JPH09277260A - Method and apparatus for designing mold - Google Patents

Method and apparatus for designing mold

Info

Publication number
JPH09277260A
JPH09277260A JP8089690A JP8969096A JPH09277260A JP H09277260 A JPH09277260 A JP H09277260A JP 8089690 A JP8089690 A JP 8089690A JP 8969096 A JP8969096 A JP 8969096A JP H09277260 A JPH09277260 A JP H09277260A
Authority
JP
Japan
Prior art keywords
mold
deformation
shape
difference
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8089690A
Other languages
Japanese (ja)
Other versions
JP2955509B2 (en
Inventor
Hisakuni Torii
久訓 鳥居
Naohide Nishimine
尚秀 西峰
Keiichiro Sugai
圭一郎 菅井
Yuko Tamiya
優子 田宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP8089690A priority Critical patent/JP2955509B2/en
Application filed by Kao Corp filed Critical Kao Corp
Priority to DE69729533T priority patent/DE69729533T2/en
Priority to CN97190340A priority patent/CN1084661C/en
Priority to PCT/JP1997/001229 priority patent/WO1997037823A1/en
Priority to EP97915694A priority patent/EP0844057B1/en
Priority to TW086104673A priority patent/TW333478B/en
Publication of JPH09277260A publication Critical patent/JPH09277260A/en
Priority to US08/988,240 priority patent/US6304794B1/en
Application granted granted Critical
Publication of JP2955509B2 publication Critical patent/JP2955509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3835Designing moulds, e.g. using CAD-CAM
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/42398Simulation of the blow-moulding process

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Feedback Control In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that it is required that a mold is opened after a sufficient cooling time is elapsed when molten plastic is molded by the mold and production quantity per a unit time is restricted by the cooling time. SOLUTION: When a mold is opened without being sufficiently cooled, plastic is thermally shrunk to be largely deformed. If the mold is designed preliminarily in anticipitation of deformation quantity by grasping this deformation, a shape of a molded product coinciding with a plan dimension can be obtained even if a cooling time is shortened. A finite element method is used in order to grasp deformation. Further, the planning of a mold considering even static water pressure deformation at a time when the molded product is filled with liquid content can be performed. By this constitution, production quantity per a unit time can be enhanced and a mold can be designed without relying on experience.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はプラスチック製品の
金型設計に利用する。本発明はプラスチック成形品を高
温で金型から取出し、取出し後の冷却に応じて変形する
形態をあらかじめ金型設計に折り込むことにより、プラ
スチック成形工程の所要時間を短縮する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for designing a mold for a plastic product. The present invention relates to a technique for shortening the time required for a plastic molding process by taking out a plastic molded product from a mold at a high temperature and preliminarily folding in a mold design a shape that deforms according to cooling after taking out.

【0002】[0002]

【従来の技術】高温で熔融されたプラスチックをチュー
ブ状に押し出し、それを金型で挟み込み、チューブ内に
空気を吹き込んで膨らませるプラスチック成形方法が広
く行われている。この従来例を図6を参照して説明す
る。図6はブロー成形法により容器を製造する工程を示
す図である。図6(a)に示すように、チューブ状の熔
融プラスチック(パリソン)を分割された金型の中間位
置に抽出し、図6(b)に示すように、金型を閉鎖す
る。図6(c)に示すように、熔融プラスチックに空気
を吹き込むと熔融プラスチックは金型の内壁に密着し、
熔融プラスチックは金型の内壁と同じ形状を呈する。こ
の時点では、熔融プラスチックの温度は、例えば、20
0°Cの高温であり、金型内で高圧空気を吹き込んだま
ま保持することにより、プラスチックを冷却し固化す
る。この冷却時間はプラスチックの種類や、成形品の内
容によって異なるが、従来の冷却時間決定手段として
は、取り出し後の樹脂の熱収縮による変形が線形の範囲
になることを目安としていた。図6(d)に示すよう
に、金型を開放すると、成形品が取り出される。
2. Description of the Related Art A plastic molding method in which a plastic melted at a high temperature is extruded into a tube, sandwiched by a mold, and air is blown into the tube to expand the plastic is widely used. This conventional example will be described with reference to FIG. FIG. 6 is a diagram showing a process of manufacturing a container by a blow molding method. As shown in FIG. 6 (a), a tube-shaped molten plastic (parison) is extracted at an intermediate position of the divided mold, and the mold is closed as shown in FIG. 6 (b). As shown in FIG. 6C, when air is blown into the molten plastic, the molten plastic adheres to the inner wall of the mold,
The molten plastic has the same shape as the inner wall of the mold. At this point, the temperature of the molten plastic is, for example, 20
At a high temperature of 0 ° C., the plastic is cooled and solidified by keeping the high-pressure air blown in the mold. The cooling time varies depending on the type of plastic and the content of the molded product, but as a conventional cooling time determining means, it has been assumed that the deformation due to the heat shrinkage of the resin after being taken out is in a linear range. As shown in FIG. 6D, when the mold is opened, the molded product is taken out.

【0003】図6に示した成形品は、液体を充填して販
売するための容器(ボトル)であり、通常金型を開放す
る樹脂温度の目安は50°C程度である。この冷却には
10数秒の時間を要する。
The molded product shown in FIG. 6 is a container (bottle) for filling and selling a liquid, and the standard temperature of the resin for opening the mold is about 50 ° C. This cooling requires a time of several tens of seconds.

【0004】[0004]

【発明が解決しようとする課題】前述したように、高温
の熔融プラスチックを金型を開放できるまでに冷却する
には時間を要する。単位時間当たりの生産量と生産コス
トとが比例関係にあり、秒単位の時間管理を行っている
製造工程では、例えそれが10数秒の短い時間であって
も、さらに低い生産コストを実現するためには冷却に要
する時間を短縮することが課題である。
As described above, it takes time to cool high temperature molten plastic before the mold can be opened. In the manufacturing process in which the production amount per unit time and the production cost are in a proportional relationship and the time is managed in seconds, in order to realize a lower production cost, even if it is a short time of 10 seconds or more. The challenge is to reduce the time required for cooling.

【0005】そこで発明者らは、実用上最短となる冷却
時間のデータを求めるために、金型を高温の内に開放す
る実験を繰り返し行った。その結果として、高温の熔融
プラスチックは、従来から行われている冷却時間未満で
は金型を外れると大きく収縮し、非線形な変形を起こす
ため、目標とする成形品形状は得られず、冷却時間の短
縮を行うことはできなかった。
Therefore, the inventors repeatedly conducted an experiment in which the mold was opened at a high temperature in order to obtain the data of the cooling time which is the shortest in practical use. As a result, the molten plastic at high temperature shrinks significantly when it is removed from the mold in less than the cooling time that has been conventionally used, and causes non-linear deformation. No reduction was possible.

【0006】本発明は、このような背景に行われたもの
であり、プラスチック成形工程における冷却時間を短縮
しても目標とする成形品形状が得られる金型の設計方法
および装置を提供することを目的とする。本発明は、内
容物の充填による静水圧変形を補償する形状を有する成
形品を製造できる金型の設計方法および装置を提供する
ことを目的とする。本発明は、経験によらず金型の設計
を行うことができる金型の設計方法および装置を提供す
ることを目的とする。
The present invention has been made against such a background, and provides a method and an apparatus for designing a mold capable of obtaining a target shape of a molded product even if the cooling time in the plastic molding process is shortened. With the goal. An object of the present invention is to provide a method and an apparatus for designing a mold capable of manufacturing a molded product having a shape that compensates for hydrostatic deformation due to filling of contents. SUMMARY OF THE INVENTION An object of the present invention is to provide a mold design method and apparatus capable of designing a mold without experience.

【0007】[0007]

【課題を解決するための手段】金型から開放されたプラ
スチックは、常温に冷える過程で収縮変形する。従来
は、低温取り出しのため、変形が線形という規則性があ
り、(1/収縮率)を目標成形品形状に反映させて金型
を大きく作ることにより、目的とする成形品形状の意匠
性(設計寸法値)を保証できる。ところが、高温取り出
しによる非線形の収縮過程では、上述のような巨視的な
規則性は見出せない。そこで、発明者らは有限要素法を
用いて変形挙動をシミュレートすることにより、その変
形を予め考慮して金型形状を作成することによって、高
温取り出しにおいても目的の成形品形状が得られる金型
設計方法および装置を発明した。
The plastic released from the mold shrinks and deforms while cooling to room temperature. Conventionally, there is a regularity that the deformation is linear because of low temperature removal, and by making (1 / shrinkage ratio) into the target molded product shape to make a large die, the design of the intended molded product shape ( Design dimensions) can be guaranteed. However, in the non-linear shrinking process due to high temperature extraction, the macroscopic regularity as described above cannot be found. Therefore, the present inventors simulated the deformation behavior using the finite element method, and created the mold shape in consideration of the deformation in advance, so that the target shape of the molded product can be obtained even at high temperature extraction. Invented a mold design method and apparatus.

【0008】すなわち、本発明の第一の観点は金型の設
計方法であり、その特徴とするところは、金型から取出
す直前の成形品の初期形状(≒金型形状)に金型から取
出した後に発生する変形についての変形シミュレーショ
ンを施す第一のステップと、この第一のステップにより
変形した形状と目標成形品形状との差分を演算する第二
のステップと、この差分と閾値とを比較する第三のステ
ップと、この差分が前記閾値を越えるときこの差分に基
づき前記初期形状の変更を演算する第四のステップとを
備えたところにある。
That is, the first aspect of the present invention is a method for designing a die, which is characterized by taking out from a die to an initial shape (≈die shape) of a molded product immediately before taking out from the die. Comparing this step with a threshold value, the first step of performing a deformation simulation for the deformation that occurs after that, the second step of calculating the difference between the shape deformed by this first step and the target molded product shape And a fourth step of calculating the change of the initial shape based on the difference when the difference exceeds the threshold value.

【0009】前記目標成形品形状は、内容物の充填によ
り生じる内部圧力による変形を含まないようにしてもよ
いし、あるいは、内容物の充填により生じる内部圧力に
よる変形を含むようにしてもよい。例えば、成形品が液
体を充填するためのプラスチック容器であるとき、これ
に液体を充填すればプラスチック容器は変形する。その
変形の分も考慮して、あらかじめ金型を設計することも
できる。
The target molded article shape may not include the deformation due to the internal pressure caused by the filling of the contents, or may include the deformation due to the internal pressure caused by the filling of the contents. For example, when the molded article is a plastic container for filling a liquid, the plastic container is deformed by filling the plastic container with the liquid. The mold can be designed in advance in consideration of the deformation.

【0010】前記シミュレーションは、有限要素法(F
EM:Finite Element Method) によることがよい(有限
要素法については、電子情報通信学会編、電子情報通信
ハンドブック、P36〜P37を参照)。
The simulation is based on the finite element method (F
EM (Finite Element Method) is preferable (For the finite element method, see the Institute of Electronics, Information and Communication Engineers, Electronic Information and Communication Handbook, P36 to P37).

【0011】これまで、単に試行錯誤を繰り返したり、
あるいは、職人の経験に頼ってきたが、有限要素法を用
いることにより無駄となる試作金型を減らすことができ
るとともに、経験によることなく金型設計を行うことが
できる。
Until now, simply repeating trial and error,
Alternatively, although relying on the experience of craftsmen, it is possible to reduce wasteful prototype dies by using the finite element method, and design dies without experience.

【0012】本発明の第二の観点は金型の設計装置であ
り、その特徴とするところは、金型の初期形状(b0)
を三次元情報として入力する手段と、この初期形状に等
しい成形品を金型から取出した後に生じる変形について
の変形シミュレーションを演算する第一の手段と、この
変形シミュレーションを演算した結果(ci)と目標成
形品形状との差分(xi)を演算する第二の手段と、こ
の差分と閾値とを比較する第三の手段と、この差分が閾
値(ε)を越えるとき前記差分に基づき前記初期形状の
一部に変更を加える第四の手段とを含み、前記第一ない
し第四の手段を前記差分が閾値を下回るまで繰り返して
実行させる手段を備えたところにある。
A second aspect of the present invention is a mold designing apparatus, which is characterized by the initial shape (b0) of the mold.
A means for inputting as three-dimensional information, a first means for calculating a deformation simulation for deformation that occurs after taking out a molded product having the same initial shape from the mold, and a result (ci) for calculating the deformation simulation. Second means for calculating the difference (xi) from the target molded product shape, third means for comparing the difference with a threshold value, and when the difference exceeds the threshold value (ε), the initial shape based on the difference A fourth means for changing a part of the above, and means for repeatedly executing the first to fourth means until the difference falls below a threshold value.

【0013】前記目標成形品形状は、内容物の充填によ
り生じる内部圧力による変形を含まないようにしてもよ
いし、あるいは、内容物の充填により生じる内部圧力に
よる変形を含むようにしてもよい。
The target molded article shape may not include the deformation due to the internal pressure caused by the filling of the contents, or may include the deformation due to the internal pressure caused by the filling of the contents.

【0014】本発明の第三の観点は、前記各手段を実行
させるプログラムが記録された記録媒体である。
A third aspect of the present invention is a recording medium in which a program for executing each of the above means is recorded.

【0015】本発明の第四の観点は、前記設計装置によ
り設計された金型である。
A fourth aspect of the present invention is a mold designed by the designing device.

【0016】[0016]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0017】[0017]

【実施例】本発明の実施の形態を図1を参照して説明す
る。図1は本発明実施例の金型設計方法のフローチャー
トである。
Embodiments of the present invention will be described with reference to FIG. FIG. 1 is a flow chart of a mold designing method according to an embodiment of the present invention.

【0018】本発明は金型設計方法であり、その特徴と
するところは、金型から取出した直後の成形品の初期形
状に金型から取出した後に発生する変形についての変形
シミュレーションを施す第一のステップ(S1)と、こ
の第一のステップにより変形した形状と目標成形品形状
との差分を演算する第二のステップ(S2)と、この差
分と閾値とを比較する第三のステップ(S3)と、この
差分が前記閾値を越えるときこの差分に基づき前記初期
形状の変更を演算する第四のステップ(S4)とを備え
たところにある。
The present invention is a mold designing method, which is characterized in that a deformation simulation is performed on the initial shape of a molded product immediately after being taken out from the mold and deformation occurring after taking out from the mold. Step (S1), a second step (S2) of calculating the difference between the shape deformed by the first step and the target molded product shape, and a third step (S3) of comparing the difference with a threshold value. ) And a fourth step (S4) of calculating the change of the initial shape based on the difference when the difference exceeds the threshold value.

【0019】また、本発明の金型設計方法を実行するた
めの装置を図5に示す。図5は本発明実施例の金型設計
装置のブロック構成図である。
An apparatus for carrying out the mold designing method of the present invention is shown in FIG. FIG. 5 is a block diagram of the mold designing apparatus according to the embodiment of the present invention.

【0020】本発明は金型設計装置であり、その特徴と
するところは、金型の初期形状(b0)を三次元情報と
して入力する手段としてのキーボード6と、この初期形
状に等しい成形品を金型から取出した後に生じる変形に
ついての変形シミュレーションを演算する第一の手段と
しての変形シミュレーション演算部1と、この変形シミ
ュレーションを演算した結果と目標成形品形状との差分
を演算する第二の手段としての差分演算部2と、この差
分と閾値とを比較する第三の手段としての差分判定部3
と、この差分が閾値を越えるとき前記差分に基づき前記
初期形状の一部に変更を加える第四の手段としての初期
形状変更部4とを含み、変形シミュレーション演算部1
ないし初期形状変更部4を前記差分が閾値を下回るまで
繰り返して実行させる手段としての演算制御部5を備え
たところにある。
The present invention is a mold designing apparatus, which is characterized by a keyboard 6 as a means for inputting the initial shape (b0) of the mold as three-dimensional information, and a molded product having the same initial shape. Deformation simulation calculation unit 1 as a first means for calculating a deformation simulation for deformation that occurs after taking out from the mold, and second means for calculating a difference between the calculation result of this deformation simulation and the target molded product shape. And a difference determining section 3 as a third means for comparing the difference with a threshold value.
And an initial shape changing unit 4 as a fourth means for changing a part of the initial shape based on the difference when the difference exceeds a threshold value.
Or, there is provided a calculation control section 5 as means for repeatedly executing the initial shape changing section 4 until the difference falls below a threshold value.

【0021】本発明実施例では、この演算には有限要素
法(FEM)を用いる。ここで有限要素法について図2
および図3を参照してごく簡単に説明する。図2はボト
ルの有限要素モデルを示す図である。図3は有限要素法
を説明するための図である。図2に示すように、変形シ
ミュレーション対象となる容器(形状)を格子状の3角
形または4角形の低次要素で近似する。要素は節点
{(xni、yni、zni)、i=1,4}で構成さ
れている。ここで、変形シミュレーションを行うと、変
形後の要素の節点座標は、図3(b)に示すように、
{(xdi、ydi、zdi、i=1、4)}となる。
ここで、図3(c)に示すように、変形前の節点座標
(xni、yni、zni)と変形後の節点座標(xd
i、ydi、zdi)との差分{(xsi、ysi、z
si)、i=1、4}を求めることにより、一つの要素
の変形具合を求めることができる。有限要素法ではこの
ように、図2に示したモデルのすべての要素同様に変形
具合を求めることにより容器全体の変形形態を把握し、
変形後の形状が目標成形品形状に近づくように変形前の
設計形状を少しずつ変えながら、変形シミュレーション
を繰り返し実行し、最終的な設計形状を決定する。
In the embodiment of the present invention, the finite element method (FEM) is used for this calculation. Figure 2 shows the finite element method.
A brief explanation will be given with reference to FIG. FIG. 2 is a diagram showing a finite element model of a bottle. FIG. 3 is a diagram for explaining the finite element method. As shown in FIG. 2, the container (shape) to be subjected to the deformation simulation is approximated by a lattice-shaped triangular or quadrangular low-order element. The element is composed of nodes {(xni, yni, zni), i = 1, 4}. Here, when the deformation simulation is performed, the node coordinates of the element after the deformation are as shown in FIG.
{(Xdi, ydi, zdi, i = 1, 4)}.
Here, as shown in FIG. 3C, the nodal coordinates (xni, yni, zni) before the deformation and the nodal coordinates (xd) after the deformation.
difference with i, ydi, zdi) {(xsi, ysi, z
By obtaining si), i = 1, 4}, the degree of deformation of one element can be obtained. In the finite element method, the deformation mode of the entire container is grasped by obtaining the deformation degree like all the elements of the model shown in FIG.
The final design shape is determined by repeatedly executing the deformation simulation while gradually changing the pre-deformation design shape so that the shape after deformation approaches the target molded product shape.

【0022】(第一実施例)本発明第一実施例を(図2
のボトルを例として)説明する。金型から取り出したプ
ラスチックの収縮変形が終了した段階で、目標成形品形
状となる金型形状を求めるには、取出し温度が低い場
合、即ち微小変形(線形)の場合、変形率の逆数を目標
成形品形状に掛けることにより求めることができる。し
かし、取出し温度が高い場合、即ちこの熱収縮が大きく
非線形である場合には適用できない。
(First Embodiment) The first embodiment of the present invention (see FIG. 2)
Will be described as an example). At the stage where the shrinkage deformation of the plastic taken out from the mold is completed, to obtain the mold shape that will become the target molded product shape, if the ejection temperature is low, that is, if the deformation is minute (linear), the reciprocal of the deformation rate is targeted It can be determined by multiplying the shape of the molded product. However, it is not applicable when the take-out temperature is high, that is, when this heat shrinkage is large and non-linear.

【0023】そこで、発明者らは、金型の設計対象形状
に毎回熱変形シミュレーションを行い、その結果と目標
成形品形状との差分を設計対象形状に反映させ、目標成
形品形状に収束するまでこれを繰り返した。この時、変
形の非線形性を考慮して、収束を安定させるため、減速
係数βを導入し、設計対象形状に反映させる差分を調整
した。この手法が有効に機能するためには、有限要素法
(FEM)の変形シミュレーションで計算した変形量、
変形形態がかなりの精度で現実の系と一致する必要があ
る。
Therefore, the inventors perform a thermal deformation simulation on the design object shape of the mold each time, reflect the difference between the result and the target molded article shape on the design object shape, and converge to the target molded article shape. This was repeated. At this time, in consideration of the non-linearity of the deformation, in order to stabilize the convergence, the deceleration coefficient β was introduced and the difference reflected on the design target shape was adjusted. In order for this method to function effectively, the deformation amount calculated by the deformation simulation of the finite element method (FEM),
The variant must match the real system with considerable accuracy.

【0024】そこで、シミュレーション精度の向上を図
るために、実測可能な変形前後の形状を基に、シミュレ
ーション結果が実測変位に合うように物性パラメータを
調整した。物性パラメータとしては、線膨張係数、ヤン
グ率、ポアソン比、熱伝導率、比熱、密度などがある。
表1には、パラメータ調整後のシミュレーション結果を
示した。
Therefore, in order to improve the simulation accuracy, the physical property parameters are adjusted so that the simulation result matches the actually measured displacement, based on the measurable and deformed shapes. The physical property parameters include a coefficient of linear expansion, a Young's modulus, a Poisson's ratio, a thermal conductivity, a specific heat, and a density.
Table 1 shows the simulation results after parameter adjustment.

【0025】[0025]

【表1】 相対誤差に相当する「差分×100/実測(%)」の列
を見ると最大で5%であり、パラメータの調整がうまく
出来ていることがわかる。
[Table 1] Looking at the column of “difference × 100 / actual measurement (%)” corresponding to the relative error, it is 5% at the maximum, and it can be seen that the parameter adjustment is successfully performed.

【0026】(第二実施例)本発明第二実施例を説明す
る。図4は本発明第二実施例の金型設計方法のフローチ
ャートである。本発明第二実施例では、成形されたボト
ルに内容物としての液体を充填した場合の静水圧変形ま
でも考慮した金型設計を行う。プラスチックは、金型か
ら取り出され(S11)、熱収縮変形を経て(S1
2)、成形品となる(S13)。この成形品に内容物で
ある液体を充填した結果、静水圧変形を受け(S1
4)、最終的な製品形状となるが(S15)、本発明第
二実施例では、この工程についても考慮する。
(Second Embodiment) A second embodiment of the present invention will be described. FIG. 4 is a flowchart of the mold designing method of the second embodiment of the present invention. In the second embodiment of the present invention, a mold is designed in consideration of hydrostatic deformation when a molded bottle is filled with a liquid as a content. The plastic is removed from the mold (S11) and undergoes heat shrinkage deformation (S1).
2) A molded product is obtained (S13). As a result of filling the molded product with the liquid as the content, the molded product is subjected to hydrostatic deformation (S1).
4) Although the final product shape is obtained (S15), this step is also considered in the second embodiment of the present invention.

【0027】設計過程に注目すると、流れは逆向きとな
る。すなわち、意匠設計(S16)に基づいて製品設計
(S17)が行われ、内容物の充填後に静水圧変形して
製品寸法となる成形品の形状を算出することにより(S
18)、成形品が自動設計される(S19)。さらに、
収縮変形後成形品寸法となる金型形状を算出することに
より(S20)、金型形状が自動設計される(S2
1)。
Focusing on the design process, the flow is in the opposite direction. That is, the product design (S17) is performed based on the design design (S16), and the shape of the molded product that becomes the product size by the hydrostatic deformation after the filling of the contents is calculated (S17).
18) A molded article is automatically designed (S19). further,
The mold shape is automatically designed by calculating the mold shape which becomes the molded product size after the shrinkage deformation (S20) (S2).
1).

【0028】このように、本発明第一実施例の工程に対
して本発明第二実施例では、さらに、空の成形品形状と
内容物が充填された後の成形品形状、即ち製品形状とを
比較してその差分を金型の設計形状に反映させる工程が
加えられる。その手順は、本発明第一実施例と同様であ
り、図1に示したフローチャートにしたがって行われ
る。第一実施例同様パラメータを実測変位に一致させる
ように調整する。
As described above, in contrast to the process of the first embodiment of the present invention, in the second embodiment of the present invention, the empty molded product shape and the molded product shape after the contents are filled, that is, the product shape Is added to reflect the difference in the design shape of the mold. The procedure is the same as in the first embodiment of the present invention, and is performed according to the flowchart shown in FIG. As in the first embodiment, the parameters are adjusted to match the actually measured displacement.

【0029】(第三実施例)本発明第三実施例を説明す
る。図5は本発明第三実施例の金型設計装置のブロック
構成図である。本発明第一または第二実施例で示した金
型設計方法は、本発明第三実施例に示した金型設計装置
により実行される。キーボード6により金型の初期形状
(b0)を三次元情報として入力する。変形シミュレー
ション演算部1はこの初期形状に等しい成形品を金型か
ら取出した後に生じる変形についての変形シミュレーシ
ョンを演算する。差分演算部2はこの変形シミュレーシ
ョンを演算した結果と目標成形品形状との差分を演算す
る。差分判定部3はこの差分と閾値とを比較する。初期
形状変更部4はこの差分が閾値を越えるとき前記差分に
基づき前記初期形状に変更を加える。演算制御部5は変
形シミュレーション演算部1ないし初期形状変更部4を
前記差分が閾値を下回るまで繰り返して実行させる。
(Third Embodiment) A third embodiment of the present invention will be described. FIG. 5 is a block diagram of a mold designing apparatus according to the third embodiment of the present invention. The mold designing method shown in the first or second embodiment of the present invention is executed by the mold designing apparatus shown in the third embodiment of the present invention. The initial shape (b0) of the mold is input as three-dimensional information using the keyboard 6. The deformation simulation calculation unit 1 calculates a deformation simulation for a deformation occurring after removing a molded product having the same initial shape from the mold. The difference calculation unit 2 calculates the difference between the result of the calculation of the deformation simulation and the target molded product shape. The difference determination unit 3 compares this difference with a threshold. When the difference exceeds the threshold value, the initial shape changing unit 4 changes the initial shape based on the difference. The arithmetic control unit 5 repeatedly executes the deformation simulation arithmetic unit 1 or the initial shape changing unit 4 until the difference falls below the threshold value.

【0030】本発明第二実施例で示した静水圧変形も加
えて考慮するならば、変形シミュレーション演算部1で
は、初期形状に等しい成形品を金型から取出した後に生
じる変形についての変形シミュレーションを演算し、さ
らに、その変形後の成形品に内容物を充填したときの静
水圧変形による変形シミュレーションを演算する。
If hydrostatic deformation shown in the second embodiment of the present invention is also taken into consideration, the deformation simulation calculation unit 1 performs a deformation simulation on deformation that occurs after a molded product having the same initial shape is taken out of the mold. Then, a deformation simulation due to hydrostatic deformation when the deformed molded product is filled with the contents is calculated.

【0031】本発明の金型設計装置により、表2に示す
ように、良好な結果を得ることができた。
With the mold designing apparatus of the present invention, as shown in Table 2, good results could be obtained.

【0032】[0032]

【表2】 本発明第一または第二実施例において、金型の開放温度
の目安は、120°Cであり、冷却時間は5秒である。
従来例では、金型の開放温度の目安は、50°Cであ
り、冷却時間は10数秒であったので、単位時間の生産
量は2倍以上になったことがわかる。
[Table 2] In the first or second embodiment of the present invention, the standard of the mold opening temperature is 120 ° C., and the cooling time is 5 seconds.
In the conventional example, the standard of the opening temperature of the mold is 50 ° C., and the cooling time is about 10 seconds, so that the production amount per unit time is more than doubled.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
冷却時間を短縮しても目標とする成形品形状が得られる
金型が実現できる。さらに、内容物の充填による静水圧
変形を補償する形状を有する成形品を作るための金型の
設計を行うことができる。このとき、経験によらず金型
の設計を行うことができる。
As described above, according to the present invention,
Even if the cooling time is shortened, it is possible to realize a mold that can obtain the target shape of the molded product. Furthermore, it is possible to design a mold for producing a molded product having a shape that compensates for hydrostatic deformation due to filling of contents. At this time, the mold can be designed regardless of experience.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の金型設計方法のフローチャー
ト。
FIG. 1 is a flowchart of a mold design method according to an embodiment of the present invention.

【図2】ボトルの有限要素モデルを示す図。FIG. 2 is a diagram showing a finite element model of a bottle.

【図3】有限要素法を説明するための図。FIG. 3 is a diagram for explaining a finite element method.

【図4】本発明第二実施例の金型設計方法のフローチャ
ート。
FIG. 4 is a flowchart of a mold designing method according to a second embodiment of the present invention.

【図5】本発明実施例の金型設計装置のブロック構成
図。
FIG. 5 is a block configuration diagram of a mold designing apparatus according to an embodiment of the present invention.

【図6】ブロー成形法により洗剤容器を製造する工程を
示す図。
FIG. 6 is a diagram showing a process of manufacturing a detergent container by a blow molding method.

【符号の説明】[Explanation of symbols]

1 変形シミュレーション演算部 2 差分演算部 3 差分判定部 4 初期形状変更部 5 演算制御部 6 キーボード DESCRIPTION OF SYMBOLS 1 Deformation simulation operation part 2 Difference operation part 3 Difference judgment part 4 Initial shape change part 5 Operation control part 6 Keyboard

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年1月22日[Submission date] January 22, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田宮 優子 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuko Tamiya 2606 Akabane, Kaigai-cho, Haga-gun, Tochigi Prefecture Kao Corporation Research Institute

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 金型から取出す直前の成形品の初期形状
に金型から取出した後に発生する変形についての変形シ
ミュレーションを施す第一のステップと、この第一のス
テップにより変形した形状と目標成形品形状との差分を
演算する第二のステップと、この差分と閾値とを比較す
る第三のステップと、この差分が前記閾値を越えるとき
この差分に基づき前記初期形状の変更を演算する第四の
ステップとを備えたことを特徴とする金型の設計方法。
1. A first step of performing a deformation simulation on an initial shape of a molded product immediately before being taken out of a mold, the deformation occurring after being taken out of the mold, and a shape deformed by the first step and a target molding. A second step of calculating a difference from the product shape, a third step of comparing the difference with a threshold value, and a fourth step of calculating the change of the initial shape based on the difference when the difference exceeds the threshold value. The method for designing a die, comprising:
【請求項2】 前記目標成形品形状は、内容物の充填に
より生じる内部圧力による変形を含まない請求項1記載
の金型の設計方法。
2. The method for designing a mold according to claim 1, wherein the target shape of the molded product does not include deformation due to internal pressure caused by filling the contents.
【請求項3】 前記目標成形品形状は、内容物の充填に
より生じる内部圧力による変形を含む請求項1記載の金
型の設計方法。
3. The method for designing a mold according to claim 1, wherein the target molded product shape includes a deformation caused by an internal pressure generated by filling the content.
【請求項4】 前記シミュレーションは、有限要素法
(FEM:Finite Element Method) による請求項1記載
の金型の設計方法。
4. The method for designing a mold according to claim 1, wherein the simulation is based on a Finite Element Method (FEM).
【請求項5】 金型の初期形状(b0)を三次元情報と
して入力する手段と、この初期形状に等しい成形品を金
型から取出した後に生じる変形についての変形シミュレ
ーションを演算する第一の手段と、この変形シミュレー
ションを演算した結果(ci)と目標成形品形状との差
分(xi)を演算する第二の手段と、この差分と閾値と
を比較する第三の手段と、この差分が閾値(ε)を越え
るとき前記差分に基づき前記初期形状に変更を加える第
四の手段とを含み、前記第一ないし第四の手段を前記差
分が閾値を下回るまで繰り返して実行させる手段を備え
たことを特徴とする金型の設計装置。
5. A means for inputting an initial shape (b0) of a mold as three-dimensional information, and a first means for calculating a deformation simulation of deformation that occurs after a molded product having the same initial shape is taken out of the mold. And a second means for calculating a difference (xi) between the result (ci) of calculation of the deformation simulation and the target molded product shape, a third means for comparing the difference with a threshold value, and the difference is a threshold value. A fourth means for changing the initial shape based on the difference when (ε) is exceeded, and means for repeatedly executing the first to fourth means until the difference falls below a threshold value. Mold designing equipment.
【請求項6】 前記目標成形品形状は、内容物の充填に
より生じる内部圧力による変形を含まない請求項5記載
の金型の設計方法。
6. The method for designing a mold according to claim 5, wherein the target molded product shape does not include deformation due to internal pressure caused by filling the contents.
【請求項7】 前記目標成形品形状は、内容物の充填に
より生じる内部圧力による変形を含む請求項5記載の金
型の設計方法。
7. The mold design method according to claim 5, wherein the target molded product shape includes deformation due to internal pressure caused by filling of the contents.
【請求項8】 請求項5ないし7のいずれかに記載の各
手段を実行させるプログラムが記録された記録媒体。
8. A recording medium on which a program for executing each unit according to claim 5 is recorded.
【請求項9】 請求項5ないし7のいずれかに記載の設
計装置により設計された金型。
9. A mold designed by the design apparatus according to claim 5.
JP8089690A 1996-04-11 1996-04-11 Mold design method and apparatus Expired - Fee Related JP2955509B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP8089690A JP2955509B2 (en) 1996-04-11 1996-04-11 Mold design method and apparatus
CN97190340A CN1084661C (en) 1996-04-11 1997-04-10 Mold designing method and apparatus
PCT/JP1997/001229 WO1997037823A1 (en) 1996-04-11 1997-04-10 Mold designing method and apparatus
EP97915694A EP0844057B1 (en) 1996-04-11 1997-04-10 Mold designing method and apparatus
DE69729533T DE69729533T2 (en) 1996-04-11 1997-04-10 MOLDING TOOL DESIGN, METHOD AND DEVICE
TW086104673A TW333478B (en) 1996-04-11 1997-04-11 Method and device for designing a mould, and mould designed by said device
US08/988,240 US6304794B1 (en) 1996-04-11 1997-12-10 Method for designing a metal mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8089690A JP2955509B2 (en) 1996-04-11 1996-04-11 Mold design method and apparatus

Publications (2)

Publication Number Publication Date
JPH09277260A true JPH09277260A (en) 1997-10-28
JP2955509B2 JP2955509B2 (en) 1999-10-04

Family

ID=13977767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8089690A Expired - Fee Related JP2955509B2 (en) 1996-04-11 1996-04-11 Mold design method and apparatus

Country Status (1)

Country Link
JP (1) JP2955509B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183692A (en) * 2011-03-04 2012-09-27 Osaka Prefecture Univ Method of designing nano-printing mold
JP2013202786A (en) * 2012-03-27 2013-10-07 Sanko Gosei Ltd Apparatus, method and program for predicting shrinkage deformation of molding
CN104626406A (en) * 2015-01-20 2015-05-20 延锋伟世通(北京)汽车饰件系统有限公司 Deformation method of ceiling mold of dry-method PU glass fiber plate
WO2019160095A1 (en) * 2018-02-19 2019-08-22 株式会社ダイセル Mold manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037162A (en) 2007-08-03 2009-02-19 Panasonic Corp Cylinder molding, lens barrel, camera and die for injection molding
JP4749393B2 (en) 2007-08-03 2011-08-17 パナソニック株式会社 Cylindrical molded product, injection mold and cylindrical molded product manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183692A (en) * 2011-03-04 2012-09-27 Osaka Prefecture Univ Method of designing nano-printing mold
JP2013202786A (en) * 2012-03-27 2013-10-07 Sanko Gosei Ltd Apparatus, method and program for predicting shrinkage deformation of molding
CN104626406A (en) * 2015-01-20 2015-05-20 延锋伟世通(北京)汽车饰件系统有限公司 Deformation method of ceiling mold of dry-method PU glass fiber plate
WO2019160095A1 (en) * 2018-02-19 2019-08-22 株式会社ダイセル Mold manufacturing method

Also Published As

Publication number Publication date
JP2955509B2 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
EP0844057B1 (en) Mold designing method and apparatus
Laroche et al. Integrated numerical modeling of the blow molding process
KR20020041446A (en) Method and apparatus for modeling injection of a fluid of a mold cavity
Au et al. Conformal cooling channel design and CAE simulation for rapid blow mould
Kim et al. Residual stress distributions and their influence on post-manufacturing deformation of injection-molded plastic parts
Tanifuji et al. Overall numerical simulation of extrusion blow molding process
CN109822849B (en) Molding system and setting method thereof
Wang et al. Three‐dimensional viscoplastic FEM simulation of a stretch blow molding process
JP2955509B2 (en) Mold design method and apparatus
EP1385103B1 (en) Simulation of fluid flow and structural analysis within thin walled three dimensional geometries
JP4378011B2 (en) Mold design equipment and mold shape design method
KR20010088405A (en) Method and apparatus for designing molds, extruder dies and cores
CN101691058A (en) Void generation prediction method of resin molded article
JPH0622840B2 (en) Molding process simulation system
Kansal et al. Study: temperature and residual stress in an injection moulded gear
Chockalingam et al. Development of thermal and structural deformation model to predict the part build dimensional error in fused deposition modeling
JP2001205683A (en) Apparatus and method for simulating injection molding process, and storage medium
JP2957503B2 (en) Mold design method
Zhou et al. Integrated simulation of the injection molding process with stereolithography molds
US10864667B2 (en) Molding system for preparing an in-mold decorated article
Suvanjumrat et al. Extrusion Blow Molding Simulation using Cross-Section Technique for Complex Shape Bottles
Zhou et al. Three-dimensional numerical simulation of the pressing process in TV panel production
CN105899344A (en) Injection molding part with zero draft design and manufacturing methodologies
Young Filling and postfilling analysis of injection/compression molding
JPH07112481A (en) Planning of shape of blow molded bottle by blow molding analysis

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees