WO2019156126A1 - 冷凍機油及び冷凍機用作動流体組成物 - Google Patents

冷凍機油及び冷凍機用作動流体組成物 Download PDF

Info

Publication number
WO2019156126A1
WO2019156126A1 PCT/JP2019/004265 JP2019004265W WO2019156126A1 WO 2019156126 A1 WO2019156126 A1 WO 2019156126A1 JP 2019004265 W JP2019004265 W JP 2019004265W WO 2019156126 A1 WO2019156126 A1 WO 2019156126A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerating machine
less
machine oil
mass
oil
Prior art date
Application number
PCT/JP2019/004265
Other languages
English (en)
French (fr)
Inventor
洋平 庄野
文之 奈良
武 大城戸
英俊 尾形
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to CN201980011278.XA priority Critical patent/CN111670241A/zh
Priority to JP2019570779A priority patent/JP7221226B2/ja
Priority to US16/967,250 priority patent/US11549077B2/en
Priority to KR1020207024878A priority patent/KR102500507B1/ko
Publication of WO2019156126A1 publication Critical patent/WO2019156126A1/ja
Priority to JP2023013949A priority patent/JP2023041839A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • C10M137/105Thio derivatives not containing metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/103Containing Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/43Sulfur free or low sulfur content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication

Definitions

  • the present invention relates to a refrigerating machine oil and a working fluid composition for a refrigerating machine.
  • Refrigerators such as refrigerators and air conditioners are equipped with a compressor for circulating the refrigerant in the refrigerant circulation system.
  • the compressor is filled with refrigerating machine oil for lubricating the sliding member.
  • the lower the viscosity of the refrigerating machine oil the lower the stirring resistance and the friction of the sliding portion. Therefore, lowering the viscosity of the refrigerating machine oil leads to energy saving of the refrigerating machine.
  • Patent Document 1 discloses a predetermined refrigerating machine oil of VG3 or more and VG8 or less.
  • the viscosity of the refrigerating machine oil becomes low, it becomes difficult to maintain the oil film at the sliding portion, and thus there is a possibility that the wear resistance cannot be maintained.
  • the refrigerating machine oil is compatible with the refrigerant in the refrigerating machine, the viscosity at the time of use is greatly reduced compared to the refrigerating machine oil itself, and the lubrication condition changes from the fluid lubrication region to the mixed lubrication or boundary lubrication region, sliding. Contact frequency between materials increases. Therefore, the use of a refrigerating machine oil having a very low viscosity such as a kinematic viscosity at 100 ° C.
  • the present invention has been made in view of such circumstances, and includes a refrigerating machine oil having a low wear resistance and high wear resistance even under severe lubricating conditions such as mixed lubrication or boundary lubrication conditions, and the refrigerating machine oil. It is an object to provide a working fluid composition for a refrigerator.
  • the present invention comprises a lubricating base oil and a compound represented by the following general formula (1), and the kinematic viscosity at 100 ° C. is 0.5 mm 2 / s to 2.5 mm 2 / s, Provide refrigeration oil.
  • R 1 and R 2 each independently represent a monovalent hydrocarbon group
  • R 3 represents a divalent hydrocarbon group
  • R 4 represents a hydrogen atom or a monovalent hydrocarbon group.
  • the refrigerating machine oil may further contain a phosphorus-based extreme pressure agent other than the above compound.
  • the 90% distillation temperature of the refrigerating machine oil by gas chromatography distillation is preferably 250 ° C. or higher and 400 ° C. or lower.
  • the 95% distillation temperature of the refrigerating machine oil by gas chromatography distillation is preferably 270 ° C. or higher and 410 ° C. or lower.
  • the difference between the 90% distillation temperature and the 5% distillation temperature of the refrigerating machine oil by gas chromatography distillation is preferably 40 ° C or higher and 200 ° C or lower.
  • % C A by n-d-M ring analysis of the refrigerating machine oil is preferably 5 or less.
  • the sulfur content of the lubricating base oil is preferably 0.001% by mass or more and 0.2% by mass or less.
  • the present invention also provides a working fluid composition for a refrigerator that contains the above-described refrigerator oil according to the present invention and a refrigerant.
  • a refrigerating machine oil having a low wear resistance and a high wear resistance even under severe lubricating conditions such as mixed lubrication or boundary lubrication conditions, and a working fluid composition for a refrigerating machine containing the refrigerating machine oil. Is possible.
  • the refrigerating machine oil according to the present embodiment contains a lubricating base oil and a compound represented by the following general formula (1).
  • R 1 and R 2 each independently represents a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group include an alkyl group and an aryl group.
  • the carbon number of the monovalent hydrocarbon group represented by R 1 and R 2 may be 1 or more, 2 or more, 3 or more, and may be 10 or less, 9 or less, or 8 or less.
  • the total number of carbon atoms in the monovalent hydrocarbon group represented by R 1 and R 2 may be 2 or more, 3 or more, 4 or more, and 20 or less, 19 or less, or 18 or less.
  • R 3 represents a divalent hydrocarbon group.
  • the divalent hydrocarbon group include an alkylene group.
  • the carbon number of the divalent hydrocarbon group represented by R 3 may be 1 or more, 2 or more, or 3 or more, and may be 10 or less, 9 or less, or 8 or less.
  • R 4 represents a hydrogen atom or a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group include an alkyl group.
  • the monovalent hydrocarbon group represented by R 4 may have 1 or more, 2 or more, or 3 or more carbon atoms, or 10 or less, 9 or less, or 8 or less.
  • Preferable examples of the compound represented by the formula (1) include a compound represented by the following formula (A).
  • R 1, R 2 and R 4 have the same meaning as R 1, R 2 and R 4 in the formula (1).
  • R 5 and R 6 each independently represents a hydrogen atom or an alkyl group.
  • the alkyl group may be either linear or branched, and is preferably linear.
  • the alkyl group may have, for example, 1 to 4, 1 to 3, or 1 to 2 carbon atoms.
  • At least one of R 5 and R 6 is preferably a hydrogen atom. More preferably, one of R 5 and R 6 is an alkyl group and the other is a hydrogen atom.
  • Specific examples of such compounds include 3- (diisobutoxy-thiophosphorylsulfanyl) -2-methyl-propionic acid, ethyl-3-[[bis (1-methylethoxy) phosphinothioyl] thio] propionate.
  • the content of the compound represented by the formula (1) is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, and still more preferably, based on the total amount of refrigerating machine oil, from the viewpoint of improving lubricity. It is 0.01 mass% or more.
  • the content of the compound represented by the formula (1) is preferably 5% by mass or less, more preferably 4% by mass or less, and further preferably 3% by mass or less, based on the total amount of refrigerating machine oil, from the viewpoint of improving stability. It is.
  • the content of the compound represented by the formula (1) is preferably 0.001 to 5% by mass, 0.001 to 4% by mass, 0.001 to 3% by mass from the viewpoint of both lubricity and stability.
  • the content of the compound represented by the formula (1) is to obtain a refrigerating machine oil having excellent stability by keeping the initial oxidation low, and a phosphorus extreme pressure agent other than the compound represented by the formula (1) described later.
  • it may be 1% by mass or less, 0.1% by mass or less, 0.06% by mass or less, or 0.04% by mass or less.
  • Examples of the lubricating base oil include mineral oil.
  • Mineral oil can be obtained by removing solvent oil, solvent refining, hydrorefining, hydrocracking, solvent dewaxing, hydrogenation of lubricating oil fractions obtained by atmospheric distillation and vacuum distillation of paraffinic and naphthenic crude oils. It can be obtained by purification by a method such as dewaxing, clay treatment, or sulfuric acid washing. These purification methods may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a lubricant base oil that is appropriately selected from low-viscosity lubricant base oils that are generally used for solvents, diluents, metalworking oils, and the like is preferably used.
  • the lubricating base oil may be composed of the above mineral oil, but the ratio of the mineral oil is usually 50% by mass or more, 70% by mass or more, or 90% by mass or more based on the total amount of the lubricating base oil.
  • a hydrocarbon oil such as alkylbenzene or an oxygen-containing oil such as ester may be further contained in place of the mineral oil.
  • the alkyl benzene may be at least one selected from the group consisting of the following alkyl benzene (a1) and alkyl benzene (a2).
  • Alkylbenzene (a1) an alkylbenzene having 1 to 4 alkyl groups having 1 to 19 carbon atoms and having a total carbon number of 9 to 19 (preferably 1 alkyl group having 1 to 15 carbon atoms) Alkylbenzene having 4 to 4 and the alkyl group having a total carbon number of 9 to 15)
  • the ester may be, for example, an ester of a monohydric alcohol or a dihydric alcohol and a fatty acid.
  • the monohydric alcohol or dihydric alcohol may be, for example, an aliphatic alcohol having 4 to 12 carbon atoms.
  • the fatty acid may be, for example, a fatty acid having 4 to 19 carbon atoms.
  • the kinematic viscosity at 40 ° C. of the lubricating base oil may be, for example, 2.0 mm 2 / s or more, 2.5 mm 2 / s or more, or 2.7 mm 2 / s or more, for example, 4.5 mm 2 / s. It may be s or less, 4.0 mm 2 / s or less, or 3.5 mm 2 / s or less.
  • the kinematic viscosity at 100 ° C. of the lubricating base oil may be, for example, 0.5 mm 2 / s or more, 0.6 mm 2 / s or more, 0.8 mm 2 / s or more, or 1.0 mm 2 / s or more. For example, it may be 2.5 mm 2 / s or less, 2.0 mm 2 / s or less, 1.5 mm 2 / s or less, or 1.3 mm 2 / s or less.
  • the sulfur content of the lubricating base oil may be, for example, 0.05% by mass or less, 0.02% by mass or less, or 0.01% by mass or less, and may be less than 0.02% by mass. .
  • the sulfur content of the lubricating base oil may be less than 0.0001% by mass, a phosphorus-based extreme pressure agent other than the compound represented by the formula (1) described later (for example, the first and / or the second) In order to further enhance the combined effect, it may be, for example, 0.0001% by mass or more, 0.0005% by mass or more, or 0.001% by mass or more.
  • the content of the lubricating base oil is, for example, 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more based on the total amount of the refrigerating machine oil. For example, it may be 99.5 mass% or less, 99 mass% or less, or 98.5 mass% or less.
  • the refrigerating machine oil according to the present embodiment may further contain a phosphorus extreme pressure agent other than the compound represented by the general formula (1).
  • the phosphorus extreme pressure agent only needs to contain phosphorus in the molecule.
  • the phosphorus-based extreme pressure agent is classified into, for example, an extreme pressure agent containing sulfur and phosphorus (first extreme pressure agent) and an extreme pressure agent containing no sulfur and containing phosphorus (second extreme pressure agent).
  • Suitable examples of the first extreme pressure agent include thiophosphate esters.
  • Preferable examples of the second extreme pressure agent include phosphoric acid ester, acidic phosphoric acid ester, amine salt of acidic phosphoric acid ester, chlorinated phosphoric acid ester, phosphorous acid ester and the like which do not contain sulfur.
  • thiophosphates examples include tributyl phosphorothioate, tripentyl phosphorothionate, trihexyl phosphorothionate, triheptyl phosphorothionate, trioctyl phosphorothionate, trinonyl phosphorothionate, tridecyl phosphorothioate.
  • Phorothionate triundecyl phosphorothionate, tridodecyl phosphorothionate, tritridecyl phosphorothionate, tritetradecyl phosphorothionate, tripentadecyl phosphorothionate, trihexadecyl phosphorothionate, Triheptadecyl phosphorothioate, trioctadecyl phosphorothionate, trioleyl phosphorothionate, triphenyl phosphorothionate, tricresyl phosphorothionate, trikis Les sulfonyl phosphorothionate, cresyldiphenyl phosphorothionate, like carboxymethyl Les sulfonyl diphenyl phosphorothionate.
  • triphenyl phosphorothioate is preferable.
  • Phosphate esters include tributyl phosphate, tripentyl phosphate, trihexyl phosphate, triheptyl phosphate, trioctyl phosphate, trinonyl phosphate, tridecyl phosphate, triundecyl phosphate, tridodecyl phosphate, tritridecyl phosphate, tritetradecyl phosphate , Tripentadecyl phosphate, trihexadecyl phosphate, triheptadecyl phosphate, trioctadecyl phosphate, trioleyl phosphate, triphenyl phosphate, tricresyl phosphate, tri (ethylphenyl) phosphate, tri (propylphenyl) phosphate, tri (butyl Phenyl) phosphate, trixylenyl phosphate, cresyl dipheny Phosphates, and the like x
  • acidic phosphate esters include monobutyl acid phosphate, monopentyl acid phosphate, monohexyl acid phosphate, monoheptyl acid phosphate, monooctyl acid phosphate, monononyl acid phosphate, monodecyl acid phosphate, monoundecyl acid phosphate, monododecyl Acid phosphate, monotridecyl acid phosphate, monotetradecyl acid phosphate, monopentadecyl acid phosphate, monohexadecyl acid phosphate, monoheptadecyl acid phosphate, monooctadecyl acid phosphate, monooleyl acid phosphate, dibutyl acid phosphate, dipentyl acid , Dihexylua Phosphate, diheptyl acid phosphate, dioctyl acid phosphate, dinonyl acid phosphate, didecyl acid phosphate
  • Examples of the amine salt of acidic phosphate ester include methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, dimethylamine, diethylamine, dipropylamine, and dibutylamine.
  • salts with amines such as dipentylamine, dihexylamine, diheptylamine, dioctylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, and trioctylamine.
  • chlorinated phosphate ester examples include tris-dichloropropyl phosphate, tris-chloroethyl phosphate, tris-chlorophenyl phosphate, polyoxyalkylene bis [di (chloroalkyl)] phosphate and the like.
  • the content of the phosphorus extreme pressure agent is, for example, 0.1% by mass or more, 1% by mass or more, 1.5% by mass or more, or 1% based on the total amount of refrigerating machine oil from the viewpoint of further excellent wear resistance. For example, 5 mass% or less, 3 mass% or less, 2.5 mass% or less, or 2 mass% or less.
  • the first extreme pressure agent when used in combination as the extreme pressure agent, the first extreme pressure agent based on the total amount of the first extreme pressure agent and the second extreme pressure agent.
  • the proportion of the pressure agent content may be, for example, 5% by mass or more, 8% by mass or more, or 10% by mass or more, for example, 20% by mass or less, 18% by mass, from the viewpoint of further excellent wear resistance. Hereinafter, it may be 15 mass% or less, or 14 mass% or less.
  • the content of the first extreme pressure agent is, for example, 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass or more based on the total amount of refrigerating machine oil from the viewpoint of further excellent wear resistance. For example, it may be 1% by mass or less, 0.5% by mass or less, or 0.4% by mass or less.
  • the content of the second extreme pressure agent is, for example, 0.5% by mass or more, 1% by mass or more, or 1.2% by mass or more on the basis of the total amount of refrigeration oil from the viewpoint of further excellent wear resistance. For example, it may be 5 mass% or less, 3 mass% or less, 2.0 mass% or less, or 1.8 mass% or less.
  • the ratio (mass ratio) between the content and the content of the compound represented by the formula (1) is not particularly limited, but is represented by the formula (1).
  • the content of the compound may be 0.1 parts by mass or more, 0.2 parts by mass or more, or 0.5 parts by mass or more, and 100 parts by mass or less, with respect to 100 parts by mass of the phosphorus extreme pressure agent. It may be 50 parts by mass or less, 10 parts by mass or less, 5 parts by mass or less, or 1 part by mass or less.
  • the kinematic viscosity at 100 ° C. of the refrigerating machine oil according to the present embodiment is 0.5 mm 2 / s or more and 2.5 mm 2 / s or less.
  • the kinematic viscosity at 100 ° C. of the refrigerating machine oil is less than 0.5 mm 2 / s, not only the lubricity is insufficient, but the flash point tends to decrease, and the kinematic viscosity exceeds 2.5 mm 2 / s
  • the low viscosity refrigerating machine oil which is the object of the present invention cannot be obtained.
  • the kinematic viscosity in the present invention means a kinematic viscosity measured according to JIS K2283: 2000.
  • the kinematic viscosity at 40 ° C. of the refrigerating machine oil may be, for example, 2.0 mm 2 / s or more, 2.5 mm 2 / s or more, 3.0 mm 2 / s or more, or 3.2 mm 2 / s or more, for example 6.0 mm 2 / s or less, 5.0 mm 2 / s or less, 4.5 mm 2 / s or less, 4.0 mm 2 / s or less, or 3.5 mm 2 / s or less.
  • the ISO viscosity classification of the refrigerating machine oil is not particularly limited as long as the kinematic viscosity at 100 ° C. of the refrigerating machine oil is 0.5 mm 2 / s or more and 2.5 mm 2 / s or less.
  • the ISO viscosity classification of the refrigerating machine oil is classified into, for example, VG2, 3, 5, 7 and is preferably VG7 or less, more preferably VG5 or less, further preferably VG3 or less, from the viewpoint of ensuring low friction in the fluid lubrication region. is there.
  • VG3 refrigeration oil generally has a lower friction coefficient in the fluid lubrication region than the higher viscosity grade refrigeration oil, but the lubricity in the mixed lubrication or boundary lubrication region deteriorates, and the friction coefficient Tend to be higher.
  • the lubricity in the mixed lubrication or boundary lubrication region is remarkably improved and contributes to the low friction. The degree of improvement is higher for VG3 refrigerator oil.
  • the ISO viscosity classification means a viscosity grade defined in JIS K 2001 (1993) “Industrial Lubricating Oil—ISO Viscosity Classification” or ISO 3448/1992 “Industrial liquid lubrication-ISO viscosity classification”. .
  • the aniline point of the refrigerating machine oil may be, for example, 60 ° C. or higher, 70 ° C. or higher, 73 ° C. or higher, 76 ° C. or higher, or 80 ° C. or higher from the viewpoint of further excellent wear resistance.
  • the aniline point of refrigerating machine oil is 100 degrees C or less, 95 degrees C or less from a viewpoint of compatibility with organic materials, such as PET (polyethylene terephthalate) material used in a freezing apparatus (refrigerator), a sealing material, for example. Or 90 ° C. or lower.
  • the aniline point in the present invention means a value measured according to JIS K2256: 2013.
  • the distillation end point EP in the distillation properties by gas chromatography distillation (hereinafter also referred to as GC distillation) of the refrigerating machine oil is, for example, from the viewpoint of lubricity, It may be 300 ° C or higher, 350 ° C or higher, 380 ° C or higher, 390 ° C or higher, 395 ° C or higher, or 400 ° C or higher. Further, the distillation end point EP of the refrigerating machine oil may be, for example, 450 ° C. or lower, 440 ° C. or lower, 430 ° C. or lower, or 425 ° C. or lower from the viewpoint of further reducing the viscosity.
  • the other distillation properties of the refrigerating machine oil by gas chromatography distillation are more excellent in the balance between the low viscosity of the refrigerating machine oil and the lubricity, and also from the viewpoint of maintaining a high flash point, preferably the distillation at the low boiling point side. While increasing the temperature, the distillation temperature on the high boiling point side is maintained in an appropriate range.
  • Such a refrigerating machine oil desirably has a distillation property described below.
  • the initial boiling point IBP of the refrigerating machine oil may be, for example, 180 ° C or higher, 200 ° C or higher, 210 ° C or higher, 220 ° C or higher, or 225 ° C or higher, for example, 260 ° C or lower, 250 ° C or lower, or 240 ° C or lower. It may be.
  • 5% distillation temperature T 5 of the refrigerating machine oil for example, 190 ° C. or higher, 205 ° C. or higher, 215 ° C. or higher, 225 ° C. or higher, or may be at 235 ° C. or higher, for example, 265 ° C. or less, 255 ° C. or less, or It may be 245 ° C. or lower.
  • 10% distillation temperature T 10 of the refrigerating machine oil for example, 200 ° C. or higher, 210 ° C. or higher, 220 ° C. or higher, 230 ° C. or higher, or may be at 240 ° C. or higher, for example, 270 ° C. or less, 260 ° C. or less, or It may be 250 ° C. or lower.
  • 50% distillation temperature T 50 of the refrigerating machine oil for example, 220 ° C. or higher, 230 ° C. or higher, 240 ° C. or higher, 250 ° C. or higher, or may be at 260 ° C. or higher, for example, 310 ° C. or less, 300 ° C. or less, or It may be 280 ° C or lower.
  • 70% distillation temperature T 70 of the refrigerating machine oil for example, from the viewpoints of lubricity and high flash point, 240 ° C. or higher, 250 ° C. or higher, 260 ° C. or higher, 270 ° C. or higher, or may be at 280 ° C. or higher.
  • 70% distillation temperature T 70 of the refrigerating machine oil for example, from the viewpoint of low viscosity, 340 ° C. or less, 330 ° C. or less, may be at 300 ° C. or less.
  • Refrigerating machine oil 90% distillation temperature T 90 for example, 250 ° C. or higher, 270 ° C. or higher, 280 ° C. or higher, 290 ° C. or higher, or may be at 300 ° C. or higher, further in view of excellent abrasion resistance, particularly preferably Is 320 ° C. or higher, 330 ° C. or higher, or 340 ° C. or higher.
  • the 90% distillation temperature T 90 of the refrigerating machine oil for example, from the same viewpoint as above, 400 ° C. or less, 370 ° C. or less, 360 ° C. or less, or 355 ° C. There may hereinafter.
  • the 95% distillation temperature T 95 of the refrigerating machine oil may be, for example, 270 ° C. or higher, 280 ° C. or higher, 290 ° C. or higher, 300 ° C. or higher, 310 ° C. or higher, or 330 ° C. or higher, and is further improved in wear resistance. To 340 ° C. or higher, 350 ° C. or higher, or 360 ° C. or higher. Refrigerator 95% of oil distillation temperature T 95, for example, 410 ° C. or less, 400 ° C. or less, 390 ° C. or less, or 380 ° C. may be less.
  • the difference (T 90 -T 5 ) between the 5% distillation temperature T 5 and the 90% distillation temperature T 90 of the refrigerating machine oil may be, for example, 40 ° C. or more, 50 ° C. or more, or 60 ° C. or more. Preferably, it may be 80 ° C. or higher, or 100 ° C. or higher, for example, 200 ° C. or lower, 160 ° C. or lower, 150 ° C. or lower, 140 ° C. or lower, or 130 ° C. or lower.
  • the difference between the initial boiling point IBP of the refrigerating machine oil and the 90% distillation temperature T 90 may be, for example, 40 ° C. or higher, 50 ° C. or higher, 60 ° C. or higher, or 70 ° C. or higher, Preferably, it may be 80 ° C. or higher, or 100 ° C. or higher, for example, 170 ° C. or lower, 160 ° C. or lower, 150 ° C. or lower, or 140 ° C. or lower.
  • the difference between the initial boiling point IBP of the refrigerating machine oil and the 95% distillation temperature T 95 may be, for example, 50 ° C. or higher, 60 ° C. or higher, 70 ° C. or higher, or 80 ° C. or higher, Preferably, it may be 100 ° C. or higher, or 120 ° C. or higher, for example, 180 ° C. or lower, 170 ° C. or lower, 160 ° C. or lower, or 150 ° C. or lower.
  • the difference between the 90% distillation temperature T 90 and the 95% distillation temperature T 95 of the refrigerating machine oil (T 95 -T 90 ) is, for example, 1 ° C. or higher, 3 ° C. or higher, 5 ° C. or higher, from the viewpoint of lubricity. It may be 10 ° C. or higher, or 20 ° C. or higher. For example, it may be 100 ° C. or lower, 80 ° C. or lower, 50 ° C. or lower, or 40 ° C. or lower.
  • the difference between the 90% distillation temperature T 90 of the refrigerating machine oil and the distillation end point EP is, for example, 30 ° C. or higher, 50 ° C. or higher, 60 ° C. or higher, or 70 ° C. or higher from the viewpoint of lubricity.
  • it may be 150 ° C. or lower, 140 ° C. or lower, 130 ° C. or lower, or 120 ° C. or lower, particularly preferably 100 ° C. or lower, 90 ° C. or lower, or 80 ° C. or lower.
  • the initial distillation point, 5% distillation temperature, 10% distillation temperature, 50% distillation temperature, 70% distillation temperature, 90% distillation temperature, and distillation end point in the present invention are respectively defined in ASTM D7213-05.
  • Initial boiling point measured according to the distillation test method by gas chromatography 5 (volume)% distillation temperature, 10 (volume)% distillation temperature, 50 (volume)% distillation temperature, 70 (volume)% It means the distillation temperature, 90 (volume)% distillation temperature, 95 (volume)% distillation temperature and distillation end point.
  • the sulfur content of the refrigerating machine oil is 0.001% by mass or more and 0.2% by mass or less.
  • the sulfur content of the refrigerating machine oil may be 0.003% by mass or more, or 0.005% by mass or more, for example, from the viewpoint of further improving wear resistance, for example, 0.3% by mass or less, 0.1% by mass. % Or less, or 0.05 mass% or less.
  • the sulfur content in the present invention means a sulfur content measured by an ultraviolet fluorescence method defined in JIS K2541-6: 2013.
  • composition ratio of the refrigerating machine oil by the ring analysis is preferably maintained within the range shown below from the viewpoint of further improving the balance between the low viscosity and the lubricity of the refrigerating machine oil and maintaining the flash point high.
  • % C P of the refrigerating machine oil for example, 15 or more, 40 or more, or may be 50 or more, for example, 70 or less, 60 or less, or 55 or less.
  • % C N of the refrigerating machine oil for example, 30 or more, better 35 or more, or a 40 or more, for example, 85 or less, 70 or less, 60 or less, 50 or less, or 49 may be less.
  • the ratio of the% C N for% C P of the refrigerating machine oil (% C N /% C P ) , for example, 0.5 or more, may be 0.6 or more, or 0.7 or more, for example, 4.5 Hereinafter, it may be 2.0 or less, 1.4 or less, 1.3 or less, or 1.2 or less.
  • In% C A of the refrigerating machine oil for example, from the viewpoints of lubricity and stability, 8 or less, 5 or less, or may be three or less, may be 0, 0.5 or more, or one or more It may be.
  • % C P ,% C N and% C A mean values measured by a method (ndM ring analysis) based on ASTM D3238-95 (2010), respectively.
  • the flash point of the refrigerating machine oil may be, for example, 100 ° C. or higher, 110 ° C. or higher, or 120 ° C. or higher from the viewpoint of safety. For example, from the viewpoint of low-viscosity oil, it is 155 ° C. or lower, or 145 ° C. or lower. It may be.
  • the flash point in the present invention means a flash point measured according to JIS K2265-4: 2007 (Cleveland Release (COC) method).
  • the pour point of the refrigerating machine oil may be, for example, ⁇ 10 ° C. or lower, or ⁇ 20 ° C. or lower, and may be ⁇ 50 ° C. or lower. From the viewpoint of the purification cost, it may be ⁇ 40 ° C. or higher. Good.
  • the pour point in the present invention means a pour point measured according to JIS K2269: 1987.
  • the acid value of the refrigerating machine oil may be, for example, 1.0 mgKOH / g or less, or 0.1 mgKOH / g or less.
  • the acid value in the present invention means an acid value measured according to JIS K2501: 2003.
  • the volume resistivity of the refrigerating machine oil may be, for example, 1.0 ⁇ 10 9 ⁇ ⁇ m or more, 1.0 ⁇ 10 10 ⁇ ⁇ m or more, or 1.0 ⁇ 10 11 ⁇ ⁇ m or more.
  • the volume resistivity in the present invention means a volume resistivity at 25 ° C. measured according to JIS C2101: 1999.
  • the water content of the refrigerating machine oil may be, for example, 200 ppm or less, 100 ppm or less, or 50 ppm or less based on the total amount of the refrigerating machine oil.
  • the ash content of the refrigerating machine oil may be, for example, 100 ppm or less, or 50 ppm or less.
  • the ash content in the present invention means an ash content measured according to JIS K2272: 1998.
  • the properties of the lubricating base oil as the main component are also equivalent to the above unless otherwise specified in this specification. It is desirable. Therefore, although the range about the property of each item of refrigerating machine oil was shown above, it may be read as the range about each item of lubricating base oil contained in refrigerating machine oil unless otherwise specified in this specification.
  • the distillation properties of the lubricating base oil by GC distillation are not particularly limited as long as the distillation properties of the refrigerating machine oil fall within the above range.
  • the regulations from the initial boiling point IBP of the lubricating base oil to the 90% distillation temperature T 90 and the regulations related thereto are not easily affected by the additive composition, so that, for example, the distillation characteristics of the refrigerating machine oil described above are substantially the same or It may be read as ⁇ 5 ° C or less.
  • the distillation end point EP of the lubricating base oil may be, for example, 450 ° C. or less, and the 95% distillation temperature T 95 may be, for example, 410 ° C. or less.
  • Refrigerator oil according to the present embodiment is usually present in the state of a working fluid composition for a refrigerator mixed with a refrigerant in a refrigerator. That is, the working fluid composition for a refrigerator according to the present embodiment contains the above-described refrigerator oil and a refrigerant.
  • the content of the refrigerating machine oil in the working fluid composition for the refrigerating machine may be 1 to 500 parts by mass, or 2 to 400 parts by mass with respect to 100 parts by mass of the refrigerant.
  • refrigerant examples include hydrocarbon refrigerants, saturated fluorinated hydrocarbon refrigerants, unsaturated fluorinated hydrocarbon refrigerants, fluorinated ether refrigerants such as perfluoroethers, bis (trifluoromethyl) sulfide refrigerant, and difluoroiodomethane.
  • refrigerant examples include natural refrigerants such as ammonia and carbon dioxide.
  • the hydrocarbon refrigerant is preferably a hydrocarbon having 1 to 5 carbon atoms, more preferably a hydrocarbon having 2 to 4 carbon atoms.
  • Specific examples of the hydrocarbon include methane, ethylene, ethane, propylene, propane (R290), cyclopropane, normal butane, isobutane (R600a), cyclobutane, methylcyclopropane, 2-methylbutane, normal pentane, and these.
  • the mixture of 2 or more types is mentioned.
  • the hydrocarbon refrigerant is preferably a hydrocarbon refrigerant which is gaseous at 25 ° C. and 1 atm, and more preferably propane, normal butane, isobutane, 2-methylbutane or a mixture thereof.
  • the saturated fluorinated hydrocarbon refrigerant is preferably a saturated fluorinated hydrocarbon having 1 to 3 carbon atoms, more preferably 1 to 2 carbon atoms.
  • Specific examples of the saturated fluorinated hydrocarbon refrigerant include difluoromethane (R32), trifluoromethane (R23), pentafluoroethane (R125), 1,1,2,2-tetrafluoroethane (R134), 1, 1,1,2-tetrafluoroethane (R134a), 1,1,1-trifluoroethane (R143a), 1,1-difluoroethane (R152a), fluoroethane (R161), 1,1,1,2,3 , 3,3-heptafluoropropane (R227ea), 1,1,1,2,3,3-hexafluoropropane (R236ea), 1,1,1,3,3,3-hexafluoropropane (R236fa), 1,1,1,3,3-penta
  • the saturated fluorinated hydrocarbon refrigerant is appropriately selected from the above depending on the application and required performance.
  • the unsaturated fluorinated hydrocarbon (HFO) refrigerant is preferably an unsaturated fluorinated hydrocarbon having 2 to 3 carbon atoms, more preferably fluoropropene, and still more preferably fluoropropene having 3 to 5 fluorine atoms.
  • the unsaturated fluorinated hydrocarbon refrigerant is preferably 1,2,3,3,3-pentafluoropropene (HFO-1225ye), 1,3,3,3-tetrafluoropropene (HFO-1234ze), 2, Any of 3,3,3-tetrafluoropropene (HFO-1234yf), 1,2,3,3-tetrafluoropropene (HFO-1234ye), and 3,3,3-trifluoropropene (HFO-1243zf) One or a mixture of two or more.
  • the unsaturated fluorinated hydrocarbon refrigerant is preferably one or more selected from HFO-1225ye, HFO-1234ze and HFO-1234yf from the viewpoint of the physical properties of the refrigerant.
  • the unsaturated fluorinated hydrocarbon refrigerant may be fluoroethylene, preferably 1,1,2,3-trifluoroethylene.
  • a refrigerant having a low global warming potential is preferable in order to reduce the influence on the global environment.
  • a refrigerant include a mixed refrigerant having a GWP of 1000 or less, including at least one selected from an unsaturated fluorinated hydrocarbon refrigerant, a natural refrigerant such as R290, R600a, and the like.
  • the GWP of these refrigerants may be 500 or less, 100 or less, 50 or less, or 10 or less.
  • the boiling points of these refrigerants are preferably, for example, 0 ° C. or lower and ⁇ 60 ° C. or higher in terms of cooling capacity.
  • the temperature is more preferably ⁇ 30 ° C. or less from the viewpoint of a low compression ratio and a high volume capacity, and the temperature is more preferably ⁇ 30 ° C. or higher from the viewpoint of a low pressure and a small sliding loss of the compressor.
  • An example of the refrigerant having a low compression ratio and a high volume capacity is R290 (boiling point: ⁇ 42.1 ° C.), and an example of the refrigerant having a low pressure and a small sliding loss of the compressor is R600a (boiling point: ⁇ 11. 6 ° C.). From the viewpoint of expecting an effect of improving the efficiency of the refrigerator by reducing the sliding loss of the compressor in combination with the lowering of the viscosity of the refrigerator oil, it is particularly preferable to use R600a.
  • the refrigerating machine oil and the working fluid composition for the refrigerating machine according to the present embodiment include an air conditioner having a reciprocating or rotating hermetic compressor, a refrigerator, an open type or a sealed car air conditioner, a dehumidifier, a water heater, and a freezer. It is suitably used for refrigerators such as refrigerators, refrigerators, vending machines, showcases, chemical plants, refrigerators having a centrifugal compressor, and the like.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of a refrigerator to which the refrigerator oil and the working fluid composition for a refrigerator according to the present embodiment are applied.
  • a refrigerator 10 includes, for example, a refrigerant compressor 1, a gas cooler 2, an expansion mechanism 3 (capillary, expansion valve, etc.), and an evaporator 4 that are sequentially connected by a flow path 5.
  • At least a refrigerant circulation system is provided.
  • a high-temperature (usually 70 to 120 ° C.) refrigerant discharged from the refrigerant compressor 1 into the flow path 5 is mixed with a high-density fluid (supercritical fluid or the like) in the gas cooler 2. Become.
  • the refrigerant is liquefied by passing through a narrow flow path of the expansion mechanism 3 and further vaporized by the evaporator 4 to become a low temperature (usually ⁇ 40 to 0 ° C.).
  • refrigerant compressor 1 in FIG. 1 a small amount of refrigerant and a large amount of refrigerating machine oil coexist at high temperature (usually 70 to 120 ° C.).
  • the refrigerant discharged from the refrigerant compressor 1 into the flow path 5 is in the form of gas and contains a small amount (usually 1 to 10%) of refrigerating machine oil as a mist.
  • the mist refrigerating machine oil contains a small amount of refrigerating machine oil.
  • the refrigerant is dissolved (point a in FIG. 1).
  • the gaseous refrigerant is compressed into a high-density fluid, and a large amount of refrigerant and a small amount of refrigerating machine oil coexist at a relatively high temperature (about 50 to 70 ° C.) ( Point b) in FIG. Furthermore, a mixture of a large amount of refrigerant and a small amount of refrigerating machine oil is sequentially sent to the expansion mechanism 3 and the evaporator 4 and suddenly becomes low temperature (usually ⁇ 40 to 0 ° C.) (points c and d in FIG. 1). Returned to the refrigerant compressor 1.
  • the refrigerating machine oil according to the present embodiment can be used together with the above-described refrigerant, but is particularly preferably used together with a hydrocarbon refrigerant in terms of cold temperature characteristics and compatibility at the time of refrigerant mixing.
  • the working fluid composition for a refrigerator particularly preferably contains a hydrocarbon refrigerant.
  • Refrigerating machine oils having compositions and properties shown in Tables 2 and 3 were prepared using the base oils 1 to 5 and the following additives.
  • a mixture of base oils prepared by mixing each base oil was used for those in which a plurality of base oil numbers are described (for example, “base oils 1, 2, 5” in Example 1). Means that.
  • the abrasion resistance test was conducted by a high-speed four-ball test in accordance with ASTM D4172-94. Using SUJ2 as a hard sphere, the test was conducted under the conditions of a test oil amount of 20 ml, a test temperature of 80 ° C., a rotation speed of 1200 rpm, a load load of 196 N, and a test time of 15 minutes. For the evaluation of wear resistance, the average value of the wear scar diameter (mm) of the fixed sphere was used. The surface pressure at this time was about 2.3 GPa, and the peripheral speed was calculated to be about 36 cm / s.
  • the average value of the wear scar diameter under this condition is 0.7 mm or less, it can be said that the refrigeration oil has high wear resistance even under severe lubrication conditions such as mixed lubrication or boundary lubrication conditions.
  • the average value of the wear scar diameter is preferably 0.5 mm or less, more preferably 0.45 mm or less, and still more preferably 0.4 mm or less.
  • the refrigeration oils of Examples 1 to 4 according to the present invention were excellent in wear resistance.
  • the refrigerating machine oils of Examples 2 and 3 were used in combination with the additive A and the additive B and / or C, and compared with the case where only the additive B and / or C was used, in terms of wear resistance. It was even better.
  • the refrigerating machine oil of Example 2 has an effect of improving the wear resistance of about 20% compared to the refrigerating machine oil having the same composition as Example 2 except that additive A was not used. It was.
  • the refrigerating machine oil of Example 3 was found to have an effect of improving wear resistance of about 8% compared to the refrigerating machine oil having the same composition as Example 3 except that additive A was not used.
  • Example 1 two types of refrigerating machine oils as in Example 1 were obtained except that the content of (A-1) in the refrigerating machine oil of Example 1 was changed to 0.05% by mass or 0.1% by mass.
  • the kinematic viscosity at 100 ° C. of these refrigerating machine oils was 0.5 mm 2 / s to 2.5 mm 2 / s.
  • These refrigeration oils were found to have the same effect of improving wear resistance as Example 1, but it was suggested that the stability tends to deteriorate as the content increases.
  • the same kind of refrigerating machine oil as that of Example 1 was obtained except that the following formula (A-2) was used instead of (A-1) as additive A in the refrigerating machine oil of Example 1.
  • the refrigerating machine oil had a kinematic viscosity at 100 ° C. of 0.5 mm 2 / s to 2.5 mm 2 / s.
  • this refrigerating machine oil was also observed to have the same effect of improving wear resistance as that of the refrigerating machine oil of Example 1, it was suggested that the improving effect per added amount tends to be slightly smaller.
  • Example 2 or 3 As additive C in the refrigerating machine oil of Example 2 or 3, Example 2 or 3 except that triphenyl phosphate, tri (propylphenyl) phosphate or tri (butylphenyl) phosphate was used instead of tricresyl phosphate, respectively. 6 kinds of the same refrigerating machine oil as 3 were obtained.
  • the refrigerating machine oil had a kinematic viscosity at 100 ° C. of 0.5 mm 2 / s to 2.5 mm 2 / s.
  • the same effect of improving wear resistance as that of the refrigeration oil of Example 2 or 3 was observed.
  • base oil 5 as a base oil of the refrigerating machine oil of Example 1
  • the refrigerating machine oil had a kinematic viscosity at 100 ° C. of 0.5 mm 2 / s to 2.5 mm 2 / s.
  • the refrigerating machine oil also showed the same wear resistance improving effect as that of the refrigerating machine oil of Example 1, but it was suggested that the improving effect per addition amount tends to be slightly smaller.

Abstract

潤滑油基油と、下記一般式(1)で表される化合物と、を含有し、100℃における動粘度が0.5mm/s以上2.5mm/s以下である、冷凍機油。[式(1)中、R及びRはそれぞれ独立に1価の炭化水素基を表し、Rは2価の炭化水素基を表し、Rは水素原子又は1価の炭化水素基を表す。]

Description

冷凍機油及び冷凍機用作動流体組成物
 本発明は、冷凍機油及び冷凍機用作動流体組成物に関する。
 冷蔵庫、空調等の冷凍機には、冷媒を冷媒循環システム内に循環させるための圧縮機を備えている。圧縮機には、摺動部材を潤滑するための冷凍機油が充填される。一般的に、冷凍機油の粘度が低いほど撹拌抵抗及び摺動部の摩擦を低減できるため、冷凍機油の低粘度化は、冷凍機の省エネルギー化につながる。特許文献1には、例えば、VG3以上でVG8以下の所定の冷凍機油が開示されている。
国際公開第2006/062245号
 しかしながら、冷凍機油の粘度が低くなると、摺動部における油膜の保持が難しくなるため、耐摩耗性を維持できなくなるおそれがある。そのうえ、冷凍機油は冷凍機内で冷媒と相溶するため、使用時の粘度は冷凍機油自体と比べて大きく低下し、潤滑条件は流体潤滑領域から混合潤滑ないし境界潤滑領域へと変化し、摺動材同士の接触頻度が高くなる。したがって、特に100℃における動粘度が2.5mm/s以下又は2.0mm/s以下のような超低粘度の冷凍機油の使用については、これまで十分に検討がなされていない。とりわけ、このような超低粘度の冷凍機油を用いつつ、混合潤滑ないし境界潤滑条件のような厳しい潤滑条件下においても耐摩耗性が高い冷凍機油を得ることは極めて困難である。
 本発明は、このような実情に鑑みてなされたものであり、低粘度でありながら混合潤滑ないし境界潤滑条件のような厳しい潤滑条件下においても耐摩耗性が高い冷凍機油及び当該冷凍機油を含む冷凍機用作動流体組成物を提供することを目的とする。
 本発明は、潤滑油基油と、下記一般式(1)で表される化合物と、を含有し、100℃における動粘度が0.5mm/s以上2.5mm/s以下である、冷凍機油を提供する。
Figure JPOXMLDOC01-appb-C000003
[式(1)中、R及びRはそれぞれ独立に1価の炭化水素基を表し、Rは2価の炭化水素基を表し、Rは水素原子又は1価の炭化水素基を表す。]
 冷凍機油は、上記化合物以外のリン系極圧剤を更に含有していてもよい。
 冷凍機油のガスクロマトグラフィー蒸留による90%留出温度は、好ましくは250℃以上400℃以下である。
 冷凍機油のガスクロマトグラフィー蒸留による95%留出温度は、好ましくは270℃以上410℃以下である。
 冷凍機油のガスクロマトグラフィー蒸留による90%留出温度と5%留出温度との差は、好ましくは40℃以上200℃以下である。
 冷凍機油のn-d-M環分析による%Cは、好ましくは5以下である。
 潤滑油基油の硫黄分は、好ましくは0.001質量%以上0.2質量%以下である。
 また、本発明は、上述した本発明に係る冷凍機油と、冷媒と、を含有する冷凍機用作動流体組成物を提供する。
 本発明によれば、低粘度でありながら混合潤滑ないし境界潤滑条件のような厳しい潤滑条件下においても耐摩耗性が高い冷凍機油及び当該冷凍機油を含む冷凍機用作動流体組成物を提供することが可能となる。
冷凍機の構成の一例を示す概略図である。
 以下、本発明の実施形態について詳細に説明する。
 本実施形態に係る冷凍機油は、潤滑油基油と、下記一般式(1)で表される化合物と、を含有する。
Figure JPOXMLDOC01-appb-C000004
 式(1)中、R及びRはそれぞれ独立に1価の炭化水素基を表す。該1価の炭化水素基としては、アルキル基、アリール基等が例示される。R及びRで表される1価の炭化水素基の炭素数は、それぞれ独立に、1以上、2以上又は3以上であってよく、10以下、9以下又は8以下であってよい。R及びRで表される1価の炭化水素基における炭素数の合計は、2以上、3以上又は4以上であってよく、20以下、19以下又は18以下であってよい。
 式(1)中、Rは2価の炭化水素基を表す。該2価の炭化水素基としては、アルキレン基等が例示される。Rで表される2価の炭化水素基の炭素数は、1以上、2以上又は3以上であってよく、10以下、9以下又は8以下であってよい。
 式(1)中、Rは水素原子又は1価の炭化水素基を表す。該1価の炭化水素基としては、アルキル基等が例示される。Rで表される1価の炭化水素基における炭素数は、1以上、2以上又は3以上であってよく、10以下、9以下又は8以下であってよい。
 式(1)で表される化合物の好適な例としては、下記式(A)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式中、R、R及びRは、上記式(1)におけるR、R及びRと同義である。
 R及びRは、それぞれ独立に水素原子又はアルキル基を表す。該アルキル基は、直鎖状及び分岐状のいずれであってもよく、好ましくは直鎖状である。該アルキル基の炭素数は、例えば、1~4、1~3又は1~2であってよい。R及びRの少なくとも一方は水素原子であることが好ましい。R及びRの一方はアルキル基であり他方は水素原子であることがより好ましい。このような化合物としては、具体的には、3-(ジイソブトキシ-チオホスホリルスルファニル)-2-メチル-プロピオン酸、エチル-3-[[ビス(1-メチルエトキシ)ホスフィノチオイル]チオ]プロピオネートや、3-(O,O-ジイソプロピル-ジチオホスホリル)-プロピオン酸、3-(O,O-ジイソプロピル-ジチオホスホリル)-2-メチル-プロピオン酸、3-(O,O-ジイソブチル-ジチオホスホリル)-プロピオン酸、3-(O,O-ジイソブチル-ジチオホスホリル)-2-メチル-プロピオン酸及びこれらの化合物のエチルエステル等のアルキルエステルなどが挙げられる。
 式(1)で表される化合物の含有量は、潤滑性の向上の観点から、冷凍機油全量基準で、好ましくは0.001質量%以上、より好ましくは0.005質量%以上、更に好ましくは0.01質量%以上である。式(1)で表される化合物の含有量は、安定性の向上の観点から、冷凍機油全量基準で、好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下である。式(1)で表される化合物の含有量は、潤滑性及び安定性の両立の観点から、好ましくは、0.001~5質量%、0.001~4質量%、0.001~3質量%、0.005~5質量%、0.005~4質量%、0.005~3質量%、0.01~5質量%、0.01~4質量%、又は0.01~3質量%である。式(1)で表される化合物の含有量は、初期酸化を低く抑えて安定性に優れる冷凍機油を得るとともに、後述する、式(1)で表される化合物以外のリン系極圧剤を更に含む場合において、その併用効果をより高める観点から、1質量%以下、0.1質量%以下、0.06質量%以下、又は0.04質量%以下であってよい。
 潤滑油基油としては、例えば鉱油が挙げられる。鉱油は、パラフィン系、ナフテン系等の原油を常圧蒸留及び減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤精製、水素化精製、水素化分解、溶剤脱ろう、水素化脱ろう、白土処理、硫酸洗浄などの方法で精製することによって得ることができる。これらの精製方法は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。潤滑油基油としては、入手性の観点から、好ましくは、一般に溶剤、希釈剤、金属加工油等の用途に使用される低粘度の潤滑油基油を適宜選択したものが使用される。
 潤滑油基油は、上記鉱油からなってもよいが、通常、潤滑油基油全量基準で鉱油の割合は50質量%以上、70質量%以上、又は90質量%以上であってよい。本発明の効果を著しく阻害しない限りにおいて、上記鉱油に代えて、アルキルベンゼン等の炭化水素油、又はエステル等の含酸素油を更に含有していてよい。
 アルキルベンゼンは、下記アルキルベンゼン(a1)及びアルキルベンゼン(a2)からなる群より選ばれる少なくとも1種であってよい。
アルキルベンゼン(a1):炭素数1~19のアルキル基を1~4個有し、かつそのアルキル基の合計炭素数が9~19であるアルキルベンゼン(好ましくは、炭素数1~15のアルキル基を1~4個有し、かつそのアルキル基の合計炭素数が9~15であるアルキルベンゼン)
アルキルベンゼン(a2):炭素数1~40のアルキル基を1~4個有し、かつそのアルキル基の合計炭素数が20~40であるアルキルベンゼン(好ましくは、炭素数1~30のアルキル基を1~4個有し、かつそのアルキル基の合計炭素数が20~30であるアルキルベンゼン)
 エステルは、例えば、1価アルコール又は2価アルコールと脂肪酸とのエステルであってよい。1価アルコール又は2価アルコールは、例えば、炭素数4~12の脂肪族アルコールであってよい。脂肪酸は、例えば、炭素数4~19の脂肪酸であってよい。
 潤滑油基油の40℃における動粘度は、例えば、2.0mm/s以上、2.5mm/s以上、又は2.7mm/s以上であってよく、例えば、4.5mm/s以下、4.0mm/s以下、又は3.5mm/s以下であってよい。潤滑油基油の100℃における動粘度は、例えば、0.5mm/s以上、0.6mm/s以上、0.8mm/s以上、又は1.0mm/s以上であってよく、例えば、2.5mm/s以下、2.0mm/s以下、1.5mm/s以下、又は1.3mm/s以下であってよい。
 潤滑油基油の硫黄分は、例えば、0.05質量%以下、0.02質量%以下、又は0.01質量%以下であってよく、さらには、0.02質量%未満であってよい。潤滑油基油の硫黄分は、0.0001質量%未満であってもよいが、後述する式(1)で表される化合物以外のリン系極圧剤(例えば、第一及び/又は第二の極圧剤)を併用する場合には、その併用効果をより高める観点から、例えば、0.0001質量%以上、0.0005質量%以上、又は0.001質量%以上であってよい。
 潤滑油基油の含有量は、冷凍機油全量基準で、例えば、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、又は95質量%以上であってよく、例えば、99.5質量%以下、99質量%以下、又は98.5質量%以下であってよい。
 本実施形態に係る冷凍機油は、上記一般式(1)で表される化合物以外のリン系極圧剤を更に含有してもよい。当該リン系極圧剤は、リンを分子中に含んでいればよい。当該リン系極圧剤は、例えば、硫黄及びリンを含む極圧剤(第一の極圧剤)、並びに硫黄を含まずリンを含む極圧剤(第二の極圧剤)に分類することができ、第一の極圧剤として、好適には、チオリン酸エステルなどが挙げられる。第二の極圧剤として、好適には、硫黄を含まない、リン酸エステル、酸性リン酸エステル、酸性リン酸エステルのアミン塩、塩素化リン酸エステル、亜リン酸エステルなどが挙げられる。
 チオリン酸エステルとしては、トリブチルホスフォロチオネート、トリペンチルホスフォロチオネート、トリヘキシルホスフォロチオネート、トリヘプチルホスフォロチオネート、トリオクチルホスフォロチオネート、トリノニルホスフォロチオネート、トリデシルホスフォロチオネート、トリウンデシルホスフォロチオネート、トリドデシルホスフォロチオネート、トリトリデシルホスフォロチオネート、トリテトラデシルホスフォロチオネート、トリペンタデシルホスフォロチオネート、トリヘキサデシルホスフォロチオネート、トリヘプタデシルホスフォロチオネート、トリオクタデシルホスフォロチオネート、トリオレイルホスフォロチオネート、トリフェニルホスフォロチオネート、トリクレジルホスフォロチオネート、トリキシレニルホスフォロチオネート、クレジルジフェニルホスフォロチオネート、キシレニルジフェニルホスフォロチオネートなどが挙げられる。これらの中でも、トリフェニルホスフォロチオネートが好ましい。
 リン酸エステルとしては、トリブチルホスフェート、トリペンチルホスフェート、トリヘキシルホスフェート、トリヘプチルホスフェート、トリオクチルホスフェート、トリノニルホスフェート、トリデシルホスフェート、トリウンデシルホスフェート、トリドデシルホスフェート、トリトリデシルホスフェート、トリテトラデシルホスフェート、トリペンタデシルホスフェート、トリヘキサデシルホスフェート、トリヘプタデシルホスフェート、トリオクタデシルホスフェート、トリオレイルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリ(エチルフェニル)ホスフェート、トリ(プロピルフェニル)ホスフェート、トリ(ブチルフェニル)ホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェートなどが挙げられる。これらの中でも、トリフェニルホスフェートやトリクレジルホスフェートが好ましい。
 酸性リン酸エステルとしては、モノブチルアシッドホスフェート、モノペンチルアシッドホスフェート、モノヘキシルアシッドホスフェート、モノヘプチルアシッドホスフェート、モノオクチルアシッドホスフェート、モノノニルアシッドホスフェート、モノデシルアシッドホスフェート、モノウンデシルアシッドホスフェート、モノドデシルアシッドホスフェート、モノトリデシルアシッドホスフェート、モノテトラデシルアシッドホスフェート、モノペンタデシルアシッドホスフェート、モノヘキサデシルアシッドホスフェート、モノヘプタデシルアシッドホスフェート、モノオクタデシルアシッドホスフェート、モノオレイルアシッドホスフェート、ジブチルアシッドホスフェート、ジペンチルアシッドホスフェート、ジヘキシルアシッドホスフェート、ジヘプチルアシッドホスフェート、ジオクチルアシッドホスフェート、ジノニルアシッドホスフェート、ジデシルアシッドホスフェート、ジウンデシルアシッドホスフェート、ジドデシルアシッドホスフェート、ジトリデシルアシッドホスフェート、ジテトラデシルアシッドホスフェート、ジペンタデシルアシッドホスフェート、ジヘキサデシルアシッドホスフェート、ジヘプタデシルアシッドホスフェート、ジオクタデシルアシッドホスフェート、ジオレイルアシッドホスフェートなどが挙げられる。
 酸性リン酸エステルのアミン塩としては、上記の酸性リン酸エステルのメチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミンなどのアミンとの塩が挙げられる。
 塩素化リン酸エステルとしては、トリス・ジクロロプロピルホスフェート、トリス・クロロエチルホスフェート、トリス・クロロフェニルホスフェート、ポリオキシアルキレン・ビス[ジ(クロロアルキル)]ホスフェートなどが挙げられる。亜リン酸エステルとしては、ジブチルホスファイト、ジペンチルホスファイト、ジヘキシルホスファイト、ジヘプチルホスファイト、ジオクチルホスファイト、ジノニルホスファイト、ジデシルホスファイト、ジウンデシルホスファイト、ジドデシルホスファイト、ジオレイルホスファイト、ジフェニルホスファイト、ジクレジルホスファイト、トリブチルホスファイト、トリペンチルホスファイト、トリヘキシルホスファイト、トリヘプチルホスファイト、トリオクチルホスファイト、トリノニルホスファイト、トリデシルホスファイト、トリウンデシルホスファイト、トリドデシルホスファイト、トリオレイルホスファイト、トリフェニルホスファイト、トリクレジルホスファイトなどが挙げられる。
 上記リン系極圧剤の含有量は、耐摩耗性に更に優れる観点から、冷凍機油全量を基準として、例えば、0.1質量%以上、1質量%以上、1.5質量%以上、又は1.6質量%以上であってよく、例えば、5質量%以下、3質量%以下、2.5質量%以下、又は2質量%以下であってよい。
 また、極圧剤として上記第一の極圧剤及び第二の極圧剤を併用する場合、第一の極圧剤と第二の極圧剤との合計量を基準とした第一の極圧剤の含有量の割合は、耐摩耗性に更に優れる観点から、例えば、5質量%以上、8質量%以上、又は10質量%以上であってよく、例えば、20質量%以下、18質量%以下、15質量%以下、又は14質量%以下であってよい。
 第一の極圧剤の含有量は、耐摩耗性に更に優れる観点から、冷凍機油全量を基準として、例えば、0.01質量%以上、0.05質量%以上、又は0.1質量%以上であってよく、例えば、1質量%以下、0.5質量%以下、又は0.4質量%以下であってよい。第二の極圧剤の含有量は、耐摩耗性に更に優れる観点から、冷凍機油全量を基準として、例えば、0.5質量%以上、1質量%以上、又は1.2質量%以上であってよく、例えば、5質量%以下、3質量%以下、2.0質量%以下、又は1.8質量%以下であってよい。
 上記リン系極圧剤を更に含有する場合、その含有量と上記式(1)で表される化合物の含有量との比率(質量比)は、特に制限されないが、式(1)で表される化合物の含有量は、当該リン系極圧剤100質量部に対し、0.1質量部以上、0.2質量部以上、又は0.5質量部以上であってよく、100質量部以下、50質量部以下、10質量部以下、5質量部以下、又は1質量部以下であってよい。
 本実施形態に係る冷凍機油の100℃における動粘度は、0.5mm/s以上2.5mm/s以下である。冷凍機油の100℃における動粘度が0.5mm/s未満の場合、潤滑性が不足するだけでなく、引火点が低下する傾向にあり、当該動粘度が2.5mm/sを超える場合、本発明の目的である、低粘度の冷凍機油を得ることができない。冷凍機油の100℃における動粘度は、耐摩耗性と冷凍機の省エネルギー化とのバランスに更に優れる観点から、好ましくは0.6mm/s以上2.0mm/s以下、より好ましくは0.8mm/s以上1.5mm/s以下、更に好ましくは1.0mm/s以上1.4mm/s以下である。本発明における動粘度は、JIS K2283:2000に準拠して測定された動粘度を意味する。
 冷凍機油の40℃における動粘度は、例えば、2.0mm/s以上、2.5mm/s以上、3.0mm/s以上、又は3.2mm/s以上であってよく、例えば、6.0mm/s以下、5.0mm/s以下、4.5mm/s以下、4.0mm/s以下、又は3.5mm/s以下であってよい。
 冷凍機油のISO粘度分類は、当該冷凍機油の100℃における動粘度が0.5mm/s以上2.5mm/s以下である限りにおいて特に制限されない。冷凍機油のISO粘度分類は、例えばVG2、3、5、7に分類され、流体潤滑領域における低摩擦性を確保する観点から、好ましくはVG7以下、より好ましくはVG5以下、更に好ましくはVG3以下である。例えば、VG3の冷凍機油では、これより高い粘度グレードの冷凍機油と比べると、一般的には流体潤滑領域における摩擦係数が低くなるものの、混合潤滑ないし境界潤滑領域における潤滑性は悪化し、摩擦係数は高くなる傾向にある。しかし、本発明における上記一般式(1)で表される化合物を添加することで、混合潤滑ないし境界潤滑領域における潤滑性が著しく改善され、低摩擦性にも寄与することになる。この改善度合いはVG3の冷凍機油の方が高い。なお、ここでいうISO粘度分類とは、JIS K 2001(1993)「工業用潤滑油-ISO粘度分類」若しくはISO 3448・1992「Industrial liquid lubricants-ISO viscosity classification」に規定された粘度グレードを意味する。
 冷凍機油のアニリン点は、例えば、耐摩耗性に更に優れる観点から、60℃以上、70℃以上、73℃以上、76℃以上、又は80℃以上であってよい。また、冷凍機油のアニリン点は、例えば、冷凍装置(冷凍機)内に使用されるPET(ポリエチレンテレフタレート)材、シール材等の有機材料との適合性の観点から、100℃以下、95℃以下、又は90℃以下であってよい。本発明におけるアニリン点は、JIS K2256:2013に準拠して測定された値を意味する。
 冷凍機油のガスクロマトグラフィー蒸留(以下、GC蒸留ともいう。)による蒸留性状(特に記載がない場合もGC蒸留による蒸留性状を意味する)において、蒸留終点EPは、例えば、潤滑性の観点から、300℃以上、350℃以上、380℃以上、390℃以上、395℃以上、又は400℃以上であってよい。また、冷凍機油の蒸留終点EPは、例えば、更なる低粘度化の観点から、450℃以下、440℃以下、430℃以下、又は425℃以下であってよい。
 冷凍機油のガスクロマトグラフィー蒸留によるその他の蒸留性状は、冷凍機油の低粘度化と潤滑性とのバランスに更に優れ、さらには引火点を高く維持する観点から、好ましくは、低沸点側の留出温度を高くしつつ、高沸点側の留出温度を適正な範囲に維持する。このような冷凍機油は、以下で説明する蒸留性状を有することが望ましい。
 冷凍機油の初留点IBPは、例えば、180℃以上、200℃以上、210℃以上、220℃以上、又は225℃以上であってよく、例えば、260℃以下、250℃以下、又は240℃以下であってよい。
 冷凍機油の5%留出温度Tは、例えば、190℃以上、205℃以上、215℃以上、225℃以上、又は235℃以上であってよく、例えば、265℃以下、255℃以下、又は245℃以下であってよい。
 冷凍機油の10%留出温度T10は、例えば、200℃以上、210℃以上、220℃以上、230℃以上、又は240℃以上であってよく、例えば、270℃以下、260℃以下、又は250℃以下であってよい。
 冷凍機油の50%留出温度T50は、例えば、220℃以上、230℃以上、240℃以上、250℃以上、又は260℃以上であってよく、例えば、310℃以下、300℃以下、又は280℃以下であってよい。
 冷凍機油の70%留出温度T70は、例えば、潤滑性と高引火点の観点から、240℃以上、250℃以上、260℃以上、270℃以上、又は280℃以上であってよい。また、冷凍機油の70%留出温度T70は、例えば、低粘度化の観点から、340℃以下、330℃以下、300℃以下であってよい。
 冷凍機油の90%留出温度T90は、例えば、250℃以上、270℃以上、280℃以上、290℃以上、又は300℃以上であってよく、耐摩耗性に更に優れる観点から、特に好ましくは、320℃以上、330℃以上、又は340℃以上である。また、冷凍機油の90%留出温度T90は、例えば、上記と同様の観点から、400℃以下、370℃以下、360℃以下、又は355℃以下あってよい。
 冷凍機油の95%留出温度T95は、例えば、270℃以上、280℃以上、290℃以上、300℃以上、310℃以上、又は330℃以上であってよく、耐摩耗性に更に優れる観点から、特に好ましくは、340℃以上、350℃以上、又は360℃以上である。冷凍機油の95%留出温度T95は、例えば、410℃以下、400℃以下、390℃以下、又は380℃以下であってよい。
 冷凍機油の低粘度化と潤滑性のバランスに更に優れ、さらには引火点を高く維持する観点から、上記のとおり、好ましくは、低沸点側の留出温度を高くしつつ、高沸点側の留出温度を適正な範囲に維持する。上記に加え、蒸留範囲を広くするよりも以下のように適度に狭い範囲で、かつ狭すぎない範囲に維持することが望ましい。
 冷凍機油の5%留出温度Tと90%留出温度T90との差(T90-T)は、例えば、40℃以上、50℃以上、又は60℃以上であってよく、特に好ましくは、80℃以上、又は100℃以上であってよく、例えば、200℃以下、160℃以下、150℃以下、140℃以下、又は130℃以下であってよい。
 冷凍機油の初留点IBPと90%留出温度T90との差(T90-IBP)は、例えば、40℃以上、50℃以上、60℃以上、又は70℃以上であってよく、特に好ましくは、80℃以上、又は100℃以上であってよく、例えば、170℃以下、160℃以下、150℃以下、又は140℃以下であってよい。
 冷凍機油の初留点IBPと95%留出温度T95との差(T95-IBP)は、例えば、50℃以上、60℃以上、70℃以上、又は80℃以上であってよく、特に好ましくは、100℃以上、又は120℃以上であってよく、例えば、180℃以下、170℃以下、160℃以下、又は150℃以下であってよい。
 冷凍機油の90%留出温度T90と95%留出温度T95との差(T95-T90)は、潤滑性の観点から、例えば、1℃以上、3℃以上、5℃以上、10℃以上、又は20℃以上であってよく、例えば、100℃以下、80℃以下、50℃以下、又は40℃以下であってよい。
 冷凍機油の90%留出温度T90と蒸留終点EPとの差(EP-T90)は、潤滑性の観点から、例えば、30℃以上、50℃以上、60℃以上、又は70℃以上であってよく、例えば、150℃以下、140℃以下、130℃以下、又は120℃以下、特に好ましくは、100℃以下、90℃以下、又は80℃以下であってよい。
 本発明における初留点、5%留出温度、10%留出温度、50%留出温度、70%留出温度、90%留出温度及び蒸留終点は、それぞれASTM D7213-05に規定されるガスクロマトグラフィーによる蒸留試験方法に準拠して測定された初留点、5(容量)%留出温度、10(容量)%留出温度、50(容量)%留出温度、70(容量)%留出温度、90(容量)%留出温度、95(容量)%留出温度及び蒸留終点を意味する。
 冷凍機油の硫黄分は、0.001質量%以上0.2質量%以下である。冷凍機油の硫黄分は、例えば、耐摩耗性に更に優れる観点から、0.003質量%以上、又は0.005質量%以上であってよく、例えば、0.3質量%以下、0.1質量%以下、又は0.05質量%以下であってよい。本発明における硫黄分は、JIS K2541-6:2013で規定される紫外蛍光法によって測定された硫黄分を意味する。
 冷凍機油の環分析による組成割合は、冷凍機油の低粘度化と潤滑性のバランスに更に優れ、さらには引火点を高く維持する観点から、好ましくは、以下に示す範囲に維持する。
 冷凍機油の%Cは、例えば、15以上、40以上、又は50以上であってよく、例えば、70以下、60以下、又は55以下であってよい。
 冷凍機油の%Cは、例えば、30以上、35以上、又は40以上であってよく、例えば、85以下、70以下、60以下、50以下、又は49以下であってよい。
 冷凍機油の%Cに対する%Cの比(%C/%C)は、例えば、0.5以上、0.6以上、又は0.7以上であってよく、例えば、4.5以下、2.0以下、1.4以下、1.3以下、又は1.2以下であってよい。
 冷凍機油の%Cは、例えば、潤滑性や安定性の観点から、8以下、5以下、又は3以下であってよく、0であってもよいが、0.5以上、又は1以上であってよい。
 本発明における%C、%C及び%Cは、それぞれASTM D3238-95(2010)に準拠した方法(n-d-M環分析)により測定された値を意味する。
 冷凍機油の引火点は、例えば、安全性の観点から、100℃以上、110℃以上、又は120℃以上であってよく、例えば、低粘度油とする観点から、155℃以下、又は145℃以下であってよい。本発明における引火点は、JIS K2265-4:2007(クリーブランド解放(COC)法)に準拠して測定された引火点を意味する。
 冷凍機油の流動点は、例えば、-10℃以下、又は-20℃以下であってよく、-50℃以下であってもよいが、精製コストの観点からは、-40℃以上であってもよい。本発明における流動点は、JIS K2269:1987に準拠して測定された流動点を意味する。
 冷凍機油の酸価は、例えば、1.0mgKOH/g以下、又は0.1mgKOH/g以下であってよい。本発明における酸価は、JIS K2501:2003に準拠して測定された酸価を意味する。
 冷凍機油の体積抵抗率は、例えば、1.0×10Ω・m以上、1.0×1010Ω・m以上、又は1.0×1011Ω・m以上であってよい。本発明における体積抵抗率は、JIS C2101:1999に準拠して測定した25℃での体積抵抗率を意味する。
 冷凍機油の水分含有量は、冷凍機油全量基準で、例えば、200ppm以下、100ppm以下、又は50ppm以下であってよい。
 冷凍機油の灰分は、例えば、100ppm以下、又は50ppm以下であってよい。本発明における灰分は、JIS K2272:1998に準拠して測定された灰分を意味する。
 上記のような性状を有する冷凍機油を製造するためには、主成分(例えば90質量%以上)となる潤滑油基油の性状についても、本明細書で特に規定しない限り、上記と同等であることが望ましい。そのため、上記では冷凍機油の各項目の性状についての範囲を示したが、本明細書中で特に規定しない限り、冷凍機油に含まれる潤滑油基油の各項目についての範囲と読み替えてもよい。例えば、潤滑油基油のGC蒸留による蒸留性状は、冷凍機油の蒸留性状が上記した範囲となるならば、特に制限はない。潤滑油基油の初留点IBPから90%留出温度T90までの規定及びそれに関連する規定については、添加剤配合の影響を受けにくいため、例えば上記した冷凍機油の蒸留性状と略同一又は±5℃以内と読み替えてもよい。潤滑油基油の蒸留終点EPは、例えば450℃以下であってよく、95%留出温度T95は、例えば410℃以下であってよい。
 本実施形態に係る冷凍機油は、通常、冷凍機において、冷媒と混合された冷凍機用作動流体組成物の状態で存在している。すなわち、本実施形態に係る冷凍機用作動流体組成物は、上記の冷凍機油と冷媒とを含有する。冷凍機用作動流体組成物における冷凍機油の含有量は、冷媒100質量部に対して、1~500質量部、又は2~400質量部であってよい。
 冷媒としては、炭化水素冷媒、飽和フッ化炭化水素冷媒、不飽和フッ化炭化水素冷媒、パーフルオロエーテル類等の含フッ素エーテル系冷媒、ビス(トリフルオロメチル)サルファイド冷媒、2フッ化ヨウ化メタン冷媒、及び、アンモニア、二酸化炭素等の自然系冷媒が例示される。
 炭化水素冷媒は、好ましくは炭素数1~5の炭化水素、より好ましくは炭素数2~4の炭化水素である。炭化水素としては、具体的には例えば、メタン、エチレン、エタン、プロピレン、プロパン(R290)、シクロプロパン、ノルマルブタン、イソブタン(R600a)、シクロブタン、メチルシクロプロパン、2-メチルブタン、ノルマルペンタン又はこれらの2種以上の混合物が挙げられる。炭化水素冷媒は、これらの中でも好ましくは、25℃、1気圧で気体の炭化水素冷媒であり、より好ましくは、プロパン、ノルマルブタン、イソブタン、2-メチルブタン又はこれらの混合物である。
 飽和フッ化炭化水素冷媒は、好ましくは炭素数1~3、より好ましくは1~2の飽和フッ化炭化水素である。飽和フッ化炭化水素冷媒としては、具体的には、ジフルオロメタン(R32)、トリフルオロメタン(R23)、ペンタフルオロエタン(R125)、1,1,2,2-テトラフルオロエタン(R134)、1,1,1,2-テトラフルオロエタン(R134a)、1,1,1-トリフルオロエタン(R143a)、1,1-ジフルオロエタン(R152a)、フルオロエタン(R161)、1,1,1,2,3,3,3-ヘプタフルオロプロパン(R227ea)、1,1,1,2,3,3-ヘキサフルオロプロパン(R236ea)、1,1,1,3,3,3-ヘキサフルオロプロパン(R236fa)、1,1,1,3,3-ペンタフルオロプロパン(R245fa)、及び1,1,1,3,3-ペンタフルオロブタン(R365mfc)、又はこれらの2種以上の混合物が挙げられる。
 飽和フッ化炭化水素冷媒は、上記の中から用途や要求性能に応じて適宜選択される。飽和フッ化炭化水素冷媒は、例えばR32単独;R23単独;R134a単独;R125単独;R134a/R32=60~80質量%/40~20質量%の混合物;R32/R125=40~70質量%/60~30質量%の混合物;R125/R143a=40~60質量%/60~40質量%の混合物;R134a/R32/R125=60質量%/30質量%/10質量%の混合物;R134a/R32/R125=40~70質量%/15~35質量%/5~40質量%の混合物;R125/R134a/R143a=35~55質量%/1~15質量%/40~60質量%の混合物などである。飽和フッ化炭化水素冷媒は、さらに具体的には、R134a/R32=70/30質量%の混合物;R32/R125=60/40質量%の混合物;R32/R125=50/50質量%の混合物(R410A);R32/R125=45/55質量%の混合物(R410B);R125/R143a=50/50質量%の混合物(R507C);R32/R125/R134a=30/10/60質量%の混合物;R32/R125/R134a=23/25/52質量%の混合物(R407C);R32/R125/R134a=25/15/60質量%の混合物(R407E);R125/R134a/R143a=44/4/52質量%の混合物(R404A)などであってよい。
 不飽和フッ化炭化水素(HFO)冷媒は、好ましくは炭素数2~3の不飽和フッ化炭化水素、より好ましくはフルオロプロペン、更に好ましくはフッ素数が3~5のフルオロプロペンである。不飽和フッ化炭化水素冷媒は、好ましくは、1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye)、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,2,3,3-テトラフルオロプロペン(HFO-1234ye)、及び3,3,3-トリフルオロプロペン(HFO-1243zf)のいずれか1種又は2種以上の混合物である。不飽和フッ化炭化水素冷媒は、冷媒物性の観点からは、好ましくは、HFO-1225ye、HFO-1234ze及びHFO-1234yfから選ばれる1種又は2種以上である。不飽和フッ化炭化水素冷媒は、フルオロエチレンであってもよく、好ましくは1,1,2,3-トリフルオロエチレンである。
 これら冷媒の中では、地球環境への影響を低減するため、地球温暖化係数(GWP)の低い冷媒が好ましい。このような冷媒としては、例えば、不飽和フッ化炭化水素冷媒、R290、R600a等の自然冷媒から選ばれる少なくとも1種を含む、GWPが1000以下の混合冷媒などが挙げられる。これら冷媒のGWPは、500以下、100以下、50以下又は10以下であってよい。
 これら冷媒の沸点は、冷却能力の点で、例えば0℃以下、-60℃以上であることが好ましい。中でも、圧縮比が低く体積能力が高い点では、-30℃以下であることがより好ましく、圧力が低く圧縮機の摺動損失が小さい点では、-30℃以上であることがより好ましい。圧縮比が低く体積能力が高い冷媒としては、例えばR290(沸点:-42.1℃)が挙げられ、圧力が低く圧縮機の摺動損失が小さい冷媒としては、例えばR600a(沸点:-11.6℃)が挙げられる。冷凍機油の低粘度化と相まって、圧縮機の摺動損失低減による冷凍機の効率向上効果が期待される観点から、R600aを用いることが特に好ましい。
 本実施形態に係る冷凍機油及び冷凍機用作動流体組成物は、往復動式や回転式の密閉型圧縮機を有するエアコン、冷蔵庫、開放型又は密閉型のカーエアコン、除湿機、給湯器、冷凍庫、冷凍冷蔵倉庫、自動販売機、ショーケース、化学プラント等の冷凍機、遠心式の圧縮機を有する冷凍機等に好適に用いられる。
 図1は、本実施形態に係る冷凍機油及び冷凍機用作動流体組成物が適用される冷凍機の構成の一例を示す概略図である。図1に示すように、冷凍機10は、例えば、冷媒圧縮機1と、ガスクーラー2と、膨張機構3(キャピラリ、膨張弁など)と、蒸発器4とが流路5で順次接続された冷媒循環システムを少なくとも備えている。かかる冷媒循環システムにおいては、まず、冷媒圧縮機1から流路5内に吐出された高温(通常70~120℃)の冷媒が、ガスクーラー2にて高密度の流体(超臨界流体等)となる。続いて、冷媒は膨張機構3が有する狭い流路を通ることによって液化し、さらに蒸発器4にて気化して低温(通常-40~0℃)となる。
 図1中の冷媒圧縮機1内においては、高温(通常70~120℃)条件下、少量の冷媒と多量の冷凍機油とが共存する。冷媒圧縮機1から流路5に吐出される冷媒は、気体状であり、少量(通常1~10%)の冷凍機油をミストとして含んでいるが、このミスト状の冷凍機油中には少量の冷媒が溶解している(図1中の点a)。次に、ガスクーラー2内においては、気体状の冷媒が圧縮されて高密度の流体となり、比較的高温(50~70℃前後)条件下で多量の冷媒と少量の冷凍機油とが共存する(図1中の点b)。さらに、多量の冷媒と少量の冷凍機油との混合物は膨張機構3、蒸発器4に順次送られて急激に低温(通常-40~0℃)となり(図1中の点c、d)、再び冷媒圧縮機1に戻される。
 本実施形態に係る冷凍機油は、上述の冷媒とともに使用することができるが、冷媒混合時の冷温特性及び相溶性の点で、特に炭化水素冷媒とともに好適に用いられる。同様の観点から、冷凍機用作動流体組成物は、特に好ましくは炭化水素冷媒を含有する。
 以下、実施例に基づいて本発明を更に具体的に説明するが、本発明は実施例に限定されるものではない。
 潤滑油基油として、表1に示す性状を有する市販の基油1~5を用意した。
Figure JPOXMLDOC01-appb-T000006
 基油1~5と以下に示す添加剤とを用いて、表2及び表3に示す組成及び性状の冷凍機油(実施例1~4及び比較例1~2)を調製した。なお、表中、複数の基油番号が記載されているもの(例えば、実施例1における「基油1,2,5」)は、各基油を混合して調製した混合基油を用いたことを意味する。
[添加剤]
(式(1)で表される化合物)
A:下記式(A-1)で表される化合物
Figure JPOXMLDOC01-appb-C000007
(第一の極圧剤)
B:トリフェニルホスフォロチオネート
(第二の極圧剤)
C:トリクレジルホスフェート
(耐摩耗性試験)
 実施例及び比較例の各冷凍機油を試験油として、以下に示す手順で耐摩耗性を評価した。結果を表2及び表3に示す。
 耐摩耗性試験は、ASTM D4172-94に準拠する高速四球試験により行った。剛球としてSUJ2を用い、試験油量20ml、試験温度80℃、回転数1200rpm、負荷荷重196N、試験時間15分間の条件で試験を行った。耐摩耗性の評価は、固定球の摩耗痕径(mm)の平均値を用いた。なお、このときの面圧は、約2.3GPaであり、周速は、約36cm/sと算出された。この条件における摩耗痕径の平均値が0.7mm以下であると、混合潤滑ないし境界潤滑条件のような厳しい潤滑条件下においても耐摩耗性が高い冷凍機油ということができる。摩耗痕径の平均値は、好ましくは0.5mm以下であり、より好ましくは0.45mm以下であり、更に好ましくは0.4mm以下である。
 表2及び表3に示すとおり、本発明に係る実施例1~4の冷凍機油は、耐摩耗性に優れるものであった。なお、実施例2及び3の冷凍機油は、添加剤Aと、添加剤B及び/又はCとの併用によって、添加剤B及び/又はCのみを用いた場合と比較して、耐摩耗性において更に優れるものであった。具体的には、実施例2の冷凍機油は、添加剤Aを用いなかった以外は実施例2と同様の組成を有する冷凍機油と比較して、約20%の耐摩耗性改善効果が認められた。また、実施例3の冷凍機油は、添加剤Aを用いなかった以外は実施例3と同様の組成を有する冷凍機油と比較して、約8%の耐摩耗性改善効果が認められた。
 また、実施例1の冷凍機油における(A-1)の含有量を0.05質量%又は0.1質量%とした以外は、実施例1と同じ冷凍機油2種を得た。これらの冷凍機油の100℃における動粘度は、0.5mm/s以上2.5mm/s以下であった。これらの冷凍機油は、実施例1と同様の耐摩耗性改善効果が認められたが、含有量が多くなると安定性が悪化していく傾向にあることが示唆された。
 また、実施例1の冷凍機油における添加剤Aとして、(A-1)の代わりに下記式(A-2)を用いた以外は実施例1と同じ冷凍機油1種を得た。当該冷凍機油の100℃における動粘度は、0.5mm/s以上2.5mm/s以下であった。この冷凍機油も実施例1の冷凍機油と同様の耐摩耗性改善効果が認められたが、添加量当たりの改善効果はやや小さい傾向が示唆された。
Figure JPOXMLDOC01-appb-C000008
 また、実施例2又は3の冷凍機油における添加剤Cとして、トリクレジルホスフェートの代わりにトリフェニルホスフェート、トリ(プロピルフェニル)ホスフェート又はトリ(ブチルフェニル)ホスフェートをそれぞれ用いた以外は実施例2又は3と同じ冷凍機油6種を得た。当該冷凍機油の100℃における動粘度は、0.5mm/s以上2.5mm/s以下であった。これらの冷凍機油についても実施例2又は3の冷凍機油と同様の耐摩耗性改善効果が認められた。
 なお、実施例1の冷凍機油の基油として基油5を用いた以外は実施例1と同じ冷凍機油を得た。当該冷凍機油の100℃における動粘度は、0.5mm/s以上2.5mm/s以下であった。当該冷凍機油も実施例1の冷凍機油と同様の耐摩耗性改善効果が認められたが、添加量当たりの改善効果はやや小さい傾向が示唆された。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
(炭化水素冷媒混合時の二層分離温度)
 また、これらの実施例で用いた冷凍機油について、JIS K2211:2009付属書D「冷媒との相溶試験方法」に準拠し、冷媒としてイソブタン(R600a)を用い、試験油濃度を10質量%としたときの二層分離温度を測定した。このときの二層分離温度は-50℃以下であり、これらの実施例で用いた冷凍機油が炭化水素冷媒用冷凍機油として使用可能であることを確認した。
 1…冷媒圧縮機、2…ガスクーラー、3…膨張機構、4…蒸発器、5…流路、10…冷凍機。
 

Claims (8)

  1.  潤滑油基油と、下記一般式(1)で表される化合物と、を含有し、100℃における動粘度が0.5mm/s以上2.5mm/s以下である、冷凍機油。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R及びRはそれぞれ独立に1価の炭化水素基を表し、Rは2価の炭化水素基を表し、Rは水素原子又は1価の炭化水素基を表す。]
  2.  前記化合物以外のリン系極圧剤を更に含有する、請求項1に記載の冷凍機油。
  3.  ガスクロマトグラフィー蒸留による90%留出温度が250℃以上400℃以下である、請求項1又は2に記載の冷凍機油。
  4.  ガスクロマトグラフィー蒸留による95%留出温度が270℃以上410℃以下である、請求項1~3のいずれか一項に記載の冷凍機油。
  5.  ガスクロマトグラフィー蒸留による90%留出温度と5%留出温度との差が40℃以上200℃以下である、請求項1~4のいずれか一項に記載の冷凍機油。
  6.  n-d-M環分析による%Cが5以下である、請求項1~5のいずれか一項に記載の冷凍機油。
  7.  前記潤滑油基油の硫黄分が0.001質量%以上0.2質量%以下である、請求項1~6のいずれか一項に記載の冷凍機油。
  8.  潤滑油基油と、下記一般式(1)で表される化合物と、を含有し、100℃における動粘度が0.5mm/s以上2.5mm/s以下である、冷凍機油と、
     冷媒と、を含有する冷凍機用作動流体組成物。
    Figure JPOXMLDOC01-appb-C000002
    [式(1)中、R及びRはそれぞれ独立に1価の炭化水素基を表し、Rは2価の炭化水素基を表し、Rは水素原子又は1価の炭化水素基を表す。]
PCT/JP2019/004265 2018-02-07 2019-02-06 冷凍機油及び冷凍機用作動流体組成物 WO2019156126A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980011278.XA CN111670241A (zh) 2018-02-07 2019-02-06 冷冻机油及冷冻机用工作流体组合物
JP2019570779A JP7221226B2 (ja) 2018-02-07 2019-02-06 冷凍機油及び冷凍機用作動流体組成物
US16/967,250 US11549077B2 (en) 2018-02-07 2019-02-06 Refrigerator oil and hydraulic fluid composition for refrigerators
KR1020207024878A KR102500507B1 (ko) 2018-02-07 2019-02-06 냉동기유 및 냉동기용 작동 유체 조성물
JP2023013949A JP2023041839A (ja) 2018-02-07 2023-02-01 冷凍機油及び冷凍機用作動流体組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-019949 2018-02-07
JP2018019949 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019156126A1 true WO2019156126A1 (ja) 2019-08-15

Family

ID=67548313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004265 WO2019156126A1 (ja) 2018-02-07 2019-02-06 冷凍機油及び冷凍機用作動流体組成物

Country Status (5)

Country Link
US (1) US11549077B2 (ja)
JP (2) JP7221226B2 (ja)
KR (1) KR102500507B1 (ja)
CN (1) CN111670241A (ja)
WO (1) WO2019156126A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171135A1 (ja) * 2019-02-22 2020-08-27 Jxtgエネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
WO2022114137A1 (ja) * 2020-11-30 2022-06-02 Eneos株式会社 作動流体、冷凍機及び冷凍機油
WO2022138560A1 (ja) * 2020-12-24 2022-06-30 Eneos株式会社 冷凍機油及び冷凍機用作動流体組成物
WO2022138569A1 (ja) * 2020-12-24 2022-06-30 Eneos株式会社 冷凍機油及び冷凍機用作動流体組成物
WO2023008568A1 (ja) * 2021-07-30 2023-02-02 Eneos株式会社 冷凍機油用基油、冷凍機油及び冷凍機用作動流体組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778842A4 (en) * 2018-04-02 2021-09-01 Eneos Corporation REFRIGERATOR, REFRIGERATOR OIL, WORKING LIQUID COMPOSITION FOR REFRIGERATOR

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570785A (ja) * 1991-04-30 1993-03-23 Tonen Corp 潤滑油組成物
JP2005146010A (ja) * 2003-11-11 2005-06-09 Nippon Oil Corp エンジン油用潤滑油組成物
JP2009235226A (ja) * 2008-03-27 2009-10-15 Nippon Oil Corp 潤滑油組成物
WO2016072296A1 (ja) * 2014-11-04 2016-05-12 Jx日鉱日石エネルギー株式会社 冷凍機油
JP2018095792A (ja) * 2016-12-16 2018-06-21 富士フイルム株式会社 潤滑剤組成物

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259695A (ja) 1985-09-10 1987-03-16 Matsushita Refrig Co 冷凍機用潤滑油
FR2638168A1 (fr) 1988-10-21 1990-04-27 Rhone Poulenc Chimie Dispersions d'halogenures de terres rares en milieu huileux
JPH069978A (ja) 1992-06-24 1994-01-18 Kao Corp 冷凍機作動流体用組成物
JP3775843B2 (ja) 1995-01-23 2006-05-17 日本クエーカー・ケミカル株式会社 潤滑組成物
JP3860942B2 (ja) * 1999-11-18 2006-12-20 株式会社ジャパンエナジー 冷凍装置用潤滑油組成物、作動流体及び冷凍装置
JP3963311B2 (ja) 2002-06-14 2007-08-22 株式会社ジャパンエナジー 冷凍機油組成物
WO2006062245A1 (en) 2004-12-08 2006-06-15 Matsushita Electric Industrial Co., Ltd. Refrigerant compressor
KR20070055352A (ko) * 2005-11-24 2007-05-30 에스케이 주식회사 윤활기유 및 이를 함유하는 냉동기유
JP5426829B2 (ja) 2007-02-07 2014-02-26 昭和シェル石油株式会社 油圧シリンダーのビビリ、振動、鳴き防止用潤滑油組成物
JP5231060B2 (ja) 2008-03-26 2013-07-10 Jx日鉱日石エネルギー株式会社 冷媒用冷凍機油
CN103789070B (zh) 2008-03-26 2017-04-12 日本能源株式会社 致冷剂用冷冻机油
WO2011127132A1 (en) 2010-04-06 2011-10-13 Chemtura Corporation Refrigeration oil and compositions with carbon dioxide refrigerant
JP6376457B2 (ja) 2014-09-26 2018-08-22 株式会社Screenホールディングス 処理液供給装置およびフィルタ劣化検出方法
JP6478202B2 (ja) * 2014-11-07 2019-03-06 出光興産株式会社 冷凍機用潤滑油組成物及び冷凍機
JP6159373B2 (ja) 2015-10-07 2017-07-05 出光興産株式会社 冷凍機油、冷凍機用組成物、冷凍機及び冷凍機油の選定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570785A (ja) * 1991-04-30 1993-03-23 Tonen Corp 潤滑油組成物
JP2005146010A (ja) * 2003-11-11 2005-06-09 Nippon Oil Corp エンジン油用潤滑油組成物
JP2009235226A (ja) * 2008-03-27 2009-10-15 Nippon Oil Corp 潤滑油組成物
WO2016072296A1 (ja) * 2014-11-04 2016-05-12 Jx日鉱日石エネルギー株式会社 冷凍機油
JP2018095792A (ja) * 2016-12-16 2018-06-21 富士フイルム株式会社 潤滑剤組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171135A1 (ja) * 2019-02-22 2020-08-27 Jxtgエネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
WO2022114137A1 (ja) * 2020-11-30 2022-06-02 Eneos株式会社 作動流体、冷凍機及び冷凍機油
WO2022138560A1 (ja) * 2020-12-24 2022-06-30 Eneos株式会社 冷凍機油及び冷凍機用作動流体組成物
WO2022138569A1 (ja) * 2020-12-24 2022-06-30 Eneos株式会社 冷凍機油及び冷凍機用作動流体組成物
WO2023008568A1 (ja) * 2021-07-30 2023-02-02 Eneos株式会社 冷凍機油用基油、冷凍機油及び冷凍機用作動流体組成物

Also Published As

Publication number Publication date
US20200354645A1 (en) 2020-11-12
US11549077B2 (en) 2023-01-10
KR102500507B1 (ko) 2023-02-16
CN111670241A (zh) 2020-09-15
JP7221226B2 (ja) 2023-02-13
JP2023041839A (ja) 2023-03-24
JPWO2019156126A1 (ja) 2021-01-14
KR20200118085A (ko) 2020-10-14

Similar Documents

Publication Publication Date Title
WO2019156126A1 (ja) 冷凍機油及び冷凍機用作動流体組成物
KR102617816B1 (ko) 냉동기유 및 냉동기용 작동 유체 조성물
JP2022121735A (ja) 冷凍機油及び冷凍機用作動流体組成物
JP6433226B2 (ja) 冷凍機油及び冷凍機用作動流体組成物
JP7198589B2 (ja) 冷凍機、冷凍機油の使用、オリゴマーの溶出を抑制する方法、冷凍機油、冷凍機用作動流体組成物、及び冷凍機油の製造方法
JP6033262B2 (ja) 冷凍機用作動流体組成物及び冷凍機油
JP7175288B2 (ja) 冷凍機油及び冷凍機用作動流体組成物
WO2018143212A1 (ja) 冷凍機油
JP6748690B2 (ja) 冷凍機油及び冷凍機用作動流体組成物
JP5143461B2 (ja) 二酸化炭素冷媒用冷凍機油及び冷凍機用作動流体組成物。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570779

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207024878

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19750623

Country of ref document: EP

Kind code of ref document: A1