WO2019159926A1 - 複合材料の製造方法、繊維基材および繊維基材の賦形型 - Google Patents

複合材料の製造方法、繊維基材および繊維基材の賦形型 Download PDF

Info

Publication number
WO2019159926A1
WO2019159926A1 PCT/JP2019/004983 JP2019004983W WO2019159926A1 WO 2019159926 A1 WO2019159926 A1 WO 2019159926A1 JP 2019004983 W JP2019004983 W JP 2019004983W WO 2019159926 A1 WO2019159926 A1 WO 2019159926A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber base
fiber
base material
resin
composite material
Prior art date
Application number
PCT/JP2019/004983
Other languages
English (en)
French (fr)
Inventor
耕大 下野
寛 ▲徳▼冨
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US16/957,248 priority Critical patent/US11707897B2/en
Priority to EP19754442.2A priority patent/EP3715081B1/en
Publication of WO2019159926A1 publication Critical patent/WO2019159926A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/547Measures for feeding or distributing the matrix material in the reinforcing structure using channels or porous distribution layers incorporated in or associated with the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • B29C70/528Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins

Definitions

  • the present invention relates to a method for producing a composite material, a fiber base material and a fiber base shaping mold.
  • a composite material composed of a fiber material such as glass fiber or carbon fiber and a resin material is manufactured by various methods such as VaRTM (Vacuum Assisted Resin Transfer Molding) method.
  • the VaRTM method is to manufacture a composite material by impregnating a fiber base material with a resin using vacuum pressure and then curing the impregnated resin by heating and compressing (for example, Patent Document 1). reference).
  • the thickness of the fiber base material that can be molded integrally is limited without causing an unimpregnated part. There is. Therefore, conventionally, when manufacturing a composite material (thick plate member) having a thick plate portion (a portion having a thickness exceeding the limited thickness), a mechanical fastening means or a cobond molding method is used. Yes.
  • a method for manufacturing a composite material using mechanical fastening means is to prepare a plurality of divided members each having a shape obtained by dividing a thick plate member, and impregnate and cure the resin separately on the plurality of divided members. These members are mechanically fastened by fasteners (for example, rivets).
  • fasteners for example, rivets
  • resin impregnation is performed for each of a plurality of divided members, so that the resin impregnation step increases and the number of parts such as fasteners increases, which increases the manufacturing cost. In addition, the manufacturing process becomes complicated.
  • a composite material manufacturing method using the cobond molding method is to prepare a plurality of divided members having a shape obtained by dividing a thick plate member, impregnate and cure one member with resin, and then apply resin to the other member. And is adhered to one member.
  • the resin impregnated for each of the plurality of divided members since the resin is impregnated for each of the plurality of divided members, the resin impregnation step is increased, and an adhesive treatment of the plurality of divided members is required. This leads to an increase in cost and a complicated manufacturing process.
  • the present invention has been made in view of the above problems, and an object thereof is to easily manufacture a composite material having a thick plate portion.
  • a method for producing a composite material according to a first invention for solving the above-described problems is a composite material in which a first fiber base material made of a fiber material and a second fiber base material are impregnated with a thermosetting resin and molded integrally.
  • a method for producing a composite material according to a second invention for solving the above-mentioned problem is the method for producing a composite material according to the first invention, wherein a groove is provided on the surface of the first fiber base, and the resin is formed by the groove.
  • a distribution channel is defined.
  • thermosetting resin is cured in the method for producing a composite material according to the second invention.
  • the groove part is leveled by applying heat and pressure to the second fiber base material.
  • the method for producing a composite material according to a fourth invention for solving the above-mentioned problem is the method for producing a composite material according to the second or third invention, wherein the groove is coated with a thermoplastic resin or starchy glue. It is characterized by.
  • a method for producing a composite material according to a fifth invention for solving the above-described problem is the method for producing a composite material according to any one of the second to fourth inventions, wherein the first fiber base material is shaped. Further, the groove is formed by pressing a member having a concave shape or a convex shape on the surface and performing hot compaction.
  • a method for producing a composite material according to a sixth invention for solving the above-described problem is the method for producing a composite material according to any one of the second to fourth inventions, wherein the first fiber base material is shaped.
  • the groove portion is formed by bagging using a film without placing a hard material on the surface of the fiber fabric, and then heating by applying pressure.
  • a fiber base material according to a seventh invention for solving the above problems is a fiber base material formed by laminating fiber materials and impregnated with a thermosetting resin, and is continuously provided in a lattice shape on the surface. It has a plurality of grooves.
  • the fiber substrate shaping mold according to the eighth invention for solving the above-mentioned problems is formed by laminating fiber materials, and shaping the fiber substrate before shaping the fiber substrate before impregnation with the thermosetting resin.
  • It is a shape type
  • thermosetting resin can be impregnated reliably and quickly, even a composite material having a thick plate portion can be molded integrally and easily. Can be manufactured.
  • the flow path through which the thermosetting resin can flow can be provided with a simple configuration.
  • thermosetting resin can flow in the resin impregnation step.
  • the groove can be easily formed.
  • the groove can be easily formed.
  • the fiber substrate according to the seventh invention can be used as a fiber substrate used in the method for producing a composite material according to the first to sixth inventions.
  • the fiber substrate used in the method for producing the composite material according to the first to sixth inventions, and the fiber substrate according to the seventh invention Can be easily shaped.
  • the composite material manufacturing method according to this embodiment uses a composite material manufacturing apparatus (reference numeral 1 in FIG. 2), and simultaneously impregnates a plurality of fiber base materials (reference numerals 101 and 102 in FIG. 2) with resin.
  • a composite material having a thick plate portion is integrally formed.
  • the composite material manufactured by the composite material manufacturing method according to the present embodiment and the fiber base material used for the manufacture will be described with reference to FIGS. 1, 2 and 3A.
  • a composite material 100 manufactured by the method for manufacturing a composite material according to this embodiment includes a flat plate-shaped portion (skin member) and a beam portion (stringer member) protruding from the surface thereof.
  • the skin-stringer member has a thick plate portion 100a having a partially thick plate.
  • the composite material 100 In the production of the composite material 100, a plurality of (in this embodiment, two) fiber base materials 101 and 102 (see FIG. 2) are used, and the composite material 100 is used with respect to these fiber base materials 101 and 102. At the same time, the thermosetting resin is impregnated and cured.
  • one fiber base material (first fiber base material) 101 used in the method for manufacturing a composite material according to the present embodiment constitutes a skin member, Fiber materials such as glass fibers and carbon fibers are laminated in a flat plate shape.
  • the other fiber base material (second fiber base material) 102 used in the method for manufacturing a composite material according to the present embodiment constitutes a stringer member, and a fiber material such as glass fiber or carbon fiber is used.
  • the base part 102a is formed by being laminated in a substantially T-shaped cross section and is joined to the first fiber base material 101, and a beam part 102b protruding from the approximate center of the base part 102a.
  • the thickness of the first fiber substrate 101 (thickness) t 101, and the thickness (plate thickness) t 102a of the base portion 102a in the second fibrous base material 102 are each conventional method of manufacturing a composite material
  • the thickness t 100a of the thick plate portion 100a in the composite material 100 corresponds to the sum of the plate thickness t 101 and the plate thickness t 102a, and the conventional composite material. In this manufacturing method, the plate thickness is not sufficiently impregnated with resin (see FIG. 1).
  • the surface (upper surface) of the first fiber substrate 101 is formed in an uneven shape, and a plurality of groove portions 101a are formed by the uneven shape.
  • the groove portion 101a is provided in a range to be joined to the second fiber base material 102, and in the manufacturing process of the composite material 100, the first fiber base material 101 and the second fiber base material 102 are composite material manufacturing apparatuses.
  • a clearance space (resin flow channel) S101a is defined. Yes.
  • the resin circulation channel S 101a functions as a resin circulation channel through which a thermosetting resin can circulate in a resin impregnation step described later. Therefore, the groove portion 101a has a mechanical strength and a heat resistant strength such that the shape of the groove portion 101a does not collapse in a resin impregnation step to be described later, and has a flow path cross section through which the thermosetting resin can flow.
  • the plurality of groove portions 101a are formed on the surface of the first fiber substrate 101 (bonding surface between the first fiber substrate 101 and the second fiber substrate 102). In this case, it is preferable that they are provided orthogonally (or intersecting at a predetermined angle) and connected to each other (connected in a lattice pattern).
  • the height (depth) h of the groove portion 101a is set to 0.2 [mm] or more (h ⁇ 0.2 mm), and between the groove portions 101a arranged adjacent to each other.
  • the distance (arrangement interval) d is preferably less than 30 [mm] (d ⁇ 30 mm) (see FIG. 3A).
  • the composite material manufacturing apparatus 1 used in the composite material manufacturing method according to this embodiment includes a first fiber base 101 and a second fiber base 102 in a composite material 100. Molding molds 11 and 12 for molding are provided.
  • a molding die (lower die) 11 disposed on the lower side has a surface shape corresponding to the lower surface of the composite material 100, and the first fiber base material 101 is placed via a mesh-like resin suction medium 21. It is supposed to be placed.
  • a molding die (upper die) 12 disposed on the upper side has a surface shape corresponding to the upper surface of the composite material 100, and is a mesh-shaped resin supply medium (first resin supply medium, second resin supply medium). )
  • the first fiber base material 101 and the second fiber base material 102 placed on the lower mold 11 are put on the lower mold 11 via 22 and 23.
  • the predetermined clearance space (1st resin supply flow path, 2nd resin supply flow path) S 102a and S102b are formed between the upper mold
  • the first resin supply flow path S 102a and the second resin supply flow path S 102b function as flow paths through which a thermosetting resin flows in a resin impregnation step described later, and a resin supply (not shown) Each device is connected.
  • the 1st resin supply flow path formed in the junction part vicinity (the edge part vicinity of the base 102a in the 2nd fiber base material 102) of the 1st fiber base material 101 and the 2nd fiber base material 102 S 102a communicates with a resin flow passage S 101a formed between the first fiber substrate 101 and the second fiber substrate 102, and a first resin supply flow from a resin supply device (not shown).
  • the thermosetting resin supplied to the path S102a is supplied to the resin circulation path S101a .
  • the composite material manufacturing apparatus 1 also includes a vacuum bag film 31 made of nylon, polyester, or the like, and a sealant 32 that seals a gap between the vacuum bag film 31 and the lower mold 11 at the periphery of the vacuum bag film 31. Is provided.
  • the vacuum bag film 31 is provided with a suction nozzle 41, and a vacuum pump 42 is connected to the suction nozzle 41. Therefore, the first fiber base 101 and the second fiber base 102 and the upper mold 12 are installed, and the space (sealed space) S sealed by the lower mold 11, the vacuum bag film 31, and the sealant 32 is sealed. The air in 1 is sucked from the suction nozzle 41 by the vacuum pump 42.
  • the first fiber base material 101 and the second fiber base material 102 are shaped by laminating fiber materials into a predetermined shape (fiber base material shaping step).
  • the fiber base material shaping step of the first fiber base material 101 when hot compacting a laminate of fiber materials (unidirectional or multidirectional fiber material or fiber fabric) (a member having an uneven shape on the surface ( The uneven shape is transferred to the surface of the first fiber base 101 by using a covering material or a shaping mold. According to this shaping method, the 1st fiber base material 101 which has uneven
  • a shaping die 111 having a convex portion 111a and a concave portion 111b as shown in FIG. 4 can be employed as a member having a concavo-convex shape on the surface.
  • a large number of the concave portions 111b are provided side by side on the surface of the shaping mold 111, and the convex portions 111a are provided in a lattice pattern between the adjacent concave portions 111b.
  • the shaping mold 111 when the shaping mold 111 is used to transfer the concavo-convex shape (projections 111 a and depressions 111 b) on the surface to the surface of the first fiber substrate 101, the projection 111 a of the shaping mold 111 causes the first The groove part 101a of the one fiber base material 101 is formed.
  • the groove portion 101 a of the first fiber base material 101 has a shape corresponding to the convex portion 111 a of the shaping mold 111, that is, a shape connected in a lattice shape on the surface of the first fiber base material 101.
  • the shaping method of the first fiber base material 101 is not limited to the above-described one.
  • a material in which fiber materials are laminated (fiber woven fabric) and a hard material for example, a metal pressure plate
  • the bag may be bagged using a familiar film or the like without disposing the film, and then heated by applying a vacuum pressure, a pressure by an autoclave, a water pressure, or the like.
  • this shaping method it is possible to easily obtain the first fiber substrate 101 having an uneven shape (groove portion 101a) using the uneven shape on the surface of the fabric itself.
  • first fibrous base material 101 having the concavo-convex shape (groove portion 101a) is formed by the above-described shaping method, a veiled or powdery thermoplastic resin is applied to the concavo-convex surface (groove portion 101a).
  • desired mechanical strength and heat resistance strength can be imparted to the uneven shape (groove portion 101a).
  • what maintains a concavo-convex shape (groove part 101a) is not limited to a thermoplastic resin, For example, what has a function which can restrain a deformation
  • thermoplastic resin that imparts the desired mechanical strength and heat-resistant strength to the concavo-convex shape has a temperature (softening temperature) at which the viscosity decreases, the impregnation temperature of the thermosetting resin in the resin impregnation step described later. Higher than the curing temperature of the thermosetting resin in the resin curing step described later.
  • first fiber base 101 and the second fiber base 102 are installed in the composite material manufacturing apparatus 1, and a thermosetting resin is applied to the first fiber base 101 and the second fiber base 102. Impregnation (resin impregnation step).
  • the vacuum pump 42 is driven to bring the sealed space S 1 into a vacuum state, and the thermosetting resin is supplied from a resin supply device (not shown) to the first resin supply channel S 102 a and the second resin supply channel S. This is done by supplying to 102b (see FIGS. 2 and 3A).
  • the thermosetting resins supplied to the first resin supply flow path S 102a and the second resin supply flow path S 102b are diffused by the first resin supply medium 22 and the second resin supply medium 23, respectively. It penetrates from the surface of one fiber substrate 101 and the second fiber substrate 102 to the inside (see broken line arrows in FIG. 2).
  • thermosetting resin supplied to the first resin supply flow path S 102a is supplied to the resin flow path S 101a communicating with the first resin supply flow path S 102a. It penetrates into the inside of the first fiber base 101 from 101a (see broken line arrow in FIG. 2).
  • thermosetting resin also from the resin circulation channel S 101a that is an interlayer between the substrate 101 and the second fiber substrate 102.
  • the thermosetting resin can be impregnated reliably and quickly.
  • thermosetting resin impregnated in the first fiber substrate 101 and the second fiber substrate 102 is thermoset (resin curing step).
  • the molds 11 and 12 are heated by an oven (not shown), and the upper mold 12 is pressed so as to press the first fiber base 101 and the second fiber base 102 on the lower mold 11 ( (See the arrow in FIG. 3B). Therefore, the first fiber base 101 and the second fiber base 102 are heated and pressurized by the molds 11 and 12.
  • thermoplastic resin coated on the first fiber base 101 is softened by heating in the resin curing step, and the uneven shape (groove portion 101a) formed on the first fiber base 101 is the resin curing step.
  • the uneven shape (groove portion 101a) formed on the first fiber base 101 is the resin curing step.
  • the uneven shape (groove portion 101a) provided on the first fiber base material 101 is leveled, and the surface of the first fiber base material 101 (joint surface with the second fiber base material 102) is substantially flat. By doing so, it is possible to suppress (prevent) a decrease in mechanical strength that may occur due to the influence of the uneven shape (curing while the fiber material is bent).
  • the resin flow path S 101a through which the thermosetting resin can flow between the first fiber base 101 and the second fiber base 102 is provided, By impregnating the thermosetting resin from the surfaces of the first fiber substrate 101 and the second fiber substrate 102 and impregnating the thermosetting resin also from the resin circulation channel S 101a , Since the impregnation can be performed reliably and at an early stage, the composite material 100 having the thick plate portion 100a can be integrally formed.
  • the groove part 101a is formed by making the surface of the 1st fiber base material 101 uneven
  • the resin circulation channel S 101a is formed in the upper part .
  • the present invention is not limited to this.
  • a concave portion is formed on the surface (upper surface) of the first fiber base material, and a gap space (resin circulation channel) is formed between the first fiber base material and the second fiber base material by the concave portion (groove).
  • a gap space (resin circulation channel) is formed between the first fiber base material and the second fiber base material by the concave portion (groove).
  • a gap space (resin flow path) may be formed between the fiber base material.
  • a gap space may be formed between the first fiber substrate and the second fiber substrate.
  • the shape and the like of the gap space can be set only by shaping one of the fiber base materials, and a uniform gap space can be easily defined.
  • the surface of the other fiber base material is flat, the uneven
  • the composite material 100 is manufactured by providing the resin flow path S 101a between the two fiber substrates of the first fiber substrate 101 and the second fiber substrate 102. .
  • the present invention is not limited to this, and it is also possible to integrally mold a fiber base material in three or more layers.
  • the fiber base material is integrally formed with three or more layers, in order to more reliably and quickly impregnate the resin, it is preferable to provide a gap space between the layers of each step. It is preferable to provide a resin supply flow path that communicates with a gap space between the layers of the steps.

Abstract

繊維材から成る第一の繊維基材(101)および第二の繊維基材(102)に熱硬化性樹脂を含浸させて一体で成形する複合材料(100)の製造方法であって、第一の繊維基材(101)と第二の繊維基材(102)との間において熱硬化性樹脂が流通し得る樹脂流通流路(S101a)を設け、第一の繊維基材(101)および第二の繊維基材(102)の表面から熱硬化性樹脂を含浸させると共に、樹脂流通流路(S101a)から熱硬化性樹脂を含浸させて成る。

Description

複合材料の製造方法、繊維基材および繊維基材の賦形型
 本発明は、複合材料の製造方法、繊維基材および繊維基材の賦形型に関する。
 ガラス繊維やカーボン繊維等の繊維材と樹脂材とから成る複合材料は、種々の工法、例えば、VaRTM(Vacuum Assisted Resin Transfer Molding:真空樹脂含浸製造)工法などによって製造される。
 VaRTM工法は、真空圧を利用して樹脂を繊維基材に含浸させた後、加熱圧縮することによって含浸された樹脂を硬化させることにより、複合材料を製造するものである(例えば、特許文献1参照)。
特開2008-137179号公報
 しかし、樹脂は、繊維基材への含浸中においても硬化が進んでその粘度が上昇してしまうため、未含浸部位を生じさせることなく、一体で成形可能な繊維基材の厚さには制限が有る。よって、従来においては、厚板部(制限された厚さを越える厚さの部分)を有する複合材料(厚板部材)を製造する際には、機械的締結手段またはコボンド成形法などを用いている。
 機械的締結手段を用いた複合材料の製造方法は、厚板部材を分割した形状から成る複数の分割部材を準備し、それら複数の分割部材に対してそれぞれ別々に樹脂を含浸および硬化させた後、それらの部材をファスナ(例えば、リベット)によって機械的に締結するものである。しかし、このような複合材料の製造方法においては、複数の分割部材に対してそれぞれ樹脂の含浸を行うため、樹脂含浸工程が増加すると共に、ファスナ等の部品点数が増加するので、製造コストの増大および製造工程の複雑化を招来することとなる。
 また、コボンド成形法を用いた複合材料の製造方法は、厚板部材を分割した形状から成る複数の分割部材を準備し、一方の部材に樹脂を含浸および硬化させた後、他方の部材に樹脂を含浸させると共に一方の部材に接着するものである。しかし、このような複合材料の製造方法においては、複数の分割部材毎にそれぞれ樹脂の含浸を行うため、樹脂含浸工程が増加すると共に、それら複数の分割部材の接着処理が必要となるので、製造コストの増大および製造工程の複雑化を招来することとなる。
 本発明は上記問題に鑑みてなされたもので、厚板部を有する複合材料を容易に製造することを目的とする。
 上記課題を解決する第一の発明に係る複合材料の製造方法は、繊維材から成る第一の繊維基材および第二の繊維基材に熱硬化性樹脂を含浸させて一体で成形する複合材料の製造方法であって、前記第一の繊維基材と前記第二の繊維基材との間において熱硬化性樹脂が流通し得る樹脂流通流路を設け、前記第一の繊維基材および前記第二の繊維基材の表面から熱硬化性樹脂を含浸させると共に、前記樹脂流通流路から熱硬化性樹脂を含浸させることを特徴とする。
 上記課題を解決する第二の発明に係る複合材料の製造方法は、第一の発明に係る複合材料の製造方法において、前記第一の繊維基材の表面に溝部を設け、前記溝部によって前記樹脂流通流路を画成することを特徴とする。
 上記課題を解決する第三の発明に係る複合材料の製造方法は、第二の発明に係る複合材料の製造方法において、熱硬化性樹脂を硬化する際に、前記第一の繊維基材および前記第二の繊維基材に対して熱および圧力を加えることにより、前記溝部を均すことを特徴とする。
 上記課題を解決する第四の発明に係る複合材料の製造方法は、第二または第三の発明に係る複合材料の製造方法において、前記溝部を、熱可塑性樹脂または澱粉質の糊でコーティングすることを特徴とする。
 上記課題を解決する第五の発明に係る複合材料の製造方法は、第二から第四のいずれか一つの発明に係る複合材料の製造方法において、前記第一の繊維基材を賦形する際に、表面に凹形状または凸形状を有する部材を押し付けてホットコンパクションすることにより、前記溝部を形成することを特徴とする。
 上記課題を解決する第六の発明に係る複合材料の製造方法は、第二から第四のいずれか一つの発明に係る複合材料の製造方法において、前記第一の繊維基材を賦形する際に、繊維織物の表面に固い材料を配置せずにフィルムを用いてバギングした後、圧力を加えて加熱することにより、前記溝部を形成することを特徴とする。
 上記課題を解決する第七の発明に係る繊維基材は、繊維材が積層されて成り、熱硬化性樹脂が含浸される前の繊維基材であって、表面において格子状に連設される複数の溝部を有することを特徴とする。
 上記課題を解決する第八の発明に係る繊維基材の賦形型は、繊維材が積層されて成り、熱硬化性樹脂が含浸される前の繊維基材を賦形する繊維基材の賦形型であって、前記繊維基材に押し付ける押し付け面に凹形状または凸形状を有することを特徴とする。
 第一の発明に係る複合材料の製造方法によれば、熱硬化性樹脂の含浸を確実かつ早期に行うことができるので、厚板部を有する複合材料であっても一体で成形し、容易に製造することができる。
 第二の発明に係る複合材料の製造方法によれば、熱硬化性樹脂が流通し得る流路を簡易な構成で設けることができる。
 第三の発明に係る複合材料の製造方法によれば、溝部による機械的強度等への影響を低減することができる。
 第四の発明に係る複合材料の製造方法によれば、樹脂含浸工程において、熱硬化性樹脂が流通し得る流路を確実に確保することができる。
 第五の発明に係る複合材料の製造方法によれば、溝部を容易に形成することができる。
 第六の発明に係る複合材料の製造方法によれば、溝部を容易に形成することができる。
 第七の発明に係る繊維基材によれば、第一から第六の発明に係る複合材料の製造方法に使用される繊維基材として利用することができる。
 第八の発明に係る繊維基材の賦形型によれば、第一から第六の発明に係る複合材料の製造方法に使用される繊維基材、および、第七の発明に係る繊維基材を、容易に賦形することができる。
本発明に係る複合材料の製造方法によって製造される複合材料の主な実施形態の説明図(概略斜視図)である。 本発明に係る複合材料の製造方法に使用される複合材料製造装置の主な実施形態の構造を示す説明図(概略断面図)である。 本発明に係る複合材料の製造方法の主な実施形態における樹脂含浸工程の手順を示す説明図である。 本発明に係る複合材料の製造方法の主な実施形態における樹脂硬化工程の手順を示す説明図である。 本発明に係る複合材料の製造方法に使用される賦形型の主な実施形態の構造を示す説明図(概略斜視図)である。
 以下に、本発明に係る複合材料の製造方法の実施形態について、添付図面を参照して詳細に説明する。もちろん、本発明は以下の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変更が可能であることは言うまでもない。
〈主な実施形態〉
 本実施形態に係る複合材料の製造方法は、複合材料製造装置(図2における符号1)を使用し、複数の繊維基材(図2における符号101,102)に対して同時に樹脂を含浸させることにより、厚板部を有する複合材料(図1における符号100)を一体で成形するものである。
 本実施形態に係る複合材料の製造方法によって製造される複合材料、および、その製造に使用される繊維基材について、図1、図2および図3Aを参照して説明する。
 図1に示すように、本実施形態に係る複合材料の製造方法によって製造される複合材料100は、平板形状部(スキン部材)とその表面から突出した梁部(ストリンガ部材)とが備えられたスキン-ストリンガ部材であり、その板厚が部分的に厚い厚板部100aを有するものである。
 複合材料100の製造においては、複数(本実施形態においては、二つ)の繊維基材101,102(図2参照)が使用され、複合材料100は、これらの繊維基材101,102に対して同時に熱硬化性樹脂を含浸させて硬化させることにより、製造される。
 図1および図2に示すように、本実施形態に係る複合材料の製造方法に使用される一方の繊維基材(第一の繊維基材)101は、スキン部材を構成するものであって、ガラス繊維やカーボン繊維等の繊維材が平板形状に積層されて成る。
 本実施形態に係る複合材料の製造方法に使用される他方の繊維基材(第二の繊維基材)102は、ストリンガ部材を構成するものであって、ガラス繊維やカーボン繊維等の繊維材が断面略T字形状に積層されて成り、第一の繊維基材101と接合される基部102aと、この基部102aの略中央から突出する梁部102bとから概略構成されている。
 なお、第一の繊維基材101の厚さ(板厚)t101、および、第二の繊維基材102における基部102aの厚さ(板厚)t102aは、それぞれ従来の複合材料の製造方法によっても十分に樹脂を含浸可能な板厚であり、複合材料100における厚板部100aの厚さt100aは、これら板厚t101と板厚t102aとの和に相当し、従来の複合材料の製造方法によって十分に樹脂を含浸可能でない板厚とする(図1参照)。
 図2に示すように、第一の繊維基材101の表面(上面)は、凹凸形状に形成されており、この凹凸形状によって複数の溝部101aが形成されている。溝部101aは、第二の繊維基材102と接合される範囲に設けられており、複合材料100の製造過程において、第一の繊維基材101および第二の繊維基材102が複合材料製造装置1に設置された際に、第一の繊維基材101(溝部101a)と第二の繊維基材102との間に隙間空間(樹脂流通流路)S101aが画成されるようになっている。
 樹脂流通流路S101aは、後述する樹脂含浸工程において、熱硬化性樹脂が流通し得る樹脂流通流路として機能するものである。よって、溝部101aは、後述する樹脂含浸工程において、その形状が崩れない程度の機械的強度および耐熱強度を有すると共に、熱硬化性樹脂を流通し得る流路断面を有するものである。
 ここで、熱硬化性樹脂の流通性を考慮し、複数の溝部101aを、第一の繊維基材101の表面(第一の繊維基材101と第二の繊維基材102との接合面)において、直交(または所定の角度で交差)して互いに繋げて設ける(格子状に連設する)ことが好ましい。また、熱硬化性樹脂の流通性を考慮し、溝部101aの高さ(深さ)hを0.2[mm]以上とし(h≧0.2mm)、隣接して配置される溝部101a間の距離(配置間隔)dを30[mm]未満とする(d<30mm)ことが好ましい(図3A参照)。
 次に、本実施形態に係る複合材料の製造方法に使用される複合材料製造装置の構成について、図2を参照して説明する。
 図2に示すように、本実施形態に係る複合材料の製造方法に使用される複合材料製造装置1には、第一の繊維基材101と第二の繊維基材102とを複合材料100に成形するための成形型11,12が備えられている。
 下側に配置される成形型(下型)11は、複合材料100の下面に対応した表面形状を成しており、メッシュ状の樹脂吸引メディア21を介して、第一の繊維基材101が載置されるようになっている。上側に配置される成形型(上型)12は、複合材料100の上面に対応した表面形状を成しており、メッシュ状の樹脂供給メディア(第一の樹脂供給メディア、第二の樹脂供給メディア)22,23を介して、下型11上に載置された第一の繊維基材101および第二の繊維基材102に被せられるようになっている。
 ここで、上型12と第一の繊維基材101および第二の繊維基材102との間には、所定の隙間空間(第一の樹脂供給流路、第二の樹脂供給流路)S102a,S102bが形成されるようになっている。第一の樹脂供給流路S102aおよび第二の樹脂供給流路S102bは、後述する樹脂含浸工程において、熱硬化性樹脂が流通される流路としてそれぞれ機能するものであり、図示しない樹脂供給装置とそれぞれ接続されている。
 ここで、第一の繊維基材101と第二の繊維基材102との接合部近傍(第二の繊維基材102における基部102aの端部近傍)に形成される第一の樹脂供給流路S102aは、第一の繊維基材101と第二の繊維基材102との層間に形成される樹脂流通流路S101aと連通しており、図示しない樹脂供給装置から第一の樹脂供給流路S102aに供給される熱硬化性樹脂は、樹脂流通流路S101aへ供給されるようになっている。
 また、複合材料製造装置1には、ナイロンやポリエステル等から成る真空バッグフィルム31と、真空バッグフィルム31の周縁において当該真空バッグフィルム31と下型11との間の隙間を封止するシーラント32とが備えられている。
 さらに、真空バッグフィルム31には、吸引ノズル41が設けられており、この吸引ノズル41には、真空ポンプ42が接続されている。よって、第一の繊維基材101および第二の繊維基材102と上型12とが設置されると共に、下型11と真空バッグフィルム31とシーラント32とによって密閉された空間(密閉空間)S1内の空気は、真空ポンプ42によって吸引ノズル41から吸引されるようになっている。
 本実施形態に係る複合材料の製造方法の手順について、図2、図3Aおよび図3Bを参照して説明する。
 まず、繊維材を積層して所定の形状とすることにより、第一の繊維基材101および第二の繊維基材102を賦形する(繊維基材賦形工程)。
 第一の繊維基材101の繊維基材賦形工程においては、繊維材を積層したもの(一方向または多方向繊維材あるいは繊維織物)をホットコンパクションする際に、表面に凹凸形状を有する部材(被覆材または賦形型)を用いることにより、当該凹凸形状を第一の繊維基材101の表面に転写させる。この賦形方法によれば、凹凸形状(溝部101a)を有する第一の繊維基材101を容易に得ることができる。
 ここで、表面に凹凸形状を有する部材としては、例えば、図4に示すような凸部111aと凹部111bとを有する賦形型111を採用することができる。凹部111bは、賦形型111の表面において多数並んで設けられており、凸部111aは、隣接する凹部111bの間において格子状に繋がって設けられている。よって、賦形型111を用いてその表面の凹凸形状(凸部111aおよび凹部111b)を第一の繊維基材101の表面に転写させた場合には、賦形型111の凸部111aによって第一の繊維基材101の溝部101aが形成される。このとき、第一の繊維基材101の溝部101aは、賦形型111の凸部111aに対応した形状、すなわち、当該第一の繊維基材101の表面において格子状に繋がった形状となる。
 もちろん、第一の繊維基材101の賦形方法は、上述したものに限定されず、例えば、繊維材を積層したもの(繊維織物)を、表面に固い材料(例えば、金属製プレッシャープレート等)を配置せずに馴染の良いフィルム等を用いてバギングした後、真空圧やオートクレーブによる加圧または水圧等を加えて加熱するようにしても良い。この賦形方法によれば、織物自体の表面における凹凸形状を利用し、凹凸形状(溝部101a)を有する第一の繊維基材101を容易に得ることができる。
 また、上述した賦形方法によって凹凸形状(溝部101a)を有する第一の繊維基材101を賦形する際には、ベール状またはパウダー状の熱可塑性樹脂を凹凸形状の表面(溝部101a)にコーティングすることにより、凹凸形状(溝部101a)に所望の機械的強度および耐熱強度を付与することができる。もちろん、凹凸形状(溝部101a)を維持するものとしては、熱可塑性樹脂に限定されず、例えば、澱粉質の糊など、面外方向の変形を拘束可能な機能を有するものであれば良い。
 なお、凹凸形状(溝部101a)に所望の機械的強度および耐熱強度を付与する熱可塑性樹脂は、その粘性の低下する温度(軟化温度)が、後述する樹脂含浸工程における熱硬化性樹脂の含浸温度よりも高く、かつ、後述する樹脂硬化工程における熱硬化性樹脂の硬化温度よりも低いものとする。
 続いて、第一の繊維基材101および第二の繊維基材102を複合材料製造装置1に設置し、これら第一の繊維基材101および第二の繊維基材102に熱硬化性樹脂を含浸する(樹脂含浸工程)。
 樹脂含浸工程は、真空ポンプ42を駆動して密閉空間S1を真空状態とし、熱硬化性樹脂を図示しない樹脂供給装置から第一の樹脂供給流路S102aおよび第二の樹脂供給流路S102bへ供給することによって行われる(図2および図3A参照)。第一の樹脂供給流路S102aおよび第二の樹脂供給流路S102bに供給された熱硬化性樹脂は、それぞれ第一の樹脂供給メディア22および第二の樹脂供給メディア23によって拡散され、第一の繊維基材101および第二の繊維基材102の表面から内部へ浸透していく(図2における破線矢印参照)。さらに、第一の樹脂供給流路S102aに供給された熱硬化性樹脂は、当該第一の樹脂供給流路S102aと連通する樹脂流通流路S101aに供給され、この樹脂流通流路S101aから第一の繊維基材101の内部へ浸透していく(図2における破線矢印参照)。
 このように、第一の樹脂供給メディア22および第二の樹脂供給メディア23が配設された第一の繊維基材101および第二の繊維基材102の表面からだけでなく、第一の繊維基材101と第二の繊維基材102との層間である樹脂流通流路S101aからも熱硬化性樹脂が含浸されることにより、第一の繊維基材101および第二の繊維基材102に対する熱硬化性樹脂の含浸を確実かつ早期に行うことができる。
 続いて、第一の繊維基材101および第二の繊維基材102に含浸した熱硬化性樹脂を熱硬化する(樹脂硬化工程)。
 樹脂硬化工程は、成形型11,12を図示しないオーブンによって加熱すると共に、上型12を下型11上における第一の繊維基材101および第二の繊維基材102に押し付けるように加圧する(図3Bにおける矢印参照)ことによって行われる。よって、第一の繊維基材101および第二の繊維基材102は、成形型11,12によって加熱されると共に加圧される。
 このとき、第一の繊維基材101にコーティングされた熱可塑性樹脂は、樹脂硬化工程における加熱によって軟化され、第一の繊維基材101に形成された凹凸形状(溝部101a)は、樹脂硬化工程における加圧によって均される。
 このように、第一の繊維基材101に設けられた凹凸形状(溝部101a)を均し、第一の繊維基材101の表面(第二の繊維基材102との接合面)を略平坦とすることにより、凹凸形状の影響(繊維材が撓んだままでの硬化)で生じ得る機械的強度の低下を抑制(防止)することができる。
 本実施形態に係る複合材料の製造方法によれば、第一の繊維基材101と第二の繊維基材102との間において熱硬化性樹脂が流通し得る樹脂流通流路S101aを設け、第一の繊維基材101および第二の繊維基材102の表面から熱硬化性樹脂を含浸させると共に、樹脂流通流路S101aからも熱硬化性樹脂を含浸させることにより、熱硬化性樹脂の含浸を確実かつ早期に行うことができるので、厚板部100aを有する複合材料100を一体で成形することができる。
 本実施形態においては、第一の繊維基材101の表面を凹凸形状とすることによって溝部101aを形成し、この溝部101aによって第一の繊維基材101と第二の繊維基材102との間に樹脂流通流路S101aを形成している。もちろん、本発明は、これに限定されない。
 例えば、第一の繊維基材の表面(上面)に凹部のみを形成し、当該凹部(溝)によって第一の繊維基材と第二の繊維基材との間に隙間空間(樹脂流通流路)を形成しても良く、また、第一の繊維基材の表面に凸部のみを形成し、当該凸部(凸部間に形成される溝)によって第一の繊維基材と第二の繊維基材との間に隙間空間(樹脂流通流路)を形成しても良い。
 また、第一の繊維基材の表面(上面)だけでなく、第二の繊維基材の表面(下面)を凹凸形状とすることによって第一の繊維基材と第二の繊維基材との間に隙間空間(樹脂流通流路)を形成しても良く、さらに、第二の繊維基材の表面(下面)のみを凹凸形状とする(あるいは、表面に凹部または凸部を形成する)ことによって第一の繊維基材と第二の繊維基材との間に隙間空間(樹脂流通流路)を形成しても良い。
 なお、一方の繊維基材の表面に溝部を設け、他方の繊維基材の表面を平坦とすることが好ましい。これは、一方の繊維基材の賦形のみによって隙間空間の形状等を設定することができ、均一な隙間空間を容易に画成することができるためである。また、他方の繊維基材の表面が平坦であることから、樹脂硬化工程において、一方の繊維基材における凹凸形状を均し、当該繊維基材の表面を容易に平坦とすることができる。
 また、本実施形態においては、第一の繊維基材101と第二の繊維基材102との二つの繊維基材の層間に樹脂流通流路S101aを設けて複合材料100を製造している。
 もちろん、本発明は、これに限定されず、繊維基材を三段以上に重ねたものを一体で成形するようにしても良い。なお、繊維基材を三段以上に重ねて一体で成形する際には、樹脂の含浸をより確実かつ早期に行うために、各段の層間にそれぞれ隙間空間を設けることが好ましく、さらに、各段の層間における隙間空間とそれぞれ連通する樹脂供給流路を設けることが好ましい。
1   複合材料製造装置
11  成形型(下型)
12  成形型(上型)
21  樹脂吸引メディア
22  第一の樹脂供給メディア
23  第二の樹脂供給メディア
31  真空バッグフィルム
32  シーラント
41  吸引ノズル
42  真空ポンプ
100  複合材料
100a 複合材料における厚板部
101  第一の繊維基材
101a 第一の繊維基材における溝部(凹凸形状)
102  第二の繊維基材
102a 第二の繊維基材における基部
102b 第二の繊維基材における梁部
111  賦形型
111a 賦形型における凸部
111b 賦形型における凹部
1   密閉空間
101a  樹脂流通流路(隙間空間)
102a  第一の樹脂供給流路(隙間空間)
102b  第二の樹脂供給流路(隙間空間)
100a 複合材料における厚板部の厚さ
101  第一の繊維基材の厚さ(板厚)
102a 第二の繊維基材における基部の厚さ(板厚)
d   第一の繊維基材における溝部の配置間隔
h   第一の繊維基材における溝部の高さ(深さ)

Claims (8)

  1.  繊維材から成る第一の繊維基材および第二の繊維基材に熱硬化性樹脂を含浸させて一体で成形する複合材料の製造方法であって、
     前記第一の繊維基材と前記第二の繊維基材との間において熱硬化性樹脂が流通し得る樹脂流通流路を設け、
     前記第一の繊維基材および前記第二の繊維基材の表面から熱硬化性樹脂を含浸させると共に、前記樹脂流通流路から熱硬化性樹脂を含浸させる
     ことを特徴とする複合材料の製造方法。
  2.  前記第一の繊維基材の表面に溝部を設け、前記溝部によって前記樹脂流通流路を画成する
     ことを特徴とする請求項1に記載の複合材料の製造方法。
  3.  熱硬化性樹脂を硬化する際に、前記第一の繊維基材および前記第二の繊維基材に対して熱および圧力を加えることにより、前記溝部を均す
     ことを特徴とする請求項2に記載の複合材料の製造方法。
  4.  前記溝部を、熱可塑性樹脂または澱粉質の糊でコーティングする
     ことを特徴とする請求項2または請求項3に記載の複合材料の製造方法。
  5.  前記第一の繊維基材を賦形する際に、表面に凹形状または凸形状を有する部材を押し付けてホットコンパクションすることにより、前記溝部を形成する
     ことを特徴とする請求項2から請求項4のいずれか一項に記載の複合材料の製造方法。
  6.  前記第一の繊維基材を賦形する際に、繊維織物の表面に固い材料を配置せずにフィルムを用いてバギングした後、圧力を加えて加熱することにより、前記溝部を形成する
     ことを特徴とする請求項2から請求項4のいずれか一項に記載の複合材料の製造方法。
  7.  繊維材が積層されて成り、熱硬化性樹脂が含浸される前の繊維基材であって、
     表面において格子状に連設される複数の溝部を有する
     ことを特徴とする繊維基材。
  8.  繊維材が積層されて成り、熱硬化性樹脂が含浸される前の繊維基材を賦形する繊維基材の賦形型であって、
     前記繊維基材に押し付ける押し付け面に凹形状または凸形状を有する
     ことを特徴とする繊維基材の賦形型。
PCT/JP2019/004983 2018-02-13 2019-02-13 複合材料の製造方法、繊維基材および繊維基材の賦形型 WO2019159926A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/957,248 US11707897B2 (en) 2018-02-13 2019-02-13 Method for producing composite material, fiber base material, and shaping mold for fiber base material
EP19754442.2A EP3715081B1 (en) 2018-02-13 2019-02-13 Method for producing composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018022782A JP7114266B2 (ja) 2018-02-13 2018-02-13 複合材料の製造方法および繊維基材
JP2018-022782 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019159926A1 true WO2019159926A1 (ja) 2019-08-22

Family

ID=67618560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004983 WO2019159926A1 (ja) 2018-02-13 2019-02-13 複合材料の製造方法、繊維基材および繊維基材の賦形型

Country Status (4)

Country Link
US (1) US11707897B2 (ja)
EP (1) EP3715081B1 (ja)
JP (1) JP7114266B2 (ja)
WO (1) WO2019159926A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3693156A1 (en) * 2019-02-07 2020-08-12 LM Wind Power A/S A method of manufacturing a wind turbine blade

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192864A (ja) * 1975-02-12 1976-08-14 Goseijushiseikeihinno moyozukehoho
JP2004130723A (ja) * 2002-10-11 2004-04-30 Mitsubishi Heavy Ind Ltd 繊維強化樹脂構造体の製造方法及び、その製造装置
JP2008137179A (ja) 2006-11-30 2008-06-19 Toray Ind Inc 繊維強化プラスチックの製造方法
JP2015071741A (ja) * 2013-09-04 2015-04-16 Jsr株式会社 硬化性組成物、ナノインプリント材料、硬化膜、積層体、硬化膜の製造方法、パターン形成方法及び半導体発光素子用基板

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2913036A (en) * 1956-08-10 1959-11-17 Anthony Bros Fibre Glass Pool Process and apparatus for molding large plastic structures
US4560523A (en) * 1984-04-30 1985-12-24 A&M Engineered Composites Corporation Intrusion molding process for forming composite structures
FR2605929B1 (fr) * 1986-11-05 1989-03-31 Brochier Sa Materiau textile permettant la realisation d'articles stratifies renforces par moulage par injection
JP2807891B2 (ja) * 1989-02-28 1998-10-08 三菱レイヨン株式会社 プリプレグ及びその製造法
JP3279049B2 (ja) 1994-03-07 2002-04-30 東レ株式会社 一方向性補強織物およびその製造方法
US6523246B1 (en) * 1999-11-26 2003-02-25 Honda Giken Kogyo Kabushiki Kaisha Jig used for formation of fiber-reinforced composite structure and method for formation of fiber-reinforced composite structure using jig
US6478922B1 (en) * 2000-06-15 2002-11-12 Alliant Techsystems Inc. Method of manufacturing a composite structure using a conformable locating aperture system
JP4448242B2 (ja) * 2000-09-05 2010-04-07 本田技研工業株式会社 スティフンドパネル用成形補助治具
WO2004033176A1 (ja) * 2002-10-09 2004-04-22 Toray Industries, Inc. Rtm成形方法
US20040219855A1 (en) * 2003-05-02 2004-11-04 Tsotsis Thomas K. Highly porous interlayers to toughen liquid-molded fabric-based composites
US20050037678A1 (en) * 2003-08-11 2005-02-17 Mack Patrick E. Open grid fabric resin infusion media and reinforcing composite lamina
US7168272B2 (en) 2003-09-30 2007-01-30 Owens Corning Fiberglas Technology, Inc. Crimp-free infusible reinforcement fabric
JP4378687B2 (ja) 2004-02-17 2009-12-09 東レ株式会社 繊維強化樹脂およびその製造方法
JP2005262818A (ja) * 2004-03-22 2005-09-29 Toray Ind Inc 強化繊維基材、プリフォームおよび強化繊維基材の製造方法
GB0614087D0 (en) * 2006-07-14 2006-08-23 Airbus Uk Ltd Composite manufacturing method
US7595112B1 (en) * 2006-07-31 2009-09-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate
GB0702781D0 (en) * 2007-02-13 2007-03-21 Airbus Uk Ltd Method of processing a composite material
US8333864B2 (en) * 2008-09-30 2012-12-18 The Boeing Company Compaction of prepreg plies on composite laminate structures
DE102007061431B4 (de) * 2007-12-20 2013-08-08 Airbus Operations Gmbh Verfahren zur Versteifung eines Faserverbundbauteils sowie Vakuummatte und Anordnung zur Herstellung eines versteiften Faserverbundbauteils
DE102007062872A1 (de) * 2007-12-28 2009-07-09 Airbus Deutschland Gmbh Verfahren zur Herstellung eines Profils aus Faserverbundwerkstoff
DE102008036349B4 (de) * 2008-08-05 2016-08-04 Airbus Operations Gmbh Verfahren und Vorrichtung zur Herstellung einer Struktur, insbesondere einer Flugzeugstruktur aus einem Faserverbundwerkstoff
FR2959694B1 (fr) * 2010-05-10 2012-08-03 Lorraine Construction Aeronautique Dispositif pour la fabrication d'une piece composite par injection de resine
JP6239272B2 (ja) * 2013-06-04 2017-11-29 三菱航空機株式会社 繊維強化プラスチック部材の成形方法および成形装置
DE102014017200A1 (de) 2014-11-21 2016-05-25 Airbus Defence and Space GmbH Verfahren zur Herstellung von Faserverbundteilen und ein Faserverbundteil
US10369756B2 (en) 2015-08-25 2019-08-06 The Boeing Company Method of manufacturing a composite article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192864A (ja) * 1975-02-12 1976-08-14 Goseijushiseikeihinno moyozukehoho
JP2004130723A (ja) * 2002-10-11 2004-04-30 Mitsubishi Heavy Ind Ltd 繊維強化樹脂構造体の製造方法及び、その製造装置
JP2008137179A (ja) 2006-11-30 2008-06-19 Toray Ind Inc 繊維強化プラスチックの製造方法
JP2015071741A (ja) * 2013-09-04 2015-04-16 Jsr株式会社 硬化性組成物、ナノインプリント材料、硬化膜、積層体、硬化膜の製造方法、パターン形成方法及び半導体発光素子用基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3715081A4

Also Published As

Publication number Publication date
EP3715081B1 (en) 2022-01-26
EP3715081A1 (en) 2020-09-30
JP7114266B2 (ja) 2022-08-08
US20200391455A1 (en) 2020-12-17
US11707897B2 (en) 2023-07-25
EP3715081A4 (en) 2021-01-20
JP2019136955A (ja) 2019-08-22

Similar Documents

Publication Publication Date Title
JP4484818B2 (ja) 樹脂トランスファー成形法
TWI564147B (zh) 具有編織紋路殼體的製造方法及製得的殼體
JP4808720B2 (ja) 複合部品を製造するための装置、システムおよび方法
JP7149151B2 (ja) 複合材料製航空機用部品およびその製造方法
US9770874B2 (en) Method for producing a component from a fibre composite, preform therefor, and component
JP5711362B2 (ja) 複合材料で作られたモールド及びこのモールドを用いたプロセス
JP2008246981A (ja) 繊維強化複合材料の製造方法
US20030129361A1 (en) Sheet formed from a flat core and from curved parts bonded thereto, and process for producing this sheet
US6652955B1 (en) Hot-moldable laminated sheet
CN110901104B (zh) 预成型体赋形方法和复合材料成型方法
WO2019159926A1 (ja) 複合材料の製造方法、繊維基材および繊維基材の賦形型
CN108621531B (zh) 复合构造体的制造方法
JPWO2019049935A1 (ja) 複合材料成形物製造用成形型および複合材料成形物の製造方法
JP7096106B2 (ja) プリフォーム賦形方法及び複合材成形方法
US20140193625A1 (en) Method for producing a component from a composite fiber material and composite fiber material component
JP2002248620A (ja) 繊維強化プラスチック成形用基材および繊維強化プラスチックの成形方法
JP7041164B2 (ja) 複合的な構成要素を製造するためのツール
JP5638492B2 (ja) 繊維強化プラスチック構造体およびその製造方法
JPH0489208A (ja) プリプレグの製造方法
JP6724667B2 (ja) 複合材料の成形方法および複合材料の成形装置
CN110549649A (zh) 制造由复合材料制成的部件的方法
JP2982002B2 (ja) ハニカムパネルの製造方法
JP2020066221A (ja) プラスチック積層体とその製造方法
JP3493131B2 (ja) バイセクトタイプの繊維強化プラスチック製のハニカムコアの製造方法
US11446884B2 (en) Process for producing a component which is two-dimensional in regions from a fibre composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019754442

Country of ref document: EP

Effective date: 20200623

NENP Non-entry into the national phase

Ref country code: DE