WO2019157857A1 - 一种实现巯-炔深层光聚合的方法及其组合物 - Google Patents

一种实现巯-炔深层光聚合的方法及其组合物 Download PDF

Info

Publication number
WO2019157857A1
WO2019157857A1 PCT/CN2018/121768 CN2018121768W WO2019157857A1 WO 2019157857 A1 WO2019157857 A1 WO 2019157857A1 CN 2018121768 W CN2018121768 W CN 2018121768W WO 2019157857 A1 WO2019157857 A1 WO 2019157857A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyne
composition
photopolymerization
realizing
parts
Prior art date
Application number
PCT/CN2018/121768
Other languages
English (en)
French (fr)
Inventor
刘仁
李治全
陈利
陈浩
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2019157857A1 publication Critical patent/WO2019157857A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F238/00Copolymers of compounds having one or more carbon-to-carbon triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L49/00Compositions of homopolymers or copolymers of compounds having one or more carbon-to-carbon triple bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D149/00Coating compositions based on homopolymers or copolymers of compounds having one or more carbon-to-carbon triple bonds; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/104Esters of polyhydric alcohols or polyhydric phenols of tetraalcohols, e.g. pentaerythritol tetra(meth)acrylate

Definitions

  • the invention belongs to the technical field of photopolymer materials, and in particular relates to a composition containing an upconversion material capable of undergoing deep photopolymerization of cerium-yne in the treatment of near-infrared light.
  • ⁇ -alkyne photopolymerization Because of the many advantages of ⁇ -alkyne photopolymerization combined with traditional click chemistry and photoinitiation process, it has attracted wide attention of researchers. At the same time, ⁇ -yne photopolymerization is not sensitive to water, the structure of the polymerization network is regular, and the shrinkage rate is low. Compared with the ruthenium-ene system, the ruthenium-yne system has higher crosslink density and higher sulfur content, which can be significant. Increasing the optical transparency of polymeric materials has broad applications in the fields of optical materials, coatings, adhesives, molecular devices, biomaterials, and 3D printing.
  • the patent publication CN105348414A provides a method for deep cationic photopolymerization which adds an up-conversion material to a cationic system to obtain a cured sample having a depth of 5 cm or more, but only solves the problem of cationic deep photopolymerization;
  • the patent publication CN105330790A provides a method for free radical deep photopolymerization, which utilizes an upconversion material to convert near-infrared light into ultraviolet or visible light to achieve deep photopolymerization of a free radical system with a polymerization depth of more than 10 cm.
  • the photosensitive resin and monomer used are both acrylates, and do not involve photopolymerization of the oxime-yne system.
  • the present invention provides a method for realizing ruthenium-alkyne deep photopolymerization and a composition thereof, and the present invention can maximize the depth of radical photopolymerization of a ruthenium-yne system by more than 8 cm.
  • the method of the invention is simple and efficient, breaks through the problem that the traditional bismuth-yne system is difficult to deep-solidify, broadens the application field of the photopolymerization technology, and is suitable for the technical fields of light-curing composite materials and light-curing thick coatings.
  • the invention provides a method for realizing ⁇ -alkyne deep photopolymerization, adding an up-conversion material to a mixture of photopolymerizable fluorene monomer, photopolymerizable acetylenic monomer and free radical photoinitiator, and then irradiating with near-infrared light .
  • the near-infrared light has a wavelength of 900-1100 nm and an energy density of less than 50 mW/cm 2 .
  • the time of infrared light irradiation is 3 minutes.
  • the present invention provides a composition for achieving bismuth-alkyne deep photopolymerization, the components and component parts of the composition comprising:
  • the photopolymerizable fluorene monomer comprises trimethylolpropane tris(3-mercaptopropionate), bis(3-mercaptopropionic acid) ethylene glycol, and 1,4-butanediol bis(mercaptoacetic acid) , tetraethylene glycol bis(3-mercaptopropionate), tetrakis(3-mercaptopropionic acid) pentaerythritol ester, tetrakis(3-mercaptobutyric acid) pentaerythritol ester, 1,4-butanediol bis(3-mercaptobutyl) Any one or more of an acid) ester and tris(3-mercaptobutoxyethyl) isocyanurate.
  • the photopolymerizable fluorene monomer comprises tetrakis(3-mercaptopropionic acid) pentaerythritol ester, tetrakis(3-mercaptobutyric acid) pentaerythritol ester, and 1,4-butanediol bis(3-mercaptobutyrate). Any one or more.
  • the photopolymerizable alkyne monomer comprises 1,9-decadiyne, 1,7-octadiyne, 1,8-decadiyne, pentaerythritol tetrapropynoate, 4-(prop-2- Any one of alkyne-1-yloxy)but-1-yne, tetrakis(2-propynyloxymethyl)methane, 1,1,1-trishydroxymethylethanetripropynoate, and the like Or a variety.
  • the photopolymerizable alkyne monomer includes any one or more of pentaerythritol tetrapropynyl acid ester and 1,1,1-trimethylolethane tripropynyl acid ester.
  • the free radical photoinitiator comprises 2-methyl-2-(4-morpholinylphenyl)-1-[4-(methylthio)phenyl-1-propanone, 2,4,6- Trimethylbenzoyldiphenylphosphine oxide, ethyl 2,4,6-trimethylbenzoylphenylphosphonate, phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide , 2 isopropyl thioxanthone, 2-hydroxy-2-methyl-1-phenylacetone, 1-hydroxycyclohexyl phenyl ketone, bis 2,6-difluoro-3-pyrrolyl phenyl Any one or more of titanium, 1,7,7-trimethyl-bicyclo(2,2,1)heptane-1,3-dione.
  • radical photoinitiator is bis 2,6-difluoro-3-pyrrolylphenyltitanium.
  • the up-conversion material comprises any one or more of NaYF 4 , BaYF 5 , NaGaF 4 , LiYF 4 , NaYbF 4 , Na 3 ScF 6 , YF 3 , GdOF.
  • the up-conversion material is any one or more of NaYF 4 , NaYbF 4 , and LiYF 4 .
  • the ruthenium-yne alkene deep photopolymerization product prepared by the above composition or method can be applied to the preparation of dental materials and thick layer materials.
  • the up-conversion material used in the present invention is capable of absorbing near-infrared light and emitting ultraviolet light or visible light. Since the near-infrared penetration is strong, the up-conversion material at the deep layer of the composition can be excited to emit ultraviolet light or visible light in situ. The distance between the photon and the initiator is shortened, the shielding effect of the components in the system is reduced, and the photopolymerization depth of the composition is improved, and the invention has wide applicability, and can realize deep photopolymerization of most commercial photopolymerizable materials. .
  • the photopolymerizable fluorene monomer, the photopolymerizable acetylene monomer, the photoinitiator, and the up-conversion material are uniformly mixed and placed in a test tube. After being irradiated by near-infrared light, the up-conversion material can absorb near-infrared light and emit ultraviolet light. Light or visible light induces decomposition of the photoinitiator and initiates photopolymerization to give a cured product.
  • composition for realizing ruthenium-alkyne deep photopolymerization wherein the components and the parts by mass of the components are:
  • the above composition was uniformly mixed into a test tube, placed vertically, and irradiated from top to bottom on the top of the test tube using a light source having an emission wavelength of 980 nm and an energy density of 12 mW/cm 2 , and solidified to obtain a 1.92 cm column at 3 minutes.
  • the ⁇ bond conversion rate was 40%.
  • compositions for realizing ⁇ -alkyne deep photopolymerization wherein the composition and the parts by mass of the composition are the same as in the first embodiment, except that the content of the up-converting material NaYF 4 is changed to 0.9 parts, using the same
  • the length of the resulting column under illumination was 2.35 cm and the conversion of the bottom oxime bond was 45%.
  • a composition for realizing ⁇ -alkyne deep photopolymerization wherein the composition and the parts by mass of the composition are the same as in the first embodiment, except that the content of the up-conversion material NaYF 4 is changed to 1.2 parts, and the emission is adopted.
  • a light source having a wavelength of 980 nm and an energy density of 20.3 mW/cm 2 was irradiated with light from top to bottom on the top of the test tube. After solidification for 3 minutes, the length of the column was 4.6 cm, and the conversion of the bottom oxime bond was 42%.
  • a composition for realizing ruthenium-alkyne deep photopolymerization wherein the composition and the parts by mass of the composition are the same as in the first embodiment, except that the content of the up-conversion material NaYF 4 is changed to 1.5 parts, and the emission is adopted.
  • a light source having a wavelength of 980 nm and an energy density of 20.3 mW/cm 2 was irradiated with light from top to bottom on the top of the test tube. After solidification for 3 minutes, the length of the column was 5.6 cm, and the conversion of the bottom oxime bond was 52%.
  • composition for realizing ruthenium-alkyne deep photopolymerization wherein the components and the parts by mass of the components are:
  • the above composition was uniformly mixed and added to a test tube, and placed vertically, and irradiated from top to bottom on the top of the test tube using a light source having an emission wavelength of 980 nm and an energy density of 18 mW/cm 2 , and solidified to obtain a 4.92 cm column at 3 minutes.
  • the ⁇ bond conversion rate is 60%.
  • composition for realizing ruthenium-alkyne deep photopolymerization wherein the components and the parts by mass of the components are:
  • the above composition was uniformly mixed and added to a test tube, and placed vertically, and irradiated from top to bottom on the top of the test tube with a light source having an emission wavelength of 980 nm and an energy density of 20.3 mW/cm 2 , and solidified to obtain an 8.32 cm column after 3 minutes.
  • the bottom ⁇ bond conversion rate was 68%.
  • composition for realizing ruthenium-alkyne deep photopolymerization wherein the components and the parts by mass of the components are:
  • the above composition was uniformly mixed and added to a test tube, and placed vertically, and irradiated from top to bottom on the top of the test tube using a light source having an emission wavelength of 980 nm and an energy density of 20.3 mW/cm 2 , and solidified to obtain a 6.92 cm column after 3 minutes.
  • the bottom ⁇ bond conversion rate is 55%.
  • composition for realizing ruthenium-alkyne deep photopolymerization wherein the components and the parts by mass of the components are:
  • the above composition was uniformly mixed and added to a test tube, and placed vertically, and irradiated from top to bottom on the top of the test tube with a light source having an emission wavelength of 980 nm and an energy density of 20.3 mW/cm 2 , and solidified to obtain a 5.92 cm column after 3 minutes.
  • the bottom ⁇ bond conversion rate was 64%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本发明涉及一种实现巯-炔深层光聚合的方法及其组合物,该组合物所含组分及各组分质量分数为:可光聚合巯单体20-80份,可光聚合炔单体20-80份,自由基光引发剂0.5-8份,上转换材料0.1-5份,所述组合物在近红外光直接照射下能够发生光点击化学反应,本发明方法可使巯-炔体系的光聚合的最大深度达到8厘米以上,突破了传统巯-炔体系难以深层光固化的难题,拓宽了光聚合技术的应用领域。

Description

一种实现巯-炔深层光聚合的方法及其组合物 技术领域
本发明属于光聚合材料技术领域,尤其是涉及一种含有上转换材料在近红外光照射下能够发生巯-炔深层光聚合的组合物。
背景技术
由于巯-炔光聚合兼具传统点击化学和光引发过程的诸多优点,受到研究者们的广泛关注。同时,巯-炔光聚合对水不敏感、聚合网络结构规整、收缩率低,相比于巯-烯体系,巯-炔体系具有更高的交联密度,更高的硫元素含量,可显著增加聚合材料的光学透明性,因此在光学材料、涂料、胶黏剂、分子器件、生物材料和3D打印等领域具有广阔的应用。但由于普通UV光在聚合过程中存在穿透性的限制,加上体系中光引发剂的吸收导致的内屏蔽效应,有关巯-炔体系的光聚合研究大都局限于二维薄层材料,如何实现巯-炔体系的深层光聚合一直是个挑战。
公开号为CN105348414A的专利提供了一种深层阳离子光聚合的方法,该发明在阳离子体系中添加了上转换材料,获得了深度5厘米以上的固化样品,但仅解决了阳离子深层光聚合的问题;公开号为CN105330790A的专利提供了一种自由基深层光聚合的方法,该发明利用上转换材料将近红外光转化为紫外或可见光实现了自由基体系的深层光聚合,其聚合深度超过了10厘米,但使用的感光树脂和单体均为丙烯酸酯,并未涉及巯-炔体系的光聚合情况。
发明内容
针对现有技术存在的上述问题,本发明提供了一种实现巯-炔深层光聚合的方法及其组合物,本发明可使发生巯-炔体系的自由基光聚合的最大深度超过8厘米,本发明方法简单、高效,突破了传统巯-炔体系难以深层固化的问题,拓宽了光聚合技术的应用领域,适用于光固化复合材料、光固化厚涂层等技术领域。
本发明提出了一种实现巯-炔深层光聚合的方法,在可光聚合巯单体、可光聚合炔单体、自由基光引发剂的混合物中加入上转换材料,然后采用近红外光照射。
其中,所述近红外光波长为900-1100nm,能量密度小于50mW/cm 2
其中,红外光照射的时间为3分钟。
本发明提出了一种实现巯-炔深层光聚合的组合物,所述组合物所含组分及组分质量份数为:
Figure PCTCN2018121768-appb-000001
Figure PCTCN2018121768-appb-000002
进一步的,组合物所含组分及组分质量份数为:
Figure PCTCN2018121768-appb-000003
其中,所述可光聚合巯单体包括三羟甲基丙烷三(3-巯基丙酸酯)、双(3-巯基丙酸)乙二醇、1,4-丁二醇双(巯基乙酸)、四乙二醇双(3-巯基丙酸酯)、四(3-巯基丙酸)季戊四醇酯、四(3-巯基丁酸)季戊四醇酯、1,4-丁二醇二(3-巯基丁酸)酯、三(3-巯基丁氧基乙基)异氰尿酸酯中的任意一种或多种。
进一步的,可光聚合巯单体包括四(3-巯基丙酸)季戊四醇酯、四(3-巯基丁酸)季戊四醇酯、1,4-丁二醇二(3-巯基丁酸)酯中的任意一种或多种。
其中,所述可光聚合的炔单体包括1,9-癸二炔、1,7-辛二炔、1,8-壬二炔、季戊四醇四丙炔酸酯、4-(丙-2-炔-1-基氧基)丁-1-炔、四(2-丙炔氧基甲基)甲烷、1,1,1-三羟甲基乙烷三丙炔酸酯等中的任意一种或多种。
进一步的,可光聚合的炔单体包括季戊四醇四丙炔酸酯、1,1,1-三羟甲基乙烷三丙炔酸酯中的任意一种或多种。
其中,所述自由基光引发剂包括2-甲基-2-(4-吗啉基苯基)-1-[4-(甲硫基)苯基-1-丙酮、2,4,6-三甲基苯甲酰二苯基氧化膦、2,4,6-三甲基苯甲酰基苯基膦酸乙酯、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、2异丙基硫杂蒽酮、2-羟基-2-甲基-1-苯基丙酮、1-羟基环己基苯基甲酮、双2,6-二氟-3-吡咯苯基二茂钛、1,7,7-三甲基-双环(2,2,1)庚烷-1,3-二酮中的任意一种或多种。
进一步的,自由基光引发剂为双2,6-二氟-3-吡咯苯基二茂钛。
其中,所述上转换材料包括NaYF 4、BaYF 5、NaGaF 4、LiYF 4、NaYbF 4、Na 3ScF 6、YF 3、GdOF中的任意一种或多种。
进一步的,上转换材料为NaYF 4、NaYbF 4、LiYF 4中的任意一种或多种。
由上述组合物或方法制备得到的巯-炔深层光聚合产物可应用于牙科材料及厚层材料的制备。
本发明有益的技术效果在于:
(1)本发明所用上转换材料能够吸收近红外光并发射紫外光或可见光,由于近红外的穿透性较强,因此能激发组合物深层处的上转换材料原位发射紫外光或可见光,缩短了光子与引发剂间的距离,降低了体系内组分的屏蔽效应,从而提升了组合物的光聚合深度,本发明适用性广,可实现大多数商品化可光聚合物质的深层光聚合。
(2)本发明所用上转换材料吸收近红外光后,发生转变,激发组合物中其它组分相互协同作用,共同完成巯-炔体系深层光聚合。
(3)本发明获得的巯-炔深层固化材料,巯-炔体系中硫元素的存在使其具有优异的光学特性,而炔的高官能度,使其具有较高的交联密度,大大提高了材料在光学元件领域的应用。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
将可光聚合的巯单体、可光聚合的炔单体、光引发剂、上转换材料混合均匀后放入试管中,经过近红外光照射后,上转换材料能够吸收近红外光并发射紫外光或可见光,诱导光引发剂分解,并引发光聚合反应得到固化产物。
实施例1
一种实现巯-炔深层光聚合的组合物,所述组合物所含组分及各组分质量份数为:
Figure PCTCN2018121768-appb-000004
将上述组合物混合均匀加入到试管中,竖直放置后使用发射波长980nm、能量密度12mW/cm 2的光源在试管顶部自上而下进行照射,3分钟后固化获得1.92厘米的柱状物,底部叁键转化率为40%。
实施例2
一种实现巯-炔深层光聚合的组合物,所述组合物所含组分及各组分质量份数同实施例1,不同点在于改变上转换材料NaYF 4的含量为0.9份,采用相同光照条件下所得柱状物的长度为2.35厘米,底部叁键转化率为45%。
实施例3
一种实现巯-炔深层光聚合的组合物,所述组合物所含组分及各组分质量份数同实施例1,不同点在于改变上转换材料NaYF 4的含量为1.2份,采用发射波长980nm,能量密度为20.3mW/cm 2的光源在试管顶部自上而下进行照射光照,3分钟固化后,柱状物的长度达4.6厘米,底部叁键转化率为42%。
实施例4
一种实现巯-炔深层光聚合的组合物,所述组合物所含组分及各组分质量份数同实施例1,不同点在于改变上转换材料NaYF 4的含量为1.5份,采用发射波长980nm,能量密度为20.3mW/cm 2的光源在试管顶部自上而下进行照射光照,3分钟固化后,柱状物的长度达5.6厘米,底部叁键转化率为52%。
实施例5
一种实现巯-炔深层光聚合的组合物,所述组合物所含组分及各组分质量份数为:
Figure PCTCN2018121768-appb-000005
将上述组合物混合均匀加入到试管中,竖直放置后使用发射波长980nm、能量密度18mW/cm 2的光源在试管顶部自上而下进行照射,3分钟后固化获得4.92厘米的柱状物,底部叁键转化率为60%。
实施例6
一种实现巯-炔深层光聚合的组合物,所述组合物所含组分及各组分质量份数为:
Figure PCTCN2018121768-appb-000006
将上述组合物混合均匀加入到试管中,竖直放置后使用发射波长980nm、能量密度20.3mW/cm 2的光源在试管顶部自上而下进行照射,3分钟后固化获得8.32厘米的柱状物,底 部叁键转化率为68%。
实施例7
一种实现巯-炔深层光聚合的组合物,所述组合物所含组分及各组分质量份数为:
Figure PCTCN2018121768-appb-000007
将上述组合物混合均匀加入到试管中,竖直放置后使用发射波长980nm、能量密度20.3mW/cm 2的光源在试管顶部自上而下进行照射,3分钟后固化获得6.92厘米的柱状物,底部叁键转化率为55%。
实施例8
一种实现巯-炔深层光聚合的组合物,所述组合物所含组分及各组分质量份数为:
Figure PCTCN2018121768-appb-000008
将上述组合物混合均匀加入到试管中,竖直放置后使用发射波长980nm、能量密度20.3mW/cm 2的光源在试管顶部自上而下进行照射,3分钟后固化获得5.92厘米的柱状物,底部叁键转化率为64%。
对比例1
在与实施例6相同的反应条件下,改变上转换材料的种类,进行反应,得到的结果见表1。
表1
上转换材料 LiYF 4 NaYF 4 NaYbF 4 YF 3 BaYF3
柱状物深度(cm) 5.92 4.8 8.32 2.32 3.17
叁键转化率(%) 64% 45% 68% 28% 32%
从表1可以看出,在相同条件下,使用NaYbF 4能够明显提高巯-炔体系的光聚合深度。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以 权利要求书所界定的为准。
Figure PCTCN2018121768-appb-000009

Claims (10)

  1. 一种实现巯-炔深层光聚合的组合物,其特征在于:包括以下质量份数的组分:可光聚合巯单体20-80份,可光聚合炔单体20-80份,自由基光引发剂0.5-8份,上转换材料0.1-5份,所述上转换材料包括NaYF 4、BaYF 5、NaGaF 4、LiYF 4、NaYbF 4、Na3ScF 6、YF 3、GdOF中的任意一种或多种。
  2. 根据权利要求1所述的实现巯-炔深层光聚合的组合物,其特征在于:上转换材料为NaYF4、NaYbF4、LiYF4中的任意一种或多种。
  3. 根据权利要求1或2所述的实现巯-炔深层光聚合的组合物,其特征在于:所述可光聚合巯单体包括三羟甲基丙烷三(3-巯基丙酸酯)、双(3-巯基丙酸)乙二醇、1,4-丁二醇双(巯基乙酸)、四乙二醇双(3-巯基丙酸酯)、四(3-巯基丙酸)季戊四醇酯、四(3-巯基丁酸)季戊四醇酯、1,4-丁二醇二(3-巯基丁酸)酯、三(3-巯基丁氧基乙基)异氰尿酸酯中的任意一种或多种。
  4. 根据权利要求3所述的实现巯-炔深层光聚合的组合物,其特征在于:所述可光聚合巯单体包括四(3-巯基丙酸)季戊四醇酯、四(3-巯基丁酸)季戊四醇酯、1,4-丁二醇二(3-巯基丁酸)酯中的任意一种或多种。
  5. 根据权利要求1-4任一项所述的实现巯-炔深层光聚合的组合物,其特征在于:所述可光聚合的炔单体包括1,9-癸二炔、1,7-辛二炔、1,8-壬二炔、季戊四醇四丙炔酸酯、4-(丙-2-炔-1-基氧基)丁-1-炔、四(2-丙炔氧基甲基)甲烷、1,1,1-三羟甲基乙烷三丙炔酸酯等中的任意一种或多种。
  6. 根据权利要求5所述的实现巯-炔深层光聚合的组合物,其特征在于:可光聚合的炔单体包括季戊四醇四丙炔酸酯、1,1,1-三羟甲基乙烷三丙炔酸酯中的任意一种或多种。
  7. 根据权利要求1至6任一项所述的实现巯-炔深层光聚合的组合物,其特征在于:所述自由基光引发剂包括2-甲基-2-(4-吗啉基苯基)-1-[4-(甲硫基)苯基-1-丙酮、2,4,6-三甲基苯甲酰二苯基氧化膦、2,4,6-三甲基苯甲酰基苯基膦酸乙酯、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、2异丙基硫杂蒽酮、2-羟基-2-甲基-1-苯基丙酮、1-羟基环己基苯基甲酮、双2,6-二氟-3-吡咯苯基二茂钛、1,7,7-三甲基-双环(2,2,1)庚烷-1,3-二酮中的任意一种或多种。
  8. 根据权利要求7所述的实现巯-炔深层光聚合的组合物,其特征在于:所述自由基光引发剂为双2,6-二氟-3-吡咯苯基二茂钛。
  9. 权利要求1至8任一项所述的组合物实现巯-炔深层光聚合的方法,其特征在于:采用波长为900-1100nm、能量密度小于50mW/cm 2的近红外光照射3分钟。
  10. 权利要求1-9任一项所述的组合物或方法制备得到的巯-炔深层光聚合产物在牙科材料及厚层材料的制备中的应用。
PCT/CN2018/121768 2018-02-13 2018-12-18 一种实现巯-炔深层光聚合的方法及其组合物 WO2019157857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810148107.9A CN108285510B (zh) 2018-02-13 2018-02-13 一种实现巯-炔深层光聚合的方法及其组合物
CN201810148107.9 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019157857A1 true WO2019157857A1 (zh) 2019-08-22

Family

ID=62832911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121768 WO2019157857A1 (zh) 2018-02-13 2018-12-18 一种实现巯-炔深层光聚合的方法及其组合物

Country Status (2)

Country Link
CN (1) CN108285510B (zh)
WO (1) WO2019157857A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111675808A (zh) * 2020-06-23 2020-09-18 长江师范学院 一种基于两阶段式巯基-炔聚合反应的全息光致聚合物材料
CN113307944A (zh) * 2021-06-01 2021-08-27 鲁东大学 一种具有多级孔结构的硬质含氟聚氨酯的制备方法
CN114716659A (zh) * 2022-05-17 2022-07-08 常州大学 一种无需催化剂的点击聚合反应制备含氮聚合物的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108285510B (zh) * 2018-02-13 2019-07-02 江南大学 一种实现巯-炔深层光聚合的方法及其组合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803320A (zh) * 2009-06-03 2012-11-28 3M创新有限公司 硫醇-炔形状记忆聚合物
WO2014070973A1 (en) * 2012-11-02 2014-05-08 Board Of Supervisors Of Louisiana State University And Agricural And Mechanical College Thiol acrylate nanocomposite foams
CN105330790A (zh) * 2015-11-20 2016-02-17 江南大学 一种实现深层自由基光聚合的方法及其组合物
CN105348414A (zh) * 2015-11-20 2016-02-24 江南大学 一种实现深层阳离子光聚合的方法及其组合物
CN107849265A (zh) * 2015-05-14 2018-03-27 加州理工学院 使用上转换纳米颗粒和近红外(nir)光的光可调人工晶状体
CN108285510A (zh) * 2018-02-13 2018-07-17 江南大学 一种实现巯-炔深层光聚合的方法及其组合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106243251B (zh) * 2016-08-23 2018-07-03 江南大学 一种单组分可见光引发剂及在混杂光固化的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803320A (zh) * 2009-06-03 2012-11-28 3M创新有限公司 硫醇-炔形状记忆聚合物
WO2014070973A1 (en) * 2012-11-02 2014-05-08 Board Of Supervisors Of Louisiana State University And Agricural And Mechanical College Thiol acrylate nanocomposite foams
CN107849265A (zh) * 2015-05-14 2018-03-27 加州理工学院 使用上转换纳米颗粒和近红外(nir)光的光可调人工晶状体
CN105330790A (zh) * 2015-11-20 2016-02-17 江南大学 一种实现深层自由基光聚合的方法及其组合物
CN105348414A (zh) * 2015-11-20 2016-02-24 江南大学 一种实现深层阳离子光聚合的方法及其组合物
CN108285510A (zh) * 2018-02-13 2018-07-17 江南大学 一种实现巯-炔深层光聚合的方法及其组合物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111675808A (zh) * 2020-06-23 2020-09-18 长江师范学院 一种基于两阶段式巯基-炔聚合反应的全息光致聚合物材料
CN113307944A (zh) * 2021-06-01 2021-08-27 鲁东大学 一种具有多级孔结构的硬质含氟聚氨酯的制备方法
CN114716659A (zh) * 2022-05-17 2022-07-08 常州大学 一种无需催化剂的点击聚合反应制备含氮聚合物的方法
CN114716659B (zh) * 2022-05-17 2023-12-12 常州大学 一种无需催化剂的点击聚合反应制备含氮聚合物的方法

Also Published As

Publication number Publication date
CN108285510A (zh) 2018-07-17
CN108285510B (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
WO2019157857A1 (zh) 一种实现巯-炔深层光聚合的方法及其组合物
JP3347142B2 (ja) 感圧接着剤組成物およびそれを光重合するための多重光開始方法
Lang et al. A review on modeling cure kinetics and mechanisms of photopolymerization
Glöckner Radiation curing
Endruweit et al. Curing of composite components by ultraviolet radiation: A review
KR102564083B1 (ko) 개시제 블렌드 및 그러한 개시제 블렌드를 함유하는 3차원 인쇄에 유용한 광경화성 조성물
KR101905347B1 (ko) 반도체 나노 입자 함유 경화성 조성물, 경화물, 광학 재료 및 전자 재료
CN110698607B (zh) 一种深色体系光聚合组合物
US20160202606A1 (en) Core-shell nanoparticles, methods of making same, and uses of same
CN105330790B (zh) 一种实现深层自由基光聚合的方法及其组合物
CN102516866A (zh) 一种紫外光固化材料
Dreyer et al. Application of LEDs for UV-curing
JPS61500974A (ja) 2つの硬化タイプのプレポリマ−を含む光硬化性組成物
CN108250838A (zh) 一种用于直写法3d打印硅酮结构的墨水组合物
CN106117394B (zh) 一种含有氟碳链的膦酸酯类光引发剂及其制备方法
Ogliari et al. Onium salt reduces the inhibitory polymerization effect from an organic solvent in a model dental adhesive resin
JP6874559B2 (ja) 硬化性組成物、立体造形物の製造方法および立体造形装置
JP6450316B2 (ja) 高屈折率透明性薄膜の製造方法及びその方法により製造された薄膜
CN111107975A (zh) 树脂组合物、以及使用了该组合物的立体造型物的制造方法、立体造型物以及用于把持对象物的配件、以及使用该配件的工业用机器人
CN102070985A (zh) 一种能在低能量下固化的紫外光固化涂料
CN110527334B (zh) 一种基于碳量子点的真空可见光室温固化复合膜和制备方法
JPWO2019193961A1 (ja) 樹脂組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物
ITRM940161A1 (it) Composizione indurente e metodo per l'impregnazione di legno.
JPH10183015A (ja) 親水塗料組成物
JP2018520233A (ja) オンデマンド放射線照射により誘発される構築及び脱構築化学反応

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906167

Country of ref document: EP

Kind code of ref document: A1