JP4378011B2 - Mold design equipment and mold shape design method - Google Patents

Mold design equipment and mold shape design method Download PDF

Info

Publication number
JP4378011B2
JP4378011B2 JP2000001483A JP2000001483A JP4378011B2 JP 4378011 B2 JP4378011 B2 JP 4378011B2 JP 2000001483 A JP2000001483 A JP 2000001483A JP 2000001483 A JP2000001483 A JP 2000001483A JP 4378011 B2 JP4378011 B2 JP 4378011B2
Authority
JP
Japan
Prior art keywords
shape
mold
calculation
shape data
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000001483A
Other languages
Japanese (ja)
Other versions
JP2001191336A5 (en
JP2001191336A (en
Inventor
和彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000001483A priority Critical patent/JP4378011B2/en
Publication of JP2001191336A publication Critical patent/JP2001191336A/en
Publication of JP2001191336A5 publication Critical patent/JP2001191336A5/ja
Application granted granted Critical
Publication of JP4378011B2 publication Critical patent/JP4378011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3835Designing moulds, e.g. using CAD-CAM

Abstract

PROBLEM TO BE SOLVED: To easily perform the optimization design of a mold shape by performing highly accurate shape simulation of the mold shape within a short period. SOLUTION: Various data becoming determination factors of a mold shape are inputted (S1) and temperature distribution is calculated (S2) and shrink strain considering the relaxation of stress is calculated on the basis of the temperature distribution and the calculation result is stored (S3) and, further, an operation result is displayed (S4) and the deviation with a design shape is calculated (S5). This process is repeated a proper number of times and the optimum molding condition is selected to be stored (S6). Thereafter, the error of the design value of an analyzing model with the operation result is calculated (S7) and the nodal point on the surface of a mold is corrected by error quantity in an anti-shrink direction (S8). Subsequently, the operation of the temperature distribution and the calculation of shrink strain are performed according to the optimum molding condition (S9, S10) and the shape deviation with the design shape is calculated (S11) and, when the shape deviation comes into an allowable range, the shape data is outputted as a mold manufacturing dimension (S12→S13).

Description

【0001】
【発明の属する技術分野】
本発明は金型設計装置と金型形状の設計方法に関し、より詳しくは、CAE(Computer Aided Engineering:「コンピュータ支援技術」)を使用して有限要素法により成形材料の流動解析を行い、金型形状を最適化設計する金型設計装置と金型形状の設計方法に関する。
【0002】
【従来の技術】
近年、光学素子としてのプラスチックレンズなどの精密部品を射出成形法、射出圧縮成形法、圧縮成形法等の成形加工法を利用して製造することが行われている。
【0003】
そして、この種の光学素子を製造するための成形用金型を製作する場合、成形材料が温度変化等により収縮することを予め見込んで、成形品の所望寸法(設計寸法)より前記収縮率分だけ大きなキャビティ寸法を有する試験用金型を製作し、射出温度や射出時間等の成形条件を最適化した後、前記試験用金型を使用して所定の成形加工を行って成形品を製作し、次いで成形加工された成形品の各部寸法を測定して所望の形状寸法との誤差量を算出し、その後試験用金型のキャビティ寸法を前記誤差量だけ反収縮方向に大きくなるように補正加工を施し、これにより実際の成形加工に使用する成形用金型の製作を行っていた。このため、一眼レフカメラ用のレンズのように要求精度の厳しい精密部品の場合は、1回の金型補正加工では所望の要求寸法を充足することはできないことが多く、前記要求寸法を充足するまで、成形加工→成形品の寸法測定→誤差量の算出→金型補正加工という一連の工程を繰り返していた。
【0004】
そこで、このような金型補正工程を削減することができる技術として、成形品の実測データに基づいて成形品とその成形面の形状回帰曲線を求め、これらから成形材料の収縮量を算出し、該収縮量に基づいて成形品の形状誤差を補正・吸収することのできる新たな形状回帰曲線を求め、該形状回帰曲線からNCデータを作成するようにした金型形状設計装置が既に提案されている(例えば、特開平5−96572号公報;以下、「第1の従来技術」という)。
【0005】
該第1の従来技術によれば、収縮量を正確に予測することができた場合は、無駄な金型補正作業を必要とせず、また金型の設計開発期間も大幅に短縮でき、しかも金型の製作に要する費用も大幅に削減できると考えられる。
【0006】
また、他の従来技術としては、金型内の成形材料の溶融相のつながりが断たれる時点を特定して該時点の温度分布を初期温度とし、成形品が一様に室温となるまでの温度変化を熱荷重として有限要素法により熱応力歪みを解析し、成形形状歪み、すなわち変形量を算出するようにした成形プロセスシミュレーションシステムも既に提案されている(例えば、特公平6−22840号公報;以下、「第2の従来技術」という)。
【0007】
該第2の従来技術によれば、金型の特定場所の温度が流動停止温度、又は固化温度、ガラス転移温度などの溶融相のつながりが断たれる時点の温度分布を初期温度とすると共に、該初期温度から成形品を取出す取出温度までを細分化し、該細分化した微小温度範囲内でその温度範囲に対応する温度依存性物性データ(線膨張係数α、比熱c、熱伝導率k等)を使用して熱応力歪みを算出し、該熱応力歪みを累積させてその累積総和を最終的な全温度領域における変形量として算出し、これにより、実機の製作に先立って成形材料や金型構造、成形条件が成形形状歪みに与える影響を評価することができ、したがって金型形状の設計を試行錯誤的に行う必要がなくなり、新規金型の開発・設計に要する時間や費用を大幅に削減することができると考えられる。
【0008】
【発明が解決しようとする課題】
しかしながら、上記第1の従来技術では、成形品の実測データに基づいて形状回帰曲線を求めているため、所望寸法の成形品を製造するための成形用金型を製作する前に試験用金型を製作しなければならず、開発期間が長期化し、しかも開発コストも高くなるという問題点があった。
【0009】
すなわち、今日では製品のライフサイクルも短縮化してきているため、設計段階から製品完成までに要する開発期間の大幅な短縮が要求されているが、上記第1の従来技術では、試験用金型を製作した後に該試験用金型を使用して成形品を製造し、安定的に成形できるような成形条件の最適化を行った上で前記試験用金型で製造された成形品の各部寸法を測定し、該測定データに基づいて形状回帰曲線を得ているため、作業工程が煩雑であって開発期間に長期間を要し、しかも開発コストも高くなるという問題点があった。
【0010】
また、上記第2の従来技術では、初期温度から成形品の取出温度までの間、成形品全体が一様に冷却されることを前提として成形品の変形解析を行っており、したがって冷却過程と時間との関係が考慮されていないため、冷却勾配や成形サイクルが大きく異っても解析結果が同一となり、必ずしも実際の現象とは一致しない解析結果が得られるという問題点があった。
【0011】
すなわち、例えば、成形品を250℃から90℃まで冷却する場合、冷却過程に時間が考慮されていないため、上記第2の従来技術では、1秒で冷却した場合であっても100時間を要して冷却した場合であっても同一の解析結果が得られる。つまり、第2の従来技術では、例えば、成形品のゲート部が固化温度になると該固化温度を初期温度として解析しているが、同一成形品であってもゲート部とその他の部位とでは温度分布にバラツキがあり(成形品内には温度150℃の箇所や温度90℃の箇所もあり得る)、しかも該初期温度から室温までの温度差と線膨張係数とに基づいて熱応力歪みが演算されているため、1秒で冷却した場合であっても100時間を要して冷却した場合であっても同一の熱応力歪みが得られる。一方、実際の現象としては、内部の温度差は成形品全体が室温まで冷却される間に内部伝導によって時間と共に小さくなるため、1秒で冷却した場合と100時間を要して冷却した場合とでは最終形状に大きな差が生じる。
【0012】
すなわち、初期温度と最終温度が同じでも冷却時間の長短や冷却勾配の大小などの冷却履歴や圧力履歴により成形品の変形量が大きく異なる。このため、上記第2の従来技術のように時間の概念を考慮せずに熱応力歪みの解析を行っても実際の現象とは一致せず、したがって成形品の歪みを事前に予測して所望の成形品を得ることが可能な金型を製作することは困難であるという問題点があった。
【0013】
さらに、上記第2の従来技術では、前記初期温度と成形品の取出温度の差分から熱応力歪みを算出するか、或いは成形品を取り出した後に成形品全体が均一温度(例えば、室温)になるまでの温度差から熱応力歪みを算出しており、したがって成形品全体が均一に冷却されることを前提として解析しているので、初期温度以降の冷却履歴とは無関係に初期温度の温度分布(温度差)によって熱応力歪みが算出されることとなる。
【0014】
しかしながら、一眼レフカメラやビデオテープレコーダー(VTR)、あるいはレーザビームプリンタに使用される高精度な光学素子では、光学機能面の形状転写精度が1μm以下を要求されることも多く、斯かる要求精度の厳しい光学素子では局所的な数μmのヒケが性能上重要となり、したがって、全体が一様に収縮することが前提とした上記第2の従来の技術では、所望の高精度な形状予測をすることは困難であるという問題点があった。
【0015】
本発明はこのような問題点に鑑みなされたものであって、金型形状の高精度な形状シミュレーションを短期間で行うことにより、金型形状の最適化設計を容易に行うことができる金型設計装置と金型形状の設計方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記目的を達成するため本発明に係る金型設計装置は、成形加工法を施して成形品を製造するための金型の製作に先立ち、コンピュータ支援技術を使用して成形材料の流動解析を行い、金型の最適設計を行う金型設計装置であって、解析対象となる解析モデルの設計形状データ、成形条件及び成形加工に必要とされるデータを入力する入力手段と、加工時間と応力緩和との関係を示し粘弾性試験で測定したデータを処理して得られる緩和弾性特性であって、粘弾性における温度変化の依存性を示す温度シフトファクタとともに粘弾性データを構成する緩和弾性特性を、ガラス転移点温度以下の固体物性試験とガラス転移点以上の溶融物性試験の2種類のデータを換算して繋ぎあわせ、室温から射出成形温度の範囲内で連続した曲線を描くことにより作成する緩和弾性特性作成手段と、前記成形条件に基づいて前記解析モデルの温度分布を算出する温度分布算出手段と、該温度分布算出手段の算出結果と緩和弾性特性とに基づいて前記解析モデルの収縮歪みと応力との関係を算出し、前記解析モデルの演算形状データを算出する演算形状データ算出手段と、該演算形状データ算出手段による演算形状データの算出を適数回繰返し行って最適な成形条件を選択する最適成形条件選択手段と、前記演算形状データ算出手段により算出された演算形状データと前記設計形状データとの誤差である収縮誤差量を算出する収縮誤差量算出手段と、該収縮誤差量算出手段の算出結果に基づいて演算形状データを補正する形状補正手段とを備えていることを特徴とする。
【0017】
また、本発明に係る金型形状の設計方法は、成形加工法を施して成形品を製造するための金型の製作に先立ち、コンピュータ支援技術を使用して成形材料の流動解析を行い、金型の最適設計を行う金型形状の設計方法であって、解析対象となる解析モデルの設計形状データ、成形条件及び成形加工に必要とされるデータを入力する入力ステップと、加工時間と応力緩和との関係を示し粘弾性試験で測定したデータを処理して得られる緩和弾性特性であって、粘弾性における温度変化の依存性を示す温度シフトファクタとともに粘弾性データを構成する緩和弾性特性を、ガラス転移点温度以下の固体物性試験とガラス転移点以上の溶融物性試験の2種類のデータを換算して繋ぎあわせ、室温から射出成形温度の範囲内で連続した曲線を描くことにより作成する緩和弾性特性作成ステップと、前記成形条件に基づいて前記解析モデルの温度分布を算出する温度分布算出ステップと、前記温度分布と緩和弾性特性とに基づいて前記解析モデルの収縮歪みと応力との関係を算出し、前記解析モデルの演算形状データを算出する演算形状データ算出ステップと、前記演算形状データの算出を適数回繰返し行って演算形状データの最適成形条件を選択する最適成形条件選択ステップと、前記演算形状データ算出ステップで算出された前記演算形状データと前記設計形状データとの誤差である収縮誤差量を算出する収縮誤差量算出ステップと、前記収縮誤差量に基づいて演算形状データを補正する形状補正ステップとを含んでいることを特徴とする。
【0018】
尚、本発明の他の特徴は、下記の発明の実施の形態により明らかとなろう。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳説する。
【0020】
図1は本発明に係る金型設計装置の一実施の形態を示すブロック構成図であって、該金型設計装置は、各種設計形状データや物性値データが入力されるデータ入力部1と、該データ入力部1に入力された入力データに基づいて形状最適化のための各種演算処理を行うと共に装置全体の制御を司る演算制御部2と、該演算制御部2で演算処理された演算結果を記憶する記憶部3と、個々の演算結果を表示する表示部4とから構成され、有限要素法を利用してCAEによる形状シミュレーションを行い、金型形状の最適設計を行う。
【0021】
演算制御部2は、データ入力部1に入力された入力データに基づいて熱伝導解析を行い温度分布を算出する温度分布演算部2aと、該温度分布演算部2aの演算結果及びデータ入力部1に入力された粘弾性データに基づいて熱収縮による収縮歪みを算出する収縮歪み演算部2bと、データ入力部1で入力された設計形状データと収縮歪み演算部2bで算出された演算結果の形状データとの偏差を算出する形状偏差演算部2cと、該形状偏差演算部2cの演算結果を評価する形状偏差評価部2dと、有限要素法解析における各節点の収縮ベクトルの方向及び収縮量(設計値との誤差)を算出する収縮誤差量演算部2eと、必要に応じ前記収縮量だけ収縮ベクトルの方向と反対方向に形状データを補正するデータ補正部2fとを有している。
【0022】
また、記憶部3は、データ入力部1に入力された入力データを記憶する入力データ記憶部3aと、算出された温度分布や収縮歪み、更には形状偏差や収縮誤差量等、各種演算結果を記憶する演算結果記憶部3bと、形状誤差が最適化されたときの解析に使用した成形条件等、最適解析条件を記憶する最適条件記憶部3cとを有している。
【0023】
次に、光学軸を対称面とする軸対称三次元モデルを解析モデルとし、光学素子としてのプラスチックレンズ(以下、単に「レンズ」という)を射出成形により製造する場合の金型形状の設計方法を詳述する。
【0024】
図2は前記金型形状の設計方法の処理手順の一実施の形態を示すフローチャートである。尚、本実施の形態では、金型材料としてウッデホルム社製RAMAX、成形材料としてPMMA(ポリメタクリル酸メチル)を使用する。
【0025】
ステップS1では金型形状(キャビティ形状)の決定要因となる成形品の形状データ、拘束条件、圧力条件、冷却条件、物性データ、P(圧力)−V(比容積)−T(温度)データ(状態変化データ)、粘弾性データ等の入力データをデータ入力部1から入力する。
【0026】
すなわち、まず、系を有限要素法で取り扱えるようにするために形状全体を微細領域に分割して要素を作成し、金型形状や成形品形状を表現する節点座標、節点番号、要素番号等の形状データを入力する。尚、演算回数を減らして効率を上げるために、本実施の形態では、設計寸法よりも成形材料(PMMA)の収縮率分だけ大きな寸法データが金型寸法として入力される。具体的には、金型寸法は、設計寸法の1.006倍のデータが入力され、入力データ記憶部3aに記憶される。
【0027】
次に、有限要素解析の演算に必要な所定の拘束条件を入力し、さらに成形加工の加工条件を最適化するための初期値となる圧力条件と冷却条件を入力し、入力データ記憶部3aに記憶する。本実施の形態では、圧力条件の初期値として成形圧力を85MPa、冷却条件の初期値として、射出温度を260℃、一次冷却水温度を114℃、一次冷却時間を10分、二次冷却水温度を80℃、二次冷却時間を8分に夫々設定し、斯かる圧力条件及び冷却条件をデータ入力部1に初期値として入力し、入力データ記憶部3aに記憶する。尚、実際の射出成形加工では、二次冷却が終了した時点で成形品は金型から取出されて室温(例えば、20℃)まで空冷される。
【0028】
次いで、成形材料と金型材料の温度依存性物性データを入力し、入力データ記憶部3aに記憶する。具体的には、成形材料(PMMA)については、熱伝導率kが2.09×10-4W/(m・K)、比熱cが1.66J/(kg・K)、密度ρが1.15×103kg/m3であり、金型材料(ウッデホルム社製RAMAX)については、熱伝導率kが2.28×10-2W/(m・K)、比熱cが0.46J/(kg・K)、密度ρが7.78×103kg/m3であるから、これらの物性データをデータ入力部1に入力し、入力データ記憶部3aに記憶する。
【0029】
次に、成形材料のPVTデータを入力する。そして、線膨張係数αは数式(1)で表わされることから、該PVTデータに基づき線膨張係数αを算出して線膨張係数マップα(P,T)を作成し、該線膨張係数マップα(P,T)を入力データ記憶部3aに記憶する。
【0030】
α=(dV/dT)P/V …(1)
図3は入力データ記憶部2aに記憶される線膨張係数マップα(P,T)であって、横軸は温度T(℃)、縦軸は線膨張係数α(K-1)を示し、図中の特性は、夫々、圧力が40MPa、80MPa、120MPa、160MPa、200MPa及び240MPaのときの各温度(℃)における線膨張係数α(K-1)を示している。
【0031】
さらに、データ入力部1には粘弾性データが入力される。粘弾性データは、粘弾性試験機で測定したデータを処理して得られる緩和弾性特性と粘弾性における温度変化の依存性を示す温度シフトファクタA(T)とからなり、これら粘弾性データが入力データ記憶部3aに記憶される。具体的には、緩和弾性特性は、ガラス転移点温度以下の固体物性試験とガラス転移点以上の溶融物性試験の2種類のデータを換算して繋ぎあわせ、室温(例えば、20℃)から射出成形温度(例えば、300℃)の範囲内で連続した曲線を描くことにより、図4に示すように、例えば基準温度90℃のときの緩和弾性特性(時間t〜緩和弾性係数G(t))が作成され、該緩和弾性特性がマスターカーブとして入力データ記憶部3aに記憶され、これにより溶融温度域から固化領域に至るまでの間での固化初期状態の設定を不要としている。尚、温度シフトファクタA(T)も上述した粘弾性試験機で測定したデータに基づいて各温度毎に得られる。
【0032】
次に、ステップS2では周知の熱伝導解析を行って温度分布を求める。
【0033】
すなわち、一般に非定常非線形の熱伝導方程式は数式(2)で表わされることが知られている。
【0034】
【数1】

Figure 0004378011
ここで、Qは発熱量、tは時間、x、y、zは各座標成分を夫々示している。
【0035】
数式(2)を有限要素法により離散化し、ガラーキン法により積分した後、全要素を加算し、さらに時間につき差分すると数式(3)が得られる。
【0036】
{([K]/2)+([C]/Δt)}・{φ(t+Δt)}
={(−[K]/2)+([C]/Δt)}・{φ(t)}+{F} …(3)
ここで、[K]=Σ[k]、[C]=Σ[c]、{F}=Σ{f}であり、[k]は熱伝導マトリックス、[c]は熱容量マトリックス、{f}は熱流束ベクトル、{φ(t)}は節点温度ベクトル、Δtは時間刻みを示している。
【0037】
そして、{φ(t)}は初期値として与えられるので、{φ(t+Δt)}を逐次算出することができ、これにより温度分布を算出することができる。
【0038】
次いで、ステップS3では応力緩和を考慮しながらステップS2で得られた温度分布に基づいて収縮歪みεを算出する。
【0039】
ここで、応力緩和とは、成形品に一定の歪みを加えた場合、成形材料の粘弾性特性により時間の経過と共に成形品に発生する応力σが低下してゆく現象をいう。そして、粘弾性材料における応力―歪み式は、一般に、履歴積分形式で表現され、応力緩和を考慮した場合、最終的には数式(4)で表わされる。
【0040】
【数2】
Figure 0004378011
ここで、tmは時刻、hは時間ステップ(=tm−tm-1)、Δσ(tm)は時刻tmにおける応力の増分、Δε(tm)は時刻tmにおける歪みの増分を示す。また、G(0)は時間「0」における緩和弾性係数、G(n)は時間nにおける緩和弾性係数を示し、図4の緩和弾性特性マップを検索し、さらに温度シフトファクタA(T)を加味して算出される。
【0041】
また、αn(h)、βn(h)は数式(5)、(6)で表わされる。
【0042】
【数3】
Figure 0004378011
尚、λは緩和係数である。
【0043】
したがって、このようにして時間と温度の変化率に応じて応力−歪み関係を算出することができ、冷却時間や冷却温度の差に起因して生じ得る収縮歪みが評価され、その演算結果が演算結果記憶部3bに記憶される。
【0044】
次いで、ステップS4では、前記演算結果を光学面(球面)の面精度として表示部4に表示する。
【0045】
図5はステップS4で表示された光学面であって、解析対象であるレンズを或る特定の「R」に設定したときの干渉縞を示している。このシミュレーション結果により、図中、A部で示すように、成形条件を上述した初期値に設定して射出成形を行った場合は、光学面上で縞が大きく曲がり、所謂「クセ」が顕著に発生する。また、図5では示されていないが測定時のRを変更することにより干渉縞が変化することが確認され、したがって所謂「Rズレ」も発生していると考えられる。
【0046】
そして、続くステップS5では設計形状と演算結果記憶部3bに記憶されている形状との偏差を算出し、その算出結果を演算結果記憶部3bに記憶すると共に、ステップS6で形状偏差が最適か否かを判断する。今回ループ(第1回目)では、上述したように「Rズレ」と「クセ」が発生しているため、最適成形条件ではないと判断し、再びステップS1に戻り、圧力条件及び冷却条件を再入力する。
【0047】
すなわち、Rズレは収縮量で決定されるため成形条件の変更では対応することが困難であるため、ステップS1では、クセ量に着目し、該クセ量を小さくすることを目的として成形条件を変更する。本実施の形態では、一次冷却水温度を116℃に上げ、他の条件は前回と同一条件(成形圧力85MPa、一次冷却時間10分、二次冷却水温度80℃、二次冷却時間8分)に設定し、斯かる成形条件をデータ入力部1に入力する。そして、ステップS2、ステップS3で上述と同様の処理を繰り返し、ステップS4で図6に示すように、第2回目の演算結果を表示部4に表示する。
【0048】
次いで、再計算された演算結果形状と設計形状との形状誤差を演算して演算結果記憶部3bに記憶する。そして、ステップS6では形状誤差が最適か否かを判断する。図6は、図5に比べてクセ量は減少しているものの「0」にはなっていないため、再度ステップS1に戻り、成形条件を変更して上述の処理を繰り返す。今回、すなわち第3回目は一次冷却水温度のみを例えば118℃に設定し直し、他の条件を前回と同一条件(成形圧力85MPa、一次冷却時間10分、二次冷却水温度80℃、二次冷却時間8分)に設定し、斯かる成形条件をデータ入力部1に再入力し、再度ステップS2、ステップS3の処理ステップを実行し、ステップS4で第3回目の演算結果を表示部4に表示する。
【0049】
そして、図4〜図6の面精度から明らかなように第2回目の成形条件(図5)が設計形状と演算結果の偏差が最小となり、最適であることが分かる。従って、ステップS6では3つの成形条件から第2回目の成形条件(圧力条件及び冷却条件)、すなわち、成形圧力85MPa、射出温度260℃、一次冷却水温度116℃、一次冷却時間10分、二次冷却水温度80℃二次冷却時間8分を最適成形条件として選択し、該最適成形条件を最適成形条件記憶部3cに記憶する。尚、このとき、有限要素分割された解析モデルの節点の移動するベクトル、すなわち収縮方向と大きさ(収縮量)等の演算形状データが最適条件記憶部3cに記憶される。
【0050】
次に、上述したRズレを補正すべく、ステップS7に進み、各節点の収縮ベクトルの方向と大きさの設計値と演算結果との誤差を収縮誤差量演算部2eで算出する。
【0051】
図8は解析に使用したメッシュ図であって、5は固定金型、6が可動金型、7はレンズであり、固定金型5及び可動金型6には急冷用冷却管8と徐冷用冷却管9が設けられ、該急冷用冷却管8と徐冷用冷却管9とでレンズ7を冷却している。
【0052】
図9は上記メッシュ図のレンズ近傍を拡大した要部拡大図であって、成形されたレンズ7の表面が収縮によって両金型5、6から離れていることを表わしている。
【0053】
図10は金型形状と成形品であるレンズの表面形状との関係を示した図であって、10は金型表面を構成する有限要素メッシュの節点、11は成形材料が射出されて金型キャビティに充填されたときに節点10と同一座標のレンズ表面を構成する有限要素メッシュの節点である。射出充填された成形材料は、充填当初は金型キャビティ内壁と接触しているが、冷却が進行するにしたがって収縮し金型内壁表面を滑りながら分離していき、最終的には図10の節点11に示すように金型形状よりも小さな形状に成形される。すなわち、充填当初は金型表面を構成する節点10にあったレンズ表面の節点は符号11に示す位置に移動し、矢印Dに示すように、節点10から節点11の方向を指し示す収縮ベクトルが得られる。つまり、金型を設計する際に設定した収縮率が正確であれば節点10の位置がレンズの設計形状になっているが。実際には収縮率を正確に設定することは困難であり、誤差量としての収縮ベクトルDが算出され、斯かる誤差量が形状誤差量演算部2eで得られる。
【0054】
次に、ステップS8に進み、形状誤差量だけ反収縮方向に金型表面の節点を補正する。
【0055】
すなわち、図11において、点線12はレンズ6の所望設計形状、5aは固定金型5の表面形状、6aはレンズ6の現時点における表面形状、13はレンズ6の表面における有限要素メッシュの節点、14は固定金型5の表面における有限要素メッシュの節点、15は節点14と節点13とを結ぶ収縮ベクトルDと所望設計形状12の交差点であり、次回演算での目標座標となる。16は前記収縮ベクトルDと反対方向に収縮量Aだけ移動させた座標であり、次回演算時の金型形状を示している。すなわち、成形によってレンズ6が収縮した収縮量は節点14と節点13との距離、すなわち収縮ベクトルに合致すると、設計形状との形状誤差を規格内とするために、交差点15と節点13との距離である収縮量Aだけに収縮ベクトルDの反対方向の延長線上に固定金型5の形状線を移動させ、新しい解析モデルの形状17を決定する。また、可動金型7とレンズ6についても同様の処理を行う。
【0056】
このようにして求めた金型形状に解析モデルを修正して、再度最適条件記憶部3cに記憶されている成形条件にしたがって温度分布の演算(ステップS9)、応力緩和を考慮した収縮歪みを時間と温度に応じて算出し(ステップS10)、設計形状と成形レンズとの形状偏差を算出する(ステップS11)。そして、斯く算出された形状偏差が所定の規格内にあるか否かを判断し、その答が否定(No)のときはステップS8に戻って上述した処理を繰り返す一方、ステップS11の答が肯定(Yes)、例えば、0.1μm以下の場合はステップS13で理想の金型形状が得られたとして出力し、処理を終了する。
【0057】
このように本実施の形態によれば、冷却時間や冷却サイクルの相違を考慮して金型形状の最適化をシミュレーションすることができるので、試験用金型を製作して成形作業を行わなくとも短期間で高精度な金型形状を決定することができる。
【0058】
【発明の効果】
以上説明したように本発明によれば、時間の経過と共に変化する緩和弾性特性を考慮して収縮歪みを評価し、成形条件を決定し、且つ成形品の収縮状態に対応して金型の形状を補正しているので、試験用金型を製作することなく所望の高精度な金型形状を有する金型の最適設計を容易に短期間で行うことができる。
【0059】
また、実際に金型を製作する前に精度予測、設備能力の予測を行うことができるので、機械的な仕上げ作業の繰り返しである金型の補正作業を行う必要がなくなり、経済的にも時間的にも多大な負荷軽減が可能となる。
【図面の簡単な説明】
【図1】本発明に係る金型形状設計装置のブロック構成図である。
【図2】本発明に係る金型形状の設計方法の処理手順を示すフローチャートである。
【図3】PVTデータより得られる線膨張係数マップである。
【図4】緩和弾性係数の特性図である。
【図5】第1の成形条件でシミュレートして得られる光学面の干渉縞を示す例である。
【図6】第2の成形条件でシミュレートして得られる光学面の干渉縞を示す例である。
【図7】第3の成形条件でシミュレートして得られる光学面の干渉縞を示す例である。
【図8】解析メッシュ図である。
【図9】解析メッシュの要部拡大図である。
【図10】金型形状と成形されたレンズの表面形状の関係を示す説明図である。
【図11】解析モデルの形状補正を説明する説明図である。
【符号の説明】
1 データ入力部(入力手段)
2a 温度分布演算部(温度分布算出手段)
2b 収縮歪み演算部(演算形状データ算出手段)
2e 収縮誤差量演算部(収縮誤差量算出手段)
2d 形状偏差評価部(最適成形条件選択手段)
2f データ補正部(形状補正手段)
3a 入力データ記憶部(緩和弾性特性作成手段)
3c 最適条件記憶部(最適条件記憶手段
4 表示部(表示手段)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mold design apparatus and a mold shape design method. More specifically, a flow analysis of a molding material is performed by a finite element method using CAE (Computer Aided Engineering: “computer aided technology”). The present invention relates to a mold design apparatus for optimizing a shape and a mold shape design method.
[0002]
[Prior art]
In recent years, precision parts such as a plastic lens as an optical element have been manufactured by using a molding method such as an injection molding method, an injection compression molding method, or a compression molding method.
[0003]
When a molding die for manufacturing this type of optical element is manufactured, it is anticipated that the molding material will shrink due to temperature changes and the like, and the shrinkage rate is calculated from a desired dimension (design dimension) of the molded product. After manufacturing a test mold with a large cavity size and optimizing molding conditions such as injection temperature and injection time, the molded product is manufactured by performing the predetermined molding process using the test mold. Then, measure the dimensions of each part of the molded product that has been molded to calculate the amount of error from the desired shape, and then correct the cavity size of the test mold so that it increases in the anti-shrinkage direction by the amount of error. As a result, a molding die for use in actual molding was manufactured. For this reason, in the case of precision parts with strict requirements, such as lenses for single-lens reflex cameras, it is often impossible to satisfy the required dimensions with a single mold correction process, and the required dimensions are satisfied. Until then, a series of steps of molding process → dimension measurement of molded article → calculation of error amount → mold correction process was repeated.
[0004]
Therefore, as a technique that can reduce such a mold correction process, the shape regression curve of the molded product and its molding surface is obtained based on the actual measurement data of the molded product, and the shrinkage amount of the molding material is calculated from these, There has already been proposed a mold shape design apparatus which obtains a new shape regression curve capable of correcting / absorbing a shape error of a molded product based on the shrinkage amount, and creating NC data from the shape regression curve. (For example, JP-A-5-96572; hereinafter referred to as “first prior art”).
[0005]
According to the first prior art, when the shrinkage amount can be accurately predicted, useless mold correction work is not required, and the mold design and development period can be greatly shortened. The cost required to manufacture the mold can be greatly reduced.
[0006]
Further, as another conventional technique, the time point at which the melt phase of the molding material in the mold is disconnected is specified, and the temperature distribution at that time point is set as the initial temperature, until the molded product reaches a uniform room temperature. There has already been proposed a molding process simulation system in which thermal stress distortion is analyzed by a finite element method using a temperature change as a thermal load, and a molding shape distortion, that is, a deformation amount is calculated (for example, Japanese Patent Publication No. 6-22840). Hereinafter referred to as “second prior art”).
[0007]
According to the second prior art, the temperature distribution at a specific location of the mold is the flow stop temperature, or the temperature distribution at the time when the melting phase such as the solidification temperature and the glass transition temperature is disconnected is set as the initial temperature, The initial temperature is subdivided from the temperature at which the molded product is taken out, and the temperature-dependent physical property data (linear expansion coefficient α, specific heat c, thermal conductivity k, etc.) corresponding to the temperature range within the subdivided minute temperature range. Is used to calculate the thermal stress strain, and the cumulative total of the thermal stress strain is calculated as the amount of deformation in the final total temperature range, so that the molding material and mold can be obtained prior to the production of the actual machine. It is possible to evaluate the influence of structure and molding conditions on molding shape distortion. Therefore, it is not necessary to design the mold shape by trial and error, greatly reducing the time and cost required for the development and design of new molds. can do Conceivable.
[0008]
[Problems to be solved by the invention]
However, in the first prior art, since a shape regression curve is obtained based on actually measured data of a molded product, a test mold is manufactured before manufacturing a molding die for manufacturing a molded product having a desired size. There is a problem that the development period becomes longer and the development cost becomes higher.
[0009]
That is, today, the life cycle of products has also been shortened, so that a significant reduction in the development period required from the design stage to the completion of the product is required. However, in the first conventional technology, a test mold is used. After manufacturing, the test mold is used to manufacture a molded product, and the dimensions of each part of the molded product manufactured with the test mold are optimized after the molding conditions are optimized so that stable molding is possible. Since the shape regression curve is obtained based on the measurement data, the work process is complicated, the development period takes a long time, and the development cost increases.
[0010]
In the second prior art, the deformation analysis of the molded product is performed on the assumption that the entire molded product is uniformly cooled from the initial temperature to the removal temperature of the molded product. Since the relationship with time is not taken into account, there is a problem that the analysis result is the same even if the cooling gradient and the molding cycle are greatly different, and the analysis result does not necessarily match the actual phenomenon.
[0011]
That is, for example, when cooling a molded product from 250 ° C. to 90 ° C., time is not taken into account in the cooling process, and therefore the second prior art requires 100 hours even if it is cooled in 1 second. Even when cooled, the same analysis result can be obtained. That is, in the second prior art, for example, when the gate portion of the molded product reaches the solidification temperature, the solidification temperature is analyzed as the initial temperature. However, even in the same molded product, the temperature at the gate portion and other parts is analyzed. There is variation in the distribution (there may be a part at a temperature of 150 ° C. or a part at a temperature of 90 ° C. in the molded product), and the thermal stress strain is calculated based on the temperature difference from the initial temperature to room temperature and the linear expansion coefficient. Therefore, the same thermal stress strain can be obtained even when cooling is performed in 1 second or even when cooling is performed for 100 hours. On the other hand, as an actual phenomenon, the internal temperature difference decreases with time due to internal conduction while the entire molded product is cooled to room temperature, and therefore, when cooled in 1 second and when cooled over 100 hours. Then there will be a big difference in the final shape.
[0012]
That is, even if the initial temperature and the final temperature are the same, the deformation amount of the molded product varies greatly depending on the cooling history and pressure history such as the length of the cooling time and the magnitude of the cooling gradient. For this reason, even if the thermal stress distortion analysis is performed without considering the concept of time as in the second prior art, it does not coincide with the actual phenomenon. Therefore, the distortion of the molded product is predicted in advance and desired. There is a problem that it is difficult to manufacture a mold capable of obtaining the molded product.
[0013]
Furthermore, in the second prior art, the thermal stress strain is calculated from the difference between the initial temperature and the removal temperature of the molded product, or the entire molded product becomes a uniform temperature (for example, room temperature) after the molded product is taken out. The thermal stress strain is calculated from the temperature difference up to and therefore the analysis is based on the premise that the entire molded product is cooled uniformly, so the temperature distribution of the initial temperature (regardless of the cooling history after the initial temperature ( Thermal stress strain is calculated by the temperature difference.
[0014]
However, high-precision optical elements used in single-lens reflex cameras, video tape recorders (VTRs), or laser beam printers often require an optical functional surface shape transfer accuracy of 1 μm or less. In an optical element having severe conditions, local sink marks of several μm are important in performance. Therefore, in the second conventional technique based on the premise that the whole contracts uniformly, a desired highly accurate shape prediction is performed. There was a problem that it was difficult.
[0015]
The present invention has been made in view of such problems, and a mold that can easily perform optimization design of a mold shape by performing a highly accurate shape simulation of the mold shape in a short period of time. It is an object to provide a design apparatus and a mold shape design method.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the mold designing apparatus according to the present invention performs a flow analysis of a molding material using a computer-aided technology prior to the production of a mold for manufacturing a molded product by performing a molding method. , A mold design device for optimal design of molds, Design shape The input means for inputting data, molding conditions and data required for molding, and the relationship between processing time and stress relaxation This is a relaxation elastic property obtained by processing the data measured in the viscoelasticity test, and constitutes the viscoelasticity data together with a temperature shift factor indicating the dependence of temperature change on the viscoelasticity. Relaxation elastic properties of solid physical property test below glass transition temperature and melt physical property test above glass transition temperature By converting and connecting two types of data and drawing a continuous curve within the range from room temperature to injection molding temperature A relaxation elastic characteristic creating means to be created; a temperature distribution calculating means for calculating a temperature distribution of the analytical model based on the molding condition; a calculation result of the temperature distribution calculating means and a relaxation elastic characteristic of the analytical model; Optimum molding is performed by calculating the relationship between shrinkage strain and stress and calculating the calculation shape data of the analysis model, and repeatedly calculating the calculation shape data by the calculation shape data calculation means an appropriate number of times. Optimal molding condition selection means for selecting conditions, and the calculation shape data calculation means Calculated shape data calculated by And said Design shape A contraction error amount calculation unit that calculates a contraction error amount that is an error from data, and a shape correction unit that corrects calculation shape data based on a calculation result of the contraction error amount calculation unit. .
[0017]
In addition, the mold shape design method according to the present invention performs a flow analysis of a molding material using a computer-aided technology prior to the production of a mold for manufacturing a molded product by applying a molding method, This is a mold shape design method for optimal design of a mold, and the analysis model to be analyzed Design shape Shows the input step for inputting data, molding conditions and data required for molding, and the relationship between machining time and stress relaxation. This is a relaxation elastic property obtained by processing the data measured in the viscoelasticity test, and constitutes the viscoelasticity data together with a temperature shift factor indicating the dependence of temperature change on the viscoelasticity. Relaxation elastic properties of solid physical property test below glass transition temperature and melt physical property test above glass transition temperature By converting and connecting two types of data and drawing a continuous curve within the range from room temperature to injection molding temperature A relaxation elastic property creating step to create, a temperature distribution calculating step to calculate a temperature distribution of the analytical model based on the molding condition, and a shrinkage strain and stress of the analytical model based on the temperature distribution and the relaxed elastic property. A calculation shape data calculation step for calculating a calculation shape data of the analysis model, and an optimum molding condition selection for selecting the optimum molding condition of the calculation shape data by repeating the calculation of the calculation shape data an appropriate number of times Steps, Calculated in the calculation shape data calculation step The calculated shape data and the Design shape It includes a contraction error amount calculating step for calculating a contraction error amount that is an error with data, and a shape correcting step for correcting calculation shape data based on the contraction error amount.
[0018]
Other features of the present invention will become apparent from the following embodiments of the present invention.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0020]
FIG. 1 is a block configuration diagram showing an embodiment of a mold designing apparatus according to the present invention. The mold designing apparatus includes a data input unit 1 for inputting various design shape data and physical property value data, An arithmetic control unit 2 that performs various arithmetic processes for shape optimization based on the input data input to the data input unit 1 and controls the entire apparatus, and an arithmetic result that is arithmetically processed by the arithmetic control unit 2 And a display unit 4 for displaying individual calculation results. A shape simulation by CAE is performed by using a finite element method to optimally design a mold shape.
[0021]
The calculation control unit 2 performs a heat conduction analysis based on the input data input to the data input unit 1 and calculates a temperature distribution. The calculation result of the temperature distribution calculation unit 2a and the data input unit 1 The contraction strain calculation unit 2b that calculates the contraction strain due to thermal contraction based on the viscoelasticity data input to, the design shape data input by the data input unit 1, and the shape of the calculation result calculated by the contraction strain calculation unit 2b A shape deviation calculating unit 2c for calculating a deviation from the data, a shape deviation evaluating unit 2d for evaluating a calculation result of the shape deviation calculating unit 2c, and a direction and a contraction amount (design) of the contraction vector of each node in the finite element method analysis A contraction error amount calculation unit 2e that calculates an error from the value) and a data correction unit 2f that corrects shape data in the direction opposite to the direction of the contraction vector by the contraction amount as necessary.
[0022]
The storage unit 3 also stores an input data storage unit 3a for storing input data input to the data input unit 1, and various calculation results such as calculated temperature distribution, shrinkage distortion, shape deviation, and shrinkage error amount. It has an operation result storage unit 3b for storing, and an optimum condition storage unit 3c for storing optimum analysis conditions such as molding conditions used for analysis when the shape error is optimized.
[0023]
Next, a mold shape design method in the case where a plastic lens (hereinafter simply referred to as “lens”) as an optical element is manufactured by injection molding is an axially symmetric three-dimensional model having an optical axis as a symmetric surface. Detailed description.
[0024]
FIG. 2 is a flowchart showing an embodiment of the processing procedure of the mold shape designing method. In the present embodiment, RAMAX manufactured by Woodeholm is used as the mold material, and PMMA (polymethyl methacrylate) is used as the molding material.
[0025]
In step S1, the shape data of the molded product, the constraint condition, the pressure condition, the cooling condition, the physical property data, and the P (pressure) -V (specific volume) -T (temperature) data (determining factors of the mold shape (cavity shape) Input data such as state change data) and viscoelasticity data is input from the data input unit 1.
[0026]
That is, first, in order to be able to handle the system by the finite element method, the entire shape is divided into fine regions to create elements, and the node coordinates, node numbers, element numbers, etc. that express the mold shape or molded product shape Enter shape data. In this embodiment, in order to increase the efficiency by reducing the number of operations, dimension data larger than the design dimension by the shrinkage rate of the molding material (PMMA) is input as the mold dimension. Specifically, the mold dimension is inputted with data of 1.006 times the design dimension and stored in the input data storage unit 3a.
[0027]
Next, a predetermined constraint condition necessary for the calculation of the finite element analysis is input, and further, a pressure condition and a cooling condition as initial values for optimizing the processing condition of the forming process are input, and the input data storage unit 3a is input. Remember. In the present embodiment, the molding pressure is 85 MPa as the initial value of the pressure condition, the injection temperature is 260 ° C., the primary cooling water temperature is 114 ° C., the primary cooling time is 10 minutes, and the secondary cooling water temperature is the initial value of the cooling condition. Is set to 80 ° C. and the secondary cooling time is set to 8 minutes. The pressure condition and the cooling condition are input as initial values to the data input unit 1 and stored in the input data storage unit 3a. In actual injection molding, when the secondary cooling is completed, the molded product is taken out from the mold and air-cooled to room temperature (for example, 20 ° C.).
[0028]
Next, temperature-dependent physical property data of the molding material and the mold material is input and stored in the input data storage unit 3a. Specifically, for the molding material (PMMA), the thermal conductivity k is 2.09 × 10. -Four W / (m · K), specific heat c is 1.66 J / (kg · K), density ρ is 1.15 × 10 Three kg / m Three And the thermal conductivity k of the mold material (RAMAX manufactured by Woodeholm) is 2.28 × 10 -2 W / (m · K), specific heat c is 0.46 J / (kg · K), density ρ is 7.78 × 10 Three kg / m Three Therefore, these physical property data are input to the data input unit 1 and stored in the input data storage unit 3a.
[0029]
Next, PVT data of the molding material is input. Since the linear expansion coefficient α is expressed by Equation (1), the linear expansion coefficient α is calculated based on the PVT data to create a linear expansion coefficient map α (P, T), and the linear expansion coefficient map α (P, T) is stored in the input data storage unit 3a.
[0030]
α = (dV / dT) P / V (1)
FIG. 3 is a linear expansion coefficient map α (P, T) stored in the input data storage unit 2a, where the horizontal axis is the temperature T (° C.) and the vertical axis is the linear expansion coefficient α (K -1 ), And the characteristics in the figure show the linear expansion coefficient α (K) at each temperature (° C.) when the pressure is 40 MPa, 80 MPa, 120 MPa, 160 MPa, 200 MPa, and 240 MPa, respectively. -1 ).
[0031]
Further, viscoelasticity data is input to the data input unit 1. Viscoelasticity data consists of relaxation elastic characteristics obtained by processing data measured with a viscoelasticity tester and a temperature shift factor A (T) indicating the dependence of temperature change on viscoelasticity. These viscoelasticity data are input. It is stored in the data storage unit 3a. Specifically, the relaxation elastic properties are obtained by converting and connecting two types of data, a solid physical property test below the glass transition temperature and a melt physical property test above the glass transition temperature, and injection molding from room temperature (for example, 20 ° C.). By drawing a continuous curve within a temperature range (for example, 300 ° C.), as shown in FIG. 4, for example, the relaxation elastic characteristic (time t to relaxation elastic modulus G (t)) at a reference temperature of 90 ° C. The relaxation elastic characteristics are created and stored as a master curve in the input data storage unit 3a, thereby making it unnecessary to set the initial solidification state from the melting temperature region to the solidification region. The temperature shift factor A (T) is also obtained for each temperature based on the data measured by the viscoelasticity tester described above.
[0032]
Next, in step S2, a known heat conduction analysis is performed to obtain a temperature distribution.
[0033]
That is, it is known that a non-stationary nonlinear heat conduction equation is generally expressed by Equation (2).
[0034]
[Expression 1]
Figure 0004378011
Here, Q is the calorific value, t is the time, and x, y, and z are the respective coordinate components.
[0035]
Formula (2) is discretized by the finite element method, integrated by Galerkin method, all elements are added, and further, the difference with respect to time gives Formula (3).
[0036]
{([K] / 2) + ([C] / Δt)} · {φ (t + Δt)}
= {(− [K] / 2) + ([C] / Δt)} · {φ (t)} + {F} (3)
Here, [K] = Σ [k], [C] = Σ [c], {F} = Σ {f}, [k] is a heat conduction matrix, [c] is a heat capacity matrix, {f} Is a heat flux vector, {φ (t)} is a nodal temperature vector, and Δt is a time step.
[0037]
Since {φ (t)} is given as an initial value, {φ (t + Δt)} can be calculated sequentially, and thereby the temperature distribution can be calculated.
[0038]
Next, in step S3, the shrinkage strain ε is calculated based on the temperature distribution obtained in step S2 while considering stress relaxation.
[0039]
Here, stress relaxation refers to a phenomenon in which when a certain strain is applied to a molded product, the stress σ generated in the molded product decreases with time due to the viscoelastic characteristics of the molding material. The stress-strain formula in the viscoelastic material is generally expressed in a hysteresis integral format, and finally, expressed in formula (4) when stress relaxation is taken into consideration.
[0040]
[Expression 2]
Figure 0004378011
Where t m Is the time, h is the time step (= t m -T m-1 ), Δσ (t m ) Is time t m Stress increment at Δε (t m ) Is time t m The distortion increment at. G (0) indicates the relaxation elastic coefficient at time “0”, G (n) indicates the relaxation elastic coefficient at time n, and the relaxation elastic characteristic map of FIG. 4 is searched, and the temperature shift factor A (T) is further calculated. Calculated with consideration.
[0041]
Α n (H), β n (H) is expressed by equations (5) and (6).
[0042]
[Equation 3]
Figure 0004378011
Note that λ is a relaxation coefficient.
[0043]
Therefore, the stress-strain relationship can be calculated according to the rate of change of time and temperature in this way, shrinkage strain that can be caused by the difference in cooling time and cooling temperature is evaluated, and the calculation result is calculated. The result is stored in the result storage unit 3b.
[0044]
Next, in step S4, the calculation result is displayed on the display unit 4 as the surface accuracy of the optical surface (spherical surface).
[0045]
FIG. 5 shows the interference pattern when the lens to be analyzed is set to a specific “R”, which is the optical surface displayed in step S4. From this simulation result, as shown by part A in the figure, when injection molding is performed with the molding conditions set to the initial values described above, the stripes are greatly bent on the optical surface, and so-called “habit” is prominent. appear. Further, although not shown in FIG. 5, it is confirmed that the interference fringes change by changing R at the time of measurement. Therefore, it is considered that so-called “R deviation” also occurs.
[0046]
In step S5, a deviation between the design shape and the shape stored in the calculation result storage unit 3b is calculated. The calculation result is stored in the calculation result storage unit 3b. In step S6, whether the shape deviation is optimal. Determine whether. In the current loop (the first time), as described above, “R deviation” and “peculiarity” occur, so it is determined that the molding conditions are not optimal, and the process returns to step S1 again, and the pressure condition and the cooling condition are restored. input.
[0047]
That is, since the R deviation is determined by the shrinkage amount, it is difficult to cope with it by changing the molding conditions. In step S1, paying attention to the habit amount, the molding condition is changed for the purpose of reducing the habit amount. To do. In this embodiment, the primary cooling water temperature is raised to 116 ° C., and the other conditions are the same as the previous one (molding pressure 85 MPa, primary cooling time 10 minutes, secondary cooling water temperature 80 ° C., secondary cooling time 8 minutes). And the molding conditions are input to the data input unit 1. Then, the same processing as described above is repeated in step S2 and step S3, and the second calculation result is displayed on the display unit 4 in step S4 as shown in FIG.
[0048]
Next, a shape error between the recalculated calculation result shape and the design shape is calculated and stored in the calculation result storage unit 3b. In step S6, it is determined whether or not the shape error is optimal. In FIG. 6, the amount of habit is reduced compared with FIG. 5 but not “0”. Therefore, the process returns to step S <b> 1 again, the molding conditions are changed, and the above processing is repeated. This time, that is, in the third time, only the primary cooling water temperature is reset to 118 ° C., for example, and the other conditions are the same as the previous one (molding pressure 85 MPa, primary cooling time 10 minutes, secondary cooling water temperature 80 ° C., secondary Cooling time 8 minutes), such molding conditions are re-input to the data input unit 1, the processing steps of step S2 and step S3 are executed again, and the third calculation result is displayed on the display unit 4 in step S4. indicate.
[0049]
As can be seen from the surface accuracy of FIGS. 4 to 6, it can be seen that the second molding condition (FIG. 5) has the smallest deviation between the design shape and the calculation result, and is optimal. Therefore, in step S6, from the three molding conditions, the second molding condition (pressure condition and cooling condition), that is, molding pressure of 85 MPa, injection temperature of 260 ° C., primary cooling water temperature of 116 ° C., primary cooling time of 10 minutes, secondary cooling. A cooling water temperature of 80 ° C. and a secondary cooling time of 8 minutes are selected as optimum molding conditions, and the optimum molding conditions are stored in the optimum molding condition storage unit 3c. At this time, the vector in which the nodes of the analysis model divided by the finite element are moved, that is, the calculation shape data such as the contraction direction and size (contraction amount) is stored in the optimum condition storage unit 3c.
[0050]
Next, in order to correct the above-described R deviation, the process proceeds to step S7, and an error between the direction of the contraction vector and the design value of the magnitude of each node and the calculation result is calculated by the contraction error amount calculation unit 2e.
[0051]
FIG. 8 is a mesh diagram used for analysis, in which 5 is a fixed mold, 6 is a movable mold, and 7 is a lens. The fixed mold 5 and the movable mold 6 are provided with a quenching cooling pipe 8 and a slow cooling. A cooling pipe 9 is provided, and the rapid cooling cooling pipe 8 and the slow cooling cooling pipe 9 cool the lens 7.
[0052]
FIG. 9 is an enlarged view of a main part in which the vicinity of the lens in the mesh diagram is enlarged, and shows that the surface of the molded lens 7 is separated from both molds 5 and 6 by contraction.
[0053]
FIG. 10 is a diagram showing the relationship between the mold shape and the surface shape of the lens, which is a molded product, wherein 10 is a node of a finite element mesh constituting the mold surface, and 11 is a mold after the molding material is injected. It is a node of a finite element mesh that forms a lens surface having the same coordinates as the node 10 when the cavity is filled. The injection-filled molding material is in contact with the inner wall of the mold cavity at the beginning of filling, but shrinks as the cooling proceeds and separates while sliding on the inner wall surface of the mold. As shown in FIG. 11, it is formed into a shape smaller than the mold shape. That is, the nodal point on the lens surface which was at the nodal point 10 constituting the mold surface at the beginning of the filling is moved to the position indicated by reference numeral 11, and as shown by the arrow D, a contraction vector indicating the direction from the nodal point 10 to the nodal point 11 is obtained. It is done. In other words, if the shrinkage rate set when designing the mold is accurate, the position of the node 10 is the design shape of the lens. Actually, it is difficult to set the shrinkage rate accurately, and a shrinkage vector D as an error amount is calculated, and such an error amount is obtained by the shape error amount calculation unit 2e.
[0054]
Next, the process proceeds to step S8, where the nodes on the mold surface are corrected in the anti-shrinkage direction by the shape error amount.
[0055]
That is, in FIG. 11, a dotted line 12 indicates a desired design shape of the lens 6, 5 a indicates a surface shape of the fixed mold 5, 6 a indicates a current surface shape of the lens 6, and 13 indicates a node of a finite element mesh on the surface of the lens 6. Is the node of the finite element mesh on the surface of the fixed mold 5, and 15 is the intersection of the contraction vector D connecting the node 14 and the node 13 and the desired design shape 12, which will be the target coordinates in the next calculation. Reference numeral 16 denotes coordinates moved by the contraction amount A in the direction opposite to the contraction vector D, and shows the mold shape at the next calculation. That is, when the amount of contraction of the lens 6 due to molding matches the distance between the node 14 and the node 13, that is, the contraction vector, the distance between the intersection 15 and the node 13 is set so that the shape error with the design shape is within the standard. The shape line of the fixed mold 5 is moved to the extension line in the opposite direction of the shrinkage vector D only by the shrinkage amount A, and the shape 17 of the new analysis model is determined. The same process is performed for the movable mold 7 and the lens 6.
[0056]
The analytical model is corrected to the mold shape thus obtained, and the temperature distribution is calculated again in accordance with the molding conditions stored in the optimum condition storage unit 3c (step S9), and the shrinkage strain considering the stress relaxation is timed. And the temperature according to the temperature (step S10), and the shape deviation between the design shape and the molded lens is calculated (step S11). Then, it is determined whether or not the calculated shape deviation is within a predetermined standard. If the answer is negative (No), the process returns to step S8 to repeat the above-described processing, while the answer to step S11 is affirmative. (Yes), for example, in the case of 0.1 μm or less, it is output in step S13 that an ideal mold shape has been obtained, and the process is terminated.
[0057]
As described above, according to the present embodiment, the optimization of the mold shape can be simulated in consideration of the difference in cooling time and cooling cycle, so that it is not necessary to manufacture the test mold and perform the molding operation. A highly accurate mold shape can be determined in a short period of time.
[0058]
【The invention's effect】
As described above, according to the present invention, the shrinkage strain is evaluated in consideration of the relaxation elastic characteristics that change with the passage of time, the molding conditions are determined, and the shape of the mold corresponding to the contracted state of the molded product. Therefore, the optimum design of a mold having a desired highly accurate mold shape can be easily performed in a short period of time without producing a test mold.
[0059]
In addition, accuracy and equipment capacity can be predicted before the mold is actually manufactured, so there is no need to perform mold correction, which is a repetition of mechanical finishing operations, and it is economically time-consuming. In particular, the load can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a block configuration diagram of a mold shape designing apparatus according to the present invention.
FIG. 2 is a flowchart showing a processing procedure of a mold shape designing method according to the present invention.
FIG. 3 is a linear expansion coefficient map obtained from PVT data.
FIG. 4 is a characteristic diagram of relaxation elastic modulus.
FIG. 5 is an example showing interference fringes on an optical surface obtained by simulating under a first molding condition.
FIG. 6 is an example showing interference fringes on an optical surface obtained by simulating under a second molding condition.
FIG. 7 is an example showing interference fringes on an optical surface obtained by simulating under a third molding condition.
FIG. 8 is an analysis mesh diagram.
FIG. 9 is an enlarged view of a main part of an analysis mesh.
FIG. 10 is an explanatory diagram showing a relationship between a mold shape and a surface shape of a molded lens.
FIG. 11 is an explanatory diagram illustrating shape correction of an analysis model.
[Explanation of symbols]
1 Data input section (input means)
2a Temperature distribution calculation unit (temperature distribution calculation means)
2b Contraction strain calculation unit (calculation shape data calculation means)
2e Shrinkage error amount calculation unit (shrinkage Error amount Calculation means)
2d Shape deviation evaluation part (optimum Molding Condition selection means)
2f Data correction unit (shape correction means)
3a Input data storage unit (relaxation elastic property creation means)
3c Optimal condition storage unit (optimum Conversion Condition memory means )
4 Display section (display means)

Claims (18)

成形加工法を施して成形品を製造するための金型の製作に先立ち、コンピュータ支援技術を使用して成形材料の流動解析を行い、金型の最適設計を行う金型設計装置であって、
解析対象となる解析モデルの設計形状データ、成形条件及び成形加工に必要とされるデータを入力する入力手段と、
加工時間と応力緩和との関係を示し粘弾性試験で測定したデータを処理して得られる緩和弾性特性であって、粘弾性における温度変化の依存性を示す温度シフトファクタとともに粘弾性データを構成する緩和弾性特性を、ガラス転移点温度以下の固体物性試験とガラス転移点以上の溶融物性試験の2種類のデータを換算して繋ぎあわせ、室温から射出成形温度の範囲内で連続した曲線を描くことにより作成する緩和弾性特性作成手段と、
前記成形条件に基づいて前記解析モデルの温度分布を算出する温度分布算出手段と、
該温度分布算出手段の算出結果と緩和弾性特性とに基づいて前記解析モデルの収縮歪みと応力との関係を算出し、前記解析モデルの演算形状データを算出する演算形状データ算出手段と、
該演算形状データ算出手段による演算形状データの算出を適数回繰返し行って最適な成形条件を選択する最適成形条件選択手段と、
前記演算形状データ算出手段により算出された演算形状データと前記設計形状データとの誤差である収縮誤差量を算出する収縮誤差量算出手段と、
該収縮誤差量算出手段の算出結果に基づいて演算形状データを補正する形状補正手段とを備えていることを特徴とする金型設計装置。
A mold design device that performs the flow analysis of molding materials using computer-aided technology and performs the optimal design of the mold prior to the production of the mold for manufacturing the molded product by applying the molding process method,
An input means for inputting design shape data of an analysis model to be analyzed, molding conditions and data required for molding;
A relaxation elastic characteristics obtained by processing the data measured by the shown viscoelastic test the relationship between the processing time and the stress relaxation, constituting a viscoelastic data with temperature shift factor showing the dependence of the temperature changes in the viscoelasticity relaxation elastic properties, combined tie by converting the two types of data below the glass transition temperature solid physical testing and the glass transition point or higher melt property test, draw a continuous curve in the range of an injection molding temperature from room temperature to Relaxation elastic property creating means to create by,
Temperature distribution calculating means for calculating a temperature distribution of the analysis model based on the molding conditions;
Calculation shape data calculation means for calculating the relationship between the shrinkage strain and stress of the analysis model based on the calculation result of the temperature distribution calculation means and the relaxation elastic characteristics, and calculating calculation shape data of the analysis model;
Optimum molding condition selection means for selecting the optimum molding condition by repeating calculation shape data calculation by the calculation shape data calculation means an appropriate number of times;
Shrinkage error amount calculating means for calculating a shrinkage error amount that is an error between the calculated shape data and the design shape data calculated by the calculated shape data calculating means;
A mold design apparatus comprising: a shape correction unit that corrects calculation shape data based on a calculation result of the shrinkage error amount calculation unit.
記演算形状データ算出手段により算出される演算形状データは、前記温度シフトファクタを加味して算出されることを特徴とする請求項1記載の金型設計装置。Calculating shape data calculated by the previous SL calculating shape data calculating means, mold design apparatus according to claim 1, characterized in that it is calculated by adding the temperature shift factor. 前記最適成形条件選択手段により選択された最適成形条件を記憶する最適化条件記憶手段とを有し、
前記形状補正手段は、前記収縮誤差量だけ金型形状を収縮補正すると共に、
前記収縮補正された金型形状について前記最適成形条件で演算形状データを算出することを特徴とする請求項1又は請求項2記載の金型設計装置。
Optimization condition storage means for storing the optimum molding conditions selected by the optimum molding condition selection means,
The shape correction means corrects the mold shape for shrinkage by the shrinkage error amount, and
The mold design apparatus according to claim 1, wherein calculation shape data is calculated under the optimum molding conditions for the shrinkage corrected mold shape.
前記形状補正手段により補正された演算形状データが、前記解析モデルの設計形状データに対し許容範囲内か否かを判断する判断手段を備え、
該判断手段により前記許容範囲内であると判断されたときに該演算形状データを金型形状に決定する金型形状決定手段を有していることを特徴とする請求項1乃至請求項3のいずれかに記載の金型設計装置。
A judgment means for judging whether the calculated shape data corrected by the shape correction means is within an allowable range with respect to the design shape data of the analysis model;
4. The apparatus according to claim 1, further comprising: a mold shape determining unit that determines the calculation shape data as a mold shape when the determination unit determines that the calculated shape data is within the allowable range. The mold design apparatus according to any one of the above.
解析対象を有限要素法によってシミュレーションするためにメッシュ分割してモデリングするモデリング手段を有していることを特徴とする請求項1乃至請求項4のいずれかに記載の金型設計装置。  5. The mold design apparatus according to claim 1, further comprising modeling means for modeling by dividing the mesh to be analyzed by a finite element method. 前記温度分布算出手段は、時間履歴に応じて微小時間における前記解析モデルの温度変化を算出することを特徴とする請求項1乃至請求項5のいずれかに記載の金型設計装置。  The mold design apparatus according to claim 1, wherein the temperature distribution calculation unit calculates a temperature change of the analysis model in a minute time according to a time history. 前記演算形状データを可視表示する表示手段を有していることを特徴とする請求項1乃至請求項6のいずれかに記載の金型設計装置。  The mold design apparatus according to any one of claims 1 to 6, further comprising display means for visually displaying the calculated shape data. 解析モデルは光学素子であることを特徴とする請求項1乃至請求項7のいずれかに記載の金型設計装置。  The mold design apparatus according to any one of claims 1 to 7, wherein the analysis model is an optical element. 前記成形加工法は、射出成形法、圧縮成形法、及び射出圧縮成形法を含むことを特徴とする請求項1乃至請求項8のいずれかに記載の金型設計装置。  9. The mold design apparatus according to claim 1, wherein the molding method includes an injection molding method, a compression molding method, and an injection compression molding method. 成形加工法を施して成形品を製造するための金型の製作に先立ち、コンピュータ支援技術を使用して成形材料の流動解析を行い、金型の最適設計を行う金型形状の設計方法であって、
解析対象となる解析モデルの設計形状データ、成形条件及び成形加工に必要とされるデータを入力する入力ステップと、
加工時間と応力緩和との関係を示し粘弾性試験で測定したデータを処理して得られる緩和弾性特性であって、粘弾性における温度変化の依存性を示す温度シフトファクタとともに粘弾性データを構成する緩和弾性特性を、ガラス転移点温度以下の固体物性試験とガラス転移点以上の溶融物性試験の2種類のデータを換算して繋ぎあわせ、室温から射出成形温度の範囲内で連続した曲線を描くことにより作成する緩和弾性特性作成ステップと、
前記成形条件に基づいて前記解析モデルの温度分布を算出する温度分布算出ステップと、
前記温度分布と緩和弾性特性とに基づいて前記解析モデルの収縮歪みと応力との関係を算出し、前記解析モデルの演算形状データを算出する演算形状データ算出ステップと、
前記演算形状データの算出を適数回繰返し行って演算形状データの最適成形条件を選択する最適成形条件選択ステップと、
前記演算形状データ算出ステップで算出された前記演算形状データと前記設計形状データとの誤差である収縮誤差量を算出する収縮誤差量算出ステップと、
前記収縮誤差量に基づいて演算形状データを補正する形状補正ステップとを含んでいることを特徴とする金型形状の設計方法。
This is a mold shape design method that performs the flow analysis of molding materials using computer-aided technology and performs the optimal design of the mold prior to the production of the mold for manufacturing the molded product by applying the molding method. And
An input step for inputting design shape data of an analysis model to be analyzed, molding conditions, and data required for molding,
A relaxation elastic characteristics obtained by processing the data measured by the shown viscoelastic test the relationship between the processing time and the stress relaxation, constituting a viscoelastic data with temperature shift factor showing the dependence of the temperature changes in the viscoelasticity relaxation elastic properties, combined tie by converting the two types of data below the glass transition temperature solid physical testing and the glass transition point or higher melt property test, draw a continuous curve in the range of an injection molding temperature from room temperature to a relaxation elastic properties creating step of creating, by,
A temperature distribution calculating step for calculating a temperature distribution of the analysis model based on the molding conditions;
A calculation shape data calculation step of calculating a relationship between the shrinkage strain and stress of the analysis model based on the temperature distribution and relaxation elastic characteristics, and calculating calculation shape data of the analysis model;
Optimal molding condition selection step of selecting the optimum molding condition of the calculated shape data by repeating the calculation of the calculated shape data an appropriate number of times;
A shrinkage error amount calculating step for calculating a shrinkage error amount which is an error between the calculated shape data and the design shape data calculated in the calculated shape data calculating step;
A mold shape design method comprising: a shape correction step of correcting the calculated shape data based on the shrinkage error amount.
記演算形状データは、前記温度シフトファクタを加味して算出することを特徴とする請求項10記載の金型形状の設計方法。 Before SL arithmetic shape data, a method of designing a die shape according to claim 10, wherein the calculating in consideration of the temperature shift factor. 前記最適成形条件を記憶し、前記収縮誤差量だけ金型形状を収縮補正すると共に、
前記収縮補正された金型形状について前記最適成形条件で演算形状データを算出することを特徴とする請求項10又は請求項11記載の金型形状の設計方法。
The optimum molding conditions are stored, and the mold shape is subjected to shrinkage correction by the shrinkage error amount, and
The mold shape design method according to claim 10 or 11 , wherein calculation shape data is calculated under the optimum molding condition for the shrinkage corrected mold shape.
前記補正された演算形状データが、前記解析モデルの設計形状データに対し許容範囲内か否かを判断し、
前記演算形状データが前記許容範囲内であると判断されたときに該演算形状データを金型形状に決定することを特徴とする請求項10乃至請求項12のいずれかに記載の金型形状の設計方法。
Determining whether the corrected calculation shape data is within an allowable range with respect to the design shape data of the analysis model;
The mold shape according to any one of claims 10 to 12 , wherein when the calculated shape data is determined to be within the allowable range, the calculated shape data is determined as a mold shape. Design method.
解析対象を有限要素法によってシミュレーションするためにメッシュ分割してモデリングすることを特徴とする請求項10乃至請求項13のいずれかに記載の金型形状の設計方法。A method of designing a die shape according to any one of claims 10 to 13, characterized in that modeled mesh division to simulate analyzed by the finite element method. 前記温度分布は、時間履歴に応じて微小時間における前記解析モデルの温度変化を算出することを特徴とする請求項10乃至請求項14のいずれかに記載の金型形状の設計方法。The temperature distribution, a method of designing a die shape according to any one of claims 10 to 14, and calculates the temperature change of the analytical model in short time according to the time history. 前記演算形状データを表示手段に可視表示することを特徴とする請求項10乃至請求項15のいずれかに記載の金型形状の設計方法。A method of designing a die shape according to any one of claims 10 to 15, characterized in that visual display unit to display the calculation shape data. 解析モデルは光学素子であることを特徴とする請求項10乃至請求項16のいずれかに記載の金型形状の設計方法。The method for designing a mold shape according to any one of claims 10 to 16 , wherein the analysis model is an optical element. 前記成形加工法は、射出成形法、圧縮成形法、及び射出圧縮成形法を含むことを特徴とする請求項10乃至請求項17のいずれかに記載の金型形状の設計方法。The forming method is injection molding, compression molding, and a method of designing a die shape according to any one of claims 10 to 17, characterized in that it comprises an injection compression molding method.
JP2000001483A 2000-01-07 2000-01-07 Mold design equipment and mold shape design method Expired - Fee Related JP4378011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000001483A JP4378011B2 (en) 2000-01-07 2000-01-07 Mold design equipment and mold shape design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000001483A JP4378011B2 (en) 2000-01-07 2000-01-07 Mold design equipment and mold shape design method

Publications (3)

Publication Number Publication Date
JP2001191336A JP2001191336A (en) 2001-07-17
JP2001191336A5 JP2001191336A5 (en) 2007-02-08
JP4378011B2 true JP4378011B2 (en) 2009-12-02

Family

ID=18530713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000001483A Expired - Fee Related JP4378011B2 (en) 2000-01-07 2000-01-07 Mold design equipment and mold shape design method

Country Status (1)

Country Link
JP (1) JP4378011B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5349859B2 (en) * 2008-07-31 2013-11-20 キヤノン株式会社 Molded product shape prediction method, molded product manufacturing method, molded product shape prediction program and storage medium thereof
JP5247400B2 (en) * 2008-12-08 2013-07-24 キヤノン株式会社 Optical element manufacturing method
EP2450123A1 (en) * 2010-11-03 2012-05-09 Siemens Aktiengesellschaft Method for manufacturinf a core forming tool
EP2505345A1 (en) * 2011-03-31 2012-10-03 ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) Method for designing a mould for casting a semi-finished ophthalmic lens blank, method for assembling a mould assembly, method for casting a semi-finished ophtalmic lens blank and computer program product for carrying out said methods
DE102013224649A1 (en) * 2013-11-29 2015-06-03 Sauer Gmbh Lasertec Machine tool, measuring device, method for creating work data, build-up welding method, workpiece temperature control device
EP3640712B1 (en) 2018-10-16 2022-08-03 Essilor International Optical lens
CN115600366B (en) * 2022-09-02 2023-11-07 南京天洑软件有限公司 Automobile windshield mold profile design method and device based on regression model
CN116882157A (en) * 2023-07-06 2023-10-13 昆明理工大学 Design method of CAE-based steel piston pin hole-pin friction pair molded line

Also Published As

Publication number Publication date
JP2001191336A (en) 2001-07-17

Similar Documents

Publication Publication Date Title
KR20020041446A (en) Method and apparatus for modeling injection of a fluid of a mold cavity
Kim et al. Residual stress distributions and their influence on post-manufacturing deformation of injection-molded plastic parts
JP2012520193A (en) Simulation of protrusion after filling molding
JP4378011B2 (en) Mold design equipment and mold shape design method
AU770504B2 (en) Optimizing cycle time and/or casting quality in the making of cast metal products
JP2008273796A (en) Method, apparatus and program for press-forming simulation of optical element
JP2006205740A (en) Design support equipment and method for resin mold component
JP5241310B2 (en) Method and apparatus for predicting deformed shape of molded product, program for predicting deformed shape and storage medium thereof
JPH0622840B2 (en) Molding process simulation system
JP2001293748A (en) Injection molding process simulation apparatus and shape accuracy estimating method
JP2007083602A (en) Method for forecasting molding shrinkage rate of injection-molded article
JP2004160700A (en) Simulation apparatus for injection molding process and method for estimating shape precision
JP6509293B2 (en) Method of predicting fracture location of resin molded body, and method of manufacturing resin molded body
JP5929822B2 (en) Injection mold design method, mold design system, mold design program, and computer-readable storage medium storing mold design program
Kansal et al. Study: temperature and residual stress in an injection moulded gear
JP6618069B2 (en) Composite molded product design support device, composite molded product manufacturing method, computer software, storage medium
Lin Optimum gate design of freeform injection mould using the abductive network
KR102091815B1 (en) Intelligent super precision plastic mold design apparatus
JP2010030259A (en) Method of predicting molded article shape, method of predicting cavity shape and apparatus of them, prediction program for molded article shape or cavity shape and recording medium therefor
JP2000313035A (en) Injection molding process simulation method and apparatus, and production of resin molded article using result thereof
JP5899004B2 (en) Molded product warpage deformation prediction device, molded product warpage deformation prediction method, and molded product warpage deformation prediction program
JP5889077B2 (en) Molded product shrinkage deformation prediction apparatus, molded product shrinkage deformation prediction method, and molded product shrinkage deformation prediction program
JP2001246655A (en) Method and apparatus for estimating behavior during injection molding and mold design method
JPH09277260A (en) Method and apparatus for designing mold
JP2003320577A (en) Numeral value analyzing method and device for blow- molding material behavior

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20070626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees