WO2019156152A1 - アラビノース依存型遺伝子発現制御配列を含む核酸 - Google Patents

アラビノース依存型遺伝子発現制御配列を含む核酸 Download PDF

Info

Publication number
WO2019156152A1
WO2019156152A1 PCT/JP2019/004378 JP2019004378W WO2019156152A1 WO 2019156152 A1 WO2019156152 A1 WO 2019156152A1 JP 2019004378 W JP2019004378 W JP 2019004378W WO 2019156152 A1 WO2019156152 A1 WO 2019156152A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleotide sequence
promoter
nucleic acid
sequence
arabinose
Prior art date
Application number
PCT/JP2019/004378
Other languages
English (en)
French (fr)
Inventor
修平 中根
Original Assignee
GreenEarthInstitute株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GreenEarthInstitute株式会社 filed Critical GreenEarthInstitute株式会社
Priority to JP2019570794A priority Critical patent/JP7374475B2/ja
Publication of WO2019156152A1 publication Critical patent/WO2019156152A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present invention relates to a nucleic acid sequence that enables gene expression control depending on arabinose or an analog thereof in coryneform bacteria. More specifically, the present invention relates to a nucleic acid comprising a gene expression control sequence having a nucleotide sequence that can function as a promoter in a coryneform bacterium and an AraR binding sequence comprising a predetermined nucleotide sequence.
  • coryneform bacteria typified by the same species have chemicals including various amino acids, organic acids, alcohols including ethanol, etc. Widely used in the production of goods.
  • coryneform bacteria basic research such as genome analysis and gene expression analysis has been vigorously conducted, and gene recombination techniques for coryneform bacteria have been almost established.
  • the types of chemicals that can be produced by coryneform bacteria are increasing, and mass production of these chemicals is also becoming possible. .
  • the use of coryneform bacteria in the production of chemicals and useful substances is gaining increasing attention in the industry.
  • Patent Document 1 An example of a promoter that functions in a coryneform bacterium is a technique using a promoter sequence of an aspartase-encoding gene isolated from Brevibacterium flavum MJ-233 strain.
  • Patent Document 1 only the negative control plasmid without the promoter sequence was introduced in the above strain into which the reporter plasmid containing the predetermined promoter sequence and the chloramphenicol acetyltransferase (CAT) gene was introduced. It is described that CAT activity 25 times higher than that of the strain was confirmed.
  • CAT chloramphenicol acetyltransferase
  • Patent Document 2 some DNA fragments isolated from the genomic DNA of Brevibacterium flavum strain MJ-233, which exhibit a promoter function stronger than the tac promoter in coryneform bacteria, are known.
  • Patent Document 2 since the promoter activity of these DNA fragments depends on the composition of the carbon source (various sugars, ethanol, protein degradation products, etc.) of the medium in which the coryneform bacterium serving as the host is cultured, It is described that the expression of the target gene can be controlled by changing the carbon source composition.
  • P EF-TU the promoter of EF-TU
  • P sod the promoter of superoxide dismutase gene
  • Pgro a promoter of GroES gene
  • PEF-TS EF-TS promoter
  • Patent Document 7 a gene expression technique using the respective promoter sequences of Cgl1565 gene (locus NCgl1504) and Cgl1360 gene (locus NCgl1305) derived from Corynebacterium glutamicum ATCC13032 strain is also known (Patent Document 7).
  • a plasmid construct is constructed by introducing each of the above promoter sequences and a predetermined reporter gene or enzyme gene, and a Corynebacterium glutamicum transformant into which the plasmid construct is introduced is obtained.
  • promoter activity was recognized for each of the above promoter sequences by reporter assay using the transformant or measurement of enzyme activity.
  • Patent Document 8 describes an expression cassette or vector using a promoter sequence derived from Brevibacterium ammoniagenes CJHB100 strain. These promoter sequences are promoter sequences identified by culturing the same strain, identifying proteins that are overexpressed in each culture face, and cloning the 5 ′ untranslated region of the genes encoding those proteins. In Patent Document 7, a total of seven promoter sequences named pcj1 to pcj7 were obtained, and the promoter activity of these promoter sequences was evaluated by a reporter assay using the GFP gene in Brevibacterium ammoniagenes.
  • Patent Document 7 confirms that these promoter sequences can also function in Escherichia coli ( Escherichia coli ).
  • pcj1 exhibits high activity in both coryneform bacteria and Escherichia coli. Has been suggested.
  • the promoter sequences disclosed in Patent Documents 1 to 8 are wild-type promoter sequences of coryneform bacteria
  • mutant promoter sequences whose promoter activity has been improved by introducing mutations to the wild-type promoter sequences are also available.
  • mutant promoter sequences include the diaminopimelate dehydrogenase (ddh) gene, LysC-asd operon gene, and aspartate aminotransferase (aspB) gene derived from Corynebacterium glutamicum.
  • mutant promoters obtained by introducing predetermined mutations Patent Documents 9 to 11.
  • a series of techniques relating to promoters described in Patent Documents 9 to 11 aim to improve the amount of lysine produced by increasing the expression level of an enzyme gene involved in the lysine biosynthetic pathway.
  • Patent Document 12 includes two or more promoter sequences of P EF-TU , P sod , P gro , and P EF-TS derived from Corynebacterium glutamicum described in Patent Documents 3 to 6. Multiple promoters linked in tandem are disclosed, and the results of improved expression of target genes in multiple promoters are also shown compared to the case where each of these promoters is used alone.
  • Patent Document 13 uses a promoter sequence obtained by comprehensively analyzing the gene promoter of Corynebacterium glutamicum that is promoted or suppressed under anaerobic conditions.
  • a promoter sequence capable of promoting or suppressing gene expression under anaerobic conditions is used, various kinds of substances necessary for target substance production are produced when producing target substances under anaerobic conditions using coryneform bacteria. It is suggested that gene expression can be improved and expression of various genes unnecessary for target substance production can be suppressed, so that more efficient target substance production can be achieved. .
  • expression systems that use the functions available heterologous promoter in Corynebacterium glutamicum has been known for a long time, is in such expression systems, e.g. tac, trc, LacUV5, P R , P L , etc. Escherichia coli expression system using the above (for example, see Non-Patent Documents 1 to 3).
  • expression of promoter activity is induced by addition of an inducer such as lactose or its analog isopropylthiogalactoside (IPTG).
  • a heat-inducible expression vector in which a ⁇ PL promoter and latent promoters CJ1 and CJ4 isolated from Corynebacterium ammoniagenes are combined.
  • This heat-inducible expression vector is Corynebacterium ammonia. It has been confirmed that it functions not only in Genes but also in Corynebacterium glutamicum (Non-Patent Document 4).
  • Non-Patent Document 5 describes that the expression of the target gene could be strictly controlled without showing non-specific non-basal expression. Furthermore, ⁇ -ketoglutarate dehydrogenation in coryneform bacteria using this expression system. It is described that when the expression of the odhI gene encoding an enzyme inhibitor was regulated, high levels of glutamic acid production could be realized.
  • Non-Patent Document 6 discloses that, in Corynebacterium glutamicum ATCC31831 strain, AraR protein, which is a LacI type transcriptional regulator, has an araBDA gene responsible for L-arabinose catabolism, an araE gene responsible for arabinose absorption, and It has been suggested to suppress the expression of the transcription regulatory factor AraR gene.
  • Non-Patent Document 6 also shows the results of evaluation of the galM and araR promoter regions by the LacZ reporter assay. For the AraR promoter region, cells cultured with D-glucose added and L-arabinose added. No difference in promoter activity was observed between cells cultured in this manner, and that the expression level of LacZ increased in response to the addition of L-arabinose for the galM promoter.
  • Non-Patent Documents 1 to 4 that controls expression of a target gene by exposing a recombinant coryneform bacterium under a predetermined stress environment such as an expression inducer such as IPTG or temperature,
  • a predetermined stress environment such as an expression inducer such as IPTG or temperature
  • IPTG or temperature a predetermined stress environment
  • problems of toxicity and cost of the inducer and complicated expression control process of the target gene and a certain level of non-specific expression can be seen even under the base where expression is not induced.
  • the control of expression is often difficult.
  • the growth of coryneform bacteria is inhibited by such non-specific expression under the base.
  • Non-Patent Document 5 AraC gene derived from E. coli, the gene expression system that combines P BAD promoter and AraE gene effect confirmation test using a coryneform bacterium by the present inventors As a result, about 10 times as much promoter activity was observed when arabinose was added as compared with arabinose not added, but no significant promoter activity as described in Non-Patent Document 5 was observed. That is, it cannot be said that the gene expression system described in Non-Patent Document 5 has poor reproducibility and can withstand practical use.
  • Non-Patent Document 5 uses a promoter sequence or gene derived from Escherichia coli as described above, and the gene expression system according to the present invention is a nucleotide sequence and an amino acid. The configuration is completely different at the array level.
  • Non-Patent Document 6 in Corynebacterium glutamicum ATCC31831, the AraR protein suppresses the expression of the araBAD gene, the araE gene and the transcription regulator AraR gene, and the AraR protein is a gene of the arabinose gene group. Although it is suggested that it can bind to a predetermined sequence in the interstitial region, it does not describe a specific configuration of a gene expression control system using these gene groups and AraR protein binding sequences at a feasible level. . Actually, as shown in Comparative Test Example 1 of the Example below, the present inventor confirmed the promoter region of the araE gene including the AraR protein binding sequence.
  • Non-Patent Document 6 is an academic paper that merely shows the analysis results regarding the role of AraR protein in the arabinose gene expression regulatory mechanism of Corynebacterium glutamicum. It does not imply availability.
  • an object of the present invention is to provide a gene expression system capable of strictly controlling the expression of a target gene in coryneform bacteria and ensuring a good expression level when inducing the expression of the target gene.
  • a gene expression control sequence (R) having at least a part of a nucleotide sequence (X) capable of functioning as a promoter and the nucleotide sequence (Y) described in the following (a) or (b):
  • the nucleotide sequence (X) is trc promoter, tacI promoter, tacII promoter, T5 promoter, T7 promoter, lac promoter, trp promoter, tet promoter, EFtu promoter, groES promoter, SOD promoter, P15 promoter, ldhA promoter, gapA
  • the nucleotide sequence (X) infects a promoter sequence derived 5 ′ upstream of a gene present in the genomic DNA of a coryneform bacterium, a promoter sequence derived from a plasmid inherent in the coryneform bacterium, or a coryneform bacterium.
  • the gene expression control sequence (R) shows a promoter activity that is at least 10 times higher in coryneform bacteria when arabinose is added than when arabinose is not added.
  • the gene expression control sequence (R) exhibits a promoter activity that is at least 15 times higher in coryneform bacteria when arabinose is added than when arabinose is not added. [1] to [1] [6] The nucleic acid according to any one of [6]. [8] The gene expression control sequence (R) exhibits a promoter activity that is at least 20 times higher when arabinose is added in coryneform bacteria than when arabinose is not added. [1] to [1] [7] The nucleic acid according to any one of [7].
  • the gene expression control sequence (R) shows a promoter activity that is at least 35 times higher in coryneform bacteria when arabinose is added than when arabinose is not added. [8] The nucleic acid according to any one of [8]. [10] The gene expression control sequence (R) shows a promoter activity that is at least 50 times higher in coryneform bacteria when arabinose is added than when arabinose is not added. [1] to [1] [9] The nucleic acid according to any one of [9]. [11] The gene expression control sequence (R) shows a promoter activity that is at least 70 times higher in coryneform bacteria when arabinose is added than when arabinose is not added. [1] to [1] [10] The nucleic acid according to any one of [10].
  • nucleic acid according to any one of [1] to [11], wherein the nucleotide sequence (Y) is represented by the following general formula (I): 5′-N 1 TGTN 2 AGCGN 3 TN 4 AN 5 N 6 N 7 -3′—General formula (I)
  • N 1 , N 2 , N 3 , N 4 , N 5 , N 6 and N 7 each independently represent A (adenine), G (guanine), C (cytosine) or T (thymine).
  • T (thymine) should be read as U (uracil).
  • nucleic acid according to any one of [1] to [12], wherein the gene expression control sequence (R) comprises any one of the following nucleotide sequences (1) to (o): (L) the nucleotide sequence set forth in any one of SEQ ID NOs: 22 to 61 and SEQ ID NOs: 96 to 102; (M) a nucleotide sequence in which one or more bases have been deleted, substituted or added in the nucleotide sequence according to (l); (N) a nucleotide sequence that hybridizes under stringent conditions with a nucleotide sequence that is complementary to the nucleotide sequence according to (l); and (o) at least 80% or more of the nucleotide sequence according to (l) Nucleotide sequences having identity, However, when the nucleic acid is RNA, thymine (t) in the base sequence is replaced with uracil (u).
  • the SD sequence is directly or indirectly linked to the 3 ′ end of the nucleotide sequence (Y).
  • nucleic acid according to any one of [1] to [16], comprising a nucleotide sequence encoding at least one of an araE protein and an araR protein derived from a coryneform bacterium.
  • nucleic acid comprising a nucleotide sequence encoding at least one of an araE protein and an araR protein derived from a coryneform bacterium.
  • nucleic acid comprising a nucleotide sequence encoding at least one of an araE protein and an araR protein derived from a coryneform bacterium.
  • R gene expression control sequence
  • the nucleic acid according to any one of [1] to [21] which is DNA.
  • the following bacteria are provided.
  • the bacterium according to [23] which is an Escherichia bacterium.
  • DNA having at least one nucleotide sequence encoding each of araE protein and araR protein derived from coryneform bacteria is incorporated into genomic DNA, and said genomic DNA can express said araE protein and araR protein
  • the expression method of the following target genes is provided.
  • a method for expressing a target gene comprising exposing the bacterium according to any one of [23] to [26] to arabinose or an analog thereof to express the target gene.
  • a method for producing a target substance which comprises expressing the target gene by exposing the bacterium according to any one of [23] to [26] to arabinose or an analog thereof.
  • nucleic acid fragments for use in controlling expression of a target gene in coryneform bacteria, A nucleic acid fragment comprising the nucleotide sequence (Y) described in the following (a) or (b): (A) the nucleotide sequence set forth in any one of SEQ ID NOs: 5 to 9, 11, and 12 and SEQ ID NOs: 17 and 18; (B) a nucleotide sequence in which one or more bases have been deleted, substituted or added in the nucleotide sequence described in (a) above,
  • the nucleic acid is RNA
  • thymine (t) in the nucleotide sequence shall be read as uracil (u)
  • the nucleotide sequence shown in each of SEQ ID NOs: 10, 20, and 21 as the nucleotide sequence (Y) is excluded, and the nucleotide sequence (Y) satisfies the following condition (II)
  • efficient and precise gene expression control can be performed, and an efficient bioprocess can be provided.
  • the expression suppression state of the target gene is released and the expression of the target gene can be promoted, so that the operation and work in the bioprocess becomes easy.
  • FIG. 4 is a diagram schematically showing the structure of a plasmid vector constructed in Test Example 3.
  • A) shows the structure of plasmid vector pGE837, and
  • B) shows the structure of plasmid vector pAra1. It is a figure which shows the result of the reporter assay implemented in Test Example 3.
  • A shows the structure of the plasmid vector pGE728-1 constructed in Test Example 1
  • b shows the structure of the plasmid vector pGE716 constructed in Test Example 3.
  • FIG. 4 is a diagram schematically showing the structure of a plasmid vector constructed in Test Example 3.
  • A) shows the structure of plasmid vector pGE837, and
  • (b) shows the structure of plasmid vector pAra1. It is a figure which shows the result of the reporter assay implemented in Test Example 3.
  • not added indicates a sample without arabinose added
  • added indicates a sample with arabinose added
  • induction rate indicates a promoter activity value / sample without arabinose added with the arabinose added sample. The ratio of the promoter activity value (fold) is shown. It is a figure which shows the result of the reporter assay implemented in Test Example 3.
  • not added refers to a sample without arabinose added. It is a schematic diagram showing the promoter region of the araE gene in Corynebacterium glutamicum ATCC31831 genomic DNA.
  • the “nucleic acid” according to the present invention is a nucleic acid for use in controlling expression of a target gene in bacteria including coryneform bacteria.
  • the nucleic acid according to the present invention may be provided in any form of DNA (deoxyribonucleic acid) and RNA (ribonucleic acid).
  • the nucleic acid according to the present invention may be in a single-stranded or double-stranded form.
  • the nucleic acid is specifically an isolated nucleic acid, cDNA or cRNA.
  • the nucleic acid of the present invention is DNA.
  • RNA Ribonucleic acid
  • the predetermined gene expression control function of the present invention is exerted.
  • it may be provided in the form of RNA.
  • Techniques for converting RNA into DNA using reverse transcriptase and the like are known to those skilled in the art.
  • the nucleic acid may be subjected to chemical modification such as methylation.
  • the nucleic acid according to the present invention may be any nucleic acid as long as the gene expression control sequence (R) satisfies the above (I) when promoter activity is measured by a reporter assay or the like as described later.
  • the nucleic acid may or may not have a nucleotide sequence encoding the target gene.
  • the nucleic acid according to the embodiment that does not include the nucleotide sequence encoding the target gene is specifically an expression plasmid construct (nucleotide sequence encoding the target gene) to be used for expression of the target gene in bacteria including coryneform bacteria. Is an expression cassette or expression vector (that is, before inserting a target gene into a predetermined cloning site).
  • the “coryneform bacterium” refers to a group of microorganisms defined in Barges Manual of Detergent Bacteriology, Vol. 8, p. 599, 1974. More specifically, the coryneform bacteria include Corynebacterium, Brevibacterium, Arthrobacter, Mycobacterium, Micrococcus. ) Genus, Microbacterium genus and the like.
  • Corynebacterium glutamicum for example, FERM P-18976 strain, ATCC13032 strain, ATCC31831 strain, ATCC13058 strain, ATCC13059 strain, ATCC13060 strain, ATCC13232 strain, ATCC13286 strain, ATCC13345 strain, ATCC13345 strain, ATCC13345 strain, ATCC13345 strain, ATCC13345 strain ATCC13761 strain, ATCC14020 strain); Corynebacterium acetoglutamicum (eg ATCC 15806 strain); Corynebacterium acetoacidophilum (eg, ATCC 13870 strain); Corynebacterium melasscola (eg ATCC 17965 strain); Corynebacterium efficiens ; Corynebacterium alkanolyticum (for example, ATCC 21511 strain); Corynebacterium callunae (eg ATCC 15991 strain); Corynebacterium lil
  • Corynebacterium herculis for example, ATCC 13868 strain.
  • Corynebacterium ammoniagenes (Corynebacterium Sutationisu) (Corynebacterium ammoniagenes (Brevibacterium ammoniagenes) ( for example ATCC6871 shares, ATCC6872 shares).
  • Brevibacterium divaricatum eg, ATCC 14020 strain
  • Brevibacterium flavum eg, MJ-233 (FERM BP-1497) strain, MJ-233AB-41 (FERM BP-1498) strain, ATCC 13826 strain, ATCC 14067 strain, ATCC 13826 strain
  • Brevibacterium immariophyllum eg, ATCC 14068 strain
  • Brevibacterium lactofermentum Corynebacterium glutamicum
  • Brevibacterium lactofermentum (Corynebacterium glutamicum)
  • Brevibacterium lactofermentum (Corynebacterium glutamicum)
  • Brevibacterium roseum eg, ATCC 13825 strain
  • Brevibacterium saccharolyticum eg, ATCC 14066 strain
  • Brevibacterium thiogenitalis eg, ATCC 19240 strain
  • Brevibacterium album eg ATCC 15111 strain
  • Brevibacterium cerinum for example, ATCC 15
  • Arthrobacter include the following species and strains.
  • Arthrobacter globiformis for example, ATCC 8010 strain, ATCC 4336 strain, ATCC 21056 strain, ATCC 31250 strain, ATCC 31338 strain, ATCC 35698 strain
  • ATCC 8010 strain for example, ATCC 8010 strain, ATCC 4336 strain, ATCC 21056 strain, ATCC 31250 strain, ATCC 31338 strain, ATCC 35698 strain
  • Micrococcus fredenreichii [for example, No. 239 (FERM P-13221) strain]; Micrococcus luteus [e.g. 240 (FERM P-13222) strain]; Micrococcus ureae (for example, IAM1010 strain); Micrococcus roseus (for example, IFO3764 strain) and the like.
  • Micrococcus fredenreichii [for example, No. 239 (FERM P-13221) strain]
  • Micrococcus luteus [e.g. 240 (FERM P-13222) strain]
  • Micrococcus ureae for example, IAM1010 strain
  • Micrococcus roseus for example, IFO3764 strain
  • microbacterium ammoniaphilum for example, ATCC 15354 strain.
  • the ATCC is an abbreviation for American Type Culture Collection (PO Box 1549 Manassas, VA 20108 USA), and the above ATCC stocks can be sold by the same organization. .
  • the coryneform bacterium may be a wild-type strain that originally exists in nature, or a set in which genomic DNA or plasmid DNA is manipulated or a predetermined gene or artificial sequence is introduced into these DNAs. It may be a substitute. Further, the coryneform bacterium may be a mutant produced by exposure to a predetermined chemical substance or environmental condition.
  • nucleotide sequence (X) capable of functioning as a promoter in coryneform bacteria refers to a nucleotide sequence exhibiting promoter activity in any one or more of the species / strains belonging to coryneform bacteria as described above. Point to.
  • the nucleotide sequence (X) may be an artificially synthesized sequence or a natural sequence present in an organism including bacteria.
  • nucleotide sequence (X) capable of functioning as a promoter in coryneform bacteria means that RNA polymerase specifically binds in coryneform bacteria and initiates transcription to mRNA by the transcription activity of the RNA polymerase.
  • RNA polymerase specifically binds in coryneform bacteria and initiates transcription to mRNA by the transcription activity of the RNA polymerase.
  • operator sequences for example, lacO
  • ribosome binding sequences (Shine-Dalgarno sequence; SD sequence), etc.
  • promoter refers to only a nucleotide sequence that can purely initiate transcription into mRNA by the transcription activity of RNA polymerase.
  • nucleic acid according to the present invention is not intended to exclude the presence of additional gene regulatory sequences as described above.
  • the nucleotide sequence (X) is not particularly limited as long as it can function as a promoter in any one or more of strains / strains belonging to coryneform bacteria.
  • an embodiment that employs a nucleotide sequence that exhibits promoter activity in common for all species belonging to coryneform bacteria is preferred.
  • a nucleotide sequence that can function as a promoter in the genus Escherichia eg, Escherichia coli
  • the nucleotide sequence (X) is a promoter sequence derived from the 5 ′ upstream region of a gene endogenous to bacterial genomic DNA, including coryneform bacteria as described above, autonomous replication in these bacteria.
  • the promoter sequences derived from these bacteria and phages may be wild-type sequences, or may be those obtained by introducing a predetermined mutation into the wild-type sequences.
  • the promoter sequence is located 5 ′ upstream of the transcription start point and is known to be characterized by a ⁇ 35 box and a ⁇ 10 box. Therefore, the primer extension method, quantitative RT-PCR, etc. It is also possible to determine the transfer start point by the known method, and obtain the transfer start point in consideration of the determined transfer start point information. That is, in the present invention, a known promoter sequence may be used as the nucleotide sequence (X), but the present invention is not particularly limited thereto, and a promoter sequence newly obtained as described above may be used, or an artificial sequence may be used. Alternatively, a newly created promoter may be used.
  • the types of promoter sequences that can be used as the nucleotide sequence (X) in the present invention include an inducible promoter that can induce expression of a target gene by adding specific culture conditions or chemical substances, and RNA polymerase. Examples thereof include a constitutive promoter that depends on availability and enables constant expression.
  • the type of promoter used as the nucleotide sequence (X) is not particularly limited, but is preferably a constitutive promoter. This is because when the nucleotide sequence (X) can function as a constitutive promoter, the nucleotide sequence (X) can be used under the absence of arabinose due to the presence of the predetermined nucleotide sequence (Y) of the present invention. ) Can be strictly suppressed, and the suppression state of the promoter activity can be released by a simple operation of adding arabinose, so that significant expression of the target gene can be promptly induced.
  • the nucleotide sequence (X) may be a promoter of an enzyme gene involved in various amino acid biosynthesis systems in bacteria including coryneform bacteria or a derivative thereof (mutation introduction sequence). More specifically, glutamate biosynthesis enzyme genes (eg, glutamate dehydrogenase genes), glutamine synthesis enzyme genes (eg, glutamine synthase genes), lysine biosynthesis enzyme genes (eg, aspartokinase genes), threonine biosynthesis Synthetic genes (eg homoserine dehydrogenase gene), isoleucine and valine biosynthesis enzyme genes (eg acetohydroxy acid synthase gene), leucine biosynthesis enzyme genes (eg 2-isopropylmalate synthase gene), proline and Arginine biosynthesis enzyme genes (eg glutamate kinase gene), histidine biosynthesis enzyme genes (eg phosphoribosyl-ATP pyrophosphorylase gene), aromatic amino acid biosynthesis systems such as tryptophan,
  • the nucleotide sequence (X) may be a promoter of a gene encoding a factor involved in cell division, such as a divIVA gene promoter.
  • a promoter that operates in the logarithmic growth phase as a nucleotide sequence (X) is also preferably used, for example, divIVA, gap, ldhA, fda, glyA, cysK, aroF, gpmA, eno, fumC, pfk, sdhA, mdh, argF
  • Examples include promoters of various genes such as proA, proC, aceE, serA, metE, nifS1, tpi, aceD, cysD, sdhB, and pck.
  • nucleotide sequence (X) strong promoters used in E. coli expression systems such as trc promoter, tac promoter, T5 promoter, T7 promoter, lac promoter, trp promoter, tet promoter and the like are also preferably used.
  • the nucleotide sequence (X) is disclosed in EF-Ts promoter, EF-Tu promoter, groES promoter, SOD promoter, P15 promoter, gapA promoter, dapA promoter, tuf promoter, metE promoter, and Patent Documents 1 to 13.
  • Various promoters can also be used.
  • the gene expression control sequence (R) in the nucleic acid according to the present invention includes the nucleotide sequence (Y) described in the above (a) or (b) in addition to the nucleotide sequence (X).
  • nucleotide sequence described in (a) is the nucleotide sequence described in any one of SEQ ID NOs: 5 to 12. These nucleotide sequences are derived from the AraR protein binding sequence present on the genomic DNA of Corynebacterium glutamicum. Their nucleotide sequences are shown below.
  • nucleic acid adopting the nucleotide sequence described in any one of SEQ ID NOs: 5 to 12 and SEQ ID NOs: 17 and 18 as a nucleotide sequence (Y) was introduced into a coryneform bacterium.
  • a nucleic acid adopting the nucleotide sequence described in any one of SEQ ID NOs: 5 to 12 and SEQ ID NOs: 17 and 18 as a nucleotide sequence (Y) was introduced into a coryneform bacterium.
  • nucleotide sequences of (a) and (b) are preferred.
  • nucleotide sequence (Y) in order to realize the gene expression control effect at a more remarkable level, it is even more preferable to employ the nucleotide sequence defined in (a) above as the nucleotide sequence (Y). It is still more preferable to employ the nucleotide sequence shown in any of (i) to (vi) above, and a higher effect can be expected as going from (i) to (vi).
  • nucleotide sequence (Y) is defined in the above (b) on the assumption that the gene expression control sequence (R) satisfies the condition (I) in addition to the nucleotide sequence defined in the above (a).
  • Nucleotide sequences can also be employed. That is, the nucleotide sequence defined in (b) is a nucleotide sequence described in any one of SEQ ID NOs: 5 to 12 and SEQ ID NOs: 17 and 18, wherein one or more bases are deleted, substituted, or added. Nucleotide sequence.
  • the range of “one or more” is not particularly limited as long as the gene expression control sequence (R) satisfies the condition (I).
  • the range is, for example, 1 to 10, 1 to 9, 1 to 8, preferably 1 to 7, more preferably 1 to 6, even more preferably 1 to 5, particularly preferably 1 to There can be four, one to three, one to two, or one.
  • nucleotide sequence (Y) is a nucleotide sequence represented by the following general formula (I). 5′-N 1 TGTN 2 AGCGN 3 TN 4 AN 5 N 6 N 7 -3′—General formula (I)
  • N 1 , N 2 , N 3 , N 4 , N 5 , N 6 and N 7 each independently represent A (adenine), G (guanine), C (cytosine) or T (thymine).
  • N 1 is preferably A (adenine) or G (guanine)
  • N 2 is preferably G (guanine) or T (thymine)
  • N 3 is A (adenine)
  • C N 4 is preferably A (adenine), C (cytosine) or G (guanine)
  • N 5 is A (adenine) or C (cytosine).
  • N 6 is preferably A (adenine), C (cytosine) or T (thymine)
  • N 7 is preferably C (cytosine) or T (thymine).
  • T (thymine) is read as U (uracil).
  • any position (for example, 1 to 3 positions or 1 to 2 positions) of N 1 to N 7 nucleotides is deleted in the nucleotide sequence represented by the general formula (I).
  • a nucleotide sequence can be employed as the nucleotide sequence (Y).
  • a nucleotide sequence in which one or both of N 2 and N 3 are deleted is a nucleotide sequence (Y). May be adopted.
  • the positional relationship between the nucleotide sequence (X) and the nucleotide sequence (Y) is not particularly limited as long as the gene expression control sequence (R) satisfies the condition (I).
  • the nucleotide sequence (Y) may be linked directly or indirectly to the 5 ′ end of the nucleotide sequence (X), or the nucleotide sequence (Y) is linked directly or indirectly to the 3 ′ end of the nucleotide sequence (X). May be.
  • the nucleotide sequence (Y) may exist in an untranslated region or an intergenic region, or may exist in a region (open reading frame) encoding a predetermined gene.
  • nucleotide sequence (X) and at least a part of the nucleotide sequence (Y) overlap can be included in the present invention.
  • Specific examples of embodiments in which at least a part of the nucleotide sequence (X) and at least a part of the nucleotide sequence (Y) overlap each other include the following.
  • nucleotide sequence (Y) i) a form in which the entire nucleotide sequence (Y) is encompassed within the nucleotide sequence (X) region; ii) a form in which the 3 ′ part of the nucleotide sequence (Y) overlaps with the 5 ′ part of the nucleotide sequence (X); and iii) A form in which the 5 ′ part of the nucleotide sequence (Y) overlaps with the 3 ′ part of the nucleotide sequence (X).
  • nucleotide sequences (X) and (Y) are not particularly limited, but the nucleotide sequence (Y) may be converted into the nucleotide sequence (X) in order to reliably produce the predetermined effect. ) Is preferably directly or indirectly linked to the 3 ′ end.
  • the nucleotide sequence (Y) is indirectly linked to the nucleotide sequence (X)
  • the 3 ′ end or 5 ′ end of the nucleotide sequence (Y) is the 5 ′ end or 3 ′ of the nucleotide (Y)
  • a phrase such as “indirectly linked to the end” means that the nucleotide sequence (X) and the nucleotide sequence (Y) are linked via a sequence consisting of one nucleotide or a plurality of nucleotides.
  • the number of nucleotides in the “sequence consisting of a plurality of nucleotides” is not particularly limited as long as the gene expression control sequence (R) satisfies the condition (I).
  • the “sequence consisting of a plurality of nucleotides” linking the nucleotide sequence (X) and the nucleotide sequence (Y) may be a simple linker sequence not having a specific function, or may be a further promoter sequence Further, it may be a sequence having a gene expression regulation function such as a ribosome binding sequence (Shine-Dalgarno sequence; SD sequence), other transcriptional regulatory sequences and translational regulatory sequences.
  • nucleotide sequence (Y) is directly linked to the nucleotide sequence (X)
  • the 3 ′ end or 5 ′ end of the nucleotide sequence (Y) is the 5 ′ end or 3 ′ end of the nucleotide (Y)
  • the phrase “directly linked to” may be understood literally, and the nucleotide sequence (X) and the nucleotide sequence (Y) do not go through one or more other nucleotides as described above. Means directly connected to
  • each of the nucleotide sequence (X) and the nucleotide sequence (Y) may be present one by one or plural in the nucleic acid of the present invention.
  • the plurality of nucleotide sequences (X) or nucleotide sequences (Y) have exactly the same sequence as each other. Or may have a different sequence.
  • condition (I) will be described.
  • the significance of satisfying the condition (I) by the gene expression control sequence (R) in the present invention is as follows.
  • the gene expression control sequence (R) includes the nucleotide sequence (X) functioning as a promoter for controlling the expression of the target gene and the AraR binding sequence present in the genomic DNA of the coryneform bacterium. Is included as a nucleotide sequence (Y).
  • the AraR protein binds to the nucleotide sequence (Y) in the coryneform bacterium into which the predetermined nucleic acid of the present invention has been introduced in an environment where the arabinose concentration is below the basal level. As a result, it is presumed that the promoter activity of the nucleotide sequence (X) is suppressed. However, when the coryneform bacterium is exposed to an environment in which the arabinose concentration exceeds the basal level, the AraR protein is subjected to allosteric regulation by arabinose and dissociated from the nucleotide sequence (Y).
  • the promoter activity of X) is induced and the expression of the target gene is promoted. That is, when the expression of the target gene is controlled using the nucleic acid according to the present invention, the phenomenon actually observed is that the promoter activity by the nucleotide sequence (X) is suppressed in an environment where the arabinose concentration is below the basal level. Thus, the expression of a predetermined gene under the control of the promoter activity of the nucleotide sequence (X) is suppressed at the level of transcription into mRNA or protein expression. On the other hand, in an environment where the arabinose concentration exceeds the basal level, the expression of the predetermined gene is promoted at the level of mRNA transcription or protein expression.
  • the gene expression control sequence (R) has the condition (I) that in the coryneform bacterium, the promoter activity of the nucleotide sequence (X) is suppressed when arabinose is not added compared to when arabinose is added. It is necessary to satisfy Here, the sufficiency of the condition (I) can be confirmed by a reporter assay shown below.
  • a DNA fragment obtained by linking a nucleotide sequence encoding a reporter gene to the 3 ′ end of the gene expression control sequence (R) configured as described above is introduced into a predetermined site of an expression vector that can function in coryneform bacteria.
  • the reporter gene include ⁇ -galactosidase gene (LacZ), ⁇ -glucuronidase, chloramphenicol acetyltransferase, various fluorescent proteins (eg, green fluorescent protein), and the like.
  • a nucleotide sequence encoding a reporter gene is directly or indirectly linked to the 3 ′ end of the gene expression control sequence (R), such as an expression vector plasmid having the nucleotide sequence shown in SEQ ID NO: 80 or 81.
  • R gene expression control sequence
  • a reporter plasmid may be constructed independently, or various reporter plasmid systems commercially available for reporter assays may be utilized. Then, a transformant in which such a DNA construct is introduced into coryneform bacteria is obtained.
  • the transformant is cultured for a certain period of time using a medium containing arabinose at a predetermined concentration or more and a medium containing arabinose less than a predetermined concentration, and the culture solution is sampled.
  • mRNA of the reporter gene is quantified by a technique such as quantitative PCR, or the activity of the reporter protein expressed from the reporter gene is appropriately measured.
  • the sufficiency of condition (I) can be determined by determining how many times the expression level of mRNA or reporter protein activity measured for the former culture solution sample is measured for the latter culture solution sample. it can.
  • the sufficiency of the condition (I) can be confirmed by, for example, a reporter assay method shown in the following examples. That is, in the plasmid vector pGE728-1 (SEQ ID NO: 80) used in Test Example 1 of the Examples below, a promoter sequence (PtacI) and an AraR binding sequence existing upstream of the reporter gene ⁇ -galactosidase gene (LacZ) By exchanging the region (SEQ ID NO: 32) formed by ligation with the gene regulatory sequence (R) to be evaluated for the sufficiency of the condition (I), and performing a reporter assay using the resulting plasmid vector, It is convenient to confirm the sufficiency of the condition (I) of the gene regulatory sequence (R).
  • a reporter assay method shown in the following examples. That is, in the plasmid vector pGE728-1 (SEQ ID NO: 80) used in Test Example 1 of the Examples below, a promoter sequence (PtacI) and an AraR binding sequence existing
  • assay conditions including conditions for induction by addition of arabinose, medium conditions, culture conditions such as culture temperature and culture time, etc. are not particularly limited as long as a reliable ratio of promoter activity can be obtained.
  • the assay conditions may be appropriately adjusted in consideration of the nature of the gene expression control sequence (R) to be selected, the type and nature of the reporter gene to be used, the nature of the coryneform bacterium to be used, and the like.
  • ⁇ -galactosidase gene (LacZ) assay is described in, for example, J. Org. Biol. Chem. 1995, 270: 11811-11189 or Genetics, 2010, 185: 823-830. A specific procedure is shown below as an example.
  • liquid medium 4% glucose, 25 ⁇ g / mL kanamycin
  • Each of the above cultures is cultured for a predetermined time, the cultures with and without arabinose are sampled, OD (610 nm) is measured, and 20 ⁇ L of 80 ⁇ L of permeation buffer (100 mM Na 2 HPO 4 , 20 mM KCl, 2 mM MgSO 4 , 0.8 mg / mL CTAB, 0.4 mg / mL sodium deoxycholate, 5.4 ⁇ L / mL ⁇ mercaptoethanol).
  • permeation buffer 100 mM Na 2 HPO 4 , 20 mM KCl, 2 mM MgSO 4 , 0.8 mg / mL CTAB, 0.4 mg / mL sodium deoxycholate, 5.4 ⁇ L / mL ⁇ mercaptoethanol.
  • a substrate solution (60 mM Na 2 HPO 4 , 40 mM NaH 2 PO 4 , 1 mg / mL ONPG, 2.7 ⁇ L / mL ⁇ mercaptoethanol) is mixed with 600 ⁇ L and incubated at 25 ° C.
  • the absorbance (A420) of the supernatant is measured.
  • a mirror unit (Miller Unit) is calculated as the promoter activity.
  • 1 mirror unit 1000 ⁇ (A420 / t ⁇ V ⁇ OD610)
  • Formula (II) In the formula, t represents time (minutes), and V represents a culture solution (mL).
  • the culture medium which has the composition shown below, for example can be used.
  • the promoter activity value measured for the sample in which the promoter activity of the nucleotide sequence (X) was induced by the addition of arabinose or the like was measured for the control sample without arabinose added.
  • the meaning of “inducing the promoter activity by adding arabinose or the like” is only arabinose.
  • nucleotide sequence (Y) when another gene expression control factor (for example, lacO) is used, control by the other gene expression control factor in addition to arabinose addition is possible. This means that the necessary operations are required.
  • the gene expression control sequence (R) is, paradoxically, a promoter whose promoter activity value measured for a control sample without arabinose added is measured for a sample in which the promoter activity of the nucleotide sequence (X) is induced.
  • the activity value is preferably 1/5 or less, in this case, more preferably 1/10 or less, still more preferably 1/15 or less, 1/20 or less, 1/25 or less, 1/30 or less, 1 / 35 or less, 1/40 or less or 1/45 or less, particularly preferably 1/50 or less, 1/55 or less, 1/60 or less, 1/65 or less, 1/70 or less, 1/80 or less, 1/90 or less 1/100 or less, or 1/150 or less.
  • the sample without arabinose added The measured promoter activity is preferably 10 mirror units or less.
  • the upper limit of the promoter activity measured for a sample without arabinose added is preferably 9, more preferably 8, 7, 6, 5, 4, particularly preferably 3.5, 3.4, 3.3. 3.2, 3.1, 3.0, 2.9, 2.8, 2.7, 2.6, 2.5, 2.4, 2.3, 2.2, 2.1, 2 0.0, 1.9, 1.8, 1.7, 1.6, 1.2, 1.1, 1.0 (units are mirror units).
  • a gene expression control sequence comprising any one of the following nucleotide sequences (p) to (s) can be employed.
  • P the nucleotide sequence set forth in any one of SEQ ID NOS: 22 to 41;
  • Q a nucleotide sequence in which one or more bases are deleted, substituted or added in the nucleotide sequence according to (p);
  • R a nucleotide sequence that hybridizes under stringent conditions with a nucleotide sequence that is complementary to the nucleotide sequence according to (p); and (s) at least 80% or more of the nucleotide sequence according to (p) Nucleotide sequences having identity, However, when the nucleic acid is RNA, thymine (t) in the nucleotide sequence is read as uracil (u).
  • SEQ ID NOs: 22 to 41 Each nucleotide sequence shown in SEQ ID NOs: 22 to 41 is shown below.
  • a gene expression control sequence containing any one of the following nucleotide sequences (t) to (s) can also be employed.
  • T the nucleotide sequence according to any one of SEQ ID NOs: 42 to 61;
  • U a nucleotide sequence in which one or more bases are deleted, substituted or added in the nucleotide sequence described in (t);
  • V a nucleotide sequence that hybridizes under stringent conditions with a nucleotide sequence that is complementary to the nucleotide sequence described in (t); and (w) at least 80% or more of the nucleotide sequence described in (t) Nucleotide sequences having identity, However, when the nucleic acid is RNA, thymine (t) in the nucleotide sequence is read as uracil (u).
  • SEQ ID NOs: 42 to 61 The nucleotide sequences shown in SEQ ID NOs: 42 to 61 are shown below.
  • SEQ ID NO: 43 (2-3): 5′-TTGACAATTTAATCATCGAACTAGTTTAATGTGTGGA ATGTGAGCGCTAACAC- 3 ′
  • the underlined sequence corresponds to the nucleotide sequence (Y), and the other 5 ′ upstream region is a nucleotide sequence. It corresponds to (X).
  • the nucleotide sequences (Y) in the gene expression control sequences (R) shown in (1-1) to (1-20) correspond to the nucleotide sequences shown in SEQ ID NOs: 5 to 12 and SEQ ID NOs: 17 and 18, respectively.
  • the nucleotide sequences (Y) in the gene expression control sequences (R) shown in (2-1) to (2-20) also correspond to the nucleotide sequences shown in SEQ ID NOs: 5 to 12 and SEQ ID NOs: 17 and 18, respectively.
  • the nucleotide sequence (X) in the sequences shown in (1-1) to (1-10) is a PtacI -35 box, -10 box and transcription frequently used in an expression system in Escherichia coli (E. coli). It is a core sequence including the start site (+1) and is a sequence considered necessary and sufficient for expression of promoter activity (Li et al. Microbial Cell Factories 2012, 11:19).
  • the nucleotide sequence (X) in the gene regulatory sequence (R) shown in (1-11) to (1-20) has a transcription start site (+1) in the PtacI sequence generally recognized by those skilled in the art. ) From the entire upstream region, and 6 nucleotides are further added to the 5 ′ end of the core sequence (Proc. Natl. Acad. Sci. USA, Vol. 80, pp. 21). -25, January 1983).
  • PtacI SEQ ID NO: 1 or 2
  • R gene expression control sequence
  • nucleotide sequence (X) it is also preferable to use not only PtacI but also PtacII (SEQ ID NO: 3 or 4) as the nucleotide sequence (X).
  • PtacI SEQ ID NO: 3 or 4
  • the nucleotide sequences shown in the above (t) to (w) are included.
  • R gene expression control sequence
  • the nucleotide sequence (X) in the sequence shown in (2-1) to (2-10) defined in (t) above is the PtacII ⁇ 35 box often used in the expression system in Escherichia coli (E. coli).
  • nucleotide sequence (X) in the sequences shown in (2-11) to (2-20) is a sequence including the entire region upstream from the transcription start site (+1) in the PtacII sequence generally recognized by those skilled in the art. (6 nucleotides are further added to the 5 ′ end of the core sequence), and high promoter activity can be expressed in the same manner as PtacI (see the above-mentioned document).
  • a gene expression control sequence including any one of the following nucleotide sequences (h) to (k) can also be employed.
  • H the nucleotide sequence set forth in any one of SEQ ID NOs: 96 to 102;
  • I a nucleotide sequence in which one or more bases are deleted, substituted or added in the nucleotide sequence according to (h);
  • J a nucleotide sequence that hybridizes under stringent conditions with a nucleotide sequence that is complementary to the nucleotide sequence according to (h); and
  • Each of the nucleotide sequences shown in SEQ ID NOs: 96 to 102 is, as a nucleotide sequence (X), a tuf promoter, a dapA promoter, a metE promoter, a ldhA promoter, a gapA promoter, sod, which are present on the genome of Corynebacterium glutamicum ATCC 13031, respectively. It includes the nucleotide sequence of the promoter and the tuf promoter, and the nucleotide sequence shown in SEQ ID NO: 5 as the nucleotide sequence (Y).
  • nucleotide sequence according to SEQ ID NO: 102 is obtained by changing the linking site of the AraR binding sequence to the tuf promoter with respect to the nucleotide sequence according to SEQ ID NO: 96, which also employs the tuf promoter.
  • the putative transcription region 5 ′ terminal site is overlapped with the 5 ′ terminal region of the AraR binding sequence.
  • nucleotide sequence in the nucleotide sequence according to any one of SEQ ID NOs: 96 to 102 (h) ( Implementation including various modifications in which the region of X) (that is, the nucleotide sequence portion according to SEQ ID NO: 5) is substituted with the nucleotide sequence described in any one of SEQ ID NO: 6 to 12 and SEQ ID NOs: 17 and 18 A form (V) is mentioned.
  • the range of “one or more” is defined by the gene expression control sequence (R).
  • the range is, for example, 1 to 40, 1 to 35, 1 to 30, 1 to 30, 1 to 25, 1 to 20, 1 to 18, 1 to 15, 1 to 12 1 to 10, preferably 1 to 9, 1 to 8, 1 to 7, more preferably 1 to 6, even more preferably 1 to 5, particularly preferably 1 to 4, 1 to There can be three, one to two, or one.
  • nucleotide sequence hybridizing under stringent conditions is specifically Specifically, in the nucleic acid hybridization method such as the colony hybridization method, the plaque hybridization method, or the Southern blot hybridization method, the nucleotide sequence described in (p), (t) or (h) is used as a standard. A nucleotide sequence that forms a complex that is complementary to a nucleotide sequence that is complementary to the nucleotide sequence.
  • stringent hybridization conditions include 6M urea, 0.4% SDS, 0.5 ⁇ SSC, or 0.1% SDS (60 ° C., 0.3 mol NaCl, 0.03M sodium citrate). ) Hybridization conditions or stringent hybridization conditions equivalent to these. Under conditions of higher stringency, for example, conditions of 6M urea, 0.4% SDS, 0.1 ⁇ SSC, nucleotide sequences with higher homology can be identified.
  • nucleotide sequences shown in (s), (w) and (k) are nucleotide sequences having at least about 80% sequence identity with the nucleotide sequences described in (p), (t) and (h), respectively. It is. Furthermore, the nucleotide sequences shown in (s), (w) and (k) have at least about 85% sequence identity to the nucleotide sequences described in (p), (t) and (h), respectively.
  • the nucleotide sequence is preferably about 90% or more, and more preferably about 91% or more, 92% or more, 93% or more, 94% or more, 95% or more. 96% or more, 97% or more, 98% or more, 99% or more nucleotide sequence.
  • the gene expression control sequence (R) in the nucleic acid according to the present invention may further include other gene expression regulatory sequences in addition to the nucleotide sequences (X) and (Y).
  • examples of such other gene expression regulatory sequences include further transcription regulatory sequences such as a lac operator, translation regulatory sequences such as a ribosome binding sequence (Shine-Dalgarno sequence; SD sequence), and the like.
  • the nucleic acid according to the present invention is provided in the form of an expression cassette, an expression vector or the like, for example, the SD sequence shown in (3-1) to (3-6) below may be included.
  • the position of the SD array is not particularly limited as long as the desired effect of the present invention can be obtained.
  • the SD sequence should be present between the 3 ′ end of the nucleotide sequence (Y) and the start codon.
  • the SD sequence is linked directly or indirectly to the 3 ′ end of the nucleotide sequence (Y).
  • the SD sequence shown in (3-1) is an SD sequence combined with PtacI and PtacII, and as shown in the following examples, ensures strict gene expression control of the target gene using arabinose.
  • a high gene expression level at the protein expression level can be promised. More specifically, the embodiments according to the above (p) to (s), the embodiments according to (t) to (w), the embodiments according to (h) to (k), and the modifications described above.
  • nucleotide sequence defined in each of (p), (t) and (h) is directly ligated to the 3 ′ end of the nucleotide sequence and the sequence shown in (4-1) below.
  • the nucleic acid is a terminator (transcription termination) that can function in bacteria (especially Escherichia coli and / or coryneform bacteria). Signal) (eg, T rnb , T GroEL , T trp , T T7 ).
  • the position of the terminator is not particularly limited as long as the desired effect of the present invention is obtained.
  • the terminator can be directly or indirectly linked to the 3 ′ end of the nucleotide sequence (Y) or the SD sequence.
  • a terminator can be directly or indirectly linked to the 3 ′ end of the cloning site.
  • a terminator can be linked directly or indirectly to the 3 ′ end of the target gene coding region.
  • nucleic acid according to the present invention may optionally further comprise a nucleotide sequence encoding at least one of araE protein and araR protein. This is because if the araE protein and araR protein are forcibly expressed in the microbial cells, the certainty and strictness of gene expression control by addition of arabinose can be ensured.
  • nucleotide sequence (Y) is derived from the AraR binding sequence present in the genomic DNA of Corynebacterium glutamicum as described above, coryneform bacteria, preferably Corynebacterium, more preferably Corynebacterium It is preferably a nucleic acid (DNA) into which at least one of the araE gene coding sequence and the araR gene coding sequence present in the genomic DNA of bacteria glutamicum is inserted.
  • nucleic acid according to the present invention may further comprise one or more nucleotide sequences selected from the group consisting of at least one replication origin, a selection marker gene, a cloning site and a restriction enzyme recognition site.
  • the origin of replication and selectable marker gene may be functional in general bacteria or a plurality of types of bacteria, or may be functional in a specific bacterial species. For example, what contains any one or more of the following is mentioned.
  • an origin of replication and / or a selectable marker gene coding sequence that can function only in coryneform bacteria (2) an origin of replication and / or a selectable marker gene coding sequence that is functional only in Escherichia (eg, Escherichia coli); and (3) an origin of replication that is functional in both coryneform bacteria and Escherichia.
  • Selectable marker gene coding sequence (1) an origin of replication and / or a selectable marker gene coding sequence that can function only in coryneform bacteria; (2) an origin of replication and / or a selectable marker gene coding sequence that is functional only in Escherichia (eg, Escherichia coli); and (3) an origin of replication that is functional in both coryneform bacteria and Escherichia.
  • nucleic acid according to the present invention can be provided as a plasmid capable of autonomous replication in bacteria including coryneform bacteria and Escherichia bacteria.
  • nucleic acids according to the present invention can be provided as expression vectors.
  • the nucleic acid according to the present invention is, for example, provided in the form of a shuttle expression vector that can autonomously replicate in both coryneform bacteria and Escherichia bacteria, and that can express a target gene in coryneform bacteria. There may be.
  • the nucleic acid according to the present invention may further include a nucleotide sequence (Z) linked directly or indirectly to the 3 'end of the nucleotide sequence (Y) and encoding the target gene.
  • the nucleotide sequence (Z) is not an essential component in the nucleic acid according to the present invention.
  • nucleic acid fragment for use in controlling expression of a target gene in coryneform bacteria, A nucleic acid fragment comprising the nucleotide sequence (Y) described in the following (a) or (b): (A) the nucleotide sequence set forth in any one of SEQ ID NOs: 5 to 9, 11, and 12 and SEQ ID NOs: 17 and 18; (B) a nucleotide sequence in which one or more bases have been deleted, substituted or added in the nucleotide sequence described in (a) above, However, When the nucleic acid is RNA, thymine (t) in the nucleotide sequence shall be read as uracil (u), The nucleotide sequence shown in each of SEQ ID NOs: 10, 20, and 21 as the nucleotide sequence (Y) is excluded, and the nucleotide sequence (Y) satisfies the following condition (II): Condition (I
  • the promoter activity of PtacI is preferably suppressed to 1/8 or less, more preferably 1/9 or less, 1/10 or less, 1/15 or less, 1/20 or less, 1/25 or less, and more Preferably 1/30 or less, 1/35 or less, 1/40 or less, 1/45 or less, particularly preferably 1/50 or less, 1/55 or less, 1/60 or less, 1/65 or less, 1/70 or less, 1/80 or less, 1/90 or less, 1/100 or less, or 1/150 or less.
  • the nucleotide sequences shown in SEQ ID NOs: 10, 20, and 21 are natural AraR binding sequences (BS E1 , BS E2 , BS B ) (Non-Patent Document 6).
  • nucleic acid according to the fifth aspect are as described for the nucleic acid according to the first aspect. As long as it does not occur, it can also be adopted in the nucleic acid according to the fifth aspect, and various combinations of these embodiments or features are disclosed herein as embodiments that can be adopted in the nucleic acid according to the fifth aspect. It is. Furthermore, the nucleic acid according to the fifth aspect can also be used in the following further aspects.
  • a bacterium into which the nucleic acid according to the present invention has been introduced is not particularly limited, and examples include Escherichia and the above-mentioned coryneform bacteria (preferably Corynebacterium).
  • the bacterium introduced with the nucleic acid according to the present invention is one in which a nucleic acid containing at least one nucleotide sequence encoding each of the araE protein and araR protein derived from coryneform bacteria is incorporated into genomic DNA so that these proteins can be expressed. May be.
  • the nucleic acid according to the present invention introduced into the bacterium specifically has a nucleotide sequence (Z) encoding a target gene 3 ′ downstream of the gene expression control sequence (R) (nucleotide sequence (Y)). It can be concatenated. This is because when the araE protein and the araR protein are forcibly expressed in the microbial cells, the above-described expression control of the target gene by the addition of arabinose is more reliably and efficiently realized.
  • the nucleic acid according to the present invention similarly encodes araE protein and araR protein, respectively.
  • the at least one nucleotide sequence may not be included, or the at least one nucleotide sequence may be included.
  • a method for expressing a target gene which comprises expressing the target gene by exposing the bacterium introduced with the nucleic acid of the present invention to arabinose or an analog thereof.
  • a method for producing a target substance which comprises expressing a target gene by exposing the bacterium introduced with the nucleic acid of the present invention to arabinose or an analog thereof.
  • a specific embodiment of “exposing a bacterium to arabinose or an analog thereof” in the method of the present invention is not particularly limited as long as promoter activity is induced.
  • the step of culturing the bacterium of the present invention The bacterium may be exposed to arabinose by adding arabinose to the medium.
  • the concentration of arabinose or an analog thereof in the medium is not particularly limited as long as the promoter activity is induced.
  • it is 0.001% or more, preferably 0.005% or more, more preferably 0.00. 007%, still more preferably 0.008% or more, 0.009% or more, particularly preferably 0.01% or more, 0.015% or more, 0.018% or more.
  • the upper limit of the concentration of arabinose or an analog thereof is not particularly limited as long as promoter activity is induced. However, in consideration of cost, it is 5% or less, preferably 3% or less, more preferably 2.5. % Or less.
  • the numerical range in which these upper limit value and lower limit value are arbitrarily combined is disclosed herein as a range of the concentration of arabinose or an analog thereof upon induction of promoter activity, and in a specific embodiment of the present invention. Can be employed.
  • arabinose is more specifically L-arabinose.
  • an arabinose analog (“analog thereof”) is the same gene expression control as arabinose in the presence of the gene control sequence (R) (nucleotide sequence (Y)) in the nucleic acid according to the present invention.
  • R gene control sequence
  • Y nucleotide sequence
  • the induction time of promoter activity by addition of arabinose may be adjusted as appropriate so as to obtain expression of the desired promoter activity, and is not particularly limited.
  • the time can be 5 to 48 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours, and 1 to 6 hours.
  • a sufficient increase in promoter activity and the expression level of the target gene can be ensured in a very short time. Therefore, biotechnology excellent in efficiency / productivity and economy can be secured. Process can be realized.
  • a protein that is the translation product of the target gene may be produced as the target substance, or the protein that is the translation product of the target gene is contained in the microbial cells.
  • a substance for example, a metabolite
  • examples of the protein that is the translation product of the target gene include an enzyme, and the target substance can be produced by progressing metabolism by the recombinant enzyme expressed in the microbial cells.
  • the nucleic acid of the present invention having the above-described configuration includes, for example, genomic DNA or plasmid DNA possessed by various bacteria including coryneform bacteria and Escherichia, and genomic nucleic acids possessed by various bacteriophages capable of infecting these bacteria, and artificially designed It can be produced based on genetic engineering techniques / molecular biological techniques including various cloning techniques and mutagenesis techniques using resources such as nucleic acid fragments having the nucleotide sequences prepared as materials.
  • genetic engineering techniques / molecular biological techniques including various cloning techniques and mutation introduction techniques see, for example, Molecular Cloning: A Laboratory Manual, Fourth Edition (3-Volume Set), Cold Spring Harbor Laboratory Pr, etc.
  • nucleic acid according to the present invention can be produced using such a known technique with reference to the disclosure of the present specification.
  • part or all of the nucleic acid according to the present invention may be produced by chemical synthesis.
  • the bacterium according to the present invention can also be prepared by referring to the disclosure of the present specification and various genetic engineering techniques / molecular biological techniques. Examples of nucleic acids / bacteria according to the present invention, methods for producing them, and methods according to the present invention are shown in the following examples.
  • Test Example 1 In Test Example 1, an araE gene, an araR gene, and an expression vector into which a gene regulatory sequence (R) and a target gene (reporter gene) according to the present invention were introduced were introduced into a coryneform bacterium, and the target gene (reporter gene) The example which controlled the expression of is shown. Details of the test procedure are shown below.
  • K a nR shown in SEQ ID NO: 63, 64 and 65 the nucleotide sequence of the amplified region by PCR for pUCori and PCG1ori.
  • pCG1 is extracted from the above strain according to a conventional method.
  • PldhA-rrnBter / K a nR / pUCori / pCG1ori are arranged in this order.
  • the amplification of the PldhA fragment used Corynebacterium glutamicum ATCC13032 strain genomic DNA as a template
  • the amplification of the rrnBter fragment used the plasmid vector pFLAG-CTC (Sigma) as a template.
  • the nucleotide sequences of these amplified fragments are shown in SEQ ID NOs: 66 and 67, respectively.
  • pGEK020 (PldhA-lacZ-rrnBter / KanR / pUCori / pCG1ori)
  • pGEK008 was cleaved with NdeI and BamHI to obtain a linear DNA fragment.
  • This linear DNA fragment was cleaved at the restriction enzyme recognition site in the region between PldhA and rrnBter.
  • a LacZ gene fragment (LacZ fragment) was separately amplified by PCR using a template described later. At this time, an NdeI site and a BamHI site were inserted into the primer pair as adapter sequences, respectively, and the amplified LacZ fragment was similarly cleaved with NdeI and BamHI.
  • pGEK008 cleavage fragment and the LacZ fragment were ligated in a circular shape to obtain a plasmid vector pGEK020.
  • PldhA-lacZ-rrnBter / K a nR / pUCori / pCG1ori are arranged in this order.
  • a plasmid vector owned by the applicant was used as a template.
  • the LacZ gene region amplified in the plasmid vector owned by the applicant is derived from pSV- ⁇ -Galactosidase Control Vector (Promega) and contains the same nucleotide sequence as the LacZ gene coding region of the vector.
  • a commercially available plasmid containing the E. coli genomic DNA or the lacZ gene coding region may be obtained and the LacZ gene coding region may be cloned.
  • the nucleotide sequence of the amplified LacZ gene fragment is shown in SEQ ID NO: 68.
  • pGEK030 (MCS-lacZ-rrnBter / KanR / pUCori / pCG1ori) pGEK020 was cleaved with NdeI and NotI to obtain a linear DNA fragment from which the region from pCG1ori to PldhA was removed.
  • pGEK094 (Ptac-lacZ-rrnBter / KanR / pUCori / pCG1ori)
  • a derived plasmid obtained by introducing another element into MCS of pGEK020 was used as a material.
  • the difference between the derived plasmid and GEK020 is only whether or not another element is inserted into MCS, and this other element is deleted by treating the derived plasmid with KpnI and NdeI as follows when preparing pGEK094. Is.
  • pGEK094 constructed in this procedure (5) is equivalent to the one in which the Ptac fragment described below is inserted between the KpnI site and the NdeI site in the MCS of pGEK020. Therefore, the details of the steps for preparing the derivative plasmid actually used for the construction of pGEK094 are omitted. Furthermore, the Ptac fragment was obtained by amplifying by PCR using the plasmid vector owned by the applicant as a template. The Ptac region in the plasmid vector is derived from the commercially available plasmid vector pFLAG-CTC (Sigma). Is.
  • the Ptac fragment can be amplified using pFLAG-CTC (Sigma) as a template.
  • the nucleotide sequence of the actually amplified Ptac fragment is shown in SEQ ID NO: 72. Then, the linear DNA fragment obtained by cleaving the derived plasmid with KpnI and NdeI and the amplified Ptac fragment were ligated into a circular shape using Gibson Assembly Cloning Kit to obtain pGEK094.
  • the nucleotide sequence of the amplified T7 terminator fragment is shown in SEQ ID NO: 73.
  • the elements of T7Uter-T7ter-rrnBT1ter are linked in this order, and the order of the elements differs from that disclosed in the above document.
  • the linker sequence present between each element is also different from that disclosed in the above document.
  • the lacI gene was inserted in the process of preparing various vectors by the inventor, but was finally removed in the vector according to the present invention as described below. Therefore, the nucleotide sequence information of the amplified lacI gene coding region is omitted.
  • the above pGEK094 was cleaved with KpnI and AgeI, and the obtained digested product was ligated with the amplified lacI gene fragment and T7 terminator fragment using GibsonbAssembly Cloning Kit to obtain a plasmid vector pGEK122.
  • pGEK122 was cleaved with the restriction enzyme XbaI, and the obtained digested product, and the PdapA fragment and the araE fragment were ligated to form a circle with the In-Fusion HD Cloning Kit.
  • the vector thus prepared was named pGE651.
  • Construction of pGE677 (PdapA-araE-rrnBT1ter-T7ter-T7Uter-lacI / Ptac-lacZ-rrnBter / KanR / pSC101 / pCG1ori)
  • pGE677 A vector exchanged with the Escherichia coli replication origin pSC101 ori (low copy number) contained in the plasmid vector was prepared and named pGE677.
  • the pSC101ori region in the plasmid vector owned by the applicant is derived from the plasmid vector pMW119 (purchased from Takara Bio, currently available from Nippon Gene), and contains the same nucleotide sequence as the pSC101ori region of the vector.
  • the nucleotide sequence of the pSC101ori region containing the restriction enzymes NcoI and BamHI at both ends is shown in SEQ ID NO: 76.
  • the araR gene fragment was amplified by PCR.
  • the nucleotide sequence of the amplified araR gene coding region is shown in SEQ ID NO: 78.
  • a fragment in which an AraR binding sequence was linked to Ptac was amplified by PCR using pGEK094 as a template. The nucleotide sequence of this fragment is shown in SEQ ID NO: 79.
  • the pGE677 obtained in (8) above is cleaved with restriction enzymes AgeI and NdeI to obtain a linear DNA fragment from which the T7Uter and LacI regions have been removed, and this DNA fragment, as well as the PdapA fragment, araR gene fragment and Ptac
  • the fragment having the araR binding sequence linked to was ligated into a circular shape by Gibson Assembly Cloning Kit to prepare pGE728-1.
  • the structure of pGE728-1 is shown in FIG. 1 (a), and its nucleotide sequence is shown in SEQ ID NO: 80.
  • plasmid vectors pGE728-2 to pGE728-12 having a predetermined mutation in the AraR binding sequence (AraRBS) with respect to pGE728-1 were obtained.
  • the AraR binding sequences in pGE728-1 to pGE728-12 are shown in Table 1 below. As shown in 1-12.
  • LacZ assay expression of ⁇ -galactosidase
  • the pGE728-1 to pGE728-12 prepared as described above were evaluated for the possibility of gene expression control according to the ⁇ -galactosidase gene (LacZ) reporter assay procedure described in the above embodiment.
  • the sample was sampled after culturing for 5 hours, and the activity of LacZ was measured for the obtained sample. [result] Table 1 below shows the results of Test Example 1.
  • Sample No. Sample Nos. 9 to 12 were combined with AraR binding sequences (SEQ ID NOs: 5 to 12) each having a predetermined nucleotide sequence in Ptac.
  • SEQ ID NOs: 5 to 12 AraR binding sequences
  • sample No. 2, 3, 4, and 6 have relatively high induction efficiency of promoter activity, and in particular, sample Nos. Obtained by combining SEQ ID NOs: 2 and 3 with Ptac. 2 and 3 showed that the promoter activity increased more than 80-fold when arabinose was added compared to the case where arabinose was not added.
  • the promoter activity (LacZ expression) can be remarkably suppressed, and at the same time, the promoter activity increases particularly remarkably by adding arabinose, and the target gene product in an active form is increased in a large amount. It was shown that it can be expressed. Therefore, the form in which the nucleotide sequence of SEQ ID NO: 2 or 3 is combined with Ptac enables particularly strict control of gene expression (switch on / off) and is particularly high when the gene expression is switched on. It can be said that it is a particularly preferred embodiment in the present invention in that the expression level can be secured. Thus, according to the predetermined sequence configuration that can be possessed by the nucleic acid according to the present invention, it was shown that efficient and precise gene expression control by adding / adding arabinose becomes possible.
  • Table 2 shows the results of Test Example 2.
  • pGE728-2 and pGEE728-3 confirmed to show excellent gene expression control ability in Test Example 1 were also used in this test example.
  • the promoter activity ratios were 94.1 and 98.9, respectively, and it was confirmed again that the gene expression control ability was excellent.
  • pGE728-13 shows a promoter activity ratio of 162, and the above-mentioned pGE728-2 and pGEE728-3 The value of the promoter activity ratio was far exceeded, and it was confirmed that the gene expression control ability was extremely excellent.
  • pGE728-14 newly constructed in this test example has sufficient gene-regulated expression ability although the promoter activity ratio is a relatively low value of 14.8. .
  • Test Example 3 the expression of the target gene (reporter gene) was controlled using an expression vector containing the gene control sequence according to the present invention using a coryneform bacterium in which the araE gene and the araR gene were incorporated into the genome instead of a plasmid vector. An example is shown. Details of the test procedure are shown below. (1) Preparation of expression plasmid vector pGE728 was cleaved with restriction enzymes KpnI and XbaI to obtain a DNA fragment from which the araE coding region and the araR coding region were removed.
  • the DNA fragment was blunted using T4 DNA polymerase (Takara Bio), subjected to terminal phosphorylation with T4 polynucleotide kinase (Takara Bio), and then ligated with T4 DNA ligase (NEB) for circularization.
  • T4 DNA polymerase Takara Bio
  • Takara Bio T4 polynucleotide kinase
  • NEB T4 DNA ligase
  • the resulting plasmid was named pGE716.
  • the structure of pGE716 is shown in FIG. 1 (b), and its nucleotide sequence is shown in SEQ ID NO: 81.
  • a plasmid vector pGE825 was obtained by circularly ligating the amplified fragment containing the upstream and downstream regions of the tnp1a and the linear DNA fragment of the pGE285 using the In-Fusion HD Cloning Kit.
  • a DNA fragment in which Ptac, the araE gene coding region present in the genome of Corynebacterium glutamicum ATCC 31831 strain, and the rrnBter terminator were ligated in this order was used as a plasmid vector owned by the applicant. Amplified by PCR as a template. The nucleotide sequence of the amplified Ptac-araE-rrnBter fragment is shown in SEQ ID NO: 87.
  • the plasmid vector pGE837 was obtained by circularly ligating the linear DNA fragment of pGE825 and the amplified Ptac-araE-rrnBter fragment using In-Fusion HD Cloning Kit.
  • the structure of pGE837 is shown in FIG. 2 (a), and its nucleotide sequence is shown in SEQ ID NO: 88.
  • a fragment containing the region of PldhA-lacZ-rrnBter (PldhA-lacZ-rrnBter fragment) was amplified by the PCR method using pGEK020 constructed in Test Example 1 as a template.
  • This fragment was inserted in the process of making various vectors in the inventor, but as described below, in the pAra1 finally used for introducing the araR gene into the coryneform bacterial genome, PldhA and As a result, the lacZ region is removed. Therefore, information on the nucleotide sequence of the amplified PldhA-lacZ-rrnBter fragment is omitted.
  • pGE209 linear DNA, Ptac fragment, araR gene fragment, and In-Fusion HD Cloning Kit were used for ligation so as to form a circular shape, thereby obtaining a plasmid vector pAra1.
  • the structure of pAra1 is shown in FIG. 2 (b), and its nucleotide sequence is shown in SEQ ID NO: 93.
  • Test Example 3 is different from Test Example 1 in the following points. That is, in Test Example 1, as a plasmid vector to be introduced into the ATCC 13032 strain, one encoding the araE gene and the araR gene in addition to the gene expression control sequence (R) and reporter gene (LacZ gene) of the present invention was used. . On the other hand, in Test Example 3, AIS1 strain (derived from ATCC13032 strain) introduced so that the araE gene and araR gene were forcibly expressed in the genomic DNA in advance was used, and the araE gene was used as a plasmid vector to be introduced into the strain. And pGE716 from which the araR gene was removed.
  • AIS1 / pGE716-3 and AIS1 / pGE716-3 are samples derived from different transformant colonies, respectively. Focusing on the fold (induction efficiency) of the promoter activity, AIS / p716-3 shows 67 times and AIS / p716-4 shows 160 times. According to the gene expression control sequence of the present invention, arabinose is effective. It was shown that the expression of the target gene can be controlled.
  • Test Example 4 Influence of arabinose concentration / induction time
  • pGE716 was electroporated into strain AIS1 and selected with kanamycin to obtain a transformant.
  • a sample without arabinose added was also prepared as a comparative control.
  • the above samples were cultured, and after 4 hours, 20 hours, and 24 hours, the culture medium with and without arabinose induction was sampled and the promoter activity was measured by LacZ assay.
  • the procedure of the LacZ assay and the composition of the liquid medium are as described in Test Example 3.
  • DNA fragments each having the nucleotide sequence shown in SEQ ID NOs: 96 to 102 were obtained. These DNA fragments each contain the nucleotide sequence according to SEQ ID NOs: 96 to 102 shown as a preferred embodiment of the nucleic acid according to the present invention in the section of the above embodiment.
  • PGEK107 obtained in (2) above is cleaved with restriction enzymes KpnI and NdeI, and each promoter / AraR binding sequence fragment is circularized with the In-Fusion HD Cloning Kit in the resulting vector fragment. Connected.
  • the plasmids thus obtained were designated as pAra24, pAra25, pAra26, pAra27, pAra28, pAra29, and pAra30, respectively.
  • each plasmid was electroporated in strain AIS1 and selected with kanamycin to obtain transformants.
  • the promoter site is not limited to the tac promoter. It has been proved that excellent gene regulation ability can be exhibited even when various other promoters including a general promoter and an inducible promoter are employed.
  • Comparative Test Example 1 is a comparative example in which control of the target gene was attempted using the promoter region of the araE gene that is naturally present in the genome of Corynebacterium glutamicum ATCC 31831 instead of the control sequence according to the present invention. Details of the test procedure are shown below.
  • the activity value with arabinose induction (that is, arabinose added) is lower than the activity value without arabinose induction (that is, without arabinose added), and arabinose cannot control gene expression. It was shown that.
  • the nucleotide sequence used as the gene regulatory sequence in this Comparative Test Example 1 is inherently present on the genomic DNA of Corynebacterium glutamicum ATCC 31831 as shown in FIG. 5 and includes the natural AraR binding sequence. It is a waste. That is, even when a promoter region unique to the coryneform bacterium as shown in Non-Patent Document 6 is used, as shown in the results of Table 2, the gene expression control achieved by the predetermined nucleotide sequence of the present invention is not possible. It was possible and did not even show promoter activity as a gene expression system in the first place.
  • nucleotide sequence information such as various gene coding regions, promoter regions, terminator regions, and replication origins amplified by the PCR method during the construction of various plasmid vectors and the like is disclosed in the sequence listing. Therefore, the sequence information of the primers used for PCR amplification was omitted.
  • the person skilled in the art refers to the construction of the plasmid vector or the like used in the above test examples or the present invention by referring to the information of each nucleotide sequence disclosed in the sequence listing or the information of the nucleotide sequence present in the gene bank etc. Nucleic acids and the like can be appropriately produced.
  • various gene coding regions, promoter regions, terminator regions, replication origins, etc. may be cloned using the In-Fusion HD Cloning Kit or Gibson Assembly Cloning Kit as described above.
  • the primer pair used in PCR amplification is supplemented by adding an appropriate adapter sequence to the 5 ′ end of the forward / reverse primer according to the instructions of the cloning kit.
  • the present invention has high industrial applicability in the fields of biotechnology, production of substances such as chemical substances and biological materials.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本開示は、コリネ型細菌において目的遺伝子の発現を制御し得る遺伝子制御配列を含む核酸、該核酸が導入された細菌、該細菌を用いた目的遺伝子の発現方法、並びに該細菌を用いた物質の生産方法に関する。上記核酸は、任意のプロモーター配列と、所定のヌクレオチド配列によって特定されるAraR結合配列とを少なくとも一部に有する。加えて、上記核酸は、コリネ型細菌に導入されると、アラビノース未添加の場合には上記プロモーター配列のプロモーター活性が抑制され、アラビノース添加の場合にはプロモーター活性が誘導される性質を示す。

Description

アラビノース依存型遺伝子発現制御配列を含む核酸
 本発明は、コリネ型細菌においてアラビノース又はそのアナログに依存した遺伝子発現制御を可能にする核酸配列に関する。より詳細には、本発明は、コリネ型細菌においてプロモーターとして機能し得るヌクレオチド配列と所定のヌクレオチド配列からなるAraR結合配列とを有する遺伝子発現制御配列を含む核酸に関する。
 我が国において1950年代にコリネバクテリウム・グルタミカム(Corynebacterium glutamicum)がグルタミン酸産生菌として単離されて以来、同種を代表とするコリネ型細菌は、各種アミノ酸、有機酸、エタノールを含むアルコール類等を含む化学品の生産に幅広く利用されている。加えて、コリネ型細菌は、ゲノム解析や遺伝子発現解析等の基礎研究も精力的に行われており、コリネ型細菌の遺伝子組換え技術もほぼ確立されている。このように基礎研究が進展し、遺伝子組み換え技術も確立していることから、コリネ型細菌により生産され得る化学品の種類も増加しており、しかもそれら化学品の大量生産も可能になりつつある。
 その結果、化学品や有用物質の生産におけるコリネ型細菌の利用は産業界において益々注目を集めている。
 ところで、各種遺伝子を導入したコリネ型細菌を利用して物質を生産する場合、コリネ型細菌において導入される各種遺伝子の発現を人為的に制御できれば、効率的なバイオプロセス並びに物質生産が可能になることから、コリネ型細菌において機能し得るプロモーター等を利用した遺伝子発現制御技術の開発が重要になってくる。
 コリネ型細菌において機能するプロモーターの一例として、ブレビバクテリウム・フラバム(Brevibacterium flavum)MJ-233株から単離されたアスパルターゼコード遺伝子のプロモーター配列を利用した技術が挙げられる(特許文献1)。特許文献1には、上記所定のプロモーター配列とクロラムフェニコールアセチル転移酵素(CAT)遺伝子とを含むレポータープラスミドが導入された上記菌株では、上記プロモーター配列の存在しないネガティブ・コントロールのプラスミドのみ導入した菌株と比較すると25倍のCAT活性が確認されたことが記載されている。
 更に別の例としては、ブレビバクテリウム・フラバムMJ-233株のゲノムDNAから単離された幾つかのDNA断片であって、コリネ型細菌においてtacプロモーターよりも強いプロモーター機能を発揮するものが知られている(特許文献2)。特許文献2には、これらのDNA断片によるプロモーター活性は、ホストとなるコリネ型細菌を培養する培地の炭素源(各種糖類、エタノール、蛋白質分解物等)組成に依存することから、該培地中の炭素源組成を変更することにより目的遺伝子の発現を制御できると記載されている。
 更に別の例としては、コリネバクテリウム・グルタミカムに由来する、伸長因子遺伝子の1つであるEF-TUのプロモーター(PEF-TU)、スーパーオキシドジムターゼ遺伝子のプロモーター(Psod)、シャペロニンタンパク質GroES遺伝子のプロモーター(Pgro)、伸長因子遺伝子の1つであるEF-TSのプロモーター(PEF-TS)を利用した発現ユニット等が知られている(それぞれ特許文献3から6)。加えて、コリネバクテリウム・グルタミカムATCC13032株に由来するCgl1565遺伝子(遺伝子座NCgl1504)及びCgl1360遺伝子(遺伝子座NCgl1305)それぞれのプロモーター配列を利用した遺伝子発現技術も知られている(特許文献7)。
 特許文献3から7には、上記各プロモーター配列と所定のレポーター遺伝子や酵素遺伝子とを導入してなるプラスミド構築物を構築すると共に、該プラスミド構築物が導入されたコリネバクテリウム・グルタミカム形質転換体を取得し、該形質転換体を用いたレポーターアッセイ又は酵素活性の測定により、上記の各プロモーター配列についてプロモーター活性が認められたことが記載されている。
 更に、特許文献8には、ブレビバクテリウム・アンモニアゲネス(Brevibacterium ammoniagenes)CJHB100株に由来するプロモーター配列を利用した発現カセットないしベクターが記載されている。これらプロモーター配列は、同菌株を培養し、各培養フェースにおいて過剰発現されるタンパク質を同定し、それらタンパク質をコードする遺伝子の5’非翻訳領域をクローニングすることにより同定されたプロモーター配列である。特許文献7では、pcj1ないしpcj7と命名された合計7つのプロモーター配列を取得し、それらのプロモーター配列のプロモーター活性について、ブレビバクテリウム・アンモニアゲネスにおいてGFP遺伝子を利用したレポーターアッセイにより評価しており、その結果、pcj3及び4を除く5つのプロモーター配列は、典型的なプロモーターであるtacプロモーターに対して、より強力なプロモーター活性を示し、特にpcj1及びpcj4は10倍を超えるプロモーター活性を示すことが示唆されている。加えて、特許文献7では、これらプロモーター配列が大腸菌(エシェリキア・コリ;Escherichia coli)においても機能し得ることが確かめられており、とりわけpcj1はコリネ型細菌及び大腸菌の双方で高い活性を示すことも示唆されている。
 更に、特許文献1から8に開示されるプロモーター配列はコリネ型細菌の野生型プロモーター配列であるが、野生型プロモーター配列に対して変異導入を施すことによりプロモーター活性を向上させた変異型プロモーター配列も知られている。このような変異型プロモーター配列としては、例えば、コリネバクテリウム・グルタミカムに由来する、ジアミノピメリン酸デヒドロゲナーゼ(ddh)遺伝子、LysC-asdオペロン遺伝子、及びアスパラギン酸アミノトランスフェラーゼ(aspB)遺伝子の各プロモーター配列に対して所定の変異を導入することにより取得された変異型プロモーターが挙げられる(特許文献9から11)。特許文献9から11に記載されるプロモーターに関する一連の技術は、リシン生合成経路に関与する酵素遺伝子の発現量を増加させることによりリシンの産生量を向上させることを狙いとするものである。
 更に、特許文献12には、特許文献3から6に記載されるコリネバクテリウム・グルタミカムに由来のPEF-TU、Psod、Pgro、及びPEF-TSのうち2つ以上のプロモーター配列をタンデムに連結してなる多重プロモーターが開示されており、これらプロモーターそれぞれを単独で利用した場合よりも多重プロモーターの方が目的遺伝子の発現が向上した結果も示されている。
 更に、誘導型プロモーターを利用した技術としては、例えば特許文献13に開示される遺伝子発現制御技術が挙げられる。特許文献13に開示の技術は、嫌気条件下において誘導促進又は誘導抑制されるコリネバクテリウム・グルタミカムの遺伝子プロモーターを網羅的に解析することにより取得したプロモーター配列を利用したものである。特許文献13には、このように嫌気条件により遺伝子発現を促進又は抑制できるプロモーター配列を利用すれば、コリネ型細菌を用いて嫌気条件下で目的物質を生産するに際し、目的物質産生に必要な各種遺伝子の発現を向上させることができ、かつ目的物質産生には不要な各種遺伝子の発現を抑制させることが可能となるから、より効率的な目的物質の生産が可能となることが示唆されている。
 更に、コリネバクテリウム・グルタミカムにおいて機能可能な異種性のプロモーターを利用した発現システムは古くから知られており、このような発現システムしては、例えばtac、trc、LacUV5、P、P等を利用したエシェリキア・コリ発現システムが挙げられる(例えば、非特許文献1~3を参照)。これらのプロモーターは、ラクトース又はそのアナログのイソプロピルチオガラクトシド(IPTG)等の誘導物質の添加によりプロモーター活性の発現が誘導される。
 加えて、λPLプロモーターとコリネバクテリウム・アンモニアゲネスから単離された潜在性プロモーターCJ1及びCJ4とを組み合せた熱誘導型発現ベクターが知られており、この熱誘導型発現ベクターはコリネバクテリウム・アンモニアゲネスのみならずコリネバクテリウム・グルタミカムにおいても機能することが確かめられている(非特許文献4)。
 加えて、エシェリキア・コリに由来するアラビノース調節因子のAraC遺伝子、araBADオペロンのPBADプロモーター及びL-アラビノーストランスポーターのAraE遺伝子を組み合せることによりコリネバクテリウム・グルタミカムにおいてアラビノースに依存した目的遺伝子の発現制御を可能とした発現システムも知られている(非特許文献5)。非特許文献5には、基底下の非特異的発現も示すことなく目的遺伝子の発現を厳密に制御できたと記載されており、更にこの発現システムを用いてコリネ型細菌においてα-ケトグルタル酸脱水素酵素の阻害因子をコードするodhI遺伝子の発現を調節したところ、高いレベルのグルタミン酸産生を実現できたと記載されている。
 更に加えて、非特許文献6には、コリネバクテリウム・グルタミカムATCC31831株において、LacI型の転写調節因子であるAraRタンパク質が、L-アラビノース異化作用を担うaraBDA遺伝子、アラビノース吸収を担うaraE遺伝子、及び当該転写調節因子AraR遺伝子の発現を抑制することが示唆されている。より詳細には、AraRタンパク質がaraBDAの各遺伝子領域とGalM/araRの遺伝子領域との間にある特定配列(BS)、並びにaraE遺伝子の上流に存在する2箇所の特定配列(BSE1及びBSE2)の合計3つの配列に結合し得ることが示されており、L-アラビノースによる上記遺伝子発現抑制の解除におけるAraRタンパク質及び上記AraR結合配列の役割について示唆がされている。なお、非特許文献6には、galM及びaraRのプロモーター領域についてLacZレポーターアッセイにより評価した結果も示されており、AraRのプロモーター領域についてはDグルコースを添加して培養した細胞とL-アラビノースを添加して培養した細胞との間でプロモーター活性の違いは見られなかったこと、並びにgalMプロモーターについてはL-アラビノースの添加に反応してLacZの発現レベルが増加したことが記載されている。
特開平7-31478 特開平7-95891 特表2007-514425 特表2007-514426 特表2007-536908 特表2008-506400 特表2010-515453 特表2008-523802 特表2011-510651 特表2011-510625 特表2011-182779 特表2008-523834 WO2006/028063
Gene.1991 Jun 15;102(1):93-8. Appl Environ Microbiol.1997 Nov;63(11):4392-400. Nat.Biotechnol.6:428-430 J.Microbiol.Biotechnol.(2008),18(4),18(4),639-647. Appl Environ Microbiol.2012 Aug;78(16):5831-5838. J Bacteriol.2015 Dec;197(24):3788-3796.
 上述の通り従来からコリネ型細菌において利用可能な各種遺伝子発現システムが知られている。しかしながら、従来技術のうち単にコリネ型細菌において機能し得る構成的プロモーター(constitutive promoters)を単独で利用したものについては、遺伝子発現スイッチとしてオン/オフの切換え制御は事実上不可能であり、例えば厳密な遺伝子制御が必要不可欠となるバイオプロセスにはそもそも不向きである。
 加えて、IPTG等の発現誘導物質や温度等の所定のストレス環境下に組換えコリネ型細菌を暴露することにより目的遺伝子の発現を制御する発現システム(例えば非特許文献1から4)については、誘導物質の毒性やコストの問題及び目的遺伝子の発現制御プロセスが煩雑になる問題がある上、発現を誘導していない基底下においても一定レベルの非特異的発現が見られることもあり厳密な遺伝子発現の制御がしばしば困難となる状況も生じる。加えて、目的遺伝子の性質によっては、このような基底下での非特異的発現によりコリネ型細菌の生育が阻害されると言う問題もある。
 更に加えて、非特許文献5に記載される、エシェリキア・コリに由来するAraC遺伝子、PBADプロモーター及びAraE遺伝子を組合せた遺伝子発現システムについては、本発明者によりコリネ型細菌を用いて効果確認試験を行ったところ、アラビノース未添加に対してアラビノース添加の場合に10倍程度のプロモーター活性は認められたものの、非特許文献5に記載されるような顕著なプロモーター活性は認められなかった。つまり、非特許文献5に記載の遺伝子発現システムは、再現性に乏しく実用に耐え得るものとは言えない。なお、そもそも非特許文献5に記載される遺伝子発現システムは、上記のとおりエシェリキア・コリ由来のプロモーター配列や遺伝子を利用するものである点で、本発明に係る遺伝子発現システムとはヌクレオチド配列及びアミノ酸配列のレベルで全く構成が異なるものである。
 なお付け加えると、非特許文献6には、コリネバクテリウム・グルタミカムATCC31831においてAraRタンパク質が、araBAD遺伝子、araE遺伝子及び当該転写調節因子AraR遺伝子の発現を抑制すること、並びにAraRタンパク質がアラビノース遺伝子群の遺伝子間領域における所定の配列に結合し得ることは示唆されてはいるものの、これら遺伝子群及びAraRタンパク質結合配列を利用した遺伝子発現制御システムの具体的な構成を実現可能なレベルで記載するものではない。実際に、以下実施例の比較試験例1に示されるとおり、本発明者がAraRタンパク質結合配列を含むaraE遺伝子のプロモーター領域を確認したところ、該araE遺伝子のプロモーター領域をそのまま利用しても、遺伝子発現制御は不可能であり、そもそも遺伝子発現システムとしてプロモーター活性さえ示さなかった。つまり、非特許文献6は、コリネバクテリウム・グルタミカムのアラビノース遺伝子発現調節機構におけるAraRタンパク質の役割に関する分析結果を単に示した学術論文であり、人工遺伝子発現システムにおけるアラビノース遺伝子群及びAraRタンパク質結合配列の利用可能性を示唆するものでは無い。
 そこで、本発明の目的は、コリネ型細菌において目的遺伝子の発現を厳密に制御でき、かつ目的遺伝子の発現誘導時には良好な発現量を確保できる遺伝子発現システムを提供することにある。
 上記目的を達成するために、本発明の第1の態様によれば、以下の核酸が提供される。
[1]プロモーターとして機能し得るヌクレオチド配列(X)と以下の(a)又は(b)に記載のヌクレオチド配列(Y)とを少なくとも一部に有する遺伝子発現制御配列(R)を含み、
遺伝子発現制御配列(R)が以下の条件(I)を充足する、核酸:
(a)配列番号5から12並びに配列番号17及び18の何れか1つに記載のヌクレオチド配列;
(b)上記(a)に記載のヌクレオチド配列において1又は複数の塩基が欠失、置換若しくは付加されたヌクレオチド配列、
但し、核酸がRNAの場合は、ヌクレオチド配列中のチミン(t)をウラシル(u)に読み替えるものとする、
条件(I):コリネ型細菌において、アラビノース未添加の場合にヌクレオチド配列(X)のプロモーター活性が抑制されること。
[2]ヌクレオチド配列(Y)がヌクレオチド配列(X)の3’末端に直接又は間接に連結されている、[1]に記載の核酸。
[3]ヌクレオチド配列(X)が構成的プロモーターである、[1]又は[2]に記載の核酸。
[4]ヌクレオチド配列(X)が、trcプロモーター、tacIプロモーター、tacIIプロモーター、T5プロモーター、T7プロモーター、lacプロモーター、trpプロモーター、tetプロモーター、EFTuプロモーター、groESプロモーター、SODプロモーター、P15プロモーター、ldhAプロモーター、gapAプロモーター、dapAプロモーター、metEプロモーター、及びtufプロモーターから選択される、[1]から[3]の何れか1つに記載の核酸。
[5]ヌクレオチド配列(X)が、コリネ型細菌のゲノムDNAに存在する遺伝子の5’上流に由来するプロモーター配列、コリネ型細菌に内在するプラスミドに由来するプロモーター配列、又はコリネ型細菌に感染し得るファージのゲノムに由来するプロモーター配列からなる、[1]から[4]の何れか1つに記載の核酸。
[6]遺伝子発現制御配列(R)は、コリネ型細菌において、アラビノースを添加した場合に、アラビノース未添加の場合と比較して少なくとも10倍高いプロモーター活性を示すものである、[1]から[5]の何れか1つに記載の核酸。
[7]遺伝子発現制御配列(R)は、コリネ型細菌において、アラビノースを添加した場合に、アラビノース未添加の場合と比較して少なくとも15倍高いプロモーター活性を示すものである、[1]から[6]の何れか1つに記載の核酸。
[8]遺伝子発現制御配列(R)は、コリネ型細菌において、アラビノースを添加した場合に、アラビノース未添加の場合と比較して少なくとも20倍高いプロモーター活性を示すものである、[1]から[7]の何れか1つに記載の核酸。
[9]遺伝子発現制御配列(R)は、コリネ型細菌において、アラビノースを添加した場合に、アラビノース未添加の場合と比較して少なくとも35倍高いプロモーター活性を示すものである、[1]ら[8]の何れか1つに記載の核酸。
[10]遺伝子発現制御配列(R)は、コリネ型細菌において、アラビノースを添加した場合に、アラビノース未添加の場合と比較して少なくとも50倍高いプロモーター活性を示すものである、[1]から[9]の何れか1つに記載の核酸。
[11]遺伝子発現制御配列(R)は、コリネ型細菌において、アラビノースを添加した場合に、アラビノース未添加の場合と比較して少なくとも70倍高いプロモーター活性を示すものである、[1]から[10]の何れか1つに記載の核酸。
[12]ヌクレオチド配列(Y)が、以下の一般式(I)で表される、[1]から[11]の何れか1つに記載の核酸:
 5’-NTGTNAGCGNTNAN-3’・・・一般式(I)
式中、N、N、N、N、N、N及びNは、それぞれ、独立にA(アデニン)、G(グアニン)、C(シトシン)若しくはT(チミン)を示し又は欠失し、核酸がRNAの場合は、T(チミン)はU(ウラシル)と読み替えるものとする。
[13]遺伝子発現制御配列(R)が以下の(l)から(o)の何れかのヌクレオチド配列を含む、[1]から[12]の何れか1つに記載の核酸:
(l)配列番号22から61並びに配列番号96から102の何れか1つに記載のヌクレオチド配列;
(m)(l)に記載のヌクレオチド配列において1又は複数の塩基が欠失、置換若しくは付加されたヌクレオチド配列;
(n)(l)に記載のヌクレオチド配列に対して相補であるヌクレオチド配列とストリンジェントな条件でハイブリダイズするヌクレオチド配列;及び
(o)(l)に記載のヌクレオチド配列と少なくとも80%以上の配列同一性を有するヌクレオチド配列、
但し、核酸がRNAの場合は、塩基配列中のチミン(t)をウラシル(u)に読み替えるものとする。
[14]遺伝子発現制御配列(R)が更にSD配列を含む、[1]から[13]の何れか1つに記載の核酸。
[15]SD配列がヌクレオチド配列(Y)の3’末端に直接又は間接に連結されている、[1]から[14]の何れか1つに記載の核酸。
[16]araEタンパク質及びaraRタンパク質のうち少なくとも1つをコードするヌクレオチド配列を更に含む、[1]から[15]の何れか1つに記載の核酸。
[17]コリネ型細菌に由来のaraEタンパク質及びaraRタンパク質のうち少なくとも1つをコードするヌクレオチド配列を含む、[1]から[16]の何れか1つに記載の核酸。
[18]複製起点、選択マーカー遺伝子、クローニング部位、制限酵素認識部位、及びターミネーターからなる群から選択される1種以上のヌクレオチド配列を更に含む、[1]から[17]の何れか1つに記載の核酸。
[19]細菌において自律複製可能なプラスミドとして提供される、[1]から[18]の何れか1つに記載の核酸。
[20]発現ベクターとして提供される、[1]から[19]の何れか1つに記載の核酸。
[21]目的遺伝子をコードするヌクレオチド配列(Z)を更に含み、ヌクレオチド配列(Z)は、コリネ型細菌において上記目的遺伝子の発現が遺伝子発現制御配列(R)によって制御されるように遺伝子発現制御配列(R)と直接又は間接に連結されている、[1]から[18]の何れか1つに記載の核酸。
[22]DNAである、[1]から[21]の何れか1つに記載の核酸。
 更に、本発明の第2の態様によれば、以下の細菌が提供される。
[23][1]から[22]の何れか1つに記載の核酸が導入された細菌。
[24]エシェリキア属菌である、[23]に記載の細菌。
[25]コリネ型細菌である、[23]に記載の細菌。
[26]コリネ型細菌に由来するaraEタンパク質及びaraRタンパク質をそれぞれコードする少なくとも1つのヌクレオチド配列を有するDNAがゲノムDNAに組み込まれており、かつ該ゲノムDNAは上記araEタンパク質及びaraRタンパク質を発現可能に構成されている、[23]から[25]の何れか1つに記載の細菌。
 更に、本発明の第3の態様によれば、以下の目的遺伝子の発現方法が提供される。
[27][23]から[26]の何れか1つに記載の細菌をアラビノース又はそのアナログに暴露することにより目的遺伝子を発現させることを含む、目的遺伝子の発現方法。
[28]上記細菌がコリネ型細菌である、[27]に記載の方法。
 更に、本発明の第4の態様によれば、以下の目的物質の生産方法が提供される。
[29][23]から[26]の何れか1つに記載の細菌をアラビノース又はそのアナログに暴露することにより目的遺伝子を発現させることを含む、目的物質の生産方法。
[30]上記細菌がコリネ型細菌である、[29]に記載の方法。
 更に、本発明の第5の態様によれば、以下の核酸断片が提供される。
[31]コリネ型細菌において目的遺伝子の発現制御に用いるための核酸断片であって、
以下の(a)又は(b)に記載のヌクレオチド配列(Y)を含む、核酸断片:
(a)配列番号5から9、11及び12並びに配列番号17及び18の何れか1つに記載のヌクレオチド配列;
(b)上記(a)に記載のヌクレオチド配列において1又は複数の塩基が欠失、置換若しくは付加されたヌクレオチド配列、
但し、
核酸がRNAの場合は、ヌクレオチド配列中のチミン(t)をウラシル(u)に読み替えるものとし、
ヌクレオチド配列(Y)として配列番号10、20及び21それぞれに示されるヌクレオチド配列は除外され、かつヌクレオチド配列(Y)は以下の条件(II)を満たすものとする、
条件(II):配列番号80に示すプラスミドベクターpGE728-1のヌクレオチド配列における第2913番目から第2928番目までのヌクレオチド配列を上記ヌクレオチド配列(Y)と入れ替えたプラスミドベクターで形質転換されたコリネ型細菌において、アラビノースを添加した場合に対してアラビノース未添加の場合にPtacIのプロモーター活性が抑制される。
 本発明によれば、効率的かつ厳密な遺伝子発現制御が可能となり、効率的なバイオプロセスを提供できる。加えて、本発明によれば、形質転換体をアラビノースに暴露すれば目的遺伝子の発現抑制状態が解除され、目的遺伝子の発現を促進することができることから、バイオプロセスにおける操作及び作業が容易となる。
 以下、本発明の態様において更に採用し得る実施形態ないし変形例を以下に例示すると共に本発明の利点及び効果についても詳述する。
実施例において構築したプラスミドベクターの構造を模式的に示す図である。(a)は試験例1において構築したプラスミドベクターpGE728-1の構造を示し、(b)は試験例3において構築したプラスミドベクターpGE716の構造を示す。 試験例3において構築したプラスミドベクターの構造を模式的に示す図である。(a)はプラスミドベクターpGE837の構造を示し、(b)はプラスミドベクターpAra1の構造を示す。 試験例3において実施したレポーターアッセイの結果を示す図である。図3において「未添加」はアラビノース未添加のサンプルを指し、「添加」はアラビノース添加のサンプルを指し、「誘導率」はアラビノース添加のサンプルが示したプロモーター活性値/アラビノース未添加のサンプルが示したプロモーター活性値の比率(フォールド)を示す。 試験例3において実施したレポーターアッセイの結果を示す図である。図4において「未添加」はアラビノース未添加のサンプルを指す。 コリネバクテリウム・グルタミカムATCC31831株ゲノムDNAにおけるaraE遺伝子のプロモーター領域を示す模式図である。
〔核酸〕
 本発明の第1の態様によれば、以下の核酸が提供される。
プロモーターとして機能し得るヌクレオチド配列(X)と以下の(a)又は(b)に記載のヌクレオチド配列(Y)とを少なくとも一部に有する遺伝子発現制御配列(R)を含み、
遺伝子発現制御配列(R)が以下の条件(I)を充足する、核酸:
(a)配列番号5から12並びに配列番号17及び18の何れか1つに記載のヌクレオチド配列;
(b)上記(a)に記載のヌクレオチド配列において1又は複数の塩基が欠失、置換若しくは付加されたヌクレオチド配列、
但し、核酸がRNAの場合は、ヌクレオチド配列中のチミン(t)をウラシル(u)に読み替えるものとする、
条件(I):コリネ型細菌において、アラビノース未添加の場合にヌクレオチド配列(X)のプロモーター活性が抑制されること。
 本発明に係る「核酸」は、より詳細にはコリネ型細菌を含む細菌類において目的遺伝子の発現制御に用いるための核酸である。本発明に係る核酸は、DNA(デオキシリボ核酸)及びRNA(リボ核酸)の何れの形態で提供されてもよい。更に、本発明に係る核酸は、一本鎖又は二本鎖の形態であってもよい。なお、核酸は、具体的には単離された核酸、cDNA又はcRNAである。
 細菌類の細胞内において目的遺伝子の発現制御因子として機能し得る形態としては通常DNAであること、RNAよりもDNAの方が化学的に安定であること等を考慮すると、本発明の核酸はDNAの形態で提供されることが好ましい。しかしながら、RNAの形態で提供される場合であっても、イン・ビトロ又はイン・ビボにおいてRNAからDNAに変換されれば本発明所定の遺伝子発現制御機能は発揮されることから、DNAの形態に限定されずRNAの形態でも提供されてもよい。逆転写酵素等を用いてRNAからDNAに変換する技術等は当業者に知られている。加えて、本発明において核酸は、メチル化等の化学修飾を受けたものであってもよい。
 加えて、本発明に係る核酸は、遺伝子発現制御配列(R)が、後述のとおりレポーターアッセイ等によりプロモーター活性を測定した場合に、上記(I)を満たすものであればよく、本発明に係る核酸においては目的遺伝子をコードするヌクレオチド配列の有無は問わない。目的遺伝子をコードするヌクレオチド配列を含まない実施形態に係る核酸は、具体的には、コリネ型細菌を含む細菌類において目的遺伝子の発現に供試される発現プラスミド構築物(目的遺伝子をコードするヌクレオチド配列が導入されたもの)の構築に用いるための発現カセット又は発現ベクター(即ち、目的遺伝子を所定のクローニング部位に挿入する前のもの)である。
 本発明において「コリネ型細菌」とは、バージーズ・マニュアル・デターミネイティブ・バクテリオロジー(Bargeys Manual of Determinative Bacteriology,第8巻,p.599、1974年)に定義されている一群の微生物を指す。
 より詳細には、コリネ型細菌として、コリネバクテリウム(Corynebacterium)属菌、ブレビバクテリウム(Brevibacterium)属菌、アースロバクター(Arthrobacter)属菌、マイコバクテリウム(Mycobacterium)属菌、マイクロコッカス(Micrococcus)属菌、マイクロバクテリウム(Microbacterium)属菌等が挙げられる。
 コリネバクテリウム属菌としては、例えば以下のような種及び菌株が挙げられる。
コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)(例えば、FERM P-18976株、ATCC13032株、ATCC31831株、ATCC13058株、ATCC13059株、ATCC13060株、ATCC13232株、ATCC13286株、ATCC13287株、ATCC13655株、ATCC13745株、ATCC13746株、ATCC13761株、ATCC14020株);
コリネバクテリウム・アセトグルタミカム(Corynebacterium acetoglutamicum)(例えばATCC15806株);
コリネバクテリウム・アセトアシドフィラム(Corynebacterium acetoacidophilum)(例えばATCC13870株);
コリネバクテリウム・メラセコラ(Corynebacterium melassecola)(例えばATCC17965株);
コリネバクテリウム・エフィシエンス(Corynebacterium efficiens);
コリネバクテリウム・アルカノリティカム(Corynebacterium alkanolyticum)(例えばATCC21511株);
コリネバクテリウム・カルナエ(Corynebacterium callunae)(例えばATCC15991株);
コリネバクテリウム・リリウム(Corynebacterium lilium)(例えばATCC15990株);
コリネバクテリウム・サーモアミノゲネス(コリネバクテリウム・エフィシエンス)(Corynebacterium thermoaminogenes (Corynebacterium efficiens))(例えばAJ12340株、FERM BP1539株);
コリネバクテリウム・ハーキュリス(Corynebacterium herculis)(例えばATCC13868株)。
コリネバクテリウム・アンモニアゲネス(コリネバクテリウム・スタティオニス)(Corynebacterium ammoniagenesBrevibacterium ammoniagenes)(例えばATCC6871株、ATCC6872株)。
 ブレビバクテリウム属菌の具体例としては、例えば以下の種及び菌株が挙げられる。
ブレビバクテリウム・ディバリカタム(Brevibacterium divaricatum)(例えばATCC14020株);
ブレビバクテリウム・フラバム(Brevibacterium flavum)[例えば、MJ-233(FERM BP-1497)株、MJ-233AB-41(FERM BP-1498)株、ATCC13826株、ATCC14067株、ATCC13826株];
ブレビバクテリウム・イマリオフィラム(Brevibacterium immariophilum)(例えばATCC14068株);
ブレビバクテリウム・ラクトファーメンタム(コリネバクテリウム・グルタミカム)(Brevibacterium lactofermentum (Corynebacterium glutamicum))(例えばATCC13869株);
ブレビバクテリウム・ロゼウム(Brevibacterium roseum)(例えばATCC13825株);
ブレビバクテリウム・サッカロリティカム(Brevibacterium saccharolyticum)(例えばATCC14066株);
ブレビバクテリウム・チオゲニタリス(Brevibacterium thiogenitalis)(例えばATCC19240株);
ブレビバクテリウム・アルバム(Brevibacterium album)(例えばATCC15111株);
ブレビバクテリウム・セリナム(Brevibacterium cerinum)(例えばATCC15112株)。
 アースロバクター属菌の具体例としては、例えば以下のような種及び菌株が挙げられる。
アースロバクター・グロビフォルミス(Arthrobacter globiformis)(例えば、ATCC8010株、ATCC4336株、ATCC21056株、ATCC31250株、ATCC31738株、ATCC35698株)等が挙げられる。
 マイクロコッカス属菌の具体例としては、マイクロコッカス・フロイデンライヒ(Micrococcus freudenreichii)[例えば、No.239(FERM  P-13221)株];マイクロコッカス・ルテウス(Micrococcus  luteus)[例えば、No.240(FERM  P-13222)株];マイクロコッカス・ウレアエ(Micrococcus ureae)(例えば、IAM1010株);マイクロコッカス・ロゼウス(Micrococcus roseus)(例えば、IFO3764株)等が挙げられる。
 マイクロバクテリウム属菌の具体例としては、マイクロバクテリウム・アンモニアフィラム(Microbacterium ammoniaphilum)(例えばATCC15354株)。
 なお、ATCCとは、アメリカン・タイプ・カルチャー・コレクション(American Type Culture Collection)(P.O.Box 1549 Manassas,VA 20108 USA)の略であり、上記ATCC株は同機関より分譲を受けることができる。
 更に、本発明においてコリネ型細菌は、自然界に元々存在する野生型菌株であってもよいし、又はゲノムDNAやプラスミドDNAが操作され若しくはこれらDNAに所定の遺伝子や人工配列等が導入された組換え体であってもよい。更に、コリネ型細菌は、所定の化学物質や環境条件に暴露されることにより作出された変異株であってもよい。
 本発明において「コリネ型細菌においてプロモーターとして機能し得るヌクレオチド配列(X)」とは、上述のようなコリネ型細菌に属する菌種/菌株のうち何れか1つ以上においてプロモーター活性を示すヌクレオチド配列を指す。ヌクレオチド配列(X)は、人工的に合成された配列であってよく、又は細菌を含む生物体に存在する天然配列であってもよい。
 本発明において「プロモーター」と言う用語は、当業者において一般に理解される意味で使用される。より詳細には、「コリネ型細菌においてプロモーターとして機能し得るヌクレオチド配列(X)」とは、コリネ型細菌においてRNAポリメラーゼが特異的に結合し、該RNAポリメラーゼの転写活性によりmRNAへの転写を開始させ得るヌクレオチド配列を意味する。
 なお、当該技術分野においては、RNAポリメラーゼの転写活性により純粋にmRNAへの転写を開始させ得るヌクレオチド配列に加えて、オペレーター配列(例えばlacO)やリボソーム結合配列(シャイン・ダルガノ配列 ;SD配列)等の遺伝子制御配列をも含めてプロモーターと言う場合もあるが、本発明において「プロモーター」と言う場合、原則、RNAポリメラーゼの転写活性により純粋にmRNAへの転写を開始させ得るヌクレオチド配列のみを指す。但し、本発明に係る核酸においては、上述のような追加の遺伝子制御配列の存在が排除される趣旨ではない。
 このようにヌクレオチド配列(X)としては、コリネ型細菌に属する菌種/菌株のうち何れか1つ以上においてプロモーターとして機能し得るものであれば、特に限定されるものでもないが、利便性を考慮すると、コリネ型細菌に属する菌種全てに共通してプロモーター活性を示すヌクレオチド配列を採用する実施形態が好ましい。更に加えて、幾つのかの実施形態においては、ヌクレオチド配列(X)として、コリネ型細菌に加え、エシェリキア属(例えばエシェリキア・コリ;Escherichia coli)においてもプロモーターとして機能し得るヌクレオチド配列が採用され得る。
 更に、幾つかの実施形態においては、ヌクレオチド配列(X)は、上述のようなコリネ型細菌を含む細菌のゲノムDNAに内在する遺伝子の5’上流域に由来するプロモーター配列、これら細菌において自律複製し得るプラスミドに由来するプロモーター配列、又はこれら細菌に感染するファージのゲノムに由来するプロモーター配列等を含む。更に加えて、特定の実施形態においては、これら細菌やファージに由来するプロモーター配列は、野生型配列であってもよく、又は野生型配列に所定の変異を導入したものでもよい。
 なお、一般的には、プロモーター配列は、転写開始点の5’上流にあり、-35ボックスと-10ボックスによって特徴付けられることが知られていることから 、プライマー伸長法や定量RT-PCR等の公知の方法によって転写開始点を決定し、決定される転写開始点の情報等を勘案して取得することもできる。
 即ち、本発明においては、ヌクレオチド配列(X)として既知のプロモーター配列を利用してもよいが、特にこれに限定されず、上記のように新たに取得したプロモーター配列を利用してもよく又は人工的に新たに作出したプロモーターを利用してもよい。
 更に、本発明においてヌクレオチド配列(X)として利用され得るプロモーター配列のタイプとしては、特定の培養条件や化学物質の添加等により目的遺伝子の発現を誘導できる誘導型プロモーター(inducible promoter)、RNAポリメラーゼの利用可能性に依存するもので常時発現を可能にする構成型プロモーター(constitutive promoter)等が例示される。
 本発明においては、ヌクレオチド配列(X)として利用されるプロモーターのタイプは特に限定されるものでもないが、構成型プロモーターであることが好ましい。何故ならば、ヌクレオチド配列(X)が特に構成的プロモーターとして機能し得るものである場合、本発明所定のヌクレオチド配列(Y)の存在により、アラビノース未添加時の基底下においては該ヌクレオチド配列(X)のプロモーター活性を厳密に抑制できると共に、アラビノースの添加という簡易な操作により該プロモーター活性の抑制状態を解除し、目的遺伝子の有意な発現を速やかに誘導できるからである。
 より具体的には、ヌクレオチド配列(X)は、コリネ型細菌を含む細菌における各種アミノ酸生合成系に関与する酵素遺伝子のプロモーター又はその誘導体(変異導入配列)であってもよい。より具体的には、グルタミン酸生合成系酵素遺伝子(例えばグルタミン酸脱水素酵素遺伝子)、グルタミン合成系酵素遺伝子(例えばグルタミン合成酵素遺伝子)、リジン生合成系酵素遺伝子(例えばアスパルトキナーゼ遺伝子)、スレオニン生合成系遺伝子(例えばホモセリン脱水素酵素遺伝子)、イソロイシン及びバリン生合成系酵素遺伝子(例えばアセトヒドロキシ酸合成酵素遺伝子)、ロイシン生合成系酵素遺伝子(例えば2-イソプロピルリンゴ酸合成酵素遺伝子)、プロリン及びアルギニン生合成系酵素遺伝子(例えばグルタミン酸キナーゼ遺伝子)、ヒスチジン生合成系酵素遺伝子(例えばホスホリボシル-ATPピロホスホリラーゼ遺伝子)、トリプトファン、チロシンおよびフェニルアラニン等の芳香族アミノ酸生合成系酵素遺伝子(例えばデオキシアラビノヘプツロン酸リン酸(DAHP)合成酵素遺伝子)、イノシン酸およびグアニル酸のような核酸生合成系酵素遺伝子(例えばホスホリボシルピロフォスフェート(PRPP)アミドトランスフェラーゼ遺伝子、イノシン酸脱水素酵素遺伝子及びグアニル酸合成酵素遺伝子)等の各プロモーター又はこれらの誘導体(変異導入配列)が挙げられる。
 更に、ヌクレオチド配列(X)は、細胞分裂に関与する因子をコードする遺伝子のプロモーターであってもよく、例えばdivIVA遺伝子のプロモーターが挙げられる。
 更に、ヌクレオチド配列(X)として対数増殖期に作動するプロモーターも好ましく使用され、例えば、divIVA、gap、ldhA、fda、glyA、cysK、aroF、gpmA、eno、fumC、pfk、sdhA、mdh、argF、proA、proC、aceE、serA、metE、nifS1、tpi、aceD、cysD、sdhB、pck等の各種遺伝子のプロモーターが挙げられる。
 更に、ヌクレオチド配列(X)としては、trcプロモーター、tacプロモーター、T5プロモーター、T7プロモーター、lacプロモーター、trpプロモーター、tetプロモーター等の大腸菌発現システムにおいて利用される強力なプロモーター(strong promoter)も好ましく使用される。
 その他、ヌクレオチド配列(X)としては、EF-Tsプロモーター、EF-Tuプロモーター、groESプロモーター、SODプロモーター、P15プロモーター、gapAプロモーター、dapAプロモーター、tufプロモーター、metEプロモーター、更に特許文献1~13に開示される各種プロモーターも使用できる。
 次に、ヌクレオチド配列(Y)について説明する。本発明に係る核酸における遺伝子発現制御配列(R)は、ヌクレオチド配列(X)に加えて、上記(a)又は(b)に記載のヌクレオチド配列(Y)を含む。
 (a)に記載のヌクレオチド配列は、配列番号5から12の何れか1つに記載のヌクレオチド配列である。これらのヌクレオチド配列は、コリネバクテリウム・グルタミカムのゲノムDNA上に存在するAraRタンパク質結合配列に由来するものである。それらのヌクレオチド配列を以下に示す。
(1) 5’-ATGTTAGCGCTAACAT-3’(配列番号5)
(2) 5’-ATGTGAGCGATAACAC-3’(配列番号6)
(3) 5’-ATGTGAGCGCTAACAC-3’(配列番号7)
(4) 5’-ATGTGAGCGCTAACTC-3’(配列番号8)
(5) 5’-ATGTGAGCGTTAAAAT-3’(配列番号9)
(6) 5’-ATGTGAGCGCTAAACT-3’(配列番号10)(BSE1
(7) 5’-ATGTTAGCGCTGACAT-3’(配列番号11)
(8) 5’-ATGTGAGCGCTGACAT-3’(配列番号12)
(9) 5’-GTGTGAGCGCTAACAC-3’(配列番号17)
(10)5’-GTGTGAGCGATCACAC-3’(配列番号18)
 以下の実施例で示すとおり、配列番号5から12並びに配列番号17及び18の何れか1つに記載のヌクレオチド配列をヌクレオチド配列(Y)として採用した核酸(発現ベクター)をコリネ型細菌に導入した場合、アラビノース未添加の基底下においてはプロモーター活性を厳密に抑制することが可能であると共に、アラビノース添加により抑制状態を解除することによりプロモーター活性を有意に誘導させることができる。アラビノース未添加の状況においてプロモーター活性を信頼性良く抑制し、かつアラビノース添加により高いレベルでプロモーター活性を誘導し得る遺伝子発現制御効果を確保するためには、(a)及び(b)のヌクレオチド配列において以下の(i)から(vi)に規定のヌクレオチド配列を基準とすることが好ましい。
(i)配列番号5から8並びに配列番号10、11及び17の何れか1つに記載のヌクレオチド配列;
(ii)より好ましくは配列番号5から8、10及び17の何れか1つに記載のヌクレオチド配列;
(iii)更により好ましくは配列番号6から8、10及び17の何れか1つに記載のヌクレオチド配列;
(iv)更により好ましくは配列番号6、7、10及び17の何れか1つに記載のヌクレオチド配列;
(v)更により好ましくは配列番号6、7及び17の何れか1つに記載のヌクレオチド配列;
(vi)最も好ましくは配列番号17に記載のヌクレオチド配列。
 更に加えて、上記遺伝子発現制御効果をより顕著なレベルで実現するためには、ヌクレオチド配列(Y)として上記(a)に規定のヌクレオチド配列を採用することが更により好ましく、それらヌクレオチド配列のうち上記(i)から(vi)の何れかに示すヌクレオチド配列を採用することがなお更に好ましく、(i)から(vi)に行くほどより高い効果が期待できる。
 本発明においては、ヌクレオチド配列(Y)として、上記(a)に規定されるヌクレオチド配列の他、遺伝子発現制御配列(R)が条件(I)を満たすことを前提として、上記(b)に規定されるヌクレオチド配列も採用され得る。
 即ち、(b)に規定されるヌクレオチド配列とは、配列番号5から12並びに配列番号17及び18の何れか1つに記載のヌクレオチド配列において1又は複数の塩基が欠失、置換若しくは付加されたヌクレオチド配列である。
 ここで、「1又は複数」の範囲は、遺伝子発現制御配列(R)が条件(I)を満たす限り、特に限定されるものでもない。その範囲としては、例えば1から10個、1から9個、1から8個、好ましくは1から7個、より好ましくは1から6個、更により好ましくは1から5個、特に好ましくは1から4個、1から3個、1から2個、又は1個とすることができる。
 更に、特定の実施形態においては、ヌクレオチド配列(Y)は、以下に示す一般式(I)で表されるヌクレオチド配列である。
 5’-NTGTNAGCGNTNAN-3’・・・一般式(I)
 式中、N、N、N、N、N、N及びNは、それぞれ、独立にA(アデニン)、G(グアニン)、C(シトシン)又はT(チミン)を示す。更に、Nは、A(アデニン)又はG(グアニン)であることが好ましく、Nは、G(グアニン)又はT(チミン)であることが好ましく、Nは、A(アデニン)、C(シトシン)又はT(チミン)であることが好ましく、Nは、A(アデニン)、C(シトシン)又はG(グアニン)であることが好ましく、Nは、A(アデニン)又はC(シトシン)であることが好ましく、Nは、A(アデニン)、C(シトシン)又はT(チミン)であることが好ましく、Nは、C(シトシン)又はT(チミン)であることが好ましい。但し、核酸がRNAの場合は、T(チミン)は、U(ウラシル)と読み替えるものとする。
 加えて、特定の実施形態においては、一般式(I)で表されるヌクレオチド配列においてNからNのヌクレオチドのうち任意の箇所(例えば1から3箇所又は1から2箇所)が欠失したヌクレオチド配列がヌクレオチド配列(Y)として採用され得る。更に、より具体的な実施形態においては、一般式(I)で表されるヌクレオチド配列においてN及びNのうち何れか1つ又はこれらの両方が欠失したヌクレオチド配列がヌクレオチド配列(Y)として採用してもよい。
 本発明の核酸において、ヌクレオチド配列(X)とヌクレオチド配列(Y)との位置関係は、遺伝子発現制御配列(R)が条件(I)を満たすものである限り特に限定されるものでもない。
 例えば、ヌクレオチド配列(Y)がヌクレオチド配列(X)の5’末端に直接若しくは間接に連結されてもよく、又はヌクレオチド配列(Y)がヌクレオチド配列(X)の3’末端に直接若しくは間接に連結されてもよい。この場合、ヌクレオチド配列(Y)は、非翻訳領域や遺伝子間領域に存在してもよく、又は所定の遺伝子をコードする領域(オープンリーディングフレーム)内に存在してもよい。
 更に加えて、ヌクレオチド配列(X)の少なくとも一部とヌクレオチド配列(Y)の少なくとも一部とが重複する実施形態も本発明に包含され得る。ヌクレオチド配列(X)の少なくとも一部とヌクレオチド配列(Y)の少なくとも一部とが重複する実施形態としては、具体的には以下が挙げられる。
i)ヌクレオチド配列(Y)全域がヌクレオチド配列(X)領域内に包含される形態;
ii)ヌクレオチド配列(Y)の3’側一部がヌクレオチド配列(X)の5’側一部と重複する形態;並びに
iii)ヌクレオチド配列(Y)の5’側一部がヌクレオチド配列(X)の3’側一部と重複する形態。
 上述の通りヌクレオチド配列(X)及び(Y)の位置関係は、特に限定されるものでもないが、上記所定の効果を信頼性良く生じせしめるためには、ヌクレオチド配列(Y)がヌクレオチド配列(X)の3’末端に直接又は間接に連結されていることが好ましい。
 ここで、「ヌクレオチド配列(Y)がヌクレオチド配列(X)に間接に連結されている」、「ヌクレオチド配列(Y)の3’末端又は5’末端がヌクレオチド(Y)の5’末端又は3’末端に間接に連結されている」等の語句は、ヌクレオチド配列(X)とヌクレオチド配列(Y)とが1個のヌクレオチド又は複数のヌクレオチドからなる配列を介して連結されていることを意味する。「複数のヌクレオチドからなる配列」におけるヌクレオチドの個数は、遺伝子発現制御配列(R)が条件(I)を満たす限り特に限定されるものでもないが、例えば2から50個、好ましくは2から40個、より好ましくは2から35個、2から30個、2から25個、2から20個、2から15個、2から10個、更により好ましくは2から9個、2から8個、2から7個、2から6個、2から5個、2から4個、2から3個である。加えて、上記ヌクレオチド配列(X)とヌクレオチド配列(Y)とを連結する「複数のヌクレオチドからなる配列」は、特定の機能を有しない単なるリンカー配列であってもよいし、又は更なるプロモーター配列、リボソーム結合配列(シャイン・ダルガノ配列 ;SD配列)、他の転写調節配列や翻訳調節配列等の遺伝子発現調節機能を有する配列であってもよい。
 一方、「ヌクレオチド配列(Y)がヌクレオチド配列(X)に直接に連結されている」、「ヌクレオチド配列(Y)の3’末端又は5’末端がヌクレオチド(Y)の5’末端又は3’末端に直接に連結されている」等の語句は、字義どおりに理解されればよく、ヌクレオチド配列(X)とヌクレオチド配列(Y)とが、上記のような1又は複数の別のヌクレオチドを介さずに直接連結されていることを意味する。
 更に、ヌクレオチド配列(X)及びヌクレオチド配列(Y)はそれぞれ、本発明の核酸において1つずつ存在してもよく又はそれぞれ複数存在してもよい。更に加えて、ヌクレオチド配列(X)若しくはヌクレオチド配列(Y)が複数存在する場合にあっては、複数のヌクレオチド配列(X)若しくはヌクレオチド配列(Y)は互いに全く同一の配列を有するものであってもよいし、又は異なる配列を有するものであってもよい。
 次に、条件(I)について説明する。
 本発明において遺伝子発現制御配列(R)が条件(I)を充足することの意義は、以下のとおりである。
 上述のとおり、本発明に係る核酸において、遺伝子発現制御配列(R)は、目的遺伝子の発現を制御するプロモーターとして機能するヌクレオチド配列(X)と、コリネ型細菌のゲノムDNAに存在するAraR結合配列に由来するヌクレオチド配列をヌクレオチド配列(Y)として含むものである。
 このようなヌクレオチド配列(X)及び(Y)の構成により、アラビノース濃度が基底レベル以下の環境下では、本発明所定の核酸が導入されたコリネ型細菌においてAraRタンパク質がヌクレオチド配列(Y)に結合した形態となり、その結果、ヌクレオチド配列(X)のプロモーター活性が抑制された状態になるものと推測される。ところが、一方、アラビノース濃度が基底レベルを超えた環境に該コリネ型細菌が暴露された場合、上記AraRタンパク質がアラビノースによるアロステリックな調節を受け、ヌクレオチド配列(Y)から解離することで、ヌクレオチド配列(X)のプロモーター活性が誘導され、目的遺伝子の発現が促進されるものと推測される。即ち、本発明に係る核酸を利用して目的遺伝子の発現を制御した場合に実際に観測される現象としては、アラビノース濃度が基底レベル以下の環境下では、ヌクレオチド配列(X)によるプロモーター活性が抑制された状態にあり、ヌクレオチド配列(X)のプロモーター活性の制御下にある所定の遺伝子の発現は、mRNAへの転写ないしタンパク質発現のレベルで抑制される。一方、アラビノース濃度が基底レベルを超えた環境においては該所定の遺伝子の発現は、mRNA転写ないしタンパク質発現のレベルで促進される。
 従って、遺伝子発現制御配列(R)は、コリネ型細菌において、アラビノースを添加した場合に対してアラビノース未添加の場合にヌクレオチド配列(X)のプロモーター活性が抑制されること、と云う条件(I)を充足することが必要となる。
 ここで、条件(I)の充足性は、以下に示すレポーターアッセイにより確認することができる。
 即ち、上述の如く構成した遺伝子発現制御配列(R)の3’末端にレポーター遺伝子をコードするヌクレオチド配列を連結してなるDNA断片が、コリネ型細菌において機能可能な発現ベクターの所定部位に導入されたDNA構築物を用意する。ここで、レポーター遺伝子としては、例えば、βガラクトシダーゼ遺伝子(LacZ)、β-グルクロニダーゼ、クロラムフェニコールアセチルトランスフェラーゼ、各種蛍光タンパク質(例えば緑色蛍光タンパク質)等が挙げられる。より具体的には、配列番号80又は81に示すヌクレオチド配列を有する発現ベクタープラスミド等のように、遺伝子発現制御配列(R)の3’末端に直接又は間接にレポーター遺伝子をコードするヌクレオチド配列を連結してなるDNA断片が挿入されてなるDNA構築物、即ちレポータープラスミドを用意すればよい。このようなレポータープラスミドは、独自に構築してもよいし、又はレポーターアッセイ用に市販されている各種レポータープラスミドシステムを利用してもよい。
 そして、このようなDNA構築物をコリネ型細菌に導入した形質転換体を得る。
 上記形質転換体を、所定の濃度以上でアラビノースを含有する培地と、アラビノースが所定の濃度未満である培地とをそれぞれ用いて一定の時間培養し、培養液をそれぞれサンプリングする。サンプリングした培養液に由来する菌体それぞれについて、レポーター遺伝子のmRNAを定量PCR等の手法で定量し、又はレポーター遺伝子から発現したレポータータンパク質の活性を適宜測定する。前者の培養液サンプルについて測定したmRNAの発現量又はレポータータンパク質の活性値が後者の培養液サンプルについて測定されたものの何倍であるかを求めることにより、条件(I)の充足性を求めることができる。
 より具体的には、本発明において、条件(I)の充足性は、例えば以下の実施例に示すレポーターアッセイ法により確認することができる。
 即ち、以下実施例の試験例1において使用したプラスミドベクターpGE728-1(配列番号80)において、レポーター遺伝子であるβガラクトシダーゼ遺伝子(LacZ)の上流に存在する、プロモーター配列(PtacI)とAraR結合配列とを連結させてなる領域(配列番号32)を、条件(I)の充足性について評価する対象の遺伝子制御配列(R)と交換し、得られたプラスミドベクターを用いてレポーターアッセイを行うことにより、当該遺伝子制御配列(R)の条件(I)の充足性について確認するのが好都合である。βガラクトシダーゼ遺伝子(LacZ)を利用したプロモーター活性の評価方法は、当業者において既に周知慣用のアッセイ系として確立されていることから、実験操作も容易でデータの信頼性及び再現性良いからである。
 レポーターアッセイにおいて、アラビノース添加による誘導条件、培地組成、培養温度や培養時間等の培養条件等を含むアッセイ条件は、信頼性のあるプロモーター活性の比が得られるものであれば特に限定されるものでもなく、選択する遺伝子発現制御配列(R)の性質、用いるレポーター遺伝子の種類や性質、用いるコリネ型細菌の性質等を考慮し、アッセイ条件を適宜調整すればよい。
 より詳細には、βガラクトシダーゼ遺伝子(LacZ)アッセイは、例えばJ.Biol.Chem.,1995,270:11181-11189又はGenetics,2010,185:823-830に記載の手順に従い実施することができる。以下により具体的な手順を一例として示す。
(1)コリネバクテリウム・グルタミカムATCC13032株に上記DNA構築物を導入することにより得た形質転換体を、所定量の液体培地(4%グルコース,25μg/mLカナマイシン)に植菌し、所定の温度でOD610=0.5~1.5(場合によりOD610=0.5~1)になるまで培養する。OD610=0.5~1.5(場合によりOD610=0.5~1)になったところで所定量の培養液を別の培養容器に移し、アラビノースを所定の終濃度となるように添加したものと、アラビノースを未添加のものを準備する。
(2)上記培養液をそれぞれ所定時間培養し、アラビノース誘導あり、なしの培養液をそれぞれサンプリングし、OD(610nm)を測定し、20μLを80μLの透過バッファー(100mM NaHPO,20mM KCl,2mM MgSO,0.8mg/mL CTAB,0.4mg/mL デオキシコール酸ナトリウム,5.4μL/mLβメルカプトエタノール)と混ぜる。
(3)基質溶液(60mM NaHPO,40mM NaHPO,1mg/mL ONPG,2.7μL/mLβメルカプトエタノール)600μLと混合し、25℃でインキュベートする。
(4)1M NaCO700μLを加えて反応を停止させ、15,000g、5分間の遠心分離を行う。
(5)上清の吸光度(A420)を測定する。
(6)以下の式2に基づき、プロモーター活性としてミラー・ユニット(Miller Unit)を計算する。
 1ミラー・ユニット=1000×(A420/t×V×OD610)・・・式(II)
式中、tは時間(分)を示し、Vは培養液(mL)を示す。
 なお、上記液体培地としては、例えば以下に示す組成を有する培地を使用できる。
酵母エキス2g、カザミノ酸1g、尿素2g、硫安7g、リン酸水素二カリウム0.5g、リン酸二水素カリウム0.5g、硫酸マグネシウム・7水和物0.5g、硫酸鉄・7水和物6mg、硫酸マンガン・1水和物4.2mg、ビオチン0.2mg、チアミン0.2mg(1Lあたり)。
 上述の通りアラビノースを添加した培養液について測定されたプロモーター活性値と、アラビノース未添加の培養液について測定されたプロモーター活性値とを比較することにより、アラビノース添加時に観測されるプロモーター活性に対してアラビノース未添加時に観測されるプロモーター活性が有意に抑制されたものと言える遺伝子発現制御配列(R)が、条件(I)を充足するものであり、本発明に係る核酸の構成要素たるヌクレオチド配列(Y)として採用され得る。
 ここで、遺伝子発現制御配列(R)は、アラビノースの添加等によりヌクレオチド配列(X)のプロモーター活性を誘導させた試料について測定されるプロモーター活性値が、対照となるアラビノース未添加の試料について測定されるプロモーター活性に対して少なくとも5倍高いものであることが好ましく、より好ましくは少なくとも10倍高く、更により好ましくは少なくとも15倍、20倍、25倍、30倍、35倍、40倍又は45倍高く、特に好ましくは少なくとも50倍、55倍、60倍、65倍、70倍、80倍、90倍、100倍又は150倍高いものである。
 なお、ここで「アラビノース等を添加することによりプロモーター活性を誘導させる」と言う意味は、ヌクレオチド配列(Y)のみによってヌクレオチド配列(X)のプロモーター活性を制御している実施形態においては、アラビノースのみの添加により抑制の制御ができるが、ヌクレオチド配列(Y)に加えて別の遺伝子発現制御因子(例えばlacO)を利用している場合にはアラビノース添加に加えて該別の遺伝子発現制御因子による制御に必要な操作が必要となると言う意味である。
 加えて、遺伝子発現制御配列(R)は、逆説的には、アラビノース未添加の対照試料について測定されるプロモーター活性値が、ヌクレオチド配列(X)のプロモーター活性を誘導させた試料について測定されるプロモーター活性値の1/5以下であることが好ましく、この場合、より好ましくは1/10以下、更により好ましくは1/15以下、1/20以下、1/25以下、1/30以下、1/35以下、1/40以下又は1/45以下、特に好ましくは1/50以下、1/55以下、1/60以下、1/65以下、1/70以下、1/80以下、1/90以下、1/100以下、又は1/150以下である。
 更に加えて、選択したレポーターアッセイの種類や測定条件等にもよるが、上記(1)から(6)の手順又は実施例に示されるレポーターアッセイの条件を採用した場合、アラビノース未添加の試料について測定されるプロモーター活性が10ミラー・ユニット以下であることが好ましい。更に、アラビノース未添加の試料について測定されるプロモーター活性の上限値としては、好ましくは9、より好ましくは8、7、6、5、4、特に好ましくは3.5、3.4、3.3、3.2、3.1、3.0、2.9、2.8、2.7、2.6、2.5、2.4、2.3、2.2、2.1、2.0、1.9、1.8、1.7、1.6、1.2、1.1、1.0である(単位はミラー・ユニット)。
 好ましい一の実施形態として、以下の(p)から(s)の何れかのヌクレオチド配列を含む遺伝子発現制御配列(R)を採用することができる。
(p)配列番号22から41の何れか1つに記載のヌクレオチド配列;
(q)(p)に記載のヌクレオチド配列において1又は複数の塩基が欠失、置換若しくは付加されたヌクレオチド配列;
(r)(p)に記載のヌクレオチド配列に対して相補であるヌクレオチド配列とストリンジェントな条件でハイブリダイズするヌクレオチド配列;及び
(s)(p)に記載のヌクレオチド配列と少なくとも80%以上の配列同一性を有するヌクレオチド配列、
但し、核酸がRNAの場合は、ヌクレオチド配列中のチミン(t)をウラシル(u)と読み替えるものとする。
 配列番号22から41に示される各ヌクレオチド配列を以下に示す。
(1-1):5’-TTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTTAGCGCTAACAT-3’ (配列番号22)
(1-2):5’-TTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTGAGCGATAACAC-3’(配列番号23)
(1-3):5’-TTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTGAGCGCTAACAC-3’(配列番号24)
(1-4):5’-TTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTGAGCGCTAACTC-3’(配列番号25)
(1-5):5’-TTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTGAGCGTTAAAAT-3’(配列番号26)
(1-6):5’-TTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTGAGCGCTAAACT-3’ (配列番号27) 
(1-7):5’-TTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTTAGCGCTGACAT-3’(配列番号28)
(1-8):5’-TTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTGAGCGCTGACAT-3’(配列番号29)
(1-9):5’-TTGACAATTAATCATCGGCTCGTATAATGTGTGGAGTGTGAGCGCTAACAC-3’(配列番号30)
(1-10):5’-TTGACAATTAATCATCGGCTCGTATAATGTGTGGAGTGTGAGCGATCACAC-3’(配列番号31)
(1-11):5’-GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTTAGCGCTAACAT-3’ (配列番号32)
(1-12):5’-GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTGAGCGATAACAC-3’(配列番号33)
(1-13):5’-GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTGAGCGCTAACAC-3’(配列番号34)
(1-14):5’-GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTGAGCGCTAACTC-3’(配列番号35)
(1-15):5’-GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTGAGCGTTAAAAT-3’(配列番号36)
(1-16):5’-GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTGAGCGCTAAACT-3’ (配列番号37) 
(1-17):5’-GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTTAGCGCTGACAT-3’(配列番号38)
(1-18):5’-GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATGTGAGCGCTGACAT-3’(配列番号39)
(1-19):5’-GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAGTGTGAGCGCTAACAC-3’(配列番号40)
(1-20):5’-GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAGTGTGAGCGATCACAC-3’(配列番号41)
 更に、別の好ましい実施形態として、以下の(t)から(s)の何れかのヌクレオチド配列を含む遺伝子発現制御配列(R)を採用することもできる。
(t)配列番号42から61の何れか1つに記載のヌクレオチド配列;
(u)(t)に記載のヌクレオチド配列において1又は複数の塩基が欠失、置換若しくは付加されたヌクレオチド配列;
(v)(t)に記載のヌクレオチド配列に対して相補であるヌクレオチド配列とストリンジェントな条件でハイブリダイズするヌクレオチド配列;及び
(w)(t)に記載のヌクレオチド配列と少なくとも80%以上の配列同一性を有するヌクレオチド配列、
但し、核酸がRNAの場合は、ヌクレオチド配列中のチミン(t)をウラシル(u)と読み替えるものとする。
 配列番号42から61に示されるヌクレオチド配列を以下に示す。
(2-1):5’-TTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTTAGCGCTAACAT-3’ (配列番号42)
(2-2):5’-TTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTGAGCGATAACAC-3’(配列番号43)
(2-3):5’-TTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTGAGCGCTAACAC-3’(配列番号44)
(2-4):5’-TTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTGAGCGCTAACTC-3’(配列番号45)
(2-5):5’-TTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTGAGCGTTAAAAT-3’(配列番号46)
(2-6):5’-TTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTGAGCGCTAAACT-3’ (配列番号47) 
(2-7):5’-TTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTTAGCGCTGACAT-3’(配列番号48)
(2-8):5’-TTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTGAGCGCTGACAT-3’(配列番号49)
(2-9):5’-TTGACAATTAATCATCGAACTAGTTTAATGTGTGGAGTGTGAGCGCTAACAC-3’(配列番号50)
(2-10):5’-TTGACAATTAATCATCGAACTAGTTTAATGTGTGGAGTGTGAGCGATCACAC-3’(配列番号51)
(2-11):5’-GAGCTGTTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTTAGCGCTAACAT-3’ (配列番号52)
(2-12):5’-GAGCTGTTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTGAGCGATAACAC-3’(配列番号53)
(2-13):5’-GAGCTGTTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTGAGCGCTAACAC-3’(配列番号54)
(2-14):5’-GAGCTGTTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTGAGCGCTAACTC-3’(配列番号55)
(2-15):5’-GAGCTGTTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTGAGCGTTAAAAT-3’(配列番号56)
(2-16):5’-GAGCTGTTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTGAGCGCTAAACT-3’ (配列番号57) 
(2-17):5’-GAGCTGTTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTTAGCGCTGACAT-3’(配列番号58)
(2-18):5’-GAGCTGTTGACAATTAATCATCGAACTAGTTTAATGTGTGGAATGTGAGCGCTGACAT-3’(配列番号59)
(2-19):5’-GAGCTGTTGACAATTAATCATCGAACTAGTTTAATGTGTGGAGTGTGAGCGCTAACAC-3’(配列番号60)
(2-20):5’-GAGCTGTTGACAATTAATCATCGAACTAGTTTAATGTGTGGAGTGTGAGCGATCACAC-3’(配列番号61)
 上記配列(1-1)から(1-20)及び(2-1)から(2-20)において下線部の配列がヌクレオチド配列(Y)に相当し、それ以外の5’上流領域はヌクレオチド配列(X)に相当する。
 (1-1)から(1-20)に示す遺伝子発現制御配列(R)におけるヌクレオチド配列(Y)はそれぞれ順に、配列番号5から12並びに配列番号17及び18に示すヌクレオチド配列に相当する。(2-1)から(2-20)に示す遺伝子発現制御配列(R)におけるヌクレオチド配列(Y)もそれぞれ順に、配列番号5から12並びに配列番号17及び18に示すヌクレオチド配列に相当する。
 一方、(1-1)から(1-10)に示す配列におけるヌクレオチド配列(X)は、エシェリキア・コリ(大腸菌)における発現システムで頻繁に使用されるPtacIの-35ボックス、-10ボックス及び転写開始部位(+1)を包含するコア配列であり、プロモーター活性の発現に必要十分と考えられる配列である(Li et al.Microbial Cell Factories 2012,11:19)。これに対して、(1-11)から(1-20)に示す遺伝子制御配列(R)におけるヌクレオチド配列(X)は、当業者において一般的に認識されているPtacI配列において転写開始部位(+1)から上流の全域を含む配列に相当し、上記コア配列の5’末端に6個のヌクレオチドが更に付加されたものである(Proc.Natl. Acad.Sci.USA,Vol.80,pp.21-25,January 1983)。
 ヌクレオチド配列(X)としてPtacI(配列番号1又は2)を用いた場合、実施例に示されるとおり特に効率的な目的遺伝子の発現制御が可能となることから、上記(p)から(s)に示すヌクレオチド配列を遺伝子発現制御配列(R)として利用することは好ましい。
 しかしながら、PtacIのみならず、PtacII(配列番号3又は4)をヌクレオチド配列(X)として使用することも好ましく、この場合、より具体的には上記(t)から(w)に示すヌクレオチド配列を含む遺伝子発現制御配列(R)を採用することが好ましい。上記(t)に規定される上記(2-1)から(2-10)に示す配列におけるヌクレオチド配列(X)は、エシェリキア・コリ(大腸菌)における発現システムでしばしば使用されるPtacIIの-35ボックス、-10ボックス及び転写開始部位(+1)を包含するコア配列であり、プロモーター活性の発現に必要十分と考えられる配列だからである(上記文献参照。)。更に、(2-11)から(2-20)に示す配列におけるヌクレオチド配列(X)は、当業者において一般的に認識されているPtacII配列において転写開始部位(+1)から上流の全域を含む配列(上記コア配列の5’末端に6個のヌクレオチドが更に付加されたもの)であり、PtacIと同様に高いプロモーター活性を発現し得えるからである(上記文献参照。)。
 更に、別の好ましい実施形態として、以下の(h)から(k)の何れかのヌクレオチド配列を含む遺伝子発現制御配列(R)を採用することもできる。
(h)配列番号96から102の何れか1つに記載のヌクレオチド配列;
(i)(h)に記載のヌクレオチド配列において1又は複数の塩基が欠失、置換若しくは付加されたヌクレオチド配列;
(j)(h)に記載のヌクレオチド配列に対して相補であるヌクレオチド配列とストリンジェントな条件でハイブリダイズするヌクレオチド配列;及び
(k)(h)に記載のヌクレオチド配列と少なくとも80%以上の配列同一性を有するヌクレオチド配列、
但し、核酸がRNAの場合は、ヌクレオチド配列中のチミン(t)をウラシル(u)と読み替えるものとする。
 配列番号96から102に示す各ヌクレオチド配列は、ヌクレオチド配列(X)として、それぞれ順に、コリネバクテリウム・グルタミカムATCC13031株ゲノム上に存在するtufプロモーター、dapAプロモーター、metEプロモーター、ldhAプロモーター、gapAプロモーター、sodプロモーター、及びtufプロモーターのヌクレオチド配列を含み、かつヌクレオチド配列(Y)として配列番号5に示すヌクレオチド配列を含む。なお、配列番号102に係るヌクレオチド配列は、同じくtufプロモーターを採用した配列番号96に係るヌクレオチド配列に対して、tufプロモーターへのAraR結合配列の連結部位を変えたものであり、より詳細には、推定転写領域5’末端側部位をAraR結合配列の5’末端側領域にオーバーラップさせたものである。
 更に、更なる別の実施形態として、上記(h)から(k)によって特定される実施形態について、(h)に係る配列番号96から102の何れか1つに記載のヌクレオチド配列におけるヌクレオチド配列(X)の領域(即ち、配列番号5に係るヌクレオチド配列部分)が、配列番号6から12並びに配列番号17及び18の何れか1つに記載のヌクレオチド配列で置換された各種変形例を包含する実施形態(V)が挙げられる。
上述の各実施形態における(q)、(u)及び(i)にそれぞれ示すヌクレオチド配列並びにそれらに相応のその他ヌクレオチド配列において、「1又は複数」の範囲は、遺伝子発現制御配列(R)が条件(I)を満たす限り、特に限定されるものでもない。その範囲としては、例えば1から40個、1から35個、1から30個、1から30個、1から25個、1から20個、1から18個、1から15個、1から12個、1から10個、好ましくは1から9個、1から8個、1から7個、より好ましくは1から6個、更により好ましくは1から5個、特に好ましくは1から4個、1から3個、1から2個、又は1個とすることができる。
 更に、上述の各実施形態における(r)、(v)及び(j)にそれぞれ示すヌクレオチド配列並びに本発明におけるその他ヌクレオチド配列について、「ストリンジェントな条件下でハイブリダイズするヌクレオチド配列」とは、具体的には、コロニー・ハイブリダイゼーション法、プラーク・ハイブリダイゼーション法、あるいはサザンブロットハイブリダイゼーション法等の核酸ハイブリダイゼーション法において(p)、(t)又は(h)に記載のヌクレオチド配列等の基準とするヌクレオチド配列に対して相補であるヌクレオチド配列と相補的な複合体を形成するヌクレオチド配列を意味する。ここで、ストリンジェントなハイブリダイゼーション条件としては、6M 尿素、0.4%SDS、0.5×SSCの条件、または0.1%SDS(60℃、0.3mol NaCl、0.03M クエン酸ソーダ)のハイブリダイゼーション条件、あるいはこれらと同等のストリンジェンシーのハイブリダイゼーション条件を指す。よりストリンジェンシーの高い条件、例えば、6M 尿素、0.4%SDS、0.1×SSCの条件下では、より相同性の高いヌクレオチド配列を特定することができる。
 更に、(s)、(w)及び(k)に示すヌクレオチド配列はそれぞれ、(p)、(t)及び(h)に記載のヌクレオチド配列と少なくとも約80%以上の配列同一性を有するヌクレオチド配列である。更に、(s)、(w)及び(k)に示すヌクレオチド配列としては、(p)、(t)及び(h)にそれぞれ記載のヌクレオチド配列に対して少なくとも約85%以上の配列同一性を有するヌクレオチド配列であることが好ましく、より好ましくは約90%以上の配列同一性を有するヌクレオチド配列であり、更に好ましくは約91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上の配列同一性を有するヌクレオチド配列である。
なお、これらの事項は、上述の変形例に係る実施形態(V)にも同様に適用され得るものであり、これらの事項が実施形態(V)に適用された特定の変形例も、本明細書に明確に開示されるものである。
 加えて、本発明に係る核酸における遺伝子発現制御配列(R)は、ヌクレオチド配列(X)及び(Y)に加えて、他の遺伝子発現調節配列を更に含むものであってもよい。このような他の遺伝子発現調節配列としては例えば、lacオペレーター等の更なる転写調節配列、リボソーム結合配列(シャイン・ダルガノ配列 ;SD配列)等の翻訳調節配列等が挙げられる。
 本発明に係る核酸が特に発現カセット、発現ベクター等の形態で提供される実施形態においては、例えば以下(3-1)から(3-6)に示すSD配列を含んでもよい。
(3-1)5’-AGGA-3’ 
(3-2)5’-GGT-3’ 
(3-3)5’-GAAGGATT-3’ 
(3-4)5’-GAAAGGAGG-3’ 
(3-5)5’-GAAGGCGA-3’ 
(3-6)5’-GAAGGAGA-3’
 SD配列の位置は、本発明所望の効果が得られる限り特に限定されるものでもない。ヌクレオチド配列(X)及び(Y)による目的遺伝子の発現制御効果をより確実に生じせしめる観点からすれば、SD配列は、ヌクレオチド配列(Y)の3’末端と開始コドンとの間に存在することが好ましく、この場合、SD配列は、ヌクレオチド配列(Y)の3’末端に直接又は間接に連結される。
 加えて、本発明に係る遺伝子制御配列(R)において、特に(3-1)に示すSD配列を採用することが好ましい。(3-1)に示すSD配列は、PtacI及びPtacIIに組合されるSD配列であり、以下の実施例にも示される通り、アラビノースを利用した目的遺伝子の厳密な遺伝子発現制御を確実なものとし、かつタンパク質発現レベルで高い遺伝子発現量も約束できるからである。
 より具体的には、上記(p)から(s)に係る実施形態、上記(t)から(w)に係る実施形態、上記(h)から(k)に係る実施形態、並びに上記変形例に係る実施形態(V)において、(p)、(t)及び(h)それぞれに規定されるヌクレオチド配列を、当該ヌクレオチド配列の3’末端に以下の(4-1)に示す配列が直接連結されてなるヌクレオチド配列とそれぞれ読み替えることによる実施形態が挙げられる。
(4-1)5’-TCACACAGGA-3’(配列番号62)
 更に、本発明に係る核酸が、特に発現カセット又はベクターの形態で提供される実施形態においては、当該核酸は、細菌(特にエシェリキア・コリ及び/又はコリネ型細菌)において機能し得るターミネーター(転写終結シグナル)(例えばTrrnB、TGroEL、Ttrp、TT7)を更に含んでもよい。ターミネーターの位置は、本発明所望の効果が得られる限り特に限定されるものでもないが、一般的にはヌクレオチド配列(Y)又はSD配列の3’末端にターミネーターが直接又は間接に連結され得る。更に具体的には、ヌクレオチド配列(Y)又はSD配列の3’末端にクローニング部位が設けられている場合には、該クローニング部位の3’末端にターミネーターが直接又は間接に連結され得る。更に加えて、ヌクレオチド配列(Y)又はSD配列の3’末端に目的遺伝子コード領域が連結されている実施形態においては、目的遺伝子コード領域の3’末端にターミネーターが直接又は間接に連結され得る。
 更に、本発明に係る核酸は、任意に、araEタンパク質及びaraRタンパク質のうち少なくとも1つをコードするヌクレオチド配列を更に含んでいても良い。菌体内においてaraEタンパク質及びaraRタンパク質が強制的に発現されると、アラビノース添加による遺伝子発現制御の確実性及び厳密性を担保できるからである。
 上述のとおりヌクレオチド配列(Y)がコリネバクテリウム・グルタミカムのゲノムDNAに存在するAraR結合配列に由来するものであることを考慮すると、コリネ型細菌、好ましくはコリネバクテリウム属菌、より好ましくはコリネバクテリウム・グルタミカムのゲノムDNAに存在するaraE遺伝子コード配列及びaraR遺伝子コード配列の少なくとも1つが挿入された核酸(DNA)であることが好ましい。
 更に、本発明に係る核酸は、少なくとも1つの複製起点、選択マーカー遺伝子、クローニング部位及び制限酵素認識部位からなる群から選択される1種以上のヌクレオチド配列を更に含むものであってもよい。複製起点及び選択マーカー遺伝子は、細菌全般又は複数種の細菌において機能可能なものであってもよく、又は特定の菌種において機能可能なものであってもよい。例えば、以下の何れか1つ以上を含むものが挙げられる。
(1)コリネ型細菌においてのみ機能可能な複製起点及び/又は選択マーカー遺伝子コード配列;
(2)エシェリキア属菌(例えばエシェリキア・コリ)においてのみ機能可能な複製起点及び/又は選択マーカー遺伝子コード配列;並びに
(3)コリネ型細菌及びエシェリキア属菌の両方において機能可能な複製起点及び/又は選択マーカー遺伝子コード配列。
 更に、本発明に係る核酸は、コリネ型細菌やエシェリキア属菌を含む細菌において自律複製可能なプラスミドとして提供され得る。更に加えて、本発明に係る核酸は、発現ベクターとして提供され得る。
 本発明に係る核酸は、例えば、コリネ型細菌とエシェリキア属菌との両方で自律複製可能であり、更にコリネ型細菌において目的遺伝子を発現させることができるシャトル発現ベクターの形態で提供されるものであってもよい。
 更に、本発明に係る核酸は、ヌクレオチド配列(Y)の3’末端に直接又は間接に連結され、かつ目的遺伝子をコードするヌクレオチド配列(Z)を更に含むものであっても良い。ただし、上述のとおり本発明に係る核酸においてヌクレオチド配列(Z)は必須の構成要素ではない。
 更に、本発明の第5の態様によれば、以下の核酸も提供される。
コリネ型細菌において目的遺伝子の発現制御に用いるための核酸断片であって、
以下の(a)又は(b)に記載のヌクレオチド配列(Y)を含む、核酸断片:
(a)配列番号5から9、11及び12並びに配列番号17及び18の何れか1つに記載のヌクレオチド配列;
(b)上記(a)に記載のヌクレオチド配列において1又は複数の塩基が欠失、置換若しくは付加されたヌクレオチド配列、
但し、
核酸がRNAの場合は、ヌクレオチド配列中のチミン(t)をウラシル(u)に読み替えるものとし、
ヌクレオチド配列(Y)として配列番号10、20及び21それぞれに示されるヌクレオチド配列は除外され、かつヌクレオチド配列(Y)は以下の条件(II)を満たすものとする、
条件(II):配列番号80に示すプラスミドベクターpGE728-1のヌクレオチド配列における第2913番目から第2928番目までのヌクレオチド配列を上記ヌクレオチド配列(Y)と入れ替えたプラスミドベクターで形質転換されたコリネ型細菌において、アラビノースを添加した場合に対してアラビノース未添加の場合にPtacIのプロモーター活性が抑制される。
 ここで、PtacIのプロモーター活性が1/8以下に抑制されることが好ましく、より好ましくは1/9以下、1/10以下、1/15以下、1/20以下、1/25以下、更により好ましくは1/30以下、1/35以下、1/40以下、1/45以下、特に好ましくは1/50以下、1/55以下、1/60以下、1/65以下、1/70以下、1/80以下、1/90以下、1/100以下、又は1/150以下である。
 ところで、配列番号10、20及び21に示されるヌクレオチド配列は、コリネバクテリウム・グルタミカムATCC31831株のゲノムDNA上に存在するアラビノース遺伝子群の遺伝子間領域に存在する天然のAraR結合配列(それぞれBSE1、BSE2、BS)に相当する(非特許文献6)。
 上記第5の態様に係る核酸を規定する各用語については、第1の態様に係る核酸について説明した通りであり、第1の態様に係る核酸について示した上記実施形態ないし特徴は、特に齟齬を生じない限り第5の態様に係る核酸においても採用され得るものであり、それら実施形態ないし特徴の各種組合せは第5の態様に係る核酸において採用し得る実施形態として本明細書に開示されるものである。
 更に、第5の態様に係る核酸も、以下に示す更なる態様においても利用され得る。
〔核酸が導入された細菌〕
 更に本発明の第2の態様によれば、本発明に係る核酸が導入された細菌が提供される。
 本発明に係る核酸が導入された細菌の種類は、特に限定されるものでもないが、エシェリキア属菌や上述のコリネ型細菌(好ましくはコリネバクテリウム属菌)が挙げられる。
 本発明に係る核酸が導入された細菌はコリネ型細菌に由来するaraEタンパク質及びaraRタンパク質をそれぞれコードする少なくとも1つのヌクレオチド配列を含む核酸がこれらタンパク質を発現可能にゲノムDNAに組み込まれたものであってもよい。この場合、当該細菌に導入される本発明に係る核酸は、具体的には遺伝子発現制御配列(R)(ヌクレオチド配列(Y))の3’下流に目的遺伝子をコードするヌクレオチド配列(Z)が連結されたものであり得る。菌体内においてaraEタンパク質及びaraRタンパク質が強制的に発現されると、上述のアラビノース添加による目的遺伝子の発現制御がより確実かつ効率よく実現されるからである。なお、上述のとおりホストのゲノムDNAにaraEタンパク質及びaraRタンパク質をそれぞれコードする少なくとも1つのヌクレオチド配列が組み込まれた実施形態においては、本発明に係る核酸は、同様にaraEタンパク質及びaraRタンパク質をそれぞれコードする少なくとも1つのヌクレオチド配列を含まずともよいし、又は該少なくとも1つのヌクレオチド配列を含むものであってもよい。
〔目的遺伝子の発現方法及び目的物質の生産方法〕
 本発明の第3の態様によれば、上記本発明の核酸が導入された細菌をアラビノース又はそのアナログに暴露することにより目的遺伝子を発現させることを含む、目的遺伝子の発現方法が提供される。
 更に、本発明の第4の態様によれば、上記本発明の核酸が導入された細菌をアラビノース又はそのアナログに暴露することにより目的遺伝子を発現させることを含む、目的物質の生産方法が提供される。
 なお、以下、本発明の第3及び第4の態様に係る方法を、まとめて本発明の方法と呼ぶことがある。
 本発明の方法における「細菌をアラビノース又はそのアナログに暴露する」の具体的な態様としては、プロモーター活性が誘導される限り特に限定されるものでもないが、例えば、本発明の細菌を培養する工程において培地にアラビノースを添加することにより該細菌をアラビノースに暴露するものであってもよい。
 この場合、培地におけるアラビノース又はそのアナログの濃度は、プロモーター活性が誘導される限り特に限定されるものでもないが、例えば、0.001%以上、好ましくは0.005%以上、より好ましくは0.007%、更により好ましくは0.008%以上、0.009%以上、特に好ましくは0.01%以上、0.015%以上、0.018%以上である。加えて、アラビノース又はそのアナログの濃度の上限値も、プロモーター活性が誘導される限り特に限定されるものでもないが、コストを考慮すると5%以下、好ましくは3%以下、より好ましくは2.5%以下である。これらの上限値と下限値を任意に組み合せた数値範囲は、プロモーター活性の誘導時のアラビノース又はそのアナログの濃度の範囲として本明細書に開示されるものであり、本発明の特定の実施形態において採用され得る。
 なお、本発明においてアラビノースは、より具体的にはL-アラビノースである。
 更に加えて、本発明において、アラビノースのアナログ(「そのアナログ」)とは、本発明に係る核酸における遺伝子制御配列(R)(ヌクレオチド配列(Y))の存在下においてアラビノースと同様の遺伝子発現制御の挙動を示し、かつアラビノースの基本骨格を有しつつもアラビノースの化学構造における一部の原子又は原子団がアラビノースのそれとは異なる原子又は原子団と置換されてなる化合物を言う。
 更に、アラビノース添加によるプロモーター活性の誘導時間(例えば、アラビノース存在下における培養時間)は、所望のプロモーター活性の発現が得られるよう適宜調整すれば足り、特に限定されるものでもないが、例えば0.5~48時間、好ましくは1~24時間、より好ましくは1~12時間、1~6時間とすることができる。特定の実施形態においては、以下の実施例にも示されるとおり極めて短い時間で十分なプロモーター活性の上昇と目的遺伝子の発現量とを確保できることから、効率性/生産性並びに経済性に優れたバイオプロセスを実現できる。
 ところで、コリネ型細菌やエシェリキア属菌等の細菌の形質転換体を利用した各種遺伝子の発現方法や各種物質の生産方法は知られており、例えば上述の特許文献1から13及び非特許文献1から7にも様々なプロセスが記載されている。
 本発明をそれら公知のプロセスに適用すれば、より効率的な物質の生産が可能であり、それら公知のプロセスにおいて本発明を適用することにより得られる核酸、形質転換体、及びそのプロセスも本発明に包含される。ただし、本発明は公知のプロセスに本発明を適用した場合に限定されるものでもなく、本発明を適用したプロセス全般が本発明に係る方法に包含されることは言うまでもない。
 なお、本明細書実施例に示すプロセスの例からも、本発明に係る核酸が各種遺伝子の発現方法や目的物質の生産方法に適用可能であることは明らかである。
 特に第4の態様に係る目的物質の生産方法においては、目的遺伝子の翻訳産物であるタンパク質そのものを目的物質として生産するものであってもよいし、又は目的遺伝子の翻訳産物であるタンパク質が菌体内で産生される結果、副次的に生成される物質(例えば代謝産物)を目的物質として生産するものであってもよい。後者の場合、目的遺伝子の翻訳産物であるタンパク質としては、例えば酵素が挙げられ、菌体内において発現した組換え酵素により代謝が進み目的物質が産生され得る。
 上述の如き構成を有する本発明の核酸は、例えばコリネ型細菌やエシェリキア属菌を含む各種細菌が有するゲノムDNA又はプラスミドDNA並びにこれら細菌に感染し得る各種バクテリオファージが有するゲノム核酸、人工的に設計したヌクレオチド配列を有する核酸断片等の資源を材料として用い、各種クローニング技術や変異導入技術を含む遺伝子工学技術/分子生物学的手法に基づいて製造することができる。各種クローニング技術や変異導入技術を含む遺伝子工学技術/分子生物学的手法については、例えばMolecular Cloning: A Laboratory Manual, Fourth Edition (3-Volume Set) Cold Spring Harbor Laboratory Pr等を参照することができ、当業者においては本明細書の開示を参照した上でこのような公知技術を用いて本発明に係る核酸を製造することができる。加えて、本発明に係る核酸は、その一部又は全てが化学合成により製造されてもよい。本発明に係る細菌についても、本明細書の開示内容並びに各種遺伝子工学技術/分子生物学的手法を参照することにより作製することができる。なお、本発明に係る核酸/細菌及びこれらの製造方法、並びに本発明に係る方法の一例が、以下の実施例に示される。
 以上、本発明の具体的な実施形態について詳述したが、言うまでもなく本発明は上述の実施形態に限定されるものではない。本発明の要旨から逸脱しない範囲において各構成、要素及び特徴について種々の改変、修正、組合せが採用され得る。
 なお、本発明において「含む」及び「有する」の語はそれぞれ、特に断わりのない限り、これらの語が目的語として言及する要素以外の要素の存在を排除するものではなく、これらの用語は混用される。
[試験例1]
 試験例1は、araE遺伝子及びaraR遺伝子、並びに本発明に係る遺伝子制御配列(R)と目的遺伝子(レポーター遺伝子)が導入された発現ベクターをコリネ型細菌に導入し、該目的遺伝子(レポーター遺伝子)の発現を制御した例を示す。
 以下、試験手順の詳細を示す。
1.各種発現ベクターの作製
 以下の手順で、各種コリネ型細菌/大腸菌(E.coli)シャトルベクターを作製した。
(1)pGEK003(KanR/pUCori/pCG1ori)の構築
 pHSG298(タカラバイオ)をテンプレートとし、カナマイシン耐性遺伝子(KnR)並びに大腸菌用複製起点pUCori(高コピー数)をそれぞれ含むDNA断片をPCR法により増幅した。
 更に、コリネバクテリウム・グルタミカムATCC13058(NBRC12169)株が保持するプラスミドpCG1をテンプレートとしてコリネバクテリウム用複製起点pCG1oriを含むDNA断片をPCR法により増幅した。
 KnR、pUCori並びにpCG1oriについてPCR法により増幅させた領域のヌクレオチド配列をそれぞれ配列番号63、64及び65に示す。
 加えて、pCG1は、上記菌株から常法に従い抽出したものである。
 次いで、In-Fusion HD Cloning Kit(タカラバイオ)を用い、上記DNA断片をKnR/pUC ori/pCG1 oriの順序で環状に連結することにより、プラスミドベクターpGEK003を作製した。
(2)pGEK008(PldhA-rrnBter/KanR/pUCori/pCG1ori)の構築
 pGEK003をBamHI及びEcoRVで切断し、直鎖状DNA断片を得た。なお、この直鎖状DNA断片は、pCG1oriとKnRとの間の領域にある上記制限酵素の認識部位で切断されたものである。
 次いで、In-Fusion HD Cloning Kitを用い、別途PCR法により増幅させたPldhA断片及びrrnBter断片と、上記pGEK003切断断片とを環状となるように連結させ、プラスミドベクターpGEK008を取得した。
 なお、pGEK008においては、PldhA-rrnBter/KnR/pUCori/pCG1oriがこの順に並んでいる。
 加えて、上記PldhA断片の増幅ではコリネバクテリウム・グルタミカムATCC13032株ゲノムDNAをテンプレートとして用い、上記rrnBter断片の増幅ではプラスミドベクターpFLAG-CTC(シグマ)をテンプレートとして用いた。これら増幅断片のヌクレオチド配列をそれぞれ配列番号66及び67に示す。
(3)pGEK020(PldhA-lacZ-rrnBter/KanR/pUCori/pCG1ori)の構築
 pGEK008をNdeI及びBamHIで切断し、直鎖状DNA断片を得た。なお、この直鎖状DNA断片は、PldhAとrrnBterとの間の領域にある上記制限酵素の認識部位で切断されたものである。
 更に、後述のテンプレートを用い、別途PCR法によりLacZ遺伝子断片(LacZ断片)を増幅させた。この際、プライマーペアーにはそれぞれアダブター配列としてNdeIサイト及びBamHIサイトを挿入し、増幅させたLacZ断片を同様にNdeI及びBamHIで切断した。次いで、In-Fusion HD Cloning Kitを用い、上記pGEK008切断断片と上記LacZ断片を環状となるように連結させ、プラスミドベクターpGEK020を取得した。
 このpGEK020においては、PldhA-lacZ-rrnBter/KnR/pUCori/pCG1oriがこの順に並んでいる。
 加えて、上記LacZ遺伝子断片の増幅では出願人所有するプラスミドベクターをテンプレートとして用いた。この出願人所有のプラスミドベクターにおいて増幅させたLacZ遺伝子領域は、pSV-β-Galactosidase Control Vector(プロメガ)に由来するものであり、同ベクターのLacZ遺伝子コード領域と同一のヌクレオチド配列を含むものである。
 レポーター遺伝子又は目的遺伝子としてLacZ遺伝子として利用する場合、大腸菌ゲノムDNA又はlacZ遺伝子コード領域を含む市販のプラスミド(例えば上記プラスミドベクター)を入手し、LacZ遺伝子コード領域をクローニングしてもよい。
 上記増幅させたLacZ遺伝子断片のヌクレオチド配列を配列番号68に示す。
(4)pGEK030(MCS-lacZ-rrnBter/KanR/pUCori/pCG1ori)の構築
 pGEK020をNdeI及びNotIで切断し、pCG1oriからPldhAまでの領域を除去した直鎖状DNA断片を取得した。
 部分的に相補の合成オリゴヌクレオチド(配列番号69及び70)をアニーリングさせることにより構成したマルチクローニングサイト(MCS;AgeI-SpeI-KpnI-NheI-XhoI-NdeI)と、pGEK020をテンプレートとしてPCR法により増幅させたpCG1ori断片と、上記直鎖状DNA断片とをGibson Assembly Cloning Kit (New England Biolabs Japan)を用いて環状となるように連結させ、プラスミドベクターpGEK030を取得した。
 このpGEK030においては、MCS-lacZ-rrnBter/KnR/pUCori/pCG1oriがこの順に並んでいる。
 なお、上記増幅させたpCG1ori断片のヌクレオチド配列を配列番号71に示す。
(5)pGEK094(Ptac-lacZ-rrnBter/KanR/pUCori/pCG1ori)の構築
 pGEK094の構築には、pGEK020のMCSに別要素を導入してなる別のプラスミド(以下、派生プラスミド)を材料として用いたが、派生プラスミドとGEK020との違いは単にMCSに別要素が挿入されているか否かにあり、該別要素はpGEK094を作製するに際し派生プラスミドを以下のとおりKpnI及びNdeIで処理することにより削除されるものである。結果的に、本手順(5)において構築したpGEK094は、pGEK020のMCSにおけるKpnIサイトとNdeIサイトとの間に以下に説明のPtac断片が挿入されたものに同等である。従って、pGEK094の構築に実際に使用した派生プラスミドの作製工程の詳細は省略する。
 更に、Ptac断片は、出願人所有のプラスミドベクターをテンプレートとしてPCR法により増幅させることにより取得したものであるが、同プラスミドベクターにおけるPtac領域は、市販のプラスミドベクターpFLAG-CTC(シグマ)に由来するものである。従って、pFLAG-CTC(シグマ)をテンプレートとしてPtac断片を増幅させることができる。実際に増幅させたPtac断片のヌクレオチド配列を配列番号72に示す。
 そして、上記派生プラスミドをKpnIとNdeIとで切断することにより取得した直鎖状DNA断片と増幅させたPtac断片とをGibson Assembly Cloning Kitを用いて環状となるように連結させ、pGEK094を取得した。
(6)pGEK122(rrnBT1ter-T7ter-T7Uter-lacI/Ptac-lacZ-PldhA/KanR/pUCori/pCG1ori)の構築
 大腸菌(DH5α)ゲノムDNAをテンプレートとしPCR法によりlacI遺伝子断片を増幅させた。加えて、T7ターミネーター配列を保持するプラスミドベクター(出願人所有のもの)をテンプレートとし、PCR法によりT7ターミネーター断片(T7Uter-T7ter-rrnBT1ter)(ACS Synth Biol. 2015 Mar 20;4(3):pp265-273を参照)を増幅させた。増幅させたT7ターミネーター断片のヌクレオチド配列を配列番号73に示す。本試験例で用いたT7ターミネーターのヌクレオチド配列は、T7Uter-T7ter-rrnBT1terの要素がこの順序に連結されており、上記文献に開示のものと該要素の順序が異なる。加えて、各要素の間に存在するリンカー配列も上記文献に開示されるものと異なる。
 lacI遺伝子については、発明者において種々のベクターを作製する経緯において挿入されたものであるが、以下に記載されるとおり本発明に係るベクターにおいては最終的に除去されている。故に、増幅させたlacI遺伝子コード領域のヌクレオチド配列の情報は省略する。
 次いで、上記pGEK094をKpnI及びAgeIで切断し、得られた消化産物と、上記増幅させたlacI遺伝子断片及びT7ターミネーター断片とをGibson Assembly Cloning Kitにより連結し、プラスミドベクターpGEK122を取得した。
(7)pGE651(PdapA-araE-rrnBT1ter-T7ter-T7Uter-lacI/Ptac-lacZ-rrnBter/ KanR/pUCori/pCG1ori)の構築
 コリネバクテリウム・グルタミカムATCC13032株ゲノムDNAをテンプレートとし、PCR法によりPdapA断片を増幅させた。加えて、コリネバクテリウム・グルタミカムATCC31831株ゲノムDNAをテンプレートとし、PCR法によりaraE断片を増幅させた。上記増幅させたPdapA領域及びaraE遺伝子コート領域のヌクレオチド配列それぞれを配列番号74及び75に示す。
 更に、pGEK122を制限酵素XbaIで切断し、得られた消化産物、並びに上記PdapA断片及びaraE断片をIn-Fusion HD Cloning Kitにより環状となるように連結した。このようにして作製したベクターをpGE651と命名した。
(8)pGE677(PdapA-araE-rrnBT1ter-T7ter-T7Uter-lacI/Ptac-lacZ-rrnBter/ KanR/pSC101/pCG1ori)の構築
 また、制限酵素NcoI及びBamHIの処理により、pGE651のpUC oriを出願人所有のプラスミドベクターに含まれる大腸菌複製起点pSC101 ori(低コピー数)と交換したベクターを作製し、これをpGE677と命名した。
 上記出願人所有のプラスミドベクターにおけるpSC101ori領域は、プラスミドベクターpMW119(タカラバイオから購入、現在はニッポンジーンから入手可能)に由来するものであり、同ベクターのpSC101ori領域と同一のヌクレオチド配列を含むものである。
 制限酵素NcoI及びBamHIを両端に含むpSC101ori領域部分のヌクレオチド配列を配列番号76に示す。
(9)pGE689(PdapA-araE-rrnBT1ter-T7ter/PdapAm-araR/Ptac-AraRBS-lacZ-rrnBter/ KanR/pSC101/pCG1ori)の構築
 コリネバクテリウム・グルタミカムATCC13032株ゲノムDNAをテンプレートとし、PCR法によりPdapAm領域を含むDNA断片を増幅させた。増幅させたPdapAm断片のヌクレオチド配列を配列番号77に示す。なお、このPdapAmにはプロモーター活性が2倍程度高くなる変異が導入されている。
 更に、コリネバクテリウム・グルタミカムATCC31831株ゲノムDNAをテンプレートとし、PCR法によりaraR遺伝子断片を増幅させた。増幅させたaraR遺伝子コード領域のヌクレオチド配列を配列番号78に示す。
 更に、pGEK094をテンプレートとしてPCR法によりPtacにAraR結合配列が連結した断片を増幅させた。この断片のヌクレオチド配列を配列番号79に示す。
 上記(8)で取得したpGE677を制限酵素AgeI及びNdeIで切断することにより、T7Uter及びLacI領域を除去した直鎖状DNA断片を取得し、このDNA断片、並びに上記PdapA断片、araR遺伝子断片及びPtacにaraR結合配列が連結した断片をGibson Assembly Cloning Kitにより環状となるように連結し、pGE728-1を作製した。
 pGE728-1の構造を図1(a)に示し、そのヌクレオチド配列を配列番号80に示す。
(10)pGE728-1におけるAraR結合配列への変異導入(mutagenesis)
 AraR結合配列部位をカバーする縮重プライマー又は変異導入プライマーのプライマーペアーを幾つか設計し、pGE728-1をテンプレートとしてPCRと同様の手法でプラスミド全体を増幅した後、制限酵素DpnIによりテンプレートDNAを切断し、大腸菌へ形質転換することでAraR結合配列にセミランダムに変異を導入したプラスミドベクターを得た。具体的には、大腸菌形質転換体コロニーをランダムに選び、これら形質転換体が保持するプラスミドベクターについてAraR結合領域のヌクレオチド配列をシーケンシングすることにより変異の導入を確認した。
 このようにして、pGE728-1に対してAraR結合配列(AraRBS)に所定の変異を有するプラスミドベクターpGE728-2~pGE728-12を取得した。pGE728-1~pGE728-12におけるAraR結合配列はそれぞれ、以下の表1のNo.1~12に示すとおりである。
(11)LacZアッセイ(β-ガラクトシダーゼの発現)
  上述のとおり作製したpGE728-1~pGE728-12について、上記実施の形態に記載したβガラクトシダーゼ遺伝子(LacZ)レポーターアッセイの手順に従って遺伝子発現の制御可能性について評価した。なお、該LacZレポーターアッセイの手順(1)の発現誘導の際には培地中アラビノース最終濃度を2%とし、OD610=0.5~1の範囲でアラビノースを培養液に添加した。加えて、手順(2)においては5時間培養した後にサンプリングし、取得した試料についてLacZの活性を測定した。
[結果]
 以下の表1に試験例1の結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、試料No.9~12に対して、Ptacに所定のヌクレオチド配列を有するAraR結合配列(配列番号5から12)がそれぞれ組合された試料No.1~8については、アラビノース未添加の場合に対して、アラビノースを添加した場合にはプロモーター活性が10倍以上高く誘導されることが示された。中でも、試料No.2、3、4、6が、プロモーター活性の誘導効率が比較的高く、とりわけPtacに配列番号2、3を組み合せた試料No.2及び3は、アラビノース未添加に対してアラビノース添加の場合プロモーター活性が80倍超上昇することが示された。
 加えて、試料No.1~6については、アラビノース未添加の場合、プロモーター活性を示す絶対値が10以下となっており、プロモーター活性(LacZ発現)が厳密に抑制されることが確かめられた。更に、このうち、Ptacに配列番号2、3を組み合せた試料No.2及び3については、アラビノース未添加の場合、プロモーター活性を示す絶対値は1未満であり、プロモーター活性(LacZ発現)が特に顕著に抑制されることが確かめられた。つまり、Ptacに配列番号2又は3を組み合せた試料No.2及び3については、アラビノース未添加の場合、プロモーター活性(LacZ発現)を特に顕著に抑制できると同時に、アラビノース添加によりプロモーター活性が特に顕著に高く上昇し、活性な形態の目的遺伝子産物を多量に発現させることができることが示された。従って、Ptacに配列番号2又は3のヌクレオチド配列を組合せる形態は、特に厳密な遺伝子発現の制御(スイッチのオン、オフ)を可能とすると共に遺伝子発現のスイッチが入った場合には特に高い遺伝子発現量を確保することができる点、本発明において特に好ましい実施形態と言える。
 このように、本発明に係る核酸が有し得る所定の配列構成によれば、アラビノース未添加/添加による効率的かつ精密な遺伝子発現制御が可能になることが示された。
[試験例2]
試験例1で構築したpGE728-1に対して、試験例1と同様の点変異導入法によりAraR結合配列に所定の変異を導入することにより、さらに2つのプラスミドベクターpGE728-13及びpGE728-14を取得した。pGE728-13及びpGE728-14におけるAraR結合配列はそれぞれ、以下の表2に示すとおりである。
試験例1において作製した幾つかのプラスミドベクター(表1及び表2を参照。)並びに本試験例において新たに作製したpGE728-13及びpGE728-14について、下記の変更点(i)及び(ii)を除き、試験例1と同様にしてβガラクトシダーゼ遺伝子(LacZ)レポーターアッセイにより遺伝子発現の制御可能性について評価した。
 (i)培養液のOD(濁度)値が0.5~1.5の範囲にある時に、遺伝子発現誘導のために培養液にアラビノースを添加した。
(ii)プロモーター活性は、試験例1と同様に、アラビノースによる誘導なしの試料に対するアラビノースによる誘導ありの試料のβガラクトシダーゼの活性比により評価したが、各プラスミドベクターについて表2に示すサンプル数(n数)により試験を行い、n数が2以上のプラスミドベクターについては、各サンプルのβガラクトシダーゼの活性比について平均値を算出し、その平均値の値をプロモーター活性比とした。
 表2に試験例2の結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、試験例1において優れた遺伝子発現制御能を示すことが確認されたpGE728-2及びpGEE728-3(それぞれAraRBSとして配列番号2及び3を採用)は、本試験例においても、プロモーター活性比がそれぞれ94.1及び98.9を示し、優れた遺伝子発現制御能を保持していることが再確認できた。
本試験例の結果において特に注目すべき点として、新たに構築したpGE728-13及びpGE728-14のうち、pGE728-13はプロモーター活性比が162の値を示し、上記pGE728-2及びpGEE728-3のプロモーター活性比の値を遥かに超え、極めて優れた遺伝子発現制御能を保持していることが確認された。加えて、本試験例で新たに構築したpGE728-14については、プロモーター活性比が14.8と言う比較的低い値ではあるものの、十分な遺伝子制御発現能を保持していることが確認された。
 なお、pGE728-1、pGE728-6、pGE728-7、pGE728-8については、試験例1で得られたプロモーター活性比に対して、比較的大きな変動が見られた。その原因は定かではないが、遺伝子発現誘導のタイミング等の各種条件により変動することは生物学ないしバイオテクノロジー分野において予測される事項であり、試験例1及び本試験例の結果により、pGE728-1、pGE728-6、pGE728-7、pGE728-8についても、優れた遺伝子制御能力を有することが再現されたことに変わりがないことは十分に把握できる。
 以上のとおり、本試験例により、格別優れた遺伝子発現制御能を発揮できる遺伝子発現制御配列が取得されたと共に、本発明所定の遺伝子発現制御配列によれば、再現良くかつ厳密に遺伝子発現を制御できることが示された。
[試験例3]
 試験例3は、araE遺伝子及びaraR遺伝子をプラスミドベクターではなくゲノムに組み込んだコリネ型細菌を用い、本発明に係る遺伝子制御配列を含む発現ベクターを用いて目的遺伝子(レポーター遺伝子)の発現を制御した例を示す。
 以下、試験手順の詳細を示す。
(1)発現プラスミドベクターの作製
 pGE728を制限酵素KpnI及びXbaIで切断することにより、araEコード領域及びaraRコード領域が除去されたDNA断片を得た。このDNA断片をT4DNAポリメラーゼ(タカラバイオ)を用いて平滑化し、T4ポリヌクレオチドキナーゼ(タカラバイオ)で末端リン酸化を行った後、T4DNAリガーゼ(NEB)でライゲーションすることで環状化した。得られたプラスミドをpGE716と命名した。
 pGE716の構造を図1(b)に示し、そのヌクレオチド配列を配列番号81に示す。
(2)染色体にaraE遺伝子及びaraR遺伝子を組み込んだコリネ型細菌の作製
 コリネバクテリウム・グルタミカムの染色体遺伝子組み換えは、概略、枯草菌由来のsacB遺伝子を用いたマーカーレス遺伝子組換え法で行った(J. Mol. Microbiol. Biotechnol. 2004, 8:243-254)。
 以下にその手順の詳細を示す。
(2-1)pGE015(KanR/sacB/pUCori)の構築
 pHSG299(タカラバイオ)をBamHI及びPstIで切断し、PCR法により増幅したsacB断片を同じ制限酵素で切断してライゲーションにより環状に連結することにより、プラスミドベクターpGE015を構築した。
 なお、PCR法によるsacB断片の増幅には、pNIC28-Bsa4(英国のSource BioScience社;日本代理店であるダナフォーム社から入手)をテンプレートとして用いた。増幅させたsacB断片のヌクレオチド配列を配列番号82に示す
(2-2)pGE209(KanR/sacBm/pUCori)の構築
 以下のプライマー1及び2を用い、PCR法によりpGE015のSacB領域内に存在するKpnIサイトに変異を導入することによりKpnIサイトを消失させた。その結果、該KpnIサイトが消失したSacB遺伝子(sacBm)コード配列を有するプラスミドベクターpGE209を取得した。
 プライマー1:5’-TGAACAGATACCATTTGCCGTTCATT-3’(配列番号83)
 プライマー2:5’-AATGGTATCTGTTCACTGACTCCCGC-3’(配列番号84)
(2-3)pGE285(KanR/sacBm/pSC101ori)の構築
 試験例1示す手順と同様にしてPCR法により大腸菌複製起点pSC101ori断片を増幅させた。
 更に、pGE209をテンプレートとして用い、KanR及びsacBm領域を含むDNA断片を増幅させた。増幅させたDNA断片のヌクレオチド配列を配列番号85に示す。
 上記pSC101ori断片、並びにKanR及びsacBm領域を含むDNA断片をIn-Fusion HD Cloning Kitを用いて環状に連結させることにより、プラスミドベクターpGE285を取得した。
(2-4)pGE825(KanR/tnp1上流域-tnp1下流域/sacBm/pSC101ori)の構築
 コリネバクテリウム・グルタミカムATCC13032株ゲノム内のtransposaseであるtnp1aの上流領域及び下流領域を含むDNA断片を、出願人所有のプラスミドベクターをテンプレートとしてPCR法により増幅させた。増幅させたDNA断片のヌクレオチド配列を配列番号86に示す。
 更に、pGE285をEcoRIで切断することにより、KanRとsacBmとの間で切断された直鎖状DNA断片を得た。
 上記tnp1aの上流領域及び下流領域を含む増幅断片と上記pGE285の直鎖状DNA断片とをIn-Fusion HD Cloning Kitを用いて環状に連結させることにより、プラスミドベクターpGE825を取得した。
(2-5)pGE837(KanR/tnp1上流域-Ptac-araE-rrnBter-tnp1下流域/sacBm/pSC101ori)の構築
 pGE825をXhoIで切断することにより、tnp1上流域とtnp1下流域との間で切断された直鎖状DNAを得た。
 更に、Ptac、コリネバクテリウム・グルタミカムATCC31831株ゲノム内に存在するaraE遺伝子コード領域、及びrrnBterターミネーターがこの順に連結されたDNA断片(Ptac-araE-rrnBter増幅断片)を、出願人所有のプラスミドベクターをテンプレートとしてPCR法により増幅した。なお、Ptac-araE-rrnBter増幅断片のヌクレオチド配列を配列番号87に示す。
 次いで、In-Fusion HD Cloning Kitを用いて、上記pGE825の直鎖状DNA断片、及びPtac-araE-rrnBter増幅断片を環状に連結させることにより、プラスミドベクターpGE837を取得した。
 pGE837の構造を図2(a)に示し、そのヌクレオチド配列を配列番号88に示す。
(2-6)コリネバクテリウム・グルタミカムゲノムへのPtac-araEへの導入
 pGE837をコリネバクテリウム・グルタミカムATCC13032株にエレクトロポレーションにより導入し、上記マーカーレス遺伝子組み換え法によりΔtnp1a::Ptac-araE株を作製した。得られた菌株をGES759と命名した。
(2-7)pGE234(KanR/tnp3b上流域-PldhA-lacZ-rrnBter-tnp3b下流域/sacBm/pUCori)の構築
pGE209をKpnI及びBamHIで切断することにより、KanRとSacBmとの間で切断された直鎖状DNA断片を得た。
更に、PCR法により、コリネバクテリウム・グルタミカムATCC13032ゲノム内のtransposaseであるtnp3bの上流域(tnp3b上流域断片)及び下流域(tnp3b下流域断片)をそれぞれ増幅させた。これらの増幅させた領域のヌクレオチド配列をそれぞれ配列番号89及び90に示す。
更に、試験例1で構築したpGEK020をテンプレートとしてPldhA-lacZ-rrnBterの領域を含む断片(PldhA-lacZ-rrnBter断片)をPCR法により増幅させた。この断片は、発明者において種々のベクターを作製する経緯において挿入されたものであるが、以下に記載されるとおり最終的にコリネ型細菌ゲノムへのaraR遺伝子の導入に使用したpAra1においてはPldhA及びlacZ領域は結果的に除去されている。故に、増幅させたPldhA-lacZ-rrnBter断片のヌクレオチド配列の情報は省略する。
上記のpGE209の直鎖状DNAと、tnp3b上流域断片及びtnp3b下流域断片と、PldhA-lacZ-rrnBter断片とを、In-Fusion HD Cloning Kitを用いて環状となるように連結させ、プラスミドベクターpGE234を取得した。
(2-8)pAra1(KanR/tnp3b上流域-Ptac-araR-rrnBter-tnp3b下流域/sacBm/pUCori)の構築
pGE209をKpnI及びBamHIで切断することにより、PldhA-lacZ領域が除去された直鎖状DNA断片を得た。
更に、pGEK094をテンプレートとしてPCR法によりPtac断片(配列番号91)を増幅させた。
更に、pGE689をテンプレートとして用いPCR法によりaraR遺伝子断片(配列番号92)を増幅させた。
 次いで、上記pGE209の直鎖状DNAとPtac断片とaraR遺伝子断片とIn-Fusion HD Cloning Kitを用いることにより環状となるよう連結させ、プラスミドベクターpAra1を得た。
pAra1の構造を図2(b)に示し、そのヌクレオチド配列を配列番号93に示す。
 (2-9)GES759ゲノムへのPtac-araRへの導入
pAra1をGES759へエレクトロポレーションにより導入し、上記マーカーレス遺伝子組み換え法によりΔtnp3b::Ptac-araR株を作製した。得られた菌株をAIS1と命名した。
(3)pGE716によるAIS1の形質転換及びLacZアッセイ(β-ガラクトシダーゼの発現)
 次いで、AIS1にpGE716をエレクトロポレーションし、カナマイシンでセレクションした。
 得られた形質転換体を液体培地(4%Glc,25μg/mL Kan)10mLにOD610=0.2になるように植菌し、33℃,200rpmで培養した。4時間の培養後に培養液半量(4.5mL)を別の試験管にとり、20%アラビノース0.5 mLと混ぜてアラビノース終濃度2%とした。また、比較対照としてアラビノース未添加のものも用意した。これら試料を2時間更に培養した後に、アラビノース誘導あり、なしの培養液をそれぞれサンプリングし、LacZアッセイによりプロモーター活性を測定した。
 なお、その他LacZアッセイの手順並びに上記液体培地の組成は実施の形態に記載した通りである。
[結果]
 LacZアッセイの結果を図3に示す。
 まず、試験例3の概要を説明すると、試験例3は以下の点において試験例1と異なっている。
 即ち、試験例1においてはATCC13032株に導入するプラスミドベクターとして本発明所定の遺伝子発現制御配列(R)及びレポーター遺伝子(LacZ遺伝子)に加えてaraE遺伝子及びaraR遺伝子をコードしているものを使用した。これに対して、試験例3においては、予めゲノムDNAにaraE遺伝子及びaraR遺伝子が強制発現するように導入されたAIS1株(ATCC13032株由来)を用い、該菌株に導入するプラスミドベクターとしてはaraE遺伝子及びaraR遺伝子が除去されたpGE716を使用した。
 図3において、AIS1/pGE716-3及びAIS1/pGE716-3はそれぞれ、異なる形質転換体コロニーに由来するサンプルである。
 プロモーター活性のフォールド(誘導効率)に注目すると、AIS/p716-3については67倍、AIS/p716-4については160倍を示し、本発明所定の遺伝子発現制御配列によればアラビノースによる効果的な目的遺伝子の発現制御が可能となることが示された。
[試験例4](アラビノース濃度/誘導時間の影響)
 試験例3と同様に菌株AIS1にpGE716をエレクトロポレーションし、カナマイシンでセレクションし形質転換体を得た。
 形質転換した細胞を液体培地10mLにOD610=1.0になるように植菌し、33℃,200rpmで培養した。4時間後に半量(5mL)を別の試験管にとり、培地中のアラビノース最終濃度がそれぞれ0.002%、0.02%、0.2%、2%となるように20%アラビノースを添加した。なお、比較対照としてアラビノース未添加のサンプルも用意した。
 上記サンプルを培養し、4時間後、20時間後、24時間後にアラビノース誘導あり、無しの培養液をそれぞれサンプリングし、LacZアッセイによりプロモーター活性を測定した。
 LacZアッセイの手順並びに上記液体培地の組成は試験例3に記載した通りである。
[結果]
 LacZアッセイの結果を図4に示す。
 図4に示されるとおり、アラビノースによる発現誘導後4時間の時点で既に発現量はほぼ飽和状態に達しており、それ以降はレポーター遺伝子の発現量に目立った上昇は認められなかった。つまり、少なくとも本試験例に係る核酸の配列構成によれば、発現誘導後4時間以内で十分な目的遺伝子の発現量が得られることが明らかとなった。
 更に、アラビノース濃度については、0.02%が最も高い発現量(プロモーター活性)を示したが、最も低い濃度である0.002%でも十分なレベルのプロモーター活性を誘導できることが明らかとなった。
[試験例5](各種プロモーターとの組合せ)
(1)pGEK035(MCS-SD-lacZ-rrnBter/KanR/pUCori/pCG1ori)の構築
 試験例1(4)の項で構築したpGEK030を、制限酵素XhoI及びNdeIで切断し、pGEK030切断断片を得た。この切断断片に、以下の配列を有するオリゴDNAをアニーリングし、ライゲーションすることによりSD配列を挿入したベクターpGEK035を作製した。なお、このSD配列は、プロモーター活性の確認を行った最終構築物であるpAra24ないしpAra30では除去されている。
SD配列:5’-tAATATTGAAAGGAGGtt-3’(配列番号95)
(2)pGEK107(MCS-SD-lacZ-rrnBter/KanR/pSC101ori/pCG1ori)の構築
pGEK035を制限酵素NotI及びXmaIで処理することにより、pGEK035に含まれる複製起点pUCoriを除去し、当該複製起点を、出願人所有のプラスミドベクターに含まれる大腸菌複製起点pSC101ori(低コピー数)と入れ替えた。これにより得られたベクターをpGEK107と命名した。
(3)各種プロモーターとAraR結合配列を組み合わせたシャトルベクターの作製
 コリネバクテリウム・グルタミカムATCC13031株ゲノムDNAをテンプレートとし、PCR法により構成的プロモーターであるtuf、dapA、及びsodプロモーター、並びに誘導的プロモーターであるldhA、gapA、及びmetEプロモーター断片をそれぞれ増幅させた。加えて、試験例3で構築したプラスミドベクターpGE716をテンプレートとし、PCR法によりAraR結合配列及びSD配列を増幅させた。
次いで、上記のとおりPCR法により取得した各プロモーター断片と、AraR結合配列及びSD配列の増幅断片とを、オーバーラップPCR法により連結させた。このオーバーラップPCR法により、配列番号96から102に示すヌクレオチド配列をそれぞれ有するDNA断片を取得した。これらDNA断片は、上記実施の形態の項において、本発明係る核酸に係る好ましい実施形態として示した配列番号96から102に係るヌクレオチド配列をそれぞれ含むものである。
上記(2)の項で取得したpGEK107を制限酵素KpnI及びNdeIで切断し、得られたベクター断片に、上記各プロモーター/AraR結合配列断片をそれぞれ、In-Fusion HD Cloning Kitにより環状となるように連結した。これにより得られたプラスミドをそれぞれ、pAra24、pAra25、pAra26、pAra27、pAra28、pAra29、及びpAra30と命名した。
 試験例3と同様に、菌株AIS1に各プラスミドをエレクトロポレーションし、カナマイシンでセレクションして形質転換体を取得し、得られた各形質転換体を、液体培地10mLにOD610=0.2になるように植菌し、33℃、200rpmで培養した。4時間後に、培養液の半量(5mL)を別の試験管にとり、培地中のアラビノース最終濃度が0.2%となるように20%アラビノースを添加した。加えて、比較対照としてアラビノース未添加のものも用意した。これら試料を4時間更に培養した後に、アラビノース誘導あり、なしの培養液をそれぞれサンプリングし、LacZアッセイによりプロモーター活性を測定した。
 LacZアッセイの手順並びに上記液体培地の組成は試験例3に記載した通りである。
[結果]
 LacZアッセイの結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
表3に示される通り、本試験例により、プロモーター部位として、tacプロモーターに限らず、その他各種プロモーターを採用しても、厳密に遺伝子発現を制御できることが確認された。なお付け加えると、所定の態様で推定転写開始部位をAraR結合配列にオーバーラップさせたpAra30については、推定転写開始部位がAraR結合配列にオーバーラップしていないpAra24よりも、優れた遺伝子発現制御能を示した。
以上のとおり、本試験例によれば、所定のヌクレオチド配列を有するAraR結合配列を遺伝子制御配列の一要素として採用した本発明所定の構成によれば、プロモーター部位として、tacプロモーターに限らず、構成的プロモーター及び誘導的プロモーター含むその他多様なプロモーターを採用して場合にあっても、優れた遺伝子制御能力が発揮され得ることが証明された。
[比較試験例1]
 比較試験例1は、本発明に係る制御配列の代わりにコリネバクテリウム・グルタミカムATCC31831株ゲノムに天然に存在するaraE遺伝子のプロモーター領域を用いて目的遺伝子の制御を試みた比較例である。
 以下に試験手順の詳細を示す。
(1)pGE728ParaE(PdapA-araE-rrnBT1ter-T7ter/PdapA-araR/ParaE-lacZ-rrnBter/KanR/pSC101ori/pCG1ori)の構築
 pGE728をKpnI及びNdeIで切断することにより、pGE728においてPtac-araRBSの領域が除去された配列からなる直鎖状DNAを得た。
 更に、コリネバクテリウム・グルタミカムATCC31831株ゲノムDNAをテンプレートとして用い、PCR法に従い、図5に示すaraE遺伝子のプロモーター領域を含むDNA断片(ParaE断片)を増幅させた。増幅させたParaE断片のヌクレオチド配列を配列番号94に示す。
 Gibson Assembly Cloning Kitを用いて、上記直鎖状DNAとParaE断片とを環状となるように連結することにより、プラスミドベクターpGE728ParaEを作製した。
 試験例1に示した形質転換体の取得及びLacZアッセイの手順において、上記のようにして得られた発現ベクターpGE728ParaEを用いた以外は、同様にしてコリネバクテリウム・グルタミカムATCC13032株の形質転換体を取得し、LacZアッセイによりプロモーター活性を評価した。
[結果]
 LacZアッセイの結果を以下の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるとおり、アラビノースの誘導あり(つまり、アラビノース添加)の活性値が、アラビノース誘導なし(つまり、アラビノース未添加)の活性値よりも低くなってしまい、アラビノースによる遺伝子発現制御は不可能であることが示された。
 本比較試験例1で遺伝子制御配列として用いたヌクレオチド配列は、図5に示されるとおりコリネバクテリウム・グルタミカムATCC31831株のゲノムDNA上に固有に存在するにものであり、天然のAraR結合配列を含むものである。つまり、非特許文献6に示されるような、上記コリネ型細菌に固有のプロモーター領域を使用しても、表2の結果が示す通り、本発明所定のヌクレオチド配列により達成される遺伝子発現制御は不可能であり、そもそも遺伝子発現システムとしてプロモーター活性さえ示さなかった。
(補足事項)
 上記試験例及び比較試験例においては、各種プラスミドベクター等の構築の過程においてPCR法により増幅させた各種遺伝子コード領域、プロモーター領域、ターミネーター領域、複製起点等のヌクレオチド配列の情報が配列表に開示されていることから、PCR増幅に使用したプライマーの配列情報は省略した。当業者においては、配列表に開示される各ヌクレオチド配列の情報又はジーンバンク等に存在するヌクレオチド配列の情報等を参照することにより、上記試験例で使用したプラスミドベクター等の構築物ないし本発明に係る核酸等を適宜作製することができる。
 なお、上記試験例及び比較試験例においては、各種遺伝子コード領域、プロモーター領域、ターミネーター領域、複製起点等のクローニングには上述のとおりIn-Fusion HD Cloning Kit又はGibson Assembly Cloning Kitを利用した工程もあるが、PCR増幅の際に使用したプライマーペアーについては、フォワード/リバースプライマーの5’末端にはそれぞれ、上記クローニングキットの指示に従い適切なアダプター配列が付加されたものであることを補足する。
 本発明は、バイオテクノロジー分野、化学物質や生物材料等の物質生産の分野等において高い産業上の利用可能性を有する。

Claims (31)

  1. プロモーターとして機能し得るヌクレオチド配列(X)と以下の(a)又は(b)に記載のヌクレオチド配列(Y)とを少なくとも一部に有する遺伝子発現制御配列(R)を含み、
    遺伝子発現制御配列(R)が以下の条件(I)を充足する、核酸:
    (a)配列番号5から12並びに配列番号17及び18の何れか1つに記載のヌクレオチド配列;
    (b)上記(a)に記載のヌクレオチド配列において1又は複数の塩基が欠失、置換若しくは付加されたヌクレオチド配列、
    但し、核酸がRNAの場合は、ヌクレオチド配列中のチミン(t)をウラシル(u)に読み替えるものとする、
    条件(I):コリネ型細菌において、アラビノース未添加の場合にヌクレオチド配列(X)のプロモーター活性が抑制されること。
  2. ヌクレオチド配列(Y)がヌクレオチド配列(X)の3’末端に直接又は間接に連結されている、請求項1に記載の核酸。
  3. ヌクレオチド配列(X)が構成的プロモーターである、請求項1又は2に記載の核酸。
  4. ヌクレオチド配列(X)が、trcプロモーター、tacIプロモーター、tacIIプロモーター、T5プロモーター、T7プロモーター、lacプロモーター、trpプロモーター、tetプロモーター、EFTuプロモーター、groESプロモーター、SODプロモーター、P15プロモーター、ldhAプロモーター、gapAプロモーター、dapAプロモーター、metEプロモーター、及びtufプロモーターから選択される、請求項1から3の何れか1項に記載の核酸。
  5. ヌクレオチド配列(X)が、コリネ型細菌のゲノムDNAに存在する遺伝子の5’上流に由来するプロモーター配列、コリネ型細菌に内在するプラスミドに由来するプロモーター配列、又はコリネ型細菌に感染し得るファージのゲノムに由来するプロモーター配列からなる、請求項1から4の何れか1項に記載の核酸。
  6. 遺伝子発現制御配列(R)は、コリネ型細菌において、アラビノースを添加した場合に、アラビノース未添加の場合と比較して少なくとも10倍高いプロモーター活性を示すものである、請求項1から5の何れか1項に記載の核酸。
  7. 遺伝子発現制御配列(R)は、コリネ型細菌において、アラビノースを添加した場合に、アラビノース未添加の場合と比較して少なくとも15倍高いプロモーター活性を示すものである、請求項1から6の何れか1項に記載の核酸。
  8. 遺伝子発現制御配列(R)は、コリネ型細菌において、アラビノースを添加した場合に、アラビノース未添加の場合と比較して少なくとも20倍高いプロモーター活性を示すものである、請求項1から7の何れか1項に記載の核酸。
  9. 遺伝子発現制御配列(R)は、コリネ型細菌において、アラビノースを添加した場合に、アラビノース未添加の場合と比較して少なくとも35倍高いプロモーター活性を示すものである、請求項1から8の何れか1項に記載の核酸。
  10. 遺伝子発現制御配列(R)は、コリネ型細菌において、アラビノースを添加した場合に、アラビノース未添加の場合と比較して少なくとも50倍高いプロモーター活性を示すものである、請求項1から9の何れか1項に記載の核酸。
  11. 遺伝子発現制御配列(R)は、コリネ型細菌において、アラビノースを添加した場合に、アラビノース未添加の場合と比較して少なくとも70倍高いプロモーター活性を示すものである、請求項1から10の何れか1項に記載の核酸。
  12. ヌクレオチド配列(Y)が、以下の一般式(I)で表される、請求項1から11の何れか1項に記載の核酸:
     5’-NTGTNAGCGNTNAN-3’・・・一般式(I)
    式中、N、N、N、N、N、N及びNは、それぞれ、独立にA(アデニン)、G(グアニン)、C(シトシン)若しくはT(チミン)を示し又は欠失し、核酸がRNAの場合は、T(チミン)はU(ウラシル)と読み替えるものとする。
  13. 遺伝子発現制御配列(R)が以下の(l)から(o)の何れかのヌクレオチド配列を含む、請求項1から12の何れか1項に記載の核酸:
    (l)配列番号22から61並びに配列番号96から102の何れか1つに記載のヌクレオチド配列;
    (m)(l)に記載のヌクレオチド配列において1又は複数の塩基が欠失、置換若しくは付加されたヌクレオチド配列;
    (n)(l)に記載のヌクレオチド配列に対して相補であるヌクレオチド配列とストリンジェントな条件でハイブリダイズするヌクレオチド配列;及び
    (o)(l)に記載のヌクレオチド配列と少なくとも80%以上の配列同一性を有するヌクレオチド配列、
    但し、核酸がRNAの場合は、塩基配列中のチミン(t)をウラシル(u)に読み替えるものとする。
  14. 遺伝子発現制御配列(R)が更にSD配列を含む、請求項1から13の何れか1項に記載の核酸。
  15. SD配列がヌクレオチド配列(Y)の3’末端に直接又は間接に連結されている、請求項1から14の何れか1項に記載の核酸。
  16. araEタンパク質及びaraRタンパク質のうち少なくとも1つをコードするヌクレオチド配列を更に含む、請求項1から15の何れか1項に記載の核酸。
  17. コリネ型細菌に由来のaraEタンパク質及びaraRタンパク質のうち少なくとも1つをコードするヌクレオチド配列を含む、請求項1から16の何れか1項に記載の核酸。
  18. 複製起点、選択マーカー遺伝子、クローニング部位、制限酵素認識部位、及びターミネーターからなる群から選択される1種以上のヌクレオチド配列を更に含む、請求項1から17の何れか1項に記載の核酸。
  19. 細菌において自律複製可能なプラスミドとして提供される、請求項1から18の何れか1項に記載の核酸。
  20. 発現ベクターとして提供される、請求項1から19の何れか1項に記載の核酸。
  21. 目的遺伝子をコードするヌクレオチド配列(Z)を更に含み、ヌクレオチド配列(Z)は、コリネ型細菌において上記目的遺伝子の発現が遺伝子発現制御配列(R)によって制御されるように遺伝子発現制御配列(R)と直接又は間接に連結されている、請求項1から18の何れか1項に記載の核酸。
  22. DNAである、請求項1から21の何れか1項に記載の核酸。
  23. 請求項1から22の何れか1項に記載の核酸が導入された細菌。
  24. エシェリキア属菌である、請求項23に記載の細菌。
  25. コリネ型細菌である、請求項23に記載の細菌。
  26. コリネ型細菌に由来するaraEタンパク質及びaraRタンパク質をそれぞれコードする少なくとも1つのヌクレオチド配列を有するDNAがゲノムDNAに組み込まれており、かつ該ゲノムDNAは上記araEタンパク質及びaraRタンパク質を発現可能に構成されている、請求項23から25の何れか1項に記載の細菌。
  27. 請求項23から26の何れか1項に記載の細菌をアラビノース又はそのアナログに暴露することにより目的遺伝子を発現させることを含む、目的遺伝子の発現方法。
  28. 上記細菌がコリネ型細菌である、請求項27に記載の方法。
  29. 請求項23から26の何れか1項に記載の細菌をアラビノース又はそのアナログに暴露することにより目的遺伝子を発現させることを含む、目的物質の生産方法。
  30. 上記細菌がコリネ型細菌である、請求項29に記載の方法。
  31. コリネ型細菌において目的遺伝子の発現制御に用いるための核酸断片であって、
    以下の(a)又は(b)に記載のヌクレオチド配列(Y)を含む、核酸断片:
    (a)配列番号5から9、11及び12並びに配列番号17及び18の何れか1つに記載のヌクレオチド配列;
    (b)上記(a)に記載のヌクレオチド配列において1又は複数の塩基が欠失、置換若しくは付加されたヌクレオチド配列、
    但し、
    核酸がRNAの場合は、ヌクレオチド配列中のチミン(t)をウラシル(u)に読み替えるものとし、
    ヌクレオチド配列(Y)として配列番号10、20及び21それぞれに示されるヌクレオチド配列は除外され、かつヌクレオチド配列(Y)は以下の条件(II)を満たすものとする、
    条件(II):配列番号80に示すプラスミドベクターpGE728-1のヌクレオチド配列における第2913番目から第2928番目までのヌクレオチド配列を上記ヌクレオチド配列(Y)と入れ替えたプラスミドベクターで形質転換されたコリネ型細菌において、アラビノースを添加した場合に対してアラビノース未添加の場合にPtacIのプロモーター活性が抑制される。

     
PCT/JP2019/004378 2018-02-08 2019-02-07 アラビノース依存型遺伝子発現制御配列を含む核酸 WO2019156152A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019570794A JP7374475B2 (ja) 2018-02-08 2019-02-07 アラビノース依存型遺伝子発現制御配列を含む核酸

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-021453 2018-02-08
JP2018021453 2018-02-08

Publications (1)

Publication Number Publication Date
WO2019156152A1 true WO2019156152A1 (ja) 2019-08-15

Family

ID=67548309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004378 WO2019156152A1 (ja) 2018-02-08 2019-02-07 アラビノース依存型遺伝子発現制御配列を含む核酸

Country Status (2)

Country Link
JP (1) JP7374475B2 (ja)
WO (1) WO2019156152A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001597A1 (fr) * 2006-06-30 2008-01-03 Ajinomoto Co., Inc. Procédé de production d'une protéine
JP2010535028A (ja) * 2008-04-10 2010-11-18 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ プトレッシン高生成能を有する変異微生物及びこれを用いたプトレッシンの製造方法
WO2013069634A1 (ja) * 2011-11-11 2013-05-16 味の素株式会社 発酵法による目的物質の製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001597A1 (fr) * 2006-06-30 2008-01-03 Ajinomoto Co., Inc. Procédé de production d'une protéine
JP2010535028A (ja) * 2008-04-10 2010-11-18 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ プトレッシン高生成能を有する変異微生物及びこれを用いたプトレッシンの製造方法
WO2013069634A1 (ja) * 2011-11-11 2013-05-16 味の素株式会社 発酵法による目的物質の製造法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KUGE, T. ET AL.: "AraR, an L-Arabinose-Responsive Transcriptional Regulator in Corynebacterium glutamicum ATCC 31831, Exerts Different Degrees of Repression Depending on the Location of Its Binding Sites within the Three Target Promoter Regions", JOURNAL OF BACTERIOLOGY, vol. 197, no. 24, 28 September 2015 (2015-09-28) - December 2015 (2015-12-01), pages 3788 - 3796, XP055629746 *
KUGE, T. ET AL.: "The LacI-Type Transcriptional Regulator AraR Acts as an L-Arabinose-Responsive Repressor of L-Arabinose Utilization Genes in Corynebacterium glutamicum ATCC 31831", JOURNAL OF BACTERIOLOGY, vol. 196, no. 12, 4 April 2014 (2014-04-04) - June 2014 (2014-06-01), pages 2242 - 2254, XP055629741 *
KUGE, TAKAYUKI ET AL.: "Arabinose response Control mechanism by transcription factor AraR in coryneform bacteria", PROGRAMS OF THE 2015 CONFERENCE OF JSBBA, 25 February 2015 (2015-02-25) *
KUGE, TAKAYUKI: "Engineering of Corynebacterium glutamicum for arabinoxylan utilization", DOCTORAL DISSERTATION OF THE GRADUATE SCHOOL OF BIOLOGICAL SCIENCES OF NARA INSTITUTE OF SCIENCE AND TECHNOLOGY, March 2017 (2017-03-01), pages 1 - 120, Retrieved from the Internet <URL:https://library.naist.jp/mylimedio/dllimedio/showpdf2.cgi/DLPDFR013620_P1-120> [retrieved on 20190423] *

Also Published As

Publication number Publication date
JP7374475B2 (ja) 2023-11-07
JPWO2019156152A1 (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
US10584338B2 (en) Promoter and use thereof
US7138267B1 (en) Methods and compositions for amplifying DNA clone copy number
JPH0970291A (ja) 人工トランスポゾンを用いた遺伝子増幅方法
JPS58192900A (ja) 複合プラスミド
BRPI9909409B1 (pt) processos para produzir um ácido l-glutâmico
JP6335196B2 (ja) アコニターゼ遺伝子および/またはその調節エレメントの改変により、l−リジンを生産する方法
CN113201535A (zh) 谷氨酸脱氢酶基因启动子的突变体及其应用
JP2023109990A (ja) プリンヌクレオチドを生産する微生物及びそれを用いたプリンヌクレオチドの生産方法
Hashiro et al. High copy number mutants derived from Corynebacterium glutamicum cryptic plasmid pAM330 and copy number control
WO2011129293A1 (ja) 1,5-ペンタンジアミンの製造方法
JP7374475B2 (ja) アラビノース依存型遺伝子発現制御配列を含む核酸
CN113278620B (zh) 一种突变的高渗诱导型启动子PproP及其应用
KR101959063B1 (ko) L-로이신 생산능이 개선된 변이 균주 및 이를 이용한 l-로이신의 제조 방법
JP7350994B2 (ja) 新規なプロモーター及びそれを用いた標的物質生産方法
PL222067B1 (pl) Kaseta ekspresyjna, zastosowanie kasety ekspresyjnej, wektor ekspresyjny, komórka prokariotycznego gospodarza zawierająca wektor ekspresyjny, szczep bakteryjny oraz sposób wytwarzania polipeptydu
CN113201538A (zh) 具有启动子活性的多核苷酸及其在生产目标化合物中的用途
CN115449519B (zh) 基于dapB基因的具有启动子活性的多核苷酸及其用途
WO2008026698A1 (fr) Procédé de production d&#39;acide l-glutamique
JP3819512B2 (ja) コリネ型細菌内で蛋白質を効率よく翻訳させる配列を有するdna
RU2794946C1 (ru) Новый промотор и способ получения желаемого вещества с его использованием
EP4293115A1 (en) Polynucleotide having promoter activity and use thereof in production of traget compounds
US11787841B2 (en) Rationally-designed mutations to the thrA gene for enhanced lysine production in E. coli
JP2017537641A (ja) 発現エレメント、発現カセット、及びそれらを含むベクター
CA3217149A1 (en) Corynebacterium glutamicum variant having improved l-lysine production ability, and method for producing l-lysine using same
AU2021443607A1 (en) Corynebacterium glutamicum variant with improved l-lysine production ability, and method for producing l-lysine using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570794

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751311

Country of ref document: EP

Kind code of ref document: A1