WO2019157973A1 - 抗trailr2抗体-毒素-偶联物及其在抗肿瘤治疗中的药物用途 - Google Patents

抗trailr2抗体-毒素-偶联物及其在抗肿瘤治疗中的药物用途 Download PDF

Info

Publication number
WO2019157973A1
WO2019157973A1 PCT/CN2019/074139 CN2019074139W WO2019157973A1 WO 2019157973 A1 WO2019157973 A1 WO 2019157973A1 CN 2019074139 W CN2019074139 W CN 2019074139W WO 2019157973 A1 WO2019157973 A1 WO 2019157973A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
zapadcine
trailr2
tumor
amino acid
Prior art date
Application number
PCT/CN2019/074139
Other languages
English (en)
French (fr)
Inventor
郑德先
张书永
潘讴东
郑超
朱婉
夏清梅
Original Assignee
和元生物技术(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810150870.5A external-priority patent/CN110152014B/zh
Priority claimed from CN201810150871.XA external-priority patent/CN108452320B/zh
Application filed by 和元生物技术(上海)股份有限公司 filed Critical 和元生物技术(上海)股份有限公司
Priority to AU2019219937A priority Critical patent/AU2019219937B2/en
Priority to EP19753873.9A priority patent/EP3753579A4/en
Priority to US16/969,758 priority patent/US20200407457A1/en
Priority to JP2020543885A priority patent/JP7119104B2/ja
Publication of WO2019157973A1 publication Critical patent/WO2019157973A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/68031Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being an auristatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6857Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from lung cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6859Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from liver or pancreas cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6867Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from a cell of a blood cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6869Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from a cell of the reproductive system: ovaria, uterus, testes, prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6889Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation

Definitions

  • the present invention relates to the fields of biochemistry, immunochemistry, organic chemistry and medicinal chemistry, and in particular to an antibody-toxin-conjugate (ADC, designated Zapadcine-1, Zapadcine-3) and its treatment of tumors Drug use.
  • ADC antibody-toxin-conjugate
  • therapeutic antibodies are the main direction of biotechnology drug research and development around the world, and are in the ascendant. Many researchers believe that therapeutic antibody drugs are “future medicine”. However, China is still lagging behind in the development and industrialization of therapeutic antibodies. So far, in addition to several generic therapeutic antibody drugs, there are few innovative therapeutic antibody drugs with independent intellectual property rights.
  • TNFSF Tumor necrosis factor superfamily
  • FasL/Fas CD95L/CD95
  • TRAIL/TRAILR a type 2 transmembrane protein. Unlike the former two, TRAIL specifically binds to its corresponding death receptor and specifically induces tumor cell apoptosis without damage to normal cells. This property of TRAIL and its death receptor has attracted the attention of researchers, and it is hoped that a new method for treating tumors will be found.
  • TRAILR1 and TRAILR2 are death receptors (DR), the death receptor intracellular domain has a complete death domain (DD), which can induce apoptosis of target cells, TRAILR3 and TRAILR4 are decoy receptors (DcR1, DcR2), decoy
  • DcR1, DcR2 decoy receptors
  • the intracellular region lacks a complete death domain and cannot transmit apoptosis signals, which is one of the mechanisms to protect normal cells from apoptosis.
  • TRAIL binds to its death receptor, it stimulates a cascade of aspartic proteases in the cell, ultimately killing TRAILR1 or TRAILR2-positive tumor cells.
  • Tumor therapy targeting TRAILR1 or TRAILR2 including the use of recombinant soluble TRAIL, anti-TRAILR1 or anti-TRAILR2 agonistic monoclonal therapy, has entered the human clinical trial phase (I/II phase) for the treatment of a variety of cancer patients .
  • the results of clinical trials have shown that it is safe, but the efficacy of the drug alone is not satisfactory. The reason may be related to the short in vivo half-life of recombinant soluble TRAIL, the low affinity of the therapeutic antibody used, the complex signaling pathway mediated by TRAILR1 or TRAILR2, and the selection of patients without the use of effective molecular markers.
  • TRAILR1 or TRAILR2 aims to improve the stability and biological activity of TRAILR1 or TRAILR2 agonists, including combination with chemical, targeted, antibody and small molecule inhibitors. And the application of nanocarriers and other technologies, and has made some progress.
  • the present invention creatively employs a strategy for preparing an antibody-toxin-conjugate (ADC) such that the ADC retains both the high tumor specificity of the antibody and the linker to couple the antibody to the small molecule to form an even couple.
  • ADC antibody-toxin-conjugate
  • the complex when the ADC specifically binds to a specific antigen on the surface of the tumor cell, can introduce the small molecule toxin into the lysosome in the tumor cell, and release the toxin by proteolytic hydrolysis in the lysosome, thereby sexually killing tumor cells, greatly improving the efficacy, while reducing the toxic side effects of small molecular toxins, greatly improving safety, and thus is highly favored.
  • an antibody-drug conjugate or a pharmaceutically acceptable salt or solvate thereof comprising:
  • a coupling moiety coupled to the antibody moiety being selected from the group consisting of: a detectable label, a drug, a toxin, a cytokine, a radionuclide, an enzyme, or a combination thereof;
  • the heavy chain variable region of the antibody comprises the following three complementarity determining region CDRs:
  • amino acid sequence of any one of the above heavy chain variable region amino acid sequences further comprises a derivative sequence which optionally adds, deletes, modifies and/or substitutes at least one amino acid and which retains TRAILR2 binding affinity; and/or
  • the light chain variable region of the antibody comprises the following three complementarity determining region CDRs:
  • amino acid sequence of any one of the above light chain variable region amino acid sequences is subjected to addition, deletion, modification and/or substitution of at least one amino acid derivative sequence having TRAILR2 binding affinity.
  • the antibody comprises an intact antibody or an active fragment thereof.
  • the active fragment retains binding activity to TRAILR2.
  • the antibody drug conjugate ADC is represented by the following formula:
  • LU is a linker that lacks or links the antibody to the drug
  • D is a drug
  • p is the amount of the drug coupled to the antibody; p is a value selected from the group consisting of 1-10, preferably 1-8, more preferably 2-4;
  • the drug D is a toxin.
  • the toxin is a small molecule toxin.
  • the LU is a chemical link.
  • the linker is a linker cleavable by cathepsin.
  • the linker is a link that is not cleavable by cathepsin.
  • L 1 is none or Py, Mc;
  • L 2 is no or Vc, MAA, Mc;
  • L 3 is no or PAB, MAA, Mc;
  • Py is 1,1',1"-(1,3,5-triazine-1,3,5-triyl)tris(prop-2-en-1-one)(1,1',1"- (1,3,5-triazinane-1,3,5-triyl)tris(prop-2-en-1-one));
  • Vc is (S)-2-((S)-2-amino-3-methylbutyrylamino)-5-ureidovaleramide ((S)-2-((S)-2-amino-3- Me thylbutanamido)-5-ureidopentanamide);
  • Mc is 6-(2,5-dioxocyclopent-3-en-1-yl)hex anoic acid
  • PAB-OH is (4-aminophenyl)methanol ((4-aminophenyl)methanol);
  • MAA is 2-mercaptoacetic acid
  • L 1 , L 2 and L 3 are not absent.
  • At least two of L1, L2, and L3 are not absent.
  • none of L1, L2, and L3 is not.
  • the LU is selected from the group consisting of Py-Vc-PAB (Py-Vc-PAB-OH), Mc-Vc-PAB (Mc-Vc-PAB-OH), Py-MAA (Py -MAA-OH), Mc(Mc-OH), the molecular structure is as follows:
  • L 1 in the linker LU is Py.
  • the LU is selected from the group consisting of Py-Vc-PAB (Py-Vc-PAB-OH), Mc (Mc-OH), and Py-MAA (Py-MAA-OH).
  • the drug D (such as MMAE or MMAF or MMAD) is linked to the antibody (such as Zaptuzumab) via a linker LU in a manner selected from the group consisting of: bridge coupling, conventional coupling.
  • the bridge coupling is a sulfhydryl bridge coupling (eg, a disulfide bridge).
  • the conventional coupling is a conventional coupling of a sulfhydryl group.
  • the linker LU is linked to the drug D in a manner that is cleavable by a protease.
  • the linker LU is linked to the drug D in a non-cleavable manner.
  • the D is selected from the group consisting of a chemotherapeutic agent, a radioactive substance, a toxin, an activating enzyme capable of converting a prodrug into an active form thereof, an anti-cancer prodrug, or a combination thereof.
  • the drug D is selected from the group consisting of monomethyl auristatin F (MMAF), monomethyl auristatin E (MMAE), monomethyl auristatin-D (MMAD) derivatives, Or a combination thereof
  • amino acid residue linked to D is originally present in the antibody (parent antibody) or introduced exogenously.
  • the amino acid residue linked to D is a cysteine amino acid.
  • the cysteine amino acid is one or more positions in the parent antibody at one or more positions in the light chain according to the Kabat numbering rules and/or in the heavy chain according to the Kabat numbering rules One or more free cysteine amino acids introduced at the position and at one or more positions of the heavy chain according to the EU numbering rules.
  • the amino acid residue linked to D is lysine.
  • the active fragment is selected from the group consisting of a Fab, F(ab')2, Fv or scFv fragment.
  • the antibody is a monoclonal antibody (mAb).
  • the monoclonal antibody (mAb) is Zaptuzumab.
  • the antibody is an anti-TRAILR2 humanized monoclonal antibody.
  • the antibody comprises: a double-stranded antibody, a single-chain antibody.
  • the antibody is recombinant.
  • the antibody is produced in a bacterium such as E. coli.
  • the antibody is produced in a eukaryotic cell, such as a CHO cell.
  • the antibody is selected from the group consisting of an animal-derived antibody, a chimeric antibody, a humanized antibody, a fully human antibody, or a combination thereof.
  • the antibody is a humanized antibody or a fully human antibody.
  • the antibody is an anti-tumor specific antibody.
  • the antibody is an antibody to the receptor TRAILR1 or TRAILR2 that is specifically expressed on tumor cells.
  • the antibody is selected from the group consisting of receptor 1 (TRAILR1) against human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), or an anti-human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) Receptor 2 (TRAILR2) antibody, or a combination thereof.
  • TRAILR1 receptor 1
  • TRAIL human tumor necrosis factor-related apoptosis-inducing ligand
  • TRAIL anti-human tumor necrosis factor-related apoptosis-inducing ligand
  • TRAILR2 anti-human tumor necrosis factor-related apoptosis-inducing ligand
  • the antibody is a humanized monoclonal antibody against receptor 2 (TRAILR2) of human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).
  • TRAILR2 humanized monoclonal antibody against receptor 2
  • TRAIL tumor necrosis factor-related apoptosis-inducing ligand
  • the humanized monoclonal antibody of the receptor 2 (TRAILR2) of the anti-human tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is Zaptuzumab.
  • the antibody has an EC 50 affinity for the human TRAILR2 protein of from 0.1 to 10 nM, preferably from 0.1 to 1.0 nM, more preferably from 0.1 to 0.5 nM.
  • the antibody does not bind to the TRAILR2 protein of a wild type mouse.
  • the antibody has one or more characteristics selected from the group consisting of:
  • an antigen-antibody complex formed by binding to the cell surface TRAILR2 can be endocytosed to a lysosome;
  • the antibody-drug conjugate is selected from the group consisting of Zapadcine-1a, Zapadcine-1b, Zapadcine-1c, Zapadcine-1d, Zapadcine-3a, Zapadcine-3b, Zapadcine-3c , Zapadcine-3d, Zapadcine-3e; among them,
  • the structure of the conjugate Zapadcine-1a is as follows:
  • the structure of the conjugate Zapadcine-1b is as follows:
  • Zapadcine-1c The structure of the conjugate Zapadcine-1c is as follows:
  • the structure of the conjugate Zapadcine-3a is as follows:
  • the structure of the conjugate Zapadcine-3b is as follows:
  • the structure of the conjugate Zapadcine-3c is as follows:
  • the structure of the conjugate Zapadcine-3d is as follows:
  • the structure of the conjugate Zapadcine-3e is as follows:
  • the antibody-drug conjugate is selected from the group consisting of: Zapadcine-1a, Zapadcine-1c;
  • the structure of the conjugate Zapadcine-1a is as follows:
  • Zapadcine-1c The structure of the conjugate Zapadcine-1c is as follows:
  • the antibody-drug conjugate is selected from the group consisting of: Zapadcine-3a, Zapadcine-3d;
  • the structure of the conjugate Zapadcine-3a is as follows:
  • the structure of the conjugate Zapadcine-3d is as follows:
  • amino acid sequence of the heavy chain variable region of the antibody is set forth in SEQ ID No. 7; and/or the amino acid sequence of the light chain variable region of the antibody is SEQ ID No. 8;
  • amino acid sequence of the above heavy chain variable region further comprises optionally adding, deleting, modifying and/or substituting at least one amino acid and having at least 80% homology with the amino acid sequence of SEQ ID No. 7. Or derived sequences of sequence identity;
  • amino acid sequence of the above light chain variable region further comprises optionally adding, deleting, modifying and/or substituting at least one amino acid and having at least 80% homology with the amino acid sequence set forth in SEQ ID No. Or derived sequences of sequence identity.
  • amino acid sequence of the heavy chain variable region of the monoclonal antibody is set forth in SEQ ID No. 7; and/or the amino acid sequence of the light chain variable region of the antibody As shown in SEQ ID No. 8;
  • amino acid sequence of the above heavy chain variable region further comprises optionally adding, deleting, modifying and/or substituting at least one amino acid and having at least 80% homology with the amino acid sequence of SEQ ID No. 7. Or derived sequences of sequence identity;
  • amino acid sequence of the above light chain variable region further comprises optionally adding, deleting, modifying and/or substituting at least one amino acid and having at least 80% homology with the amino acid sequence set forth in SEQ ID No. Or derived sequences of sequence identity;
  • the antibody-drug conjugate is selected from the group consisting of Zapadcine-3a, Zapadcine-3d.
  • the antibody-drug conjugate is selected from the group consisting of Zapadcine-3a, Zapadcine-3d, wherein the monoclonal antibody (mAb) is Zaptuzumab.
  • the antibody-drug conjugate is Zapadcine-3a, wherein the monoclonal antibody (mAb) is Zaptuzumab.
  • amino acid sequence of the heavy chain variable region of the monoclonal antibody is set forth in SEQ ID No. 7; and/or the amino acid sequence of the light chain variable region of the antibody As shown in SEQ ID No. 8;
  • amino acid sequence of the above heavy chain variable region further comprises optionally adding, deleting, modifying and/or substituting at least one amino acid and having at least 80% homology with the amino acid sequence of SEQ ID No. 7. Or derived sequences of sequence identity;
  • amino acid sequence of the above light chain variable region further comprises optionally adding, deleting, modifying and/or substituting at least one amino acid and having at least 80% homology with the amino acid sequence set forth in SEQ ID No. Or derived sequences of sequence identity;
  • the antibody-drug conjugate is selected from the group consisting of Zapadcine-1a, Zapadcine-1c.
  • the antibody-drug conjugate is selected from the group consisting of Zapadcine-1a, Zapadcine-1c, wherein the monoclonal antibody (mAb) is Zaptuzumab.
  • the antibody-drug conjugate is divided into Zapadcine-1a, wherein the monoclonal antibody (mAb) is Zaptuzumab.
  • the use of the antibody-drug conjugate of the first aspect of the invention, or a pharmaceutically acceptable salt or solvate thereof, for use in the antibody-drug conjugate (i) preparing a diagnostic reagent; and/or (ii) preparing a medicament for preventing and/or treating a TRAILR2-related disease.
  • the TRAILR2-related disease is selected from the group consisting of the occurrence, growth, and/or metastasis of a tumor (eg, a tumor that is positive for TRAILR2 expression).
  • the tumor positively expressed by TRAILR2 is a cancer positively expressed by TRAILR2.
  • the cancer is selected from the group consisting of T lymphocytic leukemia, B lymphocytic leukemia, non-T non-B lymphocytic leukemia, non-small cell lung cancer, liver cancer, colon cancer, breast cancer, ovarian cancer, pancreatic cancer, thyroid gland Cancer, head and neck squamous cell carcinoma, esophageal squamous cell carcinoma, lung squamous cell carcinoma, lung adenocarcinoma, cervical squamous cell carcinoma, pancreatic squamous cell carcinoma, colon squamous cell carcinoma, gastric squamous cell carcinoma , prostate cancer, osteosarcoma or soft tissue sarcoma.
  • the tumor is a cancer that is positive for TRAILR2, and the cancer is selected from the group consisting of T lymphocytic leukemia, B lymphocytic leukemia, non-T non-B lymphocyte leukemia, non-small cell lung cancer, liver cancer.
  • colon cancer breast cancer, ovarian cancer, pancreatic cancer, thyroid cancer, head and neck squamous cell carcinoma, esophageal squamous cell carcinoma, lung squamous cell carcinoma, lung adenocarcinoma, cervical squamous cell carcinoma, pancreatic squamous Cell carcinoma, colon squamous cell carcinoma, gastric squamous cell carcinoma, prostate cancer, osteosarcoma or soft tissue sarcoma.
  • the positive expression of TRAILR2 refers to the level of TRAILR2 transcript and/or protein in tumor tissues and/or cells, and the level of transcripts and/or proteins in normal tissues and/or cells. Ratio, L1/L0 ⁇ 2, preferably ⁇ 3.
  • composition comprising:
  • an active ingredient which is an antibody drug conjugate according to the first aspect of the invention, or a pharmaceutically acceptable salt or solvent compound thereof, or a combination thereof;
  • the active ingredient is Zapadcine-3a, Zapadcine-3d, or a combination thereof, wherein the monoclonal antibody (mAb) is Zaptuzumab.
  • the active ingredient is Zapadcine-3a, wherein the monoclonal antibody (mAb) is Zaptuzumab.
  • the active ingredient is Zapadcine-1a, Zapadcine-1c, or a combination thereof, wherein the monoclonal antibody (mAb) is Zaptuzumab.
  • the active ingredient is Zapadcine-1a, wherein the monoclonal antibody (mAb) is Zaptuzumab.
  • the pharmaceutical composition is in the form of a human unit dosage.
  • the pharmaceutical composition is a liquid formulation.
  • the antibody drug conjugate is present in the pharmaceutical composition in an amount of from 0.005 to 50% by weight, preferably from 0.05 to 10% by weight.
  • the medicament further comprises (iii) an additional therapeutic agent.
  • the additional therapeutic agent comprises a chemotherapeutic agent.
  • a method for non-therapeutic inhibition of tumor cells in vitro comprising the steps of: affixing said tumor cells to an antibody drug conjugate of said first aspect of the invention or a pharmaceutically acceptable thereof Accepted salt or solvent compound contact.
  • the contacting is carried out in an in vitro culture system.
  • a method of preventing and/or treating a tumor comprising the step of administering to a subject in need thereof the antibody-drug conjugate of the first aspect of the invention or a pharmaceutically acceptable thereof A salt or solvent compound or a pharmaceutical composition according to the third aspect of the invention.
  • the subject is a mammal, including a human.
  • a method of slowing tumor growth in a subject of treatment comprising the step of: combining an effective amount of the antibody drug conjugate of the first aspect of the invention or a pharmaceutically acceptable thereof A salt or solvate compound with one or more treatments selected from the group consisting of radiation therapy, chemotherapeutic treatment, biological therapy, or a combination thereof.
  • the antibody-drug conjugate of the first aspect of the invention, or a pharmaceutically acceptable salt or solvate thereof, or the pharmaceutical composition of the third aspect of the invention Use in the preparation of a medicament for the prevention and/or treatment of a tumor.
  • Figure 1 is a molecular structural formula of a chemical connector of the present invention.
  • Figure 2 is a molecular structural formula of the anti-TRAILR2 antibody-toxin-conjugate of the present invention.
  • Figure 3 is a molecular structural formula of the chemical toxin of the present invention.
  • Figure 4 is the affinity of Zapadcine-1a and TRAILR2 recombinant protein (antigen) of the present invention.
  • Figure 5 is a graph showing the inhibitory effect of Zapadcine-1a of the present invention on the growth of subcutaneous xenografts of lymphocytic leukemia Jurkat E6-1 nude mice.
  • Figure 6 is a graph showing the inhibitory effect of Zapadcine-1a of the present invention on the growth of xenografted tumor of large cell lung cancer NCI-H460 in nude mice.
  • Figure 7 is a graph showing the inhibitory effect of Zapadcine-1a of the present invention on the growth of human non-small cell lung cancer NCI-H1975 nude mice xenografts.
  • Figure 8 is a graph showing the inhibitory effect of Zapadcine-1a of the present invention on the growth of transplanted tumor of hepatocellular carcinoma cell line SMMC-7721 in nude mice.
  • Figure 9 is a graph showing the inhibitory effect of Zapadcine-1a of the present invention on the growth of ovarian cancer cell line A2780 in nude mice.
  • Figure 10 is a graph showing the inhibitory effect of Zapadcine-1a of the present invention on the growth of transplanted tumor of pancreatic cancer cell Mia PaCa-2 in nude mice.
  • Figure 11 is the maximum tolerated dose of a normal single dose of Zapadcine-1a in the present invention.
  • Figure 12 is the affinity of Zapadcine-3a and TRAILR2 recombinant protein (antigen) of the present invention.
  • Figure 13 is a graph showing the inhibitory effect of Zapadcine-3a of the present invention on the growth of human non-small cell lung cancer MSTO-211H xenografts in nude mice.
  • Figure 14 is a graph showing the inhibitory effect of Zapadcine-3a of the present invention on the growth of transplanted tumor of pancreatic cancer cell Mia PaCa-2 in nude mice.
  • Figure 15 is a graph showing the inhibitory effect of Zapadcine-3a of the present invention on the growth of transplanted tumor of T lymphocyte leukemia cell line Jurkat E6-1 in nude mice.
  • Figure 16 is a graph showing the inhibitory effect of Zapadcine-3a of the present invention on the growth of transplanted tumor cells of non-T non-B lymphocytic leukemia cells in nude mice.
  • Figure 17 is the maximum tolerated dose of a single dose of Zapadcine-3a in a single rat of the present invention.
  • Figure 18 is the maximum tolerated dose of a single administrated cynomolgus monkey of Zapadcine-3a of the present invention.
  • the present inventors have designed antibody drug conjugates targeting TRAILR2, which have significant anti-tumor effects, through extensive and intensive research.
  • the invention also provides pharmaceutical use of the anti-TRAILR2 antibody-drug conjugate and its role in inhibiting or preventing tumors.
  • the humanized monoclonal antibody against TRAILR2 (TRAILR2 or CD262) of the present invention has unique gene sequences, antigenic determinants and very similar to other antibodies against the TRAILR2 target which have entered human clinical trials at home and abroad.
  • the strong antigen affinity can specifically kill a variety of TRAILR2-positive tumor cells in vitro and in vivo, inhibit tumor cell growth, but has little toxicity to normal cells and tissues, and has good safety.
  • an anti-TRAILR2 humanized monoclonal antibody (Zaptuzumab) is used, and Zaptuzumab is coupled to a small molecule toxin via a different chemical linker using a disulfide bridge coupling technique.
  • Zaptuzumab is coupled to a small molecule toxin via a different chemical linker using a disulfide bridge coupling technique.
  • a variety of ADCs with different chemical structures were obtained. After repeated screening of anti-tumor activity in vivo and in vitro, a well-prepared ADC candidate drug (named Zapadcine-1, Zapadcine-3) was obtained, which would be used for TRAILR2 positive. Treatment of a variety of tumors.
  • antibody drug conjugate As used herein, the terms “antibody drug conjugate”, “antibody conjugate”, “antibody drug conjugate”, “antibody-drug conjugate” “immunoconjugate” are used interchangeably and mean (a a conjugate of an antibody or active fragment thereof with (b) a drug.
  • antibody drug conjugate of the invention As used herein, the terms "antibody drug conjugate of the invention”, “antibody of the invention and drug conjugate” or “ADC of the invention” are used interchangeably and mean having an antibody of the invention against TRAILR2 or activity thereof. A conjugate of the fragment with the drug.
  • antibody or "immunoglobulin” is an isotetrameric glycoprotein of about 150,000 daltons having the same structural features, consisting of two identical light chains (L) and two identical heavy chains. (H) Composition. Each light chain is linked to the heavy chain by a covalent disulfide bond, and the number of disulfide bonds between the heavy chains of different immunoglobulin isotypes is different. Each heavy and light chain also has regularly spaced intrachain disulfide bonds. Each heavy chain has a variable region (VH) at one end followed by a plurality of constant regions.
  • VH variable region
  • Each light chain has a variable region (VL) at one end and a constant region at the other end; the constant region of the light chain is opposite the first constant region of the heavy chain, and the variable region of the light chain is opposite to the variable region of the heavy chain .
  • Particular amino acid residues form an interface between the variable regions of the light and heavy chains.
  • variable means that certain portions of the variable regions of an antibody differ in sequence, which form the binding and specificity of various specific antibodies for their particular antigen. However, the variability is not evenly distributed throughout the variable region of the antibody. It is concentrated in three segments in the variable region of the light and heavy chains called the complementarity determining region (CDR) or hypervariable region. The more conserved portion of the variable region is referred to as the framework region (FR).
  • the variable regions of the native heavy and light chains each comprise four FR regions which are substantially in a beta-sheet configuration and are joined by three CDRs forming a linker, in some cases forming a partial beta sheet structure.
  • the CDRs in each chain are closely joined together by the FR region and together with the CDRs of the other chain form the antigen binding site of the antibody (see Kabat et al, NIH Publ. No. 91-3242, Vol. I, pp. 647-669). (1991)).
  • the constant regions are not directly involved in the binding of the antibody to the antigen, but they exhibit different effector functions, such as antibody-dependent cytotoxicity of the participating antibodies.
  • the "light chain" of a vertebrate antibody can be classified into one of two distinct classes (called kappa and lambda) depending on the amino acid sequence of its constant region.
  • Immunoglobulins can be classified into different classes based on the amino acid sequence of their heavy chain constant regions. There are five main classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, some of which can be further divided into subclasses (isotypes) such as IgG1, IgG2, IgG3, IgG4, IgA, and IgA2.
  • the heavy chain constant regions corresponding to different classes of immunoglobulins are called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
  • the subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known to those skilled in the art.
  • variable regions which are divided into four framework regions (FR), four
  • FR framework regions
  • the amino acid sequence of FR is relatively conservative and is not directly involved in the binding reaction.
  • CDRs form a cyclic structure in which the ⁇ -sheets formed by the FRs are spatially close to each other, and the CDRs on the heavy chain and the CDRs on the corresponding light chain constitute the antigen-binding site of the antibody.
  • the amino acid sequence of the same type of antibody can be compared to determine which amino acids constitute the FR or CDR regions.
  • the present invention encompasses not only intact antibodies, but also fragments of immunologically active antibodies (such as antigen-binding fragments) or fusion proteins of antibodies with other sequences. Accordingly, the invention also includes fragments, derivatives and analogs of the antibodies.
  • antibodies include murine, chimeric, humanized or fully human antibodies prepared by techniques well known to those skilled in the art.
  • Recombinant antibodies such as chimeric and humanized monoclonal antibodies, including human and non-human portions, can be obtained by standard DNA recombination techniques, all of which are useful antibodies.
  • a chimeric antibody is a molecule in which different portions are derived from different animal species, such as a variable region having a monoclonal antibody from a murine, and a chimeric antibody from a constant region of a human immunoglobulin (see, e.g., U.S. Patent 4,816,567 and U.S. Patent No. 4,816,397, incorporated herein by reference in its entirety herein.
  • a humanized antibody refers to an antibody molecule derived from a non-human species having one or more complementarity determining regions (CDRs) derived from a non-human species and a framework region derived from a human immunoglobulin molecule (see U.S. Patent 5,585,089, This article is hereby incorporated by reference in its entirety.
  • CDRs complementarity determining regions
  • These chimeric and humanized monoclonal antibodies can be prepared using recombinant DNA techniques well known in the art.
  • the antibody may be monospecific, bispecific, trispecific, or more multiple specificity.
  • the antibody of the present invention further includes a conservative variant thereof, which means that there are up to 10, preferably up to 8, more preferably up to 5, optimally compared to the amino acid sequence of the antibody of the present invention. Up to 3 amino acids are replaced by amino acids of similar or similar nature to form a polypeptide. These conservative variant polypeptides are preferably produced by amino acid substitution according to Table 1.
  • the present invention provides a highly specific and high affinity antibody against TRAILR2 comprising a heavy chain and a light chain, the heavy chain comprising a heavy chain variable region (VH) amino acid sequence, the light chain comprising a light chain variable Region (VL) amino acid sequence.
  • VH heavy chain variable region
  • VL light chain variable Region
  • the respective CDRs of the heavy chain variable region (VH) amino acid sequence and the light chain variable region (VL) amino acid sequence are selected from the group consisting of:
  • SEQ ID No. 1 CDRH1, DFSMN;
  • SEQ ID No. 2 CDRH2, WINTETGEPTYADDFKG;
  • SEQ ID No. 4 CDRL1, RSSQSLVHSNGNTYLH;
  • SEQ ID No. 5 CDRL2, KVSNRFS;
  • SEQ ID No. 6 CDRL3, FQSTHVPHT;
  • a sequence having TRAILR2 binding affinity by adding, deleting, modifying and/or substituting at least one amino acid sequence of any one of the above amino acid sequences.
  • the sequence formed by adding, deleting, modifying and/or substituting at least one amino acid sequence preferably has a homology of at least 80%, preferably at least 85%, more preferably at least 90. %, optimally at least 95% of the amino acid sequence.
  • the antibody has an activity of activating a TRAILR2-related signaling pathway; has an activity of promoting apoptosis; has an activity of inhibiting cell proliferation; has an activity of promoting autophagy, or a combination thereof.
  • the invention provides an antibody against TRAILR2, having: a heavy chain variable region of the invention; and/or a light chain variable region of the invention;
  • the heavy chain variable region of the antibody comprises the following three complementarity determining region CDRs:
  • any one of the above amino acid sequences further comprises a derivative sequence which optionally adds, deletes, modifies and/or substitutes at least one amino acid and is capable of retaining TRAILR2 binding affinity;
  • the light chain variable region of the antibody comprises the following three complementarity determining region CDRs:
  • CDRL1 shown in SEQ ID NO.: 4,
  • CDRL2 shown in SEQ ID NO.: 5, and
  • a derivative sequence having TRAILR2 binding affinity by adding, deleting, modifying and/or substituting at least one amino acid sequence of any one of the above amino acid sequences.
  • the heavy chain variable region sequence of the antibody is SEQ ID NO.: 7; and/or the light chain variable region sequence of the antibody is SEQ ID NO.: 8.
  • the antibody is selected from the group consisting of an animal-derived antibody, a chimeric antibody, a humanized antibody, a fully human antibody, or a combination thereof.
  • the number of amino acids added, deleted, modified and/or substituted does not exceed 40% of the total amino acid number of the initial amino acid sequence.
  • the number of amino acids added, deleted, modified and/or substituted is from 1 to 7.
  • the at least one amino acid sequence added, deleted, modified and/or substituted is an amino acid sequence having a homology of at least 80%.
  • the at least one amino acid added, deleted, modified, and/or substituted has an activity of activating a TRAILR2-related signaling pathway; and has an activity of promoting apoptosis, inhibiting cell proliferation, and promoting autophagy of the cell. Any one or several.
  • the antibody of the present invention may be a double-stranded or single-chain antibody, and may be selected from an animal-derived antibody, a chimeric antibody, a humanized antibody, more preferably a humanized antibody, a human-animal chimeric antibody (such as a human-mouse).
  • the chimeric antibody is more preferably a fully human antibody.
  • the antibody derivative of the present invention may be a single chain antibody, and/or an antibody fragment such as Fab, Fab', (Fab') 2 or other known antibody derivatives in the field, and IgA, IgD, IgE. Any one or more of IgG and IgM antibodies or antibodies of other subtypes.
  • the animal is preferably a mammal, such as a mouse.
  • the antibody of the invention may be a chimeric antibody, a humanized antibody, a CDR grafted and/or a modified antibody that targets human TRAILR2.
  • any one or more of the above SEQ ID No.: 4-SEQ ID No.: 6, or they are added, deleted, modified and/or substituted for at least one amino acid A sequence having TRAILR2 binding affinity, located in the CDR region of the light chain variable region (VL).
  • VH CDR1, CDR2, CDR3 are each independently selected from any one or more of SEQ ID No.: 1 - SEQ ID No.: 3, or they are added, a sequence having TRAILR2 binding affinity for deleting, modifying and/or substituting at least one amino acid;
  • VL CDR1, CDR2, CDR3 are each independently selected from any one or more of SEQ ID No.: 4-SEQ ID No.: Or a sequence having TRAILR2 binding affinity by addition, deletion, modification and/or substitution of at least one amino acid.
  • the number of amino acids added, deleted, modified and/or substituted is preferably not more than 40%, more preferably not more than 35%, more preferably 1-33% of the total amino acid number of the initial amino acid sequence. More preferably, it is 5-30%, more preferably 10-25%, and still more preferably 15-20%.
  • the number of amino acids added, deleted, modified and/or substituted may be 1-7, more preferably 1-5, more preferably 1-3, more preferably It is 1-2.
  • the antibody that targets TRAILR2 is Zaptuzumab.
  • the heavy chain variable region (VH) amino acid sequence of the antibody Zaptuzumab is the amino acid sequence set forth in SEQ ID NO.: 7.
  • the light chain variable region (V-Kappa) amino acid sequence of the antibody Zaptuzumab is the amino acid sequence set forth in SEQ ID NO.: 8.
  • the amino acid sequence of the heavy chain variable region of the antibody further comprises an amino acid sequence optionally added, deleted, modified and/or substituted with at least one amino acid and SEQ ID No. 7. Derived sequences having at least 80% homology or sequence identity.
  • the amino acid sequence of the variable region of the antibody light chain further comprises an amino acid sequence optionally added, deleted, modified and/or substituted with at least one amino acid and SEQ ID No. Derived sequences having at least 80% homology or sequence identity.
  • the homology or sequence identity may be 80% or more, preferably 90% or more, more preferably 95% to 98%, and most preferably 99% or more.
  • Methods for determining sequence homology or identity include, but are not limited to, Computational Molecular Biology, Lesk, AM, Oxford University Press, New York, 1988; Biocomputing: Information Biocomputing: Informatics and Genome Projects, Smith, DW, Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, AM and Griffin, HG , Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987 and Sequence Analysis Primer, Gribskov, M. and Devereux , J. M. Stockton Press, New York, 1991 and Carillo, H. and Lipman, D., SIAM J.
  • the preferred method of determining identity is to obtain the largest match between the sequences tested.
  • the method of determining identity is compiled in a publicly available computer program.
  • Preferred computer program methods for determining identity between two sequences include, but are not limited to, the GCG package (Devereux, J. et al., 1984), BLASTP, BLASTN, and FASTA (Altschul, S, F. et al, 1990).
  • the BLASTX program is available to the public from NCBI and other sources (BLAST Handbook, Altschul, S. et al, NCBI NLM NIH Bethesda, Md. 20894; Altschul, S. et al, 1990).
  • the well-known Smith Waterman algorithm can also be used to determine identity.
  • sequence of the DNA molecule of the antibody or fragment thereof of the present invention can be obtained by a conventional technique such as PCR amplification or genomic library screening.
  • the coding sequences of the light and heavy chains can also be fused together to form a single chain antibody.
  • the recombinant sequence can be used to obtain the relevant sequences in large quantities. This is usually done by cloning it into a vector, transferring it to a cell, and then isolating the relevant sequence from the proliferated host cell by conventional methods.
  • synthetic sequences can be used to synthesize related sequences, especially when the fragment length is short.
  • a long sequence of fragments can be obtained by first synthesizing a plurality of small fragments and then performing the ligation.
  • DNA sequence encoding the antibody (or a fragment thereof, or a derivative thereof) of the present invention completely by chemical synthesis.
  • the DNA sequence can then be introduced into various existing DNA molecules (or vectors) and cells known in the art.
  • mutations can also be introduced into the protein sequences of the invention by chemical synthesis.
  • the invention also relates to vectors comprising the appropriate DNA sequences described above, as well as appropriate promoters or control sequences. These vectors can be used to transform appropriate host cells to enable them to express proteins.
  • the host cell can be a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell.
  • Preferred animal cells include, but are not limited to, CHO-S, HEK-293 cells.
  • the resulting host cells are cultured under conditions suitable for expression of the antibody of the invention.
  • immunoglobulin purification steps such as protein A-Sepharose, hydroxyapatite chromatography, gel electrophoresis, dialysis, ion exchange chromatography, hydrophobic chromatography, molecular sieve chromatography or affinity chromatography, etc.
  • the antibodies of the present invention are purified by conventional separation and purification means well known to those skilled in the art.
  • the resulting monoclonal antibodies can be identified by conventional means.
  • the binding specificity of a monoclonal antibody can be determined by immunoprecipitation or in vitro binding assays such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA).
  • the binding affinity of a monoclonal antibody can be determined, for example, by the Scatchard analysis of Munson et al, Anal. Biochem., 107: 220 (1980).
  • the antibodies of the invention can be expressed intracellularly, or on the cell membrane, or secreted extracellularly.
  • the recombinant protein can be isolated and purified by various separation methods using its physical, chemical, and other properties. These methods are well known to those skilled in the art. Examples of such methods include, but are not limited to, conventional renaturation treatment, treatment with a protein precipitant (salting method), centrifugation, osmotic sterilizing, sonication, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption layer Analysis, ion exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • Drugs that can be used to form the ADC of the invention include, but are not limited to, cytotoxic agents.
  • cytotoxic agent refers to a substance that inhibits or prevents the expression of cells, the function of cells, and/or the destruction of cells.
  • the term includes radioisotopes, chemotherapeutic agents, and toxins, such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof.
  • cytotoxic agents include, but are not limited to, auristatins (eg, auristatin E, auristatin F, MMAE, and MMAF), chlortetracycline, etometanol, ricin, ricin A-chain, Butatin, doxymethine, dolastatin, doxorubicin, daunorubicin, paclitaxel, cisplatin, cc1065, ethidium bromide, mitomycin, etoposide, tenoposide , vincristine, vinblastine, colchicine, dihydroxy anthrax dione, actinomycin, diphtheria toxin, pseudomonas exotoxin (PE) A, PE40, acacia toxin, abrin toxin A chain , lotus root toxin A chain, alpha-tripococcus, white toxin, mittollin, retstrictocin, phenolic acid, a
  • Preferred small molecule drugs are compounds having high cytotoxicity, preferably monomethylaustatatin, calicheamicin, maytansinoids, or a combination thereof; more preferably selected from: monomethyl auristatin -E (MMAE), monomethyl auristatin-D (MMAD), monomethyl auristatin-F (MMAF), or a combination thereof.
  • MMAE monomethyl auristatin -E
  • MMAD monomethyl auristatin-D
  • MMAF monomethyl auristatin-F
  • ADC Antibody-drug conjugate
  • the invention also provides an antibody-drug conjugate (ADC) based on an antibody of the invention.
  • ADC antibody-drug conjugate
  • the antibody-conjugated drug comprises the antibody, and an effector molecule, which is coupled to the effector molecule, and is preferably chemically coupled.
  • the effector molecule is preferably a drug having therapeutic activity.
  • the effector molecule may be one or more of a toxic protein, a chemotherapeutic drug, a small molecule drug or a radionuclide.
  • the antibody of the present invention and the effector molecule may be coupled by a coupling agent.
  • the coupling agent may be any one or a combination of a non-selective coupling agent, a coupling agent using a carboxyl group, a peptide chain, and a coupling agent using a disulfide bond.
  • the non-selective coupling agent refers to a compound that forms a covalent bond between an effector molecule and an antibody, such as glutaraldehyde or the like.
  • the coupling agent using a carboxyl group may be any one or more of an cis-aconitic anhydride coupling agent (such as cis-aconitic anhydride) and an acyl hydrazine coupling agent (coupling site is an acylhydrazine).
  • Certain residues on the antibody are used to link to a variety of functional groups, including imaging agents (such as chromophores and fluorophores), diagnostic reagents (such as MRI contrast agents and radioisotopes). , stabilizers (such as ethylene glycol polymers) and therapeutic agents.
  • imaging agents such as chromophores and fluorophores
  • diagnostic reagents such as MRI contrast agents and radioisotopes
  • stabilizers such as ethylene glycol polymers
  • therapeutic agents such as ethylene glycol polymers
  • the antibody can be conjugated to a functional agent to form a conjugate of the antibody-functional agent.
  • Functional agents eg, drugs, detection reagents, stabilizers
  • the functional agent can be attached to the antibody either directly or indirectly via a linker.
  • Typical coupling methods suitable for use in the present invention include both K-Lock and C-Lock coupling methods.
  • K lysine
  • C cysteine in the antibody sequence
  • Antibodies can be coupled to drugs to form antibody drug conjugates (ADCs).
  • ADC antibody drug conjugates
  • the ADC comprises a linker between the drug and the antibody.
  • the linker can be a degradable or non-degradable linker.
  • Degradable linkers are typically susceptible to degradation under the intracellular environment, such as degradation of the linker at the target site, thereby releasing the drug from the antibody.
  • Suitable degradable linkers include, for example, enzyme-degradable linkers, including peptidyl-containing linkers that can be degraded by intracellular proteases (eg, lysosomal proteases or endosomal proteases), or sugar linkers, for example, which can be glucuronide Enzymatically degraded glucuronide-containing linker.
  • Peptidyl linkers can include, for example, dipeptides such as valine-citrulline, phenylalanine-lysine or valine-alanine.
  • Other suitable degradable linkers include, for example, pH sensitive linkers (e.g., linkers that hydrolyze at pH less than 5.5, such as barium splices) and linkers that degrade under reducing conditions (e.g., disulfide bond linkers).
  • Non-degradable linkers typically release the drug under conditions in which the antibody is hydrolyzed by a protease.
  • the linker Prior to attachment to an antibody, the linker has an reactive reactive group capable of reacting with certain amino acid residues, and attachment is achieved by reactive reactive groups.
  • Sulfhydryl-specific reactive groups are preferred and include, for example, maleimide compounds, haloamides (eg, iodine, bromine or chlorinated); haloesters (eg, iodine, bromine or chlorinated) Halogenated methyl ketone (eg iodine, bromine or chlorinated), benzyl halide (eg iodine, bromine or chlorinated); vinyl sulfone, pyridyl disulfide; mercury derivative such as 3,6- Di-(mercurymethyl)dioxane, and the counter ion is acetate, chloride or nitrate; and polymethylene dimethyl sulfide thiosulfonate.
  • the linker can include, for example, a maleimide attached to the antibody via
  • the drug can be any cytotoxic, cytostatic or immunosuppressive drug.
  • the linker binds the antibody to the drug, and the drug has a functional group that can bond to the linker.
  • the drug may have an amino group, a carboxyl group, a thiol group, a hydroxyl group, or a ketone group which may be bonded to a linker.
  • the drug is directly attached to the linker, the drug has a reactive group that is reactive prior to attachment to the antibody.
  • Particularly useful classes of drugs include, for example, anti-tubulin drugs, DNA minor groove binding agents, DNA replication inhibitors, alkylating agents, antibiotics, folic acid antagonists, antimetabolites, chemotherapeutic sensitizers, topoisomerase inhibition Agent, vinca alkaloids, etc.
  • cytotoxic drugs include, for example, DNA minor groove binding reagents, DNA alkylating agents, and tubulin inhibitors, typical cytotoxic drugs including, for example, auristatin, camptothecin (camptothecins), docamycin/duocarmycins, etoposides, maytansines and maytansinoids (eg DM1 and DM4), taxanes ( Taxanes), benzodiazepines or benzodiazepine containing drugs (eg pyrrolo[1,4]benzodiazepines (PBDs), porphyrin benzodiazepines Classes (indolinobenzodiazepines) and oxazolidinobenzodiazepines and vinca alkaloids.
  • typical cytotoxic drugs including, for example, auristatin, camptothecin (camptothecins), docamycin/duocarmycins, etoposides, maytansines and maytansinoids (eg DM1 and DM4), tax
  • the drug-linker can be used to form an ADC in a simple step.
  • the bifunctional linker compound can be used to form an ADC in a two or more step process. For example, a cysteine residue is reacted with a reactive moiety of the linker in a first step, and in a subsequent step, a functional group on the linker reacts with the drug to form an ADC.
  • a functional group on the linker is selected to facilitate specific reaction with a suitable reactive group on the drug moiety.
  • a portion based on an azide compound can be used to specifically react with a reactive alkynyl group on a drug moiety.
  • the drug is covalently bound to the linker by a 1,3-dipolar cycloaddition between the azide and the alkynyl group.
  • Other useful functional groups include, for example, ketones and aldehydes (suitable for reaction with hydrazides and alkoxyamines), phosphines (suitable for reaction with azides); isocyanates and isothiocyanates (suitable for amines) And alcohols); and activated esters, such as N-hydroxysuccinimide esters (suitable for reaction with amines and alcohols).
  • ketones and aldehydes suitable for reaction with hydrazides and alkoxyamines
  • phosphines suitable for reaction with azides
  • isocyanates and isothiocyanates suitable for amines
  • activated esters such as N-hydroxysuccinimide esters (suitable for reaction with amines and alcohols).
  • the invention also provides a method of making an ADC, which can further comprise: binding the antibody to a drug-linker compound under conditions sufficient to form an antibody conjugate (ADC).
  • the methods of the invention comprise: binding an antibody to a bifunctional linker compound under conditions sufficient to form an antibody-linker conjugate. In these embodiments, the methods of the invention further comprise: binding the antibody linker conjugate to the drug moiety under conditions sufficient to covalently link the drug moiety to the antibody via a linker.
  • the antibody drug conjugate ADC is represented by the following formula:
  • LU is a linker that lacks or links the antibody to the drug
  • D is a drug
  • p is the amount of the drug coupled to the antibody; p is a value selected from the group consisting of 1-10, preferably 1-8, more preferably 2-4;
  • the drug moiety eg, toxin
  • linker e.g., linker
  • linkage e.g., linkage
  • cleavage pattern of the four ADCs of the present invention are as follows:
  • the drug moiety eg, toxin
  • link e.g. toxin
  • ligation e.g., ligation
  • cleavage pattern of the five ADCs of the present invention are as follows:
  • linker structure in the ADC of the present invention is shown in FIG.
  • FIG. 1 Typically, the structural formula of the medicament of the present invention is shown in FIG.
  • the invention also provides the use of an antibody of the invention, for example for the preparation of a diagnostic preparation, or for the preparation of a medicament for the prevention and/or treatment of a TRAILR2-related disease.
  • the TRAILR2-related diseases include tumorigenesis, growth and/or metastasis, thrombosis-related diseases, inflammation, metabolic-related diseases, and the like.
  • the tumor includes, but is not limited to, non-small cell lung cancer, liver cancer, colon cancer, breast cancer, ovarian cancer, pancreatic cancer, thyroid cancer, head and neck squamous cell carcinoma, esophageal squamous cell carcinoma, lung squamous Cell carcinoma, lung adenocarcinoma, cervical squamous cell carcinoma, pancreatic squamous cell carcinoma, colon squamous cell carcinoma, gastric squamous cell carcinoma, prostate cancer, osteosarcoma or soft tissue sarcoma, more preferably non-small cell lung cancer, liver cancer , ovarian cancer and pancreatic cancer.
  • tumors of the blood system include, but are not limited to, lymphocytic leukemia, granulocytic leukemia, non-T non-B lymphocytic leukemia, follicular lymphoma, mantle cell lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphoma, Non-Hodgkin's disease, peripheral T-cell lymphoma, vascular immunological mother T-cell lymphoma, anaplastic large cell lymphoma, and the like. More preferred are acute T lymphocytic leukemia, B lymphocytic leukemia, and non-T non-B lymphocytic leukemia.
  • the present invention relates to Zapadcine-1 (Zapadcine-1a, Zapadcine-1b, Zapadcine-1c, Zapadcine-1d, or a combination thereof) or Zapadcine-3 (Zapadcine-) represented by the general formula Ab-(LU-D)p. 3a, Zapadcine-3b, Zapadcine-3c, Zapadcine-3d, Zapadcine-3e, or a combination thereof) or a pharmaceutically acceptable salt, solvate, stereoisomer, tautomer, prodrug thereof and
  • the mixture is the use of the active ingredient in the preparation of a medicament for the prevention and/or treatment of cancer.
  • the invention also provides a composition.
  • the composition is a pharmaceutical composition comprising the above antibody or active fragment thereof or a fusion protein thereof or an ADC thereof, and a pharmaceutically acceptable carrier.
  • these materials can be formulated in a non-toxic, inert, and pharmaceutically acceptable aqueous carrier medium wherein the pH is usually from about 5 to about 8, preferably from about 6 to about 8, although the pH may be The nature of the formulation and the condition to be treated vary.
  • the formulated pharmaceutical compositions can be administered by conventional routes including, but not limited to, intratumoral, intraperitoneal, intravenous, or topical administration.
  • the pharmaceutical composition of the present invention can be directly used for binding to a TRAILR2 protein molecule, and thus can be used for the prevention and treatment of diseases such as tumors.
  • other therapeutic agents can also be used simultaneously, for example, various cytokines such as TNF, IFN, IL-2, etc.; various tumor chemotherapy drugs, such as 5-FU, methotrexate and the like, which affect nucleic acid biosynthesis; nitrogen mustard, Alkylation agents such as cyclophosphamide; drugs such as doxorubicin and actinomycin D that interfere with transcriptional processes to prevent RNA synthesis; vincristine and camptothecin.
  • Targeted drugs, antibody drugs, inhibitors for example, antibodies against PD-1 or PD-L1, anti-Fas antibodies, and Bcl-2 inhibitors and the like.
  • the pharmaceutical composition of the present invention contains a safe and effective amount (e.g., 0.001 to 99% by weight, preferably 0.01 to 90% by weight, more preferably 0.1 to 80% by weight) of the above-mentioned monoclonal antibody (or a conjugate thereof) of the present invention and pharmacy An acceptable carrier or excipient.
  • Such carriers include, but are not limited to, saline, buffer, dextrose, water, glycerol, ethanol, and combinations thereof.
  • the pharmaceutical preparation should be matched to the mode of administration.
  • the pharmaceutical composition of the present invention can be prepared in the form of an injection, for example, by a conventional method using physiological saline or an aqueous solution containing glucose and other adjuvants.
  • compositions such as injections and solutions are preferably prepared under sterile conditions.
  • the amount of active ingredient administered is a therapeutically effective amount, for example from about 1 microgram per kilogram body weight to about 5 milligrams per kilogram body weight per day.
  • the polypeptides of the invention may also be used with other therapeutic agents.
  • a safe and effective amount of the immunoconjugate is administered to the mammal, wherein the safe and effective amount is typically at least about 10 micrograms per kilogram of body weight, and in most cases no more than about 50 milligrams per kilogram of body weight, Preferably, the dosage is from about 10 micrograms per kilogram of body weight to about 20 milligrams per kilogram of body weight.
  • specific doses should also consider factors such as the route of administration, the health of the patient, etc., which are within the skill of the skilled physician.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of Zapadcine-1 (Zapadcine-1a, Zapadcine-1b, Zapadcine-1c, Zapadcine-1d) represented by the general formula Ab-(LU-D)p Or a combination thereof, or a pharmaceutically acceptable salt, solvate, stereoisomer, tautomer, prodrug thereof, and pharmaceutically acceptable carrier thereof.
  • Zapadcine-1 Zapadcine-1a, Zapadcine-1b, Zapadcine-1c, Zapadcine-1d
  • Ab-(LU-D)p Or a combination thereof or a pharmaceutically acceptable salt, solvate, stereoisomer, tautomer, prodrug thereof, and pharmaceutically acceptable carrier thereof.
  • the pharmaceutical composition of the present invention uses Zapadcine-1 (Zapadcine-1a, Zapadcine-1b, Zapadcine-1c or Zapadcine-1d) represented by the general formula mAb-(LU-D)p or a pharmaceutical thereof Acceptable salts, esters, solvates, stereoisomers, tautomers, and prodrugs are used as active ingredients, either alone or in combination, or in combination with other drugs, excipients, and the like, including but not limited to tablets. Agents, powders, pills, injections, capsules, films, suppositories, ointments, granules and the like.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of Zapadcine-3 (Zapadcine-3a, Zapadcine-3b, Zapadcine-3c, Zapadcine-3d) represented by the general formula Ab-(LU-D)p And Zapadcine-3e, or a combination thereof, or a pharmaceutically acceptable salt, solvate, stereoisomer, tautomer, prodrug thereof, and pharmaceutically acceptable carrier thereof.
  • the pharmaceutical compositions of the invention employ Zapadcine-3 (Zapadcine-3a, Zapadcine-3b, Zapadcine-3c, Zapadcine-3d or Zapadcine-3e) of the formula mAb-(LU-D)p.
  • a pharmaceutically acceptable salt, ester, solvate, stereoisomer, tautomer or prodrug thereof as an active ingredient used alone or in combination or with other drugs, excipients, etc., in various dosage forms, including However, it is not limited to tablets, powders, pills, injections, capsules, films, suppositories, ointments, granules and the like.
  • the ADC of the present invention is a novel, broad-spectrum, high-efficiency, specific anti-tumor anti-TRAILR2 antibody-toxin-conjugate (ADC) for TRAILR2-positive tumor treatment and can cure tumors, especially Treatment of lymphocytic leukemia, liver cancer, lung cancer, pancreatic cancer and ovarian cancer.
  • ADC specific anti-tumor anti-TRAILR2 antibody-toxin-conjugate
  • the technical problem to be solved by the present invention is how to absorb the experience and lessons of previous clinical trials and solve the problem of the efficacy of the anti-TRAILR2 monoclonal antibody for tumor treatment.
  • the inventors adopt a strategy for preparing an ADC complex through the following A series of research steps have resulted in the ADC candidate drugs of the present invention. which is:
  • Zaptuzumab can be rapidly endocytosed into the lysosome after binding to the TRAILR2 receptor on the surface of tumor cells such as lung cancer, thus demonstrating that Zaptuzumab has the antibody-toxin-conjugate prepared.
  • Two key features are tumor-specific targeting and endocytosis into lysosomes by tumor cells and release of small molecule toxins.
  • Zaptuzumab was coupled to the toxin through different chemical linkers, and various ADCs with different chemical structures were obtained. After repeated screening of anti-tumor activity in vivo and/or in vitro, two excellent drug candidates for ADC (named Zapadcine-1, Zapadcine-3, respectively) were obtained, which would be used for the treatment of various tumors with TRAILR2 positive.
  • BALB/c female mice were purchased from Shanghai Xipuer-Beikai Experimental Animal Co., Ltd. (Shanghai, China) and raised in SPF laboratory animal room.
  • NOD-SCID female mice were purchased from Shanghai Lingchang Biotechnology Co., Ltd. (Shanghai, China). They were kept in the SPF laboratory animal room, and the light-dark 12-hour cycle was alternated. The food was supplied with sufficient food and clean water until the age of 8 weeks. All animal experiments were approved and conducted in accordance with the guidelines of the Shanghai Animal Management and Use Committee.
  • Human lymphocytic leukemia, lung cancer cells, liver cancer cells, ovarian cancer cells, pancreatic cancer cells and other tumor cells and normal cells were purchased from ATCC or the Cell Center of the Institute of Basic Medical Sciences of the Chinese Academy of Medical Sciences or the Shanghai Institute of Life Sciences Cell Resource Center of the Chinese Academy of Sciences or Saiqi (Shanghai) Bioengineering Co., Ltd. or Saibai (Shanghai) Biotechnology Co., Ltd. or Miaotong (Shanghai) Biotechnology Co., Ltd. Paclitaxel, vincristine, and epirubicin were purchased from Selleck. The luminescence cell viability assay kit was purchased from Promega.
  • lymphoblastic leukemia cell lines Jurkat E6-1
  • lung cancer cell lines NCI-H460 and NCI-H1975)
  • liver cancer cell line SMMC-7221
  • ovarian cancer cell line A2780
  • pancreas with high expression of TRAILR2 Cancer Mia PaCa-2 as well as human normal cell lines or peripheral blood cells, such as human normal peripheral blood mononuclear cells (PBMC), human normal colonic epithelial cells (NCM-460), human normal colon tissue cells (CCD-18Co) and human normal Lung epithelial cells (BEAS-2B) were evaluated for the cytotoxic effects of Zapadcine-1 on various tumor cells and normal cells.
  • PBMC peripheral blood mononuclear cells
  • NCM-460 human normal colonic epithelial cells
  • CCD-18Co human normal colon tissue cells
  • BEAS-2B human normal Lung epithelial cells
  • the specific research process is as follows: trypsin (0.25%, V / V) digestion of adherent cultured cells (such as NCI-H460 and SMMC-7221, etc.), cell stripping and / or direct collection of suspension cultured cells (Jurkat E6- 1) Resuspend in 100 ⁇ L of complete medium. 5,000 adherent cells or 16,000 suspension cells were seeded in 96-well plates for culture at 37 ° C overnight. Add 100 ⁇ L of medium containing different concentrations of anti-TRAILR2 naked anti-Zapadcine-1 and place in the incubator for 72 h. The luciferase activity assay kit (Promega, batch number: 0000217738) measures the cytotoxic effect of the test drug on various tumor cells cultured in vitro.
  • V sample / V negative control x 100% The V sample was the reading of the drug treatment group, and the V negative control was the average of the solvent control group.
  • the IC 50 value was calculated by nonlinear fitting of the cell survival rate (%) to the sample concentration X by the following formula.
  • NR no response
  • eff. is efficacy (%)
  • IC50 is ng/ml.
  • Zapadcine-1a was evaluated by ELISA.
  • the specific procedure was as follows: 2 ⁇ g/ml humanized recombinant protein TRAILR2 was coated in a volume of 100 ⁇ l/well with 1 ⁇ PBS buffer (pH 7.4). 96-well plates were placed overnight at 4 °C. The supernatant was discarded, and the plate was washed three times with PBST (pH 7.4 PBS containing 0.05% Tweeen 20) buffer for 5 minutes, and PBS containing 5% skim milk powder was added at 240 ⁇ l/well, and incubated at 37 ° C for 3 hours to block.
  • PBST pH 7.4 PBS containing 0.05% Tweeen 20
  • the anti-lymphocytic leukemia effect of Zapadcine-1a in vivo was evaluated by the growth inhibitory effect of human Jurkat E6-1 leukemia cells with high expression of TRAILR2 in NOD-SCID mice.
  • the specific research process was as follows: a female NOD/SCID mouse (4 weeks old) subcutaneous xenograft model of human T lymphocytic leukemia Jurkat E6-1 was established. Jurkat E6-1 cells were expanded in vitro to logarithmic growth phase. After cell counting, the cells were diluted with PBS buffer to a cell suspension of 1 ⁇ 10 8 /ml, and 0.1 ml was taken in a clean room with a 1 ml syringe.
  • the tumor-bearing mice were randomly divided into 5 groups, 8 rats in each group, respectively, in the Zapadcine-1a administration group (low dose group 1 mg/kg, medium dose group 3 mg/kg, High dose group 9mg/kg, Q3DX3), negative control group (PBS, Q3DX3) and neo-vinblastine positive control group (0.5mg/kg, Q7DX3).
  • the administration time of Zapadcine-1a was 0, 4, and 7 days after grouping, and the administration time of neo-vinblastine was 0, 7 and 14 days after grouping, and the above administration methods were all tail vein injections.
  • Tumor size longest diameter and shortest diameter was measured on days 3, 7, 10, 14, 17, 21, 24 and 28 after administration, respectively. The experiment was terminated on the 28th day after the first administration. The animals were immediately euthanized by excessive anesthesia. The body weight of the mice was weighed, the tumors were removed and photographed, and blood and kidney function indexes (ALT, BUN, CERA) were taken.
  • the isolated tumor and the main tissue organs (heart, liver, kidney, spleen, lung) were cryopreserved in liquid nitrogen or fixed with 4% paraformaldehyde to prepare paraffin sections for use.
  • Zapadcine-1a The in vivo anti-lung cancer properties of Zapadcine-1a were evaluated by the growth inhibitory effect of human large cell lung cancer cell NCI-H460, which is highly expressed in TRAILR2, in nude mice.
  • the specific research process was as follows: Female BALB/c nude mice (4 weeks old) subcutaneous tumor model of human NCI-H460 lung cancer cells were established. NCI-H460 cells were cultured in vitro to logarithmic growth phase. After cell counting, buffered with PBS.
  • the solution was diluted to a cell suspension of 1 ⁇ 10 7 /ml, and 0.15 ml (1.5 ⁇ 10 6 cells) was pipetted from a 1 ml syringe in a clean bench, and inoculated subcutaneously into the right side of the mouse.
  • the skin of the inoculated site was 70% alcohol.
  • Disinfection observe the survival state of the animals regularly after inoculation, and measure the growth of the transplanted tumors. When the tumor size reached 80-100 mm 3 on average, the mice were randomly divided into 5 groups, 8 rats in each group, respectively, in the Zapadcine-1a administration group (low dose group 1 mg/kg, medium dose group 3 mg/kg, high dose group).
  • the administration time of Zapadcine-1a, paclitaxel and the negative control group was 0, 4 and 7 days after grouping, and the above administration methods were all tail vein injections.
  • Tumor size longest diameter and shortest diameter was measured on days 4, 7, 10, 14, 17, 21, 24 and 28 after administration, respectively, and the experiment was terminated on the 28th day after administration, and immediately by excessive anesthesia.
  • the animals were euthanized and the mice were weighed.
  • the tumor tissue was taken out and weighed and photographed. Blood samples were taken for liver and kidney function tests (ALT, BUN, CERA).
  • the isolated tumor and related organs (heart, liver, kidney, spleen, lung) were cryopreserved in liquid nitrogen or fixed with 4% paraformaldehyde to prepare paraffin sections for use.
  • the average tumor weight of the negative control group was 1.47 ⁇ 0.45 g
  • the average tumor weight of the positive control group was 1.13 ⁇ 0.42 g
  • the average tumor weight of the low dose group of Zapadcine-1a (1 mg/kg) was 0.99 ⁇ 0.26g
  • the average tumor weight of the Zapadcine-1a middle dose group (3mg/kg) was 0.55 ⁇ 0.21g
  • the high dose group (9mg/kg) had an average tumor weight of 0.08 ⁇ 0.07g.
  • the in vivo anti-human non-small cell lung cancer characteristics of Zapadcine-1a were evaluated by the inhibitory effect on human non-small cell lung cancer cells NCI-H1975, which had high expression of TRAILR2, in nude mice xenografts.
  • the specific research process was as follows: a female BALB/c nude mouse (4 weeks old) subcutaneous xenograft model was established for human NCI-H1975 lung cancer cells. NCI-H1975 cells were expanded in vitro to logarithmic growth phase. After cell counting, the cells were diluted with PBS buffer to a cell suspension of 1 ⁇ 10 7 /ml, and 0.15 ml (1.5 ⁇ ) was taken in a clean room with a 1 ml syringe.
  • the tumor-bearing mice were randomly divided into 5 groups, 8 rats in each group, respectively, in the Zapadcine-1a administration group (low dose group 1 mg/kg, medium dose group 3 mg/kg, high).
  • the dose group was 9 mg/kg, Q3D ⁇ 3), the negative control group (PBS, Q3D ⁇ 3) and the paclitaxel positive control group (10 mg/kg, Q3D ⁇ 3).
  • the administration time of Zapadcine-1a, paclitaxel positive control group and negative control group was 0, 4 and 7 days after grouping, and the above administration methods were all tail vein injection.
  • Tumor size longest diameter and shortest diameter
  • the tumor tissue was taken out and weighed and photographed.
  • Blood samples were taken for liver and kidney function tests (ALT, BUN, CERA).
  • the isolated tumor and related organs (heart, liver, kidney, spleen, lung) were cryopreserved in liquid nitrogen or fixed with 4% paraformaldehyde to prepare paraffin sections for use.
  • the average tumor weight of the negative control group was 2.09 ⁇ 0.08g
  • the average tumor weight of the positive control group was 0.58 ⁇ 0.15g
  • the average tumor weight of the low dose group of Zapadcine-1a (2mg/kg) was The average tumor weight of 0.58 ⁇ 0.17g
  • Zapadcine-1a middle dose group (6mg/kg) was 0.01 ⁇ 0.01g
  • the high dose group (12mg/kg) had an average tumor weight of 0.0g.
  • Zapadcine-1a The in vivo anti-hepatocarcinogenic properties of Zapadcine-1a were evaluated by the growth inhibitory effect of human SMMC-7721 liver cancer cells positive for TRAILR2 expression in nude mice.
  • the specific research process was as follows: a female BALB/c mouse (4 weeks old) subcutaneous xenograft model was established for human SMMC-7721 liver cancer cells. SMMC-7721 cells were cultured in vitro to logarithmic growth phase. After cell counting, PBS was used.
  • the buffer was diluted to a cell suspension of 1 ⁇ 10 7 /ml, and 0.15 ml (1.5 ⁇ 10 6 cells) was aspirated in a clean apparatus using a 1 ml syringe, and inoculated subcutaneously into the right side of the mouse.
  • the skin of the inoculated site was disinfected with 70% alcohol. After inoculation, the living state of the animals was observed regularly, and the growth of the transplanted tumor was recorded.
  • the tumor-bearing mice were randomly divided into 5 groups, 8 rats in each group, respectively, in the Zapadcine-1a administration group (low dose group 1 mg/kg, medium dose group 3 mg/kg, High dose group 9mg/kg, Q3D ⁇ 3), negative control group (PBS, Q3D ⁇ 3) and epirubicin positive control group (5mg/kg, Q3D ⁇ 9).
  • the administration time of Zapadcine-1a and the negative control group was days 0, 4 and 7 after grouping, and the administration time of epirubicin was 0, 4, 7, 10, 14, 17 and 21 days after grouping.
  • the above administration methods are all tail vein injections.
  • Tumor size (longest diameter and shortest diameter) was measured on days 4, 7, 10, 14, 17, 21, 24 and 28 after administration, and the experiment was terminated on the 28th day after administration, and immediately sacrificed by excessive anesthesia. Animals were weighed and weighed. The tumor tissue was taken out and weighed and photographed. Blood samples were taken for liver and kidney function tests (ALT, BUN, CERA). Tumor tissues and main organs (heart, liver, kidney, spleen, lung) were separated and frozen in liquid nitrogen or fixed with 4% paraformaldehyde to prepare paraffin sections for use.
  • the average tumor weight of the negative control group was 1.37 ⁇ 0.17g
  • the average tumor weight of the positive control group was 1.02 ⁇ 0.08g
  • the average tumor weight of the low dose group of Zapadcine-1a (1mg/kg) was 0.88 ⁇ 0.12g
  • the average tumor weight of the Zapatcine-1a middle dose group (3mg/kg) was 0.26 ⁇ 0.07g
  • the high dose group (9mg/kg) had an average tumor weight of 0g.
  • Zapadcine-1a The in vivo anti-ovarian cancer characteristics of Zapadcine-1a were evaluated by the growth inhibitory effect of human A2780 ovarian cancer cells positive for TRAILR2 expression in nude mice.
  • the specific research process was as follows: a female BALB/c mouse (4 weeks old) subcutaneous xenograft model was established for human A2780 ovarian cancer cells. A2780 ovarian cancer cells were cultured in vitro to logarithmic growth phase. After cell counting, buffered with PBS.
  • the solution was diluted to a cell suspension of 1 ⁇ 10 7 /ml, and 0.15 ml (1.5 ⁇ 10 6 cells) was aspirated in a clean apparatus using a 1 ml syringe, and inoculated subcutaneously into the right side of the mouse.
  • the skin of the inoculated site was disinfected with 70% alcohol. After inoculation, the living state of the animals was observed regularly, and the growth of the transplanted tumor was recorded.
  • the tumor-bearing mice were randomly divided into 5 groups, 8 rats in each group, respectively, in the Zapadcine-1a administration group (low dose group 1 mg/kg, medium dose group 3 mg/kg, High dose group 9 mg/kg, Q3D ⁇ 3), negative control group (PBS, Q3D ⁇ 3) and paclitaxel positive control group (10 mg/kg, Q3D ⁇ 3).
  • the administration time of Zapadcine-1a, paclitaxel and the negative control group was 0, 4 and 7 days after grouping, and the above administration methods were all tail vein injections.
  • Tumor size (longest diameter and shortest diameter) was measured on days 4, 7, 10, 14, 17, 21, 24 and 28 after administration, and the experiment was terminated on the 28th day after administration, and immediately sacrificed by excessive anesthesia. Animals were weighed and weighed. The tumor tissue was taken out and weighed and photographed. Blood samples were taken for liver and kidney function tests (ALT, BUN, CERA). Tumor tissues and main organs (heart, liver, kidney, spleen, lung) were separated and frozen in liquid nitrogen or fixed with 4% paraformaldehyde to prepare paraffin sections for use.
  • Zapadcine-1a began to inhibit the growth of ovarian cancer xenografts on the 7th day after 3 doses in the high, medium and low dose groups.
  • the tumor inhibition rate of the high dose group (9 mg/kg) reached 100%, while the tumor inhibition rate of the middle dose group (3 mg/kg) reached 92%.
  • the low-dose group (1 mg/kg) also significantly inhibited xenograft growth with a tumor inhibition rate of 56%.
  • the average tumor weight of the negative control group was 2.88 ⁇ 0.34 g
  • the average tumor weight of the positive control group was 2.42 ⁇ 0.35 g
  • the average tumor weight of the low dose group of Zapadcine-1a (1 mg/kg) was 1.40 ⁇ 0.15g
  • the average tumor weight of the Zapatcine-1a middle dose group (3mg/kg) was 0.27 ⁇ 0.10g
  • the average tumor weight of the high dose group (9mg/kg) was 0g.
  • Zapadcine-1a The in vivo anti-ovarian cancer characteristics of Zapadcine-1a were evaluated by the growth inhibitory effect of human Mia PaCa-2 pancreatic cancer cells positive for TRAILR2 expression in nude mice.
  • the specific process is as follows: a female BALB/c mouse (4 weeks old) subcutaneous xenograft model was established for human Mia PaCa-2 pancreatic cancer cells, and Mia PaCa-2 pancreatic cancer cells were cultured in vitro to logarithmic growth phase, cell counting.
  • the cells were diluted with PBS buffer to a cell suspension of 1 ⁇ 10 7 /ml, and 0.15 ml (1.5 ⁇ 10 6 cells) was pipetted in a clean apparatus using a 1 ml syringe, and inoculated subcutaneously into the right side of the mouse.
  • the skin of the inoculated site was disinfected with 70% alcohol. After inoculation, the living state of the animals was observed regularly, and the growth of the transplanted tumor was recorded.
  • the tumor-bearing mice were randomly divided into 5 groups, 8 rats in each group, respectively, in the Zapadcine-1a administration group (low dose group 1 mg/kg, medium dose group 3 mg/kg, High dose group 9 mg/kg, Q3D ⁇ 3), negative control group (PBS, Q3D ⁇ 3) and paclitaxel positive control group (10 mg/kg, Q3D ⁇ 3).
  • the administration time of Zapadcine-1a, paclitaxel and the negative control group was 0, 4 and 7 days after grouping, and the above administration methods were all tail vein injections.
  • Tumor size (longest diameter and shortest diameter) was measured on days 4, 7, 10, 14, 17, 21, 24 and 28 after administration, and the experiment was terminated on the 28th day after administration, and immediately sacrificed by excessive anesthesia. Animals were weighed and weighed. The tumor tissue was taken out and weighed and photographed. Blood samples were taken for liver and kidney function tests (ALT, BUN, CERA). Tumor tissues and main organs (heart, liver, kidney, spleen, lung) were separated and frozen in liquid nitrogen or fixed with 4% paraformaldehyde to prepare paraffin sections for use.
  • Zapadcine-1 The acute toxic effects of Zapadcine-1 were evaluated by examining changes in body condition and biochemical parameters after administration in normal mice.
  • the specific research process was as follows: 20 healthy BALB/c female mice (purchased from Shanghai Xipuer-Beikai Experimental Animal Co., Ltd.), aged 6-7 weeks after birth, weighing 18-22 g. Divided into 5 groups of 4 each. After one week of routine feeding, administration was started. Zapadcine-1a was administered at doses of 20 mg/kg, 30 mg/kg, 40 mg/kg, and 50 mg/kg with a blank solvent as a normal control.
  • mice Slow injection through the tail vein, single administration, daily observation of the mice including death, diet and exercise, the body weight of the mice was recorded every 3 days, and blood samples were taken for blood biochemical tests on the 5th and 15th day respectively.
  • the test items include ALT and UREA.
  • the animals were euthanized by excessive anesthesia.
  • lymphoblastic leukemia cell lines Jurkat E6-1, Reh
  • lung cancer cell line MSTO-211H
  • glioma cell line A172
  • human normal cells with high expression of TRAILR2 Department or peripheral blood cells such as human normal peripheral blood mononuclear cells (PBMC), human normal colonic epithelial cells (NCM-460), human normal colon tissue cells (CCD-18Co), and human normal lung epithelial cells (BEAS-2B)
  • PBMC peripheral blood mononuclear cells
  • NCM-460 human normal colonic epithelial cells
  • CCD-18Co human normal colon tissue cells
  • BEAS-2B human normal lung epithelial cells
  • the specific research process is as follows: trypsin (0.25%, V / V) digestion of adherent cultured cells (such as MSTO-211H, etc.), cell stripping and / or direct collection of suspension cultured cells (Jurkat E6-1, Reh) Resuspended in 100 ⁇ L of complete medium. 5,000 adherent cells or 16,000 suspension cells were seeded in 96-well plates for culture at 37 ° C overnight. Add 100 ⁇ L of medium containing different concentrations of anti-TRAILR2 naked anti-Zapadcine-3, and place in the incubator for 72 h. The luciferase activity assay kit (Promega, batch number: 0000217738) measures the cytotoxic effect of the test drug on various tumor cells cultured in vitro.
  • V sample / V negative control x 100% The V sample was the reading of the drug treatment group, and the V negative control was the average of the solvent control group.
  • the IC 50 value was calculated by nonlinear fitting of the cell survival rate (%) to the sample concentration X by the following formula.
  • NR no response
  • eff. is efficacy (%)
  • IC50 is ng/ml.
  • Zapadcine-3 (such as Zapadcine-3a and Zapadcine-3d in particular) is more effective than TRAILR2 naked anti-Zaptuzumab in inhibiting a variety of TRAILR2-positive tumor cells (eg Jurkat E6-1, Reh, MSTO-211H, A172 and Mia PaCa-2, etc.) proliferate, while Zaptuzumab and Zapadcine-3 have no cytotoxic effects on TRAILR2-negative cells (such as human normal PBMC, BEAS-2B, NCM-460 and CCD-18Co, etc.).
  • TRAILR2-positive tumor cells eg Jurkat E6-1, Reh, MSTO-211H, A172 and Mia PaCa-2, etc.
  • Zaptuzumab and Zapadcine-3 have no cytotoxic effects on TRAILR2-negative cells (such as human normal PBMC, BEAS-2B, NCM-460 and CCD-18Co, etc.).
  • the binding of Zapadcine-3a to the humanized recombinant protein TRAILR2 was evaluated by ELISA.
  • the specific procedure was as follows: 2 ⁇ g/ml humanized recombinant protein TRAILR2 was coated in a volume of 100 ⁇ l/well with 1 ⁇ PBS buffer (pH 7.4). 96-well plates were placed overnight at 4 °C. The supernatant was discarded, and the plate was washed three times with PBST (pH 7.4 PBS containing 0.05% Tweeen 20) buffer for 5 minutes, and PBS containing 5% skim milk powder was added at 240 ⁇ l/well, and incubated at 37 ° C for 3 hours to block.
  • PBST pH 7.4 PBS containing 0.05% Tweeen 20
  • the in vivo anti-human non-small cell lung cancer characteristics of Zapadcine-3a were evaluated by the inhibitory effect on human non-small cell lung cancer cell MSTO-211H, which is highly expressed in TRAILR2, in nude mice xenografts.
  • the specific research process was as follows: a female BALB/c nude mouse (4 weeks old) subcutaneous xenograft model was established for human MSTO-211H lung cancer cells.
  • MSTO-211H cells were expanded in vitro to logarithmic growth phase. After cell counting, the cells were diluted with PBS buffer to a cell suspension of 1 ⁇ 10 7 /ml, and 0.15 ml (1.5 ⁇ ) was taken in a clean room with a 1 ml syringe.
  • the tumor-bearing mice were randomly divided into 5 groups, 8 rats in each group, respectively, in the Zapadcine-3a administration group (low dose group 1 mg/kg, medium dose group 3 mg/kg, high).
  • the dose group was 9 mg/kg, Q3D ⁇ 3), the negative control group (PBS, Q3D ⁇ 3) and the paclitaxel positive control group (10 mg/kg, Q3D ⁇ 3).
  • the administration time of Zapadcine-3a, paclitaxel positive control group and negative control group was 0, 4 and 7 days after grouping, and the above administration methods were all tail vein injection.
  • Tumor size longest diameter and shortest diameter
  • the experiment was terminated on the 32nd day after administration, and the animals were immediately anesthetized by excessive anesthesia.
  • the body weight of the mice was weighed.
  • the tumor tissue was taken out and weighed and photographed.
  • Blood samples were taken for liver and kidney function tests (ALT, BUN, CERA).
  • the isolated tumor and related organs (heart, liver, kidney, spleen, lung) were cryopreserved in liquid nitrogen or fixed with 4% paraformaldehyde to prepare paraffin sections for use.
  • Zapadcine-3a The in vivo anti-ovarian cancer properties of Zapadcine-3a were evaluated by the growth inhibitory effect of human Mia PaCa-2 pancreatic cancer cells positive for TRAILR2 expression in nude mice.
  • the specific process is as follows: a female BALB/c mouse (4 weeks old) subcutaneous xenograft model was established for human Mia PaCa-2 pancreatic cancer cells, and Mia PaCa-2 pancreatic cancer cells were cultured in vitro to logarithmic growth phase, cell counting.
  • the cells were diluted with PBS buffer to a cell suspension of 1 ⁇ 10 7 /ml, and 0.15 ml (1.5 ⁇ 10 6 cells) was pipetted in a clean apparatus using a 1 ml syringe, and inoculated subcutaneously into the right side of the mouse.
  • the skin of the inoculated site was disinfected with 70% alcohol. After inoculation, the living state of the animals was observed regularly, and the growth of the transplanted tumor was recorded.
  • the tumor-bearing mice were randomly divided into 5 groups, 8 rats in each group, respectively, in the Zapadcine-3a administration group (low dose group 1 mg/kg, medium dose group 3 mg/kg, High dose group 9 mg/kg, Q3D ⁇ 3), negative control group (PBS, Q3D ⁇ 3) and vincristine positive control group (10 mg/kg, Q7D ⁇ 3).
  • the administration time of Zapadcine-3a and the negative control group was 0, 4, and 7 days after grouping, while the time of administration of vincristine was 0, 7 and 14 days after grouping, and the above administration methods were all tail vein injections. .
  • Tumor size (longest diameter and shortest diameter) was measured on days 4, 7, 10, 14, 17, 21, 24 and 28 after administration, and the experiment was terminated on the 28th day after administration, and immediately sacrificed by excessive anesthesia. Animals were weighed and weighed. The tumor tissue was taken out and weighed and photographed. Blood samples were taken for liver and kidney function tests (ALT, BUN, CERA). Tumor tissues and main organs (heart, liver, kidney, spleen, lung) were separated and frozen in liquid nitrogen or fixed with 4% paraformaldehyde to prepare paraffin sections for use.
  • Zapadcine-3a began to inhibit the growth of pancreatic cancer xenografts on the 5th day after 2 doses in the high, medium and low dose groups.
  • the tumor inhibition rate of the high dose group (9 mg/kg) reached 100%, while the tumor inhibition rate of the middle dose group (3 mg/kg) reached 91%.
  • the low-dose group (1 mg/kg) also significantly inhibited xenograft growth with a tumor inhibition rate of 45%.
  • the in vivo anti-ovarian cancer characteristics of Zapadcine-3a were evaluated by the growth inhibitory effect of human T lymphocyte leukemia cell line Jurkat E6-1 positive for TRAILR2 expression in nude mice.
  • the specific process is as follows: a female BALB/c mouse (5-6 weeks old) subcutaneous xenograft model of human Jurkat E6-1 was established, and Jurkat E6-1 cells were expanded in vitro to logarithmic growth phase, and after cell counting, The PBS buffer was diluted to a cell suspension of 1 ⁇ 10 8 /ml, and 0.1 ml (1 ⁇ 10 7 cells) was pipetted from a 1 ml syringe in a clean bench, and inoculated subcutaneously into the right side of the mouse.
  • the skin of the inoculated site was disinfected with 70% alcohol. After inoculation, the living state of the animals was observed regularly, and the growth of the transplanted tumor was recorded.
  • the tumor-bearing mice were randomly divided into 4 groups, 8 rats in each group, respectively, in the Zapadcine-3a administration group (low dose group 1 mg/kg, medium dose group 3 mg/kg, High dose group 9 mg/kg, Q3D ⁇ 3), negative control group (PBS, Q3D ⁇ 3).
  • the administration time of Zapadcine-3a and the negative control group was 0, 4, and 7 days after grouping, and the above administration methods were all tail vein injections.
  • Tumor size (longest diameter and shortest diameter) was measured on days 4, 7, 10, 14, 17, 21, 24 and 28 after administration, and the experiment was terminated on the 28th day after administration, and immediately sacrificed by excessive anesthesia. Animals were weighed and weighed. The tumor tissue was taken out and weighed and photographed. Tumor tissues and main organs (heart, liver, kidney, spleen, lung) were separated and frozen in liquid nitrogen or fixed with 4% paraformaldehyde to prepare paraffin sections for use.
  • Zapadcine-3a The in vivo anti-ovarian cancer characteristics of Zapadcine-3a were evaluated by the growth inhibitory effect of human non-T non-B lymphocyte leukemia cell Reh positive for TRAILR2 expression in nude mice.
  • the specific process is as follows: a female BALB/c mouse (5-6 weeks old) subcutaneous xenograft model of human Reh cells was established, and Reh cells were cultured in vitro to logarithmic growth phase, and after cell counting, diluted with PBS buffer. A cell suspension of 1 ⁇ 10 8 /ml was pipetted into a 0.1 ml syringe (1 ⁇ 10 7 cells) in a clean room, and inoculated subcutaneously into the right side of the mouse.
  • the skin of the inoculated site was disinfected with 70% alcohol. After inoculation, the living state of the animals was observed regularly, and the growth of the transplanted tumor was recorded.
  • the tumor-bearing mice were randomly divided into 5 groups, 8 rats in each group, respectively, in the Zapadcine-3a administration group (low dose group 1 mg/kg, medium dose group 3 mg/kg, High dose group 9mg/kg, Q3D ⁇ 3), negative control group (PBS, Q3D ⁇ 3) and vincristine positive control group (0.5mg/kg, Q7D ⁇ 3).
  • the administration time of Zapadcine-3a and the negative control group was 0, 4, and 7 days after grouping, while the time of administration of vincristine was 0, 7 and 14 days after grouping, and the above administration methods were all tail vein injections.
  • Tumor size longest diameter and shortest diameter
  • Animals were weighed and weighed.
  • the tumor tissue was taken out and weighed and photographed.
  • Tumor tissues and main organs (heart, liver, kidney, spleen, lung) were separated and frozen in liquid nitrogen or fixed with 4% paraformaldehyde to prepare paraffin sections for use.
  • Zapadcine-3a The acute toxic effects of Zapadcine-3a were evaluated by examining changes in body condition and biochemical parameters after administration in normal rats.
  • the specific research process was as follows: 20 healthy SD rats (purchased from Shanghai Xipuer-Beikai Experimental Animal Co., Ltd.), aged 5-6 weeks after birth, weighing 160-180 g. Divided into 4 groups of 5 each. After one week of routine feeding, administration was started. Zapadcine-3a was administered at doses of 15 mg/kg, 20 mg/kg and 25 mg/kg with a blank solvent as the normal control. Slow injection through the tail vein, single administration, daily observation of the rats including death, diet and exercise, the body weight of the rats was recorded every 3 days, and blood samples were taken for blood biochemical tests on the 5th and 15th day respectively.
  • the test items include ALT and UREA. On the 21st day after administration, the animals were euthanized by excessive anesthesia.
  • the acute toxic effects of Zapadcine-3a were evaluated by examining changes in body condition and biochemical parameters after administration of normal cynomolgus monkeys.
  • the specific research process is as follows: Pick 3 female Non- In cynomolgus monkeys, the animal weighs 3.19-3.63 kg. The drug was administered by intravenous infusion at a dose of 2, 3, 4 mg/kg and a dose of 2 mL/kg. The administration was performed once on the day of administration, and the observation was continued for 21 days after the completion of the administration. Animals were weighed before D-1, D1, D8, D15, D22 (before dissection); food consumption was measured within 24 hours (24hr ⁇ 1hr) of animals at D2, D8, D15, and D21.
  • Hematology, coagulation, blood biochemical tests, and urine analysis were performed before administration and on the 22nd day after administration.
  • EDTA-K2 anticoagulated plasma samples were collected for plasma drug concentration detection at 20 min, 1 h, 2 h, 4 h, 8 h, 24 h, 48 h, 72 h, 96 h, 168 h, 240 h, 336 h, and 504 h after the end of administration. .
  • the animals were euthanized in D22, and tissues such as liver, spleen, kidney, heart, lung, and the like were collected and stored, and the liver, spleen, kidney, and heart were weighed.
  • ADC drugs the small molecule is mainly composed of chemical toxins and chemical connectors.
  • chemical toxins include tubulin polymerase inhibitors such as monomethyl auristatin D, E, F (abbreviated as MMAD, MMAE, MMAF), maytansine and toxins that disrupt DNA double helix, such as Cachi And doxorubicin and the like.
  • MMAE, MMAF, tubulin depolymerizing agents, maytansin DM1 and DM4, etc. are currently used in ADC drugs currently under study or clinically.
  • the chemical linkages recognized at home and abroad are non-degradable chemical bonds such as deuterium bonds such as oxime bonds and disulfide bonds, and thioether bonds.
  • ADC drug Merlot In the first generation of ADC drug Merlot, the use of disulfide bonds and oxime bonds, two degradable disulfide-linked antibodies and calicheamicin, due to its unstable chemical bonds and limited therapeutic effects, Recalled by Pfizer in 2010.
  • the second-generation ADC drug, Kadcyla utilizes a non-degradable thioether bond with good activity and low biological toxicity.
  • chemical bonds may still break in the blood circulation and may therefore have strong hepatotoxicity. Since the introduction of Adcetris and Kadcyla, more than 100 ADC candidate drugs have entered the human clinical trials.
  • the antibody used to prepare the ADC must have two basic characteristics: the tumor specificity of the antibody and the antigen-antibody complex formed by binding the antibody to the antigen can be endocytosed into the lysosome and degraded in the lysosome. Small molecule toxins, whereby small molecule toxins specifically kill tumor cells.
  • the humanized monoclonal antibody against TRAILR2 (TRAILR2 or CD262 or DR5) with independent intellectual property rights of the present invention has a unique gene compared with other antibodies against the TRAILR2 target which have entered human clinical trials at home and abroad. Sequences, antigenic determinants and strong antigenic affinity can specifically kill a variety of TRAILR2-positive tumor cells in vitro and in vivo, inhibit tumor cell growth, but have little toxicity to normal cells and tissues. Internationally, for the treatment of tumors targeting TRAILR2, the results of clinical trials have shown that they are safe, but the efficacy of the drugs alone is unsatisfactory.
  • the amino acid sequence of the light chain variable region (VL) of the antibody is SEQ ID No. 8:

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cell Biology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Reproductive Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

提供一种广谱、高效、抗肿瘤的抗TRAILR2抗体-毒素-偶联物(ADC,命名为Zapadcine-1(a、b、c、d)、Zapadcine-3(a、b、c、d、e),采用二硫键桥连或常规偶联技术和化学连接子(Linker)将具有细胞毒作用的毒素与抗TRAILR2人源化单克隆抗体以共价键连接,形成一种抗TRAILR2人源化抗体-毒素-偶联物。ADC具有TRAILR2阳性肿瘤的特异性,其与TRAILR2结合后,可被内吞并进入肿瘤细胞的溶酶体,经溶酶体内的蛋白酶降解而释放出游离的小分子毒素,从而特异性地杀死多种TRAILR2阳性的肿瘤细胞,抑制肿瘤生长,甚至完全清除肿瘤细胞,治愈肿瘤。

Description

抗TRAILR2抗体-毒素-偶联物及其在抗肿瘤治疗中的药物用途 技术领域
本发明涉及生物化学、免疫化学、有机化学和药物化学技术领域,具体地说,本发明涉及一种抗体-毒素-偶联物(ADC,命名为Zapadcine-1、Zapadcine-3)及其治疗肿瘤的药物用途。
背景技术
根据WHO发表的《全球癌症报告2014》显示全球癌症病例增长快速,从2012年的1400万人到2025年的1900万人和2035年的2400万人,全球癌症患者和死亡病例都在令人不安地增加,新增癌症病例有近一半出现在亚洲,其中大部分在中国,中国新增癌症病例高居第一位。2012年全球最多人罹患的3大癌症为肺癌(180万)、乳癌(170万)、大肠癌(140万),致死率前3名的癌症则是肺癌、肝癌、胃癌。白血病是我国十大高发恶性肿瘤之一,死亡率在各类肿瘤中排在第六位。2008年至2015年间我国抗肿瘤药物的市场规模稳步增长,市场规模由289.86亿元增长到970.01亿元。预计至2018年该类别用药市场销售额可达1,447.42亿元。
自从1986年第一个治疗性抗体(OKT3)上市以来,至今已有许多治疗性抗体及其衍生物用于临床治疗,超过1000个抗体及其衍生物处于研发阶段。全球治疗性抗体从起初微乎其微的市场份额增长到可用来治疗多种癌症、自身免疫病、移植排异反应、心血管疾病和各种传染病等安全、特异、有效的重大疾病治疗药物。2016年,美国FDA批准上市的16个新药中,其中6个是抗体药物。目前还有多个处于临床试验II、III期,估计2017年美国FDA还将批准8-10个抗体药物上市。每个抗体药物上市后的年销售额平均约达10亿美元。现在年销售额10亿美元以上的所谓“重磅炸弹”都是抗体药物。因此,治疗性抗体是全世界生物技术药物研发的主攻方向,方兴未艾,很多学者认为治疗性抗体药物就是“未来医学”。但是,我国在治疗抗体研发和产业化方面还很落后,至今除了几个仿制的治疗性抗体药物面世外,具有自主知识产权的、创新性治疗性抗体药物寥寥无几。
肿瘤坏死因子超家族(TNFSF)可诱导细胞凋亡,其中FasL/Fas (CD95L/CD95)、TNF/TNFR、TRAIL/TRAILR等三种配体及其受体在诱导肿瘤细胞凋亡中发挥重要作用。TRAIL属于2型跨膜蛋白,与前二者不同,TRAIL与其相对应的死亡受体结合后可特异性诱导肿瘤细胞凋亡,对正常细胞无损伤。TRAIL及其死亡受体的这一特性引起了研究者的高度重视,希望据此找到一种新的治疗肿瘤方法。TRAIL受体有5种:TRAILR1、TRAILR2、TRAILR3、TRAILR4和OPG。TRAILR1与TRAILR2为死亡受体(DR),死亡受体胞内区具有完整的死亡结构域(DD),可诱导靶细胞的凋亡,TRAILR3与TRAILR4为诱骗受体(DcR1、DcR2),诱骗受体胞内区缺失完整的死亡结构域,不能传递细胞凋亡信号,这是保护正常细胞逃避凋亡的机制之一。TRAIL与其死亡受体结合后,可激发细胞内一系列天冬氨酸蛋白酶的级联反应,最终杀死TRAILR1或TRAILR2阳性的肿瘤细胞。
针对TRAILR1或TRAILR2为靶点的肿瘤治疗,包括应用重组可溶性TRAIL、抗TRAILR1或抗TRAILR2的激动性单克隆的治疗,已进入人体临床试验阶段(I/II期),用于治疗多种肿瘤患者。临床试验的结果显示其安全性良好,但单独用药的疗效不能令人满意。其原因可能与重组可溶性TRAIL的体内半衰期短、所用治疗性抗体的亲和力小、TRAILR1或TRAILR2介导的信号途径复杂以及未使用有效的分子标记对患者进行选择有关。因此,目前针对TRAILR1或TRAILR2为靶点的肿瘤治疗药物研发以提高TRAILR1或TRAILR2激动剂稳定性和生物学活性为目标,包括与化药、靶向药、抗体药和小分子抑制剂等联合用药,以及应用纳米载体等技术等,并已取得了一定进展。
因此,国际上有些药物研发公司和实验室正在采用联合用药的方案进行多种肿瘤治疗的临床试验研究,已获得了良好效果。但是,联合用药的成本高,特别是与化药物联用时,没有根本解决化药毒性大的问题,病人依从性差,对病人的毒副作用仍然很大。
发明内容
针对上述缺点,本发明创造性地采用制备抗体-毒素-偶联物(ADC)的策略,使ADC既保留了抗体的高度肿瘤特异性,又利用连接子将抗体与小分子毒素偶联形成一个偶联复合物,当ADC特异性地与肿瘤细胞表面的特异抗原结合后,可将小分子毒素带入肿瘤细胞内的溶酶体,经溶酶体内的蛋白酶水解作用再将毒素释放出来,从而特异性地杀死肿瘤细胞,极大地提高疗效,同时降低 了小分子毒素的毒副作用,大大地提高了安全性,因此而备受青睐。
在本发明的第一方面,提供了一种抗体-药物偶联物或其药学上可接受的盐或溶剂化合物,所述抗体药物偶联物含有:
(a)抗体部分;和
(b)与所述抗体部分偶联的偶联部分,所述偶联部分选自下组:可检测标记物、药物、毒素、细胞因子、放射性核素、酶、或其组合;
其中,所述抗体的重链可变区包括以下三个互补决定区CDR:
(H1)SEQ ID NO.:1所示的CDRH1,
(H2)SEQ ID NO.:2所示的CDRH2,和
(H3)SEQ ID NO.:3所示的CDRH3;
其中,上述重链可变区氨基酸序列中任意一种氨基酸序列还包括任选地经过添加、缺失、修饰和/或取代至少一个氨基酸的,并能够保留TRAILR2结合亲和力的衍生序列;和/或
所述抗体的轻链可变区包括以下三个互补决定区CDR:
(L1)SEQ ID NO.:4所示的CDRL1,
(L2)SEQ ID NO.:5所示的CDRL2,和
(L3)SEQ ID NO.:6所示的CDRL3;
其中,上述轻链可变区氨基酸序列中任意一种氨基酸序列经过添加、缺失、修饰和/或取代至少一个氨基酸的具有TRAILR2结合亲和力的衍生序列。
在另一优选例中,所述的抗体包括完整抗体或其活性片段。
在另一优选例中,所述的活性片段保留了结合于TRAILR2的结合活性。
在另一优选例中,所述抗体药物偶联物ADC如下分子式所示:
Figure PCTCN2019074139-appb-000001
其中:
Ab为抗TRAILR2的抗体,
LU为无或连接所述抗体和所述药物的接头;
D为药物;
p为偶联于所述抗体的所述药物的数量;p是选自1-10,较佳地1-8的值,更佳地2-4的值;
“-”为键或接头。
在另一优选例中,所述的药物D为毒素。
在另一优选例中,所述的毒素为小分子毒素。
在另一优选例中,所述的LU为化学连接头。
在另一优选例中,所述接头是可被组织蛋白酶切割的连接头。
在另一优选例中,所述接头是不可被组织蛋白酶切割的连接头。
在另一优选例中,所述LU的结构如下式(I)所示:
-L 1-L 2-L 3-      (I)
其中,
L 1为无或Py、Mc;
L 2为无或Vc、MAA、Mc;
L 3为无或PAB、MAA、Mc;
“-”各自独立地为键;
Py为1,1',1”-(1,3,5-三嗪-1,3,5-三基)三(丙-2-烯-1-酮)(1,1',1”-(1,3,5-triazinane-1,3,5-triyl)tris(prop-2-en-1-one));
Vc为(S)-2-((S)-2-氨基-3-甲基丁酰氨基)-5-脲基戊酰胺((S)-2-((S)-2-amino-3-me thylbutanamido)-5-ureidopentanamide);
Mc为6-(2,5-二氧代环戊-3-烯-1-基)己酸(6-(2,5-dioxocyclopent-3-en-1-yl)hex anoic acid);
PAB-OH为(4-氨基苯基)甲醇((4-aminophenyl)methanol);
MAA为2-巯基乙酸(2-mercaptoacetic acid),
其分子结构式如下:
Figure PCTCN2019074139-appb-000002
并且,L 1、L 2、L 3至少一个不为无。
在另一优选例中,L1、L2、L3至少二个不为无。
在另一优选例中,L1、L2、L3均不为无。
在另一优选例中,所述LU选自下组:Py-Vc-PAB(Py-Vc-PAB-OH)、Mc-Vc-PAB(Mc-Vc-PAB-OH)、Py-MAA(Py-MAA-OH)、Mc(Mc-OH),其分子结构式如下:
Figure PCTCN2019074139-appb-000003
在另一优选例中,所述接头LU中的L 1为Py。
在另一优选例中,所述LU选自下组:Py-Vc-PAB(Py-Vc-PAB-OH)、Mc(Mc-OH)、Py-MAA(Py-MAA-OH)。
在另一优选例中,所述的药物D(如MMAE或MMAF或MMAD)通过接头LU与抗体(如Zaptuzumab)的连接方式选自下组:桥接偶联、常规偶联。
在另一优选例中,所述的桥接偶联为巯基桥接偶联(例如二硫键桥连)。
在另一优选例中,所述的常规偶联为巯基常规偶联。
在另一优选例中,所述接头LU以可被蛋白酶裂解的方式与所述药物D连接。
在另一优选例中,所述接头LU以不可裂解的方式与所述药物D连接。
在另一优选例中,所述D选自下组:化疗剂、放射性物质、毒素、能够将前药转化成其活性形式的抗癌前药的活化酶、或其组合。
在另一优选例中,所述药物D选自下组:单甲基阿里他汀F(MMAF),单甲基阿里他汀E(MMAE)、单甲基阿里他汀-D(MMAD)类衍生物、或其组合
Figure PCTCN2019074139-appb-000004
Figure PCTCN2019074139-appb-000005
在另一优选例中,所述的与D相连的氨基酸残基是原本存在于抗体(亲本抗体)或外源引入的。
在另一优选例中,所述的与D相连的氨基酸残基为半胱氨酸氨基酸。
在另一优选例中,所述半胱氨酸氨基酸是在亲本抗体中在依照Kabat编号规则的轻链的一个或多个位置处和/或在依照Kabat编号规则的重链的一个或多个位置处和在依照EU编号规则的重链的一个或多个位置处所引入的一个或多个游离半胱氨酸氨基酸。
在另一优选例中,所述的与D相连的氨基酸残基为赖氨酸。
在另一优选例中,所述活性片段选自下组:Fab、F(ab′)2、Fv或scFv片段。
在另一优选例中,所述的抗体是单克隆抗体(mAb)。
在另一优选例中,所述单克隆抗体(mAb)为Zaptuzumab。
在另一优选例中,所述抗体为抗TRAILR2人源化单克隆抗体。
在另一优选例中,所述的抗体包括:双链抗体、单链抗体。
在另一优选例中,所述抗体是重组的。
在另一优选例中,所述抗体是在细菌(如大肠杆菌)中生成的。
在另一优选例中,所述抗体是在真核细胞(如CHO细胞)中生成的。
在另一优选例中,所述抗体选自:动物源抗体、嵌合抗体、人源化抗体、全人抗体、或其组合。
在另一优选例中,所述抗体为人源化抗体或全人抗体。
在另一优选例中,所述抗体为抗肿瘤的特异性抗体。
在另一优选例中,所述抗体为在肿瘤细胞上特异性表达的受体TRAILR1或TRAILR2的抗体。
在另一优选例中,所述抗体选自下组:抗人肿瘤坏死因子相关凋亡诱导配体(TRAIL)的受体1(TRAILR1)、或抗人肿瘤坏死因子相关凋亡诱导配体(TRAIL)的受体2(TRAILR2)的抗体、或其组合。
在另一优选例中,所述抗体为抗人肿瘤坏死因子相关凋亡诱导配体(TRAIL)的受体2(TRAILR2)的人源化单克隆抗体。
在另一优选例中,所述抗人肿瘤坏死因子相关凋亡诱导配体(TRAIL)的受体2(TRAILR2)的人源化单克隆抗体为Zaptuzumab。
在另一优选例中,所述抗体对人TRAILR2蛋白的亲和力的EC 50为0.1-10nM,较佳地为0.1-1.0nM,更佳地为0.1-0.5nM。
在另一优选例中,所述抗体不结合于野生型鼠的TRAILR2蛋白。
在另一优选例中,所述抗体具有选自下组的一个或多个特性:
(a)与TRAILR2特定的抗原决定簇结合;
(b)与细胞表面TRAILR2结合形成的抗原抗体复合物可被内吞至溶酶体;
(c)抑制肿瘤形成与生长;
(d)抑制肿瘤细胞迁移或转移。
在另一优选例中,所述抗体-药物偶联物(ADC)选自下组:Zapadcine-1a、Zapadcine-1b、Zapadcine-1c、Zapadcine-1d、Zapadcine-3a、Zapadcine-3b、Zapadcine-3c、Zapadcine-3d、Zapadcine-3e;其中,
偶联物Zapadcine-1a的结构如下:
Figure PCTCN2019074139-appb-000006
偶联物Zapadcine-1b的结构如下:
Figure PCTCN2019074139-appb-000007
偶联物Zapadcine-1c的结构如下:
Figure PCTCN2019074139-appb-000008
偶联物Zapadcine-1d的结构如下:
Figure PCTCN2019074139-appb-000009
偶联物Zapadcine-3a的结构如下:
Figure PCTCN2019074139-appb-000010
偶联物Zapadcine-3b的结构如下:
Figure PCTCN2019074139-appb-000011
偶联物Zapadcine-3c的结构如下:
Figure PCTCN2019074139-appb-000012
偶联物Zapadcine-3d的结构如下:
Figure PCTCN2019074139-appb-000013
偶联物Zapadcine-3e的结构如下:
Figure PCTCN2019074139-appb-000014
在另一优选例中,所述抗体-药物偶联物(ADC)选自下组:Zapadcine-1a、Zapadcine-1c;其中,
偶联物Zapadcine-1a的结构如下:
Figure PCTCN2019074139-appb-000015
偶联物Zapadcine-1c的结构如下:
Figure PCTCN2019074139-appb-000016
在另一优选例中,所述抗体-药物偶联物(ADC)选自下组:Zapadcine-3a、Zapadcine-3d;其中,
偶联物Zapadcine-3a的结构如下:
Figure PCTCN2019074139-appb-000017
偶联物Zapadcine-3d的结构如下:
Figure PCTCN2019074139-appb-000018
在另一优选例中,所述抗体的重链可变区的氨基酸序列如SEQ ID No.7所示; 和/或,所述的抗体的轻链可变区的氨基酸序列如SEQ ID No.8所示;
其中,上述重链可变区的氨基酸序列还包括任选地经过添加、缺失、修饰和/或取代至少一个氨基酸的,并与SEQ ID No.7所示的氨基酸序列具有至少80%同源性或序列相同性的衍生序列;
其中,上述轻链可变区的氨基酸序列还包括任选地经过添加、缺失、修饰和/或取代至少一个氨基酸的,并与SEQ ID No.8所示的氨基酸序列具有至少80%同源性或序列相同性的衍生序列。
在另一优选例中,所述单克隆抗体(mAb)的重链可变区的氨基酸序列如SEQ ID No.7所示;和/或,所述的抗体的轻链可变区的氨基酸序列如SEQ ID No.8所示;
其中,上述重链可变区的氨基酸序列还包括任选地经过添加、缺失、修饰和/或取代至少一个氨基酸的,并与SEQ ID No.7所示的氨基酸序列具有至少80%同源性或序列相同性的衍生序列;
其中,上述轻链可变区的氨基酸序列还包括任选地经过添加、缺失、修饰和/或取代至少一个氨基酸的,并与SEQ ID No.8所示的氨基酸序列具有至少80%同源性或序列相同性的衍生序列;
所述抗体-药物偶联物(ADC)选自下组:Zapadcine-3a、Zapadcine-3d。
在另一优选例中,所述抗体-药物偶联物(ADC)选自下组:Zapadcine-3a、Zapadcine-3d,其中,所述单克隆抗体(mAb)为Zaptuzumab。
在另一优选例中,所述抗体-药物偶联物(ADC)为Zapadcine-3a,其中,所述单克隆抗体(mAb)为Zaptuzumab。
在另一优选例中,所述单克隆抗体(mAb)的重链可变区的氨基酸序列如SEQ ID No.7所示;和/或,所述的抗体的轻链可变区的氨基酸序列如SEQ ID No.8所示;
其中,上述重链可变区的氨基酸序列还包括任选地经过添加、缺失、修饰和/或取代至少一个氨基酸的,并与SEQ ID No.7所示的氨基酸序列具有至少80%同源性或序列相同性的衍生序列;
其中,上述轻链可变区的氨基酸序列还包括任选地经过添加、缺失、修饰和/或取代至少一个氨基酸的,并与SEQ ID No.8所示的氨基酸序列具有至少80%同源性或序列相同性的衍生序列;
所述抗体-药物偶联物(ADC)选自下组:Zapadcine-1a、Zapadcine-1c。
在另一优选例中,所述抗体-药物偶联物(ADC)选自下组:Zapadcine-1a、Zapadcine-1c,其中,所述单克隆抗体(mAb)为Zaptuzumab。
在另一优选例中,所述抗体-药物偶联物(ADC)分为Zapadcine-1a,其中,所述单克隆抗体(mAb)为Zaptuzumab。
在本发明的第二方面,提供了一种本发明的第一方面所述的抗体-药物偶联物或 其药学上可接受的盐或溶剂化合物的应用,所述抗体-药物偶联物用于(i)制备诊断试剂;和/或(ii)制备预防和/或治疗TRAILR2相关的疾病的药物。
在另一优选例中,所述TRAILR2相关的疾病选自下组:肿瘤(例如TRAILR2阳性表达的肿瘤)的发生、生长和/或转移。
在另一优选例中,所述TRAILR2阳性表达的肿瘤为TRAILR2阳性表达的癌症。
在另一优选例中,所述癌症选自T淋巴细胞白血病、B淋巴细胞白血病、非T非B淋巴细胞白血病、非小细胞肺癌、肝癌、结肠癌、乳腺癌、卵巢癌、胰腺癌、甲状腺癌、头颈部鳞状细胞癌、食管鳞状细胞癌、肺鳞状细胞癌、肺腺癌、宫颈部鳞状细胞癌、胰腺鳞状细胞癌、结肠鳞状细胞癌、胃鳞状细胞癌、前列腺癌、骨肉瘤或软组织肉瘤。
在另一优选例中,所述肿瘤为为TRAILR2阳性表达的癌症,所述癌症选自下组:T淋巴细胞白血病、B淋巴细胞白血病、非T非B淋巴细胞白血病、非小细胞肺癌、肝癌、结肠癌、乳腺癌、卵巢癌、胰腺癌、甲状腺癌、头颈部鳞状细胞癌、食管鳞状细胞癌、肺鳞状细胞癌、肺腺癌、宫颈部鳞状细胞癌、胰腺鳞状细胞癌、结肠鳞状细胞癌、胃鳞状细胞癌、前列腺癌、骨肉瘤或软组织肉瘤。
在另一优选例中,所述的TRAILR2阳性表达是指肿瘤组织和/或细胞中TRAILR2转录本和/或蛋白的水平L1与正常组织和/或细胞中转录本和/或蛋白的水平L0之比,L1/L0≥2,较佳地≥3。
在本发明的第三方面,提供了一种药物组合物,它含有:
(i)活性成分,所述活性成分为如本发明的第一方面所述的抗体药物偶联物或其药学上可接受的盐或溶剂化合物或其组合;以及
(ii)药学上可接受的载体。
在另一优选例中,所述活性成分为Zapadcine-3a、Zapadcine-3d或其组合,其中,所述单克隆抗体(mAb)为Zaptuzumab。
在另一优选例中,所述活性成分为Zapadcine-3a,其中,所述单克隆抗体(mAb)为Zaptuzumab。
在另一优选例中,所述活性成分为Zapadcine-1a、Zapadcine-1c或其组合,其中,所述单克隆抗体(mAb)为Zaptuzumab。
在另一优选例中,所述活性成分为Zapadcine-1a,其中,所述单克隆抗体(mAb)为Zaptuzumab。
在另一优选例中,所述的药物组合物为人用单位剂量形式。
在另一优选例中,所述药物组合物为液态制剂。
在另一优选例中,所述药物组合物中,所述抗体药物偶联物的含量为0.005-50wt%,较佳地0.05-10wt%。
在另一优选例中,所述的药物还包括(iii)额外的治疗剂。
在另一优选例中,所述的额外治疗剂包括化疗剂。
在本发明的第四方面,提供了一种体外非治疗性抑制肿瘤细胞的方法,包括步骤:将所述肿瘤细胞与本发明的第一方面所述的抗体药物偶联物或其药学上可接受的盐或溶剂化合物接触。
在另一优选例中,所述的接触是在体外培养体系中进行。
在本发明的第五方面,提供了一种预防和/或治疗肿瘤的方法,包括步骤:给需要的对象施用本发明的第一方面所述的抗体-药物偶联物或其药学上可接受的盐或溶剂化合物或本发明的第三方面所述的药物组合物。
在另一优选例中,所述对象为哺乳动物,包括人。
在本发明的第六方面,提供了一种减缓治疗对象中肿瘤生长的方法,包括步骤:联用有效量的本发明的第一方面所述的抗体药物偶联物或其药学上可接受的盐或溶剂化合物与一种或多种选自下组的治疗:辐射治疗、化疗剂治疗、生物治疗、或其组合。
在本发明的第七方面,提供了本发明的第一方面所述的抗体-药物偶联物或其药学上可接受的盐或溶剂化合物或本发明的第三方面所述的药物组合物在制备用于预防和/或治疗肿瘤的药物中的用途。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1为本发明的化学连接头的分子结构式。
图2为本发明的抗TRAILR2抗体-毒素-偶联物的分子结构式。
图3为本发明的化学毒素的分子结构式。
图4为本发明的Zapadcine-1a与TRAILR2重组蛋白(抗原)的亲和力。
图5为本发明的Zapadcine-1a对淋巴细胞白血病Jurkat E6-1裸鼠皮下移植瘤生长的抑制作用。
图6为本发明的Zapadcine-1a对大细胞肺癌NCI-H460裸鼠移植瘤生长的抑 制作用。
图7为本发明的Zapadcine-1a对人非小细胞肺癌NCI-H1975裸鼠移植瘤生长的抑制作用。
图8为本发明的Zapadcine-1a对肝癌细胞SMMC-7721裸鼠移植瘤生长的抑制作用。
图9为本发明的Zapadcine-1a对卵巢癌细胞A2780裸鼠移植瘤生长的抑制作用。
图10为本发明的Zapadcine-1a对胰腺癌细胞Mia PaCa-2裸鼠移植瘤生长的抑制作用。
图11为本发明的Zapadcine-1a单次给药正常小鼠的最大耐受剂量。
图12为本发明的Zapadcine-3a与TRAILR2重组蛋白(抗原)的亲和力。
图13为本发明的Zapadcine-3a对人非小细胞肺癌MSTO-211H裸鼠移植瘤生长的抑制作用。
图14为本发明的Zapadcine-3a对胰腺癌细胞Mia PaCa-2裸鼠移植瘤生长的抑制作用。
图15为本发明的Zapadcine-3a对T淋巴细胞白血病细胞Jurkat E6-1裸鼠移植瘤生长的抑制作用。
图16为本发明的Zapadcine-3a对非T非B淋巴细胞白血病细胞Reh裸鼠移植瘤生长的抑制作用。
图17为本发明的Zapadcine-3a单次给药正常大鼠的最大耐受剂量。
图18为本发明的Zapadcine-3a单次给药正常食蟹猴的最大耐受剂量。
具体实施方式
本发明人通过广泛而深入的研究,设计了靶向TRAILR2的抗体药物偶联物,所述抗体-药物偶联物具有显著的抗肿瘤效果。本发明还提供了所述抗TRAILR2抗体-药物偶联物的制药用途,及其在抑制或预防肿瘤中的作用。
本发明涉及的抗TRAILR2(TRAILR2或CD262)的人源化单克隆抗体,与国内外已经进入人体临床试验的、针对TRAILR2靶点的其他抗体相比,具有独特的基因序列、抗原决定簇以及很强的抗原亲和力,在体内外均能特异性地杀死多种TRAILR2阳性的肿瘤细胞,抑制肿瘤细胞生长,但对正常细胞和组织几乎没有毒性,安全性良好。
在本发明的一个优选的实施方式中,采用的是抗TRAILR2人源化单克隆抗 体(Zaptuzumab),采用二硫键桥连偶联技术,将Zaptuzumab通过不同的化学连接子与小分子毒素偶联,获得了多种化学结构不同的ADC,经过体内和体外抗肿瘤活性的反复筛选,获得了一个成药性优良的ADC候选药物(命名为Zapadcine-1、Zapadcine-3),将可用于TRAILR2阳性的多种肿瘤的治疗。
术语
本发明核心术语的解释
Figure PCTCN2019074139-appb-000019
Figure PCTCN2019074139-appb-000020
如本文所用,术语“抗体药物偶联体”、“抗体偶联物”、“抗体药物偶联物”、“抗体-药物偶联物”“免疫偶联物”可互换使用,指(a)抗体或其活性片段与(b)药物形成的偶联物。
如本文所用,术语“本发明的抗体药物偶联体”、“本发明的抗体与药物偶联物”或“本发明的ADC”可互换使用,指具有针对TRAILR2的本发明抗体或其活性片段与药物形成的偶联物。
除非另外定义,否则本文中所用的全部技术与科学术语均具有如本发明所属领域的普通技术人员通常理解的相同含义。如本文所用,在提到具体列举的数值中使用时,术语“约”意指该值可以从列举的值变动不多于1%。例如,表述“约100”包括99和101和之间的全部值(例如,99.1、99.2、99.3、99.4等)。
抗体
如本文所用,术语“抗体”或“免疫球蛋白”是有相同结构特征的约150000道尔顿的异四聚糖蛋白,其由两个相同的轻链(L)和两个相同的重链(H)组成。每条轻链通过一个共价二硫键与重链相连,而不同免疫球蛋白同种型的重链间的二硫键数目不同。每条重链和轻链也有规则间隔的链内二硫键。每条重链的一端有可变区(VH),其后是多个恒定区。每条轻链的一端有可变区(VL),另一端有恒定区;轻链的恒定区与重链的第一个恒定区相对,轻链的可变区与重链的可变区相对。特殊的氨基酸残基在轻链和重链的可变区之间形成界面。
如本文所用,术语“可变”表示抗体中可变区的某些部分在序列上有所不同, 它形成了各种特定抗体对其特定抗原的结合和特异性。然而,可变性并不均匀地分布在整个抗体可变区中。它集中于轻链和重链可变区中称为互补决定区(CDR)或超变区中的三个片段中。可变区中较保守的部分称为构架区(FR)。天然重链和轻链的可变区中各自包含四个FR区,它们大致上呈β-折叠构型,由形成连接环的三个CDR相连,在某些情况下可形成部分β折叠结构。每条链中的CDR通过FR区紧密地靠在一起并与另一链的CDR一起形成了抗体的抗原结合部位(参见Kabat等,NIH Publ.No.91-3242,卷I,647-669页(1991))。恒定区不直接参与抗体与抗原的结合,但是它们表现出不同的效应功能,例如参与抗体的依赖于抗体的细胞毒性。
脊椎动物抗体(免疫球蛋白)的“轻链”可根据其恒定区的氨基酸序列归为明显不同的两类(称为κ和λ)中的一类。根据其重链恒定区的氨基酸序列,免疫球蛋白可以分为不同的种类。主要有5类免疫球蛋白:IgA、IgD、IgE、IgG和IgM,其中一些还可进一步分成亚类(同种型),如IgG1、IgG2、IgG3、IgG4、IgA和IgA2。对应于不同类免疫球蛋白的重链恒定区分别称为α、δ、ε、γ、和μ。不同类免疫球蛋白的亚单位结构和三维构型是本领域人员所熟知的。
一般,抗体的抗原结合特性可由位于重链和轻链可变区的3个特定的区域来描述,称为可变区域(CDR),将该段间隔成4个框架区域(FR),4个FR的氨基酸序列相对比较保守,不直接参与结合反应。这些CDR形成环状结构,通过其间的FR形成的β折叠在空间结构上相互靠近,重链上的CDR和相应轻链上的CDR构成了抗体的抗原结合位点。可以通过比较同类型的抗体的氨基酸序列来确定是哪些氨基酸构成了FR或CDR区域。
本发明不仅包括完整的抗体,还包括具有免疫活性的抗体的片段(如抗原结合片段)或抗体与其他序列形成的融合蛋白。因此,本发明还包括所述抗体的片段、衍生物和类似物。
在本发明中,抗体包括用本领域技术人员熟知技术所制备的鼠的、嵌合的、人源化的或者全人的抗体。重组抗体,例如嵌合的和人源化的单克隆抗体,包括人的和非人的部分,可以通过标准的DNA重组技术获得,它们都是有用的抗体。嵌合抗体是一个分子,其中不同的部分来自不同的动物种,例如具有来自鼠的单克隆抗体的可变区,和来自人免疫球蛋白的恒定区的嵌合抗体(见例如美国专利4,816,567和美国专利4,816,397,在此通过引用方式整体引入本文)。人源化的抗体是指来源于非人物种的抗体分子,具有一个或多个来源于非人物种的互补决定区(CDRs)和来源于人免疫球蛋白分子的框架区域(见美国专利5,585,089,在此通过引用方式整体 引入本文)。这些嵌合和人源化的单克隆抗体可以采用本领域熟知的DNA重组技术制备。
在本发明中,抗体可以是单特异性、双特异性、三特异性、或者更多的多重特异性。
在本发明中,本发明的抗体还包括其保守性变异体,指与本发明抗体的氨基酸序列相比,有至多10个,较佳地至多8个,更佳地至多5个,最佳地至多3个氨基酸被性质相似或相近的氨基酸所替换而形成多肽。这些保守性变异多肽最好根据表1进行氨基酸替换而产生。
表1
最初的残基 代表性的取代 优选的取代
Ala(A) Val;Leu;Ile Val
Arg(R) Lys;Gln;Asn Lys
Asn(N) Gln;His;Lys;Arg Gln
Asp(D) Glu Glu
Cys(C) Ser Ser
Gln(Q) Asn Asn
Glu(E) Asp Asp
Gly(G) Pro;Ala Ala
His(H) Asn;Gln;Lys;Arg Arg
Ile(I) Leu;Val;Met;Ala;Phe Leu
Leu(L) Ile;Val;Met;Ala;Phe Ile
Lys(K) Arg;Gln;Asn Arg
Met(M) Leu;Phe;Ile Leu
Phe(F) Leu;Val;Ile;Ala;Tyr Leu
Pro(P) Ala Ala
Ser(S) Thr Thr
Thr(T) Ser Ser
Trp(W) Tyr;Phe Tyr
Tyr(Y) Trp;Phe;Thr;Ser Phe
Val(V) Ile;Leu;Met;Phe;Ala Leu
本发明的抗TRAILR2的抗体
本发明提供一种针对TRAILR2的高特异性和高亲和力的抗体,其包括重链和轻 链,所述重链含有重链可变区(VH)氨基酸序列,所述轻链含有轻链可变区(VL)氨基酸序列。
优选地,重链可变区(VH)氨基酸序列和轻链可变区(VL)氨基酸序列的各自CDR选自下组:
a1)SEQ ID No.1:CDRH1,DFSMN;
a2)SEQ ID No.2:CDRH2,WINTETGEPTYADDFKG;
a3)SEQ ID No.3:CDRH3,IDY;
a4)SEQ ID No.4:CDRL1,RSSQSLVHSNGNTYLH;
a5)SEQ ID No.5:CDRL2,KVSNRFS;
a6)SEQ ID No.6:CDRL3,FQSTHVPHT;
a7)上述氨基酸序列中任意一种氨基酸序列经过添加、缺失、修饰和/或取代至少一个氨基酸的具有TRAILR2结合亲和力的序列。
在另一优选例中,所述经过添加、缺失、修饰和/或取代至少一个氨基酸序列所形成的序列优选为同源性为至少80%,较佳地至少85%,更佳地至少为90%,最佳地至少95%的氨基酸序列。
优选地,所述的抗体具有激活TRAILR2相关信号通路的活性;具有促进细胞凋亡的活性;具有抑制细胞增殖的活性;具有促进细胞自噬的活性、或其组合。
典型地,本发明提供了一种抗TRAILR2的抗体,所述抗体具有:本发明的重链可变区;和/或本发明的轻链可变区;
其中,所述抗体的重链可变区包括以下三个互补决定区CDR:
SEQ ID NO.:1所示的CDRH1,
SEQ ID NO.:2所示的CDRH2,和
SEQ ID NO.:3所示的CDRH3;
其中,上述氨基酸序列中任意一种氨基酸序列还包括任选地经过添加、缺失、修饰和/或取代至少一个氨基酸的,并能够保留TRAILR2结合亲和力的衍生序列;
所述抗体的轻链可变区包括以下三个的互补决定区CDR:
SEQ ID NO.:4所示的CDRL1,
SEQ ID NO.:5所示的CDRL2,和
SEQ ID NO.:6所示的CDRL3;
上述氨基酸序列中任意一种氨基酸序列经过添加、缺失、修饰和/或取代至少一个氨基酸的具有TRAILR2结合亲和力的衍生序列。
较佳地,所述抗体的重链可变区序列为SEQ ID NO.:7;和/或所述的抗体的轻链可变区序列为SEQ ID NO.:8。
本发明中,所述抗体选自:动物源抗体、嵌合抗体、人源化抗体、全人抗体或其组合。
在另一优选例中,所述添加、缺失、修饰和/或取代的氨基酸数量,不超过初始氨基酸序列总氨基酸数量的40%。
在另一优选例中,所述添加、缺失、修饰和/或取代的氨基酸数量为1-7个。
在另一优选例中,所述经过添加、缺失、修饰和/或取代的至少一个氨基酸序列为同源性为至少80%的氨基酸序列。
在另一优选例中,所述经过添加、缺失、修饰和/或取代的至少一个氨基酸具有激活TRAILR2相关信号通路的活性;具有促进细胞凋亡、抑制细胞增殖、促进细胞自噬的活性中的任意一种或几种。
本发明所述抗体可以是双链或单链抗体,并且可以是选自动物源抗体、嵌合抗体、人源化抗体,更优选为人源化抗体、人-动物嵌合抗体(如人-鼠嵌合抗体),更优选为全人抗体。
本发明所述抗体衍生物可以是单链抗体、和/或抗体片段,如:Fab、Fab'、(Fab')2或该领域内其他已知的抗体衍生物等,以及IgA、IgD、IgE、IgG以及IgM抗体或其他亚型的抗体中的任意一种或几种。
其中,所述动物优选为哺乳动物,如鼠。
本发明抗体可以是靶向人TRAILR2的嵌合抗体、人源化抗体、CDR嫁接和/或修饰的抗体。
在本发明的一种优选实施例中,上述SEQ ID No.:1-SEQ ID No.:3中任意一种或几种序列、或它们经过添加、缺失、修饰和/或取代至少一个氨基酸的具有TRAILR2结合亲和力的序列,位于重链可变区(VH)的CDR区。
在本发明的一种优选实施例中,上述SEQ ID No.:4-SEQ ID No.:6中任意一种或几种序列、或它们经过添加、缺失、修饰和/或取代至少一个氨基酸的具有TRAILR2结合亲和力的序列,位于轻链可变区(VL)的CDR区。
在本发明的一种更优选实施例中,VH CDR1、CDR2、CDR3分别独立地选自SEQ ID No.:1-SEQ ID No.:3中任意一种或几种序列、或它们经过添加、缺失、修饰和/或取代至少一个氨基酸的具有TRAILR2结合亲和力的序列;VL CDR1、CDR2、CDR3分别独立地选自SEQ ID No.:4-SEQ ID No.:6中任意一种或几种序列、或它们经过添加、缺 失、修饰和/或取代至少一个氨基酸的具有TRAILR2结合亲和力的序列。
本发明上述内容中,所述添加、缺失、修饰和/或取代的氨基酸数量,优选为不超过初始氨基酸序列总氨基酸数量的40%,更优选为不超过35%,更优选为1-33%,更优选为5-30%,更优选为10-25%,更优选为15-20%。
本发明上述内容中,更优选地,所述添加、缺失、修饰和/或取代的氨基酸数量,可以是1-7个,更优选为1-5个,更优选为1-3个,更优选为1-2个。
在另一优选例中,所述靶向TRAILR2的抗体为Zaptuzumab。
在另一优选例中,所述抗体Zaptuzumab的重链可变区(VH)氨基酸序列为如SEQ ID NO.:7所示的氨基酸序列。
在另一优选例中,所述抗体Zaptuzumab的轻链可变区(V-Kappa)氨基酸序列为如SEQ ID NO.:8所示的氨基酸序列。
在另一优选例中,所述抗体重链可变区的氨基酸序列还包括任选地经过添加、缺失、修饰和/或取代至少一个氨基酸的,并与SEQ ID No.7所示的氨基酸序列具有至少80%同源性或序列相同性的衍生序列。
在另一优选例中,所述抗体轻链可变区的氨基酸序列还包括任选地经过添加、缺失、修饰和/或取代至少一个氨基酸的,并与SEQ ID No.8所示的氨基酸序列具有至少80%同源性或序列相同性的衍生序列。
在具体的实施方式中,所述同源性或序列相同性可以是80%以上,优选90%以上,更优选95%-98%,最优选99%以上。
本领域普通技术人员公知的测定序列同源性或相同性的方法包括但不限于:计算机分子生物学(Computational Molecular Biology),Lesk,A.M.编,牛津大学出版社,纽约,1988;生物计算:信息学和基因组项目(Biocomputing:Informatics and Genome Projects),Smith,D.W.编,学术出版社,纽约,1993;序列数据的计算机分析(Computer Analysis of Sequence Data),第一部分,Griffin,A.M.和Griffin,H.G.编,Humana Press,新泽西,1994;分子生物学中的序列分析(Sequence Analysis in Molecular Biology),von Heinje,G.,学术出版社,1987和序列分析引物(Sequence Analysis Primer),Gribskov,M.与Devereux,J.编M Stockton Press,纽约,1991和Carillo,H.与Lipman,D.,SIAM J.Applied Math.,48:1073(1988)。测定相同性的优选方法要在测试的序列之间得到最大的匹配。测定相同性的方法编译在公众可获得的计算机程序中。优选的测定两条序列之间相同性的计算机程序方法包括但不限于:GCG程序包(Devereux,J.等,1984)、BLASTP、BLASTN和 FASTA(Altschul,S,F.等,1990)。公众可从NCBI和其它来源得到BLASTX程序(BLAST手册,Altschul,S.等,NCBI NLM NIH Bethesda,Md.20894;Altschul,S.等,1990)。熟知的Smith Waterman算法也可用于测定相同性。
抗体的制备
本发明抗体或其片段的DNA分子的序列可以用常规技术,比如利用PCR扩增或基因组文库筛选等方法获得。此外,还可将轻链和重链的编码序列融合在一起,形成单链抗体。
一旦获得了有关的序列,就可以用重组法来大批量地获得有关序列。这通常是将其克隆入载体,再转入细胞,然后通过常规方法从增殖后的宿主细胞中分离得到有关序列。
此外,还可用人工合成的方法来合成有关序列,尤其是片段长度较短时。通常,通过先合成多个小片段,然后再进行连接可获得序列很长的片段。
目前,已经可以完全通过化学合成来得到编码所述的本发明的抗体(或其片段,或其衍生物)的DNA序列。然后可将该DNA序列引入本领域中已知的各种现有的DNA分子(或如载体)和细胞中。此外,还可通过化学合成将突变引入本发明蛋白序列中。
本发明还涉及包含上述的适当DNA序列以及适当启动子或者控制序列的载体。这些载体可以用于转化适当的宿主细胞,以使其能够表达蛋白质。
宿主细胞可以是原核细胞,如细菌细胞;或是低等真核细胞,如酵母细胞;或是高等真核细胞,如哺乳动物细胞。优选的动物细胞包括(但并不限于):CHO-S、HEK-293细胞。
通常,在适合本发明抗体表达的条件下,培养转化所得的宿主细胞。然后用常规的免疫球蛋白纯化步骤,如蛋白A-Sepharose、羟基磷灰石层析、凝胶电泳、透析、离子交换层析、疏水层析、分子筛层析或亲和层析等本领域技术人员熟知的常规分离纯化手段纯化得到本发明的抗体。
所得单克隆抗体可用常规手段来鉴定。比如,单克隆抗体的结合特异性可用免疫沉淀或体外结合试验(如放射性免疫测定(RIA)或酶联免疫吸附测定(ELISA))来测定。单克隆抗体的结合亲和力例如可用Munson等,Anal.Biochem.,107:220(1980)的Scatchard分析来测定。
本发明的抗体可在细胞内、或在细胞膜上表达、或分泌到细胞外。如果需要,可利用其物理的、化学的和其它特性通过各种分离方法分离和纯化重组的蛋白。这 些方法是本领域技术人员所熟知的。这些方法的例子包括但并不限于:常规的复性处理、用蛋白沉淀剂处理(盐析方法)、离心、渗透破菌、超声处理、超离心、分子筛层析(凝胶过滤)、吸附层析、离子交换层析、高效液相层析(HPLC)和其它各种液相层析技术及这些方法的结合。
细胞毒剂
可用于构成本发明ADC的药物包括但并不限于:细胞毒剂。
术语“细胞毒剂”是指抑制或阻止细胞表达活性、细胞功能和/或造成细胞破坏的物质。该术语包括放射性同位素、化学治疗剂以及毒素,如细菌、真菌、植物或动物来源的小分子毒素或酶活性毒素,包括其片段和/或变体。细胞毒剂的例子包括但不限于:耳他汀类(例如,耳他汀E、耳他汀F、MMAE和MMAF)、金霉素、类美坦西醇、篦麻毒素、篦麻毒素A-链、考布他汀、多卡米星、多拉司他汀、阿霉素、柔红霉素、紫杉醇、顺铂、cc1065、溴化乙锭、丝裂霉素、依托泊甙、替诺泊甙(tenoposide)、长春新碱、长春碱、秋水仙素、二羟基炭疽菌素二酮、放线菌素、白喉毒素、假单胞菌外毒素(PE)A、PE40、相思豆毒素、相思豆毒素A链、蒴莲根毒素A链、α-八叠球菌、白树毒素、迈托毒素(mitogellin)、局限曲菌素(retstrictocin)、酚霉素、依诺霉素、麻疯树毒蛋白(curicin)、巴豆毒素、卡奇霉素、肥皂草(Sapaonaria officinalis)抑制剂以及糖皮质激素和其它化学治疗剂,以及放射性同位素,如At211、I131、I125、Y90、Re186、Re188、Sm153、Bi212或213、P32和包括Lu177在内的Lu的放射性同位素。抗体也可与能够将前药转化成其活性形式的抗癌前药活化酶偶联。
优选的小分子药物为具有高细胞毒性的化合物,优选单甲基澳瑞他汀(monomethylauristatin)、加利车霉素、美登素类、或其组合;更佳地选自:单甲基阿里他汀-E(MMAE)、单甲基阿里他汀-D(MMAD)、单甲基阿里他汀-F(MMAF)、或其组合。
抗体-药物偶联物(ADC)
本发明还提供了基于本发明抗体的抗体偶联药物(antibody-drug conjugate,ADC)。
典型地,所述抗体偶联药物包括所述抗体、以及效应分子,所述抗体与所述效应分子偶联,并优选为化学偶联。其中,所述效应分子优选为具有治疗活 性的药物。此外,所述效应分子可以是毒蛋白、化疗药物、小分子药物或放射性核素中的一种或多种。
本发明抗体与所述效应分子之间可以是通过偶联剂进行偶联。所述偶联剂的例子可以是非选择性偶联剂、利用羧基的偶联剂、肽链、利用二硫键的偶联剂中的任意一种或几种。所述非选择性偶联剂是指使效应分子和抗体形成共价键连接的化合物,如戊二醛等。所述利用羧基的偶联剂可以是顺乌头酸酐类偶联剂(如顺乌头酸酐)、酰基腙类偶联剂(偶联位点为酰基腙)中的任意一种或几种。
抗体上某些残基(如Cys或Lys等)用于与多种功能基团相连,其中包括成像试剂(例如发色基团和荧光基团),诊断试剂(例如MRI对比剂和放射性同位素),稳定剂(例如乙二醇聚合物)和治疗剂。抗体可以被偶联到功能剂以形成抗体-功能剂的偶联物。功能剂(例如药物,检测试剂,稳定剂)被偶联(共价连接)至抗体上。功能剂可以直接地、或者是通过接头间接地连接于抗体。
典型的适用于本发明的偶联方式,包括K-Lock和C-Lock两种偶联方式。在K-Lock偶联方式中,药物分子偶联于抗体序列中赖氨酸(K)残基,在C-Lock偶联方式中,药物分子偶联于抗体序列中的半胱氨酸(C)残基。
抗体可以偶联药物从而形成抗体药物偶联物(ADCs)。典型地,ADC包含位于药物和抗体之间的接头。接头可以是可降解的或者是不可降解的接头。可降解的接头典型地在细胞内环境下容易降解,例如在目标位点处接头发生降解,从而使药物从抗体上释放出来。合适的可降解的接头包括,例如酶降解的接头,其中包括可以被细胞内蛋白酶(例如溶酶体蛋白酶或者内体蛋白酶)降解的含有肽基的接头,或者糖接头例如,可以被葡糖苷酸酶降解的含葡糖苷酸的接头。肽基接头可以包括,例如二肽,例如缬氨酸-瓜氨酸,苯丙氨酸-赖氨酸或者缬氨酸-丙氨酸。其它合适的可降解的接头包括,例如,pH敏感接头(例如pH小于5.5时水解的接头,例如腙接头)和在还原条件下会降解的接头(例如二硫键接头)。不可降解的接头典型地在抗体被蛋白酶水解的条件下释放药物。
连接到抗体之前,接头具有能够和某些氨基酸残基反应的活性反应基团,连接通过活性反应基团实现。巯基特异性的活性反应基团是优选的,并包括:例如马来酰亚胺类化合物,卤代酰胺(例如碘、溴或氯代的);卤代酯(例如碘、溴或氯代的);卤代甲基酮(例如碘、溴或氯代),苄基卤代物(例如碘、溴或氯代的);乙烯基砜,吡啶基二硫化物;汞衍生物例如3,6-二-(汞甲基)二氧六环, 而对离子是醋酸根、氯离子或者硝酸根;和聚亚甲基二甲基硫醚硫代磺酸盐。接头可以包括,例如,通过硫代丁二酰亚胺连接到抗体上的马来酰亚胺。
药物可以是任何细胞毒性,抑制细胞生长或者免疫抑制的药物。在实施方式中,接头连接抗体和药物,而药物具有可以和接头成键的功能性基团。例如,药物可以具有可以和连接物成键的氨基,羧基,巯基,羟基,或者酮基。在药物直接连接到接头的情况下,药物在连接到抗体之前,具有反应的活性基团。
特别有用的药物类别包括,例如,抗微管蛋白药物、DNA小沟结合试剂、DNA复制抑制剂、烷化试剂、抗生素、叶酸拮抗物、抗代谢药物、化疗增敏剂、拓扑异构酶抑制剂、长春花生物碱等。特别有用的细胞毒性药物类的例子包括,例如,DNA小沟结合试剂、DNA烷基化试剂、和微管蛋白抑制剂、典型的细胞毒性药物包括、例如奥瑞他汀(auristatins)、喜树碱(camptothecins)、多卡霉素/倍癌霉素(duocarmycins)、依托泊甙(etoposides)、美登木素(maytansines)和美登素类化合物(maytansinoids)(例如DM1和DM4)、紫杉烷(taxanes)、苯二氮卓类(benzodiazepines)或者含有苯二氮卓的药物(benzodiazepine containing drugs)(例如吡咯并[1,4]苯二氮卓类(PBDs),吲哚啉苯并二氮卓类(indolinobenzodiazepines)和噁唑烷并苯并二氮卓类(oxazolidinobenzodiazepines))和长春花生物碱(vinca alkaloids)。
在本发明中,药物-接头可以用于在一个简单步骤中形成ADC。在其它实施方式中,双功能连接物化合物可以用于在两步或多步方法中形成ADC。例如,半胱氨酸残基在第一步骤中与接头的反应活性部分反应,并且在随后的步骤中,接头上的功能性基团与药物反应,从而形成ADC。
通常,选择接头上功能性基团,以利于特异性地与药物部分上的合适的反应活性基团进行反应。作为非限制性的例子,基于叠氮化合物的部分可以用于特异性地与药物部分上的反应性炔基基团反应。药物通过叠氮和炔基之间的1,3-偶极环加成,从而共价结合于接头。其它的有用的功能性基团包括,例如酮类和醛类(适合与酰肼类和烷氧基胺反应),膦(适合与叠氮反应);异氰酸酯和异硫氰酸酯(适合与胺类和醇类反应);和活化的酯类,例如N-羟基琥珀酰亚胺酯(适合与胺类和醇类反应)。这些和其它的连接策略,例如在《生物偶联技术》,第二版(Elsevier)中所描述的,是本领域技术人员所熟知的。本领域技术人员能够理解,对于药物部分和接头的选择性反应,当选择了一个互补对的反应活性功能基团时,该互补对的每一个成员既可以用于接头,也可以用于药 物。
本发明还提供了制备ADC的方法,可进一步地包括:将抗体与药物-接头化合物,在足以形成抗体偶联物(ADC)的条件下进行结合。
在某些实施方式中,本发明方法包括:在足以形成抗体-接头偶联物的条件下,将抗体与双功能接头化合物进行结合。在这些实施方式中,本发明方法还进一步地包括:在足以将药物部分通过接头共价连接到抗体的条件下,将抗体接头偶联物与药物部分进行结合。
在一些实施方式中,抗体药物偶联物ADC如下分子式所示:
Figure PCTCN2019074139-appb-000021
其中:
Ab为抗TRAILR2的抗体,
LU为无或连接所述抗体和所述药物的接头;
D为药物;
p为偶联于所述抗体的所述药物的数量;p是选自1-10,较佳地1-8的值,更佳地2-4的值;
“-”为键或接头。
典型地,本发明的4种ADC的药物部分(例如毒素)、连接头、连接方式以及裂解方式如下表2:
表2
名称 Zapadcine-1a Zapadcine-1b Zapadcine-1c Zapadcine-1d
毒素 MMAD MMAD MMAD MMAF
连接头 Py-Vc-PAB Mc-Vc-PAB Py-MAA Mc-Vc-PAB
连接方式 巯基桥接偶联 巯基常规偶联 巯基桥接偶联 巯基常规偶联
裂解方式 可裂解 可裂解 不可裂解 可裂解
典型地,本发明的5种ADC的药物部分(例如毒素)、连接头、连接方式以及裂解方式如下表3:
表3
Figure PCTCN2019074139-appb-000022
Figure PCTCN2019074139-appb-000023
典型地,本发明ADC中的接头结构如图1所示。
典型地,本发明的9种ADC结构式如图2所示。
典型地,本发明的药物的结构式如图3所示。
应用
本发明还提供了本发明抗体的用途,例如用于制备诊断制剂、或制备用于预防和/或治疗TRAILR2相关的疾病的药物。所述TRAILR2相关的疾病包括肿瘤发生、生长和/或转移、血栓类相关疾病、炎症、代谢相关疾病等。
本发明抗体、ADC或CAR-T等的用途,包括(但并不限于):
(i)诊断、预防和/或治疗肿瘤发生、生长和/或转移,尤其是TRAILR2阳性表达的实体肿瘤。所述肿瘤包括(但并不限于):非小细胞肺癌、肝癌、结肠癌、乳腺癌、卵巢癌、胰腺癌、甲状腺癌、头颈部鳞状细胞癌、食管鳞状细胞癌、肺鳞状细胞癌、肺腺癌、宫颈部鳞状细胞癌、胰腺鳞状细胞癌、结肠鳞状细胞癌、胃鳞状细胞癌、前列腺癌、骨肉瘤或软组织肉瘤,更优选为非小细胞肺癌、肝癌、卵巢癌和胰腺癌等。
(ii)诊断、预防和/或治疗血液系统的肿瘤。所述肿瘤包括(但不限于):淋巴细胞白血病、粒细胞白血病、非T非B淋巴细胞白血病、滤泡型淋巴瘤、套细胞淋巴瘤、伯基特淋巴瘤、弥漫大B细胞淋巴瘤、非何杰金氏病、外周T细胞淋巴瘤、血管免疫母T细胞性淋巴瘤、间变性大细胞淋巴瘤等。更优选为急性T淋巴细胞白血病、B淋巴细胞白血病、非T非B淋巴细胞白血病。
典型地,本发明涉及通式Ab-(LU-D)p所示的Zapadcine-1(Zapadcine-1a、Zapadcine-1b、Zapadcine-1c、Zapadcine-1d、或其组合)或Zapadcine-3(Zapadcine-3a、Zapadcine-3b、Zapadcine-3c、Zapadcine-3d、Zapadcine-3e、或其组合)或其药学上可接受的盐、溶剂合物、立体异构体、互变异构体、前药以及它们的混合物为有效成分在制备预防和/或治疗癌症的药物中的应用。
药物组合物
本发明还提供了一种组合物。在优选例中,所述的组合物是药物组合物, 它含有上述的抗体或其活性片段或其融合蛋白或其ADC,以及药学上可接受的载体。通常,可将这些物质配制于无毒的、惰性的和药学上可接受的水性载体介质中,其中pH通常约为5-8,较佳地pH约为6-8,尽管pH值可随被配制物质的性质以及待治疗的病症而有所变化。配制好的药物组合物可以通过常规途径进行给药,其中包括(但并不限于):瘤内、腹膜内、静脉内、或局部给药。
本发明的药物组合物可直接用于结合TRAILR2蛋白分子,因而可用于预防和治疗肿瘤等疾病。此外,还可同时使用其他治疗剂,例如,各种细胞因子,如TNF、IFN、IL-2等;各种肿瘤化疗药物,如5-FU、氨甲喋呤等影响核酸生物合成的药物;氮芥、环磷酰胺等烷化剂类药物;阿霉素、放线菌素D等干扰转录过程阻止RNA合成的药物;长春新碱、喜树碱类。靶向药、抗体药、抑制剂,例如,抗PD-1或PD-L1的抗体、抗Fas抗体,以及Bcl-2抑制剂等。
本发明的药物组合物含有安全有效量(如0.001-99wt%,较佳地0.01-90wt%,更佳地0.1-80wt%)的本发明上述的单克隆抗体(或其偶联物)以及药学上可接受的载体或赋形剂。这类载体包括(但并不限于):盐水、缓冲液、葡萄糖、水、甘油、乙醇、及其组合。药物制剂应与给药方式相匹配。本发明的药物组合物可以被制成针剂形式,例如用生理盐水或含有葡萄糖和其他辅剂的水溶液通过常规方法进行制备。药物组合物如针剂、溶液宜在无菌条件下制造。活性成分的给药量是治疗有效量,例如每天约1微克/千克体重-约5毫克/千克体重。此外,本发明的多肽还可与其他治疗剂一起使用。
使用药物组合物时,是将安全有效量的免疫偶联物施用于哺乳动物,其中该安全有效量通常至少约10微克/千克体重,而且在大多数情况下不超过约50毫克/千克体重,较佳地该剂量是约10微克/千克体重-约20毫克/千克体重。当然,具体剂量还应考虑给药途径、病人健康状况等因素,这些都是熟练医师技能范围之内的。
典型地,本发明提供一种药物组合物,其包含治疗有效量的通式Ab-(LU-D)p所示的Zapadcine-1(Zapadcine-1a、Zapadcine-1b、Zapadcine-1c、Zapadcine-1d、或其组合)或其药学上可接受的盐、溶剂合物、立体异构体、互变异构体、前药和药学上可接受的载体。
在某些实施方式中,本发明药物组合物使用通式mAb-(LU-D)p所示的Zapadcine-1(Zapadcine-1a、Zapadcine-1b、Zapadcine-1c或Zapadcine-1d)或其药学上可接受的盐、酯、溶剂合物、立体异构体、互变异构体、前药作为 活性成分,单独或组合使用或与其它药物、辅料等配制成各种剂型,包括但不限于片剂、散剂、丸剂、注射剂、胶囊剂、膜剂、栓剂、膏剂、冲剂等多种形式。
典型地,本发明提供一种药物组合物,其包含治疗有效量的通式Ab-(LU-D)p所示的Zapadcine-3(Zapadcine-3a、Zapadcine-3b、Zapadcine-3c、Zapadcine-3d、Zapadcine-3e、或其组合)或其药学上可接受的盐、溶剂合物、立体异构体、互变异构体、前药和药学上可接受的载体。
在某些实施方式中,本发明药物组合物使用通式mAb-(LU-D)p所示的Zapadcine-3(Zapadcine-3a、Zapadcine-3b、Zapadcine-3c、Zapadcine-3d或Zapadcine-3e)或其药学上可接受的盐、酯、溶剂合物、立体异构体、互变异构体、前药作为活性成分,单独或组合使用或与其它药物、辅料等配制成各种剂型,包括但不限于片剂、散剂、丸剂、注射剂、胶囊剂、膜剂、栓剂、膏剂、冲剂等多种形式。
本发明的主要优点包括:
(1)本发明的ADC为全新、广谱、高效、特异的抗肿瘤的抗TRAILR2抗体-毒素-偶联物(ADC),用于TRAILR2阳性的肿瘤治疗,并可根治肿瘤,特别是可用于治疗淋巴细胞白血病、肝癌、肺癌、胰腺癌和卵巢癌等。
(2)本发明的ADC的治疗剂量低,大大提高了药物安全性。
下面结合具体实施例,进一步详陈本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明详细条件的实验方法,通常按照常规条件如美国Sambrook.J等著《分子克隆实验室指南》(黄培堂等译,北京:科学出版社,2002年)中所述的条件,或按照制造厂商所建议的条件(例如商品说明书)。除非另外说明,否则百分比和份数按重量计算。以下实施例中所用的实验材料和试剂如无特别说明均可从市售渠道获得。
在下文中,将参照附图,结合举例说明本发明的实施例来更加详细地描述本发明,但本发明并不局限于此。下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和生物材料,如无特殊说明,均可从商业途径获得。
通用方法
本发明拟解决的技术问题是如何吸取前人的临床试验经验教训,解决抗TRAILR2单克隆抗体用于肿瘤治疗的疗效问题,为此,本发明人采用制备ADC复合物的策略,通过下述一系列研究步骤,获得了本发明的ADC候选药物。即:
(1)建立表达Zaptuzumab的CHO原始细胞库、主细胞库和生产细胞库,完成了小试工艺研究,在5升生物反应器中的表达水平达到3.5g/L。
(2)经小鼠尾静脉注射的 131I标记的Zaptuzumab,可特异性地靶向肺癌移植瘤等TRAILR2阳性的肿瘤。
(3)采用免疫细胞化学技术,显示荧光标记的Zaptuzumab与肺癌等肿瘤细胞表面的TRAILR2受体结合后可被迅速内吞,进入溶酶体,从而证明Zaptuzumab具备制备抗体-毒素-偶联物的两个关键特点:即肿瘤特异的靶向性和可被肿瘤细胞内吞进入溶酶体并释放小分子毒素。
(4)采用二硫键桥连偶联技术,将Zaptuzumab通过不同的化学连接子与毒素偶联,获得了多种化学结构不同的ADC。经过体内和/或体外抗肿瘤活性的反复筛选,获得了两个成药性优良的ADC候选药物(分别命名为Zapadcine-1、Zapadcine-3),将可用于TRAILR2阳性的多种肿瘤的治疗。
材料与方法
实验动物
BALB/c雌鼠购自上海西普尔-必凯实验动物有限公司(上海,中国)并饲养于SPF级实验动物室,NOD-SCID雌鼠购至上海灵畅生物科技有限公司(上海,中国)并饲养于SPF级实验动物室,维持光-暗12小时循环交替,给以充足的食料和洁净饮水,至8周龄开始实验。所有动物实验均获得批准并按照上海市动物管理与使用委员会的指导进行。
细胞株和试剂
人淋巴细胞白血病、肺癌细胞、肝癌细胞、卵巢癌细胞、胰腺癌细胞等肿瘤细胞、正常细胞均购自ATCC或中国医学科学院基础医学研究所细胞中心或中国科学院上海生命科学研究院细胞资源中心或赛齐(上海)生物工程有限公司或赛百慷(上海)生物技术股份有限公司或妙通(上海)生物科技有限公司。 紫杉醇、长春新碱和表柔比星等均购自Selleck。
Figure PCTCN2019074139-appb-000024
发光法细胞活力检测试剂盒购自Promega。
实施例1 Zapadcine-1体外抗肿瘤活性
采用各类TRAILR2高表达的淋巴细胞白血病细胞系(Jurkat E6-1)、肺癌细胞系(NCI-H460和NCI-H1975)、肝癌细胞系(SMMC-7221)、卵巢癌细胞系(A2780)和胰腺癌Mia PaCa-2以及人正常细胞系或外周血细胞,如人正常外周血单核细胞(PBMC)、人正常结肠上皮细胞(NCM-460)、人正常结肠组织细胞(CCD-18Co)和人正常肺上皮细胞(BEAS-2B),评价Zapadcine-1对各类肿瘤细胞和正常细胞的细胞毒作用。具体研究过程如下:采用胰蛋白酶(0.25%,V/V)消化贴壁培养的细胞(如NCI-H460和SMMC-7221等),使细胞剥离和/或直接收集悬浮培养的细胞(Jurkat E6-1),重悬于100μL完全培养基中。取5,000个贴壁细胞或16000个悬浮细胞接种于96孔板进行培养,37℃过夜。再加入100μL含有不同浓度的抗TRAILR2裸抗或Zapadcine-1的培养基,置培养箱中72h后,采用
Figure PCTCN2019074139-appb-000025
荧光素酶活性检测试剂盒(Promega,批号:0000217738)测定受试药物对体外培养的各种不同肿瘤细胞的细胞毒作用。
细胞存活率用公式:V 样品/V 阴性对照×100%计算。其中V 样品为药物处理组的读数,V 阴性对照为溶剂对照组的平均值。应用GraphPad Prism 5.0软件,使用非线性回归模型绘制S型剂量-存活率曲线并计算IC 50值。IC 50值是通过细胞存活率(%)对样品浓度的对数值X通过下面公式进行非线性拟合计算得到。
表4本发明的Zapadcine-1对各类肿瘤细胞和正常细胞的细胞毒作用
Figure PCTCN2019074139-appb-000026
其中,NR为没有反应(no response),eff.为efficacy(%),IC50单位为ng/ml
具体结果见表4。研究结果表明:Zapadcine-1比抗TRAILR2裸抗Zaptuzumab能更有效地抑制多种TRAILR2阳性的肿瘤细胞(如Jurkat E6-1,NCI-H460,NCI-H1975,SMMC-7721、A2780和Mia PaCa-2等)增殖,而Zaptuzumab和Zapadcine-1对TRAILR2阴性的细胞(如人正常PBMC,BEAS-2B,NC-460和CCD-18Co等)均没有细胞毒作用。
实施例2 ELISA技术检测Zapadcine-1a与TRAILR2的亲和力情况
利用ELISA方法评价Zapadcine-1a与人源化重组蛋白TRAILR2的结合情况,具体过程如下:用1×PBS缓冲液(pH 7.4)将2μg/ml人源化重组蛋白TRAILR2以100μl/孔的体积包被96孔板,4℃放置过夜。弃去上清,用PBST(PH 7.4 PBS含0.05%Tweeen20)缓冲液洗板3次,每次5min,按240μl/孔加入含5%脱脂奶粉的PBS,37℃孵育3h,进行封闭。弃去封闭液,用300μl/孔PBST洗板3次后,每次5min,按50μl/孔加入用含1%脱脂奶粉或BSA的PBS梯度稀释的待测抗体(一抗)或ADC,浓度从4μg/ml开始2倍梯度稀释,共12个浓度,3个复孔,室温孵育1h。弃去上清,用PBST洗板3次后,每次5min,按50μl/孔加入用含1%脱脂奶粉或BSA的PBS稀释二抗,浓度为1μg/ml,37℃孵育40min。弃去上清,用PBST洗板3次后,每次5min,按50μl/孔加入TMB显色剂,于室温孵育5-10min。根据显色效果加入50μl/孔1M H 2SO 4终止反应。用SPARK 10M多功能微孔板检测仪在450nm处读取OD值。应用GraphPad Prism 5.0软件进行数据分析。具体结果见图4。
结果表明:与人源化单抗Zaptuzumab相比,Zapadcine-1a与Zaptuzumab的亲和力保持在同一个数量级,这证明了Zapadcine-1a可以与TRAILR2有效结合,保留了人源化单抗的抗原结合能力。
实施例3 Zapadcine-1a对淋巴细胞白血病小鼠皮下移植瘤的抑制和清除作用
Zapadcine-1a的体内抗淋巴细胞白血病的药效是通过对TRAILR2高表达的人Jurkat E6-1白血病细胞在NOD-SCID小鼠体内的生长抑制效果来评价。具体研究过程如下:建立人T淋巴细胞白血病Jurkat E6-1的雌性NOD/SCID小鼠(4周龄)皮下移植瘤模型。将Jurkat E6-1细胞在体外培养扩增至对数生长期,细胞计数后用PBS缓冲液稀释成1×10 8/ml的细胞悬液,在超净台内用 1ml注射器吸取0.1ml(1×10 7细胞),接种于小鼠右侧背部皮下,接种部位的皮肤以70%酒精消毒,接种后定时观察动物生存状态,测量记录移植瘤生长情况。待肿瘤平均大小达到80-100mm 3时,将荷瘤小鼠随机分为5组,每组8只,分别为Zapadcine-1a给药组(低剂量组1mg/kg、中剂量组3mg/kg、高剂量组9mg/kg,Q3DX3),阴性对照组(PBS,Q3DX3)和新长春碱阳性对照组(0.5mg/kg,Q7DX3)。Zapadcine-1a的给药时间为分组后第0、4和7天,新长春碱的给药时间为分组后第0、7和14天,上述给药方式均为尾静脉注射。分别于给药后第3、7、10、14、17、21、24和第28天测量肿瘤大小(最长径和最短径)。第一次给药后第28天结束实验,动物立即以过量麻醉法使动物安乐死,称小鼠体重,取出肿瘤称重、拍照,取血样检测肝、肾功能指标(ALT、BUN、CERA)。分离肿瘤和主要组织器官(心脏、肝、肾、脾、肺)在液氮中冷冻保存或经4%多聚甲醛固定后制备成石蜡切片,备用。
具体结果见图5。结果表明:Zapadcine-1a在3次给药后第14天,中、高剂量组(3mg/kg和9mg/kg)完全清除了100mm 3的淋巴细胞白血病移植瘤,肿瘤抑制率达到100%。低剂量组(1mg/kg)也能显著地抑制移植瘤生长,肿瘤抑制率达到54.88%。在第28天结束实验时,阴性对照组的平均瘤重为902.1±60.45mg,而阳性对照组的平均瘤重为648.7±83.63mg,Zapadcine-1a低剂量组(1mg/kg)的平均瘤重为437.9±96.78mg,Zapadcine-1a中剂量组(3mg/kg)和高剂量组(9mg/kg)的平均瘤重均为0mg。
实施例4 Zapadcine-1a对人大细胞肺癌细胞NCI-H460裸鼠皮下移植瘤的抑制作用
Zapadcine-1a的体内抗肺癌特性是通过对TRAILR2高表达的人大细胞肺癌细胞NCI-H460在裸鼠体内的生长抑制效果来评价的。具体研究过程如下:建立人NCI-H460肺癌细胞的雌性BALB/c裸鼠(4周龄)皮下瘤模型,NCI-H460细胞在体外培养扩增至对数生长期,细胞计数后,用PBS缓冲液稀释成1×10 7/ml的细胞悬液,在超净台内用1ml注射器吸取0.15ml(1.5×10 6细胞),接种于小鼠右侧背部皮下,接种部位的皮肤以70%酒精消毒,接种后定时观察动物生存状态,测量记录移植瘤生长情况。待肿瘤大小平均达到80-100mm 3时,将小鼠随机分5组,每组8只,分别为Zapadcine-1a给药组(低剂量组1mg/kg、中剂量组3mg/kg、高剂量组9mg/kg,Q3D×3),阴性对照组(PBS,Q3D×3) 和紫杉醇阳性对照组(10mg/kg,Q3D×3)。Zapadcine-1a、紫杉醇和阴性对照组的给药时间为分组后第0、4和7天,上述给药方式均为尾静脉注射。分别于给药后第4、7、10、14、17、21、24和第28天测量肿瘤大小(最长径和最短径),给药后第28天结束实验,立即以过量麻醉法使动物安乐死,称量小鼠体重。取出肿瘤组织称重、拍照。取血检测肝肾功能指标(ALT、BUN、CERA)。分离肿瘤和相关器官(心脏、肝、肾、脾、肺)于液氮中冷冻保存或经4%多聚甲醛固定后制备成石蜡切片,备用。
具体结果见图6。结果表明:Zapadcine-1a在3次给药后第7天,高、中、低剂量组的肺癌移植瘤生长均开始被抑制。Zapadcine-1a在3次给药后第28天,高剂量组(9mg/kg)的肿瘤抑制率达到96%,而中剂量组(3mg/kg)的肿瘤抑制率达到66%。低剂量组(1mg/kg)也能显著地抑制移植瘤生长,肿瘤抑制率达到28%。在第28天结束实验时,阴性对照组的平均瘤重为1.47±0.45g,阳性对照组的平均瘤重为1.13±0.42g,Zapadcine-1a低剂量组(1mg/kg)的平均瘤重为0.99±0.26g,Zapadcine-1a中剂量组(3mg/kg)的平均瘤重为0.55±0.21g,高剂量组(9mg/kg)的平均瘤重为0.08±0.07g。
实施例5 Zapadcine-1a对人非小细胞肺癌细胞NCI-H1975裸鼠移植瘤的抑制作用
Zapadcine-1a的体内抗人非小细胞肺癌的特性是通过对TRAILR2高表达的人非小细胞肺癌细胞NCI-H1975的裸鼠移植瘤的抑制效果来评价的。具体研究过程如下:建立人NCI-H1975肺癌细胞的雌性BALB/c裸鼠(4周龄)皮下移植瘤模型。NCI-H1975细胞在体外培养扩增至对数生长期,细胞计数后,用PBS缓冲液稀释成1×10 7/ml的细胞悬液,在超净台内用1ml注射器吸取0.15ml(1.5×10 6细胞),接种于小鼠右侧背部皮下,接种部位的皮肤以70%酒精消毒,接种后定时观察动物生存状态,测量记录移植瘤生长情况。待肿瘤平均大小达到80-100mm 3时,将荷瘤小鼠随机分5组,每组8只,分别为Zapadcine-1a给药组(低剂量组1mg/kg、中剂量组3mg/kg、高剂量组9mg/kg,Q3D×3),阴性对照组(PBS,Q3D×3)和紫杉醇阳性对照组(10mg/kg,Q3D×3)。Zapadcine-1a、紫杉醇阳性对照组和阴性对照组的给药时间为分组后第0、4和7天,上述给药方式均为尾静脉注射。分别于给药后第4、7、10、14、17、21、24和第28天测量肿瘤大小(最长径和最短径),给药后第28天结束实验,动物立即以 过量麻醉法处死,称量小鼠体重。取出肿瘤组织称重、拍照。取血检测肝肾功能指标(ALT、BUN、CERA)。分离肿瘤和相关器官(心脏、肝、肾、脾、肺)于液氮中冷冻保存或经4%多聚甲醛固定后制备成石蜡切片,备用。
具体结果见图7。结果表明:Zapadcine-1a在3次给药后第7天,高、中、低剂量组均开始抑制肺癌移植瘤的生长。Zapadcine-1a在3次给药后第21天,中、高剂量组(6mg/kg和12mg/kg)的肿瘤抑制率达到100%,而低剂量组(2mg/kg)也能显著地抑制移植瘤生长,肿瘤抑制率达到84%。在第28天结束实验时,阴性对照组的平均瘤重为2.09±0.08g,阳性对照组的平均瘤重为0.58±0.15g,Zapadcine-1a低剂量组(2mg/kg)的平均瘤重为0.58±0.17g,Zapadcine-1a中剂量组(6mg/kg)的平均瘤重为0.01±0.01g,高剂量组(12mg/kg)的平均瘤重均为0.0g。
实施例6 Zapadcine-1a对肝癌细胞SMMC-7721裸鼠移植瘤的抑制作用
Zapadcine-1a的体内抗肝癌特性是通过对TRAILR2表达阳性的人SMMC-7721肝癌细胞在裸鼠体内的生长抑制效果来评价的。具体研究过程如下:建立人SMMC-7721肝癌细胞的雌性BALB/c小鼠(4周龄)皮下移植瘤模型,SMMC-7721细胞在体外培养扩增至对数生长期,细胞计数后,用PBS缓冲液稀释成1×10 7/ml的细胞悬液,在超净台内用1ml注射器吸取0.15ml(1.5×10 6细胞),接种于小鼠右侧背部皮下。接种部位的皮肤以70%酒精消毒,接种后定时观察动物生存状态,测量记录移植瘤生长情况。待肿瘤大小平均达到80-100mm 3时,将荷瘤小鼠随机分为5组,每组8只,分别为Zapadcine-1a给药组(低剂量组1mg/kg、中剂量组3mg/kg、高剂量组9mg/kg,Q3D×3),阴性对照组(PBS,Q3D×3)和表柔比星阳性对照组(5mg/kg,Q3D×9)。Zapadcine-1a和阴性对照组的给药时间为分组后第0、4和7天,而表柔比星的给药时间为分组后第0、4、7、10、14、17和21天,上述给药方式均为尾静脉注射。分别于给药后第4、7、10、14、17、21、24和第28天测量肿瘤大小(最长径和最短径),给药后第28天结束实验,立即以过量麻醉法处死动物,称量小鼠体重。取出肿瘤组织称重、拍照。取血检测肝肾功能指标(ALT,BUN,CERA)。分离肿瘤组织和主要器官(心脏、肝、肾、脾、肺),液氮中冷冻保存或经4%多聚甲醛固定后制备成石蜡切片,备用。
具体结果见图8。研究结果表明:Zapadcine-1a在3次给药后第7天,高、 中、低剂量组均开始抑制肝癌移植瘤的生长。Zapadcine-1a在3次给药后第11天,高剂量组(9mg/kg)的肿瘤抑制率达到100%,而中剂量组(3mg/kg)的肿瘤抑制率达到89%。低剂量组(1mg/kg)也能显著地抑制移植瘤生长,肿瘤抑制率达到48%。在第28天结束实验时,阴性对照组的平均瘤重为1.37±0.17g,阳性对照组的平均瘤重为1.02±0.08g,Zapadcine-1a低剂量组(1mg/kg)的平均瘤重为0.88±0.12g,Zapadcine-1a中剂量组(3mg/kg)的平均瘤重为0.26±0.07g,高剂量组(9mg/kg)的平均瘤重均为0g。
实施例7 Zapadcine-1a对卵巢癌细胞A2780裸鼠移植瘤的抑制作用
Zapadcine-1a的体内抗卵巢癌特性是通过对TRAILR2表达阳性的人A2780卵巢癌细胞在裸鼠体内的生长抑制效果来评价的。具体研究过程如下:建立人A2780卵巢癌细胞的雌性BALB/c小鼠(4周龄)皮下移植瘤模型,A2780卵巢癌细胞在体外培养扩增至对数生长期,细胞计数后,用PBS缓冲液稀释成1×10 7/ml的细胞悬液,在超净台内用1ml注射器吸取0.15ml(1.5×10 6细胞),接种于小鼠右侧背部皮下。接种部位的皮肤以70%酒精消毒,接种后定时观察动物生存状态,测量记录移植瘤生长情况。待肿瘤大小平均达到80-100mm 3时,将荷瘤小鼠随机分为5组,每组8只,分别为Zapadcine-1a给药组(低剂量组1mg/kg、中剂量组3mg/kg、高剂量组9mg/kg,Q3D×3),阴性对照组(PBS,Q3D×3)和紫杉醇阳性对照组(10mg/kg,Q3D×3)。Zapadcine-1a、紫杉醇和阴性对照组的给药时间为分组后第0、4和7天,上述给药方式均为尾静脉注射。分别于给药后第4、7、10、14、17、21、24和第28天测量肿瘤大小(最长径和最短径),给药后第28天结束实验,立即以过量麻醉法处死动物,称量小鼠体重。取出肿瘤组织称重、拍照。取血检测肝肾功能指标(ALT、BUN、CERA)。分离肿瘤组织和主要器官(心脏、肝、肾、脾、肺),液氮中冷冻保存或经4%多聚甲醛固定后制备成石蜡切片,备用。
具体结果见图9。研究结果表明:Zapadcine-1a在3次给药后第7天,高、中、低剂量组均开始抑制卵巢癌移植瘤的生长。Zapadcine-1a在3次给药后第18天,高剂量组(9mg/kg)的肿瘤抑制率达到100%,而中剂量组(3mg/kg)的肿瘤抑制率达到92%。低剂量组(1mg/kg)也能显著地抑制移植瘤生长,肿瘤抑制率达到56%。在第28天结束实验时,阴性对照组的平均瘤重为2.88±0.34g,阳性对照组的平均瘤重为2.42±0.35g,Zapadcine-1a低剂量组 (1mg/kg)的平均瘤重为1.40±0.15g,Zapadcine-1a中剂量组(3mg/kg)的平均瘤重为0.27±0.10g,高剂量组(9mg/kg)的平均瘤重均为0g。
实施例8 Zapadcine-1a对胰腺癌细胞Mia PaCa-2裸鼠移植瘤的抑制作用
Zapadcine-1a的体内抗卵巢癌特性是通过对TRAILR2表达阳性的人Mia PaCa-2胰腺癌细胞在裸鼠体内的生长抑制效果来评价的。具体过程如下:建立人Mia PaCa-2胰腺癌细胞的雌性BALB/c小鼠(4周龄)皮下移植瘤模型,Mia PaCa-2胰腺癌细胞在体外培养扩增至对数生长期,细胞计数后,用PBS缓冲液稀释成1×10 7/ml的细胞悬液,在超净台内用1ml注射器吸取0.15ml(1.5×10 6细胞),接种于小鼠右侧背部皮下。接种部位的皮肤以70%酒精消毒,接种后定时观察动物生存状态,测量记录移植瘤生长情况。待肿瘤大小平均达到80-100mm 3时,将荷瘤小鼠随机分为5组,每组8只,分别为Zapadcine-1a给药组(低剂量组1mg/kg、中剂量组3mg/kg、高剂量组9mg/kg,Q3D×3),阴性对照组(PBS,Q3D×3)和紫杉醇阳性对照组(10mg/kg,Q3D×3)。Zapadcine-1a、紫杉醇和阴性对照组的给药时间为分组后第0、4和7天,上述给药方式均为尾静脉注射。分别于给药后第4、7、10、14、17、21、24和第28天测量肿瘤大小(最长径和最短径),给药后第28天结束实验,立即以过量麻醉法处死动物,称量小鼠体重。取出肿瘤组织称重、拍照。取血检测肝肾功能指标(ALT、BUN、CERA)。分离肿瘤组织和主要器官(心脏、肝、肾、脾、肺),液氮中冷冻保存或经4%多聚甲醛固定后制备成石蜡切片,备用。
具体结果见图10。研究结果表明:Zapadcine-1a在3次给药后第7天,高、中、低剂量组均开始抑制胰腺癌移植瘤的生长。Zapadcine-1a在3次给药后第12天,高剂量组(9mg/kg)的肿瘤抑制率达到100%,而中剂量组(3mg/kg)的肿瘤抑制率达到91%。低剂量组(1mg/kg)也能显著地抑制移植瘤生长,肿瘤抑制率达到39%。
实施例9 Zapadcine-1a对正常小鼠的急性毒性作用
Zapadcine-1的急性毒性作用是通过考察正常小鼠给药后身体状态和生化指标的变化进行评价的。具体研究过程如下:取健康的BALB/c雌性小鼠20只(购自上海西普尔-必凯实验动物有限公司),鼠龄为出生后6-7周,体重18~22g。分为5组,每组4只。按常规饲养一周后,开始给药。Zapadcine-1a给 药剂量为20mg/kg、30mg/kg、40mg/kg和50mg/kg,以空白溶剂作为正常对照。经尾静脉缓慢注射,单次给药,每天观察小鼠包括死亡、饮食和运动等情况,每3天按时记录小鼠的体重,并分别于第5天和第15天采取血样进行血生化检测,检测项目包括ALT和UREA。给药后第15天,动物实施过量麻醉法安乐死。
具体结果见图11。结果表明,与对照组相比,Zapadcine-1a 20mg/kg、30mg/kg和40mg/kg 3个剂量组的小鼠正常生长,运动状态良好,体重变化正常,肝肾功能正常,没有死亡。而Zapadcine-1a 50mg/kg剂量组的小鼠死亡率达到50%,前期体重变小,后期小鼠生长恢复正常,小鼠体重变化正常,小鼠肝肾功能正常,表明Zapadcine-1a单次给药,小鼠的最大耐受剂量为40-50mg/kg,安全性良好。
实施例10 Zapadcine-3体外抗肿瘤活性
采用各类TRAILR2高表达的淋巴细胞白血病细胞系(Jurkat E6-1、Reh)、肺癌细胞系(MSTO-211H)、神经胶质瘤细胞系(A172)和胰腺癌Mia PaCa-2以及人正常细胞系或外周血细胞,如人正常外周血单核细胞(PBMC)、人正常结肠上皮细胞(NCM-460)、人正常结肠组织细胞(CCD-18Co)和人正常肺上皮细胞(BEAS-2B),评价Zapadcine-3对各类肿瘤细胞和正常细胞的细胞毒作用。具体研究过程如下:采用胰蛋白酶(0.25%,V/V)消化贴壁培养的细胞(如MSTO-211H等),使细胞剥离和/或直接收集悬浮培养的细胞(Jurkat E6-1、Reh),重悬于100μL完全培养基中。取5,000个贴壁细胞或16000个悬浮细胞接种于96孔板进行培养,37℃过夜。再加入100μL含有不同浓度的抗TRAILR2裸抗或Zapadcine-3的培养基,置培养箱中72h后,采用
Figure PCTCN2019074139-appb-000027
荧光素酶活性检测试剂盒(Promega,批号:0000217738)测定受试药物对体外培养的各种不同肿瘤细胞的细胞毒作用。
细胞存活率用公式:V 样品/V 阴性对照×100%计算。其中V 样品为药物处理组的读数,V 阴性对照为溶剂对照组的平均值。应用GraphPad Prism 5.0软件,使用非线性回归模型绘制S型剂量-存活率曲线并计算IC 50值。IC 50值是通过细胞存活率(%)对样品浓度的对数值X通过下面公式进行非线性拟合计算得到。
表5本发明的Zapadcine-3对各类肿瘤细胞和正常细胞的细胞毒作用
Figure PCTCN2019074139-appb-000028
其中,NR为没有反应(no response),eff.为efficacy(%),IC50单位为ng/ml
具体结果见表5。研究结果表明:Zapadcine-3(例如特别是Zapadcine-3a和Zapadcine-3d)比抗TRAILR2裸抗Zaptuzumab能更有效地抑制多种TRAILR2阳性的肿瘤细胞(如Jurkat E6-1,Reh,MSTO-211H、A172和Mia PaCa-2等)增殖,而Zaptuzumab和Zapadcine-3对TRAILR2阴性的细胞(如人正常PBMC,BEAS-2B,NCM-460和CCD-18Co等)均没有细胞毒作用。
实施例11 ELISA技术检测Zapadcine-3a与TRAILR2的亲和力情况
利用ELISA方法评价Zapadcine-3a与人源化重组蛋白TRAILR2的结合情况,具体过程如下:用1×PBS缓冲液(pH 7.4)将2μg/ml人源化重组蛋白TRAILR2以100μl/孔的体积包被96孔板,4℃放置过夜。弃去上清,用PBST(PH 7.4 PBS含0.05%Tweeen20)缓冲液洗板3次,每次5min,按240μl/孔加入含5%脱脂奶粉的PBS,37℃孵育3h,进行封闭。弃去封闭液,用300μl/孔PBST洗板3次后,每次5min,按50μl/孔加入用含1%脱脂奶粉或BSA的PBS梯度稀释的待测抗体(一抗)或ADC,浓度从4μg/ml开始2倍梯度稀释,共12个浓度,3个复孔,室温孵育1h。弃去上清,用PBST洗板3次后,每次5min,按50μl/孔加入用含1%脱脂奶粉或BSA的PBS稀释二抗,浓度为1μg/ml,37℃孵育40min。弃去上清,用PBST洗板3次后,每次5min,按50μl/孔加入TMB显色剂,于 室温孵育5-10min。根据显色效果加入50μl/孔1M H 2SO 4终止反应。用SPARK 10M多功能微孔板检测仪在450nm处读取OD值。应用GraphPad Prism 5.0软件进行数据分析。具体结果见图12。
结果表明:与人源化单抗Zaptuzumab相比,Zapadcine-3a与Zaptuzumab的亲和力保持在同一个数量级,这证明了Zapadcine-3a可以与TRAILR2有效结合,保留了人源化单抗的抗原结合能力。
实施例12 Zapadcine-3a对人非小细胞肺癌细胞MSTO-211H裸鼠移植瘤的抑制作用
Zapadcine-3a的体内抗人非小细胞肺癌的特性是通过对TRAILR2高表达的人非小细胞肺癌细胞MSTO-211H的裸鼠移植瘤的抑制效果来评价的。具体研究过程如下:建立人MSTO-211H肺癌细胞的雌性BALB/c裸鼠(4周龄)皮下移植瘤模型。MSTO-211H细胞在体外培养扩增至对数生长期,细胞计数后,用PBS缓冲液稀释成1×10 7/ml的细胞悬液,在超净台内用1ml注射器吸取0.15ml(1.5×10 6细胞),接种于小鼠右侧背部皮下,接种部位的皮肤以70%酒精消毒,接种后定时观察动物生存状态,测量记录移植瘤生长情况。待肿瘤平均大小达到80-100mm 3时,将荷瘤小鼠随机分5组,每组8只,分别为Zapadcine-3a给药组(低剂量组1mg/kg、中剂量组3mg/kg、高剂量组9mg/kg,Q3D×3),阴性对照组(PBS,Q3D×3)和紫杉醇阳性对照组(10mg/kg,Q3D×3)。Zapadcine-3a、紫杉醇阳性对照组和阴性对照组的给药时间为分组后第0、4和7天,上述给药方式均为尾静脉注射。分别于给药后第4、7、10、14、17、21、24和第28天测量肿瘤大小(最长径和最短径),给药后第32天结束实验,动物立即以过量麻醉法处死,称量小鼠体重。取出肿瘤组织称重、拍照。取血检测肝肾功能指标(ALT、BUN、CERA)。分离肿瘤和相关器官(心脏、肝、肾、脾、肺)于液氮中冷冻保存或经4%多聚甲醛固定后制备成石蜡切片,备用。
具体结果见图13。结果表明:Zapadcine-3a在3次给药后第7天,高、中、低剂量组均开始抑制肺癌移植瘤的生长。Zapadcine-3a在3次给药后第18天,高剂量组(9mg/kg)的肿瘤抑制率达到100%,而低剂量组(1和3mg/kg)也能显著地抑制移植瘤生长,肿瘤抑制率分别达到65%和93%。
实施例13 Zapadcine-3a对胰腺癌细胞Mia PaCa-2裸鼠移植瘤的抑制作用
Zapadcine-3a的体内抗卵巢癌特性是通过对TRAILR2表达阳性的人Mia PaCa-2胰腺癌细胞在裸鼠体内的生长抑制效果来评价的。具体过程如下:建立人Mia PaCa-2胰腺癌细胞的雌性BALB/c小鼠(4周龄)皮下移植瘤模型,Mia PaCa-2胰腺癌细胞在体外培养扩增至对数生长期,细胞计数后,用PBS缓冲液稀释成1×10 7/ml的细胞悬液,在超净台内用1ml注射器吸取0.15ml(1.5×10 6细胞),接种于小鼠右侧背部皮下。接种部位的皮肤以70%酒精消毒,接种后定时观察动物生存状态,测量记录移植瘤生长情况。待肿瘤大小平均达到80-100mm 3时,将荷瘤小鼠随机分为5组,每组8只,分别为Zapadcine-3a给药组(低剂量组1mg/kg、中剂量组3mg/kg、高剂量组9mg/kg,Q3D×3),阴性对照组(PBS,Q3D×3)和长春新碱阳性对照组(10mg/kg,Q7D×3)。Zapadcine-3a和阴性对照组的给药时间为分组后第0、4和7天,而长春新碱的给药时间为分组后第0、7和14天,上述给药方式均为尾静脉注射。分别于给药后第4、7、10、14、17、21、24和第28天测量肿瘤大小(最长径和最短径),给药后第28天结束实验,立即以过量麻醉法处死动物,称量小鼠体重。取出肿瘤组织称重、拍照。取血检测肝肾功能指标(ALT、BUN、CERA)。分离肿瘤组织和主要器官(心脏、肝、肾、脾、肺),液氮中冷冻保存或经4%多聚甲醛固定后制备成石蜡切片,备用。
具体结果见图14。结果表明:Zapadcine-3a在2次给药后第5天,高、中、低剂量组均开始抑制胰腺癌移植瘤的生长。Zapadcine-3a在3次给药后第9天,高剂量组(9mg/kg)的肿瘤抑制率达到100%,而中剂量组(3mg/kg)的肿瘤抑制率达到91%。低剂量组(1mg/kg)也能显著地抑制移植瘤生长,肿瘤抑制率达到45%。
实施例14 Zapadcine-3a对T淋巴细胞白血病细胞Jurkat E6-1裸鼠移植瘤的抑制作用
Zapadcine-3a的体内抗卵巢癌特性是通过对TRAILR2表达阳性的人T淋巴细胞白血病细胞Jurkat E6-1在裸鼠体内的生长抑制效果来评价的。具体过程如下:建立人Jurkat E6-1的雌性BALB/c小鼠(5-6周龄)皮下移植瘤模型,Jurkat E6-1细胞在体外培养扩增至对数生长期,细胞计数后,用PBS缓冲液稀 释成1×10 8/ml的细胞悬液,在超净台内用1ml注射器吸取0.1ml(1×10 7细胞),接种于小鼠右侧背部皮下。接种部位的皮肤以70%酒精消毒,接种后定时观察动物生存状态,测量记录移植瘤生长情况。待肿瘤大小平均达到80-100mm 3时,将荷瘤小鼠随机分为4组,每组8只,分别为Zapadcine-3a给药组(低剂量组1mg/kg、中剂量组3mg/kg、高剂量组9mg/kg,Q3D×3),阴性对照组(PBS,Q3D×3)。Zapadcine-3a和阴性对照组的给药时间为分组后第0、4和7天,上述给药方式均为尾静脉注射。分别于给药后第4、7、10、14、17、21、24和第28天测量肿瘤大小(最长径和最短径),给药后第28天结束实验,立即以过量麻醉法处死动物,称量小鼠体重。取出肿瘤组织称重、拍照。分离肿瘤组织和主要器官(心脏、肝、肾、脾、肺),液氮中冷冻保存或经4%多聚甲醛固定后制备成石蜡切片,备用。
具体结果见图15。结果表明,在Jurkat E6-1小鼠皮下移植瘤模型中,Zapadcine-3a给药后第14天,高剂量组(9mg/kg)完全清除了100mm 3的淋巴细胞白血病移植瘤,肿瘤抑制率达到100%。中剂量组(3mg/kg)也能显著地抑制移植瘤生长,肿瘤抑制率达到84.88%。
实施例15 Zapadcine-3a对非T非B淋巴细胞白血病细胞Reh裸鼠移植瘤的抑制作用
Zapadcine-3a的体内抗卵巢癌特性是通过对TRAILR2表达阳性的人非T非B淋巴细胞白血病细胞Reh在裸鼠体内的生长抑制效果来评价的。具体过程如下:建立人Reh细胞的雌性BALB/c小鼠(5-6周龄)皮下移植瘤模型,Reh细胞在体外培养扩增至对数生长期,细胞计数后,用PBS缓冲液稀释成1×10 8/ml的细胞悬液,在超净台内用1ml注射器吸取0.1ml(1×10 7细胞),接种于小鼠右侧背部皮下。接种部位的皮肤以70%酒精消毒,接种后定时观察动物生存状态,测量记录移植瘤生长情况。待肿瘤大小平均达到80-100mm 3时,将荷瘤小鼠随机分为5组,每组8只,分别为Zapadcine-3a给药组(低剂量组1mg/kg、中剂量组3mg/kg、高剂量组9mg/kg,Q3D×3),阴性对照组(PBS,Q3D×3)和长春新碱阳性对照组(0.5mg/kg,Q7D×3)。Zapadcine-3a和阴性对照组的给药时间为分组后第0、4和7天,而长春新碱的给药时间为分组后第0、7和14天,上述给药方式均为尾静脉注射。分别于给药后第4、7、10、14、17、21、24和第28天测量肿瘤大小(最长径和最短径),给药后第28天 结束实验,立即以过量麻醉法处死动物,称量小鼠体重。取出肿瘤组织称重、拍照。分离肿瘤组织和主要器官(心脏、肝、肾、脾、肺),液氮中冷冻保存或经4%多聚甲醛固定后制备成石蜡切片,备用。
具体结果见图16。结果表明,在Reh小鼠皮下移植瘤模型中,Zapadcine-3a给药后第21天,高剂量组(9mg/kg)完全清除了100mm 3的淋巴细胞白血病移植瘤,肿瘤抑制率达到100%。中剂量组(3mg/kg)也能显著地抑制移植瘤生长,肿瘤抑制率达到93.28%。
实施例16 Zapadcine-3a对正常大鼠的急性毒性作用
Zapadcine-3a的急性毒性作用是通过考察正常大鼠给药后身体状态和生化指标的变化进行评价的。具体研究过程如下:取健康的SD大鼠20只(购自上海西普尔-必凯实验动物有限公司),鼠龄为出生后5-6周,体重160~180g。分为4组,每组5只。按常规饲养一周后,开始给药。Zapadcine-3a给药剂量为15mg/kg、20mg/kg和25mg/kg,以空白溶剂作为正常对照。经尾静脉缓慢注射,单次给药,每天观察大鼠包括死亡、饮食和运动等情况,每3天按时记录大鼠的体重,并分别于第5天和第15天采取血样进行血生化检测,检测项目包括ALT和UREA。给药后第21天,动物实施过量麻醉法安乐死。
具体结果见图17。结果表明,与对照组相比,Zapadcine-3a 15mg/kg和20mg/kg 2个剂量组的大鼠正常生长,运动状态良好,体重变化正常,肝肾功能正常,没有死亡。而Zapadcine-3a 25mg/kg剂量组的大鼠正常生长,全部存活,但大鼠体重变化减缓,表明Zapadcine-3a单次给药,大鼠的最大耐受剂量为不小于25mg/kg,安全性良好。
实施例17 Zapadcine-3a对正常食蟹猴的急性毒性作用
Zapadcine-3a的急性毒性作用是通过考察正常食蟹猴给药后身体状态和生化指标的变化进行评价的。具体研究过程如下:挑选3只雌性Non-
Figure PCTCN2019074139-appb-000029
食蟹猴,动物体重为3.19-3.63kg。通过静脉输注给药,给药剂量为2、3、4mg/kg,给药体积为2mL/kg。给药当天给药一次,给药结束后连续观察21天。分别于D-1、D1给药前、D8、D15、D22(解剖前)对动物进行体重称量;于D2、D8、D15、D21对动物进行24小时内(24hr±1hr)的耗食量测定;分别在给药前、给药后第22天进行血液学、凝血、血液生化检测以及尿液分析。给药前, 给药结束后20min、1h、2h、4h、8h、24h、48h、72h、96h、168h、240h、336h、504h,采集EDTA-K2抗凝的血浆样本,用于血浆药物浓度检测。在D22对动物进行安乐死,采集并保存肝脏、脾脏、肾脏、心脏、肺等组织,并对肝脏、脾脏、肾脏、心脏进行称重。
具体结果见图18。结果表明,单次静脉输注给予雌性食蟹猴化合物Zapadcine-3a时,给药剂量分别为2、3、4mg/kg后,连续观察21天,动物体重及耗食量未见明显异常;给药后D22血液学数据中网织红细胞计数及网织红细胞百分比与给药前相比明显升高,推测可能与药物作用相关;各给药组动物的CK(肌酸激酶)值与给药前相比有下降趋势;各组动物的凝血指标、尿液指标及脏器重量数据均未见明显异常。在本试验条件下,雌性食蟹猴单次静脉滴注给予2、3、4mg/kg的Zapadcine-3a时,动物的最大耐受剂量为4mg/kg。
讨论
在ADC药物中,小分子部分主要由化学毒素以及化学连接头组成。比较常用的化学毒素包括微管蛋白聚合酶抑制剂,如单甲基阿里他汀D、E、F(简称为MMAD、MMAE、MMAF)、美登素和破坏DNA双螺旋结构的毒素,如卡奇霉素和倍癌霉素等。目前在研的或在临床上应用的ADC药物多使用MMAE、MMAF、微管蛋白解聚剂美登素DM1和DM4等。国内外公认的化学连接键是腙键、二硫键等可降解以及硫醚键等不可降解的化学键。在第一代ADC药物美罗塔中,使用了二硫键以及腙键这两个可降解的二硫键连接抗体与卡奇霉素,由于其不稳定的化学键以及有限的治疗效果,已于2010年由辉瑞公司召回。第二代ADC药物Kadcyla利用了不可降解的硫醚键,具有良好的活性和较低的生物学毒性。然而,由于硫醚键的体内氧化作用,化学键仍有可能在血液循环中断裂,因此可能具有较强的肝毒性。自Adcetris和Kadcyla上市以来,至今国际上已有100多个ADC候选药物进入人体临床试验。但我国只有两个ADC被批准进入人体临床试验,大部分均处于临床前研究阶段,还没有一个完全创新的、具有自主知识产权的ADC抗体药物上市。因此,开发拥有自主知识产权、安全性良好、疗效显著的抗TRAILR2抗体-毒素-偶联物具有极其诱人的临床应用前景。
用于制备ADC的抗体必须具备两个基本的特点,即抗体的肿瘤特异性和抗体与抗原结合后形成的抗原-抗体复合物能够被内吞进入溶酶体,并在溶酶体内降解释放出小分子毒素,从而小分子毒素特异性地杀死肿瘤细胞。
本发明涉及的具有自主知识产权的抗TRAILR2(TRAILR2或CD262或DR5)的人源化单克隆抗体,与国内外已经进入人体临床试验的、针对TRAILR2靶点的其他抗体相比,具有独特的基因序列、抗原决定簇以及很强的抗原亲和力,在体内外均能特异性地杀死多种TRAILR2阳性的肿瘤细胞,抑制肿瘤细胞生长,但对正常细胞和组织几乎没有毒性。国际上,针对TRAILR2为靶点的肿瘤治疗,临床试验的结果显示其安全性良好,但单独用药的疗效不能令人满意。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明的序列信息
Zaptuzumab的重链可变区(VH)的氨基酸序列SEQ ID No.7:
Figure PCTCN2019074139-appb-000030
所述的抗体的轻链可变区(VL)的氨基酸序列SEQ ID No.8:
Figure PCTCN2019074139-appb-000031

Claims (17)

  1. 一种抗体-药物偶联物或其药学上可接受的盐或溶剂化合物,其特征在于,所述抗体药物偶联物含有:
    (a)抗体部分;和
    (b)与所述抗体部分偶联的偶联部分,所述偶联部分选自下组:可检测标记物、药物、毒素、细胞因子、放射性核素、酶、或其组合;
    其中,所述抗体的重链可变区包括以下三个互补决定区CDR:
    (H1)SEQ ID NO.:1所示的CDRH1,
    (H2)SEQ ID NO.:2所示的CDRH2,和
    (H3)SEQ ID NO.:3所示的CDRH3;
    其中,上述重链可变区氨基酸序列中任意一种氨基酸序列还包括任选地经过添加、缺失、修饰和/或取代至少一个氨基酸的,并能够保留TRAILR2结合亲和力的衍生序列;和/或
    所述抗体的轻链可变区包括以下三个互补决定区CDR:
    (L1)SEQ ID NO.:4所示的CDRL1,
    (L2)SEQ ID NO.:5所示的CDRL2,和
    (L3)SEQ ID NO.:6所示的CDRL3;
    其中,上述轻链可变区氨基酸序列中任意一种氨基酸序列经过添加、缺失、修饰和/或取代至少一个氨基酸的具有TRAILR2结合亲和力的衍生序列。
  2. 如权利要求1所述的抗体-药物偶联物或其药学上可接受的盐或溶剂化合物,其特征在于,所述抗体药物偶联物ADC如下分子式所示:
    Figure PCTCN2019074139-appb-100001
    其中:
    Ab为抗TRAILR2的抗体,
    LU为无或连接所述抗体和所述药物的接头;
    D为药物;
    p为偶联于所述抗体的所述药物的数量;p是选自1-10,较佳地1-8的值,更佳地2-4的值;
    “-”为键或接头。
  3. 如权利要求2所述的抗体-药物偶联物或其药学上可接受的盐或溶剂化合物,其特征在于,所述LU的结构如下式(I)所示:
    -L 1-L 2-L 3-  (I)
    其中,
    L 1为无或Py、Mc;
    L 2为无或Vc、MAA、Mc;
    L 3为无或PAB、MAA、Mc;
    “-”各自独立地为键;
    Py为1,1',1”-(1,3,5-三嗪-1,3,5-三基)三(丙-2-烯-1-酮);
    Vc为(S)-2-((S)-2-氨基-3-甲基丁酰氨基)-5-脲基戊酰胺;
    Mc为6-(2,5-二氧代环戊-3-烯-1-基)己酸;
    PAB-OH为(4-氨基苯基)甲醇;
    MAA为2-巯基乙酸,
    其分子结构式如下:
    Figure PCTCN2019074139-appb-100002
    并且,L 1、L 2、L 3至少一个不为无。
  4. 如权利要求2所述的抗体-药物偶联物或其药学上可接受的盐或溶剂化合物,其特征在于,所述D选自下组:化疗剂、放射性物质、毒素、能够将前药转化成其活性形式的抗癌前药的活化酶、或其组合。
  5. 如权利要求2所述的抗体-药物偶联物或其药学上可接受的盐或溶剂化合物,其特征在于,所述药物D选自下组:单甲基阿里他汀F(MMAF),单甲基阿里他汀E(MMAE),单甲基阿里他汀D(MMAD)类衍生物、或其组合
    Figure PCTCN2019074139-appb-100003
  6. 如权利要求1所述的抗体-药物偶联物或其药学上可接受的盐或溶剂化合物,其特征在于,所述抗体-药物偶联物(ADC)选自下组:Zapadcine-1a、Zapadcine-1b、Zapadcine-1c、Zapadcine-1d、Zapadcine-3a、Zapadcine-3b、Zapadcine-3c、Zapadcine-3d、Zapadcine-3e;其中,
    偶联物Zapadcine-1a的结构如下:
    Figure PCTCN2019074139-appb-100004
    偶联物Zapadcine-1b的结构如下:
    Figure PCTCN2019074139-appb-100005
    偶联物Zapadcine-1c的结构如下:
    Figure PCTCN2019074139-appb-100006
    偶联物Zapadcine-1d的结构如下:
    Figure PCTCN2019074139-appb-100007
    偶联物Zapadcine-3a的结构如下:
    Figure PCTCN2019074139-appb-100008
    偶联物Zapadcine-3b的结构如下:
    Figure PCTCN2019074139-appb-100009
    偶联物Zapadcine-3c的结构如下:
    Figure PCTCN2019074139-appb-100010
    偶联物Zapadcine-3d的结构如下:
    Figure PCTCN2019074139-appb-100011
    偶联物Zapadcine-3e的结构如下:
    Figure PCTCN2019074139-appb-100012
  7. 如权利要求1-6中任一所述的抗体-药物偶联物或其药学上可接受的盐或溶剂化合物,其特征在于,所述抗体的重链可变区的氨基酸序列如SEQ ID No.7所示;和/或,所述的抗体的轻链可变区的氨基酸序列如SEQ ID No.8所示;
    其中,上述重链可变区的氨基酸序列还包括任选地经过添加、缺失、修饰和/或取代至少一个氨基酸的,并与SEQ ID No.7所示的氨基酸序列具有至少80%同源性或序列相同性的衍生序列;
    其中,上述轻链可变区的氨基酸序列还包括任选地经过添加、缺失、修饰和/或取代至少一个氨基酸的,并与SEQ ID No.8所示的氨基酸序列具有至少80%同源性或序列相同性的衍生序列。
  8. 如权利要求7所述的抗体-药物偶联物或其药学上可接受的盐或溶剂化合物,其特征在于,所述抗体-药物偶联物(ADC)选自下组:Zapadcine-3a、Zapadcine-3d;其中,
    偶联物Zapadcine-3a的结构如下:
    Figure PCTCN2019074139-appb-100013
    偶联物Zapadcine-3d的结构如下:
    Figure PCTCN2019074139-appb-100014
  9. 如权利要求8所述的抗体-药物偶联物或其药学上可接受的盐或溶剂化合物,其特征在于,所述抗体-药物偶联物(ADC)为Zapadcine-3a,其中,
    偶联物Zapadcine-3a的结构如下:
    Figure PCTCN2019074139-appb-100015
    其中,所述单克隆抗体(mAb)为Zaptuzumab。
  10. 一种权利要求1所述的抗体-药物偶联物或其药学上可接受的盐或溶剂化合物的应用,其特征在于,所述抗体-药物偶联物用于(i)制备诊断试剂;和/或(ii)制备预防和/或治疗TRAILR2相关的疾病的药物。
  11. 根据权利要求10所述的应用,其特征在于,所述TRAILR2相关的疾病选 自下组:肿瘤的发生、生长和/或转移。
  12. 根据权利要求11所述的应用,其特征在于,所述肿瘤为为TRAILR2阳性表达的癌症,所述癌症选自下组:T淋巴细胞白血病、B淋巴细胞白血病、非T非B淋巴细胞白血病、非小细胞肺癌、肝癌、结肠癌、乳腺癌、卵巢癌、胰腺癌、甲状腺癌、头颈部鳞状细胞癌、食管鳞状细胞癌、肺鳞状细胞癌、肺腺癌、宫颈部鳞状细胞癌、胰腺鳞状细胞癌、结肠鳞状细胞癌、胃鳞状细胞癌、前列腺癌、骨肉瘤或软组织肉瘤。
  13. 一种药物组合物,其特征在于,它含有:
    (i)活性成分,所述活性成分为如权利要求1所述的抗体药物偶联物或其药学上可接受的盐或溶剂化合物或其组合;以及
    (ii)药学上可接受的载体。
  14. 根据权利要求13所述的药物组合物,其特征在于,所述活性成分为如权利要求7或8或9所述的抗体药物偶联物或其药学上可接受的盐或溶剂化合物或其组合。
  15. 一种体外非治疗性抑制肿瘤细胞的方法,其特征在于,包括步骤:将所述肿瘤细胞与权利要求1或7或8或9所述的抗体药物偶联物或其药学上可接受的盐或溶剂化合物接触。
  16. 一种预防和/或治疗肿瘤的方法,其特征在于,包括步骤:给需要的对象施用如权利要求1或7或8或9所述的抗体-药物偶联物或其药学上可接受的盐或溶剂化合物或如权利要求13或14所述的药物组合物。
  17. 权利要求1或7或8或9所述的抗体-药物偶联物或其药学上可接受的盐或溶剂化合物或如权利要求13或14所述的药物组合物在制备用于预防和/或治疗肿瘤的药物中的用途。
PCT/CN2019/074139 2018-02-13 2019-01-31 抗trailr2抗体-毒素-偶联物及其在抗肿瘤治疗中的药物用途 WO2019157973A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2019219937A AU2019219937B2 (en) 2018-02-13 2019-01-31 Anti-TRAILR2 antibody-toxin-conjugate and pharmaceutical use thereof in anti-tumor therapy
EP19753873.9A EP3753579A4 (en) 2018-02-13 2019-01-31 ANTI-TRAILR2 ANTIBODY TOXIN CONJUGATE AND ITS PHARMACEUTICAL USES IN ANTITUM ORTHERAPY
US16/969,758 US20200407457A1 (en) 2018-02-13 2019-01-31 Anti-trailr2 antibody-toxin-conjugate and pharmaceutical use thereof in anti-tumor therapy
JP2020543885A JP7119104B2 (ja) 2018-02-13 2019-01-31 抗trailr2抗体-毒素-複合体およびその抗腫瘍治療における薬物用途

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810150871.X 2018-02-13
CN201810150870.5A CN110152014B (zh) 2018-02-13 2018-02-13 抗trailr2抗体-毒素-偶联物及其在抗肿瘤治疗中的药物用途
CN201810150870.5 2018-02-13
CN201810150871.XA CN108452320B (zh) 2018-02-13 2018-02-13 抗trailr2抗体-毒素-偶联物及其在抗肿瘤治疗中的药物用途

Publications (1)

Publication Number Publication Date
WO2019157973A1 true WO2019157973A1 (zh) 2019-08-22

Family

ID=67618497

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/081896 WO2019157772A1 (zh) 2018-02-13 2018-04-04 抗trailr2抗体-毒素-偶联物及其在抗肿瘤治疗中的药物用途
PCT/CN2019/074139 WO2019157973A1 (zh) 2018-02-13 2019-01-31 抗trailr2抗体-毒素-偶联物及其在抗肿瘤治疗中的药物用途

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081896 WO2019157772A1 (zh) 2018-02-13 2018-04-04 抗trailr2抗体-毒素-偶联物及其在抗肿瘤治疗中的药物用途

Country Status (5)

Country Link
US (1) US20200407457A1 (zh)
EP (1) EP3753579A4 (zh)
JP (1) JP7119104B2 (zh)
AU (1) AU2019219937B2 (zh)
WO (2) WO2019157772A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112457406B (zh) * 2020-11-27 2022-05-31 中国科学院上海药物研究所 一种抗mmae的单克隆抗体、其编码序列及应用
WO2024023735A1 (en) * 2022-07-27 2024-02-01 Mediboston Limited Auristatin derivatives and conjugates thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4816397A (en) 1983-03-25 1989-03-28 Celltech, Limited Multichain polypeptides or proteins and processes for their production
US5585089A (en) 1988-12-28 1996-12-17 Protein Design Labs, Inc. Humanized immunoglobulins
WO2014063368A1 (zh) * 2012-10-26 2014-05-01 中国医学科学院基础医学研究所 抗人死亡受体5胞外区的人源化单克隆抗体
WO2015018306A1 (en) * 2013-08-06 2015-02-12 Bio-Thera Solutions, Ltd. Bispecific antibodies
WO2016106198A1 (en) * 2014-12-22 2016-06-30 The Regents Of The University Of California Compositions and methods for generating antigens, antibodies, and immunotherapeutic compositions and methods
CN106188305A (zh) * 2015-06-01 2016-12-07 中山大学 具有融合至常规Fab片段的单域抗原结合片段的二价抗体
CN106938051A (zh) * 2016-08-22 2017-07-11 复旦大学 靶向于组织因子的抗体‑药物偶联物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2775350A1 (en) * 2009-09-24 2011-03-31 Seattle Genetics, Inc. Dr5 ligand drug conjugates
US20130280282A1 (en) * 2012-04-24 2013-10-24 Daiichi Sankyo Co., Ltd. Dr5 ligand drug conjugates
SG10202001779UA (en) * 2015-01-20 2020-04-29 Igm Biosciences Inc Tumor necrosis factor (tnf) superfamily receptor binding molecules and uses thereof
WO2015151078A2 (en) * 2015-06-15 2015-10-08 Suzhou M-Conj Biotech Co., Ltd Hydrophilic linkers for conjugation
TWI715611B (zh) * 2015-08-14 2021-01-11 美商Rc生物科技公司 抗體藥物偶聯物的共價鍵連接子及其製備方法與應用
CN108452320B (zh) * 2018-02-13 2020-04-10 烟台市和元艾迪斯生物医药科技有限公司 抗trailr2抗体-毒素-偶联物及其在抗肿瘤治疗中的药物用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816397A (en) 1983-03-25 1989-03-28 Celltech, Limited Multichain polypeptides or proteins and processes for their production
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5585089A (en) 1988-12-28 1996-12-17 Protein Design Labs, Inc. Humanized immunoglobulins
WO2014063368A1 (zh) * 2012-10-26 2014-05-01 中国医学科学院基础医学研究所 抗人死亡受体5胞外区的人源化单克隆抗体
WO2015018306A1 (en) * 2013-08-06 2015-02-12 Bio-Thera Solutions, Ltd. Bispecific antibodies
WO2016106198A1 (en) * 2014-12-22 2016-06-30 The Regents Of The University Of California Compositions and methods for generating antigens, antibodies, and immunotherapeutic compositions and methods
CN106188305A (zh) * 2015-06-01 2016-12-07 中山大学 具有融合至常规Fab片段的单域抗原结合片段的二价抗体
CN106938051A (zh) * 2016-08-22 2017-07-11 复旦大学 靶向于组织因子的抗体‑药物偶联物

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Biocomputing: Informatics and Genome Projects", 1993, ACADEMIC PRESS
"Computer Analysis of Sequence Data", 1994, HUMANA PRESS
"Global Cancer Report", 2014, WHO
"Sequence Analysis Primer", 1991, STOCKTON PRESS
CARILLO, H.LIPMAN, D., SIAM J. APPLIED MATH., vol. 48, 1988, pages 1073
DATABASE Protein 11 February 2018 (2018-02-11), ZHENG, D, XP055635558, retrieved from NCBI Database accession no. AVA46253. 1 *
MUNSON ET AL., ANAL. BIOCHEM., vol. 107, 1980, pages 220
SAMBROOK. J ET AL.: "Guide to Molecular Cloning Laboratory", 2002, SCIENCE PRESS
VON HEINJE, G.: "Sequence Analysis in Molecular Biology", 1987, ACADEMIC PRESS

Also Published As

Publication number Publication date
US20200407457A1 (en) 2020-12-31
JP7119104B2 (ja) 2022-08-16
AU2019219937B2 (en) 2023-08-17
WO2019157772A1 (zh) 2019-08-22
EP3753579A4 (en) 2021-04-14
JP2021516670A (ja) 2021-07-08
AU2019219937A1 (en) 2020-10-01
EP3753579A1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP7330996B2 (ja) Cd73を標的とする抗体および抗体-薬物複合体、その製造方法と使用
CN109963591B (zh) B7h3抗体-药物偶联物及其医药用途
WO2019170131A1 (zh) 靶向cd73的抗体及抗体-药物偶联物、其制备方法和用途
CN108136015A (zh) 抗dll3抗体药物缀合物以及使用方法
WO2019218944A2 (zh) 靶向axl的抗体及抗体-药物偶联物及其制备方法和用途
WO2018036243A1 (zh) 靶向于组织因子的抗体-药物偶联物
US20220356246A1 (en) Anti-ROR1 antibodies and preparation method and uses thereof
US20220041749A1 (en) Antibodies specific to muc18
CA3105415A1 (en) Antibodies specific to folate receptor alpha
US20200114017A1 (en) Antibody drug conjugates that bind lgr5
CN108452320B (zh) 抗trailr2抗体-毒素-偶联物及其在抗肿瘤治疗中的药物用途
WO2019157973A1 (zh) 抗trailr2抗体-毒素-偶联物及其在抗肿瘤治疗中的药物用途
WO2022179039A1 (zh) 抗人cd73抗体及其应用
CN113045659B (zh) 抗cd73人源化抗体
WO2018036117A1 (zh) 靶向于组织因子的抗体、其制备方法和用途
WO2023169583A1 (zh) 基于Pep42构建的双特异性细胞接合器分子的制备及其应用
CN110152014B (zh) 抗trailr2抗体-毒素-偶联物及其在抗肿瘤治疗中的药物用途
CN110141666B (zh) 抗trailr2抗体-毒素-偶联物及其在抗肿瘤治疗中的药物用途
WO2024017383A1 (zh) 抗mct1抗体及其用途
CN117430708B (zh) 一种抗Claudin18.2抗体
WO2023143535A1 (zh) 一种靶向il-18bp的抗体及其应用
CN117624366A (zh) 5t4纳米抗体及其应用
CN116836286A (zh) 能够特异性结合ror1的抗体、其偶联药物及其制备方法和应用
TW202330620A (zh) 一種靶向ror1的抗體或其抗原結合片段及其應用
CN117700553A (zh) 靶向c-MET的纳米抗体、药物偶联物及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753873

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020543885

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019219937

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2019753873

Country of ref document: EP

Effective date: 20200914

ENP Entry into the national phase

Ref document number: 2019219937

Country of ref document: AU

Date of ref document: 20190131

Kind code of ref document: A