WO2019156348A1 - 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법 - Google Patents

프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법 Download PDF

Info

Publication number
WO2019156348A1
WO2019156348A1 PCT/KR2018/016653 KR2018016653W WO2019156348A1 WO 2019156348 A1 WO2019156348 A1 WO 2019156348A1 KR 2018016653 W KR2018016653 W KR 2018016653W WO 2019156348 A1 WO2019156348 A1 WO 2019156348A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
frame
mask cell
cell
integrated
Prior art date
Application number
PCT/KR2018/016653
Other languages
English (en)
French (fr)
Inventor
이유진
Original Assignee
주식회사 티지오테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티지오테크 filed Critical 주식회사 티지오테크
Priority to CN201880086540.2A priority Critical patent/CN111656552A/zh
Publication of WO2019156348A1 publication Critical patent/WO2019156348A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present invention relates to a frame-integrated mask and a method of manufacturing the frame-integrated mask. More specifically, the present invention relates to a frame-integrated mask and a frame-integrated mask manufacturing method capable of making the mask integral with the frame and aligning the masks with each other.
  • the electroplating method is to immerse the positive electrode and the negative electrode in the electrolyte, and to apply the power to electrodeposit the metal thin plate on the surface of the negative electrode, it is possible to manufacture the ultra-thin plate, it is a method that can be expected to mass production.
  • a fine metal mask (FMM) method of depositing an organic material at a desired position by closely attaching a thin metal mask to a substrate is mainly used.
  • the mask is manufactured in a stick form, a plate form, and the like, and then the mask is welded and fixed to the OLED pixel deposition frame.
  • Each mask may include a plurality of cells corresponding to one display.
  • several masks may be fixed to the OLED pixel deposition frame. In the process of fixing to the frame, each mask is tensioned to be flat. Adjusting the tension to make the entire part of the mask flat is a very difficult task.
  • QHD image quality is 500 ⁇ 600 pixel per inch (PPI), and the pixel size is about 30 ⁇ 50 ⁇ m, and 4K UHD, 8K UHD high definition is higher than 860 PPI, ⁇ 1600 PPI, etc. It has a resolution of.
  • the alignment error between each cell should be reduced to several ⁇ m, and the error beyond this may lead to product failure, resulting in very low yield. Therefore, there is a need for development of a technique for preventing deformation, such as knocking or twisting of a mask and making alignment clear, a technique for fixing a mask to a frame, and the like.
  • an object of the present invention is to provide a method for manufacturing a frame-integrated mask and a frame-integrated mask in which the mask and the frame can form an integrated structure.
  • the above object of the present invention is a frame-integrated mask in which a plurality of masks and a frame for supporting the mask are integrally formed, the frame comprising: an edge frame portion including a hollow region; And a mask cell sheet portion having a plurality of mask cell regions and connected to an edge frame portion, each mask being achieved by a frame-integrated mask connected to an upper portion of the mask cell sheet portion.
  • the mask cell sheet unit may include a plurality of mask cell regions in at least one of a first direction and a second direction perpendicular to the first direction.
  • the mask cell sheet portion includes an edge sheet portion; And at least one first grid sheet part extending in the first direction and both ends connected to the edge sheet part.
  • the mask cell sheet part may further include at least one second grid sheet part extending in a second direction perpendicular to the first direction to intersect the first grid sheet part, and both ends of which are connected to the edge sheet part.
  • Each mask may correspond to each mask cell region.
  • the mask includes a mask cell in which a plurality of mask patterns are formed, and a dummy around the mask cell, and at least a part of the dummy may be adhered to the mask cell sheet portion.
  • the mask may include one mask cell, and each mask may correspond to each mask cell region of the mask cell sheet part.
  • Each mask includes a plurality of mask cells, and each mask may correspond to each mask cell region of the mask cell sheet portion.
  • the edge frame portion may have a rectangular shape.
  • the edge frame portion may be thicker than the mask cell sheet portion, and the mask cell sheet portion may be thicker than the mask.
  • the thickness of the mask cell sheet portion may be 0.1 mm to 1 mm, and the thickness of the mask may be 2 ⁇ m to 50 ⁇ m.
  • the mask and frame may be made of any one of invar, super invar, nickel, and nickel-cobalt.
  • the pixel position accuracy (PPA) between the mask adhered to one mask cell region and the mask adhered to the mask cell region adjacent thereto may not exceed 3 ⁇ m.
  • a method of manufacturing a frame-integrated mask formed integrally with a plurality of masks and the frame for supporting the mask comprising the steps of: (a) providing a border frame portion comprising a hollow area; (b) connecting a mask cell sheet portion having a plurality of mask cell regions to an edge frame portion; (c) corresponding to the mask one mask cell region of the mask cell sheet portion; And (d) adhering at least a portion of the rim of the mask to the mask cell sheet portion.
  • a method of manufacturing a frame-integrated mask formed integrally with a plurality of masks and the frame for supporting the mask comprising the steps of: (a) providing a border frame portion comprising a hollow area; (b) connecting the planar mask cell sheet portion to the border frame portion; (c) forming a plurality of mask cell regions in the mask cell sheet portion; (d) corresponding to the mask one mask cell region of the mask cell sheet portion; And (e) adhering at least a portion of the rim of the mask to the mask cell sheet portion.
  • the mask cell sheet unit may include a plurality of mask cell regions in at least one of a first direction and a second direction perpendicular to the first direction.
  • the mask cell sheet portion includes an edge sheet portion; And at least one first grid sheet part extending in the first direction and both ends connected to the edge sheet part.
  • the mask cell sheet part may further include at least one second grid sheet part extending in a second direction perpendicular to the first direction to intersect the first grid sheet part, and both ends of which are connected to the edge sheet part.
  • Each mask may correspond to each mask cell region.
  • step (b) the edge of the mask cell sheet portion may be welded to the edge frame portion.
  • the mask may include one mask cell, and one mask cell may be located in one mask cell area.
  • the mask may include a plurality of mask cells, and the plurality of mask cells may be located in one mask cell area.
  • the mask and the frame can form an integrated structure.
  • 1 is a schematic view showing a conventional mask for OLED pixel deposition.
  • FIG. 2 is a schematic diagram illustrating a process of adhering a conventional mask to a frame.
  • FIG. 3 is a schematic diagram showing that alignment errors between cells occur in the process of tensioning a conventional mask.
  • FIG. 4 is a front and side cross-sectional view showing a frame-integrated mask according to an embodiment of the present invention.
  • FIG. 5 is a front and side cross-sectional view showing a frame according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram illustrating a manufacturing process of a frame according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram illustrating a manufacturing process of a frame according to another embodiment of the present invention.
  • FIG. 8 is a schematic view showing the tension form of the mask and the state in which the mask corresponds to the cell region of the frame according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram illustrating a process of bonding a mask according to an embodiment of the present invention corresponding to a cell region of a frame.
  • FIG. 10 is a partially enlarged cross-sectional view illustrating a form in which a mask is adhered to a frame according to various embodiments of the present disclosure.
  • FIG. 11 is a schematic diagram illustrating an OLED pixel deposition apparatus using a frame-integrated mask according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a conventional mask for depositing OLED pixels 10.
  • the conventional mask 10 may be manufactured in a stick type or a plate type.
  • the mask 10 shown in FIG. 1A is a stick type mask, and both sides of the stick may be welded and fixed to the OLED pixel deposition frame.
  • the mask 100 illustrated in FIG. 1B is a plate-type mask and may be used in a large area pixel forming process.
  • a plurality of display cells C are provided in the body (or mask film 11) of the mask 10.
  • One cell C corresponds to one display such as a smartphone.
  • a pixel pattern P is formed to correspond to each pixel of the display.
  • the pixel pattern P is formed in the cell C to have a resolution of 70 ⁇ 140. That is, a large number of pixel patterns P may be clustered to form one cell C, and a plurality of cells C may be formed in the mask 10.
  • FIG. 2 is a schematic diagram illustrating a process of adhering the mask 10 to the frame 20.
  • 3 is a schematic view showing that alignment errors between cells occur in the process of tensioning the mask 10 (F1 to F2).
  • a stick mask 10 having six cells C: C1 to C6 shown in FIG. 1A will be described as an example.
  • the stick mask 10 should be flattened.
  • the stick mask 10 is unfolded by applying tensile forces F1 to F2 in the major axis direction of the stick mask 10.
  • the stick mask 10 is loaded onto the frame 20 having a rectangular frame shape.
  • the cells C1 to C6 of the stick mask 10 are positioned in the empty area of the frame 20 of the frame 20.
  • the frame 20 may be large enough so that the cells C1 to C6 of one stick mask 10 are located in an empty area inside the frame, and the cells C1 to C6 of the plurality of stick masks 10 are framed. It may also be large enough to fit inside the empty area.
  • the alignment of the mask cells C1 to C3 is not good.
  • the distances D1 to D1 ′′ and D2 to D2 ′′ may be different from each other or the patterns P may be skewed between the patterns P of the cells C1 to C3.
  • the stick mask 10 is a large area including a plurality of (eg, six) cells C1 to C6, and has a very thin thickness of several tens of micrometers, so that it is easily struck or warped by a load.
  • the minute error of the tensile force may cause an error in the extent that each cell (C1 ⁇ C3) of the stick mask 10 is extended or unfolded, and thus the distance (D1) between the mask pattern (P) ⁇ D1 ", D2-D2") cause a problem that becomes different.
  • the alignment error does not exceed 3 micrometers. It is preferable not to.
  • This alignment error between adjacent cells is referred to as pixel position accuracy (PPA).
  • the present invention proposes a frame 200 and a frame integrated mask that allow the mask 100 to form an integrated structure with the frame 200.
  • the mask 100 integrally formed in the frame 200 may be prevented from being deformed or warped, and may be clearly aligned with the frame 200.
  • the manufacturing time for integrally connecting the mask 100 to the frame 200 may be significantly reduced, and the yield may be significantly increased.
  • FIG. 4 is a front view (FIG. 4 (a)) and a side cross-sectional view (FIG. 4 (b)) showing a frame-integrated mask according to an embodiment of the present invention
  • Figure 5 is according to an embodiment of the present invention It is a front view (FIG. 5 (a)) and a side cross-sectional view (FIG. 5 (b)) which show a frame.
  • the frame integrated mask may include a plurality of masks 100 and one frame 200.
  • the plurality of masks 100 are bonded to the frame 200 one by one.
  • the rectangular mask 100 will be described as an example, but the masks 100 may be in the form of a stick mask having protrusions clamped at both sides before being bonded to the frame 200, and the frame 200. The protrusions can be removed after they have been adhered to.
  • a plurality of mask patterns P may be formed in each mask 100, and one cell C may be formed in one mask 100.
  • One mask cell C may correspond to one display such as a smartphone.
  • the mask 100 may be formed by electroforming.
  • the mask 100 may be an invar having a thermal expansion coefficient of about 1.0 ⁇ 10 ⁇ 6 / ° C. and a super invar material having about 1.0 ⁇ 10 ⁇ 7 / ° C. Since the mask 100 of this material has a very low coefficient of thermal expansion, there is little possibility that the pattern shape of the mask is deformed by thermal energy, and thus, the mask 100 may be used as a fine metal mask (FMM) or a shadow mask in high-resolution OLED manufacturing.
  • FMM fine metal mask
  • the mask 100 has a slightly larger thermal expansion coefficient than that of nickel (Ni) and nickel-cobalt (Ni-Co). It may be a material such as).
  • the thickness of the mask may be formed to about 2 to 50 ⁇ m.
  • the frame 200 is formed to bond the plurality of masks 100.
  • the frame 200 may include various edges formed in a first direction (eg, a horizontal direction) and a second direction (eg, a vertical direction) including an outermost edge. These various corners may define the area to which the mask 100 is to be bonded on the frame 200.
  • the frame 200 may include an edge frame portion 210 having a substantially rectangular shape and a rectangular frame shape.
  • the inside of the frame frame 210 may be hollow. That is, the frame frame 210 may include a hollow region (R).
  • the frame 200 may be made of a metal material such as Invar, Super Invar, Aluminum, Titanium, etc., and may be made of Inbar, Super Invar, Nickel, or Nickel-Cobalt having the same thermal expansion coefficient as a mask in consideration of thermal deformation.
  • the materials may be applied to both the edge frame portion 210 and the mask cell sheet portion 220 which are components of the frame 200.
  • the frame 200 may include a plurality of mask cell regions CR and may include a mask cell sheet portion 220 connected to the edge frame portion 210.
  • the mask cell sheet part 220 may be formed by electroplating, or may be formed using another film forming process.
  • the mask cell sheet part 220 may be connected to the edge frame part 210 after forming a plurality of mask cell areas CR through laser scribing or etching on a flat sheet.
  • the mask cell sheet unit 220 may form a plurality of mask cell regions CR through laser scribing, etching, etc. after connecting the planar sheet to the edge frame unit 210.
  • a plurality of mask cell regions CR are first formed in the mask cell sheet unit 220 and then connected to the edge frame unit 210.
  • the mask cell sheet part 220 may include at least one of the edge sheet part 221 and the first and second grid sheet parts 223 and 225.
  • the edge sheet portion 221 and the first and second grid sheet portions 223 and 225 refer to respective portions partitioned from the same sheet, which are integrally formed with each other.
  • the edge sheet portion 221 may be substantially connected to the edge frame portion 210. Accordingly, the edge sheet part 221 may have a substantially rectangular shape and a rectangular frame shape corresponding to the edge frame part 210.
  • first grid sheet part 223 may extend in a first direction (horizontal direction).
  • the first grid sheet part 223 may be formed in a straight line shape and both ends thereof may be connected to the edge sheet part 221.
  • each of the first grid sheet portions 223 may be equally spaced apart.
  • the second grid sheet part 225 may be formed to extend in a second direction (vertical direction).
  • the second grid sheet part 225 may be formed in a straight line shape and both ends thereof may be connected to the edge sheet part 221.
  • the first grid sheet portion 223 and the second grid sheet portion 225 may vertically cross each other.
  • each of the second grid sheet portions 225 preferably has an equal interval.
  • the spacing between the first grid sheet portions 223 and the spacing between the second grid sheet portions 225 may be the same or different according to the size of the mask cell C.
  • the cross section perpendicular to the longitudinal direction has a rectangular shape such as a rectangle and a parallelogram [Fig. 5 (b). And FIG. 10], a triangular shape, and the like, and some edges and edges may be partially rounded.
  • the cross-sectional shape is adjustable in the process of laser scribing, etching and the like.
  • the thickness of the edge frame portion 210 may be thicker than the thickness of the mask cell sheet portion 220.
  • the edge frame part 210 may be formed to a thickness of several mm to several cm because it is responsible for the overall rigidity of the frame 200.
  • the mask cell sheet part 220 is thinner than the thickness of the edge frame part 210, but preferably thicker than the mask 100.
  • the mask cell sheet part 220 may have a thickness of about 0.1 mm to about 1 mm.
  • the widths of the first and second grid sheet parts 223 and 225 may be formed to about 1 to 5 mm.
  • a plurality of mask cell areas CR: CR11 to CR56 may be provided except for an area occupied by the edge sheet part 221 and the first and second grid sheet parts 223 and 225 in the planar sheet.
  • the mask cell region CR is an area occupied by the edge sheet portion 221 and the first and second grid sheet portions 223 and 225 in the hollow region R of the edge frame portion 210. Except for, it may mean an empty area.
  • the mask C may be used as a passage through which the pixels of the OLED are deposited through the mask pattern P.
  • FIG. As described above, one mask cell C corresponds to one display such as a smartphone.
  • Mask patterns P constituting one cell C may be formed in one mask 100.
  • one mask 100 may include a plurality of cells C, and each cell C may correspond to each cell region CR of the frame 200. It is necessary to avoid the large area mask 100, and the small area mask 100 provided with one cell C is preferable.
  • one mask 100 having a plurality of cells C may correspond to one cell region CR of the frame 200. In this case, for clear alignment, it may be considered to correspond to the mask 100 having a small number of cells C of about 2-3.
  • the frame 200 may include a plurality of mask cell regions CR, and each mask 100 may be bonded such that one mask cell C corresponds to the mask cell region CR.
  • Each mask 100 may include a mask cell C in which a plurality of mask patterns P are formed and a dummy (corresponding to a portion of the mask film 110 except for the cell C) around the mask cell C. have.
  • the dummy may include only the mask layer 110 or the mask layer 110 in which a predetermined dummy pattern having a similar shape to the mask pattern P is formed.
  • the mask cell C may correspond to the mask cell region CR of the frame 200, and part or all of the dummy may be attached to the frame 200 (mask cell sheet portion 220). Accordingly, the mask 100 and the frame 200 may form an integrated structure.
  • FIGS. 4 and 5 may be provided.
  • 6 is a schematic diagram illustrating a manufacturing process of the frame 200 according to an embodiment of the present invention.
  • an edge frame unit 210 is provided.
  • the edge frame portion 210 may have a rectangular frame shape including the hollow area R.
  • a mask cell sheet part 220 is manufactured.
  • the mask cell sheet unit 220 may be manufactured by fabricating a planar sheet using pre-plating or other film forming process, and then removing the mask cell region CR through laser scribing or etching. have.
  • a description will be given of an example in which a mask cell region CR: CR11 to CR56 of 6 ⁇ 5 is formed.
  • the mask cell sheet part 220 may correspond to the edge frame part 210.
  • all sides of the mask cell sheet part 220 are stretched (F1 to F4) to flatten the mask cell sheet part 220 to the edge sheet part 221 to the border frame part 210. It can respond.
  • the mask cell sheet portion 220 may be grasped and tensioned at several points (for example, 1 to 3 points in FIG. 6B).
  • the mask cell sheet portion 220 may be stretched (F1, F2) not in all sides but in some lateral directions.
  • the edge cell part 221 of the mask cell sheet part 220 may be welded (W) and bonded. It is preferable to weld (W) all sides so that the mask cell sheet portion 220 can be firmly adhered to the edge frame portion 220. Welding (W) should be performed as close as possible to the edge of the edge frame portion 210 as much as possible to reduce the excited space between the edge frame portion 210 and the mask cell sheet portion 220 as much as possible to increase the adhesion.
  • the weld (W) portion may be generated in a line or spot form, and may have the same material as the mask cell sheet portion 220 and integrate the edge frame portion 210 and the mask cell sheet portion 220. It can be a medium to connect to.
  • FIG. 7 is a schematic diagram illustrating a manufacturing process of a frame according to another embodiment of the present invention.
  • the mask cell sheet part 220 having the mask cell area CR is first manufactured and adhered to the edge frame part 210.
  • the embodiment of FIG. After adhesion to 210, a mask cell region CR is formed.
  • the edge frame part 210 including the hollow area R is provided.
  • a flat sheet (a flat mask cell sheet portion 220 ′) may correspond to the edge frame portion 210.
  • the mask cell sheet portion 220 ′ is in a planar state in which the mask cell region CR is not yet formed.
  • all sides of the mask cell sheet part 220 ' may be stretched (F1 to F4) to correspond to the edge frame part 210 in a state where the mask cell sheet part 220' is flattened.
  • the mask cell sheet portion 220 ' may be grasped and tensioned at various points (for example, 1 to 3 points in FIG. 7A).
  • the mask cell sheet portion 220 ' may be stretched (F1, F2) not in all sides but in some side direction.
  • the edge portion of the mask cell sheet portion 220 ′ may be welded (W) and bonded. It is preferable to weld (W) all sides so that the mask cell sheet portion 220 ′ can be firmly adhered to the edge frame portion 220. Welding (W) should be performed as close as possible to the edge of the edge frame portion 210 as much as possible to reduce the excited space between the edge frame portion 210 and the mask cell sheet portion 220 'as much as possible to increase the adhesion.
  • the weld (W) portion may be generated in a line or spot shape, and may have the same material as the mask cell sheet portion 220 ′ and have an edge frame portion 210 and a mask cell sheet portion 220 ′. It can be a medium to connect the integrally.
  • a mask cell region CR is formed in a planar sheet (planar mask cell sheet portion 220 ′).
  • the mask cell region CR may be formed by removing the sheet of the mask cell region CR through laser scribing or etching.
  • a description will be given of an example in which a mask cell region CR: CR11 to CR56 of 6 ⁇ 5 is formed.
  • the portion welded to the edge frame portion 210 becomes the edge sheet portion 221, and five first grid sheet portions 223 and four second grids are formed.
  • the mask cell sheet part 220 having the sheet part 225 may be configured.
  • Adhesion may be performed by a method using a tick adhesive part EM, an electroplating part 150, and other organic / inorganic adhesives.
  • FIG. 8 illustrates a state in which the mask 100 is tensioned (FIG. 8A) and the mask 100 corresponds to the cell region CR of the frame 200 according to an embodiment of the present invention (FIG. 8).
  • (b)] is a schematic diagram.
  • a mask 100 having a plurality of mask patterns P may be provided. As described above, it is possible to manufacture a mask 100 made of Invar and Super Invar using a pre-plating method, and one cell C may be formed in the mask 100.
  • the mother plate used as a cathode in electroplating is made of a conductive material.
  • a conductive material in the case of metal, metal oxides may be formed on the surface, impurities may be introduced during the metal manufacturing process, and in the case of the polycrystalline silicon substrate, inclusions or grain boundaries may exist, and the conductive polymer may be present.
  • a base material it is highly likely to contain an impurity, and strength. Acid resistance may be weak.
  • defects Elements that interfere with the uniform formation of an electric field on the surface of the substrate (or negative electrode body), such as metal oxides, impurities, inclusions, grain boundaries, etc., are referred to as "defects.” Due to the defect, a uniform electric field may not be applied to the cathode body of the above-described material, so that a part of the plating film (mask 100) may be unevenly formed.
  • Non-uniformity of the plating film and the plating film pattern may adversely affect the formation of the pixel in implementing a UHD-class or higher definition pixel. Since the pattern width of the FMM and the shadow mask can be formed in the size of several to several tens of micrometers, preferably smaller than 30 micrometers, even a defect of several micrometers is large enough to occupy a large proportion in the pattern size of the mask.
  • an additional process for removing metal oxides, impurities, and the like may be performed to remove the defects in the cathode material of the material described above, and another defect such as etching of the anode material may be caused in this process. have.
  • the present invention can use a mother plate (or a negative electrode body) made of a single crystal silicon material.
  • a high concentration doping of 10 19 / cm 3 or more may be performed on the single crystal silicon base plate. Doping may be performed on the entirety of the mother plate, or only on the surface portion of the mother plate.
  • the doped single crystal silicon is free from defects, there is an advantage in that a uniform plating film (mask 100) can be generated due to the formation of a uniform electric field on the entire surface during electroplating.
  • the frame-integrated masks 100 and 200 manufactured through the uniform plating layer may further improve the image quality level of the OLED pixel.
  • process costs are reduced and productivity is improved.
  • the insulating portion can be formed only by a process of oxidizing and nitriding the surface of the mother substrate as needed.
  • the insulating portion may be formed using a photoresist. Electrodeposition of the plating film (mask 100) is prevented in the part in which the insulation part was formed, and a pattern (mask pattern P) is formed in a plating film.
  • the width of the mask pattern P may be smaller than 40 ⁇ m, and the thickness of the mask 100 may be about 2 to 50 ⁇ m. Since the frame 200 includes a plurality of mask cell regions CR: CR11 to CR56, the mask 100 having mask cells C11 to C56 corresponding to the mask cell regions CR11 to CR56, respectively. ) Can also be provided in plurality.
  • the mask 100 may correspond to one mask cell region CR of the frame 200. As shown in FIG. 8A, in the corresponding process, both sides of the mask 100 are stretched along the uniaxial direction of the mask 100 to form the mask cell C in a flat state. ) May correspond to the mask cell region CR. On one side, the mask 100 may be grasped and tensioned by several points (eg, 1 to 3 points in FIG. 8). In addition, not only one axis but also all sides of the mask 100 can be stretched F1 to F4 along all the axial directions.
  • the tensile force applied on each side of the mask 100 may not exceed 4N.
  • the tensile force applied according to the size of the mask 100 may be the same or different.
  • the tensile force required is the same as that of the conventional stick mask 10 including the plurality of cells C1 to C6. At least, it is likely to shrink.
  • 9.8 N means a gravity force of 1 kg
  • 1 N is a force less than 400 g of gravity force
  • the tension applied to the mask or, conversely, the tension applied by the frame 200 to the mask 100 is very small.
  • deformation of the mask 100 and / or the frame 200 due to tension may be minimized to minimize alignment errors of the mask 100 (or mask pattern P).
  • the mask 10 of FIG. 1 since the mask 10 of FIG. 1 includes six cells C1 to C6, the mask 10 of FIG. 1 has a long length, whereas the mask 100 of the present invention includes one cell C to have a short length. As a result, the degree of distortion of the pixel position accuracy (PPA) can be reduced.
  • the length of the mask 10 including the plurality of cells C1 to C6, ... is 1 m, and a PPA error of 10 ⁇ m occurs in the entire 1 m
  • the mask 100 of the present invention According to the reduction of the relative length (corresponding to the reduction of the number of cells (C)) may be 1 / n of the above error range.
  • the length of the mask 100 of the present invention is 100mm, it has a length reduced by 1/10 at 1m of the conventional mask 10, the PPA error of 1 ⁇ m occurs in the entire 100mm length As a result, the alignment error is significantly reduced.
  • each cell (C) corresponding to each cell region (CR) of the frame 200 is within a range that the alignment error is minimized
  • the mask 100 may correspond to the plurality of mask cell regions CR of the frame 200.
  • the mask 100 having the plurality of cells C may correspond to one mask cell region CR.
  • the mask 100 has as few cells as possible.
  • the alignment force F1 to F4 may be adjusted to correspond to the mask cell region CR, and the alignment state may be confirmed in real time through a microscope.
  • the plurality of cells C: C1 to C6 must be simultaneously associated and the alignment state must be confirmed. Compared with the conventional method (see FIG. 2), the manufacturing time can be significantly reduced.
  • each cell C11 to C16 included in the six masks 100 corresponds to one cell region CR11 to CR16, respectively, and checks the alignment state.
  • the time can be much shorter than the conventional method of simultaneously matching six cells C1 to C6 and simultaneously confirming the alignment of the six cells C1 to C6.
  • the product yield in 30 steps of matching and aligning 30 masks 100 with 30 cell areas CR: CR11 to CR56, respectively results in six cells (C1).
  • 5 masks 10 (see FIG. 2 (a)) each comprising ⁇ C6) may appear much higher than the conventional product yield in five steps of matching and aligning the frame 20. Since the conventional method of aligning six cells C1 to C6 in a region corresponding to six cells C at a time is much more cumbersome and difficult, the product yield is low.
  • the mask 100 may be temporarily fixed to the frame 200 through a predetermined adhesive. Thereafter, the bonding step of the mask 100 may be performed.
  • FIG. 9 is a schematic diagram illustrating a process of bonding the mask 100 according to an embodiment of the present invention corresponding to the cell region CR of the frame 200.
  • FIG. 10 is a cross-sectional view taken along line B-B 'of FIG. 9, and is a partially enlarged cross-sectional view illustrating a form in which a mask 100 is adhered to a frame 200 (first grid sheet portion 223).
  • some or all of the edges of the mask 100 may be adhered to the frame 200.
  • the adhesion can be carried out by welding W, preferably by laser welding W.
  • the welded portion W may have the same material as the mask 100 / frame 200 and be integrally connected.
  • welding (W) should be performed as close as possible to the edge of the frame 200 as possible to reduce the excited space between the mask 100 and the frame 200 as much as possible to increase the adhesion.
  • the welding (W) part may be generated in the form of a line or a spot, and may be a medium having the same material as the mask 100 and integrally connecting the mask 100 and the frame 200. .
  • One edges of two neighboring masks 100 are bonded to the upper surface of the first grid sheet unit 223 (or the second grid sheet unit 225).
  • the width and thickness of the first grid sheet portion 223 (or the second grid sheet portion 225) may be formed to about 1 to 5 mm, and to improve product productivity, the first grid sheet portion 223 [ Alternatively, it is necessary to reduce the width where the edges of the second grid sheet part 225 and the mask 100 overlap with each other as much as about 0.1 to 2.5 mm.
  • the shape of the cross section perpendicular to the length direction of the first and second grid sheet parts 223 and 225 may be a rectangle having a low height, a parallelogram, or the like.
  • the welding (W) method is only one method of adhering the mask 100 to the frame 200, but is not limited to this embodiment.
  • the mask 100 may be adhered to the frame 200 by using an adhesive part EM of a utero material.
  • the adhesive part EM of the utero material is an adhesive including at least two metals, and may have various shapes such as a film, a line, and a bundle, and may have a thin thickness of about 10 to 30 ⁇ m.
  • the bonding portion EM of the eutectic material may include at least one metal from a group of In, Sn, Bi, Au, and the like, and a group of Sn, Bi, Ag, Zn, Cu, Sb, and Ge. .
  • the eutectic adhesive EM comprises at least two metal solid phases, and at the eutectic point of a certain temperature / pressure both metal solid phases can be in liquid phase. . And beyond the eutectic point, it can again become two metallic solids. Accordingly, through the phase change of the solid phase-> liquid-> solid phase it can serve as an adhesive.
  • the eutectic adhesive (EM) does not contain any volatile organic materials unlike the general organic adhesive. Therefore, the volatile organic material of the adhesive reacts with the process gas to adversely affect the pixels of the OLED, or to prevent the adverse effects of outgassing of organic materials, such as organic materials included in the adhesive itself, contaminating the pixel processing chamber or deposited on the OLED pixels as impurities. You can do it.
  • the eutectic adhesive part EM is a solid, it is possible to have corrosion resistance without being cleaned by the OLED organic cleaning liquid.
  • it since it includes two or more metals, it can be connected to the mask 100, the frame 200, which is the same metal material as compared to the organic adhesive with high adhesiveness, and has a low possibility of deformation since it is a metal material.
  • the adhesive plating part 150 of the same material as the mask 100 may be further formed to adhere the mask 100 to the frame 200.
  • an insulating part such as PR may be formed in the lower surface direction of the mask 100.
  • the adhesive plating part 150 may be electrodeposited on the rear surface of the mask 100 and the frame 200 which are not covered by the insulating part.
  • the adhesive plating unit 150 While the adhesive plating unit 150 is electrodeposited on the exposed surface of the mask 100 and the frame 200, the adhesive plating unit 150 may be a medium for integrally connecting the mask 100 and the frame 200. At this time, since the adhesive plating unit 150 is integrally connected to the edge of the mask 100 and electrodeposited, the adhesive plating unit 150 may support the mask 100 in a state of applying a tensile force in an inner direction or an outer direction of the frame 200. Thus, the mask 100, which is pulled toward the frame 200, may be integrally formed with the frame 200 without the need of separately tensioning and aligning the mask.
  • the thickness and width of the welded portion and the adhesive portion EM portion of the eutectic material are shown to be exaggerated. It may be a part connecting the frame 200 in the included state.
  • the remaining masks 100 are sequentially corresponded to the remaining mask cells C, and the process of adhering to the frame 200 is repeated.
  • the mask 100 already adhered to the frame 200 may present a reference position, the time required to sequentially correspond the remaining masks 100 to the cell region CR and check the alignment state is significantly reduced.
  • the pixel position accuracy (PPA) between the mask 100 adhered to one mask cell region and the mask 100 adhered to the mask cell region adjacent thereto does not exceed 3 ⁇ m, so that the alignment is very high.
  • a mask for forming an OLED pixel can be provided.
  • FIG. 11 is a schematic diagram illustrating an OLED pixel deposition apparatus 1000 using frame-integrated masks 100 and 200 according to an embodiment of the present invention.
  • the OLED pixel deposition apparatus 1000 includes a magnet plate 300 in which a magnet 310 is accommodated and a coolant line 350 is disposed, and an organic material source 600 from a lower portion of the magnet plate 300. And a deposition source supply unit (500) for supplying ().
  • a target substrate 900 such as glass on which the organic source 600 is deposited may be interposed between the magnet plate 300 and the source deposition unit 500.
  • the frame-integrated masks 100 and 200 (or FMMs) for allowing the organic material 600 to be deposited pixel by pixel may be closely attached or very close to each other.
  • the magnet 310 may generate a magnetic field and may be in close contact with the target substrate 900 by the magnetic field.
  • the deposition source supply unit 500 may supply the organic source 600 while reciprocating the left and right paths, and the organic source 600 supplied from the deposition source supply unit 500 may have patterns P formed in the frame integrated masks 100 and 200. ) May be deposited on one side of the target substrate 900. The deposited organic source 600 passing through the pattern P of the frame-integrated masks 100 and 200 can act as the pixel 700 of the OLED.
  • the pattern of the frame-integrated masks 100 and 200 may be formed to be inclined S (or formed into a tapered shape S). . Since the organic sources 600 passing through the pattern in a diagonal direction along the inclined surface may also contribute to the formation of the pixel 700, the pixel 700 may be uniformly deposited as a whole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 프레임 일체형 마스크와 프레임 일체형 마스크의 제조 방법에 관한 것이다. 본 발명에 따른 프레임 일체형 마스크는, 복수의 마스크(100)와 마스크(100)를 지지하는 프레임(200)이 일체로 형성된 프레임 일체형 마스크로서, 프레임(200)은, 중공 영역(R)을 포함하는 테두리 프레임부(210), 복수의 마스크 셀 영역(CR)을 구비하며, 테두리 프레임부(210)에 연결되는 마스크 셀 시트부(220)를 포함하고, 각각의 마스크(100)는 마스크 셀 시트부(200)의 상부에 연결된 것을 특징으로 한다.

Description

프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법
본 발명은 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법에 관한 것이다. 보다 상세하게는, 마스크를 프레임과 일체를 이루도록 할 수 있고, 각 마스크 간의 얼라인(align)을 명확하게 할 수 있는 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법에 관한 것이다.
최근에 박판 제조에 있어서 전주 도금(Electroforming) 방법에 대한 연구가 진행되고 있다. 전주 도금 방법은 전해액에 양극체, 음극체를 침지하고, 전원을 인가하여 음극체의 표면상에 금속박판을 전착시키므로, 극박판을 제조할 수 있으며, 대량 생산을 기대할 수 있는 방법이다.
한편, OLED 제조 공정에서 화소를 형성하는 기술로, 박막의 금속 마스크(Shadow Mask)를 기판에 밀착시켜서 원하는 위치에 유기물을 증착하는 FMM(Fine Metal Mask) 법이 주로 사용된다.
기존의 OLED 제조 공정에서는 마스크를 스틱 형태, 플레이트 형태 등으로 제조한 후, 마스크를 OLED 화소 증착 프레임에 용접 고정시켜 사용한다. 마스크 하나에는 디스플레이 하나에 대응하는 셀이 여러개 구비될 수 있다. 또한, 대면적 OLED 제조를 위해서 여러 개의 마스크를 OLED 화소 증착 프레임에 고정시킬 수 있는데, 프레임에 고정하는 과정에서 각 마스크가 평평하게 되도록 인장을 하게 된다. 마스크의 전체 부분이 평평하게 되도록 인장력을 조절하는 것은 매우 어려운 작업이다. 특히, 각 셀들을 모두 평평하게 하면서, 크기가 수 내지 수십 ㎛에 불과한 마스크 패턴을 정렬하기 위해서는, 마스크의 각 측에 가하는 인장력을 미세하게 조절하면서, 정렬 상태를 실시간으로 확인하는 고도의 작업이 요구된다.
그럼에도 불구하고, 여러 개의 마스크를 하나의 프레임에 고정시키는 과정에서 마스크 상호간에, 그리고 마스크 셀들의 상호간에 정렬이 잘 되지 않는 문제점이 있었다. 또한, 마스크를 프레임에 용접 고정하는 과정에서 마스크 막의 두께가 너무 얇고 대면적이기 때문에 하중에 의해 마스크가 쳐지거나 뒤틀어지는 문제점이 있었다.
초고화질의 OLED의 경우, 현재 QHD 화질은 500~600 PPI(pixel per inch)로 화소의 크기가 약 30~50㎛에 이르며, 4K UHD, 8K UHD 고화질은 이보다 높은 ~860 PPI, ~1600 PPI 등의 해상도를 가지게 된다. 이렇듯 초고화질의 OLED의 화소 크기를 고려하여 각 셀들간의 정렬 오차를 수 ㎛ 정도로 감축시켜야 하며, 이를 벗어나는 오차는 제품의 실패로 이어지게 되므로 수율이 매우 낮아지게 될 수 있다. 그러므로, 마스크가 쳐지거나 뒤틀리는 등의 변형을 방지하고, 정렬을 명확하게 할 수 있는 기술, 마스크를 프레임에 고정하는 기술 등의 개발이 필요한 실정이다.
따라서, 본 발명은 상기와 같은 종래 기술의 제반 문제점을 해결하기 위하여 안출된 것으로서, 마스크와 프레임이 일체형 구조를 이룰 수 있는 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 마스크가 쳐지거나 뒤틀리는 등의 변형을 방지하고 정렬을 명확하게 할 수 있는 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 제조시간을 현저하게 감축시키고, 수율을 현저하게 상승시킨 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.
본 발명의 상기의 목적은, 복수의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크로서, 프레임은, 중공 영역을 포함하는 테두리 프레임부; 복수의 마스크 셀 영역을 구비하며, 테두리 프레임부에 연결되는 마스크 셀 시트부를 포함하고, 각각의 마스크는 마스크 셀 시트부의 상부에 연결된, 프레임 일체형 마스크에 의해 달성된다.
마스크 셀 시트부는, 제1 방향, 제1 방향에 수직인 제2 방향 중 적어도 하나의 방향을 따라 복수의 마스크 셀 영역을 구비할 수 있다.
마스크 셀 시트부는, 테두리 시트부; 및 제1 방향으로 연장 형성되고, 양단이 테두리 시트부에 연결되는 적어도 하나의 제1 그리드 시트부를 포함할 수 있다.
마스크 셀 시트부는, 제1 방향에 수직인 제2 방향으로 연장 형성되어 제1 그리드 시트부와 교차되고, 양단이 테두리 시트부에 연결되는 적어도 하나의 제2 그리드 시트부를 더 포함할 수 있다.
각각의 마스크 셀 영역에 각각의 마스크가 대응될 수 있다.
마스크는, 복수의 마스크 패턴이 형성된 마스크 셀, 및 마스크 셀 주변의 더미를 포함하고, 더미의 적어도 일부가 마스크 셀 시트부에 접착될 수 있다.
마스크는 하나의 마스크 셀을 포함하고, 마스크 셀 시트부의 각각의 마스크 셀 영역 상에 각각의 마스크가 대응될 수 있다.
각각의 마스크는 복수의 마스크 셀을 포함하고, 마스크 셀 시트부의 각각의 마스크 셀 영역 상에 각각의 마스크가 대응될 수 있다.
테두리 프레임부는 사각 형상일 수 있다.
테두리 프레임부의 두께는 마스크 셀 시트부의 두께보다 두껍고, 마스크 셀 시트부의 두께는 마스크보다 두꺼울 수 있다.
마스크 셀 시트부의 두께는 0.1mm 내지 1mm이고, 마스크의 두께는 2㎛ 내지 50㎛일 수 있다.
마스크 및 프레임은 인바(invar), 슈퍼 인바(super invar), 니켈, 니켈-코발트 중 어느 하나의 재질일 수 있다.
하나의 마스크 셀 영역에 접착된 마스크와 이에 이웃하는 마스크 셀 영역에 접착된 마스크 사이의 PPA(pixel position accuracy)는 3㎛를 초과하지 않을 수 있다.
그리고, 본 발명의 상기의 목적은, 복수의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크의 제조 방법으로서, (a) 중공 영역을 포함하는 테두리 프레임부를 제공하는 단계; (b) 복수의 마스크 셀 영역을 구비하는 마스크 셀 시트부를 테두리 프레임부에 연결하는 단계; (c) 마스크를 마스크 셀 시트부의 하나의 마스크 셀 영역에 대응하는 단계; 및 (d) 마스크의 테두리의 적어도 일부를 마스크 셀 시트부에 접착하는 단계를 포함하는, 프레임 일체형 마스크의 제조 방법에 의해 달성된다.
그리고, 본 발명의 상기의 목적은, 복수의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크의 제조 방법으로서, (a) 중공 영역을 포함하는 테두리 프레임부를 제공하는 단계; (b) 평면의 마스크 셀 시트부를 테두리 프레임부에 연결하는 단계; (c) 마스크 셀 시트부에 복수의 마스크 셀 영역을 형성하는 단계; (d) 마스크를 마스크 셀 시트부의 하나의 마스크 셀 영역에 대응하는 단계; 및 (e) 마스크의 테두리의 적어도 일부를 마스크 셀 시트부에 접착하는 단계를 포함하는, 프레임 일체형 마스크의 제조 방법에 의해 달성된다.
마스크 셀 시트부는, 제1 방향, 제1 방향에 수직인 제2 방향 중 적어도 하나의 방향을 따라 복수의 마스크 셀 영역을 구비할 수 있다.
마스크 셀 시트부는, 테두리 시트부; 및 제1 방향으로 연장 형성되고, 양단이 테두리 시트부에 연결되는 적어도 하나의 제1 그리드 시트부를 포함할 수 있다.
마스크 셀 시트부는, 제1 방향에 수직인 제2 방향으로 연장 형성되어 제1 그리드 시트부와 교차되고, 양단이 테두리 시트부에 연결되는 적어도 하나의 제2 그리드 시트부를 더 포함할 수 있다.
각각의 마스크 셀 영역에 각각의 마스크가 대응될 수 있다.
(b) 단계에서, 테두리 프레임부에 마스크 셀 시트부의 모서리를 용접하여 연결할 수 있다.
마스크는 하나의 마스크 셀을 포함하고, 하나의 마스크 셀이 하나의 마스크 셀 영역 내에 위치할 수 있다.
마스크는 복수의 마스크 셀을 포함하고, 복수의 마스크 셀이 하나의 마스크 셀 영역 내에 위치할 수 있다.
상기와 같이 구성된 본 발명에 따르면, 마스크와 프레임이 일체형 구조를 이룰 수 있는 효과가 있다.
또한, 본 발명에 따르면, 마스크가 쳐지거나 뒤틀리는 등의 변형을 방지하고 정렬을 명확하게 할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 제조시간을 현저하게 감축시키고, 수율을 현저하게 상승시킬 수 있는 효과가 있다.
도 1은 종래의 OLED 화소 증착용 마스크를 나타내는 개략도이다.
도 2는 종래의 마스크를 프레임에 접착하는 과정을 나타내는 개략도이다.
도 3은 종래의 마스크를 인장하는 과정에서 셀들간의 정렬 오차가 발생하는 것을 나타내는 개략도이다.
도 4는 본 발명의 일 실시예에 따른 프레임 일체형 마스크를 나타내는 정면도 및 측단면도이다.
도 5는 본 발명의 일 실시예에 따른 프레임을 나타내는 정면도 및 측단면도이다.
도 6은 본 발명의 일 실시예에 따른 프레임의 제조 과정을 나타내는 개략도이다.
도 7은 본 발명의 다른 실시예에 따른 프레임의 제조 과정을 나타내는 개략도이다.
도 8은 본 발명의 일 실시예에 따른 마스크의 인장 형태 및 마스크를 프레임의 셀 영역에 대응시키는 상태를 나타내는 개략도이다.
도 9는 본 발명의 일 실시예에 따른 마스크를 프레임의 셀 영역에 대응하여 접착하는 과정을 나타내는 개략도이다.
도 10은 본 발명의 여러 실시예에 따른 마스크가 프레임에 접착된 형태를 나타내는 부분 확대 단면도이다.
도 11은 본 발명의 일 실시예에 따른 프레임 일체형 마스크를 이용한 OLED 화소 증착 장치를 나타내는 개략도이다.
<부호의 설명>
100: 마스크
110: 마스크 막
150: 접착 도금부
200: 프레임
210: 테두리 프레임부
220: 마스크 셀 시트부
221: 테두리 시트부
223: 제1 그리드 시트부
225: 제2 그리드 시트부
1000: OLED 화소 증착 장치
C: 셀, 마스크 셀
CR: 마스크 셀 영역
EM: 유테틱 재질의 접착부
F1~F4: 인장력
R: 테두리 프레임부의 중공 영역
P: 마스크 패턴
W: 용접
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭하며, 길이 및 면적, 두께 등과 그 형태는 편의를 위하여 과장되어 표현될 수도 있다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
도 1은 종래의 OLED 화소 증착용 마스크(10)를 나타내는 개략도이다.
도 1을 참조하면, 종래의 마스크(10)는 스틱형(Stick-Type) 또는 판형(Plate-Type)으로 제조될 수 있다. 도 1의 (a)에 도시된 마스크(10)는 스틱형 마스크로서, 스틱의 양측을 OLED 화소 증착 프레임에 용접 고정시켜 사용할 수 있다. 도 1의 (b)에 도시된 마스크(100)는 판형(Plate-Type) 마스크로서, 넓은 면적의 화소 형성 공정에서 사용될 수 있다.
마스크(10)의 바디(Body)[또는, 마스크 막(11)]에는 복수의 디스플레이 셀(C)이 구비된다. 하나의 셀(C)은 스마트폰 등의 디스플레이 하나에 대응한다. 셀(C)에는 디스플레이의 각 화소에 대응하도록 화소 패턴(P)이 형성된다. 셀(C)을 확대하면 R, G, B에 대응하는 복수의 화소 패턴(P)이 나타난다. 일 예로, 셀(C)에는 70 X 140의 해상도를 가지도록 화소 패턴(P)이 형성된다. 즉, 수많은 화소 패턴(P)들은 군집을 이루어 셀(C) 하나를 구성하며, 복수의 셀(C)들이 마스크(10)에 형성될 수 있다.
도 2는 종래의 마스크(10)를 프레임(20)에 접착하는 과정을 나타내는 개략도이다. 도 3은 종래의 마스크(10)를 인장(F1~F2)하는 과정에서 셀들간의 정렬 오차가 발생하는 것을 나타내는 개략도이다. 도 1의 (a)에 도시된 6개의 셀(C: C1~C6)을 구비하는 스틱 마스크(10)를 예로 들어 설명한다.
도 2의 (a)를 참조하면, 먼저, 스틱 마스크(10)를 평평하게 펴야한다. 스틱 마스크(10)의 장축 방향으로 인장력(F1~F2)을 가하여 당김에 따라 스틱 마스크(10)가 펴지게 된다. 그 상태로 사각틀 형태의 프레임(20) 상에 스틱 마스크(10)를 로딩한다. 스틱 마스크(10)의 셀(C1~C6)들은 프레임(20)의 틀 내부 빈 영역 부분에 위치하게 된다. 프레임(20)은 하나의 스틱 마스크(10)의 셀(C1~C6)들이 틀 내부 빈 영역에 위치할 정도의 크기일 수 있고, 복수의 스틱 마스크(10)의 셀(C1~C6)들이 틀 내부 빈 영역에 위치할 정도의 크기일 수도 있다.
도 2의 (b)를 참조하면, 스틱 마스크(10)의 각 측에 가하는 인장력(F1~F2)을 미세하게 조절하면서 정렬을 시킨 후, 스틱 마스크(10) 측면의 일부를 용접(W)함에 따라 스틱 마스크(10)와 프레임(20)을 상호 연결한다. 도 2의 (c)는 상호 연결된 스틱 마스크(10)와 프레임의 측단면을 나타낸다.
도 3을 참조하면, 스틱 마스크(10)의 각 측에 가하는 인장력(F1~F2)을 미세하게 조절함에도 불구하고, 마스크 셀(C1~C3)들의 상호간에 정렬이 잘 되지 않는 문제점이 나타난다. 가령, 셀(C1~C3)들의 패턴(P)간에 거리(D1~D1", D2~D2")가 상호 다르게 되거나, 패턴(P)들이 비뚤어지는 것이 그 예이다. 스틱 마스크(10)는 복수(일 예로, 6개)의 셀(C1~C6)을 포함하는 대면적이고, 수십 ㎛ 수준의 매우 얇은 두께를 가지기 때문에, 하중에 의해 쉽게 쳐지거나 뒤틀어지게 된다. 또한, 각 셀(C1~C6)들을 모두 평평하게 하도록 인장력(F1~F2)을 조절하면서, 각 셀(C1~C6)들간의 정렬 상태를 현미경을 통해 실시간으로 확인하는 것은 매우 어려운 작업이다.
따라서, 인장력(F1~F2)의 미세한 오차는 스틱 마스크(10) 각 셀(C1~C3)들이 늘어나거나, 펴지는 정도에 오차를 발생시킬 수 있고, 그에 따라 마스크 패턴(P)간에 거리(D1~D1", D2~D2")가 상이해지게 되는 문제점을 발생시킨다. 물론, 완벽하게 오차가 0이 되도록 정렬하는 것은 어려운 것이지만, 크기가 수 내지 수십 ㎛인 마스크 패턴(P)이 초고화질 OLED의 화소 공정에 악영향을 미치지 않도록 하기 위해서는, 정렬 오차가 3㎛를 초과하지 않는 것이 바람직하다. 이렇게 인접하는 셀 사이의 정렬 오차를 PPA(pixel position accuracy)라 지칭한다.
이에 더하여, 대략 6~20개 정도의 복수의 스틱 마스크(10)들을 프레임(20) 하나에 각각 연결하면서, 복수의 스틱 마스크(10)들간에, 그리고 스틱 마스크(10)의 복수의 셀(C~C6)들간에 정렬 상태를 명확히 하는 것도 매우 어려운 작업이고, 정렬에 따른 공정 시간이 증가할 수밖에 없게 되어 생산성을 감축시키는 중대한 이유가 된다.
이에, 본 발명은 마스크(100)가 프레임(200)과 일체형 구조를 이룰 수 있게 하는 프레임(200) 및 프레임 일체형 마스크를 제안한다. 프레임(200)에 일체로 형성되는 마스크(100)는 쳐지거나 뒤틀리는 등의 변형이 방지되고, 프레임(200)에 명확히 정렬될 수 있다. 그리고, 마스크(100)를 프레임(200)에 일체로 연결하는 제조시간을 현저하게 감축시키고, 수율을 현저하게 상승시킬 수 있는 이점을 가진다.
도 4는 본 발명의 일 실시예에 따른 프레임 일체형 마스크를 나타내는 정면도[도 4의 (a)] 및 측단면도[도 4의 (b)]이고, 도 5는 본 발명의 일 실시예에 따른 프레임을 나타내는 정면도[도 5의 (a)] 및 측단면도[도 5의 (b)]이다.
도 4 및 도 5를 참조하면, 프레임 일체형 마스크는, 복수의 마스크(100) 및 하나의 프레임(200)을 포함할 수 있다. 다시 말해, 복수의 마스크(100)들을 각각 하나씩 프레임(200)에 접착한 형태이다. 이하에서는, 설명의 편의상 사각 형태의 마스크(100)를 예로 들어 설명하나, 마스크(100)들은 프레임(200)에 접착되기 전에는 양측에 클램핑되는 돌출부를 구비한 스틱 마스크 형태일 수 있고, 프레임(200)에 접착된 후에 돌출부가 제거될 수 있다.
각각의 마스크(100)에는 복수의 마스크 패턴(P)이 형성되며, 하나의 마스크(100)에는 하나의 셀(C)이 형성될 수 있다. 하나의 마스크 셀(C)은 스마트폰 등의 디스플레이 하나에 대응할 수 있다. 얇은 두께로 형성할 수 있도록, 마스크(100)는 전주도금(electroforming)으로 형성될 수 있다. 마스크(100)는 열팽창계수가 약 1.0 X 10-6/℃인 인바(invar), 약 1.0 X 10-7/℃ 인 슈퍼 인바(super invar) 재질일 수 있다. 이 재질의 마스크(100)는 열팽창계수가 매우 낮기 때문에 열에너지에 의해 마스크의 패턴 형상이 변형될 우려가 적어 고해상도 OLED 제조에서 있어서 FMM(Fine Metal Mask), 새도우 마스크(Shadow Mask)로 사용될 수 있다. 이 외에, 최근에 온도 변화값이 크지 않은 범위에서 화소 증착 공정을 수행하는 기술들이 개발되는 것을 고려하면, 마스크(100)는 이보다 열팽창계수가 약간 큰 니켈(Ni), 니켈-코발트(Ni-Co) 등의 재질일 수도 있다. 마스크의 두께는 약 2㎛ 내지 50㎛ 정도로 형성될 수 있다.
프레임(200)은 복수의 마스크(100)를 접착시킬 수 있도록 형성된다. 프레임(200)은 최외곽 테두리를 포함해 제1 방향(예를 들어, 가로 방향), 제2 방향(예를 들어, 세로 방향)으로 형성되는 여러 모서리를 포함할 수 있다. 이러한 여러 모서리들은 프레임(200) 상에 마스크(100)가 접착될 구역을 구획할 수 있다.
프레임(200)은 대략 사각 형상, 사각틀 형상의 테두리 프레임부(210)를 포함할 수 있다. 테두리 프레임부(210)의 내부는 중공 형태일 수 있다. 즉, 테두리 프레임부(210)는 중공 영역(R)을 포함할 수 있다. 프레임(200)은 인바, 슈퍼인바, 알루미늄, 티타늄 등의 금속 재질로 구성될 수 있으며, 열변형을 고려하여 마스크와 동일한 열팽창계수를 가지는 인바, 슈퍼 인바, 니켈, 니켈-코발트 등의 재질로 구성되는 것이 바람직하고, 이 재질들은 프레임(200)의 구성요소인 테두리 프레임부(210), 마스크 셀 시트부(220)에 모두 적용될 수 있다.
이에 더하여, 프레임(200)은 복수의 마스크 셀 영역(CR)을 구비하며, 테두리 프레임부(210)에 연결되는 마스크 셀 시트부(220)를 포함할 수 있다. 마스크 셀 시트부(220)는 마스크(100)와 마찬가지로 전주도금으로 형성되거나, 그 외의 막 형성 공정을 사용하여 형성될 수 있다. 또한, 마스크 셀 시트부(220)는 평면의 시트(sheet)에 레이저 스크라이빙, 에칭 등을 통해 복수의 마스크 셀 영역(CR)을 형성한 후, 테두리 프레임부(210)에 연결할 수 있다. 또는, 마스크 셀 시트부(220)는 평면의 시트를 테두리 프레임부(210)에 연결한 후, 레이저 스크라이빙, 에칭 등을 통해 복수의 마스크 셀 영역(CR)을 형성할 수 있다. 본 명세서에서는 마스크 셀 시트부(220)에 먼저 복수의 마스크 셀 영역(CR)을 형성한 후, 테두리 프레임부(210)에 연결한 것을 상정하여 설명한다.
마스크 셀 시트부(220)는 테두리 시트부(221) 및 제1, 2 그리드 시트부(223, 225) 중 적어도 하나를 포함하여 구성될 수 있다. 테두리 시트부(221) 및 제1, 2 그리드 시트부(223, 225)는 동일한 시트에서 구획된 각 부분을 지칭하며, 이들은 상호간에 일체로 형성된다.
테두리 시트부(221)가 실질적으로 테두리 프레임부(210)에 연결될 수 있다. 따라서, 테두리 시트부(221)는 테두리 프레임부(210)와 대응하는 대략 사각 형상, 사각틀 형상을 가질 수 있다.
또한, 제1 그리드 시트부(223)는 제1 방향(가로 방향)으로 연장 형성될 수 있다. 제1 그리드 시트부(223)는 직선 형태로 형성되어 양단이 테두리 시트부(221)에 연결될 수 있다. 마스크 셀 시트부(220)가 복수의 제1 그리드 시트부(223)를 포함하는 경우, 각각의 제1 그리드 시트부(223)는 동등한 간격을 이루는 것이 바람직하다.
또한, 이에 더하여, 제2 그리드 시트부(225)가 제2 방향(세로 방향)으로 연장 형성될 수 있다. 제2 그리드 시트부(225)는 직선 형태로 형성되어 양단이 테두리 시트부(221)에 연결될 수 있다. 제1 그리드 시트부(223)와 제2 그리드 시트부(225)는 서로 수직 교차될 수 있다. 마스크 셀 시트부(220)가 복수의 제2 그리드 시트부(225)를 포함하는 경우, 각각의 제2 그리드 시트부(225)는 동등한 간격을 이루는 것이 바람직하다.
한편, 제1 그리드 시트부(223)들 간의 간격과, 제2 그리드 시트부(225)들 간의 간격은 마스크 셀(C)의 크기에 따라서 동일하거나 상이할 수 있다.
제1 그리드 시트부(223) 및 제2 그리드 시트부(225)는 박막 형태의 얇은 두께를 가지지만, 길이 방향에 수직하는 단면의 형상은 직사각형, 평행사변형과 같은 사각형 형상[도 5의 (b) 및 도 10 참조], 삼각형 형상 등일 수 있고, 변, 모서리 부분이 일부 라운딩 될 수도 있다. 단면 형상은 레이저 스크라이빙, 에칭 등의 과정에서 조절 가능하다.
테두리 프레임부(210)의 두께는 마스크 셀 시트부(220)의 두께보다 두꺼울 수 있다. 테두리 프레임부(210)는 프레임(200)의 전체 강성을 담당하기 때문에 수mm 내지 수cm의 두께로 형성될 수 있다.
마스크 셀 시트부(220)의 경우는, 실질적으로 두꺼운 시트를 제조하는 공정이 어렵고, 너무 두꺼우면 OLED 화소 증착 공정에서 유기물 소스(600)[도 10 참조]가 마스크(100)를 통과하는 경로를 막는 문제를 발생시킬 수 있다. 반대로, 두께가 너무 얇아지면 마스크(100)를 지지할 정도의 강성 확보가 어려울 수 있다. 이에 따라, 마스크 셀 시트부(220)는 테두리 프레임부(210)의 두께보다는 얇지만, 마스크(100)보다는 두꺼운 것이 바람직하다. 마스크 셀 시트부(220)의 두께는, 약 0.1mm 내지 1mm 정도로 형성될 수 있다. 그리고, 제1, 2 그리드 시트부(223, 225)의 폭은 약 1~5mm 정도로 형성될 수 있다.
평면의 시트에서 테두리 시트부(221), 제1, 2 그리드 시트부(223, 225)가 점유하는 영역을 제외하여, 복수의 마스크 셀 영역(CR: CR11~CR56)이 제공될 수 있다. 다른 관점에서, 마스크 셀 영역(CR)이라 함은, 테두리 프레임부(210)의 중공 영역(R)에서 테두리 시트부(221), 제1, 2 그리드 시트부(223, 225)가 점유하는 영역을 제외한, 빈 영역을 의미할 수 있다.
이 마스크 셀 영역(CR)에 마스크(100)의 셀(C)이 대응됨에 따라, 실질적으로 마스크 패턴(P)을 통해 OLED의 화소가 증착되는 통로로 이용될 수 있게 된다. 전술하였듯이 하나의 마스크 셀(C)은 스마트폰 등의 디스플레이 하나에 대응한다. 하나의 마스크(100)에는 하나의 셀(C)을 구성하는 마스크 패턴(P)들이 형성될 수 있다. 또는, 하나의 마스크(100)가 복수의 셀(C)을 구비하고 각각의 셀(C)이 프레임(200)의 각각의 셀 영역(CR)에 대응할 수도 있으나, 마스크(100)의 명확한 정렬을 위해서는 대면적 마스크(100)를 지양할 필요가 있고, 하나의 셀(C)을 구비하는 소면적 마스크(100)가 바람직하다. 또는, 프레임(200)의 하나의 셀 영역(CR)에 복수의 셀(C)을 가지는 하나의 마스크(100)가 대응할 수도 있다. 이 경우, 명확한 정렬을 위해서는 2-3개 정도의 소수의 셀(C)을 가지는 마스크(100)를 대응하는 것을 고려할 수 있다.
프레임(200)은 복수의 마스크 셀 영역(CR)을 구비하고, 각각의 마스크(100)는 각각 하나의 마스크 셀(C)이 마스크 셀 영역(CR)에 대응되도록 접착될 수 있다. 각각의 마스크(100)는 복수의 마스크 패턴(P)이 형성된 마스크 셀(C) 및 마스크 셀(C) 주변의 더미[셀(C)을 제외한 마스크 막(110) 부분에 대응]를 포함할 수 있다. 더미는 마스크 막(110)만을 포함하거나, 마스크 패턴(P)과 유사한 형태의 소정의 더미 패턴이 형성된 마스크 막(110)을 포함할 수 있다. 마스크 셀(C)은 프레임(200)의 마스크 셀 영역(CR)에 대응하고, 더미의 일부 또는 전부가 프레임(200)[마스크 셀 시트부(220)]에 접착될 수 있다. 이에 따라, 마스크(100)와 프레임(200)이 일체형 구조를 이룰 수 있게 된다.
이하에서는, 프레임 일체형 마스크를 제조하는 과정에 대해 설명한다.
먼저, 도 4 및 도 5에서 상술한 프레임(200)을 제공할 수 있다. 도 6은 본 발명의 일 실시예에 따른 프레임(200)의 제조 과정을 나타내는 개략도이다.
도 6의 (a)를 참조하면, 테두리 프레임부(210)를 제공한다. 테두리 프레임부(210)는 중공 영역(R)을 포함한 사각 틀 형상일 수 있다.
다음으로, 도 6의 (b)를 참조하면, 마스크 셀 시트부(220)를 제조한다. 마스크 셀 시트부(220)는 전주도금 또는 그 외의 막 형성 공정을 사용하여 평면의 시트를 제조한 후, 레이저 스크라이빙, 에칭 등을 통해 마스크 셀 영역(CR) 부분을 제거함에 따라 제조할 수 있다. 본 명세서에서는 6 X 5의 마스크 셀 영역(CR: CR11~CR56)을 형성한 것을 예로 들어 설명한다. 5개의 제1 그리드 시트부(223) 및 4개의 제2 그리드 시트부(225)가 존재할 수 있다.
다음으로, 마스크 셀 시트부(220)를 테두리 프레임부(210)에 대응할 수 있다. 대응시키는 과정에서, 마스크 셀 시트부(220)의 모든 측을 인장(F1~F4)하여 마스크 셀 시트부(220)를 평평하게 편 상태로 테두리 시트부(221)를 테두리 프레임부(210)에 대응할 수 있다. 한 측에서도 여러 포인트[도 6의 (b)의 예로, 1~3포인트]로 마스크 셀 시트부(220)를 잡고 인장할 수 있다. 한편, 모든 측이 아니라, 일부 측 방향을 따라 마스크 셀 시트부(220)를 인장(F1, F2) 할 수도 있다.
다음으로, 마스크 셀 시트부(220)를 테두리 프레임부(210)에 대응하면, 마스크 셀 시트부(220)의 테두리 시트부(221)를 용접(W)하여 접착할 수 있다. 마스크 셀 시트부(220)가 테두리 프레임부(220)에 견고하게 접착될 수 있도록, 모든 측을 용접(W)하는 것이 바람직하다. 용접(W)은 테두리 프레임부(210)의 모서리쪽에 최대한 가깝게 수행하여야 테두리 프레임부(210)와 마스크 셀 시트부(220) 사이의 들뜬 공간을 최대한 줄이고 밀착성을 높일 수 있게 된다. 용접(W) 부분은 라인(line) 또는 스팟(spot) 형태로 생성될 수 있으며, 마스크 셀 시트부(220)와 동일한 재질을 가지고 테두리 프레임부(210)와 마스크 셀 시트부(220)를 일체로 연결하는 매개체가 될 수 있다.
도 7은 본 발명의 다른 실시예에 따른 프레임의 제조 과정을 나타내는 개략도이다. 도 6의 실시예는 마스크 셀 영역(CR)을 구비한 마스크 셀 시트부(220)를 먼저 제조하고 테두리 프레임부(210)에 접착하였으나, 도 7의 실시예는 평면의 시트를 테두리 프레임부(210)에 접착한 후에, 마스크 셀 영역(CR) 부분을 형성한다.
먼저, 도 6의 (a)처럼, 중공 영역(R)을 포함한 테두리 프레임부(210)를 제공한다.
다음으로, 도 7의 (a)를 참조하면, 테두리 프레임부(210)에 평면의 시트[평면의 마스크 셀 시트부(220')]를 대응할 수 있다. 마스크 셀 시트부(220')는 아직 마스크 셀 영역(CR)이 형성되지 않은 평면 상태이다. 대응시키는 과정에서, 마스크 셀 시트부(220')의 모든 측을 인장(F1~F4)하여 마스크 셀 시트부(220')를 평평하게 편 상태로 테두리 프레임부(210)에 대응할 수 있다. 한 측에서도 여러 포인트[도 7의 (a)의 예로, 1~3포인트]로 마스크 셀 시트부(220')를 잡고 인장할 수 있다. 한편, 모든 측이 아니라, 일부 측 방향을 따라 마스크 셀 시트부(220')를 인장(F1, F2) 할 수도 있다.
다음으로, 마스크 셀 시트부(220')를 테두리 프레임부(210)에 대응하면, 마스크 셀 시트부(220')의 테두리 부분을 용접(W)하여 접착할 수 있다. 마스크 셀 시트부(220')가 테두리 프레임부(220)에 견고하게 접착될 수 있도록, 모든 측을 용접(W)하는 것이 바람직하다. 용접(W)은 테두리 프레임부(210)의 모서리쪽에 최대한 가깝게 수행하여야 테두리 프레임부(210)와 마스크 셀 시트부(220') 사이의 들뜬 공간을 최대한 줄이고 밀착성을 높일 수 있게 된다. 용접(W) 부분은 라인(line) 또는 스팟(spot) 형태로 생성될 수 있으며, 마스크 셀 시트부(220')와 동일한 재질을 가지고 테두리 프레임부(210)와 마스크 셀 시트부(220')를 일체로 연결하는 매개체가 될 수 있다.
다음으로, 도 7의 (b)를 참조하면, 평면의 시트[평면의 마스크 셀 시트부(220')]에 마스크 셀 영역(CR)을 형성한다. 레이저 스크라이빙, 에칭 등을 통해 마스크 셀 영역(CR) 부분의 시트를 제거함에 따라 마스크 셀 영역(CR)을 형성할 수 있다. 본 명세서에서는 6 X 5의 마스크 셀 영역(CR: CR11~CR56)을 형성한 것을 예로 들어 설명한다. 마스크 셀 영역(CR)을 형성하게 되면, 테두리 프레임부(210)와 용접(W)된 부분이 테두리 시트부(221)가 되고, 5개의 제1 그리드 시트부(223) 및 4개의 제2 그리드 시트부(225)를 구비하는 마스크 셀 시트부(220)가 구성될 수 있다.
한편, 도 6 및 도 7에서는 테두리 프레임부(210)와 마스크 셀 시트부(220)가 용접(W)으로 접착된 실시예를 설명하였으나, 반드시 이에 제한되는 것은 아니며, 도 10에서 후술할, 유테틱 접착부(EM), 전주 도금부(150) 및 기타 유무기 접착제 등을 사용한 방법으로 접착을 수행할 수도 있다.
도 8은 본 발명의 일 실시예에 따른 마스크(100)의 인장 형태[도 8의 (a)] 및 마스크(100)를 프레임(200)의 셀 영역(CR)에 대응시키는 상태[도 8의 (b)]를 나타내는 개략도이다.
다음으로, 복수의 마스크 패턴(P)이 형성된 마스크(100)를 제공할 수 있다. 전주도금 방식으로 인바, 슈퍼 인바 재질의 마스크(100)를 제조할 수 있고, 마스크(100)에는 하나의 셀(C)이 형성될 수 있음은 상술한 바 있다.
전주도금에서 음극체(cathode)로 사용하는 모판(mother plate)은 전도성 재질을 사용한다. 전도성 재질로서, 메탈의 경우에는 표면에 메탈 옥사이드들이 생성되어 있을 수 있고, 메탈 제조 과정에서 불순물이 유입될 수 있으며, 다결정 실리콘 기재의 경우에는 개재물 또는 결정립계(Grain Boundary)가 존재할 수 있으며, 전도성 고분자 기재의 경우에는 불순물이 함유될 가능성이 높고, 강도. 내산성 등이 취약할 수 있다. 메탈 옥사이드, 불순물, 개재물, 결정립계 등과 같이 모판(또는, 음극체)의 표면에 전기장이 균일하게 형성되는 것을 방해하는 요소를 "결함"(Defect)으로 지칭한다. 결함(Defect)에 의해, 상술한 재질의 음극체에는 균일한 전기장이 인가되지 못하여 도금막[마스크(100)]의 일부가 불균일하게 형성될 수 있다.
UHD 급 이상의 초고화질 화소를 구현하는데 있어서 도금막 및 도금막 패턴[마스크 패턴(P)]의 불균일은 화소의 형성에 악영향을 미칠 수 있다. FMM, 새도우 마스크의 패턴 폭은 수 내지 수십㎛의 크기, 바람직하게는 30㎛보다 작은 크기로 형성될 수 있으므로, 수㎛ 크기의 결함조차 마스크의 패턴 사이즈에서 큰 비중을 차지할 정도의 크기이다.
또한, 상술한 재질의 음극체에서의 결함을 제거하기 위해서는 메탈 옥사이드, 불순물 등을 제거하기 위한 추가적인 공정이 수행될 수 있으며, 이 과정에서 음극체 재료가 식각되는 등의 또 다른 결함이 유발될 수도 있다.
따라서, 본 발명은 단결정 실리콘 재질의 모판(또는, 음극체)를 사용할 수 있다. 전도성을 가지도록, 단결정 실리콘 재질의 모판에는 1019/cm3이상의 고농도 도핑이 수행될 수 있다. 도핑은 모판의 전체에 수행될 수도 있으며, 모판의 표면 부분에만 수행될 수도 있다.
도핑된 단결정 실리콘의 경우는 결함이 없기 때문에, 전주 도금 시에 표면 전부에서 균일한 전기장 형성으로 인한 균일한 도금막[마스크(100)]이 생성될 수 있는 이점이 있다. 균일한 도금막을 통해 제조하는 프레임 일체형 마스크(100, 200)는 OLED 화소의 화질 수준을 더욱 개선할 수 있다. 그리고, 결함을 제거, 해소하는 추가 공정이 수행될 필요가 없으므로, 공정비용이 감축되고, 생산성이 향상되는 이점이 있다.
또한, 실리콘 재질의 모판을 사용함에 따라서, 필요에 따라 모판의 표면을 산화(Oxidation), 질화(Nitridation)하는 과정만으로 절연부를 형성할 수 있는 이점이 있다. 절연부는 포토레지스트를 사용하여 형성할 수도 있다. 절연부가 형성된 부분에서는 도금막[마스크(100)]의 전착이 방지되어, 도금막에 패턴[마스크 패턴(P)]을 형성하게 된다.
마스크 패턴(P)의 폭은 40㎛보다 작게 형성될 수 있고, 마스크(100)의 두께는 약 2~50㎛로 형성될 수 있다. 프레임(200)이 복수의 마스크 셀 영역(CR: CR11~CR56)을 구비하므로, 각각의 마스크 셀 영역(CR: CR11~CR56)에 대응하는 마스크 셀(C: C11~C56)을 가지는 마스크(100)도 복수개 구비할 수 있다.
도 8의 (a)를 참조하면, 마스크(100)를 프레임(200)의 하나의 마스크 셀 영역(CR)에 대응할 수 있다. 도 8의 (a)에 도시된 바와 같이, 대응시키는 과정에서, 마스크(100)의 일축 방향을 따라 두 측을 인장(F1~F2)하여 마스크(100)를 평평하게 편 상태로 마스크 셀(C)을 마스크 셀 영역(CR)에 대응할 수 있다. 한 측에서도 여러 포인트(도 8의 예로, 1~3포인트)로 마스크(100)를 잡고 인장할 수 있다. 한편, 일축 방향이 아니라, 모든 축 방향을 따라 마스크(100)의 모든 측을 인장(F1~F4) 할 수도 있다.
예를 들어, 마스크(100)의 각 측에 가하는 인장력은 4N을 초과하지 않을 수 있다. 마스크(100)의 크기에 따라 가하는 인장력은 동일하거나, 달라질 수 있다. 다시 말해, 본 발명의 마스크(100)는 1개의 마스크 셀(C)을 포함하는 크기이므로, 복수개의 셀(C1~C6)을 포함하는 종래의 스틱 마스크(10)보다 필요로 하는 인장력이 동일하거나, 적어도 줄어들 가능성이 있다. 9.8N이 1kg의 중력 힘을 의미함을 고려하면, 1N은 400g의 중력 힘보다도 작은 힘이기 때문에, 마스크(100)가 인장된 후에 프레임(200)에 부착되어도 마스크(100)가 프레임(200)에 가하는 장력(tension), 또는, 반대로 프레임(200)이 마스크(100)에 가하는 장력은 매우 적게 된다. 그리하여, 장력에 의한 마스크(100) 및/또는 프레임(200)의 변형이 최소화되어 마스크(100)[또는, 마스크 패턴(P)]의 정렬 오차가 최소화 될 수 있다.
그리고, 종래의 도 1의 마스크(10)는 셀 6개(C1~C6)를 포함하므로 긴 길이를 가지는데 반해, 본 발명의 마스크(100)는 셀 1개(C)를 포함하여 짧은 길이를 가지므로 PPA(pixel position accuracy)가 틀어지는 정도가 작아질 수 있다. 예를 들어, 복수의 셀(C1~C6, ...)들을 포함하는 마스크(10)의 길이가 1m이고, 1m 전체에서 10㎛의 PPA 오차가 발생한다고 가정하면, 본 발명의 마스크(100)는 상대적인 길이의 감축[셀(C) 개수 감축에 대응]에 따라 위 오차 범위를 1/n 할 수 있다. 예를 들어, 본 발명의 마스크(100)의 길이가 100mm라면, 종래 마스크(10)의 1m에서 1/10로 감축된 길이를 가지므로, 100mm 길이의 전체에서 1㎛의 PPA 오차가 발생하게 되며, 정렬 오차가 현저히 감소하게 되는 효과가 있다.
한편, 마스크(100)가 복수의 셀(C)을 구비하고, 각각의 셀(C)이 프레임(200)의 각각의 셀 영역(CR)에 대응하여도 정렬 오차가 최소화되는 범위 내에서라면, 마스크(100)는 프레임(200)의 복수의 마스크 셀 영역(CR)에 대응할 수도 있다. 또는, 복수의 셀(C)을 가지는 마스크(100)가 하나의 마스크 셀 영역(CR)에 대응할 수도 있다. 이 경우에도, 정렬에 따른 공정 시간과 생산성을 고려하여, 마스크(100)는 가급적 적은 수의 셀(C)을 구비하는 것이 바람직하다.
마스크(100)가 평평한 상태로 마스크 셀 영역(CR)에 대응하도록 인장력(F1~F4)을 조절하면서, 현미경을 통해 실시간으로 정렬 상태를 확인할 수 있다. 본 발명의 경우는, 마스크(100)의 하나의 셀(C)을 대응시키고 정렬 상태를 확인하기만 하면 되므로, 복수의 셀(C: C1~C6)을 동시에 대응시키고 정렬 상태를 모두 확인하여야 하는 종래의 방법[도 2 참조]보다, 제조시간을 현저하게 감축시킬 수 있다.
즉, 본 발명의 프레임 일체형 마스크 제조 방법은, 6개의 마스크(100)에 포함되는 각각의 셀(C11~C16)을 각각 하나의 셀 영역(CR11~CR16)에 대응시키고 각각 정렬 상태를 확인하는 6번의 과정을 통해, 6개의 셀(C1~C6)을 동시에 대응시키고 6개 셀(C1~C6)의 정렬 상태를 동시에 모두 확인해야 하는 종래의 방법보다 훨씬 시간이 단축될 수 있다.
또한, 본 발명의 프레임 일체형 마스크 제조 방법은, 30개의 셀 영역(CR: CR11~CR56)에 30개의 마스크(100)를 각각 대응시키고 정렬하는 30번의 과정에서의 제품 수득률이, 6개의 셀(C1~C6)을 각각 포함하는 5개의 마스크(10)[도 2의 (a) 참조]를 프레임(20)에 대응시키고 정렬하는 5번의 과정에서의 종래의 제품 수득률보다 훨씬 높게 나타날 수 있다. 한번에 6개씩의 셀(C)이 대응하는 영역에 6개의 셀(C1~C6)을 정렬하는 종래의 방법이 훨씬 번거롭고 어려운 작업이므로 제품 수율이 낮게 나타나는 것이다.
한편, 마스크(100)를 프레임(200)에 대응한 후, 프레임(200)에 소정의 접착제를 개재하여 마스크(100)를 임시로 고정할 수도 있다. 이후에, 마스크(100)의 접착 단계를 진행할 수 있다.
도 9는 본 발명의 일 실시예에 따른 마스크(100)를 프레임(200)의 셀 영역(CR)에 대응하여 접착하는 과정을 나타내는 개략도이다. 도 10은 도 9의 B-B' 단면도로서, 본 발명의 여러 실시예에 따른 마스크(100)가 프레임(200)[제1 그리드 시트부(223)]에 접착된 형태를 나타내는 부분 확대 단면도이다.
다음으로, 도 9, 도 10의 (a) 및 (b)를 참조하면, 마스크(100)의 테두리의 일부 또는 전부를 프레임(200)에 접착할 수 있다. 접착은 용접(W)으로 수행될 수 있고, 바람직하게는 레이저 용접(W)으로 수행될 수 있다. 용접(W)된 부분은 마스크(100)/프레임(200)과 동일한 재질을 가지고 일체로 연결될 수 있다.
레이저를 마스크(100)의 테두리 부분[또는, 더미]의 상부에 조사하면, 마스크(100)의 일부가 용융되어 프레임(200)과 용접(W)될 수 있다. 용접(W)은 프레임(200)의 모서리쪽에 최대한 가깝게 수행하여야 마스크(100)와 프레임(200) 사이의 들뜬 공간을 최대한 줄이고 밀착성을 높일 수 있게 된다. 용접(W) 부분은 라인(line) 또는 스팟(spot) 형태로 생성될 수 있으며, 마스크(100)와 동일한 재질을 가지고 마스크(100)와 프레임(200)을 일체로 연결하는 매개체가 될 수 있다.
제1 그리드 시트부(223)[또는, 제2 그리드 시트부(225)]의 상면에 두 개의 이웃하는 마스크(100)의 일 테두리가 각각 접착(W)된 형태가 나타난다. 제1 그리드 시트부(223)[또는, 제2 그리드 시트부(225)]의 폭, 두께는 약 1~5mm 정도로 형성될 수 있고, 제품 생산성 향상을 위해, 제1 그리드 시트부(223)[또는, 제2 그리드 시트부(225)]와 마스크(100)의 테두리가 겹치는 폭을 약 0.1~2.5mm 정도로 최대한 감축시킬 필요가 있다.
제1, 2 그리드 시트부(223, 225)의 길이 방향에 수직하는 단면의 형상은 높이가 낮은 사각형, 평행사변형 등일 수 있다.
용접(W) 방법은 마스크(100)를 프레임(200)에 접착하는 하나의 방법일 뿐이며, 이러한 실시예로 국한되지 않는다.
다른 예를 설명하면, 도 10의 (c)와 같이, 유테틱 재질의 접착부(EM)를 사용하여 마스크(100)를 프레임(200)에 접착할 수 있다. 유테틱 재질의 접착부(EM)는 적어도 두가지 금속을 포함하는 접착제로서, 필름, 선, 다발 형태 등의 다양한 모양을 가질 수 있고, 약 10 ~ 30㎛의 얇은 두께를 가질 수 있다. 예를 들어, 유테틱 재질의 접착부(EM)는 In, Sn, Bi, Au 등의 그룹과 Sn, Bi, Ag, Zn, Cu, Sb, Ge 등의 그룹에서 적어도 하나의 금속을 포함할 수 있다. 유테틱 재질의 접착부(EM)는 적어도 두 개의 금속 고상(solid phase)을 포함하고, 특정 온도/압력의 유테틱 포인트(eutectic point)에서는 두 개의 금속 고상이 모두 액상(liquid phase)이 될 수 있다. 그리고 유테틱 포인트를 벗어나면 다시 두 개의 금속 고상이 될 수 있다. 이에 따라, 고상 -> 액상 -> 고상의 상변화를 통해 접착제로서의 역할을 수행할 수 있는 것이다.
유테틱 접착부(EM)는 일반적인 유기 접착제와 다르게 휘발성 유기물을 전혀 포함하고 있지 않다. 따라서, 접착제의 휘발성 유기물질이 공정 가스와 반응하여 OLED의 화소에 악영향을 주거나, 접착제 자체에 포함된 유기물질 등의 아웃 가스가 화소 공정 챔버를 오염시키거나 불순물로서 OLED 화소에 증착되는 악영향을 방지할 수 있게 된다. 또한, 유테틱 접착부(EM)는 고체이므로, OLED 유기물 세정액에 의해서 세정되지 않고 내식성을 가질 수 있게 된다. 또한, 두가지 이상의 금속을 포함하고 있으므로, 유기 접착제에 비해서 동일한 금속 재질인 마스크(100), 프레임(200)과 높은 접착성을 가지고 연결될 수 있고, 금속 재질이므로 변형 가능성이 낮은 이점이 있다.
또 다른 예를 설명하면, 도 10의 (d)와 같이, 마스크(100)와 동일한 재질의 접착 도금부(150)를 더 형성하여 마스크(100)를 프레임(200)에 접착할 수 있다. 마스크(100)를 프레임(200)에 대응시킨 후, 마스크(100)의 하부면 방향에 PR 등의 절연부를 형성할 수 있다. 그리고, 절연부가 커버하지 않고 노출된 마스크(100)의 후면 및 프레임(200) 상에서 접착 도금부(150)를 전착할 수 있다.
접착 도금부(150)가 마스크(100)의 노출된 표면 및 프레임(200) 상에서 전착되면서, 마스크(100)와 프레임(200)을 일체로 연결하는 매개체가 될 수 있다. 이때, 접착 도금부(150)는 마스크(100)의 테두리 부분에 일체로 연결되며 전착되므로, 프레임(200) 내측 방향 또는 외측 방향으로 인장력을 가하는 상태를 가지며 마스크(100)를 지지할 수 있다. 그리하여, 별도로 마스크를 인장하고 정렬하는 과정을 수행할 필요없이, 팽팽하게 프레임(200) 측으로 당겨진 마스크(100)를 프레임(200)과 일체로 형성할 수 있게 된다.
도 10에서는 설명의 편의를 위해 용접(W)된 부분, 유테틱 재질의 접착부(EM) 부분의 두께 및 폭이 다소 과장되게 도시되었음을 밝혀두며, 실제로 이 부분은 거의 돌출되지 않고 마스크(100)에 포함된 상태로 프레임(200)을 연결하는 부분일 수 있다.
다음으로, 하나의 마스크(100)를 프레임(200)에 접착하는 공정을 완료하면, 나머지 마스크(100)들을 나머지 마스크 셀(C)에 순차적으로 대응시키고, 프레임(200)에 접착하는 과정을 반복할 수 있다. 이미 프레임(200)에 접착된 마스크(100)가 기준 위치를 제시할 수 있으므로, 나머지 마스크(100)들을 셀 영역(CR)에 순차적으로 대응시키고 정렬 상태를 확인하는 과정에서의 시간이 현저하게 감축될 수 있는 이점이 있다. 그리고, 하나의 마스크 셀 영역에 접착된 마스크(100)와 이에 이웃하는 마스크 셀 영역에 접착된 마스크(100) 사이의 PPA(pixel position accuracy)가 3㎛를 초과하지 않게 되어, 정렬이 명확한 초고화질 OLED 화소 형성용 마스크를 제공할 수 있는 이점이 있다.
도 11은 본 발명의 일 실시예에 따른 프레임 일체형 마스크(100, 200)를 이용한 OLED 화소 증착 장치(1000)를 나타내는 개략도이다.
도 11을 참조하면, OLED 화소 증착 장치(1000)는, 마그넷(310)이 수용되고, 냉각수 라인(350)이 배설된 마그넷 플레이트(300)와, 마그넷 플레이트(300)의 하부로부터 유기물 소스(600)를 공급하는 증착 소스 공급부(500)를 포함한다.
마그넷 플레이트(300)와 소스 증착부(500) 사이에는 유기물 소스(600)가 증착되는 유리 등의 대상 기판(900)이 개재될 수 있다. 대상 기판(900)에는 유기물 소스(600)가 화소별로 증착되게 하는 프레임 일체형 마스크(100, 200)[또는, FMM]이 밀착되거나 매우 근접하도록 배치될 수 있다. 마그넷(310)이 자기장을 발생시키고 자기장에 의해 대상 기판(900)에 밀착될 수 있다.
증착 소스 공급부(500)는 좌우 경로를 왕복하며 유기물 소스(600)를 공급할 수 있고, 증착 소스 공급부(500)에서 공급되는 유기물 소스(600)들은 프레임 일체형 마스크(100, 200)에 형성된 패턴(P)을 통과하여 대상 기판(900)의 일측에 증착될 수 있다. 프레임 일체형 마스크(100, 200)의 패턴(P)을 통과한 증착된 유기물 소스(600)는 OLED의 화소(700)로서 작용할 수 있다.
새도우 이펙트(Shadow Effect)에 의한 화소(700)의 불균일 증착을 방지하기 위해, 프레임 일체형 마스크(100, 200)의 패턴은 경사지게 형성(S)[또는, 테이퍼 형상(S)으로 형성]될 수 있다. 경사진 면을 따라서 대각선 방향으로 패턴을 통과하는 유기물 소스(600)들도 화소(700)의 형성에 기여할 수 있으므로, 화소(700)는 전체적으로 두께가 균일하게 증착될 수 있다.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.

Claims (22)

  1. 복수의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크로서,
    프레임은,
    중공 영역을 포함하는 테두리 프레임부;
    복수의 마스크 셀 영역을 구비하며, 테두리 프레임부에 연결되는 마스크 셀 시트부
    를 포함하고,
    각각의 마스크는 마스크 셀 시트부의 상부에 연결된, 프레임 일체형 마스크.
  2. 제1항에 있어서,
    마스크 셀 시트부는, 제1 방향, 제1 방향에 수직인 제2 방향 중 적어도 하나의 방향을 따라 복수의 마스크 셀 영역을 구비하는, 프레임 일체형 마스크.
  3. 제1항에 있어서,
    마스크 셀 시트부는,
    테두리 시트부; 및
    제1 방향으로 연장 형성되고, 양단이 테두리 시트부에 연결되는 적어도 하나의 제1 그리드 시트부를 포함하는, 프레임 일체형 마스크.
  4. 제3항에 있어서,
    마스크 셀 시트부는, 제1 방향에 수직인 제2 방향으로 연장 형성되어 제1 그리드 시트부와 교차되고, 양단이 테두리 시트부에 연결되는 적어도 하나의 제2 그리드 시트부를 더 포함하는, 프레임 일체형 마스크.
  5. 제1항에 있어서,
    각각의 마스크 셀 영역에 각각의 마스크가 대응되는, 프레임 일체형 마스크.
  6. 제5항에 있어서,
    마스크는,
    복수의 마스크 패턴이 형성된 마스크 셀, 및 마스크 셀 주변의 더미를 포함하고,
    더미의 적어도 일부가 마스크 셀 시트부에 접착되는, 프레임 일체형 마스크.
  7. 제1항에 있어서,
    마스크는 하나의 마스크 셀을 포함하고, 마스크 셀 시트부의 각각의 마스크 셀 영역 상에 각각의 마스크가 대응된, 프레임 일체형 마스크.
  8. 제1항에 있어서,
    마스크는 복수의 마스크 셀을 포함하고, 마스크 셀 시트부의 각각의 마스크 셀 영역 상에 각각의 마스크가 대응된, 프레임 일체형 마스크.
  9. 제1항에 있어서,
    테두리 프레임부는 사각 형상인, 프레임 일체형 마스크.
  10. 제1항에 있어서,
    테두리 프레임부의 두께는 마스크 셀 시트부의 두께보다 두껍고,
    마스크 셀 시트부의 두께는 마스크보다 두꺼운, 프레임 일체형 마스크.
  11. 제10항에 있어서,
    마스크 셀 시트부의 두께는 0.1mm 내지 1mm이고,
    마스크의 두께는 2㎛ 내지 50㎛인, 프레임 일체형 마스크.
  12. 제1항에 있어서,
    마스크 및 프레임은 인바(invar), 슈퍼 인바(super invar), 니켈, 니켈-코발트 중 어느 하나의 재질인, 프레임 일체형 마스크.
  13. 제1항에 있어서,
    하나의 마스크 셀 영역에 접착된 마스크와 이에 이웃하는 마스크 셀 영역에 접착된 마스크 사이의 PPA(pixel position accuracy)는 3㎛를 초과하지 않는, 프레임 일체형 마스크.
  14. 복수의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크의 제조 방법으로서,
    (a) 중공 영역을 포함하는 테두리 프레임부를 제공하는 단계;
    (b) 복수의 마스크 셀 영역을 구비하는 마스크 셀 시트부를 테두리 프레임부에 연결하는 단계;
    (c) 마스크를 마스크 셀 시트부의 하나의 마스크 셀 영역에 대응하는 단계; 및
    (d) 마스크의 테두리의 적어도 일부를 마스크 셀 시트부에 접착하는 단계
    를 포함하는, 프레임 일체형 마스크의 제조 방법.
  15. 복수의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크의 제조 방법으로서,
    (a) 중공 영역을 포함하는 테두리 프레임부를 제공하는 단계;
    (b) 평면의 마스크 셀 시트부를 테두리 프레임부에 연결하는 단계;
    (c) 마스크 셀 시트부에 복수의 마스크 셀 영역을 형성하는 단계;
    (d) 마스크를 마스크 셀 시트부의 하나의 마스크 셀 영역에 대응하는 단계; 및
    (e) 마스크의 테두리의 적어도 일부를 마스크 셀 시트부에 접착하는 단계
    를 포함하는, 프레임 일체형 마스크의 제조 방법.
  16. 제14항 또는 제15항에 있어서,
    마스크 셀 시트부는, 제1 방향, 제1 방향에 수직인 제2 방향 중 적어도 하나의 방향을 따라 복수의 마스크 셀 영역을 구비하는, 프레임 일체형 마스크의 제조 방법.
  17. 제14항 또는 제15항에 있어서,
    마스크 셀 시트부는,
    테두리 시트부; 및
    제1 방향으로 연장 형성되고, 양단이 테두리 시트부에 연결되는 적어도 하나의 제1 그리드 시트부를 포함하는, 프레임 일체형 마스크의 제조 방법.
  18. 제17항에 있어서,
    마스크 셀 시트부는, 제1 방향에 수직인 제2 방향으로 연장 형성되어 제1 그리드 시트부와 교차되고, 양단이 테두리 시트부에 연결되는 적어도 하나의 제2 그리드 시트부를 더 포함하는, 프레임 일체형 마스크의 제조 방법.
  19. 제14항 또는 제15항에 있어서,
    각각의 마스크 셀 영역에 각각의 마스크가 대응되는, 프레임 일체형 마스크의 제조 방법.
  20. 제14항 또는 제15항에 있어서,
    (b) 단계에서,
    테두리 프레임부에 마스크 셀 시트부의 모서리를 용접하여 연결하는, 프레임 일체형 마스크의 제조 방법.
  21. 제14항 또는 제15항에 있어서,
    마스크는 하나의 마스크 셀을 포함하고, 하나의 마스크 셀이 하나의 마스크 셀 영역 내에 위치하는, 프레임 일체형 마스크의 제조 방법.
  22. 제14항 또는 제15항에 있어서,
    마스크는 복수의 마스크 셀을 포함하고, 복수의 마스크 셀이 하나의 마스크 셀 영역 내에 위치하는, 프레임 일체형 마스크의 제조 방법.
PCT/KR2018/016653 2018-02-09 2018-12-26 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법 WO2019156348A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880086540.2A CN111656552A (zh) 2018-02-09 2018-12-26 框架一体型掩模及框架一体型掩模的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0016186 2018-02-09
KR1020180016186A KR20190096577A (ko) 2018-02-09 2018-02-09 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법

Publications (1)

Publication Number Publication Date
WO2019156348A1 true WO2019156348A1 (ko) 2019-08-15

Family

ID=67548478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016653 WO2019156348A1 (ko) 2018-02-09 2018-12-26 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법

Country Status (3)

Country Link
KR (1) KR20190096577A (ko)
CN (1) CN111656552A (ko)
WO (1) WO2019156348A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102511834B1 (ko) * 2019-11-26 2023-03-21 주식회사 오럼머티리얼 프레임 일체형 마스크 제조용 프레임 및 그 제조 방법
CN112725729A (zh) * 2020-12-29 2021-04-30 天津市滨海新区微电子研究院 一种彩色硅基oled微显示器的制作方法及掩膜板
KR102618776B1 (ko) * 2021-02-25 2023-12-29 주식회사 오럼머티리얼 프레임 일체형 마스크의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100472012B1 (ko) * 2001-12-17 2005-03-08 조수제 섀도우 마스크 및 그 제조 방법
KR100704688B1 (ko) * 2003-07-25 2007-04-10 다이닛뽕스크린 세이조오 가부시키가이샤 증착용 마스크의 제조방법 및 증착용 마스크
JP2010222687A (ja) * 2009-03-25 2010-10-07 Seiko Epson Corp 成膜用マスク
KR20120105292A (ko) * 2011-03-15 2012-09-25 삼성디스플레이 주식회사 증착 마스크 및 증착 마스크 제조 방법
KR101742816B1 (ko) * 2010-12-20 2017-06-02 삼성디스플레이 주식회사 마스크 프레임 조립체, 이의 제조 방법 및 이를 이용한 유기 발광 표시 장치의 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100534580B1 (ko) * 2003-03-27 2005-12-07 삼성에스디아이 주식회사 표시장치용 증착 마스크 및 그의 제조방법
CN105102668B (zh) * 2013-03-26 2019-02-19 大日本印刷株式会社 蒸镀掩模、蒸镀掩模准备体、蒸镀掩模的制造方法、及有机半导体元件的制造方法
JP5780350B2 (ja) * 2013-11-14 2015-09-16 大日本印刷株式会社 蒸着マスク、フレーム付き蒸着マスク、及び有機半導体素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100472012B1 (ko) * 2001-12-17 2005-03-08 조수제 섀도우 마스크 및 그 제조 방법
KR100704688B1 (ko) * 2003-07-25 2007-04-10 다이닛뽕스크린 세이조오 가부시키가이샤 증착용 마스크의 제조방법 및 증착용 마스크
JP2010222687A (ja) * 2009-03-25 2010-10-07 Seiko Epson Corp 成膜用マスク
KR101742816B1 (ko) * 2010-12-20 2017-06-02 삼성디스플레이 주식회사 마스크 프레임 조립체, 이의 제조 방법 및 이를 이용한 유기 발광 표시 장치의 제조 방법
KR20120105292A (ko) * 2011-03-15 2012-09-25 삼성디스플레이 주식회사 증착 마스크 및 증착 마스크 제조 방법

Also Published As

Publication number Publication date
KR20190096577A (ko) 2019-08-20
TW201936950A (zh) 2019-09-16
CN111656552A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2018221852A1 (ko) 프레임 일체형 마스크
WO2019156348A1 (ko) 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법
WO2020036360A1 (ko) 프레임 일체형 마스크의 제조 방법 및 프레임
WO2019054718A2 (ko) 프레임 일체형 마스크의 제조 방법
WO2019190121A1 (ko) 마스크의 제조 방법, 마스크 지지 버퍼기판과 그의 제조 방법
WO2019172557A1 (ko) 프레임 일체형 마스크의 제조 방법
KR20200006349A (ko) 프레임 일체형 마스크의 제조 방법
WO2018097533A1 (ko) 프레임 일체형 마스크 및 그 제조방법
WO2020045900A1 (ko) 마스크의 제조 방법, 마스크 및 프레임 일체형 마스크
WO2020032511A1 (ko) 마스크의 이송 시스템 및 프레임 일체형 마스크의 제조 방법
WO2019054717A2 (ko) 프레임 일체형 마스크
WO2019009526A1 (ko) 마스크 및 마스크의 제조 방법, 모판
WO2020022661A1 (ko) 프레임 일체형 마스크의 제조 방법
WO2019203510A1 (ko) 프레임 일체형 마스크의 제조 장치
WO2020076020A1 (ko) 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법
WO2020076021A1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
WO2019045240A1 (ko) 프레임 일체형 마스크의 제조 방법
WO2020032509A1 (ko) 마스크의 이송 시스템 및 프레임 일체형 마스크의 제조 방법
WO2020032513A1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102371176B1 (ko) 프레임에 부착된 마스크의 분리 방법
WO2020013502A1 (ko) 프레임 일체형 마스크의 제조 방법 및 oled 화소 형성용 마스크
KR102357802B1 (ko) 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법
KR20190095238A (ko) 프레임 일체형 마스크
KR20190096844A (ko) 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법
KR20190095237A (ko) 프레임 및 프레임 일체형 마스크

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905503

Country of ref document: EP

Kind code of ref document: A1