mold production method and molding the ultraviolet curable composition using the obtained mold. Provided is a method for producing a molded body to obtain a body.
 本発明は、また、成形体がマイクロミラーアレイである、前記の成形体の製造方法を提供する。 The present invention also provides a method for producing the molded body, wherein the molded body is a micromirror array.
 本発明は、また、前記の成形体の製造方法で得られる成形体を提供する。 The present invention also provides a molded body obtained by the method for producing a molded body.
 本発明は、また、紫外線硬化性組成物の硬化に伴う変形を、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートするシミュレーション装置を提供する。 The present invention also simulates the deformation accompanying the curing of the ultraviolet curable composition by a finite element analysis method considering the curing shrinkage [1] of the ultraviolet curable composition and the accompanying mold deformation [2]. Providing equipment.
 本発明は、また、紫外線硬化性組成物の成形に用いられるモールドの製造装置であって、紫外線硬化性組成物の硬化に伴う変形を、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートし、これを元にモールドを設計、製造することを特徴とするモールドの製造装置を提供する。 The present invention is also an apparatus for producing a mold used for molding an ultraviolet curable composition, wherein the deformation accompanying the curing of the ultraviolet curable composition is caused by the curing shrinkage [1] of the ultraviolet curable composition and the accompanying deformation. There is provided a mold manufacturing apparatus characterized by simulating by a finite element analysis method considering the deformation [2] of a mold, and designing and manufacturing the mold based on the simulation.
 本発明は、また、紫外線硬化性組成物の硬化に伴う変形を、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートし、これを元に設計、製造されたモールドを使用して前記紫外線硬化性組成物を成形することを特徴とする成形体の製造装置を提供する。 The present invention also simulates the deformation accompanying the curing of the ultraviolet curable composition by a finite element analysis method considering the curing shrinkage [1] of the ultraviolet curable composition and the accompanying mold deformation [2]. There is provided an apparatus for producing a molded body, wherein the ultraviolet curable composition is molded using a mold designed and manufactured based on the mold.
 本発明のモールドの製造方法によれば、従来は試作を繰り返し行い膨大な時間やコストをかけて行っていたモールドの設計を、シミュレーションにより変形を予測し、必要な補正を設計に反映させることで、より早く、確実に行うことができる。詳細には、紫外線硬化性組成物を熱粘弾性体とみなして解析を行い、紫外線硬化性組成物の硬化と収縮(以後、「硬化挙動」と称する場合がある)をそれぞれ熱粘弾性体を冷却による収縮と固化(以後、「固化挙動」と称する場合がある)に置き換えてモデル化することにより、紫外線硬化性組成物の硬化挙動にともない発生するモールドの変形、例えば側面の湾曲を定量的に再現することができ、湾曲を予め考慮してモールド形状を最適化することができる。
 また、本発明のモールドの製造方法で得られるモールドは、予測される変形を相殺するよう補正された形状を有するため、当該モールドを使用すれば、形状精度に優れた、特に面精度に優れた、成形体が効率よく、且つ安価に得られる。
 従って、本発明のモールドの製造方法で得られるモールドは、マイクロミラーアレイ等の光学部材、半導体のリソグラフィー、ポリマーMEMS、フラットスクリーン、ホログラム、導波路、精密機械部品などの高い面精度が要求される微細構造物を光インプリントで製造する用途に好適に用いられる。
According to the mold manufacturing method of the present invention, it is possible to predict the deformation by simulation and reflect the necessary correction to the design, which has been done in the past by repeating trial manufacture and spending enormous time and cost. Can be done faster and more reliably. Specifically, the ultraviolet curable composition is analyzed as a thermo-viscoelastic body, and the curing and shrinkage (hereinafter sometimes referred to as “curing behavior”) of the UV-curable composition are determined for each thermoviscoelastic body. Modeling by replacing with shrinkage and solidification due to cooling (hereinafter sometimes referred to as “solidification behavior”) enables quantitative analysis of mold deformation, such as side curvature, caused by the curing behavior of the UV-curable composition. The mold shape can be optimized in consideration of the curvature in advance.
In addition, since the mold obtained by the mold manufacturing method of the present invention has a shape corrected so as to cancel out the expected deformation, if the mold is used, the shape accuracy is excellent, especially the surface accuracy is excellent. A molded body can be obtained efficiently and inexpensively.
Therefore, the mold obtained by the mold manufacturing method of the present invention is required to have high surface accuracy such as an optical member such as a micromirror array, semiconductor lithography, polymer MEMS, flat screen, hologram, waveguide, and precision mechanical parts. It is suitably used for applications in which a fine structure is produced by optical imprinting.
一般化Maxwellモデルによるせん断方向の粘弾性を示した模式図である。It is the schematic diagram which showed the viscoelasticity of the shear direction by the generalized Maxwell model. 解析領域メッシュ分割図(総節点数:12434、総要素数:7574)であり、(2−a)は紫外線硬化性組成物部分、(2−b)は紫外線硬化性組成物部分とモールド部分である。It is an analysis area mesh division diagram (total number of nodes: 12434, total number of elements: 7574), (2-a) is an ultraviolet curable composition part, (2-b) is an ultraviolet curable composition part and a mold part. is there. 三次元有限要素解析モデルをy軸に垂直な平面で切断した二次元断面図である。It is the two-dimensional sectional view which cut | disconnected the three-dimensional finite element analysis model by the plane perpendicular | vertical to a y-axis. モールド形状の最適化における、形状変更の方法を示す図である。It is a figure which shows the method of a shape change in optimization of a mold shape. マイクロミラーアレイの断面模式図である。It is a cross-sectional schematic diagram of a micromirror array. 実験例1で得られた成形体の側面の走査型白色干渉顕微鏡観察による3Dイメージである。側面が湾曲変位していることが分かる。It is a 3D image by scanning white interference microscope observation of the side surface of the molded body obtained in Experimental Example 1. It can be seen that the side surface is curved and displaced. 有限要素解析による離型後のマイクロミラー側面の湾曲変位を示す図である。It is a figure which shows the bending displacement of the micromirror side surface after mold release by finite element analysis. 実施例1で得られた成形体のStep2の時刻t=50sにおける、y軸に垂直な切断面でのx方向変位を示す図である。It is a figure which shows the x direction displacement in the cut surface perpendicular | vertical to a y-axis in the time t = 50s of Step2 of the molded object obtained in Example 1. FIG. 実施例1で得られた成形体のStep2の時刻t=100sにおける、y軸に垂直な切断面でのx方向変位を示す図である。It is a figure which shows the x direction displacement in the cut surface perpendicular | vertical to a y-axis in the time t = 100s of Step2 of the molded object obtained in Example 1. FIG. 実施例2で得られた成形体のStep2の時刻t=100sにおける、y軸に垂直な切断面でのx方向変位を示す図である。It is a figure which shows the x direction displacement in the cut surface perpendicular | vertical to a y-axis in the time t = 100s of Step2 of the molded object obtained in Example 2. FIG. 実施例3で得られた成形体のStep2の時刻t=100sにおける、y軸に垂直な断面でのz軸方向変位を示す図(a)、y軸に垂直な断面でのy軸方向変位を示す図(b)、側面のy軸方向変位を示す図(c)である。The figure (a) which shows the z-axis direction displacement in the cross section perpendicular | vertical to a y-axis in the time t = 100s of Step2 of the molded object obtained in Example 3, The y-axis direction displacement in the cross section perpendicular | vertical to a y-axis. FIG. 5B is a diagram illustrating the displacement of the side surface in the y-axis direction. 実施例4で得られた成形体のStep2の時刻t=100sにおける、y軸に垂直な断面でのz軸方向変位を示す図(a)、y軸に垂直な断面でのy軸方向変位を示す図(b)、側面のy軸方向変位を示す図(c)である。The figure which shows the z-axis direction displacement in the cross section perpendicular | vertical to a y-axis in the time t = 100s of Step2 of the molded object obtained in Example 4 (a), The y-axis direction displacement in the cross section perpendicular | vertical to a y-axis FIG. 5B is a diagram illustrating the displacement of the side surface in the y-axis direction. 実施例5で得られた成形体のStep2の時刻t=100sにおける、y軸に垂直な断面でのz軸方向変位を示す図(a)、y軸に垂直な断面でのy軸方向変位を示す図(b)、側面のy軸方向変位を示す図(c)である。The figure which shows the z-axis direction displacement in the cross section perpendicular | vertical to a y-axis in the time t = 100s of Step2 of the molded object obtained in Example 5 (a), The y-axis direction displacement in the cross section perpendicular | vertical to a y-axis. It is a figure (b) which shows, and the figure (c) which shows the y-axis direction displacement of a side surface. 実施例6における紫外線硬化性組成物の、紫外線照射後の時間とギャップ変化率の関係を示す図である。It is a figure which shows the relationship between the time after ultraviolet irradiation of the ultraviolet curable composition in Example 6, and a gap change rate. 実施例6における紫外線硬化性組成物の、紫外線照射後の時間と貯蔵横弾性率の関係を示す図である。It is a figure which shows the relationship between the time after ultraviolet irradiation of the ultraviolet curable composition in Example 6, and a storage transverse elastic modulus. 実施例6における紫外線硬化性組成物の、紫外線照射後の時間と損失横弾性率の関係を示す図である。It is a figure which shows the relationship between the time after ultraviolet irradiation of a ultraviolet curable composition in Example 6, and a loss transverse elastic modulus. 実施例6における紫外線硬化性組成物の、温度と線膨張係数の関係を示す図である。It is a figure which shows the relationship between the temperature of the ultraviolet curable composition in Example 6, and a linear expansion coefficient. 実施例6における紫外線硬化性組成物の、基準温度における貯蔵横弾性率マスターカーブを示す図である。It is a figure which shows the storage transverse elastic modulus master curve in the reference temperature of the ultraviolet curable composition in Example 6. 実施例6における紫外線硬化性組成物の、基準温度における損失横弾性率マスターカーブを示す図である。It is a figure which shows the loss transverse elastic modulus master curve in the reference temperature of the ultraviolet curable composition in Example 6. 実施例6における紫外線硬化性組成物の、シフトファクターと温度との関係を示す図である。It is a figure which shows the relationship between the shift factor and temperature of the ultraviolet curable composition in Example 6. FIG. 実施例6における紫外線硬化性組成物の、基準温度において同定されたProny級数で表された貯蔵横弾性率マスターカーブを示す図である。It is a figure which shows the storage transverse elastic modulus master curve represented by the Prony series identified in the reference temperature of the ultraviolet curable composition in Example 6. FIG. 実施例6における紫外線硬化性組成物の、基準温度において同定されたProny級数で表された損失横弾性率マスターカーブを示す図である。It is a figure which shows the loss transverse elastic modulus master curve represented by the Prony series identified in the reference temperature of the ultraviolet curable composition in Example 6. FIG. 実施例6における紫外線硬化性組成物の、モールド形状最適化前の解析結果でのミラー面の湾曲変位分布を示す図である。It is a figure which shows the curvature displacement distribution of the mirror surface in the analysis result before mold shape optimization of the ultraviolet curable composition in Example 6. FIG. 回転振動式レオメータによる紫外線硬化性組成物の物性測定実験の概略を示す図である。It is a figure which shows the outline of the physical-property measurement experiment of the ultraviolet curable composition by a rotational vibration type rheometer.
 [モールドの製造方法]
 本発明のモールドの製造方法は、紫外線硬化性組成物の成形に用いられる、弾性体からなるモールドの製造方法であって、紫外線硬化性組成物の硬化に伴う変形を、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートし、これを元にモールドを設計する(例えば、これを元に必要な補正をしてモールドの金型の設計を行い、これを利用してモールドを製造する)ことを特徴とする。
[Mold manufacturing method]
The mold production method of the present invention is a method for producing a mold made of an elastic material, which is used for molding an ultraviolet curable composition. Simulation is performed by a finite element analysis method that takes into account hardening shrinkage [1] and accompanying mold deformation [2], and a mold is designed based on this (for example, mold correction is performed based on this and the mold gold The mold is designed, and a mold is manufactured using the design).
 本発明におけるモールドは弾性体からなるモールドである。すなわち、弾性を有し、外力によって変形する性質を有するモールドである。モールドの材質としては、弾性を有するものであれば特に制限されることがなく、例えば、シリコーン(例えば、ポリジメチルシロキサン等)、アクリルポリマー、シクロオレフィンポリマー、フッ素系ポリマー等が挙げられる。 The mold in the present invention is a mold made of an elastic body. That is, it is a mold having elasticity and a property of being deformed by an external force. The material of the mold is not particularly limited as long as it has elasticity, and examples thereof include silicone (for example, polydimethylsiloxane), acrylic polymer, cycloolefin polymer, and fluorine-based polymer.
 前記[1]の紫外線硬化性組成物に紫外線を照射することによる硬化挙動は、例えば、熱粘弾性体(例えば、熱可塑性樹脂等)の、熱膨張係数の温度依存性と、冷却に伴う粘性緩和時間の増加によってモデル化することができる。 The curing behavior by irradiating the ultraviolet curable composition of [1] with ultraviolet rays is, for example, the temperature dependence of the thermal expansion coefficient of a thermo-viscoelastic body (for example, thermoplastic resin) and the viscosity accompanying cooling. Can be modeled by increasing relaxation time.
 前記[2]のモールドの変形は、例えば、超弾性体(例えば、ネオ・フック弾性体)によってモデル化することができる。 The deformation of the mold of [2] can be modeled by, for example, a super elastic body (for example, a neo-hook elastic body).
 本解析においては、立体パターンを1つだけ含む直方体領域を取り出して検討し、その側面に周期境界条件を設定する。 In this analysis, a rectangular parallelepiped region containing only one solid pattern is taken out and examined, and a periodic boundary condition is set on the side surface.
 紫外線硬化性組成物のUV照射により進行する硬化反応は、熱粘弾性体の冷却(例えば、100℃から0℃まで冷却)による固化反応に置き換えてモデル化することができる。
 そして、紫外線硬化性組成物の硬化反応の進行は、単位体積当たりの積算UV照射量の増加を、熱粘弾性体の温度低下に置き換えることができる。
 また、積算UV照射量に依存する紫外線硬化性組成物の収縮率は、温度に依存する熱粘弾性体の熱膨張係数に置き換えることができる。
 そして、積算UV照射量に依存する紫外線硬化性組成物の増粘は、温度に依存する熱粘弾性体の粘度緩和時間の増加に置き換えることができる。
The curing reaction that proceeds by UV irradiation of the ultraviolet curable composition can be modeled by replacing it with a solidification reaction by cooling the thermoviscoelastic body (for example, cooling from 100 ° C. to 0 ° C.).
The progress of the curing reaction of the ultraviolet curable composition can replace the increase in the integrated UV irradiation amount per unit volume with the temperature decrease of the thermoviscoelastic body.
Further, the shrinkage rate of the ultraviolet curable composition depending on the integrated UV irradiation amount can be replaced with the thermal expansion coefficient of the thermo-viscoelastic material depending on the temperature.
The thickening of the ultraviolet curable composition that depends on the integrated UV irradiation amount can be replaced with an increase in the viscosity relaxation time of the thermoviscoelastic body that depends on the temperature.
 また、前記熱粘弾性体の時間依存性は、一般化Maxwellモデルによって表現できる(図1参照)。一般化Maxwellモデルに基づく熱粘弾性体の時間依存性を有するせん断弾性係数は、下記式で表される。
Figure JPOXMLDOC01-appb-M000001
 尚、gは長期せん断弾性係数、g及びτはそれぞれ図1におけるi番目のせん断弾性係数及び緩和時間を示す。
The time dependence of the thermoviscoelastic body can be expressed by a generalized Maxwell model (see FIG. 1). The shear elastic modulus having time dependence of the thermo-viscoelastic body based on the generalized Maxwell model is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Here, g∞ is the long-term shear elastic modulus, and g i and τ i are the i-th shear elastic modulus and relaxation time in FIG. 1, respectively.
 尚、体積弾性率Kについては粘性を持たない定数として次式の通り取り扱う。ただし、Kは即時体積弾性率を、Kは長期体積弾性率を表す。
 K = K = K
The bulk modulus K is treated as the following equation as a constant having no viscosity. However, K 0 is an immediate bulk modulus, K represents the long-term bulk modulus.
K = K 0 = K
 更に、熱粘弾性体の温度依存性は、WLF則によって表現できる。WLF則は時間一温度変換則であり、下記式で表されるシフトファクターAθを用いて表現される。尚、θは温度を示す。また、θ、C及びCはWLF則のモデルパラメータであり、特にθは基準温度を示す。
Figure JPOXMLDOC01-appb-M000002
Furthermore, the temperature dependence of the thermoviscoelastic body can be expressed by the WLF rule. WLF law the time first temperature conversion rule is expressed using a shift factor A theta represented by the following formula. Θ represents temperature. Further, θ 0 , C 1 and C 2 are model parameters of the WLF rule, and in particular, θ 0 indicates a reference temperature.
Figure JPOXMLDOC01-appb-M000002
 材料のガラス転移温度がθの場合、θはθ≦θ≦θ+50(℃)程度に設定できる。例えば、θ=θ+50の場合、C、Cはそれぞれ、C=8.86程度、C=101.6程度に設定できる。 When the glass transition temperature of the material is θ g , θ 0 can be set to about θ g ≦ θ 0 ≦ θ g +50 (° C.). For example, when θ 0 = θ g +50, C 1 and C 2 can be set to approximately C 1 = 8.86 and C 2 = 101.6, respectively.
 また、より詳細なシミュレートを必要とする場合は、成形体で使用する紫外線硬化性組成物に紫外線照射をすることによる硬化挙動を測定し、物性値(温度依存の熱膨張係数、温度依存のシフトファクター、Prony級数の係数、即時横(または縦)弾性率及び即時ポアソン比を同定して用いることもできる。 When more detailed simulation is required, the curing behavior by irradiating the ultraviolet curable composition used in the molded product with ultraviolet rays is measured, and the physical properties (temperature-dependent thermal expansion coefficient, temperature-dependent Shift factors, Prony series coefficients, immediate transverse (or longitudinal) elastic modulus and immediate Poisson's ratio can also be identified and used.
 紫外線硬化性組成物の硬化挙動の測定は、例えば回転振動式レオメータを用いることができる。より具体的には、ガラス板とシリンダーロッドの間にある数百ミクロン程度のギャップに紫外線硬化性組成物を挟み込み、ガラス板側から紫外線を照射すると同時にロッドを微小回転振動させることにより横粘弾性特性の時刻歴を測定する(図24参照)。加えて、ロッドの垂直位置を紫外線硬化性組成物の収縮によるギャップの変化に追従させることにより、紫外線硬化性組成物の収縮特性の時刻歴も測定する。紫外線照射条件は成形体の成形条件とほぼ同等な条件となるように調整し常に一定とすることが望ましく、回転振動の振動数を様々に変化させて、各回転振動の振動数に応じた特性値を測定することで物性値を同定することができる。 For example, a rotational vibration rheometer can be used to measure the curing behavior of the ultraviolet curable composition. More specifically, a transverse viscoelasticity is obtained by sandwiching an ultraviolet curable composition in a gap of about several hundred microns between a glass plate and a cylinder rod, and irradiating ultraviolet rays from the glass plate side and at the same time vibrating the rod slightly. The time history of characteristics is measured (see FIG. 24). In addition, the time history of the shrinkage characteristics of the ultraviolet curable composition is also measured by making the vertical position of the rod follow the change in the gap due to the shrinkage of the ultraviolet curable composition. It is desirable to adjust the UV irradiation condition so that it is almost the same as the molding condition of the molded body, and always keep it constant, and the characteristics according to the frequency of each rotational vibration by changing the frequency of the rotational vibration in various ways A physical property value can be identified by measuring the value.
 有限要素解析は、例えば、以下の手順で、例えばABAQUOS/Standardの四面体二次修正ハイブリッド要素(C3D10MH)を用いて実施することができる。 The finite element analysis can be performed, for example, by the following procedure using, for example, an ABAQUIS / Standard tetrahedral secondary modified hybrid element (C3D10MH).
 前記解析に用いた四面体要素のメッシュ分割図を図2に、二次元断面図を図3に示す。 Fig. 2 shows a mesh division diagram of the tetrahedral element used in the analysis, and Fig. 3 shows a two-dimensional sectional view.
 上記解析法により得られた結果を元に、例えば、以下の手段でモールド形状の最適化(例えば、水平面上の一方向をx軸、前記水平面上においてx軸に垂直な方向をy軸、x軸とy軸に垂直な方向をz軸とし、四角錐台形状の成形体を水平面上に設置し、x軸とz軸を含む面によって切断した場合(図3)、左側辺がz軸と平行な直線となるようにモールド形状の最適化)を行うことができる(図4)。
 1.解析結果から、離型後の成形体左側辺の各節点iのx方向座標x(i)を取得する。
 2.湾曲の基準点からy軸に平行な補助線を引く。各節点iの補助線に対するx方向の符号付き距離d(i)(=x(i)−x(0))を算出する。
 3.次式が成立するとき、最適化ループを終了する。但し、εは最大許容湾曲深さを表す。
 d(i)<ε∀i.
 4.モールド形状の修正量Δx(i)を下記式から算出する。
 Δx(i)=−αd(i)  (0<α<1)
 5.副解析(モールドの形状変更のための静解析)を行う。節点iにx方向の強制変位としてΔx(i)を与える。この際、y方向には変位を与えない。
 6.副解析の結果から、全節点の座標を取得し、それを主解析の初期座標として代入更新する。
Based on the results obtained by the above analysis method, for example, the mold shape is optimized by the following means (for example, one direction on the horizontal plane is the x axis, the direction perpendicular to the x axis on the horizontal plane is the y axis, x When the z-axis is a direction perpendicular to the axis and the y-axis, and the quadrangular pyramid shaped molded body is placed on a horizontal plane and cut by a plane including the x-axis and the z-axis (FIG. 3), the left side is the z-axis The mold shape can be optimized so as to be parallel straight lines (FIG. 4).
1. From the analysis result, the x-direction coordinate x (i) of each node i on the left side of the molded body after mold release is obtained.
2. An auxiliary line parallel to the y-axis is drawn from the reference point of curvature. A signed distance d (i) (= x (i) −x (0) ) in the x direction with respect to the auxiliary line of each node i is calculated.
3. When the following equation holds, the optimization loop is terminated. Where ε represents the maximum allowable bending depth.
d (i) <ε∀i.
4). The mold shape correction amount Δx (i) is calculated from the following equation.
Δx (i) = − αd (i) (0 <α <1)
5. Sub-analysis (static analysis for mold shape change) is performed. Δx (i) is given to the node i as a forced displacement in the x direction. At this time, no displacement is applied in the y direction.
6). The coordinates of all nodes are acquired from the results of the sub-analysis, and are substituted and updated as initial coordinates of the main analysis.
 紫外線硬化性組成物の硬化収縮は相転移を含む複雑な現象であり、解析が困難であるが、本発明のモールドの製造方法によれば、紫外線硬化性組成物の硬化挙動を熱粘弾性体の固化挙動に置き換えてモデル化するため、紫外線硬化性組成物の変形を有限要素解析法によりシミュレートすることができ、これを元にモールドを製造する為の金型を設計し、前記設計に基づいて得られた金型に、液状のモールド形成材料(例えば、ポリジメチルシロキサン等のシリコーン樹脂など)を充填し、これを硬化させれば、従来に比べて極めて短時間で、所望の形状の成形体を確実に形成できるモールドを製造することができる。 Curing shrinkage of an ultraviolet curable composition is a complicated phenomenon including a phase transition and is difficult to analyze. However, according to the mold manufacturing method of the present invention, the curing behavior of an ultraviolet curable composition is changed to a thermoviscoelastic body. The deformation of the UV curable composition can be simulated by a finite element analysis method, and the mold for manufacturing the mold is designed based on this. Filling the mold obtained on the basis of a liquid mold forming material (for example, silicone resin such as polydimethylsiloxane) and curing it, the desired shape can be obtained in an extremely short time compared to the conventional case. A mold capable of reliably forming a molded body can be manufactured.
 [シミュレーション装置]
 本発明のシミュレーション装置は、紫外線硬化性組成物の硬化に伴う変形を、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートする(若しくは、シミュレートを実現する)装置である。
[Simulation equipment]
The simulation apparatus of the present invention simulates the deformation accompanying the curing of the ultraviolet curable composition by a finite element analysis method considering the curing shrinkage [1] of the ultraviolet curable composition and the mold deformation [2] associated therewith. (Or implement a simulation).
 本発明の装置は、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートする機能を有するものであれば、その構成は特に制限されないが、例えば、ハードウェハとしてコンピューター式(例えば、CPU、メモリ、及びハードディスク等)、ソフトウェアとしてオペレーティングシステム、及び有限要素解析ソフト(ソルバー、プリプロセッサー、ポストプロセッサー)を備えることが好ましい。 The apparatus of the present invention has a particularly limited configuration as long as it has a function of simulating by a finite element analysis method in consideration of cure shrinkage [1] of the ultraviolet curable composition and accompanying mold deformation [2]. However, it is preferable to provide a computer type (eg, CPU, memory, hard disk, etc.) as a hard wafer, an operating system as software, and a finite element analysis software (solver, preprocessor, postprocessor), for example.
 本発明のシミュレーション装置を利用すれば、相転移を含む複雑な現象であるところの紫外線硬化性組成物の硬化収縮と、それに伴うモールドの変形を正確に予測することができる。本発明のシミュレーション装置を利用して得られた変形の正確な予測は、これを元にモールドを製造すれば、所望の形状の成形体を確実に製造することができるため大変有用である。 If the simulation apparatus of the present invention is used, it is possible to accurately predict the curing shrinkage of the ultraviolet curable composition, which is a complicated phenomenon including a phase transition, and the deformation of the mold associated therewith. Accurate prediction of deformation obtained using the simulation apparatus of the present invention is very useful because a molded body having a desired shape can be reliably manufactured if a mold is manufactured based on this.
 [モールド]
 本発明のモールドは上述のモールドの製造方法により得られる。本発明のモールドは、予め、紫外線硬化性組成物の硬化収縮による変形がミュレーションにより予測され、これが設計に反映されている。そのため、本発明のモールドを使用すれば、紫外線硬化性組成物の硬化物から成る成形体であって、形状精度に優れた(特に、面精度に優れた)成形体を確実に製造することができる。
[mold]
The mold of the present invention is obtained by the above-described mold manufacturing method. In the mold of the present invention, deformation due to curing shrinkage of the ultraviolet curable composition is predicted in advance by simulation, and this is reflected in the design. Therefore, if the mold of the present invention is used, it is possible to reliably produce a molded body made of a cured product of an ultraviolet curable composition and having excellent shape accuracy (particularly excellent surface accuracy). it can.
 [モールドの製造装置]
 本発明のモールドの製造装置は、紫外線硬化性組成物の成形に用いられるモールドの製造装置であって、紫外線硬化性組成物の硬化に伴う変形を、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートし、これを元にモールドを設計、製造することを特徴とする。
[Mold manufacturing equipment]
The mold manufacturing apparatus of the present invention is a mold manufacturing apparatus used for molding an ultraviolet curable composition, and the deformation accompanying the curing of the ultraviolet curable composition is cured by shrinkage of the ultraviolet curable composition [1]. And a mold is designed and manufactured based on the simulation by the finite element analysis method considering the deformation [2] of the mold associated therewith.
 本発明のモールドの製造装置は、紫外線硬化性組成物の硬化に伴う変形を、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートし、これを元にモールドを設計し、製造する(例えば、これを元に必要な補正をしてモールドの金型の設計を行い、得られた金型を利用してモールドを製造する)機能を有するものであれば、その構成は特に制限されないが、例えば、ハードウェハとしてコンピューター式(例えば、CPU、メモリ、及びハードディスク等)、ソフトウェアとしてオペレーティングシステム、及び有限要素解析ソフト(ソルバー、プリプロセッサー、ポストプロセッサー)を備えることが好ましい。 The mold manufacturing apparatus of the present invention simulates the deformation accompanying the curing of the ultraviolet curable composition by a finite element analysis method considering the curing shrinkage [1] of the ultraviolet curable composition and the mold deformation [2] associated therewith. Then, mold is designed and manufactured based on this (for example, the mold is designed by making necessary corrections based on this, and the mold is manufactured using the obtained mold) The configuration is not particularly limited as long as it has a function. For example, it is a computer type as a hard wafer (eg, CPU, memory, hard disk, etc.), an operating system as software, and a finite element analysis software (solver, preprocessor) , A post processor).
 本発明のモールドの製造装置を利用すれば、相転移を含む複雑な現象であるところの紫外線硬化性組成物の硬化収縮と、それに伴うモールドの変形を正確に予測し、これを元にモールドを製造するため、変形の補償がなされたモールドが製造できる。このようにして得られたモールドは、これを使用すれば、所望の形状の成形体を確実に製造することができるため大変有用である。 If the mold manufacturing apparatus of the present invention is used, the shrinkage of the ultraviolet curable composition, which is a complicated phenomenon including phase transition, and the deformation of the mold accompanying it are accurately predicted. In order to manufacture, a mold with deformation compensation can be manufactured. The mold thus obtained is very useful since it can reliably produce a molded body having a desired shape.
 [成形体の製造方法]
 また、前記モールドの製造方法により得られたモールドを使用して、紫外線硬化性組成物を成形すれば、所望の形状の成形体を確実に得ることができる。
[Method for producing molded article]
Moreover, if the ultraviolet curable composition is molded using the mold obtained by the mold production method, a molded body having a desired shape can be obtained with certainty.
 成形体としては、例えば、マイクロミラーアレイが挙げられる。マイクロミラーアレイは、高さが10~1000μmの四角柱、四角錐台、四角錐等の立体パターンが格子状に多数配列(例えば、10~1000μmの間隔を開けて格子状に配列)した光学部材である(図5参照)。 Examples of the molded body include a micromirror array. The micromirror array is an optical member in which a large number of three-dimensional patterns such as a quadrangular column, a truncated pyramid, and a quadrangular pyramid having a height of 10 to 1000 μm are arranged in a grid pattern (for example, arranged in a grid pattern at intervals of 10 to 1000 μm) (See FIG. 5).
 マイクロミラーアレイを製造する場合のモールドとしては、四角柱や四角錐の反転形状を有する凹部が格子状に多数配列した構成を有することが好ましい。 As a mold for manufacturing a micromirror array, it is preferable to have a configuration in which a large number of concave portions having a reversed shape of a quadrangular prism or a quadrangular pyramid are arranged in a lattice shape.
 紫外線硬化性組成物を成形する方法としては、例えば、下記(1)、(2)の方法等が挙げられる。
(1)モールドに紫外線硬化性組成物を塗布し、その上から基板を押し付け、紫外線硬化性組成物を硬化させた後、モールドを剥離する方法
(2)基板上に塗布された紫外線硬化性組成物にモールドを押し付けて成形し、紫外線硬化性組成物を硬化させた後、モールドを離型する方法
Examples of the method for molding the ultraviolet curable composition include the following methods (1) and (2).
(1) A method in which an ultraviolet curable composition is applied to a mold, a substrate is pressed thereon to cure the ultraviolet curable composition, and then the mold is peeled off. (2) An ultraviolet curable composition applied on the substrate. A method of releasing a mold after pressing the mold against an object to form and curing the ultraviolet curable composition
 前記基板としては、400nmの波長の光線透過率が90%以上である基板を使用することが好ましく、石英やガラスからなる基板を好適に使用することができる。尚、前記波長の光線透過率は、基板(厚み:1mm)を試験片として使用し、当該試験片に照射した前記波長の光線透過率を分光光度計を用いて測定することで求められる。 As the substrate, a substrate having a light transmittance of a wavelength of 400 nm of 90% or more is preferably used, and a substrate made of quartz or glass can be suitably used. In addition, the light transmittance of the said wavelength is calculated | required by using the board | substrate (thickness: 1 mm) as a test piece, and measuring the light transmittance of the said wavelength irradiated to the said test piece using a spectrophotometer.
 紫外線硬化性組成物の塗布方法としては、特に制限が無く、例えば、ディスペンサーやシリンジ等を使用する方法等が挙げられる。 The method for applying the ultraviolet curable composition is not particularly limited, and examples thereof include a method using a dispenser or a syringe.
 紫外線硬化性組成物の硬化は、紫外線を照射することによって行うことができる。紫外線照射を行う時の光源としては、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、キセノン灯、メタルハライド灯等が用いられる。照射時間は、光源の種類、光源と塗布面との距離、その他の条件により異なるが、長くとも数十秒である。照度は、5~200mW程度である。紫外線照射後は、必要に応じて加熱(ポストキュア)を行って硬化の促進を図ってもよい。 Curing of the ultraviolet curable composition can be performed by irradiating with ultraviolet rays. A high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, or the like is used as a light source for ultraviolet irradiation. Although the irradiation time varies depending on the type of light source, the distance between the light source and the coating surface, and other conditions, it is several tens of seconds at the longest. The illuminance is about 5 to 200 mW. After the irradiation with ultraviolet rays, curing may be promoted by heating (post-cure) as necessary.
 (紫外線硬化性組成物)
 本発明における紫外線硬化性組成物には、カチオン硬化性組成物及びラジカル硬化性組成物が含まれる。本発明においては、なかでも、酸素による硬化阻害を受けない点においてカチオン硬化性組成物が好ましい。
(UV curable composition)
The ultraviolet curable composition in the present invention includes a cationic curable composition and a radical curable composition. In the present invention, among them, a cationic curable composition is preferable in that it does not undergo curing inhibition by oxygen.
 カチオン硬化性組成物は、カチオン硬化性化合物を含む組成物であり、硬化性に優れる。とりわけ、カチオン硬化性化合物としてエポキシ樹脂を含む組成物が硬化性に優れ、光学特性(特に、透明性)、高硬度、及び耐熱性を兼ね備えた硬化物が得られる点で好ましい。 The cationic curable composition is a composition containing a cationic curable compound and is excellent in curability. In particular, a composition containing an epoxy resin as a cationic curable compound is preferable in that a cured product having excellent curability and optical characteristics (particularly transparency), high hardness, and heat resistance can be obtained.
 エポキシ樹脂としては、分子内に1以上のエポキシ基(オキシラン環)を有する公知乃至慣用の化合物を使用することができ、例えば、脂環式エポキシ化合物、芳香族エポキシ化合物、脂肪族エポキシ化合物等が挙げられる。本発明においては、なかでも、耐熱性、及び透明性に優れた硬化物を形成することができる点で、分子内に脂環構造と、官能基としてのエポキシ基を有する脂環式エポキシ化合物が好ましく、とりわけ多官能脂環式エポキシ化合物が好ましい。 As the epoxy resin, a known or commonly used compound having one or more epoxy groups (oxirane ring) in the molecule can be used. For example, an alicyclic epoxy compound, an aromatic epoxy compound, an aliphatic epoxy compound, etc. Can be mentioned. In the present invention, among them, an alicyclic epoxy compound having an alicyclic structure and an epoxy group as a functional group in the molecule is capable of forming a cured product excellent in heat resistance and transparency. Particularly preferred are polyfunctional alicyclic epoxy compounds.
 多官能脂環式エポキシ化合物としては、具体的には、
(I)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(すなわち、脂環エポキシ基)を有する化合物
(II)脂環に直接単結合で結合したエポキシ基を有する化合物
(III)脂環とグリシジル基とを有する化合物
等が挙げられる。
Specifically, as the polyfunctional alicyclic epoxy compound,
(I) A compound having an epoxy group (that is, an alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring (II) An epoxy group bonded directly to the alicyclic ring with a single bond Compound (III) having an alicyclic ring and a glycidyl group.
 多官能脂環式エポキシ化合物としては、とりわけ、脂環エポキシ基を有する化合物(I)が、硬化収縮率が低く、形状精度及び光学特性に優れた硬化物が得られる点で好ましい。 Especially as a polyfunctional alicyclic epoxy compound, the compound (I) which has an alicyclic epoxy group is preferable at the point from which the cure shrinkage rate is low and the hardened | cured material excellent in the shape precision and the optical characteristic is obtained.
 上述の脂環エポキシ基を有する化合物(I)としては、例えば、下記式(1)で表される化合物を挙げられる。
Figure JPOXMLDOC01-appb-C000003
As compound (I) which has the above-mentioned alicyclic epoxy group, the compound represented by following formula (1) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000003
 上記式(1)で表される化合物の代表的な例としては、3,4−エポキシシクロヘキシルメチル(3,4−エポキシ)シクロヘキサンカルボキシレート、(3,4,3’,4’−ジエポキシ)ビシクロヘキシル、ビス(3,4−エポキシシクロヘキシルメチル)エーテル、1,2−エポキシ−1,2−ビス(3,4−エポキシシクロヘキサン−1−イル)エタン、2,2−ビス(3,4−エポキシシクロヘキサン−1−イル)プロパン、1,2−ビス(3,4−エポキシシクロヘキサン−1−イル)エタン等が挙げられる。 Representative examples of the compound represented by the above formula (1) include 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, (3,4,3 ′, 4′-diepoxy) biphenyl. Cyclohexyl, bis (3,4-epoxycyclohexylmethyl) ether, 1,2-epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 2,2-bis (3,4-epoxy) Cyclohexane-1-yl) propane, 1,2-bis (3,4-epoxycyclohexane-1-yl) ethane and the like.
 本発明における紫外線硬化性組成物は、硬化性化合物としてエポキシ樹脂以外にも他の硬化性化合物を含有していても良く、例えば、オキセタン化合物、ビニルエーテル化合物等のカチオン硬化性化合物を1種又は2種以上含有することができる。 The ultraviolet curable composition in the present invention may contain other curable compounds in addition to the epoxy resin as the curable compound. For example, one or two cationic curable compounds such as oxetane compounds and vinyl ether compounds may be used. More than one species can be contained.
 本発明における紫外線硬化性組成物は、硬化性化合物としてエポキシ樹脂を含有することが好ましく、特に、硬化性化合物全量の50重量%(特に好ましくは60重量%以上、最も好ましくは70重量%以上)が多官能脂環式エポキシ化合物を含むエポキシ樹脂であることが好ましい。 The ultraviolet curable composition in the present invention preferably contains an epoxy resin as a curable compound, and particularly 50% by weight (particularly preferably 60% by weight or more, most preferably 70% by weight or more) of the total amount of the curable compound. Is preferably an epoxy resin containing a polyfunctional alicyclic epoxy compound.
 前記紫外線硬化性組成物は、上記硬化性化合物と共に光重合開始剤を1種又は2種以上含有することが好ましい。光重合開始剤の含有量は、紫外線硬化性組成物に含まれる硬化性化合物(特に、カチオン硬化性化合物)100重量部に対して、例えば0.1~5.0重量部となる範囲である。重合開始剤の含有量が上記範囲を下回ると、硬化不良を引き起こすおそれがある。一方、重合開始剤の含有量が上記範囲を上回ると、硬化物が着色しやすくなる傾向がある。 The ultraviolet curable composition preferably contains one or more photopolymerization initiators together with the curable compound. The content of the photopolymerization initiator is, for example, in a range of 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the curable compound (particularly, cationic curable compound) contained in the ultraviolet curable composition. . When content of a polymerization initiator is less than the said range, there exists a possibility of causing a curing defect. On the other hand, when the content of the polymerization initiator exceeds the above range, the cured product tends to be colored.
 本発明における紫外線硬化性組成物は、上記硬化性化合物と光重合開始剤と、必要に応じて他の成分(例えば、溶剤、酸化防止剤、表面調整剤、光増感剤、消泡剤、レベリング剤、カップリング剤、界面活性剤、難燃剤、紫外線吸収剤、着色剤等)を混合することによって製造することができる。他の成分の配合量は、紫外線硬化性組成物全量の、例えば20重量%以下、好ましくは10重量%以下、特に好ましくは5重量%以下である。 The ultraviolet curable composition in the present invention comprises the curable compound, a photopolymerization initiator, and other components as necessary (for example, a solvent, an antioxidant, a surface conditioner, a photosensitizer, an antifoaming agent, And a leveling agent, a coupling agent, a surfactant, a flame retardant, an ultraviolet absorber, a colorant, and the like). The blending amount of the other components is, for example, 20% by weight or less, preferably 10% by weight or less, particularly preferably 5% by weight or less, based on the total amount of the ultraviolet curable composition.
 [成形体の製造装置]
 本発明の成形体の製造装置は、紫外線硬化性組成物の硬化に伴う変形を、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートし、これを元に設計、製造されたモールドを使用して前記紫外線硬化性組成物を成形することを特徴とする。
[Molded product manufacturing equipment]
The molded body manufacturing apparatus of the present invention uses a finite element analysis method that takes into account the deformation accompanying the curing of the ultraviolet curable composition by taking into account the curing shrinkage [1] of the ultraviolet curable composition and the accompanying mold deformation [2]. The ultraviolet curable composition is molded using a mold that is simulated and designed and manufactured based on the simulation.
 本発明の成形体の製造装置は、紫外線硬化性組成物の硬化に伴う変形を、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートし、これを元に設計、製造されたモールドを使用して前記紫外線硬化性組成物を成形する機能を有するものであれば、その構成は特に制限されないが、例えば、ハードウェハとしてコンピューター式(例えば、CPU、メモリ、及びハードディスク等)、ソフトウェアとしてオペレーティングシステム、及び有限要素解析ソフト(ソルバー、プリプロセッサー、ポストプロセッサー)を備えることが好ましい。 The molded body manufacturing apparatus of the present invention uses a finite element analysis method that takes into account the deformation accompanying the curing of the ultraviolet curable composition by taking into account the curing shrinkage [1] of the ultraviolet curable composition and the accompanying mold deformation [2]. The structure is not particularly limited as long as it has a function of forming the ultraviolet curable composition using a mold that is simulated and designed and manufactured based on the simulation. It is preferable to include an operating system (such as a CPU, a memory, and a hard disk), and finite element analysis software (solver, preprocessor, postprocessor) as software.
 本発明の成形体の製造装置を利用すれば、相転移を含む複雑な現象であるところの紫外線硬化性組成物の硬化収縮と、それに伴うモールドの変形を正確に予測し、これを元に製造されたモールドを使用して紫外線硬化性組成物を成形するため、所望の形状の成形体を確実に製造することができる。 If the manufacturing apparatus of the molded body of the present invention is used, the curing shrinkage of the ultraviolet curable composition, which is a complicated phenomenon including phase transition, and the deformation of the mold accompanying it are accurately predicted, and the manufacturing is based on this. Since an ultraviolet curable composition is shape | molded using the formed mold, the molded object of a desired shape can be manufactured reliably.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
 実験例1
 モールド上に紫外線硬化性組成物(商品名「CELVENUS OUH106」、カチオン硬化性化合物と光カチオン重合開始剤とを含有し、カチオン硬化性化合物全量の80重量%がエポキシ樹脂(多官能脂環式エポキシ化合物を含む)である、(株)ダイセル製)を塗布し、上から透明基板にて型閉じを行った。その後、UV照射(80mW×30秒)を行い、続いて、離型して成形体を得た(図6)。得られた成形体は側面の中央部から中央下部にかけて湾曲変位していた。
Experimental example 1
The mold contains an ultraviolet curable composition (trade name “CELVENUS OUH106”, a cationic curable compound and a photocationic polymerization initiator, and 80% by weight of the total amount of the cationic curable compound is epoxy resin (polyfunctional alicyclic epoxy). (Including a compound), manufactured by Daicel Corporation), and the mold was closed with a transparent substrate from above. Thereafter, UV irradiation (80 mW × 30 seconds) was performed, followed by release to obtain a molded body (FIG. 6). The obtained molded body was bent and displaced from the central part of the side surface to the central lower part.
 実施例1(成形体側面の中央部から中央下部にかけての湾曲について検討)
 紫外線硬化性組成物に紫外線を照射することによる硬化収縮を、熱粘弾性体を冷却することによる収縮固化に置き換えてモデル化した。
<熱粘弾性体の物性>
 熱線膨張係数:0.0001K−1
 即時ヤング率:250MPa
 即時ポアソン比:0.3
 一般化Maxwellモデル:
  g=0.99999
  τ=1.0sec.
 時間−温度変換則(WLF則):
  θ:25℃
  C=10
  C:100℃
Example 1 (examination of the curve from the center to the bottom of the side of the molded body)
Curing shrinkage caused by irradiating the ultraviolet curable composition with ultraviolet rays was replaced with shrinkage solidification caused by cooling the thermo-viscoelastic body.
<Physical properties of thermoviscoelastic body>
Thermal expansion coefficient: 0.0001K -1
Immediate Young's modulus: 250 MPa
Immediate Poisson's ratio: 0.3
Generalized Maxwell model:
g 1 = 0.99999
τ 1 = 1.0 sec.
Time-temperature conversion law (WLF law):
θ 0 : 25 ° C.
C 1 = 10
C 2 : 100 ° C.
 また、モールドは、ネオ・フック弾性体によってモデル化した。
<ネオ・フック弾性体の物性>
 初期ヤング率:5Mpa
 初期ポアソン比:0.49
The mold was modeled with a neo-hook elastic body.
<Physical properties of neo-hook elastic body>
Initial Young's modulus: 5Mpa
Initial Poisson's ratio: 0.49
 下記手順に従って、ABAQUOS/Standardの四面体二次修正ハイブリッド要素(C3D10MH)を用いた有限要素解析を行った。
 <Step 1:静止(1秒)>
 静解析
 滑りなし接触開始
 <Step 2:固化収縮(100秒)>
 準性的解析
 熱粘弾性体の温度を100℃から0℃まで、1℃/秒で降下させる
 <Step 3:離型(10秒)>
 準性的解析
 接触除去
 モールドを400μmで引き上げる
A finite element analysis using an ABAQUIOS / Standard tetrahedral quadratic modified hybrid element (C3D10MH) was performed according to the following procedure.
<Step 1: Stationary (1 second)>
Static analysis Non-slip contact start <Step 2: Solidification shrinkage (100 seconds)>
Semi-sexual analysis The temperature of the thermo-viscoelastic body is lowered from 100 ° C. to 0 ° C. at 1 ° C./second <Step 3: Release (10 seconds)>
Quasi-sexual analysis Contact removal Pull up mold at 400μm
 数値解析によって再現された成形体断面図(図7)より、中央部から中央下部にかけての湾曲が、上記実験例の結果と定量的に一致していることが分かった。
 また、図8、9から、中央部と中央下部の湾曲は、それぞれ独立した要因によって引き起こされていることが定量的に説明できた。すなわち、Step2の時刻t=50sにおけるx方向変位を表示した図8から、Step2の前半は樹脂がほとんど硬化しておらず、収縮に伴い内部流動が発生するが、粘着接触のために左側モールド壁面が中心方向へ引っ張られてたわんでいることが分かった。この時、右側モールド壁面も同様に中心方向に引っ張られるため、周期境界条件を通じて左右モールドの引っ張り合いが生じるが、モールドは左右非対称な形状を有しており、左半分の樹脂の方が体積が大きく、それに伴う収縮も大きいため、左側モールドの引っ張り力の方が大きくなり中央部へたわむ。これが、成形体側面中央下部の湾曲の原因である。
 一方、Step2の時刻t=100sにおける、y軸に垂直な断面図(図9)は、図8に比べてモールド中央部で膨らみが進んでいることが分かる。樹脂の硬化により流動が止まった後も収縮は一定速度で続くため、モールドがバレリングすることで収縮分の空間を埋めることになり、このバレリングによってモールド中央部が膨らみ、成形体側面中央部が湾曲する。
From the cross-sectional view of the molded body reproduced by numerical analysis (FIG. 7), it was found that the curvature from the center to the center lower part quantitatively coincided with the result of the above experimental example.
8 and 9, it can be quantitatively explained that the curvature of the central part and the central lower part is caused by independent factors. That is, from FIG. 8 showing the displacement in the x direction at time t = 50 s of Step 2, the resin is hardly cured in the first half of Step 2, and internal flow occurs due to shrinkage, but the left mold wall surface due to adhesive contact It was found that was bent by being pulled toward the center. At this time, since the right mold wall is also pulled in the center direction, the left and right molds are pulled through the periodic boundary conditions, but the mold has an asymmetrical shape, and the volume of the left half resin is larger. Large, and the shrinkage associated with it is large, so the pulling force of the left mold becomes larger and bends to the center. This is the cause of the curvature at the lower center of the side surface of the molded body.
On the other hand, the cross-sectional view (FIG. 9) perpendicular to the y-axis at the time t = 100 s in Step 2 shows that the bulge progresses in the mold center as compared with FIG. Since shrinkage continues at a constant speed even after the flow stops due to resin curing, the mold will fill up the shrinkage space due to ballering. To do.
 実施例2
 モールドの初期ヤング率を1000Gpaに変更した以外は実施例1と同様の条件で有限要素解析を行った。その結果、Step2の時刻t=100sにおける、y軸に垂直な断面図(図10)では、成形体側面中央部の湾曲は見られなかった。
 このことから、成形体側面中央部の湾曲の発現には、モールドの柔らかさに起因するバレリングが関与していることが確認できた。
Example 2
Finite element analysis was performed under the same conditions as in Example 1 except that the initial Young's modulus of the mold was changed to 1000 Gpa. As a result, in the cross-sectional view perpendicular to the y-axis at the time t = 100 s in Step 2 (FIG. 10), no curvature of the central portion of the side surface of the molded body was observed.
From this, it was confirmed that the valering due to the softness of the mold is involved in the expression of the curvature at the center of the side surface of the molded body.
 実施例1、2、及び実験例1の結果より、成形体側面の中央部から中央下部にかけての湾曲の発現には、樹脂の硬化収縮と、それに伴うモールドの変形が関与していることが確認できた。また、有限要素解析法により、樹脂の硬化収縮と、それに伴うモールドの変形を考慮した演算を行えば、成形体の変形を正確にシミュレートすることができることが確認できた。 From the results of Examples 1 and 2 and Experimental Example 1, it was confirmed that the curving from the central part to the central lower part of the side surface of the molded body involved the hardening shrinkage of the resin and the accompanying mold deformation. did it. Further, it was confirmed that the deformation of the molded body can be accurately simulated by performing a calculation in consideration of the curing shrinkage of the resin and the accompanying deformation of the mold by the finite element analysis method.
 実施例3(残膜層厚みについて検討)
 残膜層の厚みを100μmとした以外は実施例1と同様の条件で有限要素解析を行った。その結果、Step2の時刻t=100sにおける、y軸に垂直な断面図(図11)より、残膜層のほぼ全域が流動に関与し、底面の固定境界の干渉により流動が多少制限されている様子が見られた。また、残膜層の厚さが薄いので、両側から中央部に引き込もうとする流動が大きかった。
Example 3 (Examination of residual film layer thickness)
Finite element analysis was performed under the same conditions as in Example 1 except that the thickness of the remaining film layer was 100 μm. As a result, from the cross-sectional view perpendicular to the y-axis at the time t = 100 s of Step 2 (FIG. 11), almost the entire remaining film layer is involved in the flow, and the flow is somewhat restricted due to interference with the fixed boundary of the bottom surface. The situation was seen. Moreover, since the thickness of the remaining film layer was thin, the flow to be drawn from both sides to the central part was large.
 実施例4(残膜層厚みについて検討)
 残膜層の厚みを200μmとした以外は実施例1と同様の条件で有限要素解析を行った。その結果、Step2の時刻t=100sにおける、y軸に垂直な断面図(図12)より、湾曲は残膜層の厚みが100μmの場合とほとんど変化なかった。残膜層の上部(100μm厚部分)が主に流動に関与し、下部(100μm厚部分)の流動量は限定的であった。
Example 4 (Examination of residual film layer thickness)
Finite element analysis was performed under the same conditions as in Example 1 except that the thickness of the remaining film layer was 200 μm. As a result, from the cross-sectional view perpendicular to the y-axis at the time t = 100 s in Step 2 (FIG. 12), the bending was hardly changed from the case where the thickness of the remaining film layer was 100 μm. The upper part (100 μm thick part) of the remaining film layer was mainly involved in the flow, and the flow amount at the lower part (100 μm thick part) was limited.
 実施例5(残膜層厚みについて検討)
 残膜層の厚みを300μmとした以外は実施例1と同様の条件で有限要素解析を行った。その結果、Step2の時刻t=100sにおける、y軸に垂直な断面図(図13)より、湾曲は残膜層の厚みが100μmの場合とほとんど変化なかった。残膜層の上部(100μm厚部分)が主に流動に関与し、中部(100μm厚部分)の流動量は限定的、下部(100μm厚部分)はほとんど流動していなかった。
Example 5 (Examination of remaining film layer thickness)
Finite element analysis was performed under the same conditions as in Example 1 except that the thickness of the remaining film layer was 300 μm. As a result, from the cross-sectional view perpendicular to the y-axis at the time t = 100 s in Step 2 (FIG. 13), the curvature was hardly changed from the case where the thickness of the remaining film layer was 100 μm. The upper part (100 μm thick part) of the remaining film layer was mainly involved in the flow, the flow amount of the middle part (100 μm thick part) was limited, and the lower part (100 μm thick part) hardly flowed.
 実施例3~5の結果より、残膜層の厚みは、転写精度への影響はほとんどないことが確認できた。より詳細には、残膜層の厚さを100μmより薄くすると、流動抵抗が大きくなり、湾曲に影響が生じる場合があるが、残膜層の厚さが100μm以上であればよく、たとえ残膜層の厚さを200μm以上に厚くしても、転写精度を向上する効果は得られないことがわかった。従って、残膜層厚みの要素を有限要素解析法によるシミュレートに加える必要がないことが確認できた。 From the results of Examples 3 to 5, it was confirmed that the thickness of the remaining film layer had little influence on the transfer accuracy. More specifically, if the thickness of the remaining film layer is less than 100 μm, the flow resistance may increase and the curvature may be affected. However, the remaining film layer may have a thickness of 100 μm or more. It has been found that the effect of improving the transfer accuracy cannot be obtained even if the thickness of the layer is increased to 200 μm or more. Therefore, it was confirmed that it was not necessary to add the element of the residual film layer thickness to the simulation by the finite element analysis method.
 実施例6(硬化挙動の測定による物性値同定方法を用いた検討)
 アントンパール社製レオメータ(MCR−301)を用いて、実験例1で使用した紫外線硬化性組成物(商品名「CELVENUS OUH106」、(株)ダイセル製)の硬化挙動(ギャップ変化率、貯蔵横弾性率(G’)、および損失横弾性率(G”))を各回転振動の振動数毎(0.1~10Hz)に測定した。
Example 6 (Examination using physical property value identification method by measurement of curing behavior)
Curing behavior (gap change rate, storage lateral elasticity) of the ultraviolet curable composition (trade name “CELVENUS OUH106”, manufactured by Daicel Corporation) used in Experimental Example 1 using an Anton Paar rheometer (MCR-301). The rate (G ′) and the loss transverse elastic modulus (G ″)) were measured for each rotational vibration frequency (0.1 to 10 Hz).
 測定でのUV照射条件は実験例1と同等となるように調整した(80mW×30秒)。UV照射条件は常に一定としておりギャップ変化率は振動数に依らない。ギャップ変化率の代表的な結果を図14に示す。一方、横弾性率は振動数毎に結果が異なるため、代表的な3条件(10Hz、1Hz、及び0.1Hz)の結果を図15、16に示す。今回の測定に用いた紫外線硬化性組成物は、30秒間のUV照射後も収縮と硬化が継続して進んでいることから、暗硬化が進行することが読み取れる。 The UV irradiation conditions in the measurement were adjusted to be the same as in Experimental Example 1 (80 mW × 30 seconds). The UV irradiation conditions are always constant, and the gap change rate does not depend on the frequency. A typical result of the gap change rate is shown in FIG. On the other hand, since the results of the transverse elastic modulus differ for each frequency, the results of three typical conditions (10 Hz, 1 Hz, and 0.1 Hz) are shown in FIGS. The ultraviolet curable composition used in this measurement continues to shrink and cure even after 30 seconds of UV irradiation, indicating that dark curing proceeds.
 紫外線硬化性組成物にUV照射することにより進行する硬化反応は、熱粘弾性体の冷却(例えば、100℃から0℃まで冷却)による固化反応に置き換えてモデル化するため、物性値の同定に先立ち、反応進行の尺度として温度を設定する必要がある。ここでは温度の時刻歴をθ(t)=−tと設定した。尚、ここで設定する「温度」は実際の温度とは無関係のあくまで仮想的な値である。 The curing reaction that proceeds by UV irradiation of the UV curable composition is modeled by replacing it with a solidification reaction by cooling the thermoviscoelastic body (for example, cooling from 100 ° C. to 0 ° C.). Prior to this, temperature must be set as a measure of reaction progress. Here, the time history of temperature was set as θ (t) = − t. The “temperature” set here is a virtual value that is not related to the actual temperature.
 測定で得られたギャップ変化率の時刻歴から温度依存の熱膨張係数を同定した。体積膨張係数βは線膨張係数αの3倍であることに注意し、初期状態を基準として温度に依存する線膨張係数α(θ)を図14の結果から求めると図17のグラフがテーブルデータとして得られた。 The temperature-dependent thermal expansion coefficient was identified from the time history of the gap change rate obtained by the measurement. Note that the volume expansion coefficient β is three times the linear expansion coefficient α, and when the linear expansion coefficient α (θ) depending on the temperature is obtained from the initial state as a reference, the graph of FIG. As obtained.
 測定で得られた横弾性率の時刻歴を用いて、時間−温度換算則のシフトファクターを同定した。温度に依存するシフトファクターA(θ)は、基準温度θrefを定めた上でG’(ω)およびG”(ω)のマスターカーブ(ω:角振動数)が滑らかな関数となるよう様々なサンプル温度でのシフトファクターを定めることで求められる。 The shift factor of the time-temperature conversion rule was identified using the time history of the transverse elastic modulus obtained by the measurement. The shift factor A (θ) depending on the temperature is varied so that the master curve (ω: angular frequency) of G ′ (ω) and G ″ (ω) becomes a smooth function after the reference temperature θ ref is determined. It can be obtained by determining the shift factor at various sample temperatures.
 尚、本実施例では時間−温度換算にWLF則等を使用せず、より汎用的に適用可能なテーブルデータによる換算を行っている。基準温度θref=−1800とし、図15、16を元にシフトを行って得られたG’(ω)およびG”(ω)のマスターカーブを図18、19に示す。グラフの見易さのため6個のサンプル温度におけるデータのみを示している。定めたシフトファクターを温度の関数A(θ)としてプロットすると図20が得られた。 In this embodiment, the time-temperature conversion does not use the WLF rule or the like, and performs conversion using table data that can be applied more generally. Master curves of G ′ (ω) and G ″ (ω) obtained by shifting based on FIGS. 15 and 16 with the reference temperature θ ref = −1800 are shown in FIGS. For this reason, only data at six sample temperatures are shown, and plotting the determined shift factor as a function of temperature A (θ) yielded FIG.
 さらに、得られたマスターカーブを用いてProny級数の係数を同定した。多くの熱粘弾性体の場合と同様、体積弾性率には粘性が無く横弾性率のみに粘性が有るものと考える。紫外線硬化性組成物は流体から固体へと相変化を起こすため、その変形挙動を正確に再現するには広範囲の時定数に渡ってProny級数の係数を同定する必要がある。即時横弾性率および即時ポアソン比等は完全硬化した後のバルク試験片に対して材料試験を実施することにより求められる。一方、長期横弾性率は実験的に求めることが困難な物性値である。従って、レオメータでの測定範囲と照らして充分に小さいとみなせる値(例えば、即時横弾性率×10−6程度の値)を長期横弾性率に定めることで限りなく流体に近い挙動を再現した。 Furthermore, the coefficient of the Prony series was identified using the obtained master curve. As in the case of many thermoviscoelastic bodies, it is considered that the bulk modulus is not viscous and only the transverse modulus is viscous. Since an ultraviolet curable composition undergoes a phase change from a fluid to a solid, it is necessary to identify Prony series coefficients over a wide range of time constants in order to accurately reproduce its deformation behavior. The immediate transverse elastic modulus, the immediate Poisson's ratio, and the like are obtained by conducting a material test on the bulk specimen after being completely cured. On the other hand, the long-term transverse elastic modulus is a physical property value that is difficult to obtain experimentally. Therefore, the behavior close to the fluid was reproduced by setting the long-term lateral elastic modulus to a value that can be regarded as sufficiently small in light of the measurement range with the rheometer (for example, a value of immediate lateral elastic modulus × 10 −6 or so).
 図18、19に対してProny級数の係数を同定して得られた、基準温度θref=−1800におけるG’(ω)およびG”(ω)のマスターカーブを図21、22に示す。Prony級数の時定数τには10−3、10−2、・・・1016(s)の20項を用いた。 FIGS. 21 and 22 show master curves of G ′ (ω) and G ″ (ω) at the reference temperature θ ref = −1800 obtained by identifying the coefficient of the Prony series with respect to FIGS. 20 terms of 10 −3 , 10 −2 ,... 10 16 (s) were used as the time constant τ of the series.
 こうして得られた物性値(温度依存の熱膨張係数、温度依存のシフトファクター、Prony級数の係数、即時横(または縦)弾性率、および即時ポアソン比)を紫外線硬化性組成物の材料物性とし、さらに領域条件として温度の時間変化(θ(t)=−t)を与えることで数値解析が実施可能となった。また、モールドの物性値データは実施例1と同様とし、有限要素解析を行った。数値解析によって再現された成形体断面図(図23)より、中央部から中央下部にかけての湾曲が、上記実験例の結果と定量的に一致していることが分かった。 The physical property values thus obtained (temperature-dependent thermal expansion coefficient, temperature-dependent shift factor, Prony series coefficient, immediate transverse (or longitudinal) elastic modulus, and immediate Poisson's ratio) are the material physical properties of the ultraviolet curable composition, Furthermore, numerical analysis can be performed by giving a temporal change in temperature (θ (t) = − t) as a region condition. The physical property value data of the mold was the same as in Example 1, and finite element analysis was performed. From the cross-sectional view of the molded body reproduced by numerical analysis (FIG. 23), it was found that the curvature from the center to the center lower part quantitatively coincided with the result of the above experimental example.
 以上の結果より、本発明の方法によって、紫外線硬化性組成物の硬化収縮と、それに伴うモールドの変形をシミュレーションにより予測できることが分かる。従って、本発明の方法を用いれば、必要な補正を演算により求めることができ、演算により求められた補正を設計に反映させることで、より早く、確実に、安価に、高精度の成形体を製造することができるモールドが得られる。また、このモールドを使用すれば、高精度の成形体が効率よく得られる。 From the above results, it can be seen that by the method of the present invention, curing shrinkage of the ultraviolet curable composition and accompanying mold deformation can be predicted by simulation. Therefore, if the method of the present invention is used, the necessary correction can be obtained by calculation, and the correction obtained by calculation is reflected in the design, so that a high-precision molded body can be obtained more quickly, reliably and inexpensively. A mold that can be manufactured is obtained. Moreover, if this mold is used, a highly accurate molded object can be obtained efficiently.
 本発明のモールドの製造方法によれば、従来は試作を繰り返し行い膨大な時間やコストをかけて行っていたモールドの設計を、シミュレーションにより変形を予測し、必要な補正を設計に反映させることで、より早く、確実に行うことができる。
 また、前記方法で得られるモールドは、予測される変形を相殺するよう補正された形状を有するため、当該モールドを使用すれば、形状精度に優れた成形体が効率よく、且つ安価に得られる。そのため、マイクロミラーアレイ等の高い面精度が要求される微細構造物を光インプリントで製造する用途に好適に用いられる。
According to the mold manufacturing method of the present invention, it is possible to predict the deformation by simulation and reflect the necessary correction to the design, which has been done in the past by repeating trial manufacture and spending enormous time and cost. Can be done faster and more reliably.
Further, since the mold obtained by the above method has a shape corrected so as to cancel out the expected deformation, a molded body having excellent shape accuracy can be obtained efficiently and inexpensively by using the mold. Therefore, it is suitably used for the purpose of producing a fine structure such as a micromirror array that requires high surface accuracy by optical imprinting.
1   マイクロミラーアレイ
2   立体パターン
3   残膜層
1 Micromirror array 2 Solid pattern 3 Remaining film layer

Claims (10)

  1.  紫外線硬化性組成物の成形に用いられる、弾性体からなるモールドの製造方法であって、紫外線硬化性組成物の硬化に伴う変形を、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートし、これを元にモールドを設計することを特徴とする、モールドの製造方法。 A method for producing a mold made of an elastic body, which is used for molding an ultraviolet curable composition, wherein the deformation accompanying the curing of the ultraviolet curable composition is caused by curing shrinkage [1] of the ultraviolet curable composition and the mold accompanying it. A method for manufacturing a mold, characterized by simulating by a finite element analysis method taking into account the deformation [2] and designing a mold based on the simulation.
  2.  紫外線硬化性組成物の硬化収縮[1]を熱粘弾性体の冷却に伴う収縮に置き換え、熱粘弾性体の熱膨張係数と、冷却に伴う粘性緩和時間の増加によってモデル化する、請求項1に記載のモールドの製造方法。 The cure shrinkage [1] of the ultraviolet curable composition is replaced with the shrinkage accompanying cooling of the thermoviscoelastic body, and is modeled by the thermal expansion coefficient of the thermoviscoelastic body and the increase in the viscosity relaxation time accompanying cooling. A method for producing the mold according to 1.
  3.  モールドの変形[2]を超弾性体によってモデル化する、請求項1又は2に記載のモールドの製造方法。 The method for producing a mold according to claim 1 or 2, wherein the deformation [2] of the mold is modeled by a superelastic body.
  4.  請求項1~3の何れか1項に記載のモールドの製造方法により得られるモールド。 A mold obtained by the mold manufacturing method according to any one of claims 1 to 3.
  5.  請求項1~3の何れか1項に記載のモールドの製造方法によりモールドを製造し、得られたモールドを利用して紫外線硬化性組成物を成形する工程を経て、前記紫外線硬化性組成物の硬化物から成る成形体を得る、成形体の製造方法。 A mold is produced by the method for producing a mold according to any one of claims 1 to 3, and a step of forming an ultraviolet curable composition using the obtained mold is performed. A method for producing a molded body, which obtains a molded body comprising a cured product.
  6.  成形体がマイクロミラーアレイである、請求項5に記載の成形体の製造方法。 The method for producing a molded body according to claim 5, wherein the molded body is a micromirror array.
  7.  請求項5又は6に記載の成形体の製造方法で得られる成形体。 A molded product obtained by the method for producing a molded product according to claim 5 or 6.
  8.  紫外線硬化性組成物の硬化に伴う変形を、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートするシミュレーション装置。 A simulation apparatus for simulating the deformation accompanying the curing of the ultraviolet curable composition by a finite element analysis method in consideration of the curing shrinkage [1] of the ultraviolet curable composition and the accompanying mold deformation [2].
  9.  紫外線硬化性組成物の成形に用いられるモールドの製造装置であって、紫外線硬化性組成物の硬化に伴う変形を、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートし、これを元にモールドを設計、製造することを特徴とするモールドの製造装置。 An apparatus for producing a mold used for molding an ultraviolet curable composition, wherein the deformation accompanying the curing of the ultraviolet curable composition is caused by curing shrinkage of the ultraviolet curable composition [1] and accompanying mold deformation [2]. A mold manufacturing apparatus characterized in that a mold is designed and manufactured based on a simulation by a finite element analysis method considering the above.
  10.  紫外線硬化性組成物の硬化に伴う変形を、紫外線硬化性組成物の硬化収縮[1]とそれに伴うモールドの変形[2]を考慮した有限要素解析法によりシミュレートし、これを元に設計、製造されたモールドを使用して前記紫外線硬化性組成物を成形することを特徴とする、成形体の製造装置。 The deformation accompanying the curing of the UV curable composition is simulated by a finite element analysis method considering the curing shrinkage [1] of the UV curable composition and the mold deformation [2] associated therewith, and designed based on this. An apparatus for producing a molded body, wherein the ultraviolet curable composition is molded using a manufactured mold.
PCT/JP2019/006929 2018-02-19 2019-02-18 Mold production method, and molded article production method using same WO2019160166A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19754456.2A EP3756847A4 (en) 2018-02-19 2019-02-18 Mold production method, and molded article production method using same
US16/970,844 US20200376720A1 (en) 2018-02-19 2019-02-18 Method for producing mold, and method for producing molded article using same
KR1020207026730A KR20200119872A (en) 2018-02-19 2019-02-18 Method for producing a mold, and method for producing a molded article using the same
CN201980014198.XA CN111741840A (en) 2018-02-19 2019-02-18 Method for producing mold, and method for producing molded article using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-027432 2018-02-19
JP2018027432 2018-02-19
JP2018-174162 2018-09-18
JP2018174162A JP2019142206A (en) 2018-02-19 2018-09-18 Manufacturing method of mold, and manufacturing method of molding using same

Publications (1)

Publication Number Publication Date
WO2019160166A1 true WO2019160166A1 (en) 2019-08-22

Family

ID=67618758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006929 WO2019160166A1 (en) 2018-02-19 2019-02-18 Mold production method, and molded article production method using same

Country Status (1)

Country Link
WO (1) WO2019160166A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002268057A (en) * 2001-03-06 2002-09-18 Omron Corp Optical device with resin thin film having micro uneven pattern, and method and device for manufacturing reflecting plate
JP2008006639A (en) * 2006-06-28 2008-01-17 Toppan Printing Co Ltd Imprinting mold and its manufacturing method
JP2009226762A (en) * 2008-03-24 2009-10-08 Toppan Printing Co Ltd Imprint mold, imprint mold manufacturing method and fine structural body
JP2012183692A (en) 2011-03-04 2012-09-27 Osaka Prefecture Univ Method of designing nano-printing mold
JP2018027432A (en) 2017-11-28 2018-02-22 株式会社サンセイアールアンドディ Game machine
JP2018174162A (en) 2015-09-03 2018-11-08 株式会社カネカ Organic el light-emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002268057A (en) * 2001-03-06 2002-09-18 Omron Corp Optical device with resin thin film having micro uneven pattern, and method and device for manufacturing reflecting plate
JP2008006639A (en) * 2006-06-28 2008-01-17 Toppan Printing Co Ltd Imprinting mold and its manufacturing method
JP2009226762A (en) * 2008-03-24 2009-10-08 Toppan Printing Co Ltd Imprint mold, imprint mold manufacturing method and fine structural body
JP2012183692A (en) 2011-03-04 2012-09-27 Osaka Prefecture Univ Method of designing nano-printing mold
JP2018174162A (en) 2015-09-03 2018-11-08 株式会社カネカ Organic el light-emitting device
JP2018027432A (en) 2017-11-28 2018-02-22 株式会社サンセイアールアンドディ Game machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3756847A4 *

Similar Documents

Publication Publication Date Title
Kuenstler et al. Blueprinting photothermal shape‐morphing of liquid crystal elastomers
KR101219354B1 (en) Polymerization technique to attenuate oxygen inhibition of solidification of liquids and composition therefor
Hansen et al. Replication of micro and nano surface geometries
Lipkowitz et al. Injection continuous liquid interface production of 3D objects
AU2013408697B2 (en) Polymer composition and methods using said polymer composition to manufacture ophthalmic lens
CN101221358A (en) Curved substrate multi-phase micro-optical element processing method based on flexible ultraviolet die mold
EP1873174A4 (en) Photocurable composition, article with fine pattern and method for producing same
CN101903159A (en) Multiple lip-deep contact angle decay
CN110945039B (en) Photocurable composition and method for producing three-dimensional object
Sonne et al. Modeling and simulation of the deformation process of PTFE flexible stamps for nanoimprint lithography on curved surfaces
JP2019142206A (en) Manufacturing method of mold, and manufacturing method of molding using same
JP2003149476A (en) Resin composition for optical waveguide and its hardened product
Karalekas et al. On the use of stereolithography built photoelastic models for stress analysis investigations
Vidler et al. Ultra-resolution scalable microprinting
WO2019160166A1 (en) Mold production method, and molded article production method using same
Cheng et al. Experimental and numerical study on deformation behavior of polyethylene terephthalate two-dimensional nanochannels during hot embossing process
JP2022012985A (en) Manufacturing method for molds, and manufacturing method of molded products using this method
Liravi Dynamic force analysis for bottom-up projection-based Additive Manufacturing using finite element analysis
JP2019206165A (en) Manufacturing method of mold
JP2001026609A (en) Resin composition for optical stereolithography
US10739583B2 (en) Method for obtaining at least one structure approximating a sought structure by reflow
Huang et al. Synthesis of diepoxycyclohexylethyl tetramethyldisiloxane and its application to stereolithography 3D printing
Männel et al. Solvent-resistant microfluidic devices made from PFHDA resins by micro-stereolithography
Chang et al. Noncontact microembossing technology for fabricating thermoplastic optical polymer microlens array sheets
WO2019160095A1 (en) Mold manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207026730

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019754456

Country of ref document: EP

Effective date: 20200921