WO2019155949A1 - 通信装置、及び通信方法 - Google Patents

通信装置、及び通信方法 Download PDF

Info

Publication number
WO2019155949A1
WO2019155949A1 PCT/JP2019/003062 JP2019003062W WO2019155949A1 WO 2019155949 A1 WO2019155949 A1 WO 2019155949A1 JP 2019003062 W JP2019003062 W JP 2019003062W WO 2019155949 A1 WO2019155949 A1 WO 2019155949A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
data
transmission
symbol
signal
Prior art date
Application number
PCT/JP2019/003062
Other languages
English (en)
French (fr)
Inventor
村上 豊
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to JP2019570700A priority Critical patent/JP7148556B2/ja
Priority to US16/968,144 priority patent/US11444682B2/en
Priority to CN202310700116.5A priority patent/CN116707603A/zh
Priority to CN201980012300.2A priority patent/CN111684851B/zh
Priority to EP19750562.1A priority patent/EP3751933A4/en
Publication of WO2019155949A1 publication Critical patent/WO2019155949A1/ja
Priority to US17/880,547 priority patent/US11799538B2/en
Priority to JP2022150171A priority patent/JP7312899B2/ja
Priority to US18/470,242 priority patent/US20240007175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present invention relates to a communication device and a communication method.
  • MIMO Multiple-Input Multiple-Out
  • the transmission data of a plurality of streams is modulated, and each modulation signal is transmitted from different antennas using the same frequency (common frequency) and transmitted at the same time, thereby improving data reception quality, and
  • the communication speed of data can be increased.
  • a pseudo-omni pattern antenna having a substantially constant antenna gain in a wide space direction may be used.
  • Patent Document 1 describes that a transmission device transmits a modulated signal using a pseudo omni-pattern antenna.
  • the non-limiting examples of the present disclosure contribute to providing further performance improvements regarding communication methods using multiple antennas.
  • a communication apparatus is a communication apparatus that relays a relay signal transmitted and received between a first communication apparatus and a second communication apparatus, and further connects to a first device.
  • the relay signal is transmitted using the transmission slot of the first transmission, and the signal from the first device is transmitted using the second transmission slot within the transmission period of the first transmission slot. Transmit in a frequency region different from the slot.
  • the figure which shows an example of a structure of a base station The figure which shows an example of a structure of the antenna part of a base station.
  • the figure which shows an example of a structure of a base station The figure which shows an example of a structure of a terminal.
  • the figure which shows an example of a structure of the antenna part of a terminal The figure which shows an example of a structure of a terminal.
  • the figure which shows an example of a structure of a terminal The figure which shows an example of the communication state between a base station and a terminal.
  • the figure for demonstrating the relationship of multiple streams The figure which shows an example of a frame structure.
  • the figure which shows an example of a frame structure The figure which shows an example of a symbol structure.
  • the figure which shows the relationship of a some modulation signal The figure which shows an example of a frame structure.
  • the figure which shows the relationship of a some modulation signal The figure which shows an example of the communication state between a base station and a terminal.
  • the figure which shows an example of a structure of the mesh network using a repeater The figure which shows an example of the connection of repeaters.
  • the figure which shows an example of slot allocation The figure which shows an example of slot allocation.
  • the figure which shows an example of the connection of repeaters The figure which shows an example of slot allocation.
  • the figure which shows an example of slot allocation The figure which shows an example of slot allocation.
  • the figure which shows an example of the connection of repeaters The figure which shows an example of slot allocation.
  • the figure which shows an example of slot allocation The figure which shows an example of slot allocation.
  • the figure which shows an example of slot allocation The figure which shows an example of slot allocation.
  • the figure which shows an example of slot allocation The figure which shows an example of a structure of the radio signal transmitted / received between repeaters.
  • FIG. 1 shows an example of the configuration of a base station (or an access point or the like) in this embodiment.
  • the signal processor 102 receives # 1 information 101-1, # 2 information 101-2,..., #M information 101-M, and a control signal 159.
  • the signal processing unit 102 includes, in the control signal 159, “information on error correction coding method (coding rate, code length (block length))”, “information on modulation scheme”, “information on precoding”, “Transmission method (multiplexing method)”, “Multicast transmission and / or unicast transmission (multicast transmission and unicast transmission may be realized simultaneously)” ”,“ Number of transmission streams when performing multicast ”, and / or“ Transmission method when transmitting modulated signal for multicast (this will be described in detail later) ”.
  • the radio unit 104-1 receives the signal 103-1 after the signal processing and the control signal 159 as input, performs processing such as band limitation, frequency conversion, and amplification based on the control signal 159, and transmits the transmission signal 105-1. Is output.
  • the transmission signal 105-1 is output as a radio wave from the antenna unit 106-1.
  • the radio unit 104-2 receives the signal 103-2 after the signal processing and the control signal 159 as inputs, performs processing such as band limitation, frequency conversion, and amplification based on the control signal 159, and transmits the transmission signal. 105-2 is output.
  • the transmission signal 105-2 is output as a radio wave from the antenna unit 106-2.
  • the description from the wireless unit 104-3 to the wireless unit 104- (M-1) is omitted.
  • Each radio unit does not need to perform the above processing when there is no signal after signal processing.
  • the radio unit group 153 receives the received signal group 152 received by the receiving antenna group 151, performs processing such as frequency conversion, and outputs a baseband signal group 154.
  • the setting unit 158 receives the control information group 157 and the setting signal 160, and based on the control information group 157, “error correction coding method (coding rate and code length (block length))”, “modulation method” , “Precoding method”, “Transmission method”, “Antenna setting”, “Multicast transmission and / or unicast transmission (multicast and unicast transmission are realized simultaneously) May be determined) "," the number of transmission streams when performing multicast ", and / or” a transmission method when transmitting a modulation signal for multicast ", etc., and a control signal including these determined information 159 is output.
  • FIG. 2 shows the configuration of the antenna unit 106-i. i is an integer of 1 or more and M or less.
  • Multiplier 204-1 has signal 203-1 and control signal 200 (corresponding to control signal 159 in FIG. 1) as inputs, and based on the information on the multiplication coefficient included in control signal 200, , The coefficient W1 is multiplied, and the multiplied signal 205-1 is output. Since the coefficient W1 is defined as a complex number, W1 may be a real number. Therefore, when the signal 203-1 is v1 (t), the multiplied signal 205-1 can be expressed as W1 ⁇ v1 (t) (t is time). The multiplied signal 205-1 is output as a radio wave from the antenna 206-1.
  • multiplication section 204-2 receives signal 203-2 and control signal 200 as input, and multiplies signal 203-2 by coefficient W2 based on information on the multiplication coefficient included in control signal 200.
  • the multiplied signal 205-2 is output. Since the coefficient W2 is defined as a complex number, W2 can be a real number. Therefore, if the signal 203-2 is v2 (t), the multiplied signal 205-2 can be expressed as W2 ⁇ v2 (t) (t is time).
  • the multiplied signal 205-2 is output as a radio wave from the antenna 206-2.
  • Multiplier 204-4 receives signal 203-4 and control signal 200 as input, and multiplies signal 203-4 by coefficient W4 based on information on the multiplication coefficient included in control signal 200, and after multiplication.
  • the signal 205-4 is output. Since the coefficient W4 is defined as a complex number, W4 may be a real number. Accordingly, if the signal 203-4 is v4 (t), the multiplied signal 205-4 can be expressed as W4 ⁇ v4 (t) (t is time).
  • the multiplied signal 205-4 is output as a radio wave from the antenna 206-4.
  • the signal y i (t) 302-i (i is an integer greater than or equal to 1 and less than or equal to K) after weighted synthesis is expressed as follows (t is time).
  • the baseband signals 404-1, 404-2,..., 404-N are not always present.
  • Multiplier 503-3 receives reception signal 502-3 received by antenna 501-3 and control signal 500 as input, and receives signal 502-3 based on the information of the multiplication coefficient included in control signal 500. Multiply by the coefficient D3 and output the multiplied signal 504-3. Since the coefficient D3 is defined as a complex number, D3 may be a real number. Therefore, if the received signal 502-3 is e3 (t), the multiplied signal 504-3 can be expressed as D3 ⁇ e3 (t) (t is time).
  • FIG. 6 shows a terminal configuration different from the terminal configuration of FIG. 4 in the present embodiment. 6 that operate in the same manner as in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted below.
  • Multiplier 603-1 receives reception signal 602-1 received by antenna 601-1 and control signal 410, and receives signal 602-1 based on the information on the multiplication coefficient included in control signal 410. Multiply by the coefficient G1 and output the signal 604-1 after the multiplication. Since the coefficient G1 is defined as a complex number, G1 may be a real number. Therefore, when the received signal 602-1 is c1 (t), the multiplied signal 604-1 can be expressed as G1 ⁇ c1 (t) (t is time).
  • Multiplier 603 -L receives reception signal 602 -L received by antenna 601 -L and control signal 410 as input, and receives signal 602 -L based on information on the multiplication coefficient included in control signal 410. Multiply by the coefficient GL and output the signal 604 -L after multiplication. Since the coefficient GL is defined as a complex number, the GL may be a real number. Therefore, when the received signal 602 -L is cL (t), the signal 604 -L after multiplication can be expressed as GL ⁇ cL (t) (t is time).
  • multiplication section 603-i receives reception signal 602-i received by antenna 601-i and control signal 410 as input, and based on the information on the multiplication coefficient included in control signal 410, receives signal 602-i.
  • the coefficient Gi is multiplied, and the multiplied signal 604-i is output. Since the coefficient Gi is defined as a complex number, Gi may be a real number. Therefore, if the received signal 602-i is ci (t), the multiplied signal 604-i can be expressed as Gi ⁇ ci (t) (t is time). Note that i is an integer of 1 or more and L or less, and L is an integer of 2 or more.
  • the processing unit 605 receives the signal 604-1 after multiplication, the signal 604-2 after multiplication,..., The signal 604-L after multiplication, and the control signal 410 as input, and performs signal processing based on the control signal 410. , And outputs processed signals 606-1, 606-2, ..., 606-N.
  • N is an integer of 2 or more.
  • the signal 604-i after multiplication is expressed as p i (t). i is an integer of 1 to L.
  • the processed signal 606-j (r j (t)) is expressed as follows (j is an integer of 1 to N).
  • B ji is defined as a complex number, so B ji may be a real number.
  • FIG. 7 shows an example of the communication state between the base station and the terminal.
  • the base station may be called an access point or a broadcasting station.
  • the base station 700 includes a plurality of antennas, and transmits a plurality of transmission signals from a transmission antenna 701.
  • the base station 700 is configured as shown in FIG. 1 and FIG. 3, for example, and transmission beamforming is performed by performing precoding (weighting combining) in the signal processing unit 102 (and / or weighting combining unit 301). (Directivity control) is performed.
  • FIG. 7 shows a transmission beam 702-1 for transmitting stream 1 data, a transmission beam 702-2 for transmitting stream 1 data, and a transmission beam 702-3 for transmitting stream 1 data. Indicates.
  • FIG. 7 also shows a transmission beam 703-1 for transmitting stream 2 data, a transmission beam 703-2 for transmitting stream 2 data, and a transmission beam 703 for transmitting stream 2 data. -3.
  • the number of transmission beams for transmitting stream 1 data is 3 and the number of transmission beams for transmitting stream 2 data is 3.
  • the number of transmission beams is limited to this. I can't. That is, it suffices if there are a plurality of transmission beams for transmitting stream 1 data and a plurality of transmission beams for transmitting stream 2 data.
  • FIG. 7 includes terminals 704-1, 704-2, 704-3, 704-4, and 704-5. These terminals may be configured as shown in FIGS. 4 and 5, for example.
  • the terminal 704-1 receives the “signal processing unit 405”, “antennas 401-1 to 401-N”, and / or “multiplication units 603-1 to 603-L and processing unit 605”.
  • the directivity control at the time is performed, and the reception directivity 705-1 and the reception directivity 706-1 are formed.
  • the terminal 704-1 can receive and demodulate the transmission beam 702-1 for transmitting the data of the stream 1 by the reception directivity 705-1, and transmits the data of the stream 2 by the reception directivity 706-1.
  • the transmission beam 703-1 can be received and demodulated.
  • the terminal 704-3 is operated by the “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplication units 603-1 to 603-L and processing unit 605”. Then, directivity control at the time of reception is performed to form reception directivity 705-3 and reception directivity 706-3.
  • the terminal 704-3 can receive and demodulate the transmission beam 702-2 for transmitting the data of the stream 1 by the reception directivity 705-3, and transmits the data of the stream 2 by the reception directivity 706-3.
  • the transmission beam 703-2 can be received and demodulated.
  • the terminal 704-5 is operated by the “signal processing unit 405” and / or “antennas 401-1 to 401-N” and / or “multiplication units 603-1 to 603-L and processing unit 605”. Then, directivity control at the time of reception is performed to form reception directivity 705-5 and reception directivity 706-5.
  • the terminal 704-5 can receive and demodulate the transmission beam 702-3 for transmitting the data of the stream 1 by the reception directivity 705-5, and transmits the data of the stream 2 by the reception directivity 706-5. Therefore, it is possible to receive and demodulate the transmission beam 703-3.
  • the terminal selects at least one transmission beam among the transmission beams 702-1, 702-2, and 702-3 for transmitting the data of stream 1 according to the spatial position, and directs reception. Therefore, the data of the stream 1 can be obtained with high quality. Also, the terminal selects at least one transmission beam among the transmission beams 703-1, 703-2, and 703-3 for transmitting the stream 2 data according to the spatial position, and sets the reception directivity. By directing, the data of the stream 2 can be obtained with high quality.
  • the base station 700 uses a transmission beam 702-1 for transmitting stream 1 data and a transmission beam 703-1 for transmitting stream 2 data using the same frequency (same frequency band) and the same time.
  • Base station 700 uses transmission beam 702-2 for transmitting stream 1 data and transmission beam 703-2 for transmitting stream 2 data using the same frequency (same frequency band) and the same time.
  • Send. The base station 700 uses a transmission beam 702-3 for transmitting stream 1 data and a transmission beam 703-3 for transmitting stream 2 data using the same frequency (same frequency band) and the same time. ,Send.
  • the transmission beams 702-1, 702-2, and 702-3 for transmitting the data of the stream 1 may be beams having the same frequency (same frequency band) or different frequencies (different frequency bands). It may be a beam.
  • the transmission beams 703-1, 703-2, and 703-3 for transmitting the data of the stream 2 may be beams having the same frequency (same frequency band) or beams having different frequencies (different frequency bands). It may be.
  • the setting unit 158 receives the setting signal 160 as an input.
  • the setting signal 160 includes information indicating whether “multicast transmission is performed and / or unicast transmission is performed”. When the base station performs transmission as illustrated in FIG. 7, the information “perform multicast transmission” is input to the setting unit 158 by the setting signal 160.
  • the setting signal 160 may include information indicating “how many transmission beams are used to transmit each stream”.
  • information that “the number of transmission beams for transmitting stream 1 is 3 and the number of transmission beams for transmitting stream 2 is 3” is input to the setting unit 158 by the setting signal 160. Is done.
  • the base station in FIG. 1 and FIG. 3 provides information indicating whether the data symbol is “multicast transmission and / or unicast transmission”, “number of transmission streams when performing multicast”.
  • Control information symbols including information indicating information and / or information indicating “how many transmission beams to transmit each stream” may be transmitted. Thereby, the terminal can receive appropriately. Details of the configuration of the control information symbol will be described later.
  • FIG. 8 is a diagram for explaining the relationship between the #i information 101-i in FIGS. 1 and 3 and “stream 1” and “stream 2” described with reference to FIG.
  • the # 1 information 101-1 is subjected to processing such as error correction encoding, and data after error correction encoding is obtained.
  • the data after the error correction coding is named “# 1 transmission data”.
  • mapping is performed on # 1 transmission data to obtain data symbols.
  • the data symbols are allocated to stream 1 and stream 2, and stream 1 data symbols (data symbol group) and stream 2 data symbols (data symbol group) are obtained.
  • the symbol group of stream 1 includes data symbols (data symbol group) of stream 1, and the symbol group of stream 1 is transmitted from the base station of FIGS.
  • the symbol group of stream 2 includes data symbols (data symbol group) of stream 2, and the symbol group of stream 2 is transmitted from the base station of FIGS.
  • FIG. 9 shows an example of a frame configuration when the horizontal axis is time.
  • # 1 symbol group 901-1 of stream 1 in FIG. 9 is a symbol group of transmission beam 702-1 for transmitting data of stream 1 in FIG.
  • # 2 symbol group 901-2 of stream 1 in FIG. 9 is a symbol group of transmission beam 702-2 for transmitting data of stream 1 in FIG.
  • # 3 symbol group 901-3 of stream 1 in FIG. 9 is a symbol group of transmission beam 702-3 for transmitting data of stream 1 in FIG.
  • # 1 symbol group 902-1 of stream 2 in FIG. 9 is a symbol group of transmission beam 703-1 for transmitting data of stream 2 in FIG.
  • # 2 symbol group 902-2 of stream 2 in FIG. 9 is a symbol group of transmission beam 703-2 for transmitting data of stream 2 in FIG.
  • # 3 symbol group 902-3 of stream 2 in FIG. 9 is a symbol group of transmission beam 703-3 for transmitting data of stream 2 in FIG.
  • the group 902-2 and the # 3 symbol group 902-3 of the stream 2 exist in the time section 1, for example.
  • the # 1 symbol group 901-1 of the stream 1 and the # 2 symbol group 902-1 of the stream 2 are transmitted using the same frequency (same frequency band).
  • the # 2 symbol group 901-2 of stream 1 and the # 2 symbol group 902-2 of stream 2 are transmitted using the same frequency (same frequency band).
  • the # 3 symbol group 901-3 of stream 1 and the # 3 symbol group 902-3 of stream 2 are transmitted using the same frequency (same frequency band).
  • symbols constituting “stream 1 data symbol group A-1”, symbols constituting “stream 1 data symbol group A-2”, and “stream 1 data symbol group A-3” are constituted.
  • the symbol is the same.
  • the # 1 symbol group 901-1 of stream 1 in FIG. 9 includes “data symbol group A-1 of stream 1”.
  • the # 2 symbol group 901-2 of stream 1 in FIG. 9 includes “data symbol group A-2 of stream 1”.
  • the # 3 symbol group 901-3 of stream 1 in FIG. 9 includes “data symbol group A-3 of stream 1”. That is, the # 1 symbol group 901-1 of stream 1, the # 2 symbol group 901-2 of stream 1, and the # 3 symbol group 901-3 of stream 1 include the same data symbol group.
  • the symbols constituting the “stream 2 data symbol group A-1”, the symbols constituting the “stream 2 data symbol group A-2”, and the “stream 2 data symbol group A-3” are constructed.
  • the symbol is the same.
  • FIG. 11 shows an example of a symbol configuration to be transmitted as the control information symbol in FIG.
  • the horizontal axis is time.
  • the terminal receives “training symbol for terminal to perform reception directivity control” 1101, thereby enabling “signal processing unit 405”, “antennas 401-1 to 401 -N”, and / or A signal processing method for directivity control at the time of reception, which is performed by “multipliers 603-1 to 603-L and processing unit 605”, is determined.
  • the terminal can know the number of streams to be obtained by receiving “symbol for notifying the number of transmission streams when performing multicast” 1102.
  • the # 1 symbol group 901-1 of stream 1 in FIG. 9 transmits the data symbol of stream 1, “symbol for notifying which stream data symbol the stream data symbol is”
  • the information 1103 is “stream 1”.
  • the terminal receives the # 1 symbol group 901-1 of the stream 1 in FIG. 9 .
  • the terminal changes from “symbol for notifying the number of transmission streams when performing multicast” 1102 to “number of transmission streams 2”, “which stream data symbol group is the data symbol of which stream” It is recognized that “data symbol of stream 1” is obtained from “symbol for notifying“
  • the terminal since the terminal recognizes that “the number of transmission streams is 2” and the obtained data symbol is “the data symbol of stream 1”, it recognizes that “the data symbol of stream 2” is an object to be obtained. . Therefore, the terminal can start the operation of searching for the symbol group of stream 2. For example, the terminal transmits any one of the transmission beams of the # 1 symbol group 902-1 of the stream 2, the # 2 symbol group 902-2 of the stream 2, or the # 3 symbol group 902-3 of the stream 2 of FIG. Search for.
  • the base station transmits data symbols using a plurality of transmission beams, and the terminal selectively receives a high-quality beam from the plurality of transmission beams. . Since the transmission directivity control and the reception directivity control are performed on the modulation signal transmitted by the base station, as an effect of the present embodiment, an area where high data reception quality can be obtained can be widened. .
  • the terminal performs reception directivity control, but the above-described effect can be obtained even if the terminal does not perform reception directivity control.
  • the modulation scheme of the “stream data symbol group” 1002 in FIG. 10 may be any modulation scheme.
  • the modulation method mapping method of “stream data symbol group” 1002 may be switched for each symbol. That is, the phase of the constellation may be switched for each symbol on the in-phase I-quadrature Q plane after mapping.
  • the base station 700 includes a plurality of antennas, and transmits a plurality of transmission signals from a transmission antenna 701.
  • the base station 700 is configured as shown in FIG. 1 and FIG. 3, for example, and transmission beamforming is performed by performing precoding (weighting combining) in the signal processing unit 102 (and / or weighting combining unit 301). (Directivity control) is performed.
  • FIG. 12 includes terminals 704-1, 704-2, 704-3, 704-4, and 704-5. These terminals may be configured as shown in FIGS. 4 and 5, for example.
  • the terminal 704-2 has the “signal processing unit 405”, “antennas 401-1 to 401-N”, and / or “multiplying units 603-1 to 603-L and processing unit 605”. Directivity control at the time of reception is performed to form reception directivity 705-2 and reception directivity 706-2.
  • the terminal 704-2 can receive and demodulate the transmission beam 1202-1 for transmitting the “modulated signal 1” by the reception directivity 705-2, and the “modulation signal 2” by the reception directivity 706-2. It is possible to receive and demodulate the transmission beam 1203-1 for transmitting.
  • the terminal 704-3 receives the “signal processing unit 405”, “antennas 401-1 to 401 -N”, and / or “multiplying units 603-1 to 603 -L and processing unit 605” at the time of reception. Directivity control is performed to form reception directivity 705-3 and reception directivity 706-3.
  • the terminal 704-3 can receive and demodulate the transmission beam 1202-2 for transmitting the “modulated signal 1” by the reception directivity 705-3, and the “modulation signal 2” by the reception directivity 706-3. It is possible to receive and demodulate the transmission beam 1203-2 for transmitting.
  • the terminal 704-4 receives the “signal processing unit 405”, “antennas 401-1 to 401 -N”, and / or “multiplication units 603-1 to 603 -L and processing unit 605” at the time of reception. Directivity control is performed to form reception directivity 705-4 and reception directivity 706-4.
  • the terminal 704-4 can receive and demodulate the transmission beam 1202-3 for transmitting the “modulated signal 1” by the reception directivity 705-4, and the “modulation signal 2” by the reception directivity 706-4. It is possible to receive and demodulate the transmission beam 1203-2 for transmitting.
  • the terminal selects at least one transmission beam among the transmission beams 1202-1, 1202-2, and 1202-3 for transmitting “modulated signal 1” according to a spatial position, By directing the directivity, “modulated signal 1” can be obtained with high quality.
  • the terminal selects at least one transmission beam from the transmission beams 1203-1, 1203-2, and 1203-3 for transmitting the “modulated signal 2” according to the spatial position, and receives directivity of reception. By directing, “modulated signal 2” can be obtained with high quality.
  • the base station 700 transmits the transmission beam 1202-1 for transmitting “modulated signal 1” and the transmission beam 1203-1 for transmitting “modulated signal 2” to the same frequency (same frequency band) and the same time. Use to send.
  • the base station 700 transmits the transmission beam 1202-2 for transmitting “modulated signal 1” and the transmission beam 1203-2 for transmitting “modulated signal 2” to the same frequency (same frequency band) and the same time. Use to send.
  • the base station 700 transmits the transmission beam 1202-3 for transmitting “modulated signal 1” and the transmission beam 1203-3 for transmitting “modulated signal 2” to the same frequency (same frequency band) and the same time. Use to send.
  • Transmission beams 1202-1, 1202-2, and 1202-3 for transmitting “modulated signal 1” may be beams having the same frequency (same frequency band) or different frequencies (different frequency bands). It may be a beam.
  • Transmission beams 1203-1, 1203-2, and 1203-3 for transmitting “modulated signal 2” may be beams having the same frequency (same frequency band) or different frequencies (different frequency bands). It may be a beam.
  • the setting unit 158 receives the setting signal 160 as an input.
  • the setting signal 160 includes information indicating whether “multicast transmission is performed and / or unicast transmission is performed”. When the base station performs transmission as illustrated in FIG. 12, the information “perform multicast transmission” is input to the setting unit 158 by the setting signal 160.
  • the setting signal 160 includes information indicating “the number of transmission modulation signals when performing multicast”.
  • information that “the number of transmission modulation signals is 2” is input to the setting unit 158 by the setting signal 160.
  • the setting signal 160 may include information indicating “how many transmission beams each modulation signal is transmitted”.
  • information indicating that “the number of transmission beams transmitting modulated signal 1 is 3 and the number of transmission beams transmitting modulated signal 2 is 3” is set by setting signal 160. Is input.
  • the # 1 information 101-1 is subjected to processing such as error correction encoding, and data after error correction encoding is obtained.
  • the data after the error correction coding is named “# 1 transmission data”.
  • mapping is performed on # 1 transmission data to obtain data symbols.
  • the data symbols are allocated to stream 1 and stream 2, and stream 1 data symbols (data symbol group) and stream 2 data symbols (data symbol group) are obtained.
  • the data symbol of stream 1 in symbol number i is s1 (i)
  • the data symbol of stream 2 is s2 (i).
  • “modulation signal 1” tx1 (i) in symbol number i is expressed as follows, for example.
  • the “symbol group of modulation signal 1” including the “signal of the data transmission area of modulation signal 1” composed of data symbols is transmitted from the base station of FIG. 1 and FIG. Further, the “symbol group of the modulation signal 2” including the “signal of the data transmission area of the modulation signal 2” composed of the data symbols is transmitted from the base station of FIGS.
  • signal processing such as phase change and / or CDD (Cyclic Delay Diversity) may be performed on “modulated signal 1” and / or “modulated signal 2”.
  • CDD Cyclic Delay Diversity
  • the signal processing method is not limited to this.
  • FIG. 14 shows an example of a frame configuration when the horizontal axis is time.
  • the # 1 symbol group (1401-1) of modulated signal 1 in FIG. 14 is a symbol group of transmission beam 1202-1 for transmitting data of modulated signal 1 in FIG.
  • the # 2 symbol group (1401-2) of modulated signal 1 in FIG. 14 is a symbol group of transmission beam 1202-2 for transmitting data of modulated signal 1 in FIG.
  • the # 3 symbol group (1401-3) of modulated signal 1 in FIG. 14 is a symbol group of transmission beam 1202-3 for transmitting data of modulated signal 1 in FIG.
  • the # 1 symbol group (1402-1) of modulated signal 2 in FIG. 14 is a symbol group of transmission beam 1203-1 for transmitting data of modulated signal 2 in FIG.
  • the # 2 symbol group (1402-2) of modulated signal 2 in FIG. 14 is a symbol group of transmission beam 1203-2 for transmitting data of modulated signal 2 in FIG.
  • the # 3 symbol group (1402-3) of the modulation signal 2 in FIG. 14 is a symbol group of the transmission beam 1203-3 for transmitting the data of the modulation signal 2 in FIG.
  • the # 1 symbol group (1401-1) of the modulated signal 1 and the # 1 symbol group (1402-1) of the modulated signal 2 are transmitted using the same frequency (same frequency band).
  • the # 2 symbol group (1401-2) of modulated signal 1 and the # 2 symbol group (1402-2) of modulated signal 2 are transmitted using the same frequency (same frequency band).
  • the # 3 symbol group (1401-3) of modulated signal 1 and the # 3 symbol group (1402-3) of modulated signal 2 are transmitted using the same frequency (same frequency band).
  • the signal constituting the “signal group A-1 of the data transmission area of the modulation signal 1”, the signal constituting the “signal A-2 of the data transmission area of the modulation signal 1”, and the “data transmission of the modulation signal 1” The signal constituting the signal A-3 "in the area is the same.
  • a signal “a signal A-1 in the data transmission area of the modulation signal 2” is prepared which is composed of a signal equivalent to the signal constituting the “signal A of the data transmission area of the modulation signal 2”.
  • a signal “signal A-2 in the data transmission area of the modulation signal 2” is prepared, which is composed of signals equivalent to those constituting the “signal A in the data transmission area of the modulation signal 2”.
  • a signal “signal A-3 in the data transmission area of the modulation signal 2” is prepared, which is composed of signals equivalent to those constituting the “signal A in the data transmission area of the modulation signal 2”.
  • the signal constituting the “signal A-1 of the data transmission area of the modulation signal 2”, the signal constituting the “signal A-2 of the data transmission area of the modulation signal 2”, and the “data transmission area of the modulation signal 2” is the same.
  • the # 1 symbol group (1402-1) of modulated signal 2 in FIG. 14 includes “signal A-1 in the data transmission area of modulated signal 2”.
  • the # 2 symbol group (1402-2) of stream 2 in FIG. 14 includes “signal A-2 in the data transmission area of modulated signal 2”.
  • the # 3 symbol group (1402-3) of modulated signal 2 in FIG. 14 includes “signal A-3 in the data transmission area of modulated signal 2”. That is, the # 1 symbol group (1402-1) of the modulation signal 2, the # 2 symbol group (1402-2) of the modulation signal 2, and the # 3 symbol group (1402-3) of the modulation signal 2 are equivalent signals. Is included.
  • the horizontal axis indicates the time direction, and a control information symbol 1501 and a modulation signal transmission area 1502 for data transmission are arranged in the time axis direction.
  • the modulation signal transmission area 1502 for data transmission transmits the “signal A of the data transmission area of the modulation signal 1” or “signal A of the data transmission area of the modulation signal 2” described with reference to FIG. Symbol.
  • a multicarrier scheme such as an OFDM (Orthogonal Frequency Division Multiplexing) scheme may be used, and in this case, a symbol may exist in the frequency axis direction.
  • Each symbol includes a reference symbol for the receiver to perform time and frequency synchronization, a reference symbol for the receiver to detect a signal, and / or a reference symbol for the receiver to perform channel estimation. It may be included.
  • the frame configuration is not limited to that in FIG. 15, and the control information symbol 1501 and the modulation signal transmission area 1502 for data transmission may be arranged in any manner.
  • the reference symbol may be called, for example, a preamble or a pilot symbol.
  • FIG. 16 shows an example of a symbol configuration to be transmitted as the control information symbol in FIG.
  • the horizontal axis is time.
  • the terminal receives “a training symbol for the terminal to perform reception directivity control” 1601, so that the “signal processing unit 405”, “antennas 401-1 to 401 -N”, and / or A signal processing method for directivity control at the time of reception, which is performed by “multipliers 603-1 to 603-L and processing unit 605”, is determined.
  • the terminal can know the number of modulation signals to be obtained by receiving “symbol for notifying the number of transmission modulation signals when performing multicast” 1602.
  • the terminal receives the “symbol for notifying which modulation signal transmission region for modulation signal transmission is the modulation signal transmission region for data transmission of modulation signal” 1603, so that the base station transmits it. It is possible to know which modulation signal is received among the modulation signals being received.
  • the base station since the base station transmits “modulated signal 1” and “modulated signal 2”, the information of “symbol for notifying the number of modulated transmission signals when performing multicast” 1602 is “ 2 ”.
  • the # 1 symbol group 1401-1 of the modulation signal 1 in FIG. 14 transmits a signal in the data transmission area of the modulation signal 1, the data of which modulation signal is in the modulation signal transmission area for data transmission of the modulation signal
  • the information of “symbol“ 1603 for notifying whether it is a modulation signal transmission region for transmission ” is“ modulation signal 1 ”.
  • the terminal receives the # 1 symbol group 1401-1 of modulated signal 1 in FIG.
  • the terminal changes “the number of modulation signals is 2” from “a symbol for notifying the number of transmission modulation signals when performing multicast” 1602 and “what is the modulation signal transmission area for data transmission of the modulation signals”.
  • modulated signal 1 is obtained from “symbol 1603 for notifying whether it is a modulated signal transmission region for data transmission of the modulated signal”.
  • the terminal can start the operation of searching for “modulated signal 2”. For example, the terminal transmits “# 1 symbol group of modulated signal 2” 1402-1, “# 2 symbol group of modulated signal 2” 1402-2, or “# 3 symbol group of modulated signal 2” 1402- of FIG. Search for one of the three transmit beams.
  • the terminal selects “# 1 symbol group of modulated signal 2” 1402-1, “# 2 symbol group of modulated signal 2” 1402-2, or “# 3 symbol group of modulated signal 2” 1402-3.
  • the terminal can obtain the data symbol of stream 1 and the data symbol of stream 2 with high quality.
  • the terminal can obtain the data symbol accurately as an effect of the present embodiment.
  • the base station transmits data symbols using a plurality of transmission beams, and the terminal selectively receives a high-quality beam from the plurality of transmission beams. . Since the transmission directivity control and the reception directivity control are performed on the modulation signal transmitted by the base station, an area where high data reception quality can be obtained can be widened as an effect of the present embodiment.
  • the terminal performs reception directivity control, but the above-described effect can be obtained even if the terminal does not perform reception directivity control.
  • each terminal obtains both the modulated signal of stream 1 and the modulated signal of stream 2, but the embodiment is not necessarily limited to this.
  • FIG. 17 shows an example of the communication state between the base station (or access point, etc.) and the terminal. 17 that operate in the same manner as in FIG. 7 are denoted by the same reference numerals and detailed description thereof is omitted.
  • the base station 700 includes a plurality of antennas, and transmits a plurality of transmission signals from a transmission antenna 701. At this time, the base station 700 is configured as shown in FIG. 1 and FIG. 3, for example.
  • precoding weighting synthesis
  • Transmit beamforming directivity control
  • the base station performs multicast as described in FIG. 7, and the base station 700 and a terminal (for example, 1702) perform unicast communication.
  • the base station 700 In addition to the transmission beams 702-1, 702-2, 702-3, 703-1, 703-2, and 703-3 for multicast, the base station 700 generates a transmission beam 1701 for unicast in FIG.
  • the individual data is transmitted to the terminal 1702.
  • FIG. 17 illustrates an example in which the base station 700 transmits one of the transmission beams 1701 to the terminal 1702.
  • the number of transmission beams is not limited to one.
  • Base station 700 may transmit a plurality of transmission beams to terminal 1702 (or may transmit a plurality of modulated signals).
  • the base station In order to generate a transmission beam including the transmission beam 1701, the base station performs precoding (weighting synthesis) in, for example, the signal processing unit 102 (and / or the weighting synthesis unit 301) in the configuration shown in FIGS. )I do.
  • precoding weighting synthesis
  • the terminal 1702 When the terminal 1702 transmits a modulation signal to the base station 700, the terminal 1702 performs precoding (or weighting synthesis) and transmits a transmission beam 1703.
  • Base station 700 performs directivity control during reception to form reception directivity 1701. As a result, the base station 700 can receive and demodulate the transmission beam 1703.
  • the base station 700 uses a transmission beam 702-1 for transmitting stream 1 data and a transmission beam 703-1 for transmitting stream 2 data using the same frequency (same frequency band) and the same time.
  • Base station 700 uses transmission beam 702-2 for transmitting stream 1 data and transmission beam 703-2 for transmitting stream 2 data using the same frequency (same frequency band) and the same time.
  • Send. The base station 700 uses a transmission beam 702-3 for transmitting stream 1 data and a transmission beam 703-3 for transmitting stream 2 data using the same frequency (same frequency band) and the same time. ,Send.
  • the transmission beams 702-1, 702-2, and 702-3 for transmitting the data of the stream 1 may be beams having the same frequency (same frequency band) or different frequencies (different frequency bands). ) Beam.
  • the transmission beams 703-1, 703-2, and 703-3 for transmitting the data of the stream 2 may be beams of the same frequency (same frequency band) or of different frequencies (frequency bands different from each other). It may be a beam.
  • the number of terminals that perform unicast communication is described as one. However, the number of terminals that perform unicast communication with the base station may be plural.
  • the setting unit 158 receives the setting signal 160 as an input.
  • the setting signal 160 includes information indicating whether “multicast transmission is performed and / or unicast transmission is performed”. When the base station performs transmission as illustrated in FIG. 17, information indicating that “both multicast transmission and unicast transmission are performed” is input to the setting unit 158 by the setting signal 160.
  • the setting signal 160 includes information indicating “the number of transmission streams when performing multicast”.
  • information “the number of transmission streams is 2” is input to the setting unit 158 by the setting signal 160.
  • the setting signal 160 may include information indicating “how many transmission beams are used to transmit each stream”.
  • information that “the number of transmission beams transmitting stream 1 is 3 and the number of transmission beams transmitting stream 2 is 3” is input to the setting unit 158 by the setting signal 160. Is done.
  • the base station in FIG. 1 and FIG. 3 provides information indicating whether the data symbol is “multicast transmission and / or unicast transmission”, “number of transmission streams when performing multicast”. Control information symbols including information indicating information and / or information indicating “how many transmission beams to transmit each stream” may be transmitted. Thereby, the terminal can receive appropriately.
  • the base station for a terminal performing unicast communication, a control information symbol for training for the base station to perform directivity control and / or a control information symbol for training for the terminal to perform directivity control May be sent.
  • FIG. 18 shows an example of the communication state between the base station (or access point, etc.) and the terminal. 18 that operate in the same manner as in FIGS. 7 and 12 are given the same reference numerals, and detailed descriptions thereof are omitted.
  • the base station 700 includes a plurality of antennas, and transmits a plurality of transmission signals from a transmission antenna 701. At this time, the base station 700 is configured as shown in FIG. 1 and FIG. 3, for example.
  • precoding weighting synthesis
  • Transmit beamforming directivity control
  • the description of the transmission beams 1202-1, 1202-2, 1203-3, 1203-1, 1203-2, and 1203-3 is the same as described with reference to FIG.
  • the base station performs multicast as described in FIG. 12, and the base station 700 and a terminal (for example, 1702) perform unicast communication.
  • the base station 700 In addition to the multicast transmission beams 1202-1, 1202-2, 1203-3, 1203-1, 1203-1, and 1203-3, the base station 700 generates a unicast transmission beam 1701 in FIG.
  • the individual data is transmitted to the terminal 1702.
  • FIG. 18 shows an example in which the base station 700 transmits one of the transmission beams 1701 to the terminal 1702.
  • the number of transmission beams is not limited to one.
  • Base station 700 may transmit a plurality of transmission beams to terminal 1702 (or may transmit a plurality of modulated signals).
  • the terminal 1702 uses the “signal processing unit 405”, “antennas 401-1 to 401-N”, and / or “multipliers 603-1 to 603-L, and signal processing unit 605” to direct the reception.
  • the reception directivity 1703 is formed.
  • the terminal 1702 can receive and demodulate the transmission beam 1701.
  • the base station In order to generate a transmission beam including the transmission beam 1701, the base station performs precoding (weighting synthesis) in, for example, the signal processing unit 102 (and / or the weighting synthesis unit 301) in the configuration shown in FIGS. )I do.
  • precoding weighting synthesis
  • the terminal 1702 When the terminal 1702 transmits a modulation signal to the base station 700, the terminal 1702 performs precoding (or weighting synthesis) and transmits a transmission beam 1701. Base station 700 performs directivity control during reception to form reception directivity 1703. Thereby, the base station 700 can receive and demodulate the transmission beam 1701.
  • the base station 700 transmits the transmission beam 1202-1 for transmitting “modulated signal 1” and the transmission beam 1203-1 for transmitting “modulated signal 2” to the same frequency (same frequency band) and the same time. Use to send.
  • the base station 700 transmits the transmission beam 1202-2 for transmitting “modulated signal 1” and the transmission beam 1203-2 for transmitting “modulated signal 2” to the same frequency (same frequency band) and the same time. Use to send.
  • the base station 700 transmits the transmission beam 1202-3 for transmitting “modulated signal 1” and the transmission beam 1203-3 for transmitting “modulated signal 2” to the same frequency (same frequency band) and the same time. Use to send.
  • Transmission beams 1202-1, 1202-2, and 1202-3 for transmitting “modulated signal 1” may be beams having the same frequency (same frequency band) or different frequencies (different frequency bands). ) Beam.
  • the transmission beams 1203-1, 1203-2 and 1203-3 for transmitting the “modulated signal 2” may be beams having the same frequency (same frequency band) or different frequencies (different frequency bands). It may be a beam.
  • the unicast transmission beam 1701 may be a beam having the same frequency (same frequency band) as the transmission beams 1202-1, 1202-2, 1202-3, 1203-1, 1203-2, and 1203-3.
  • the beams may have different frequencies (different frequency bands).
  • FIG. 18 demonstrated the terminal which performs unicast communication as one unit, the number of the terminals which perform unicast communication with a base station may be plural.
  • the setting unit 158 receives the setting signal 160 as an input.
  • the setting signal 160 includes information indicating whether “multicast transmission is performed and / or unicast transmission is performed”. When the base station performs transmission as illustrated in FIG. 18, information indicating that “both multicast transmission and unicast transmission are performed” is input to the setting unit 158 by the setting signal 160.
  • the setting signal 160 includes information indicating “the number of transmission streams when performing multicast”.
  • information “the number of transmission streams is 2” is input to the setting unit 158 by the setting signal 160.
  • the setting signal 160 may include information indicating “how many transmission beams are used to transmit each stream”.
  • information indicating that “the number of transmission beams for transmitting stream 1 is 3 and the number of transmission beams for transmitting stream 2 is 3” is input to setting unit 158 by setting signal 160. Is done.
  • the base station in FIG. 1 and FIG. 3 provides information indicating whether the data symbol is “multicast transmission and / or unicast transmission”, “number of transmission streams when performing multicast”. Control information symbols including information indicating information and / or information indicating “how many transmission beams to transmit each stream” may be transmitted. Thereby, the terminal can receive appropriately.
  • the base station for a terminal performing unicast communication, a control information symbol for training for the base station to perform directivity control and / or a control information symbol for training for the terminal to perform directivity control May be sent.
  • FIG. 19 shows an example of a communication state between a base station (or an access point, etc.) and a terminal. 19, components that operate in the same manner as in FIG. 7 are assigned the same numbers, and detailed descriptions thereof are omitted.
  • the base station 700 includes a plurality of antennas, and transmits a plurality of transmission signals from a transmission antenna 701. At this time, the base station 700 is configured as shown in FIG. 1 and FIG. 3, for example.
  • precoding weighting synthesis
  • Transmit beamforming directivity control
  • the base station 700 transmits the transmission beams 1901-1, 1901-2, 1902-1, and 1902-2. Send.
  • the transmission beam 1901-1 is a transmission beam for transmitting the stream 3 data.
  • the transmission beam 1901-2 is also a transmission beam for transmitting the data of the stream 3.
  • a transmission beam 1902-1 is a transmission beam for transmitting the data of the stream 4.
  • a transmission beam 1902-2 is also a transmission beam for transmitting the data of the stream 4.
  • the terminals 704-1, 704-2, 704-3, 704-4, 704-5, 1903-1, 1903-2, and 193-3 are configured as shown in FIGS. 4 and 5, for example. Note that the operations of the terminals 704-1, 704-2, 704-3, 704-4, and 704-5 are as described with reference to FIG.
  • the terminal 1903-1 receives the “signal processing unit 405”, “antennas 401-1 to 401-N”, and / or “multiplying units 603-1 to 603-L and processing unit 605”. Directivity control is performed to form reception directivity 1904-1 and reception directivity 1905-1.
  • the terminal 1903-1 can receive and demodulate the transmission beam 1901-2 for transmitting the data of the stream 3 by the reception directivity 1904-1, and transmit the data of the stream 4 by the reception directivity 1905-1. Therefore, it is possible to receive and demodulate the transmission beam 1902-2.
  • the terminal 1903-2 uses the “signal processing unit 405”, “antennas 401-1 to 401-N”, and / or “multiplying units 603-1 to 603-L and processing unit 605” at the time of reception. Directivity control is performed to form reception directivity 1904-2 and reception directivity 1905-2.
  • the terminal 1903-2 can receive and demodulate the transmission beam 1902-1 for transmitting the data of the stream 4 by the reception directivity 1904-2, and transmit the data of the stream 3 by the reception directivity 1905-2. Therefore, it is possible to receive and demodulate the transmission beam 1901-2.
  • the terminal 1903-3 receives the “signal processing unit 405”, “antennas 401-1 to 401-N”, and / or “multiplying units 603-1 to 603-L and processing unit 605” at the time of reception. Directivity control is performed to form reception directivity 1904-3 and reception directivity 1905-3.
  • the terminal 1903-3 can receive and demodulate the transmission beam 1901-1 for transmitting the data of the stream 3 by the reception directivity 1904-3, and transmit the data of the stream 4 by the reception directivity 1905-3. Therefore, it is possible to receive and demodulate the transmission beam 1902-1.
  • the terminal 1903-4 receives the “signal processing unit 405”, “antennas 401-1 to 401-N”, and / or “multiplying units 603-1 to 603-L and processing unit 605” at the time of reception. Directivity control is performed to form reception directivity 1904-4 and reception directivity 1905-4.
  • the terminal 1903-4 can receive and demodulate the transmission beam 703-1 for transmitting the stream 2 data by the reception directivity 1904-4, and transmit the stream 3 data by the reception directivity 1905-4. Therefore, it is possible to receive and demodulate the transmission beam 1901-1.
  • the base station transmits a plurality of streams including multicast data, and each stream is transmitted by a plurality of transmission beams.
  • Each terminal transmits one or more streams among the plurality of streams. Are selectively received.
  • the base station 700 uses a transmission beam 702-1 for transmitting stream 1 data and a transmission beam 703-1 for transmitting stream 2 data using the same frequency (same frequency band) and the same time.
  • Base station 700 uses transmission beam 702-2 for transmitting stream 1 data and transmission beam 703-2 for transmitting stream 2 data using the same frequency (same frequency band) and the same time.
  • Send. The base station 700 uses a transmission beam 702-3 for transmitting stream 1 data and a transmission beam 703-3 for transmitting stream 2 data using the same frequency (same frequency band) and the same time. ,Send.
  • the base station 700 uses the same frequency (same frequency band) and the same time as the transmission beam 1901-1 for transmitting the stream 3 data and the transmission beam 1902-1 for transmitting the data of the stream 4. ,Send.
  • the base station 700 uses the same frequency (same frequency band) and the same time as the transmission beam 1901-2 for transmitting the stream 3 data and the transmission beam 1902-2 for transmitting the stream 4 data. ,Send.
  • the transmission beams 702-1, 702-2, and 702-3 for transmitting the data of the stream 1 may be beams having the same frequency (same frequency band) or different frequencies (different frequency bands). ) Beam.
  • the transmission beams 703-1, 703-2, and 703-3 for transmitting the data of the stream 2 may be beams having the same frequency (same frequency band) or beams having different frequencies (different frequency bands). It may be.
  • the transmission beams 1901-1 and 1901-2 for transmitting the data of the stream 3 may be beams having the same frequency (same frequency band) or beams having different frequencies (frequency bands different from each other). Also good.
  • the transmission beams 1902-1 and 1902-2 for transmitting the data of the stream 4 may be beams having the same frequency (same frequency band), or beams having different frequencies (frequency bands different from each other). Also good.
  • the stream 1 data symbol and the stream 2 data symbol are generated from the # 1 information 101-1 in FIG. 1, and the stream 3 data symbol and the stream 4 data symbol are generated from the # 2 information 101-2. Good.
  • the # 1 information 101-1 and the # 2 information 101-2 may be generated with data symbols after being subjected to error correction coding.
  • the data symbol of stream 1 is generated from the # 1 information 101-1 in FIG. 1
  • the data symbol of stream 2 is generated from the # 2 information 101-2 in FIG. 1
  • the data symbol of the stream 3 may be generated
  • the data symbol of the stream 4 may be generated from the # 4 information 101-4 in FIG.
  • the # 1 information 101-1, the # 2 information 101-2, the # 3 information 101-3, and the # 4 information 101-4 are data symbols generated after error correction coding, respectively. Also good.
  • the data symbol of each stream may be generated from any of the information in FIG. Thereby, as an effect of the present embodiment, the terminal can selectively obtain a multicast stream.
  • the setting unit 158 receives the setting signal 160 as an input.
  • the setting signal 160 includes information indicating whether “multicast transmission is performed and / or unicast transmission is performed”. When the base station performs transmission as illustrated in FIG. 19, information “perform multicast transmission” is input to the setting unit 158 by the setting signal 160.
  • the setting signal 160 includes information indicating “the number of transmission streams when performing multicast”.
  • information “the number of transmission streams is 4” is input to the setting unit 158 by the setting signal 160.
  • the setting signal 160 may include information indicating “how many transmission beams are used to transmit each stream”.
  • the setting signal 160 indicates that “the number of transmission beams for transmitting stream 1 is 3, the number of transmission beams for transmitting stream 2 is 3, and the number of transmission beams for transmitting stream 3 is 2, information indicating that the number of transmission beams for transmitting the stream 4 is 2 is input to the setting unit 158.
  • the base station in FIG. 1 and FIG. 3 provides information indicating whether the data symbol is “multicast transmission and / or unicast transmission”, “number of transmission streams when performing multicast”. Control information symbols including information indicating information and / or information indicating “how many transmission beams to transmit each stream” may be transmitted. Thereby, the terminal can receive appropriately.
  • FIG. 20 shows an example of the communication state between the base station (or access point, etc.) and the terminal. 20, components that operate in the same manner as in FIG. 7, FIG. 12, and FIG.
  • the base station 700 includes a plurality of antennas, and transmits a plurality of transmission signals from a transmission antenna 701. At this time, the base station 700 is configured as shown in FIG. 1 and FIG. 3, for example.
  • precoding weighting synthesis
  • Transmit beamforming directivity control
  • the base station 700 transmits the transmission beams 2001-1, 2001-2, 2002-1, and 2002-2. 2 is transmitted.
  • the transmission beam 2001-1 is a transmission beam for transmitting the “modulation signal 3”.
  • the transmission beam 2001-2 is also a transmission beam for transmitting “modulated signal 3”.
  • the transmission beam 2002-1 is a transmission beam for transmitting the “modulation signal 4”.
  • the transmission beam 2002-2 is also a transmission beam for transmitting “modulated signal 4”.
  • the terminals 704-1, 704-2, 704-3, 704-4, 704-5, 1903-1, 1903-2, and 193-3 have the same configuration as that shown in FIGS. 4 and 5, for example. Note that the operations of the terminals 704-1, 704-2, 704-3, 704-4, and 704-5 are the same as those described in FIG.
  • the terminal 1903-1 has the “signal processing unit 405”, “from the antenna 401-1 to the antenna 401-N”, and / or “from the multiplication unit 603-1 to the multiplication unit 603-L and the processing unit 605”. Thus, directivity control at the time of reception is performed, and reception directivity 1904-1 and reception directivity 1905-1 are formed.
  • the terminal 1903-1 can receive and demodulate the transmission beam 2001-2 for transmitting the “modulated signal 3” by the reception directivity 1904-1, and the “modulation signal 4” by the reception directivity 1905-1. It is possible to receive and demodulate the transmission beam 2002-2 for transmitting.
  • the terminal 1903-2 has “signal processing unit 405”, “from antenna 401-1 to antenna 401-N”, and / or “from multiplication unit 603-1 to multiplication unit 603-L and processing unit 605”. Thus, directivity control at the time of reception is performed to form reception directivity 1904-2 and reception directivity 1905-2.
  • the terminal 1903-2 can receive and demodulate the transmission beam 2002-1 for transmitting the “modulated signal 4” by the reception directivity 1904-2, and the “modulation signal 3” by the reception directivity 1905-2. It is possible to receive and demodulate the transmission beam 2001-2 for transmitting.
  • the terminal 1903-3 has the “signal processing unit 405”, “from the antenna 401-1 to the antenna 401-N”, and / or “from the multiplication unit 603-1 to the multiplication unit 603-L and the processing unit 605”. Thus, directivity control during reception is performed to form reception directivity 1904-3 and reception directivity 1905-3.
  • the terminal 1903-3 can receive and demodulate the transmission beam 2001-1 for transmitting the “modulated signal 3” by the reception directivity 1904-3, and the “modulation signal 4” by the reception directivity 1905-3. It is possible to receive and demodulate the transmission beam 2002-1 for transmitting.
  • the terminal 1903-4 is “signal processor 405”, “from antenna 401-1 to antenna 401-N”, and / or “from multiplier 603-1 to multiplier 603-L and processor 605”. Thus, directivity control during reception is performed to form reception directivity 1904-4 and reception directivity 1905-4.
  • the terminal 1903-4 can receive and demodulate the transmission beam 2001-1 for transmitting the “modulated signal 3” by the reception directivity 1904-4, and the “modulation signal 4” by the reception directivity 1905-4. It is possible to receive and demodulate the transmission beam 2002-1 for transmitting.
  • the base station transmits a plurality of modulation signals including data for multicast, each modulation signal is transmitted by a plurality of transmission beams, and each terminal transmits one or more of the plurality of modulation signals. Selectively receiving a transmit beam of streams;
  • the base station 700 transmits a transmission beam 1202-1 for transmitting “modulated signal 1” and a transmission beam 1203-1 for transmitting “modulated signal 2” to the same frequency (same frequency band) and the same time. Use to send.
  • the base station 700 transmits the transmission beam 1202-2 for transmitting “modulated signal 1” and the transmission beam 1203-2 for transmitting “modulated signal 2” to the same frequency (same frequency band) and the same time. Use to send.
  • the base station 700 transmits a transmission beam 1202-3 for transmitting “modulated signal 1” and a transmission beam 1203-3 for transmitting “modulated signal 2” to the same frequency (same frequency band) and the same time. Use to send.
  • the base station 700 transmits a transmission beam 2001-1 for transmitting “modulated signal 3” and a transmission beam 2002-1 for transmitting “modulated signal 4” to the same frequency (same frequency band) and the same time. Use to send.
  • the base station 700 transmits a transmission beam 2001-2 for transmitting “modulated signal 3” and a transmission beam 2002-2 for transmitting “modulated signal 4” to the same frequency (same frequency band) and the same time. Use to send.
  • the transmission beams 702-1, 702-2, and 702-3 for transmitting the data of the stream 1 may be beams having the same frequency (same frequency band) or different frequencies (different frequency bands). ) Beam.
  • the transmission beams 703-1, 703-2, and 703-3 for transmitting the data of the stream 2 may be beams of the same frequency (same frequency band) or of different frequencies (frequency bands different from each other). It may be a beam.
  • the transmission beams 2001-1 and 2001-2 for transmitting “modulated signal 3” may be beams having the same frequency (same frequency band), or beams having different frequencies (frequency bands different from each other). May be.
  • Transmission beams 2002-1 and 2002-2 for transmitting “modulated signal 4” may be beams having the same frequency (same frequency band) or beams having different frequencies (frequency bands different from each other). May be.
  • the setting unit 158 receives the setting signal 160 as an input.
  • the setting signal 160 includes information indicating whether “multicast transmission is performed and / or unicast transmission is performed”. When the base station performs the transmission illustrated in FIG. 19, the information “perform multicast transmission” is input to the setting unit 158 by the setting signal 160.
  • the setting signal 160 includes information indicating “the number of transmission modulation signals when performing multicast”.
  • the information “the number of transmission modulation signals is 4” is input to the setting unit 158 by the setting signal 160.
  • the setting signal 160 may include information indicating “how many transmission beams each modulation signal is transmitted”. When the base station performs the transmission shown in FIG. 20, the setting signal 160 indicates that “the number of transmission beams for transmitting the modulation signal 1 is 3, the number of transmission beams for transmitting the modulation signal 2 is 3, and the transmission beam for transmitting the modulation signal 3”. Information indicating that the number is 2 and the number of transmission beams that transmit the modulated signal 4 is 2 is input to the setting unit 158.
  • the base station has information indicating whether the data symbol is “multicast transmission / unicast transmission”, “number of transmission streams when performing multicast”, And / or a control information symbol including information indicating “how many transmission beams to transmit each stream” may be transmitted. Thereby, the terminal can receive appropriately.
  • FIG. 20 illustrates an example in which the base station transmits “modulated signal 1”, “modulated signal 2”, “modulated signal 3”, and “modulated signal 4”, but this is an example.
  • the base station may further transmit “modulated signal 5” and “modulated signal 6” respectively transmitting stream 5 data and stream 6 data, or more to transmit more streams.
  • the modulated signal may be transmitted. Each modulated signal is transmitted using one or more transmission beams.
  • one or more unicast transmission beams may exist.
  • the # 2 information 101-2 is subjected to processing such as error correction encoding to obtain data after error correction encoding.
  • the data after the error correction coding is named “# 2 transmission data”.
  • mapping is performed on # 2 transmission data to obtain a data symbol.
  • This data symbol is assigned to stream 3 and stream 4, and a data symbol (data symbol group) of stream 3 and a data symbol (data symbol group) of stream 4 are obtained.
  • the data symbol of stream 3 in symbol number i is s3 (i)
  • the data symbol of stream 4 is s4 (i).
  • “modulation signal 3” tx3 (i) in symbol number i is expressed as follows, for example.
  • Modulation signal 4 tx4 (i) in symbol number i is expressed as follows, for example.
  • e (i), f (i), g (i), and h (i) are each defined as a complex number, and may be a real number. Further, e (i), f (i), g (i), and h (i) may not be functions of the symbol number i, but may be fixed values.
  • the “symbol group of the modulation signal 3” including the “signal of the data transmission area of the modulation signal 3” composed of the data symbols is transmitted from the base station of FIGS.
  • the “symbol group of the modulation signal 4” including the “signal of the data transmission area of the modulation signal 4” composed of the data symbols is transmitted from the base station of FIGS.
  • APSK Amplitude / Phase / Shift / Keying
  • PAM Pulse / Amplitude / Modulation
  • PSK Phase / Shift / Keying
  • QAM Quadrature / Amplitude / Modulation
  • APSK includes, for example, 16APSK, 64APSK, 128APSK, 256APSK, 1024APSK, and 4096APSK.
  • the PAM includes, for example, 4PAM, 8PAM, 16PAM, 64PAM, 128PAM, 256PAM, 1024PAM, and 4096PAM.
  • PSK includes, for example, BPSK, QPSK, 8PSK, 16PSK, 64PSK, 128PSK, 256PSK, 1024PSK, and 4096PSK.
  • the QAM includes, for example, 4QAM, 8QAM, 16QAM, 64QAM, 128QAM, 256QAM, 1024QAM, and 4096QAM.
  • 2, 4, 8, 16, 64, 128, 256, 1024 signal point arrangement method on IQ plane (2, 4, 8, 16, 64) , 128, 256, 1024, etc.) is not limited to the signal point arrangement method of the modulation system shown in this specification.
  • the “base station” described in the present specification may be, for example, a broadcasting station, a base station, an access point, a terminal, or a mobile phone.
  • the “terminal” described in this specification may be a television, a radio, a terminal, a personal computer, a mobile phone, an access point, a base station, or the like.
  • the “base station” and “terminal” in the present disclosure are devices having a communication function, and the devices have some interface with a device for executing an application such as a television, a radio, a personal computer, and a mobile phone. It may be configured so that it can be connected by solving.
  • symbols other than data symbols such as pilot symbols and control information symbols, may be arranged in any manner.
  • the pilot symbol and / or control information symbol may be named in any way. For example, it may be a known symbol modulated using PSK modulation in a transceiver. Alternatively, in the transceiver, the receiver may be able to know the symbols transmitted by the transmitter by synchronizing the receiver. Using this symbol, the receiver performs frequency synchronization, time synchronization, channel estimation of each modulated signal (CSI (Channel State Information) estimation), signal detection, and the like.
  • CSI Channel State Information
  • a pilot symbol may be called a preamble, a unique word, a postamble, or a reference symbol.
  • the control information symbol is information to be transmitted to a communication partner for realizing communication other than data (data such as an application) (for example, modulation method, error correction coding method, error correction coding used for communication). This is a symbol for transmitting a system coding rate and / or setting information in an upper layer).
  • this indication is not limited to each embodiment, It can implement by changing variously.
  • the case of performing as a communication device has been described.
  • the present invention is not limited to this, and this communication method can also be performed as software processing.
  • a program for executing the above communication method may be stored in a ROM (Read Only Memory) in advance, and the program may be operated by a CPU (Central Processor Unit).
  • ROM Read Only Memory
  • CPU Central Processor Unit
  • a program for executing the above-described communication method is stored in a computer-readable storage medium, the program stored in the storage medium is recorded in a computer RAM (Random Access Memory), and the computer is executed according to the program. You may make it operate.
  • Each configuration such as each of the above embodiments may be typically realized as an LSI (Large Scale Integration) that is an integrated circuit having an input terminal and an output terminal. These may be individually made into one chip, or may be made into one chip so as to include all or part of the configurations of the respective embodiments.
  • the LSI is sometimes called an IC (Integrated Circuit), a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and / or setting of circuit cells inside the LSI may be used. Further, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. There is a possibility of adaptation of biotechnology.
  • Embodiment 3 a multicast communication method in the case where beamforming different from that in Embodiment 1 and / or Embodiment 2 is applied will be described.
  • the configuration of the base station is as described with reference to FIG. 1 to FIG. 3 of the first embodiment, and thus the description of the parts that operate in the same manner as in the first embodiment is omitted. Further, the configuration of the terminal that communicates with the base station is also as described with reference to FIGS. 4 to 6 of the first embodiment, and therefore the description of the parts that operate in the same manner as in the first embodiment is omitted. .
  • FIG. 22 shows a case where the base station transmits a multicast transmission stream to one terminal.
  • base station 700 transmits transmission beam 2201-1 of “(multicast) stream 1-1 (first beam of stream 1)” to terminal 2202-1 from a transmission antenna.
  • Terminal 2202-1 performs directivity control to generate reception directivity 2203-1, and receives transmission beam 2201-1 of “stream 1-1”.
  • FIG. 23 explains the “procedure for performing communication between the base station and the terminal” performed for the communication state between the base station and the terminal as shown in FIG.
  • the terminal first makes a “request for multicast transmission of stream 1” to the base station.
  • the base station receives [23-1] and recognizes that “multicast transmission of stream 1 is not performed”. Therefore, the base station transmits a training symbol for transmission directivity control and a training symbol for reception directivity control to perform multicast transmission of stream 1 to the terminal.
  • the terminal receives the training symbol for transmission directivity control and the training symbol for reception directivity control transmitted from the base station. Then, the terminal transmits feedback information to the base station so that the base station performs transmission directivity control and the terminal performs reception directivity control.
  • the base station determines a transmission directivity control method (such as determination of a weighting coefficient used when performing directivity control) based on feedback information transmitted by the terminal. Then, the base station performs transmission directivity control and transmits data symbols of stream 1.
  • a transmission directivity control method such as determination of a weighting coefficient used when performing directivity control
  • the terminal determines a reception directivity control method (such as determination of a weighting coefficient used when directivity control is performed). Then, the terminal starts receiving the data symbol of stream 1 transmitted by the base station.
  • a reception directivity control method such as determination of a weighting coefficient used when directivity control is performed.
  • the “procedure for performing communication between the base station and the terminal” in FIG. 23 is an example, and the order of transmission of each information is not limited to FIG. For example, the same implementation is possible even if the order of transmission of each information is changed.
  • FIG. 23 illustrates an example in which the terminal performs reception directivity control. However, the terminal may not perform reception directivity control. In this case, in FIG. 23, the base station does not have to transmit the reception directivity control training symbol, and the terminal does not have to determine the reception directivity control method.
  • the base station When the base station performs transmission directivity control, when the base station has the configuration of FIG. 1, for example, the multiplication coefficient in the multipliers 204-1 204-2, 204-3, and 204-4 in FIG. 2 is set. May be.
  • the weighting synthesis unit 301 may set a weighting coefficient.
  • the number of streams to be transmitted is “1” in the case of FIG. 22, but is not limited thereto.
  • the terminal When the terminal performs reception directivity control, when the terminal is configured as shown in FIG. 4, for example, the multiplication coefficients in the multipliers 503-1, 503-2, 503-3, and 503-4 in FIG. 5 are set. Good. When the terminal has the configuration shown in FIG. 6, for example, the multiplication coefficients in the multiplication units 603-1, 603-2,... 603-L may be set.
  • FIG. 24 shows an example in which symbols transmitted by the base station are arranged in the time direction.
  • FIG. 24 shows an example in which an example of symbols transmitted by the terminal is arranged in the time direction.
  • the horizontal axis indicates the time direction.
  • the base station when communication is performed between a base station and a terminal, as shown in FIG. 24, the base station first transmits a “base station transmission directivity control training symbol” 2401.
  • the “base station transmission directivity control training symbol” 2401 includes a control information symbol and a known PSK symbol.
  • the terminal receives the “base station transmission directivity control training symbol” 2401 transmitted by the base station, and for example, information on the antenna used for transmission by the base station and a multiplication coefficient used for directivity control (or Information regarding weighting coefficients) is transmitted as feedback information symbols 2402.
  • the base station receives the “feedback information symbol” 2402 transmitted by the terminal, and determines an antenna to be used for transmission from the feedback information symbol 2402. Also, the base station determines a coefficient used for transmission directivity control from feedback information symbol 2402. Then, the base station transmits “terminal reception directivity control training symbol” 2403.
  • the “terminal reception directivity control training symbol” 2403 includes a control information symbol and a known PSK symbol.
  • the terminal receives the “terminal reception directivity control training symbol” 2403 transmitted from the base station, and determines, for example, an antenna used by the terminal for reception and a multiplication coefficient used by the terminal for reception directivity control. Then, the terminal transmits as feedback information symbol 2404 that the preparation for receiving the data symbol is completed.
  • the base station receives the “feedback information symbol” 2404 transmitted by the terminal and outputs a data symbol 2405 based on the feedback information symbol 2404.
  • each of “base station transmission directivity control training symbol” 2401, “feedback information symbol” 2402, “terminal reception directivity control training symbol” 2403, “feedback information symbol” 2404, and “data symbol” 2405, Preambles for signal detection, time synchronization, frequency synchronization, frequency offset estimation and channel estimation, reference symbols, pilot symbols, and / or symbols for transmitting control information may be included.
  • FIG. 25 is an example of symbols transmitted by the base station when the base station transmits data symbols of stream 1 after the communication between the base station and the terminal in FIG. 23 is completed.
  • the horizontal axis indicates the time direction.
  • the base station transmits the first data symbol of transmission beam 1 of stream 1 as “(multicast) stream 1-1 data symbol (1)” 2501-1-1. Thereafter, a section 2502-1 capable of transmitting data symbols is arranged.
  • the base station transmits the second data symbol of the transmission beam 1 of the stream 1 (for multicast) as “(multicast) stream 1-1 data symbol (2)” 2501-1-2. Thereafter, a section 2502-2 in which data symbol transmission is possible is arranged.
  • the base station transmits the third data symbol of the transmission beam 1 of the stream 1 (for multicast) as “(multicast) stream 1-1 data symbol (3)” 2501-1-3.
  • the base station transmits the data symbol of “(multicast) stream 1-1” 2201-1 shown in FIG.
  • a section 2502-1 capable of transmitting data symbols includes a unicast transmission section 2503-1. Further, the section 2502-2 in which the data symbol can be transmitted includes a unicast transmission section 2503-2.
  • the frame includes unicast transmission sections 2503-1 and 2503-2.
  • the base station performs a section excluding the unicast transmission section 2503-1 of the section 2502-1 capable of transmitting data symbols and a unicast transmission section 2503-2 of the section 2502-2 capable of transmitting data symbols.
  • multicast symbols may be transmitted. This point will be described later using an example.
  • the unicast transmission section may not be a temporal position as shown in FIG. 25, and may be arranged temporally.
  • the base station may transmit symbols, or the terminal may transmit symbols.
  • the base station may be able to set the unicast transmission section directly.
  • the base station may be able to set a maximum transmission data transmission rate for transmitting a symbol for multicast.
  • a unicast transmission section corresponding to 500 Mbps can be set.
  • the unicast transmission section may be configured to be indirectly set at the base station. Another specific example will be described later.
  • FIG. 26 shows a state where one new terminal is added in a state where the base station shown in FIG. 22 transmits a multicast transmission stream to one terminal. 26 that operate in the same manner as in FIG. 22 are denoted by the same reference numerals.
  • Terminal 2202-2 performs directivity control to generate reception directivity 2203-2 and receives transmission beam 2201-1 of “(multicast) stream 1-1”.
  • FIG. 26 will be described.
  • FIG. 26 shows a state in which the terminal 2202-2 newly participates in multicast communication in a state where the base station 700 and the terminal 2202-1 are performing multicast communication.
  • the state shown in FIG. 26 will be described as an example.
  • the base station transmits “terminal reception directivity control training symbol” 2701 and “data symbol” 2702, and does not transmit the “base station transmission training symbol” shown in FIG.
  • the horizontal axis indicates the time direction.
  • FIG. 28 shows an example of operations performed by the base station and the terminal in order to realize the state shown in FIG. 26, that is, the state where the base station transmits a transmission beam for multicast to two terminals. Show.
  • the terminal 2202-2 makes a “request for stream 1 multicast transmission” to the base station. “Request for multicast transmission of stream 1” is transmitted in the unicast transmission section in FIG.
  • the base station Upon receiving the request shown in [28-1], the base station notifies the terminal 2202-2 that “multicast stream 1 is being transmitted”. The notification that “the multicast stream 1 is being transmitted” is transmitted in the unicast transmission section in FIG.
  • the terminal 2202-2 receives the notification shown in [28-2] and performs reception directivity control in order to start reception of the multicast stream 1. Terminal 2202-2 performs reception directivity control, and notifies the base station that “multicast stream 1” has been received.
  • the base station receives the notification shown in [28-3] and confirms that the terminal has received “multicast stream 1”.
  • the terminal 2202-2 performs reception directivity control and starts receiving “multicast stream 1”.
  • FIG. 29 shows a state where one new terminal is added in a state where the base station shown in FIG. 22 transmits a multicast transmission stream to one terminal. 29 that operate in the same manner as in FIG. 22 are given the same numbers.
  • FIG. 29 differs from FIG. 26 in that the base station 700 newly transmits a transmission beam 2201-2 of “(multicast) stream 1-2 (second of stream 1)”, and the terminal 2202-2 By performing directivity control, reception directivity 2203-2 is generated, and the transmission beam 2201-2 of “(multicast) stream 1-2” is received.
  • FIG. 29 shows a state in which the terminal 2202-2 newly participates in the multicast communication in a state where the base station 700 and the terminal 2202-1 are performing the multicast communication.
  • the state shown in FIG. 29 will be described as an example.
  • FIG. 30 shows an example of operations performed by the base station and the terminal to realize the state shown in FIG. 29, that is, the state in which the base station transmits a multicast transmission beam to two terminals. Show.
  • the terminal 2202-2 makes a “request for multicast transmission of stream 1” to the base station. “Request for multicast transmission of stream 1” is transmitted in the unicast transmission section in FIG.
  • the base station receives the request shown in [30-1], and notifies the terminal 2202-2 that “the multicast stream 1 is being transmitted”.
  • the notification that “the multicast stream 1 is being transmitted” is transmitted in the unicast transmission section in FIG.
  • the terminal 2202-2 receives the notification shown in the above [30-2] and notifies the base station that “multicast stream 1 has not been received”.
  • the notification that “multicast stream 1 has not been received” is transmitted in the unicast transmission section in FIG.
  • the base station Upon receiving the notification shown in [30-3], the base station determines to transmit another transmission beam of the multicast stream 1 (that is, transmission beam 2201-2 in FIG. 29). Here, it is determined that another transmission beam of the multicast stream 1 is transmitted, but it may be determined that another transmission beam of the multicast stream 1 is not transmitted. This point will be described later.
  • the base station transmits a training symbol for transmission directivity control and a training symbol for reception directivity control in order to perform multicast transmission of stream 1 to the terminal 2202-2.
  • the base station transmits the transmission beam of stream 1-1 in FIG. This point will be described later.
  • the terminal 2202-2 receives the training symbol for transmission directivity control and the training symbol for reception directivity control transmitted by the base station. Terminal 2202-2 transmits feedback information to the base station so that the base station performs transmission directivity control and terminal 2202-2 performs reception directivity control.
  • the base station determines a transmission directivity control method (such as determination of a weighting coefficient used when performing directivity control) based on the feedback information transmitted by the terminal 2202-2. Then, the base station transmits the data symbol of stream 1 (the transmission beam 2201-2 of stream 1-2 in FIG. 29).
  • a transmission directivity control method such as determination of a weighting coefficient used when performing directivity control
  • the terminal 2202-2 determines a reception directivity control method (such as determination of a weighting coefficient used when performing directivity control). Terminal 2202-2 starts receiving the data symbol of stream 1 (the transmission beam 2201-2 of stream 1-2 in FIG. 29) transmitted by the base station.
  • a reception directivity control method such as determination of a weighting coefficient used when performing directivity control.
  • the “procedure for performing communication between the base station and the terminal” in FIG. 30 is an example, and the order of transmission of each information is not limited to that in FIG. For example, the same implementation is possible even if the order of transmission of each information is changed.
  • FIG. 30 illustrates an example in which the reception directivity control of the terminal is performed
  • the terminal may not perform the reception directivity control.
  • the base station does not have to transmit a training symbol for reception directivity control
  • the terminal does not have to determine a reception directivity control method.
  • the base station When the base station performs transmission directivity control, when the base station has the configuration of FIG. 1, for example, the multiplication coefficient in the multipliers 204-1 204-2, 204-3, and 204-4 in FIG. 2 is set. May be.
  • the weighting synthesis unit 301 may set a weighting coefficient.
  • the number of streams to be transmitted is “2” in the case of FIG. 29, but is not limited thereto.
  • the multiplication factor at may be set.
  • the terminal has the configuration shown in FIG. 6, for example, the multiplication coefficients in the multiplication units 603-1, 603-2,... 603-L may be set.
  • FIG. 31 shows an example of symbols transmitted by the base station when the base station transmits data symbols of stream 1 after the communication between the base station and the terminal in FIG. 30 is completed.
  • the horizontal axis indicates the time direction.
  • FIG. 31 The symbols illustrated in FIG. 31 are configured as follows in the same manner as described above.
  • the terminal obtains “stream 1 data” by obtaining “data symbol of stream 1-1”. Further, the terminal obtains “data of stream 1” by obtaining “data symbol of stream 1-2”.
  • two terminals can receive the multicast stream transmitted by the base station.
  • directivity control is performed by transmission and reception, as an effect of the present embodiment, an area in which a multicast stream can be received can be widened.
  • the addition of the stream and / or the addition of the transmission beam is performed adaptively, as an effect of the present embodiment, the frequency, time, and / or space resources for transmitting data are effective. It can be used for.
  • control described below may be performed.
  • the details of the control are as follows.
  • FIG. 32 is an example of “symbol transmitted by the base station when the base station transmits a data symbol (for stream 1) after communication between the base station and the terminal in FIG. 30 is completed”, which is different from FIG. .
  • the horizontal axis indicates the time direction.
  • the same numbers are assigned to components that operate in the same manner as in FIGS.
  • the unicast transmission sections 2503-1 and 2503-2 are set to be longer in time, so that the base station adds more multicast symbols and transmits It is a point not to do.
  • the base station transmits a transmission beam for multicast to two terminals (terminals 2202-1 and 2202-2), and a new terminal 2202-3 is transmitted to the base station.
  • a transmission beam for multicast to two terminals (terminals 2202-1 and 2202-2)
  • a new terminal 2202-3 is transmitted to the base station.
  • FIG. 32 shows a frame of the modulated signal transmitted by the base station.
  • the terminal 2202-3 makes a “request for multicast transmission of stream 1” to the base station.
  • the “request for multicast transmission of stream 1” is transmitted in the unicast transmission section in FIG.
  • the base station receives the request shown in [33-1] and notifies the terminal 2202-3 that “multicast stream 1 is being transmitted”. “Notification of transmission of multicast stream 1” is transmitted in the unicast transmission section in FIG.
  • the terminal 2202-3 receives the notification shown in the above [33-2] and notifies the base station that “multicast stream 1 has not been received”. “Notification of not receiving multicast stream 1” is transmitted in the unicast transmission section in FIG.
  • the base station Upon receiving the notification shown in [33-3], the base station transmits a transmission beam of the stream 1-1 for the multicast stream different from the transmission beam of the stream 1-1 and the transmission beam of the stream 1-2. It is determined whether or not the beam can be transmitted. In this case, considering the frame shown in FIG. 32, the base station determines not to transmit another transmission beam of the multicast stream 1. Therefore, the base station notifies the terminal 2202-3 that “not to transmit another transmission beam of the multicast stream 1”. The “notification that another transmission beam of the multicast stream 1 is not transmitted” is transmitted in the unicast transmission section in FIG.
  • the terminal 2202-3 receives the “notification that another transmission beam of the multicast stream 1 is not transmitted”.
  • the “procedure for communication between the base station and the terminal” in FIG. 33 is an example, and the order of transmission of each information is not limited to FIG. For example, the same implementation is possible even if the order of transmission is changed. As described above, when the communication resource for multicast transmission is insufficient, the addition of the multicast transmission beam may not be performed.
  • the base station shown in FIG. 29 transmits a multicast transmission beam to two terminals (terminals 2202-1 and 202-2), and a new terminal 2202-3 transmits to the base station.
  • An example of the operation when a request for adding a transmission beam of another multicast stream (stream 2) is made is shown. Note that the frame of the modulated signal transmitted by the base station is in a state as shown in FIG.
  • the terminal 2202-3 makes a “request for multicast transmission of stream 2” to the base station. “Request for multicast transmission of stream 2” is transmitted in the unicast transmission section 2503 in FIG.
  • the base station Upon receiving the request shown in [34-1], the base station notifies the terminal 2202-3 that “multicast stream 2 is not transmitted”. Also, the base station determines whether or not the base station can additionally transmit the transmission beam of the multicast stream 2. In this case, in consideration of the frame state as shown in FIG. 31, the terminal 2202-3 is notified that “the transmission beam of the multicast stream 2 is supported”. “Notification that transmission of multicast stream 2 is not performed” and “notification that transmission beam of multicast stream 2 can be transmitted” are transmitted in unicast transmission section 2503 in FIG. Is done.
  • the terminal 2203-3 receives the notification shown in [34-2], and notifies the base station that “the preparation for reception of the multicast stream 2 has been completed”.
  • the notification that “the preparation for receiving the multicast stream 2 has been completed” is transmitted in the unicast transmission section 2503 in FIG.
  • the base station receives the notification shown in [34-3] and decides to transmit the transmission beam of the stream 2 for multicast. Therefore, the base station transmits a training symbol for transmission directivity control and a training symbol for reception directivity control in order to perform multicast transmission of stream 2 to terminal 2202-3. In addition to the transmission of these symbols, the base station transmits the transmission beam of stream 1-1 and the transmission beam of stream 1-2 as shown in FIG. This point will be described later.
  • the terminal 2202-3 receives the training symbol for transmission directivity control and the training symbol for reception directivity control transmitted by the base station. Terminal 2202-3 transmits feedback information to the base station so that the base station performs transmission directivity control and terminal 2202-3 performs reception directivity control.
  • the base station determines a transmission directivity control method (such as determination of a weighting coefficient used when performing directivity control) based on the feedback information transmitted by the terminal 2202-3, and stream 2 Send data symbols.
  • a transmission directivity control method such as determination of a weighting coefficient used when performing directivity control
  • the terminal 2202-3 determines a reception directivity control method (such as determination of a weighting coefficient used when performing directivity control), and receives a data symbol of stream 2 transmitted by the base station. Start.
  • the “procedure for performing communication between the base station and the terminal” in FIG. 34 is an example, and the order of transmission of each information is not limited to FIG. For example, the same implementation is possible even if the order of transmission of each information is changed.
  • FIG. 34 illustrates an example in which the reception directivity control of the terminal is performed, but the terminal may not perform the reception directivity control.
  • the base station does not have to transmit a training symbol for reception directivity control, and the terminal does not have to determine a reception directivity control method.
  • the base station When the base station performs transmission directivity control, when the base station has the configuration of FIG. 1, for example, the multiplication coefficient in the multipliers 204-1 204-2, 204-3, and 204-4 in FIG. 2 is set. May be.
  • the terminals 2202-1, 2202-2, and 2202-3 perform reception directivity control and the terminal has the configuration shown in FIG. 4, for example, the multiplication units 503-1, 503-2, and 503-3 shown in FIG. , 503-4 may be set.
  • the terminal has the configuration shown in FIG. 6, for example, the multiplication coefficients in the multiplication units 603-1, 603-2,... 603-L may be set.
  • FIG. 35 shows an example of symbols transmitted by the base station when the base station transmits data symbols of stream 1 and stream 2 after the communication between the base station and the terminal in FIG. 34 is completed.
  • the horizontal axis indicates the time direction.
  • FIG. 35 The symbols illustrated in FIG. 35 are configured as follows in the same manner as described above.
  • the terminal obtains “stream 1 data” by obtaining “data symbol of stream 1-1”. Further, the terminal obtains “data of stream 1” by obtaining “data symbol of stream 1-2”.
  • the terminal obtains the data of “stream 2” by obtaining “data symbol of stream 2-1.”
  • the terminal can receive a plurality of multicast streams (stream 1 and stream 2) transmitted by the base station.
  • a plurality of multicast streams (stream 1 and stream 2) transmitted by the base station.
  • directivity control is performed by transmission and reception, as an effect of the present embodiment, an area in which a multicast stream can be received can be widened.
  • the addition of the stream and / or the addition of the transmission beam is performed adaptively, as an effect of the present embodiment, the frequency, time, and / or space resources for transmitting data are effective. It can be used for.
  • control described below may be performed.
  • the details of the control are as follows.
  • FIG. 32 is an example of “symbol transmitted by the base station when the base station transmits a data symbol (for stream 1)” different from FIG.
  • the horizontal axis indicates the time direction.
  • the same numbers are assigned to components that operate in the same manner as in FIGS.
  • the difference from FIG. 35 is that the unicast transmission sections 2503-1 and 2503-2 are set to be longer in time, so that the base station can determine more symbols for multicast, for example, new streams. The symbol is added and it is not transmitted.
  • the base station transmits a transmission beam for multicast to two terminals (terminals 2202-1 and 2202-2), and the new terminal 2202-3 transmits to the base station.
  • An example of the operation in the case of requesting addition of a transmission beam of another multicast stream (stream 2) will be described.
  • FIG. 32 shows a frame of the modulated signal transmitted by the base station.
  • the terminal 2202-3 makes a “request for multicast transmission of stream 2” to the base station. “Request for multicast transmission of stream 2” is transmitted in the unicast transmission section in FIG.
  • the base station Upon receiving the request shown in [36-1], the base station notifies the terminal 2202-3 that “multicast stream 2 is not transmitted”. “Not transmitting multicast stream 2” is transmitted in the unicast transmission section in FIG. Further, the base station determines whether or not the transmission beam of the multicast stream 2 can be transmitted. The base station considers the frame shown in FIG. 32 and determines not to transmit the transmission beam of the multicast stream 2. Therefore, the base station notifies the terminal 2202-3 that “the transmission beam of the multicast stream 2 is not transmitted”. The “notification of not transmitting the transmission beam of multicast stream 2” is transmitted in the unicast transmission section in FIG.
  • the terminal 2202-3 receives the “notification of not transmitting the transmission beam of the multicast stream 2”.
  • the “procedure for communication between the base station and the terminal” in FIG. 36 is an example, and the order of transmission of each information is not limited to FIG. For example, the same implementation is possible even if the procedure of each transmission is changed. As described above, when communication resources for multicast transmission are insufficient, the addition of the stream and / or the addition of the multicast transmission beam may not be performed.
  • the maximum value of the number of multicast transmission beams is determined or set in advance.
  • the base station receives a request from each terminal and transmits a multicast transmission beam that is equal to or less than the maximum value of the number of multicast transmission beams. For example, in the case of FIG. 35, the number of multicast transmission beams is three. Then, the base station transmits a plurality of transmission beams for multicasting, and determines a vacant time after transmitting these as a unicast transmission period.
  • the unicast transmission section may be determined.
  • Supplement 1 describes a case where the base station is performing unicast communication, that is, individual communication, with a plurality of terminals.
  • the control information may be broadcast to a plurality of terminals in order to perform communication. That is, these symbol groups may be broadcast channel information.
  • the control information is information that can be used, for example, to realize data communication between the base station and the terminal.
  • the # 1 symbol group 901-1 of stream 1, the # 2 symbol group 901-2 of stream 1, and the # 3 symbol group 901-3 of stream 1 in FIG. 9 are common search spaces (common ⁇ ⁇ ⁇ ⁇ search space). There may be.
  • the common search space is control information for performing cell control.
  • the common search space is control information broadcast to a plurality of terminals.
  • the control information may be broadcast to a plurality of terminals in order to perform communication. That is, these symbol groups may be broadcast channel information.
  • the # 1 symbol group 902-1 of stream 2, the # 2 symbol group 902-2 of stream 2, and the # 3 symbol group 902-3 of stream 2 in FIG. 9 may be a common search space.
  • the description of the # 2 symbol group 902-2 for 2 and the # 3 symbol group 902-3 for stream 2 are the same as those described in the previous embodiments, and thus the description thereof is omitted.
  • the control information may be broadcast to a plurality of terminals in order to perform data communication with the terminals. That is, these symbol groups may be broadcast channel information.
  • the # 1 symbol group 1401-1 of the modulation signal 1 in FIG. 14, the # 2 symbol group 1401-2 of the modulation signal 1, and the # 3 symbol group 1401-3 of the modulation signal 1 are common search spaces. Also good.
  • the control information may be broadcast to a plurality of terminals in order to perform data communication with the terminals. That is, these symbol groups may be broadcast channel information.
  • the # 1 symbol group 1402-1 of the modulation signal 2 in FIG. 14, the # 2 symbol group 1402-2 of the modulation signal 2, and the # 3 symbol group 1402-3 of the modulation signal 2 are common search spaces. Also good.
  • the # 1 symbol group 1401-1 of the modulation signal 1 in FIG. 14, the # 2 symbol group 1401-2 of the modulation signal 1, and the # 3 symbol group 1401-3 of the modulation signal 1 are the same as in the previous embodiments. As explained.
  • the # 1 symbol group 1402-1 of the modulation signal 2 in FIG. 14, the # 2 symbol group 1402-2 of the modulation signal 2, and the # 3 symbol group 1402-3 of the modulation signal 2 in the previous embodiments As explained.
  • the stream 1-1 data symbol (1) 2501-1-1, stream 1-1 data symbol (2) 2501-1-2, and stream 1-1 data symbol (3) 2501-1 in FIG. 3 may be control information broadcast to a plurality of terminals in order for the base station to perform data communication with the plurality of terminals. That is, these symbols may be broadcast channel information.
  • stream 1-1 data symbol (1) 2501-1-1, stream 1-1 data symbol (2) 2501-1-2, and stream 1-1 data symbol (3) 2501-1 in FIG. 3 may be a common search space.
  • stream 1-1 data symbol (1) 2501-1-1, stream 1-1 data symbol (2) 2501-1-2, and stream 1-1 data symbol (3) 2501-1 in FIG. 3 is as described in the above embodiments.
  • Control information broadcast to a plurality of terminals in order for a station to perform data communication with the plurality of terminals may be used. That is, these symbols may be broadcast channel information.
  • the stream 1-1 data symbol (M) 2501-1-M, the stream 1-1 data symbol (M + 1) 2501-1- (M + 1), and the stream 1-1 data symbol (M + 2) 2501 in FIGS. -1- (M + 2), stream 1-2 data symbol (1) 3101-1, stream 1-2 data symbol (2) 3101-2, and stream 1-2 data symbol (3) 3101-3 are common It may be a search space.
  • stream 1-1 data symbol (M) 2501-1-M the stream 1-1 data symbol (M + 1) 2501-1- (M + 1), and the stream 1-1 data symbol (M + 2) 2501. -1- (M + 2), stream 1-2 data symbol (1) 3101-1, stream 1-2 data symbol (2) 3101-2, and stream 1-2 data symbol (3) 3101-3 This is as described in the previous embodiments.
  • stream 1-1 data symbol (M) 2501-1-M stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1 -(M + 2), stream 1-2 data symbol (N) 3101-N, stream 1-2 data symbol (N + 1) 3101- (N + 1), and stream 1-2 data symbol (N + 2) 3101- (N + 2)
  • the base station may be control information broadcast to a plurality of terminals in order to perform data communication with the plurality of terminals. That is, these symbols may be broadcast channel information.
  • stream 1-1 data symbol (M) 2501-1-M stream 1-1 data symbol (M + 1) 2501-1- (M + 1)
  • stream 1-1 data symbol (M + 2) 2501-1 -(M + 2)
  • stream 1-2 data symbol (N) 3101-N
  • stream 1-2 data symbol (N + 1) 3101- (N + 1)
  • stream 1-2 data symbol (N + 2) 3101- (N + 2)
  • a common search space may be used.
  • Control information broadcast to a plurality of terminals in order to perform data communication with the plurality of terminals may be used. That is, these symbols may be broadcast channel information.
  • stream 1-1 data symbol (M) 2501-1-M stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1 -(M + 2), stream 1-2 data symbol (N) 3101-N, stream 1-2 data symbol (N + 1) 3101- (N + 1), and stream 1-2 data symbol (N + 2) 3101- (N + 2)
  • FIG. 9 when transmitting each data symbol, a single carrier transmission method may be used, or a multi-carrier transmission method such as OFDM may be used. Also good. Further, the temporal positions of the data symbols are not limited to those shown in FIGS. 9, 14, 25, 31, 32, and 35.
  • the horizontal axis is described as the time direction, but the same implementation is possible even when the horizontal axis is the frequency (carrier) direction.
  • the base station transmits each data symbol using one or more carriers or subcarriers.
  • Supplement 2 describes a case where the base station performs unicast communication with a plurality of terminals, that is, individual communication.
  • # 1 symbol group 901-1 of stream 1 in FIG. 9, # 2 symbol group 901-2 of stream 1, # 3 symbol group 901-3 of stream 1, # 1 symbol group 902-1 of stream 2, stream 2 # 2 symbol group 902-2 and # 2 symbol group 902-3 of stream 2 are data addressed to a base station or data addressed to any one of a plurality of terminals performing communication. Also good. In this case, control information may be included in the data.
  • the # 1 symbol group 1401-1 of the modulation signal 1 in FIG. 14, the # 2 symbol group 1401-2 of the modulation signal 1, the # 3 symbol group 1401-3 of the modulation signal 1, and the # 1 symbol group 1401 of the modulation signal 2 in FIG. -3, the # 2 symbol group 1402-2 of the modulated signal 2 and the # 3 symbol group 1402-3 of the modulated signal 2 are either one of a plurality of terminals performing data addressed to the base station or performing communication It may be addressed data. In this case, control information may be included in the data.
  • # 1 symbol group 1401-1 of modulated signal 1, # 2 symbol group 1401-2 of modulated signal 1, # 3 symbol group 1401-3 of modulated signal 1, and # 1 symbol group 1401 of modulated signal 2 -3, # 2 symbol group 1402-2 of modulated signal 2 and # 3 symbol group 1402-3 of modulated signal 2 are as described in the previous embodiments.
  • the stream 1-1 data symbol (1) 2501-1-1, stream 1-1 data symbol (2) 2501-1-2, and stream 1-1 data symbol (3) 2501-1 in FIG. 3 may be data addressed to a base station or data addressed to any one of a plurality of terminals performing communication.
  • control information may be included in the data.
  • stream 1-1 data symbol (1) 2501-1-1, stream 1-1 data symbol (2) 2501-1-2, and stream 1-1 data symbol (3) 2501-1 in FIG. 3 is as described in the above embodiments.
  • the stream 1-1 data symbol (M) 2501-1-M, the stream 1-1 data symbol (M + 1) 2501-1- (M + 1), and the stream 1-1 data symbol (M + 2) 2501 in FIGS. -1- (M + 2), stream 1-2 data symbol (1) 3101-1, stream 1-2 data symbol (2) 3101-2, stream 1-2 data symbol (3) 3101-3 are addressed to the base station Or data addressed to any one of a plurality of terminals performing communication. In this case, control information may be included in the data.
  • stream 1-1 data symbol (M) 2501-1-M the stream 1-1 data symbol (M + 1) 2501-1- (M + 1), and the stream 1-1 data symbol (M + 2) 2501. -1- (M + 2), stream 1-2 data symbol (1) 3101-1, stream 1-2 data symbol (2) 3101-2, stream 1-2 data symbol (3) 3101-3 This is as described in the embodiment.
  • stream 1-1 data symbol (M) 2501-1-M stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1 -(M + 2), stream 1-2 data symbol (N) 3101-N, stream 1-2 data symbol (N + 1) 3101- (N + 1), stream 1-2 data symbol (N + 2) 3101- (N + 2)
  • Data addressed to a station or data addressed to any one of a plurality of terminals performing communication may be used.
  • control information may be included in the data.
  • stream 2-1 data symbol (1) 3501-1, stream 2-1 data symbol (2) 3501-2, and stream 2-1 data symbol (3) 3501-3 in FIG. 35 are addressed to the base station.
  • control information may be included in the data.
  • stream 1-1 data symbol (M) 2501-1-M, stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1 -(M + 2), stream 1-2 data symbol (N) 3101-N, stream 1-2 data symbol (N + 1) 3101- (N + 1), stream 1-2 data symbol (N + 2) 3101- (N + 2), stream 2 -1 data symbol (1) 3501-1, stream 2-1 data symbol (2) 3501-2, and stream 2-1 data symbol (3) 3501-3 have been described in the above embodiments. It is as follows.
  • FIG. 9 when transmitting each data symbol, a single carrier transmission method may be used, or a multi-carrier transmission method such as OFDM may be used. Also good. Further, the temporal positions of the data symbols are not limited to those shown in FIGS. 9, 14, 25, 31, 32, and 35.
  • the horizontal axis is described as the time direction, but the same implementation is possible when the horizontal axis is the frequency (carrier) direction.
  • the base station transmits each data symbol using one or more carriers or subcarriers.
  • the base station performs # 1 symbol group 901-1 of stream 1, # 2 symbol group 901-2 of stream 1, # 3 symbol group 901-3 of stream 1, and # 2 of stream 2
  • the “# 1 symbol group 901-1 of the stream 1” Transmission beam of # 2 symbol group 901-2 of stream 1, transmission beam of # 3 symbol group 901-3 of stream 1, transmission beam of # 1 symbol group 902-1 of stream 2, and # of stream 2 Using a different transmission beam from the transmission beam of 2 symbol group 902-2 and the transmission beam of # 3 symbol group 902-3 of stream 2, It may be trust.
  • the base station of FIG. 3 may perform “signal processing of the signal processing unit 102 and signal processing by the weighting synthesis unit 301” or “signal processing of the signal processing unit 102 or signal processing by the weighting synthesis unit 301”.
  • a transmission beam for the above-mentioned “another symbol group” may be generated.
  • the base station as shown in the frame configuration of FIG. 14, # 1 symbol group 1401-1 of modulated signal 1, # 2 symbol group 1401-2 of modulated signal 1, and # 3 symbol group 1401-3 of modulated signal 1
  • 1 # 1 symbol group 1401-1 transmit beam
  • modulated signal 1 # 2 symbol group 1401-2 transmit beam
  • modulated signal 1 # 3 symbol group 1401-3 transmit beam
  • # 2 symbol group 1402-2 transmission beam of modulation signal 2
  • transmission beam of # 3 symbol group 1402-3 of modulation signal 2 ". Shin Le group may be transmitted.
  • the “different symbol group” may be a symbol group including a data symbol addressed to a certain terminal, or a symbol group including a control information symbol group as described in other parts of the present disclosure. Alternatively, it may be a symbol group including other multicast data symbols.
  • the base station For example, the base station, as shown in the frame configuration of FIG. 25, stream 1-1 data symbol (1) 2501-1-1, stream 1-1 data symbol (2) 2501-1-2, or stream 1- In the time zone in which one data symbol (3) 2501-1-3 is transmitted, “stream 1-1 data symbol (1) 2501-1-1; stream 1-1 data symbol (2) 2501-1-2” A different symbol group may be transmitted using a transmission beam different from the “transmission beam transmitting stream 1-1 data symbol (3) 2501-1-3”.
  • the base station may use stream 1-1 data symbol (1) 2501-1-1, stream 1-1 data symbol (2) 2501-1-2, or stream 1-1 data symbol (3) 2501-1. ⁇ 3 in the time zone in which “-3” is transmitted, “stream 1-1 data symbol (1) 2501-1-1, stream 1-1 data symbol (2) 2501-1-2, stream 1-1 data symbol (3 )
  • Another symbol group may be transmitted using a transmission beam different from “transmission beam transmitting 2501-1-3”.
  • the base station as shown in the frame configuration of FIGS. 31 and 32, stream 1-1 data symbol (M) 2501-1-M, stream 1-1 data symbol (M + 1) 2501-1- (M + 1), Alternatively, in the time zone in which the stream 1-1 data symbol (M + 2) 2501-1- (M + 2) is transmitted, “stream 1-1 data symbol (M) 2501-1-M, stream 1-1 data symbol ( M + 1) 2501-1- (M + 1) and stream 1-1 data symbol (M + 2) 2501-1- (M + 2) are transmitted using a different transmission beam than another transmission beam. Also good.
  • the base station may use stream 1-1 data symbol (M) 2501-1-M, stream 1-1 data symbol (M + 1) 2501-1- (M + 1), or stream 1-1 data symbol (M + 2) 2501. -1 ⁇ (M + 2) is transmitted in the “stream 1-1 data symbol (M) 2501-1-M, stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1 -1 data symbol (M + 2) 2501-1-(M + 2) may be used to transmit another symbol group using a different transmission beam.
  • the base station may use the stream 1-2 data symbol (1) 3101-1, stream 1-2 data symbol (2) 3101-2, or stream 1-2.
  • Another symbol group may be transmitted using a transmission beam different from “a transmission beam for transmitting 3101-3”.
  • the base station transmits stream 1-2 data symbol (1) 3101-1, stream 1-2 data symbol (2) 3101-2, or stream 1-2 data symbol (3) 3101-3.
  • Another symbol group may be transmitted using a different transmission beam.
  • the base station may use stream 1-1 data symbol (M) 2501-1-M, stream 1-1 data symbol (M + 1) 2501- (M + 1), or stream 1- “Stream 1-1 data symbol (M) 2501-1-M, stream 1-1 data symbol (M + 1) 2501- (M + 1)” in the time zone during which one data symbol (M + 2) 2501- (M + 2) is transmitted
  • another symbol group may be transmitted using a transmission beam different from “a transmission beam transmitting stream 1-1 data symbols (M + 2) 2501 ⁇ (M + 2)”.
  • the base station may use stream 1-1 data symbol (M) 2501-1-M, stream 1-1 data symbol (M + 1) 2501- (M + 1), or stream 1-1 data symbol (M + 2) 2501- ( M + 2) is transmitted in the “stream 1-1 data symbol (M) 2501-1-M, stream 1-1 data symbol (M + 1) 2501- (M + 1), stream 1-1 data symbol (M + 2)”.
  • 2501- (M + 2) may be transmitted by using a different transmission beam from “a transmission beam for transmitting (M + 2)”.
  • the base station performs the stream 1-2 data symbol (N) 3101-N, the stream 1-2 data symbol (N + 1) 3101- (N + 1), or the stream 1-2 data.
  • the symbol (N + 2) 3101- (N + 2) is transmitted, “stream 1-2 data symbol (N) 3101-N, stream 1-2 data symbol (N + 1) 3101- (N + 1), stream 1-
  • Another symbol group may be transmitted using a transmission beam different from “a transmission beam transmitting two data symbols (N + 2) 3101-(N + 2)”.
  • the base station may use stream 1-2 data symbols (N) 3101-N, stream 1-2 data symbols (N + 1) 3101- (N + 1), or stream 1-2 data symbols (N + 2) 3101- (N + 2).
  • stream 1-2 data symbols (N) 3101-N is transmitted in the “stream 1-2 data symbol (N) 3101-N, stream 1-2 data symbol (N + 1) 3101- (N + 1), stream 1-2 data symbol (N + 2) 3101- (
  • Another symbol group may be transmitted using a transmission beam different from the “transmission beam transmitting N + 2)”.
  • the base station as shown in the frame configuration of FIG. In the time zone in which 3501-3 is transmitted, “stream 2-1 data symbol (1) 3501-1, stream 2-1 data symbol (2) 3501-2, stream 2-1 data symbol (3) 3501- Another symbol group may be transmitted using a transmission beam different from the “transmission beam transmitting 3”.
  • the base station transmits stream 2-1 data symbol (1) 3501-1, stream 2-1 data symbol (2) 3501-2, or stream 2-1 data symbol (3) 3501-3.
  • Another symbol group may be transmitted using a different transmission beam.
  • another symbol group may be a symbol group including a data symbol addressed to a certain terminal, or a symbol group including a control information symbol as described in other parts of the present specification. It may be a symbol group including other multicast data symbols.
  • the base station of FIG. 1 may generate a transmission beam for the above “different symbol group” by the signal processing of the signal processing unit 102.
  • the base station in FIG. 1 may generate a transmission beam for the “other symbol group” by selecting antennas from the antenna unit 106-1 to the antenna unit 106-M.
  • the base station of FIG. 3 may perform “signal processing of the signal processing unit 102 and signal processing by the weighting synthesis unit 301” or “signal processing of the signal processing unit 102 or signal processing by the weighting synthesis unit 301”.
  • a transmission beam for the above-mentioned “another symbol group” may be generated.
  • unicast transmission sections 2503-1 and 2503-2 as described in FIGS. 25, 31, 32, and 35 may not be set.
  • the terminal obtains “stream 1 data” by obtaining “data symbol of stream 1-1”. Further, the terminal obtains “data of stream 1” by obtaining “data symbol of stream 1-2”.
  • the terminal obtains “stream 1 data” by obtaining “data symbol of stream 1-1”. Further, the terminal obtains “data of stream 1” by obtaining “data symbol of stream 1-2”.
  • Stream 1-1 data symbol (M) 2501-1-M and stream 1-2 data symbol (N) 3101-N contain the same data.
  • the stream 1-1 data symbol (M + 1) 2501-1- (M + 1) and the stream 1-2 data symbol (N + 1) 3101- (N + 1) contain the same data.
  • the stream 1-1 data symbol (M + 2) 2501-1- (M + 2) and the stream 1-2 data symbol (N + 2) 3101- (N + 2) contain the same data.
  • K and L are integers.
  • the stream 1-1 data symbol (M) 2501-1-M and the stream 1-2 data symbol (N) 3101-N partially include the same data.
  • the stream 1-1 data symbol (M + 1) 2501-1- (M + 1) and the stream 1-2 data symbol (N + 1) 3101- (N + 1) partially include the same data.
  • the stream 1-1 data symbol (M + 2) 2501-1- (M + 2) and the stream 1-2 data symbol (N + 2) 3101- (N + 2) partially include the same data.
  • ⁇ Method 2-2> There is a stream 1-2 data symbol (L) 3101-L including a part of data included in the stream 1-1 data symbol (K) 2501-1-K. K and L are integers.
  • the first base station or the first transmission system generates a first packet group including data of the first stream and a second packet group including data of the first stream, and Packets included in the second packet group are transmitted in the first period using the first transmission beam, and packets included in the second packet group are transmitted using the second transmission beam different from the first transmission beam. Transmission is performed in the second period, and the first period and the second period do not overlap each other.
  • the second packet group may include a second packet including the same data as the data included in the first packet included in the first packet group.
  • the second packet group may include a third packet including the same data as part of the data included in the first packet included in the first packet group. Good.
  • the first transmission beam and the second transmission beam may be transmission beams having different directivities transmitted using the same antenna unit, or transmitted using different antenna units. It may be a transmission beam.
  • the second base station or the second transmission system further generates a third packet group including the data of the first stream, A packet included in the third packet group is transmitted in a third period using a third transmission beam different from the first transmission beam and the second transmission beam, the third period being the first period and There is no overlap with the second period.
  • the second base station or the second transmission system may repeatedly set the first period, the second period, and the third period in a predetermined order.
  • the third base station or the third transmission system further generates a third packet group including the data of the first stream, A packet included in the third packet group is transmitted in a third period using a third transmission beam different from the first transmission beam and the second transmission beam, and at least part of the third period is It overlaps with 1 period.
  • the third base station or the third transmission system may repeatedly set the first period, the second period, and the third period, and any of the third periods that are repeatedly set. At least a part of the period 3 may overlap with the first period, and at least one third period among the third period repeatedly set also overlaps with the first period. It does not have to be.
  • the fourth base station or the fourth transmission system further generates a fourth packet including the data of the second stream, 4 packets are transmitted in a fourth period using a fourth transmission beam different from the first transmission beam, and at least a part of the fourth period overlaps with the first period.
  • first period and the second period do not overlap each other, but the first period and the second period may partially overlap each other, All of one period may overlap with the second period, or all of the first period may overlap with all of the second period.
  • the fifth base station or the fifth transmission system generates one or a plurality of packet groups including the data of the first stream, transmits each packet group using a different transmission beam, and transmits from the terminal.
  • the number of packet groups generated based on the signal to be generated may be increased or decreased.
  • stream is described. However, as described elsewhere in this specification, “stream 1-1 data symbol (M) 2501-1” in FIGS. M, and stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1- (M + 2), and stream 1-2 data symbol (1 ) 3101-1 and stream 1-2 data symbol (2) 3101-2, stream 1-2 data symbol (3) 3101-3 ”and“ stream 1-1 data symbol (M) 2501 in FIG.
  • stream 1-1 data symbol (M + 1) 2501-1- (M + 1), stream 1-1 data symbol (M + 2) 2501-1- (M + 2) and stream 1-2 data symbol (N) 3101-N and stream 1-2 data symbol (N + 1) 3101- (N + 1) and stream 1-2 data symbol (N + 2) ) 3101- (N + 2) ” may be a symbol including a data symbol addressed to a certain terminal, a symbol including a control information symbol, or a symbol including a data symbol for multicast. Good.
  • Embodiment 4 In this embodiment, a specific example of the communication system described in Embodiments 1 to 3 will be described.
  • the communication system in the present embodiment includes, for example, (a plurality of) base stations and a plurality of terminals.
  • a communication system including the base station 700 and the terminals 704-1 and 704-2 in FIG. 7, FIG. 12, FIG. 17, FIG. 19, FIG. 20, FIG.
  • FIG. 37 shows an example of the configuration of the base station (700).
  • the logical channel generation unit 3703 receives the data 3701 and the control data 3702 and outputs a logical channel signal 3704.
  • the logical channel signal 3704 includes, for example, “BCCH (Broadcast Control Channel)”, PCCH (Paging Control Channel), CCCH (Common Control Control Channel), MCCH (Multicast Control Channel), and DCCH (Dedicated Control Channel), which are control logical channels. ", A logical channel for data” DTCH (Dedicated Traffic Channel) and / or MTCH (Multicast Traffic Channel) ".
  • BCCH is a downlink and broadcast channel for system control information”.
  • PCCH is a channel for downlink and paging information”.
  • CCCH is a common control channel used when there is no downlink or RRC (Radio Resource Control) connection”.
  • MCCH is a downlink / multicast channel scheduling / control channel for one-to-many MBMS (Multimedia Broadcast Multicast Service)”.
  • DCCH is a dedicated control channel used for terminals having downlink and RRC connections”.
  • DTCH is a downlink, a dedicated traffic channel to one terminal UE (User Equipment), a user data dedicated channel”.
  • MTCH is a downlink, a one-to-many channel for MBMS user data”.
  • the transport channel generation unit 3705 receives the logical channel signal 3704, generates a transport channel signal 3706, and outputs it.
  • the transport channel signal 3706 includes, for example, BCH (Broadcast Channel), DL-SCH (Downlink Shared Channel), PCH (Paging Channel), MCH (Multicast Channel), and the like.
  • BCH is a system information channel broadcast over the entire cell”.
  • DL-SCH is a channel using user data, control information, and system information”.
  • PCH is a paging information channel left over the entire cell”.
  • MCH is MBMS traffic and control channel broadcasted over the entire cell”.
  • the physical channel generation unit 3707 receives the transport channel signal 3706 as an input, generates a physical channel signal 3708, and outputs it.
  • the physical channel signal 3708 is configured by, for example, PBCH (Physical; BroadcastPMChannel), PMCH (Physical Multicast Channel), PDSCH (Physical Downlink Shared Channel), PDCCH (Physical Downlink Control Channel), and the like.
  • PBCH is for transmission of BCH transport channel”.
  • PMCH is for MCH transport channel transmission”.
  • PDSCH is for DL-SCH and transport channel transmission”.
  • PDCH is for transmission of downlink L1 (Layer 1) / L2 (Layer 2) control signal”.
  • the modulation signal generation unit 3709 receives the physical channel signal 3708, generates a modulation signal 3710 based on the physical channel signal 3708, and outputs it. Base station 700 then transmits modulated signal 3710 as a radio wave.
  • symbol group # 1 (901-1) of stream 1 and symbol group # 2 (901-2) of stream 1 and symbol group # 3 (901-3 of stream 1) in FIG. ) May be control information broadcast to a plurality of terminals in order for the base station to perform data communication with the plurality of terminals. That is, these symbol groups may be broadcast channel information.
  • the control information is information that can be used for realizing data communication between the base station and the terminal, for example.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • the base station may be control information broadcast to a plurality of terminals in order to perform data communication with the plurality of terminals. That is, these symbol groups may be broadcast channel information.
  • the control information is information that can be used for realizing data communication between the base station and the terminal, for example.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • the stream such as the symbol group # 1 (902-1) of the stream 2, the symbol group # 2 (902-2) of the stream 2, and / or the symbol group # 3 (902-3) of the stream 2 in FIG. 2 may not be transmitted.
  • the base station may not transmit the symbol group of the stream 2.
  • the streams 703-1, 703-2, and 703-3 are not transmitted from the base station 701.
  • symbol group # 1 (1401-1) of modulated signal 1 in FIG. 14, symbol group # 2 (1401-2) of modulated signal 1, and symbol group # 3 (1401-3) of modulated signal 1 are
  • the base station may be control information broadcast to a plurality of terminals in order to perform data communication with the plurality of terminals. That is, these symbol groups may be broadcast channel information.
  • the control information is information that can be used for realizing data communication between the base station and the terminal, for example.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • the base station may be control information for broadcasting to a plurality of terminals in order to perform data communication with the plurality of terminals. That is, these symbol groups may be broadcast channel information.
  • the control information is information that can be used, for example, to realize data communication between the base station and the terminal.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • symbol group # 1 (1401-1) of modulated signal 1 in FIG. 14, symbol group # 2 (1401-2) of modulated signal 1, and symbol group # 3 (1401-3) of modulated signal 1 are described. Since it is as having demonstrated in the previous embodiment, description is abbreviate
  • the stream 1-1 data symbol (1) (2501-1-1), the stream 1-1 data symbol (2) (2501-1-2), and the stream 1-1 data symbol (3 ) (2501-1-3) may be control information that the base station broadcasts to a plurality of terminals in order to perform data communication with the plurality of terminals. That is, these symbols may be broadcast channel information.
  • the control information is information that can be used for realizing data communication between the base station and the terminal, for example.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • the data symbol (3) (3101-3) may be control information that the base station broadcasts to a plurality of terminals in order to perform data communication with the plurality of terminals. That is, these symbols may be broadcast channel information.
  • the control information is information that can be used for realizing data communication between the base station and the terminal, for example.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • the symbol (N + 2) (3101- (N + 2)) may be control information that the base station broadcasts to a plurality of terminals in order to perform data communication with the plurality of terminals. That is, these symbols may be broadcast channel information.
  • the control information is information that can be used for realizing data communication between the base station and the terminal, for example.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • stream 2-1 data symbol (1) (3501-1), stream 2-1 data symbol (2) (3501-2), and stream 2-1 data symbol (3) (3501- 3) may be control information broadcast to a plurality of terminals in order for the base station to perform data communication with the plurality of terminals. That is, these symbols may be broadcast channel information.
  • the control information is information that can be used for realizing data communication between the base station and the terminal, for example.
  • the broadcast channel corresponds to “PBCH”, “PMCH”, and “part of PD-SCH” in the physical channel (physical channel signal 3708).
  • the broadcast channel corresponds to “BCH”, “part of DL-SCH”, “PCH”, and “MCH” in the transport channel (transport channel signal 3706).
  • the broadcast channel corresponds to “BCCH”, “CCCH”, “MCCH”, “part of DTCH”, and “MTCH” in the logical channel (logical channel signal 3704).
  • stream 1-1 data symbol (M) (2501-1-M), stream 1-1 data symbol (M + 1) (2501-1- (M + 1)), stream 1-1 data symbol (M + 2) ) (2501-1- (M + 2)), stream 1-2 data symbol (N) (3101-N), stream 1-2 data symbol (N + 1) (3101- (N + 1)), and stream 1-2 data
  • the description of the symbol (N + 2) (3101- (N + 2)) is the same as that described in the above embodiments, and thus the description thereof is omitted.
  • stream 2-1 data symbol (1) (3501-1), stream 2-1 data symbol (2) (3501-2), and stream 2-1 data symbol (3) (3501-3) Since the description of is the same as described in the above embodiments, the description is omitted.
  • FIG. 9 when transmitting each data symbol, a single carrier transmission method may be used, or a multi-carrier transmission method such as OFDM may be used. Also good. Further, the temporal positions of the data symbols are not limited to those shown in FIGS. 9, 14, 25, 31, 32, and 35.
  • the horizontal axis is described as the time direction, but the same implementation is possible when the horizontal axis is the frequency (carrier) direction.
  • the base station transmits each data symbol using one or more carriers or subcarriers.
  • data (unicast data) (or symbols) to be transmitted individually to the terminal may be included in the symbol group of stream 1 in FIG.
  • data (unicast data) (or symbols) transmitted individually for each terminal may be included in the symbol group of stream 2 in FIG.
  • data (unicast data) (or symbols) to be transmitted to individual terminals may be included in the symbol group of stream 2 in FIG.
  • the data (unicast data) (or symbol) transmitted individually for each terminal may be included in the symbol of stream 1-1 in FIG. 31 and 32 may include data (unicast data) (or symbols) transmitted individually for each terminal in the symbols of stream 1-1 and stream 1-2.
  • the PBCH may be configured to be “used to transmit minimum information (system bandwidth, system frame number, number of transmission antennas, etc.) read first by the UE after cell search”, for example.
  • the PMCH may be configured to be “used for MBSFN (Multicast-broadcast single-frequency network) operation”, for example.
  • MBSFN Multicast-broadcast single-frequency network
  • PDSCH is a “shared data channel for transmitting downlink user data, and all data is aggregated and transmitted regardless of C (control) -plane / U (User) -plane”. It may be.
  • the PDCCH may be configured to be “used to notify radio resource allocation information to a user selected by eNodeB (gNodeB) (base station) through scheduling”, for example.
  • eNodeB gNodeB
  • base station base station
  • the base station transmits data symbols and control information symbols using a plurality of transmission beams. Further, the terminal selectively receives a high-quality beam from a plurality of transmission beams, and receives data symbols based on the received beam. Thereby, as an effect of the present embodiment, the terminal can obtain high data reception quality.
  • FIG. 38 shows an example of the frame configuration of stream 1 transmitted by the base station (700).
  • the horizontal axis indicates the time direction
  • the vertical axis indicates the frequency direction.
  • FIG. 38 shows a frame configuration from carrier 1 to carrier 40 from time 1 to time 10. Accordingly, FIG. 38 shows a frame configuration of a multicarrier transmission scheme such as an OFDM (Orthogonal Frequency Division Multiplexing) scheme.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the symbol area 3801_1 of the stream 1 exists from the carrier 1 to the carrier 9 from the time 1 to the time 10.
  • symbol group #i (3800_i) of the stream 1 exists from the carrier 10 to the carrier 20 from the time 1 to the time 10. Note that symbol group #i (3800_i) of stream 1 corresponds to symbol group #i (901-i) of stream 1 in FIG.
  • the symbol area 3801_2 of the stream 1 exists from the carrier 21 to the carrier 40 from time 1 to time 10.
  • the symbol area 3801_1 of stream 1 in FIG. , And 3801_2 can be used.
  • the base station uses the symbol group #i (3800_i) of stream 1 in FIG. 38 to transmit multicast data. be able to.
  • FIG. 39 shows an example of the frame configuration of stream 2 transmitted by the base station (700).
  • the horizontal axis indicates the time direction
  • the vertical axis indicates the frequency direction.
  • FIG. 39 shows a frame configuration from carrier 1 to carrier 40 from time 1 to time 10. Therefore, FIG. 39 shows a frame configuration of a multicarrier transmission scheme such as the OFDM scheme.
  • the symbol region 3901_1 of the stream 2 exists from the carrier 1 to the carrier 9 from the time 1 to the time 10.
  • the symbol group #i (3900_i) of stream 2 exists from carrier 10 to carrier 20 from time 1 to time 10. Note that the symbol group #i (3900_i) of stream 2 corresponds to the symbol group #i (902-i) of stream 2 in FIG.
  • the symbol area 3901_2 of the stream 2 exists from the carrier 21 to the carrier 40 from the time 1 to the time 10.
  • the symbol area 3901_1 of stream 2 in FIG. And 3901_2 can be used.
  • the base station uses the symbol group #i (3900_i) of stream 2 in FIG. 39 in order to transmit multicast data. be able to.
  • the base station determines the symbol of the carrier Y (Y in FIG. 38 is an integer between 1 and 40) at time X in FIG. 38 (X in FIG. 38) and the time X in FIG. Is transmitted using the same frequency and the same time.
  • symbol group # 1 (901-1) of stream 1, symbol group # 2 (901-2) of stream 1, and symbol group # 3 (901-3) of stream 1 shown in FIG. Since it is as having demonstrated in the previous embodiment, description is abbreviate
  • symbol group # 1 (902-1) of stream 2 symbol group # 2 (902-2) of stream 2
  • the carrier When a symbol exists after time 11 in the carrier 10 to the carrier 20 in the frame configuration shown in FIGS. 38 and 39, the carrier may be used for multicast transmission or used for individual data transmission (unicast transmission). May be.
  • the base station When transmitting a frame as shown in FIG. 9 with the frame configuration shown in FIGS. 38 and 39, the base station may perform the same operations as those in the first and fourth embodiments.
  • the base station transmits data symbols and / or control information symbols using a plurality of transmission beams.
  • the terminal selectively receives a high-quality beam from a plurality of transmission beams, and receives data symbols based on the beam. Thereby, as an effect of the present embodiment, the terminal can obtain high data reception quality.
  • FIG. 40 shows an example of the frame configuration of the modulated signal 1 transmitted by the base station (700).
  • the horizontal axis indicates the time direction
  • the vertical axis indicates the frequency direction.
  • FIG. 40 shows a frame configuration from carrier 1 to carrier 40 from time 1 to time 10. Therefore, FIG. 40 shows a frame configuration of a multicarrier transmission scheme such as an OFDM (Orthogonal Frequency Division Multiplexing) scheme.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the symbol region 4001_1 of the modulated signal 1 exists from the carrier 1 to the carrier 9 from the time 1 to the time 10.
  • Symbol group #i (4000_i) of modulated signal 1 exists from carrier 10 to carrier 20 from time 1 to time 10.
  • Symbol group #i (4000_i) of modulated signal 1 corresponds to symbol group #i (1401-i) of modulated signal 1 in FIG.
  • the symbol region 4001_2 of the modulation signal 1 exists from the carrier 21 to the carrier 40 from time 1 to time 10.
  • the symbol area 4001_1 of stream 1 in FIG. , And 4001_2 can be used.
  • the base station uses the symbol group #i (4000_i) of the modulation signal 1 in FIG. 40 to transmit multicast data. can do.
  • FIG. 41 shows an example of the frame configuration of the modulated signal 2 transmitted by the base station (700).
  • the horizontal axis indicates the time direction
  • the vertical axis indicates the frequency direction.
  • FIG. 41 shows a frame configuration from carrier 1 to carrier 40 from time 1 to time 10. Therefore, FIG. 41 shows a frame configuration of a multicarrier transmission scheme such as the OFDM scheme.
  • the symbol region 4101_1 of the modulated signal 2 exists from the carrier 1 to the carrier 9 from the time 1 to the time 10.
  • the symbol group #i (4100_i) of the modulation signal 2 exists in the carrier 10 to the carrier 20 from the time 1 to the time 10.
  • Symbol group #i (4100_i) of modulated signal 2 corresponds to symbol group #i (1402-i) of modulated signal 2 in FIG.
  • the symbol area 4101_2 of the modulation signal 2 exists from the carrier 21 to the carrier 40 from time 1 to time 10.
  • the symbol area 4101_1 of the modulation signal 2 in FIG. , And 4101_2 can be used.
  • the base station uses the symbol group #i (4100_i) of the modulated signal 2 in FIG. 41 to transmit multicast data. can do.
  • the base station determines the symbol of carrier Y (in the case of FIG. 40, X is an integer from 1 to 40) at time X in FIG. 40 and the time X in FIG. Is transmitted using the same frequency and the same time.
  • the carrier When a symbol exists after time 11 in carrier 10 to carrier 20 in the frame configuration shown in FIGS. 40 and 41, the carrier may be used for multicast transmission or used for individual data transmission (unicast transmission). May be.
  • the base station When the base station transmits a frame as shown in FIG. 14 with the frame configurations shown in FIGS. 40 and 41, the base station may perform the same operations as those in the first and fourth embodiments.
  • symbol areas 3801_1 and 3801_2 of stream 1 in FIG. 38 symbol areas 3901_1 and 3901_2 of stream 2 in FIG. 39, symbol areas 4001_1 and 4001_2 of modulated signal 1 in FIG. 40, and modulated signal 2 in FIG.
  • symbol areas 4101_1 and 4102_2 will be described.
  • symbol regions 3801_1 and 3801_2 of stream 1 in FIG. 38 shows “symbol regions 3801_1 and 3801_2 of stream 1 in FIG. 38, symbol regions 3901_1 and 3901_2 of stream 2 in FIG. 39, symbol regions 4001_1 and 4001_2 of modulated signal 1 in FIG. 40, and modulated signal 2 in FIG.
  • the symbol areas 4101_1 and 4102_2 "are assigned to terminals.
  • the horizontal axis indicates the time direction
  • the vertical axis indicates the frequency (carrier) direction.
  • FIG. 42 shows symbol group 4201_1 assigned for terminal # 1, symbol group 4201_2 assigned for terminal # 2, and symbol group 4201_3 assigned for terminal # 3.
  • the base station (700) is communicating with the terminal # 1, the terminal # 2, and / or the terminal # 3.
  • the base station transmits data to terminal # 1 using “symbol group 4201_1 allocated for terminal # 1” in FIG.
  • the base station transmits data to terminal # 2 using “symbol group 4201_2 assigned for terminal # 2” of FIG.
  • the base station transmits data to terminal # 3 using “symbol group 4201_3 allocated for terminal # 3” in FIG.
  • the assignment method to the terminal is not limited to FIG.
  • the frequency band (number of carriers) may change with time or may be set in any way.
  • symbol regions 3801_1 and 3801_2 of stream 1 in FIG. 38 shows “symbol regions 3801_1 and 3801_2 of stream 1 in FIG. 38, symbol regions 3901_1 and 3901_2 of stream 2 in FIG. 39, symbol regions 4001_1 and 4001_2 of modulated signal 1 in FIG. 40, and modulated signal 2 in FIG.
  • the symbol region 4101_1, 4102_2 "is assigned to the terminal, and an example different from FIG. 42 is shown.
  • the horizontal axis indicates the time direction
  • the vertical axis indicates the frequency (carrier) direction.
  • FIG. 43 shows a symbol group (4301_1) allocated for terminal # 1, a symbol group (4301_2) allocated for terminal # 2, a symbol group (4301_3) allocated for terminal # 3, A symbol group (4301_4) allocated for terminal # 4, a symbol group (4301_5) allocated for terminal # 5, and a symbol group (4301_6) allocated for terminal # 6 are shown.
  • the base station (700) communicates with terminal # 1, terminal # 2, terminal # 3, terminal # 4, terminal # 5, and terminal # 6.
  • the base station transmits data using “symbol group 4301_1 allocated for terminal # 1” in FIG.
  • the base station transmits data to terminal # 2 using “symbol group 4301_2 allocated for terminal # 2” of FIG.
  • the base station transmits data to terminal # 3 using "symbol group 4301_3 allocated for terminal # 3" in FIG.
  • the base station transmits data to terminal # 4 using “symbol group 4301_4 allocated for terminal # 4” of FIG.
  • the base station When transmitting data to terminal # 5, the base station transmits data to terminal # 5 using “symbol group 4301_5 allocated for terminal # 5” in FIG.
  • the base station When transmitting data to terminal # 6, the base station transmits data using “symbol group 4301_6 allocated for terminal # 6” in FIG.
  • the allocation method to the terminal is not limited to FIG.
  • the frequency band (the number of carriers) and the time width may change or may be set in any way.
  • the weighting synthesis method may be determined in units of a plurality of carriers. Also, as shown in FIGS. 42 and 43, a weighting synthesis parameter may be set for each assigned terminal. The setting of the weighting synthesis method in the carrier is not limited to these examples.
  • the base station transmits data symbols and / or control information symbols using a plurality of transmission beams.
  • the terminal selectively receives a high-quality beam from a plurality of transmission beams, and receives data symbols based on the beam. Thereby, as an effect of the present embodiment, the terminal can obtain high data reception quality.
  • the base station 700 in FIGS. 7, 12, 17, 18, 19, 20, and 22 or the base station described in another embodiment is as shown in FIG. It may be a configuration.
  • the weighting / synthesizing unit 301 performs weighting / synthesizing based on the control signal 159 and performs weighting / synthesizing signals 4401_1, 4401_2,. -Outputs 4401_K.
  • M is an integer of 2 or more
  • K is an integer of 2 or more.
  • the signal 103_i (i is an integer from 1 to M) after signal processing is represented as ui (t) (t is time), and the signal 4401_g (g is an integer from 1 to K) after weighting synthesis is represented by vg (t).
  • vg (t) can be expressed by the following equation.
  • the radio unit 104_g receives the weighted and synthesized signal 4401_g and the control signal 159, performs predetermined processing based on the control signal 159, and generates and outputs a transmission signal 105_g. Then, the transmission signal 105_g is transmitted from the antenna 303_1.
  • the transmission method supported by the base station may be a multicarrier scheme such as OFDM, or a single carrier scheme.
  • the base station may support both the multicarrier scheme and the single carrier scheme.
  • the present embodiment can be implemented by adopting any of a plurality of methods for generating a single carrier modulation signal.
  • a single carrier method “DFT (Discrete) Fourier-Transform) -Spread OFDM (Orthogonal Frequency Division Multiplexing)”, “Trajectory Constrained DFT-Spread OFDM”, “OFDM based SC (Single Carrier)”, “SC Carrier) -FDMA (Frequency Division Multiple Access), Guard interval DFT-Spread OFDM, etc.
  • the function is described as a function of time, but in the case of a multi-carrier system such as the OFDM system, it may be a function of time and frequency.
  • different weighting combining may be performed for each carrier, or a weighting combining method may be determined using a plurality of carriers as one unit.
  • the setting of the weighting synthesis method in the carrier is not limited to these examples.
  • the configuration of the base station is not limited to the examples in FIGS.
  • the present disclosure can be implemented as long as the base station has a plurality of transmission antennas and generates and transmits a plurality of transmission beams (transmission directional beams).
  • Each embodiment is only an example.
  • modulation method, error correction coding method error correction code to be used, code length, coding rate, etc.
  • control information, etc. are exemplified, another “modulation method, error correction coding method (Used error correction code, code length, coding rate, etc.), control information, etc. "can be applied to implement the same configuration.
  • APSK eg, 16APSK, 64APSK, 128APSK, 256APSK, 1024APSK, 4096APSK, etc.
  • PAM eg, 4PAM, 8PAM, 16PAM, 64PAM, 128PAM, 256PAM, 1024PAM, 4096PAM, etc.
  • PSK eg, BPSK, QPSK, etc.
  • the transmission device is equipped with a communication / broadcasting device such as a broadcasting station, a base station, an access point, a terminal, a mobile phone, or the like.
  • the receiving device is equipped with a communication device such as a television, a radio, a terminal, a personal computer, a mobile phone, an access point, and a base station.
  • the transmission device and the reception device in the present disclosure are devices having a communication function, and the devices provide some interface to a device for executing an application such as a television, a radio, a personal computer, and a mobile phone. It is also conceivable that the connection is possible.
  • symbols other than data symbols for example, pilot symbols (preamble, unique word, postamble, reference symbol, etc.), control information symbols, and the like are arranged in any frame. Good.
  • pilot symbols and control information symbols are named, but they may be named in any way. In other words, different names have the same function.
  • the pilot symbol may be a known symbol modulated using PSK modulation in a transceiver, for example.
  • the receiver uses this symbol to perform frequency synchronization, time synchronization, channel estimation of each modulated signal (CSI (ChannelCState Information) estimation), and / or signal detection.
  • CSI Channel Estimated Signal
  • the receiver may be able to know the symbols transmitted by the transmitter by synchronizing the pilot symbols.
  • control information symbol is a symbol for transmitting information to be transmitted to a communication partner for realizing communication other than data (data such as application).
  • control information symbols transfer the modulation scheme used for communication, the error correction coding scheme, the coding rate of the error correction coding scheme, and / or the setting information in the higher layer.
  • each embodiment has been described as an operation of a communication device, but is not limited to this, and can also be described as an operation of software that implements a communication method.
  • a program for executing the communication method may be stored in the ROM in advance, and the program may be operated by the CPU.
  • a program for executing the communication method may be stored in a computer-readable storage medium, the program stored in the storage medium may be recorded in a RAM of the computer, and the computer may be operated according to the program. .
  • Each configuration such as each of the above embodiments may be typically realized as an LSI that is an integrated circuit having an input terminal and an output terminal. These may be individually made into one chip, or may be made into one chip so as to include all or part of the configurations of the respective embodiments.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • An FPGA that can be programmed after manufacturing the LSI, or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. There is a possibility of adaptation of biotechnology.
  • a base station (AP) including the transmission apparatus in FIG. 1 transmits the modulated signal having the frame configuration described in this specification using a multicarrier scheme such as an OFDM scheme.
  • a terminal (user) communicating with the base station (AP) transmits a modulated signal
  • an application method in which the modulated signal transmitted by the terminal is a single carrier method can be considered.
  • the base station (AP) can transmit data symbol groups to multiple terminals simultaneously by using the OFDM method, and the terminal can reduce power consumption by using the single carrier method. It becomes.
  • the terminal may apply a TDD (Time Division Duplex) scheme that transmits a modulation scheme using a part of a frequency band used by a modulation signal transmitted by a base station (AP).
  • TDD Time Division Duplex
  • the configuration of the antenna units 106-1, 106-2, ..., 106-M in Fig. 1 is not limited to the configuration described in the embodiment.
  • the antenna units 106-1, 106-2,..., 106-M may not be composed of a plurality of antennas.
  • the antenna units 106-1, 106-2,..., 106-M do not have to receive the signal 159 as an input.
  • the configuration of the antenna units 401-1, 401-2, ..., 401-N in Fig. 4 is not limited to the configuration described in the embodiment.
  • the antenna units 401-1, 401-2,..., 401 -N may not be composed of a plurality of antennas.
  • the antenna units 401-1, 401-2,..., 401-N do not have to receive the signal 410 as an input.
  • the transmission method supported by the base station and the terminal may be a multicarrier scheme such as OFDM, or a single carrier scheme.
  • the base station may support both the multicarrier scheme and the single carrier scheme.
  • the present embodiment can be implemented by adopting any of a plurality of methods for generating a single carrier modulation signal.
  • DFT Discrete Fourier-Transform
  • Spread OFDM Orthogonal Frequency Division Multiplexing
  • Trafficory Constrained DFT-Spread OFDM “OFDM based SC (Single Carrier)”
  • SC Carrier) -FDMA Frequency Division Multiple Access
  • Guard interval DFT-Spread OFDM etc.
  • At least multicast (broadcast) data exists in information # 1 (101_1), information # 2 (101_2),..., Information #M (101_M) in FIGS.
  • information # 1 (101_1) is data for multicast
  • a plurality of streams or modulated signals including this data are generated by the signal processing unit 102 and output from the antenna.
  • information # 1 (101_1), information # 2 (101_2),..., Information #M (101_M) in FIGS. 1, 3, and 44 may include data addressed to individual terminals. . This point is as described in the embodiment of the present specification.
  • At least one of FPGA (Field Programmable Gate Array) and CPU (Central Processing Unit) downloads all or part of software necessary for realizing the communication method described in this disclosure by wireless communication or wired communication.
  • the structure which can be used may be sufficient.
  • the configuration may be such that all or part of the software for updating can be downloaded by wireless communication or wired communication.
  • the downloaded software may be stored in the storage unit, and at least one of the FPGA and the CPU may be operated based on the stored software to execute the digital signal processing described in the present disclosure.
  • a device including at least one of the FPGA and the CPU may be connected to the communication modem wirelessly or by wire, and the communication method described in the present disclosure may be realized by the device and the communication modem.
  • a communication device such as a base station, an AP, or a terminal described in this specification includes at least one of an FPGA and a CPU, and software for operating at least one of the FPGA and the CPU is externally provided.
  • the communication device may include an interface for obtaining the information.
  • the communication device includes a storage unit for storing software obtained from the outside, and the FPGA and CPU are operated based on the stored software, thereby realizing the signal processing described in the present disclosure. May be.
  • FIG. 45 is a diagram illustrating an example of a configuration of a mesh network using a wireless signal repeater (hereinafter simply referred to as “repeater”).
  • a plurality of repeaters are respectively arranged at a plurality of points in a predetermined area to constitute a mesh type wireless backhaul.
  • the repeater 4800B transmits the signal received from the repeater 4800A to the repeater 4800C.
  • the repeater 4800B transmits the signal received from the repeater 4800A to the edge node 4810 connected to the repeater 4800B.
  • the repeater 4800B transmits the signal received from the edge node 4810 connected to the repeater 4800B to another repeater 4800C.
  • the edge node may be a gateway device for a home network.
  • This use case is called WirelessWireTo The Home (WTTH).
  • the edge node may be a gateway device for the network in the building. This use case is called WirelessWireto the building (WTTB).
  • the edge node may be, for example, a Wi-Fi access point.
  • WTTX Wi-Fi access point
  • repeater is merely an example, and the repeater may be called, for example, a communication device, a base station, or a node. Therefore, in the present specification, the implementation content described as the operation of the base station may be the operation of the repeater in the present embodiment.
  • FIG. 46 is a schematic diagram showing an example of connection between repeaters according to the eighth embodiment.
  • repeater 4900B transmits and receives a modulated signal with the beam directivity directed toward repeater 4900A. That is, repeater 4900B performs beamforming BF1 in the direction of repeater 4900A.
  • the repeater 4900B transmits and receives a modulated signal with the beam directivity directed toward the repeater 4900C. That is, repeater 4900B performs beamforming BF2 in the direction of repeater 4900C.
  • repeater 4900B receives modulated signal 4902A transmitted by repeater 4900A, and transmits modulated signal 4901C corresponding to modulated signal 4901A to repeater 4900C. Further, repeater 4900B receives modulated signal 4902C transmitted from repeater 4900C, and transmits modulated signal 4901A corresponding to modulated signal 4902C to repeater 4900A. That is, repeater 4900B relays the modulated signal between repeater 4900A and repeater 4900C.
  • the modulation signal 4902A and the modulation signal 4901C are not necessarily the same modulation signal.
  • the modulated signal 4902A and the modulated signal 4901C include at least the same information (referred to as first information) or information related to the first information.
  • the modulation scheme for generating modulation signal 4902A and the modulation scheme for generating modulation signal 4901C are not necessarily the same.
  • the error correction encoding method for generating the modulation signal 4902A and the error correction encoding method for generating the modulation signal 4901C are not necessarily the same.
  • the modulated signal 4902C and the modulated signal 4901A are not necessarily the same modulated signal.
  • the modulation signal 4902C and the modulation signal 4901A include at least the same information (referred to as second information) or information related to the second information.
  • the modulation scheme for generating the modulation signal 4902C and the modulation scheme for generating the modulation signal 4901A are not necessarily the same.
  • the error correction coding method for generating the modulation signal 4902C and the error correction coding method for generating the modulation signal 4901A are not necessarily the same.
  • the repeater 4900B performs beamforming BF1 in the direction of the repeater 4900A when transmitting the modulated signal 4901A to the repeater 4900A and when receiving the modulated signal 4902A from the repeater 4900A. Thereby, the reception quality of the modulated signal between repeater 4900B and repeater 4900A is improved.
  • the repeater 4900B when transmitting the modulated signal 4901C to the repeater 4900C and receiving the modulated signal 4902C from the repeater 4900C, the repeater 4900B performs the beamforming BF2 in the direction of the repeater 4900C. Thereby, the reception quality of the modulated signal between repeater 4900B and repeater 4900C is improved.
  • 47 is a diagram showing an example of slot assignment for the repeater 4900B of FIG.
  • the repeater is assigned a slot for transmitting a modulated signal (hereinafter referred to as “transmission slot”) and a slot for receiving a modulated signal (hereinafter referred to as “reception slot”).
  • transmission slot a modulated signal
  • reception slot a slot for receiving a modulated signal
  • one slot is a resource unit that occupies a predetermined time period and frequency, and is arranged on the time axis.
  • one slot (for example, transmission slot 5001A) represented in FIG. 47 may be composed of a plurality of slots. The same applies to the other FIGS. 48, 50, 51, 53, 54, 55, and 56.
  • the transmission slot 5001A to the relay 4900A, the transmission slot 5001C to the relay 4900C, the reception slot 5002C from the relay 4900C, and the reception slot 5002A from the relay 4900C are compared with the relay 4900B.
  • one TDD interval is configured by combining the transmission period and the reception period.
  • FIG. 47 is an example in which the transmission slots are continuously assigned on the time axis and the reception slots are continuously assigned on the time axis. Note that a period in which transmission slots are continuously allocated is referred to as a transmission period, and a period in which reception slots are continuously allocated is referred to as a reception period.
  • another symbol may exist between the transmission slot 5001A and the transmission slot 5001C, or there may be a time period in which no modulation signal exists.
  • Another symbol (for example, a control information symbol or a data symbol) may exist between reception slot 5002C and reception slot 5002A, or there may be a time period in which no modulation signal exists.
  • the period lengths of the transmission slot 5001A and the transmission slot 5001C may be the same or different from each other.
  • the period lengths of reception slot 5002C and reception slot 5002A may be the same or different from each other. The same applies to the other FIGS. 48, 50, 51, 53, 54, 55, and 56.
  • FIG. 47 shows slot assignment at a certain time of repeater 4900B.
  • transmission slots and reception slots may be assigned to repeater 4900B in the same order as in FIG.
  • the transmission slot and the reception slot may be assigned in an order different from that shown in FIG. The same applies to the other FIGS. 48, 50, 51, 53, 54, 55, and 56.
  • data transmitted in transmission slots 5001A and 5001C in FIG. 47 is data received in one or more previous TDDDinterval reception slots or one or more previous frames, and reception slots 5002A and 5002C in FIG.
  • the data received in (1) is data transmitted in one or more subsequent TDD interval transmission slots or one or more subsequent frames.
  • FIGS. 48, 50, 51, 53, 54, 55, and 56 are the same applies to the other FIGS. 48, 50, 51, 53, 54, 55, and 56.
  • the repeater 4900B directs the beam directivity in the direction of the repeater 4900A (that is, performs directivity control) and transmits the modulated signal during the transmission slot 5001A. In addition, repeater 4900B directs the beam directivity toward repeater 4900C and transmits a modulated signal in the period of transmission slot 5001C.
  • the repeater 4900B directs the beam directivity in the direction of the repeater 4900C and receives the modulated signal transmitted by the repeater 4900C during the reception slot 5002C.
  • repeater 4900B directs directivity toward repeater 4900A during the period of reception slot 5002A, and receives the modulated signal transmitted by repeater 4900A.
  • the load of the power amplifier in the repeater 4900B can be reduced.
  • the power consumption of the device 4900B can be reduced.
  • the guard period can be shortened, and as a result, the data transmission speed is improved.
  • FIG. 48 is a diagram showing a modification of slot allocation for the repeater 4900B of FIG.
  • FIG. 48 is an example of a pair of slots configured by “reception slots and transmission slots for the same repeater” assigned consecutively.
  • a guard period may be provided between the reception slot 5102C and the transmission slot 5101C.
  • a guard period may be provided between the reception slot 5102A and the transmission slot 5101A. Note that the guard period is, for example, a period in which no modulation signal exists.
  • the repeater 4900B directs the beam directivity in the direction of the repeater 4900C (performs directivity control) during the period of the reception slot 5102C, and receives the modulation signal transmitted by the repeater 4900C. In addition, repeater 4900B directs the beam directivity in the direction of repeater 4900C and transmits a modulated signal during the period of transmission slot 5101C.
  • the repeater 4900B directs the beam directivity in the direction of the repeater 4900A and receives the modulated signal transmitted by the repeater 4900A during the reception slot 5102A. In addition, repeater 4900B transmits a modulated signal with directivity directed toward repeater 4900A in the period of transmission slot 5101A.
  • the repeater 4900B changes the beam directivity in the direction of the repeater 4900C during the reception slot 5102C and the transmission slot 5101C.
  • the beam directivity may be directed toward the repeater 4900A. Therefore, the directivity control of the beam in the repeater 4900B is facilitated.
  • the slot assignment method shown in FIG. 47 and the slot assignment method shown in FIG. 48 may be switched according to the situation such as wireless communication and / or propagation environment.
  • the repeater 4900B may transmit predetermined switching information to the repeaters 4900A and 4900C and switch the slot allocation method in accordance with the change in the situation.
  • FIG. 49 is a diagram illustrating an example of connection between repeaters according to the ninth embodiment.
  • FIG. 49 is different from FIG. 46 in that the device 5210 is connected to the repeater 5200B.
  • the device 5210 is, for example, a moving image or still image capturing device (for example, a monitoring camera), a predetermined sensor, or a wireless base station.
  • the repeater 5200B and the device 5210 are connected by an I / F (interface) such as USB.
  • I / F interface
  • the I / F between the repeater 5200B and the device 5210 is not limited thereto, and may be, for example, a Gigabit class Ethernet.
  • the I / F is not limited to a wired line and may be wireless.
  • one device or one system configured by the repeater 5200B and the device 5210 may be used.
  • repeater 5200B receives modulated signal 5202A transmitted by repeater 5200A, and transmits modulated signal 5201C corresponding to received modulated signal 5202A to repeater 5200C. Also, repeater 5200B receives modulated signal 5202C transmitted from repeater 5200C, and transmits modulated signal 5201A corresponding to received modulated signal 5202C to repeater 5200A. That is, repeater 5200B relays the modulated signal between repeater 5200A and repeater 5200C.
  • modulation signal 5202A and the modulation signal 5201C are not necessarily the same modulation signal.
  • the modulated signal 5202A and the modulated signal 5201C include at least the same information (referred to as first information) or information related to the first information.
  • the modulated signal 5202C and the modulated signal 5201A include at least the same information (referred to as second information) or information related to the second information. Also, the modulation scheme for generating modulated signal 5202C and the modulation scheme for generating modulated signal 5201A are not necessarily the same. Furthermore, the error correction coding method for generating modulated signal 5202C and the error correction coding method for generating modulated signal 5201A are not necessarily the same.
  • the repeater 5200B receives data transmitted by the device 5210 connected to the repeater 5200B, or a modulated signal including data, and at least a part of the data transmitted by the device 5210, or A modulated signal including at least a part of data related to the transmitted data is generated and transmitted to the repeater 5200A as a modulated signal 5203A.
  • the repeater 5200B receives data transmitted by the device 5210 or a modulated signal including data, and at least a part of data transmitted by the device 5210 or at least a part of data related to the transmitted data. Is generated and transmitted to the repeater 5200C as a modulated signal 5203C.
  • device A performs first encoding on the first scene video to generate first data, and performs second encoding on the first scene video to generate second data. To do. At this time, the first data and the second data have a relationship of “related information” or “related data”.
  • the device B obtains the generated first data, generates the video of the first scene from the first data, performs the second encoding again, and generates the second data. To do. At this time, the first data and the second data have a relationship of “related information” or “related data”. This point is applicable to all the embodiments included in this specification.
  • the beam directivity control at the time of transmission / reception of the modulation signal is the same as the case of FIG.
  • FIG. 50 is a diagram showing an example of slot assignment for the repeater 5200B of FIG.
  • the horizontal axis represents time and the vertical axis represents frequency.
  • FIG. 50 shows the first channel formed in the first frequency band and the second channel formed in the second frequency band.
  • FIG. 50 shows the transmission slot 5301A to the repeater 5200A, the transmission slot 5301C to the repeater 5200C, the reception slot 5302C from the repeater 5200C, and the repeater 5200C in the first channel with respect to the repeater 5200B. It shows that the reception slots 5302A are assigned in order on the time axis.
  • FIG. 50 shows a modulated signal including at least a part of data transmitted by the device 5210 or at least a part of data related to the transmitted data in the second channel for the repeater 5200B.
  • a transmission slot 5303A for transmitting to the repeater 5200A and a modulated signal including at least a part of data transmitted by the device 5210 or at least a part of data related to the transmitted data to the repeater 5200C This indicates that the transmission slot 5303C is allocated.
  • repeater 5200B holds a mechanism for obtaining data transmitted by device 5210.
  • the first channel and the second channel are different channels (frequency domain). Note that the first channel and the second channel may be adjacent to each other or may be separated from each other.
  • Transmission slots 5303A and 5303C may be assigned for transmitting modulated signals including at least a portion of the data transmitted by 5210 or at least a portion of data associated with the transmitted data. That is, when assigning a new slot to the repeater, changing the existing slot assignment can be omitted.
  • the period can be assigned to be within the period of the transmission slot 5301A to the repeater 5200A.
  • the period of the transmission slot 5303C for transmitting a modulated signal including at least a part of data transmitted by the device 5210 or at least a part of data related to the transmitted data to the relay 5200C is also the same as the relay
  • the transmission slot 5301C to 5200C can be allocated within the period.
  • the repeater 5200B may direct the beam directivity toward the repeater 5200A during the transmission slot 5301A, and direct the beam directivity toward the repeater 5200C during the transmission slot 5301C. Therefore, it becomes easy to control the directivity of the beam in the repeater 5200B.
  • the repeater 5200B can use a common precoding matrix for the transmission slot 5301A and the transmission slot 5303A, and the effect that the procedure for beam forming and at least part of the signal processing can be simplified can be obtained. .
  • FIG. 51 is a diagram showing a modification of slot allocation for the repeater 5200B of FIG. 51, as in FIG. 50, the horizontal axis is time, and the vertical axis is frequency.
  • a channel formed in the first frequency band is called a first channel.
  • the first channel is a first carrier group composed of one or more carriers and a first carrier group composed of one or more carriers. Includes two carrier groups.
  • FIG. 51 shows the relay slot 5401A to the relay 5200A, the transmission slot 5401C to the relay 5200C, the reception slot 5402C from the relay 5200C in the first carrier group of the first channel with respect to the relay 5200B. It shows that the reception slot 5402A from the repeater 5200C is assigned in order on the time axis.
  • FIG. 51 shows at least a part of data transmitted by the device 5210 or at least a part of data related to the transmitted data in the second carrier group of the first channel for the repeater 5200B.
  • a transmission slot 5403A for transmitting a modulation signal including the above to the repeater 5200A, and a modulation signal including at least a part of the data transmitted by the device 5210 or at least a part of the data related to the transmitted data to the repeater 5200C This indicates that a transmission slot 5403C for transmission to is assigned.
  • repeater 5200B holds a mechanism for obtaining data transmitted by device 5210.
  • Each of the first carrier group and the second carrier group includes one or more carriers.
  • the first carrier group and the second carrier group are different frequency regions.
  • the number of carriers in the first carrier group and the second carrier group may be the same or different.
  • the first carrier group and the second carrier group may be adjacent to each other or may be separated from each other.
  • Transmission slots 5403A and 5403C may be assigned for transmitting modulated signals including at least a portion of the data transmitted by the device 5210 or at least a portion of the data associated with the transmitted data. That is, when assigning a new slot to the repeater, changing the existing slot assignment can be omitted.
  • the second carrier group is configured with a small number of carriers
  • the second carrier group is configured with a large number of carriers. What is necessary is just to comprise.
  • the period is assigned to be within the period of the transmission slot 5401A to the repeater 5200A.
  • the repeater 5200B may direct the beam directivity toward the repeater 5200A during the transmission slot 5401A, and direct the beam directivity toward the repeater 5200C during the transmission slot 5401C.
  • the directivity control of the beam in the repeater 5200B becomes easy.
  • the repeater 5200B can use a common precoding matrix for the transmission slot 5401A and the transmission slot 5403A, and the effect that the procedure for beamforming and at least part of the signal processing can be simplified can be obtained. .
  • reception slots 5402C and 5402A shown in FIG. 51 are the same as those in FIG. 51.
  • FIG. 52 is a diagram showing a modification of connection between repeaters according to the ninth embodiment.
  • the device 5211 is connected to the repeater 5200A.
  • the device 5211 is, for example, a moving image or still image shooting device (for example, a monitoring camera), a predetermined sensor, or a wireless base station, as with the device 5210 of FIG.
  • the repeater 5200B performs the following processing in addition to the processing described in FIG. That is, repeater 5200A receives data transmitted by device 5211 and transmits modulated signal 5205A including at least a part of the received data or at least a part of data related to the received data to repeater 5200B. .
  • repeater 5200B transmits modulated signal 5204C including at least a part of data obtained by receiving modulated signal 5205A or at least a part of data related to the obtained data to repeater 5200C. That is, repeater 5200B relays a modulated signal including at least a part of data transmitted by device 5211 or at least a part of data related to the data transmitted by device 5211 to repeater 5200C.
  • 53 is a diagram showing an example of slot assignment for the repeater 5200B of FIG.
  • FIG. 53 differs from FIG. 50 in the second channel in the following points.
  • the repeater 5200A transmits a modulated signal generated by at least a part of data obtained from the connected device 5211 or at least a part of data related to the obtained data. Then, repeater 5200B receives the transmitted modulated signal.
  • a reception slot for the repeater 5200B to receive this modulated signal is a reception slot 5305A in FIG.
  • the repeater 5200B transmits the data obtained in the reception slot 5305A one or more previous times to the repeater 5200C.
  • a transmission slot for transmitting a modulated signal including this data by the repeater 5200B is a transmission slot 5304C.
  • the existing channel assignment of the first channel to the repeater 5200B (for example, the slot assignment shown in FIG. A transmission slot 5304C and a reception slot 5305A can be allocated.
  • an effect that an existing slot allocation change can be omitted can be obtained.
  • the period of the transmission slot 5304C is allocated so as to be different from the period of the transmission slot 5303C that has already been allocated within the period of the transmission slot 5301C to the repeater 5200C.
  • the repeater 5200B may direct the beam directivity toward the repeater 5200C during the transmission slot 5301C. Therefore, it becomes easy to control the directivity of the beam in the repeater 5200B.
  • the repeater 5200B can use a common precoding matrix for the transmission slot 5301C, the transmission slot 5303C, and the transmission slot 5304C, and performs at least a part of the procedure for beamforming and signal processing. An effect that can be simplified is obtained.
  • FIG. 54 is a diagram showing a first modification of slot assignment for the repeater 5200B of FIG.
  • FIG. 54 is different from FIG. 51 in the following points in the second carrier group of the first channel.
  • the repeater 5200A transmits a modulation signal generated by at least a part of data obtained from the connected device 5211 or at least a part of data related to the obtained data.
  • repeater 5200B receives the modulated signal transmitted by repeater 5200A. That is, the slot for reception from repeater 5200A is reception slot 5405A in FIG.
  • repeater 5200B transmits the data obtained in the reception slot 5405A to the repeater 5200C.
  • a slot for transmitting a modulated signal including data to be transmitted to repeater 5200C is transmission slot 5404C.
  • the transmission slot 5404C and the reception slot 5405A are changed without changing the existing slot assignment (for example, the slot assignment shown in FIG. 51) to the repeater 5200B. Can be assigned.
  • an effect that an existing slot allocation change can be omitted can be obtained.
  • the period of transmission slot 5404C is allocated within the period of transmission slot 5401C to repeater 5200C and different from the previously allocated transmission slot 5403C.
  • the repeater 5200B may direct the beam directivity toward the repeater 5200A during the transmission slot 5401C. Therefore, it becomes easy to control the directivity of the beam in the repeater 5200B. Therefore, for example, the repeater 5200B can use a common precoding matrix for the transmission slot 5401C, the transmission slot 5403C, and the transmission slot 5404C, and performs at least a part of the procedure for beamforming and signal processing. An effect that can be simplified is obtained.
  • FIG. 55 is a diagram showing a second modification of the slot assignment for the repeater 5200B of FIG.
  • FIG. 55 is different from FIG. 50 in the third channel in the following points.
  • the repeater 5200A transmits a modulation signal generated by at least a part of data obtained from the connected device 5211 or at least a part of data related to the obtained data. Then, repeater 5200B receives the transmitted modulated signal.
  • the slot for reception from repeater 5200A is reception slot 5307A in FIG.
  • the transmission slot 5306C and the reception slot 5307A are not changed without changing the existing slot assignment (for example, the slot assignment shown in FIG. 50) to the repeater 5200B. Can be assigned.
  • an effect that an existing slot allocation change can be omitted can be obtained.
  • the period of the transmission slot 5306C is also within the period of the transmission slot 5301C to the repeater 5200C, and the channel of the transmission slot 5306C is the previously assigned transmission slot 5301C. Assigned to be a channel different from 5303C.
  • FIG. 56 is a diagram showing a third modification of slot assignment for the repeater 5200B in FIG.
  • FIG. 56 is different from FIG. 51 in the following points in the third carrier group.
  • the repeater 5200B transmits the data obtained in the reception slot 5407A to the repeater 5200C.
  • a slot for transmitting a modulated signal including data to be transmitted to repeater 5200C is transmission slot 5406C.
  • the transmission slot 5406C and the reception slot 5407A are changed without changing the existing slot assignment (for example, the slot assignment shown in FIG. 51) to the repeater 5200B. Can be assigned.
  • the existing slot assignment for example, the slot assignment shown in FIG. 51
  • Can be assigned when a new slot is allocated to the repeater, there is an effect that it is possible to omit changing the existing slot allocation.
  • the period of transmission slot 5406C is also within the period of transmission slot 5401C to repeater 5200C, and the carrier group of transmission slot 5406C is the previously assigned transmission slot. It is assigned to be a carrier group different from 5401C and 5403C.
  • the repeater 5200B may direct the beam directivity toward the repeater 5200C during the transmission slot 5401C. Therefore, it becomes easy to control the directivity of the beam in the repeater 5200B.
  • the repeater 5200B can use a common precoding matrix for the transmission slot 5401C, the transmission slot 5403C, and the transmission slot 5406C, and performs at least a part of the procedures for beamforming and signal processing. The effect that it can be simplified is obtained.
  • FIG. 57 is a diagram illustrating an example of a configuration of signals transmitted and received between repeaters.
  • the signal between the repeaters may have a frame configuration according to IEEE 802.11ad and IEEE 802.11ay shown in FIG.
  • FIG. 57 is an example of a frame configuration in the horizontal axis time.
  • BTI in FIG. 57 is Beacon Transmission Interval.
  • A-BFT Association Beamforming Training.
  • ATI is Announcement Transmission Interval.
  • CBAP1 and “CBAP2” exist, but “CBAP” is Contention-Based “Access” Period.
  • SP is Scheduled Service Period.
  • TDD Time Division Duplex.
  • STA is a station.
  • TX is a transmitter, and “RX” is a receiver.
  • the repeater transmits “BTI”, “A-BFT”, “ATI”, “CBAP1”, “SP1”, “SP with TD (Time Division) channel access”, and “CBAP2” in this order. To do.
  • SP with TD channel ⁇ access is composed of“ TDD interval 1 ”,“ TDD interval 2 ”, ...,“ TDD interval n ”.
  • n is an integer of 1 or more.
  • Each “TDD interval” is composed of one or more TDD slots.
  • the slot described with reference to FIGS. 45 to 56 may be configured with the TDD-slot shown in FIG.
  • the transmission slot may correspond to TDD-slots 0 to 2 shown in FIG. 57
  • the reception slot may correspond to TDD-slots 3 to 5 shown in FIG.
  • the frequency axis is not described.
  • the repeater described in FIGS. 45 to 56 may have the configuration shown in FIG. 1, for example.
  • the reception antenna group 151, the radio unit group 153, and the signal processing unit 155 serve as a processing unit (processing circuit) for demodulating the reception slots in FIGS.
  • the signal processing unit (signal processing circuit) 102, the radio units (radio circuits) 104-1 to 104-M, and the antennas 106-1 to 106-M perform processing for transmitting the modulation signal of the transmission slot. .
  • setting unit (setting circuit) 158 transmission slots and reception slots are scheduled, and transmission processing for transmission slots and reception processing for reception slots are appropriately performed.
  • the configuration of the repeater is not limited to the configuration of FIG.
  • a configuration of a repeater for supporting “transmission / reception of one stream” may be used. Therefore, for example, in FIG. 1, the radio units 104-2 to 104-M and the antennas 106-2 to 106-M may be omitted, and the radio unit 104-1 and the antenna 106-1 may be configured.
  • transmission is performed as described in the other embodiments.
  • the transmission slot and the reception slot may exist at the same time.
  • the frequency band in which the transmission slot exists and the frequency band in which the reception slot exists may be arranged in different frequency bands, or the channel in which the transmission slot exists and the channel in which the reception slot exists are arranged in different channels. May be. Furthermore, the carrier group in which the transmission slot exists and the carrier group in which the reception slot exists may be arranged in different carrier groups.
  • the repeater provides the data provided by the device other than the repeater to the repeater by implementing this embodiment, and this data is relayed, thereby providing a new function.
  • the relay method as in the present embodiment, it is possible to omit the change of the existing slot assignment and to assign a new slot.
  • Embodiment 9 (Modification 1 of Embodiment 9)
  • the device 5210 in FIGS. 49 and 52 and the device 5211 in FIG. 52 are described as being wireless base stations, but a wired base station using wired communication instead of wireless communication, or A communication device using a cable may be used.
  • a transmission apparatus is a transmission apparatus including a plurality of transmission antennas, generates a first baseband signal by modulating data of a first stream, and modulates data of a second stream.
  • a signal processing unit for generating two baseband signals, a plurality of first transmission signals having different directivities from the first baseband signals, and a plurality of second transmission signals having different directivities from the second baseband signals And transmitting a plurality of first transmission signals and a plurality of the second transmission signals at the same time, and the transmission unit further receives a request for transmission of the first stream from the terminal
  • a plurality of third transmission signals different from the plurality of first transmission signals and having different directivities are generated from the first baseband signal and transmitted.
  • Each of the plurality of first transmission signals and the plurality of second transmission signals is a control signal for notifying which transmission data of the first stream and the second stream is transmitted. May be included.
  • Each of the plurality of first transmission signals and the plurality of second transmission signals may include a training signal for the receiving device to perform directivity control.
  • a reception device is a reception device including a plurality of reception antennas, and each of a plurality of first signals having different directivities and a plurality of first signals that transmit data of a first stream that the transmission device transmits at the same time.
  • Directivity control for selecting at least one first signal and at least one second signal from among a plurality of second signals having different directivities for transmitting two streams of data and receiving the selected signals. And receiving the signal, demodulating the received signal to output the first stream data and the second stream data, and receiving the at least one first signal.
  • a transmission unit configured to request the transmission apparatus to transmit the first stream when it is not received.
  • the reception unit based on a control signal for notifying which of the first stream and the second stream included in each of the plurality of reception signals is a signal for transmitting data, One first signal and the at least one second signal may be selected.
  • the receiving unit may perform directivity control using a training signal included in each of a plurality of received signals.
  • a transmission method is a transmission method executed by a transmission apparatus including a plurality of transmission antennas, and generates a first baseband signal by modulating data of a first stream, A process of modulating the data to generate the second baseband signal, a plurality of first transmission signals having different directivities from the first baseband signal, and a plurality of different directivities from the second baseband signal Generating a second transmission signal, and transmitting a plurality of first transmission signals and a plurality of the second transmission signals at the same time.
  • a request for transmission of the first stream is further received from the terminal.
  • a plurality of third transmission signals different from the plurality of first transmission signals and having different directivities are generated from the first baseband signal and transmitted.
  • a reception method is a reception method executed by a reception device including a plurality of reception antennas, and each of the transmission devices transmits a plurality of first stream data to be transmitted at the same time.
  • Processing for performing directivity control for receiving signals, processing for demodulating the received signals and outputting the data of the first stream and the data of the second stream, and at least one first signal in the reception processing Includes a transmission process for requesting the transmission apparatus to transmit the first stream in a case where the first stream is not received.
  • a communication apparatus is a communication apparatus that relays a relay signal transmitted and received between a first communication apparatus and a second communication apparatus, and further connects to a first device.
  • the relay signal is transmitted using the transmission slot of the first transmission, and the signal from the first device is transmitted using the second transmission slot within the transmission period of the first transmission slot. Transmit in a frequency region different from the slot.
  • the communication device directs directivity toward the communication device that is the transmission destination of the first transmission slot during the period of the first transmission slot.
  • a second device is connected to the first communication device or the second communication device, and the second device is connected using a third transmission slot.
  • a signal from the second device received via the communication device is transmitted in a frequency region different from that of the first transmission slot and the second transmission slot.
  • a second device is connected to the first communication device or the second communication device, and the second device is connected using a third transmission slot.
  • the signal from the second device received via the communication device is transmitted in the frequency range common to the second transmission slot within the period of the first transmission slot.
  • a communication method is a communication method in a communication device that relays a relay signal transmitted and received between a first communication device and a second communication device and further connects to a first device.
  • the first transmission slot is used to transmit the relay signal
  • the second transmission slot is used to transmit the signal from the first device within the period of the first transmission slot. Is transmitted in a frequency region different from that of the transmission slot.
  • the present disclosure can be implemented in all kinds of apparatuses, devices, and systems (collectively referred to as communication apparatuses) having a communication function.
  • communication devices include telephones (cell phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital still / video cameras, etc.) ), Digital players (digital audio / video players, etc.), wearable devices (wearable cameras, smart watches, tracking devices, etc.), game consoles, digital book readers, telehealth telemedicine (remote health) Care / medicine prescription) devices, vehicles with communication functions or mobile transportation (cars, airplanes, ships, etc.), and combinations of the various devices described above.
  • Communication devices are not limited to those that are portable or movable, but any kind of devices, devices, systems, such as smart home devices (home appliances, lighting equipment, smart meters or non-portable or fixed) Measurement equipment, control panels, etc.), vending machines, and any other “things” that may exist on the IoT (Internet of Things) network.
  • smart home devices home appliances, lighting equipment, smart meters or non-portable or fixed
  • Measurement equipment control panels, etc.
  • vending machines and any other “things” that may exist on the IoT (Internet of Things) network.
  • Communication includes data communication by a combination of these in addition to data communication by a cellular system, a wireless LAN system, a communication satellite system, and the like.
  • the communication apparatus also includes devices such as a controller and a sensor that are connected to or connected to a communication device that performs the communication function described in the present disclosure.
  • devices such as a controller and a sensor that are connected to or connected to a communication device that performs the communication function described in the present disclosure.
  • a controller or a sensor that generates a control signal or a data signal used by a communication device that executes a communication function of the communication apparatus is included.
  • the communication apparatus includes infrastructure equipment such as a base station, an access point, and any other apparatus, device, or system that communicates with or controls the various non-limiting apparatuses described above. .
  • the communication distance in the multi-stream multicast / broadcast communication can be increased as compared with the case where the antenna of the pseudo omni pattern is used.
  • This disclosure is useful in communication using a plurality of antennas.
  • Base station 701 Antenna 702, 703 Transmit beam 704 Terminal 705, 706 Reception directivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Radio Transmission System (AREA)
  • Communication Control (AREA)

Abstract

第1の通信装置と第2の通信装置との間で送受信される中継信号を中継し、さらに第1の機器と接続する通信装置が、第1の送信スロットを用いて中継信号を送信し、第2の送信スロットを用いて、第1の機器からの信号を、第1の送信スロットの送信期間内に、第1の送信スロットと異なる周波数領域で送信する。

Description

通信装置、及び通信方法
 本発明は、通信装置、及び通信方法に関する。
 従来、複数アンテナを用いた通信方法として、例えば、MIMO(Multiple-Input Multiple-Out)と呼ばれる通信方法がある。MIMOに代表されるマルチアンテナ通信では、複数ストリームの送信データを変調し、各変調信号を異なるアンテナから同一周波数(共通の周波数)を用い、同時に送信することで、データの受信品質を高め、および/または、(単位時間当たりの)データの通信速度を高めることができる。
 また、複数アンテナ通信において、マルチキャスト及び/又はブロードキャスト通信を行う場合、送信装置が、空間の広い方向にわたりほぼ一定のアンテナ利得を有する疑似オムニパターンのアンテナが用いられることがある。例えば、特許文献1では、疑似オムニパターンのアンテナを用いて送信装置が変調信号を送信することが述べられている。
国際公開第2011/055536号
 本開示の非限定的な実施例は、複数のアンテナを用いる通信方法に関して、さらなる性能改善の提供に資する。
 本開示の一態様の通信装置は、第1の通信装置と第2の通信装置との間で送受信される中継信号を中継し、さらに第1の機器と接続する通信装置であって、第1の送信スロットを用いて、前記中継信号を送信し、第2の送信スロットを用いて、前記第1の機器からの信号を、前記第1の送信スロットの送信期間内に、前記第1の送信スロットと異なる周波数領域で送信する。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
 本開示によれば、複数のアンテナを用いる通信方法における性能を改善できる可能性がある。
 本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
基地局の構成の一例を示す図。 基地局のアンテナ部の構成の一例を示す図。 基地局の構成の一例を示す図。 端末の構成の一例を示す図。 端末のアンテナ部の構成の一例を示す図。 端末の構成の一例を示す図。 基地局と端末の間の通信状態の一例を示す図。 複数ストリームの関係を説明するための図。 フレーム構成の一例を示す図。 フレーム構成の一例を示す図。 シンボル構成の一例を示す図。 基地局と端末の間の通信状態の一例を示す図。 複数の変調信号の関係を示す図。 フレーム構成の一例を示す図。 フレーム構成の一例を示す図。 シンボル構成の一例を示す図。 基地局と端末の間の通信状態の一例を示す図。 基地局と端末の間の通信状態の一例を示す図。 基地局と端末の間の通信状態の一例を示す図。 基地局と端末の間の通信状態の一例を示す図。 複数の変調信号の関係を示す図。 基地局と端末の間の通信状態の一例を示す図。 基地局と端末の通信を行う手順を示す図。 基地局及び端末が送信するシンボルの一例を示す図。 基地局が送信するシンボルの一例を示す図。 基地局と端末の間の通信状態の一例を示す図。 基地局が送信するシンボルの一例を示す図。 基地局と端末の通信を行う手順を示す図。 基地局と端末の間の通信状態の一例を示す図。 基地局と端末の通信を行う手順を示す図。 基地局が送信するシンボルの一例を示す図。 基地局が送信するシンボルの一例を示す図。 基地局と端末の通信を行う手順を示す図。 基地局と端末の通信を行う手順を示す図。 基地局が送信するシンボルの一例を示す図。 基地局と端末の通信を行う手順を示す図。 基地局の構成の一例を示す図。 フレーム構成の一例を示す図。 フレーム構成の一例を示す図。 フレーム構成の一例を示す図。 フレーム構成の一例を示す図。 シンボル領域の端末への割り当ての一例を示す図。 シンボル領域の端末への割り当ての一例を示す図。 基地局の構成の一例を示す図。 中継器を用いたメッシュネットワークの構成の一例を示す図。 中継器同士の接続の一例を示す図。 スロット割り当ての一例を示す図。 スロット割り当ての一例を示す図。 中継器同士の接続の一例を示す図。 スロット割り当ての一例を示す図。 スロット割り当ての一例を示す図。 中継器同士の接続の一例を示す図。 スロット割り当ての一例を示す図。 スロット割り当ての一例を示す図。 スロット割り当ての一例を示す図。 スロット割り当ての一例を示す図。 中継器間で送受信される無線信号の構成の一例を示す図。
 (実施の形態1)
 図1は、本実施の形態における基地局(または、アクセスポイントなど)の構成の一例を示している。
 図1には、#1情報101-1、#2情報101-2、・・・、#M情報101-Mが示される。つまり、図1には、#i情報101-iが示される。iは1以上M以下の整数とする。なお、Mは2以上の整数とする。なお、必ずしも#1情報から#M情報までのすべてが存在しなくてもよい。
 信号処理部102は、#1情報101-1、#2情報101-2、・・・、#M情報101-M、および、制御信号159を入力とする。信号処理部102は、制御信号159に含まれる、「誤り訂正符号化の方法(符号化率、符号長(ブロック長))に関する情報」、「変調方式に関する情報」、「プリコーディングに関する情報」、「送信方法(多重化方法)」、「マルチキャスト用の送信を行うか、及び/又は、ユニキャスト用の送信を行うか(マルチキャスト用の送信、ユニキャスト用の送信を同時に実現してもよい)」、「マルチキャストを行うときの送信ストリーム数」、及び/又は、「マルチキャスト用の変調信号を送信する場合の送信方法(この点については、後で詳しく説明する)」などの情報に基づき、信号処理を行い、信号処理後の信号103-1、信号処理後の信号103-2、・・・、及び、信号処理後の信号103-M(つまり、信号処理後の信号103-i)を出力する。なお、必ずしも信号処理後の信号#1から信号処理後の信号#Mまでがすべて存在しなくてもよい。このとき、#i情報101-iに対し、誤り訂正符号化を行い、その後、設定した変調方式によるマッピングを行う。これにより、ベースバンド信号を得る。そして、信号処理部102は、各情報に対応するベースバンド信号を集め、プリコーディングを行う。例えば、信号処理部102は、OFDM(Orthogonal Frequency Division Multiplexing)を適用してもよい。
 無線部104-1は、信号処理後の信号103-1、及び制御信号159を入力とし、制御信号159に基づいて、帯域制限、周波数変換、及び増幅などの処理を行い、送信信号105-1を出力する。そして、送信信号105-1は、アンテナ部106-1から電波として出力される。
 同様に、無線部104-2は、信号処理後の信号103-2、及び制御信号159を入力とし、制御信号159に基づいて、帯域制限、周波数変換、及び増幅などの処理を行い、送信信号105-2を出力する。そして、送信信号105-2は、アンテナ部106-2から電波として出力される。無線部104-3から無線部104-(M-1)までの説明は省略する。
 無線部104-Mは、信号処理後の信号103-M、及び制御信号159を入力とし、制御信号159に基づいて、帯域制限、周波数変換、及び増幅などの処理を行い、送信信号105-Mを出力する。そして、送信信号105-Mは、アンテナ部106-Mから電波として出力される。
 各無線部は、信号処理後の信号が存在していない場合は、上記処理を行わなくてもよい。
 無線部群153は、受信アンテナ群151で受信した受信信号群152を入力とし、周波数変換等の処理を行い、ベースバンド信号群154を出力する。
 信号処理部155は、ベースバンド信号群154を入力し、復調及び誤り訂正復号を行う。つまり、信号処理部155は、時間同期、周波数同期、及びチャネル推定などの処理も行う。このとき、信号処理部155は、一つ以上の端末が送信した変調信号を受信し、処理を行っているため、各端末が送信したデータと、各端末が送信した制御情報を得る。したがって、信号処理部155は、一つ以上の端末に対応するデータ群156、および、一つ以上の端末に対応する制御情報群157を出力する。
 設定部158は、制御情報群157、及び設定信号160を入力とし、制御情報群157に基づき、「誤り訂正符号化の方法(符号化率及び符号長(ブロック長))」、「変調方式」、「プリコーディング方法」、「送信方法」、「アンテナの設定」、「マルチキャスト用の送信を行うか、及び/又は、ユニキャスト用の送信を行うか(マルチキャスト及びユニキャストの送信を同時に実現してもよい)」、「マルチキャストを行うときの送信ストリーム数」、及び/又は、「マルチキャスト用の変調信号を送信する場合の送信方法」などを決定し、これらの決定した情報を含んだ制御信号159を出力する。
 アンテナ部106-1、106-2、・・・、106-Mは、制御信号159を入力としている。このときの動作について、図2を用いて説明する。
 図2は、アンテナ部106-1、106-2、・・・、106-Mの構成の一例を示している。各アンテナ部は、図2のように複数のアンテナを具備している。なお、図2では、アンテナを4つ描いているが、各アンテナ部は、複数のアンテナを具備していればよい。なお、アンテナの本数は4に限られない。
 図2は、アンテナ部106-iの構成となる。iは1以上M以下の整数である。
 分配部202は、送信信号201(図1の送信信号105-iに相当)を入力とし、送信信号201を分配し、信号203-1、203-2、203-3、203-4を出力する。
 乗算部204-1は、信号203-1、および、制御信号200(図1の制御信号159に相当)を入力とし、制御信号200に含まれる乗算係数の情報に基づき、信号203-1に対し、係数W1を乗算し、乗算後の信号205-1を出力する。係数W1は複素数で定義されるので、W1は実数であってもよい。したがって、信号203-1をv1(t)とすると、乗算後の信号205-1はW1×v1(t)とあらわすことができる(tは時間)。乗算後の信号205-1は、アンテナ206-1から電波として出力される。
 同様に、乗算部204-2は、信号203-2、および、制御信号200を入力とし、制御信号200に含まれる乗算係数の情報に基づき、信号203-2に対し、係数W2を乗算し、乗算後の信号205-2を出力する。係数W2は複素数で定義されるので、W2は実数であってもできる。したがって、信号203-2をv2(t)とすると、乗算後の信号205-2はW2×v2(t)とあらわすことができる(tは時間)。乗算後の信号205-2は、アンテナ206-2から電波として出力される。
 乗算部204-3は、信号203-3、および、制御信号200を入力とし、制御信号200に含まれる乗算係数の情報に基づき、信号203-3に対し、係数W3を乗算し、乗算後の信号205-3を出力する。係数W3は複素数で定義されるので、W3は実数であってもよい。したがって、信号203-3をv3(t)とすると、乗算後の信号205-3はW3×v3(t)とあらわすことができる(tは時間)。乗算後の信号205-3は、アンテナ206-3から電波として出力される。
 乗算部204-4は、信号203-4、および、制御信号200を入力とし、制御信号200に含まれる乗算係数の情報に基づき、信号203-4に対し、係数W4を乗算し、乗算後の信号205-4を出力する。係数W4は複素数で定義されるので、W4は実数であってもよい。したがって、信号203-4をv4(t)とすると、乗算後の信号205-4はW4×v4(t)とあらわすことができる(tは時間)。乗算後の信号205-4は、アンテナ206-4から電波として出力される。
 なお、W1の絶対値、W2の絶対値、W3の絶対値、及びW4の絶対値のうちの少なくとも2つが、互いに等しくてもよい。
 図3は、本実施の形態における図1の基地局の構成とは異なる基地局の構成を示している。図3において、図1と同様に動作するものについては、同一番号を付し、以下では説明を省略する。
 重みづけ合成部301は、変調信号105-1、変調信号105-2、・・・、変調信号105-M、および、制御信号159を入力とする。重みづけ合成部301は、制御信号159に含まれる重みづけ合成に関する情報にもとづき、変調信号105-1、変調信号105-2、・・・、変調信号105-Mに対し、重みづけ合成を行い、重みづけ合成後の信号302-1、302-2、・・・、302-Kを出力する。Kは1以上の整数とする。重みづけ合成後の信号302-1はアンテナ303-1から電波として出力され、重みづけ合成後の信号302-2はアンテナ303-2から電波として出力され、・・・、重みづけ合成後の信号302-Kはアンテナ303-Kから電波として出力される。
 重みづけ合成後の信号y(t)302-i(iは、1以上K以下の整数)は、以下のようにあらわされる(tは時間)。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Aijは複素数で定義されるので、Aijは実数であってもよい。よって、x(t)は変調信号105-jとなる。jは1以上M以下の整数である。
 図4は、端末の構成の一例を示している。アンテナ部401-1、401-2、・・・、401-Nは、制御信号410を入力としている。Nは1以上の整数である。
 無線部403-1は、アンテナ部401-1で受信した受信信号402-1、および、制御信号410を入力とし、制御信号410に基づき、受信信号402-1に対し、周波数変換等の処理を施し、ベースバンド信号404-1を出力する。
 同様に、無線部403-2は、アンテナ部401-2で受信した受信信号402-2、および、制御信号410を入力とし、制御信号410に基づき、受信信号402-2に対し、周波数変換等の処理を施し、ベースバンド信号404-2を出力する。なお、無線部403-3から無線部403-(N-1)までの説明は省略する。
 無線部403-Nは、アンテナ部401-Nで受信した受信信号402-N、および、制御信号410を入力とし、制御信号に基づき、受信信号402-Nに対し、周波数変換等の処理を施し、ベースバンド信号404-Nを出力する。
 ただし、無線部403-1、403-2、・・・、403-Nは、必ずしもすべてが動作するとは限らない。したがって、ベースバンド信号404-1、404-2、・・・、404-Nが、必ずしもすべて存在しているとは限らない。
 信号処理部405は、ベースバンド信号404-1、404-2、・・・、404-N、および、制御信号410を入力とし、制御信号410に基づいて、復調及び誤り訂正復号の処理を行い、データ406、送信用制御情報407、及び制御情報408を出力する。つまり、信号処理部405は、時間同期、周波数同期、及びチャネル推定などの処理も行う。
 設定部409は、制御情報408を入力とし、受信方法に関する設定を行い、制御信号410を出力する。
 信号処理部452は、情報451、及び送信用制御情報407を入力とし、誤り訂正符号化、及び、設定した変調方式によるマッピングなどの処理を行い、ベースバンド信号群453を出力する。
 無線部群454は、ベースバンド信号群453を入力とし、帯域制限、周波数変換、及び増幅等の処理を行い、送信信号群455を出力する。送信信号群455は、送信アンテナ群456から、電波として出力される。
 図5は、アンテナ部401-1、401-2、・・・、401-Nの構成の一例を示している。各アンテナ部は、図5に示すように複数のアンテナを具備している。なお、図5では、アンテナを4つ描いているが、各アンテナ部は、複数のアンテナを具備していればよい。なお、アンテナ部のアンテナの本数は4に限られない。
 図5は、アンテナ部401-iの構成を示す。iは1以上N以下の整数である。
 乗算部503-1は、アンテナ501-1で受信した受信信号502-1、および、制御信号500(図4の制御信号410に相当)を入力とし、制御信号500に含まれる乗算係数の情報に基づき、受信信号502-1に対し、係数D1を乗算し、乗算後の信号504-1を出力する。係数D1は複素数で定義されるので、D1は実数であってもよい。したがって、受信信号502-1をe1(t)とすると、乗算後の信号504-1はD1×e1(t)とあらわすことができる(tは時間)。
 同様に、乗算部503-2は、アンテナ501-2で受信した受信信号502-2、および、制御信号500を入力とし、制御信号500に含まれる乗算係数の情報に基づき、受信信号502-2に対し、係数D2を乗算し、乗算後の信号504-2を出力する。係数D2は複素数で定義されるので、D2は実数であってもよい。したがって、受信信号502-2をe2(t)とすると、乗算後の信号504-2はD2×e2(t)とあらわすことができる(tは時間)。
 乗算部503-3は、アンテナ501-3で受信した受信信号502-3、および、制御信号500を入力とし、制御信号500に含まれる乗算係数の情報に基づき、受信信号502-3に対し、係数D3を乗算し、乗算後の信号504-3を出力する。係数D3は複素数で定義されるので、D3は実数であってもよい。したがって、受信信号502-3をe3(t)とすると、乗算後の信号504-3はD3×e3(t)とあらわすことができる(tは時間)。
 乗算部503-4は、アンテナ501-4で受信した受信信号502-4、および、制御信号500を入力とし、制御信号500に含まれる乗算係数の情報に基づき、受信信号502-4に対し、係数D4を乗算し、乗算後の信号504-4を出力する。係数D4は複素数で定義されるので、D4は実数であってもよい。したがって、受信信号502-4をe4(t)とすると、乗算後の信号504-4はD4×e4(t)とあらわすことができる(tは時間)。
 合成部505は、乗算後の信号504-1、504-2、504-3、504-4を入力とし、乗算後の信号504-1、504-2、504-3、504-4を加算し、合成後の信号506(図4の受信信号402-iに相当する)を出力とする。したがって、合成後の信号506は、D1×e1(t)+D2×e2(t)+D3×e3(t)+D4×e4(t)とあらわされる。
 図6は、本実施の形態における、図4の端末の構成とは異なる端末の構成を示している。図6において、図4と同様に動作するものについては、同一番号を付し、以下では説明を省略する。
 乗算部603-1は、アンテナ601-1で受信した受信信号602-1、および、制御信号410を入力とし、制御信号410に含まれる乗算係数の情報に基づき、受信信号602-1に対し、係数G1を乗算し、乗算後の信号604-1を出力する。係数G1は複素数で定義されるので、G1は実数であってもよい。したがって、受信信号602-1をc1(t)とすると、乗算後の信号604-1はG1×c1(t)とあらわすことができる(tは時間)。
 同様に、乗算部603-2は、アンテナ601-2で受信した受信信号602-2、および、制御信号410を入力とし、制御信号410に含まれる乗算係数の情報に基づき、受信信号602-2に対し、係数G2を乗算し、乗算後の信号604-2を出力する。係数G2は複素数で定義されるので、G2は実数であってもよい。したがって、受信信号602-2をc2(t)とすると、乗算後の信号604-2はG2×c2(t)とあらわすことができる(tは時間)。乗算部603-3から乗算部603-(L-1)までの説明は省略する。
 乗算部603-Lは、アンテナ601-Lで受信した受信信号602-L、および、制御信号410を入力とし、制御信号410に含まれる乗算係数の情報に基づき、受信信号602-Lに対し、係数GLを乗算し、乗算後の信号604-Lを出力する。係数GLは複素数で定義されるので、GLは実数であってもよい。したがって、受信信号602-LをcL(t)とすると、乗算後の信号604-LはGL×cL(t)とあらわすことができる(tは時間)。
 したがって、乗算部603-iは、アンテナ601-iで受信した受信信号602-i、および、制御信号410を入力とし、制御信号410に含まれる乗算係数の情報に基づき、受信信号602-iに対し、係数Giを乗算し、乗算後の信号604-iを出力する。係数Giは複素数で定義されるので、Giは実数であってもよい。したがって、受信信号602-iをci(t)とすると、乗算後の信号604-iはGi×ci(t)とあらわすことができる(tは時間)。なお、iは1以上L以下の整数とし、Lは2以上の整数である。
 処理部605は、乗算後の信号604-1、乗算後の信号604-2、・・・、乗算後の信号604-L、および、制御信号410を入力とし、制御信号410に基づき、信号処理を行い、処理後の信号606-1、606-2、・・・、606-Nを出力する。Nは2以上の整数とする。このとき、乗算後の信号604-iをp(t)とあらわす。iは1以上L以下の整数とする。この場合、処理後の信号606-j(r(t))は、以下のようにあらわされる(jは1以上N以下の整数)。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、Bjiは複素数で定義されるので、Bjiは実数であってもよい。
 図7は、基地局と端末の通信状態の一例を示している。なお、基地局は、アクセスポイント、又は放送局などと呼ばれることもある。
 基地局700は、複数のアンテナを具備し、送信用のアンテナ701から、複数の送信信号を送信する。基地局700は、例えば、図1、図3のように構成されており、信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行うことで、送信ビームフォーミング(指向性制御)を行う。
 図7は、ストリーム1のデータを伝送するための送信ビーム702-1、ストリーム1のデータを伝送するための送信ビーム702-2、及び、ストリーム1のデータを伝送するための送信ビーム702-3を示す。また、図7は、ストリーム2のデータを伝送するための送信ビーム703-1、ストリーム2のデータを伝送するための送信ビーム703-2、及び、ストリーム2のデータを伝送するための送信ビーム703-3を示す。
 なお、図7では、ストリーム1のデータを伝送するための送信ビームの数を3とし、ストリーム2のデータを伝送するための送信ビームの数を3としているが、送信ビームの数はこれに限られない。すなわち、ストリーム1のデータを伝送するための送信ビームが複数であり、かつ、ストリーム2のデータを伝送するための送信ビームが複数であればよい。
 図7は、端末704-1、704-2、704-3、704-4、704-5を含む。これらの端末は、例えば、図4、図5に示す構成であってよい。
 例えば、端末704-1は、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-1、および、受信指向性706-1を形成する。端末704-1は、受信指向性705-1により、ストリーム1のデータを伝送するための送信ビーム702-1の受信及び復調が可能となり、受信指向性706-1により、ストリーム2のデータを伝送するための送信ビーム703-1の受信及び復調が可能となる。
 同様に、端末704-2は、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-2、および、受信指向性706-2を形成する。端末704-2は、受信指向性705-2により、ストリーム1のデータを伝送するための送信ビーム702-1の受信及び復調が可能となり、受信指向性706-2により、ストリーム2のデータを伝送するための送信ビーム703-1の受信及び復調が可能となる。
 端末704-3は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-3、および、受信指向性706-3を形成する。端末704-3は、受信指向性705-3により、ストリーム1のデータを伝送するための送信ビーム702-2の受信及び復調が可能となり、受信指向性706-3により、ストリーム2のデータを伝送するための送信ビーム703-2の受信及び復調が可能となる。
 端末704-4は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-4、および、受信指向性706-4を形成する。端末704-4は、受信指向性705-4により、ストリーム1のデータを伝送するための送信ビーム702-3の受信及び復調が可能となり、受信指向性706-4により、ストリーム2のデータを伝送するための送信ビーム703-2の受信及び復調が可能となる。
 端末704-5は、「信号処理部405」、および/または、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-5、および、受信指向性706-5を形成する。端末704-5は、受信指向性705-5により、ストリーム1のデータを伝送するための送信ビーム702-3の受信及び復調が可能となり、受信指向性706-5により、ストリーム2のデータを伝送するための送信ビーム703-3の受信及び復調が可能となる。
 図7では、端末は、ストリーム1のデータを伝送するための送信ビーム702-1、702-2、702-3のうち、空間的な位置により、少なくとも一つの送信ビームを選択し、受信の指向性を向けることで、ストリーム1のデータを高い品質で得ることができる。また、端末は、ストリーム2のデータを伝送するための送信ビーム703-1、703-2、703-3のうち、空間的な位置により、少なくとも一つの送信ビームを選択し、受信の指向性を向けることで、ストリーム2のデータを高い品質で得ることができる。
 基地局700は、ストリーム1のデータを伝送するための送信ビーム702-1とストリーム2のデータを伝送するための送信ビーム703-1とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。基地局700は、ストリーム1のデータを伝送するための送信ビーム702-2とストリーム2のデータを伝送するための送信ビーム703-2とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。基地局700は、ストリーム1のデータを伝送するための送信ビーム702-3とストリーム2のデータを伝送するための送信ビーム703-3とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。
 なお、ストリーム1のデータを伝送するための送信ビーム702-1、702-2、702-3は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(異なる周波数帯)のビームであってもよい。ストリーム2のデータを伝送するための送信ビーム703-1、703-2、703-3は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(異なる周波数帯)のビームであってもよい。
 上述の場合における、図1、図3に示す基地局の設定部158の動作について、説明する。
 設定部158は、設定信号160を入力としている。設定信号160は、「マルチキャスト用の送信を行うか、及び/又は、ユニキャスト用の送信を行うか」を示す情報を含んでいる。図7のような送信を基地局が行う場合、設定信号160により、「マルチキャスト用の送信を行う」という情報が、設定部158に入力される。
 設定信号160は、「マルチキャストを行うときの送信ストリーム数」を示す情報を含んでいる。図7のような送信を基地局が行う場合、設定信号160により、「送信ストリーム数は2」という情報が、設定部158に入力される。
 設定信号160は、「各ストリームをいくつの送信ビームで送信するか」を示す情報を含んでもよい。図7のような送信を基地局が行う場合、設定信号160により、「ストリーム1を送信する送信ビーム数は3、ストリーム2を送信する送信ビーム数は3」という情報が、設定部158に入力される。
 図1、図3の基地局は、データシンボルが「マルチキャスト用の送信であるか、及び/又は、ユニキャスト用の送信であるか」を示す情報、「マルチキャストを行うときの送信ストリーム数」を示す情報、及び/又は、「各ストリームをいくつの送信ビームで送信するか」を示す情報等を含んだ制御情報シンボルを送信してもよい。これにより、端末は、適切な受信が可能となる。制御情報シンボルの構成の詳細については、後述する。
 図8は、図1、図3の#i情報101-iと、図7を用いて説明した「ストリーム1」及び「ストリーム2」との関係を説明するための図面である。
 例えば、#1情報101-1に対して、誤り訂正符号化などの処理を施し、誤り訂正符号化後のデータを得る。この誤り訂正符号化後のデータを「#1送信データ」と名付ける。そして、#1送信データに対してマッピングを行い、データシンボルを得る。そして、このデータシンボルを、ストリーム1用とストリーム2用とに振り分け、ストリーム1のデータシンボル(データシンボル群)と、ストリーム2のデータシンボル(データシンボル群)とを得る。ストリーム1のシンボル群は、ストリーム1のデータシンボル(データシンボル群)を含み、ストリーム1のシンボル群は、図1、図3の基地局から送信される。また、ストリーム2のシンボル群は、ストリーム2のデータシンボル(データシンボル群)を含み、ストリーム2のシンボル群は、図1、図3の基地局から送信される。
 図9は、横軸を時間としたときのフレーム構成の一例を示している。
 図9のストリーム1の#1シンボル群901-1は、図7におけるストリーム1のデータを伝送するための送信ビーム702-1のシンボル群である。
 図9のストリーム1の#2シンボル群901-2は、図7におけるストリーム1のデータを伝送するための送信ビーム702-2のシンボル群である。
 図9のストリーム1の#3シンボル群901-3は、図7におけるストリーム1のデータを伝送するための送信ビーム702-3のシンボル群である。
 図9のストリーム2の#1シンボル群902-1は、図7におけるストリーム2のデータを伝送するための送信ビーム703-1のシンボル群である。
 図9のストリーム2の#2シンボル群902-2は、図7におけるストリーム2のデータを伝送するための送信ビーム703-2のシンボル群である。
 図9のストリーム2の#3シンボル群902-3は、図7におけるストリーム2のデータを伝送するための送信ビーム703-3のシンボル群である。
 ストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、ストリーム1の#3シンボル群901-3、ストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、及び、ストリーム2の#3シンボル群902-3は、例えば、時間区間1に存在している。
 上述のように、ストリーム1の#1シンボル群901-1とストリーム2の#2シンボル群902-1とは、同一周波数(同一周波数帯)を用いて送信されている。ストリーム1の#2シンボル群901-2とストリーム2の#2シンボル群902-2とは、同一周波数(同一周波数帯)を用いて送信されている。ストリーム1の#3シンボル群901-3とストリーム2の#3シンボル群902-3とは、同一周波数(同一周波数帯)を用いて送信されている。
 例えば、図8の手順で、情報から「ストリーム1のデータシンボル群A」および「ストリーム2のデータシンボル群A」を生成する。そして、「ストリーム1のデータシンボル群A」を構成するシンボルと同じシンボルで構成されたシンボル群「ストリーム1のデータシンボル群A-1」を用意する。「ストリーム1のデータシンボル群A」を構成するシンボルと同じシンボルで構成されたシンボル群「ストリーム1のデータシンボル群A-2」を用意する。「ストリーム1のデータシンボル群A」を構成するシンボルと同じシンボルで構成されたシンボル群「ストリーム1のデータシンボル群A-3」を用意する。
 つまり、「ストリーム1のデータシンボル群A-1」を構成するシンボルと、「ストリーム1のデータシンボル群A-2」を構成するシンボルと、「ストリーム1のデータシンボル群A-3」を構成するシンボルとは同じである。
 この場合、図9のストリーム1の#1シンボル群901-1は、「ストリーム1のデータシンボル群A-1」を含んでいる。図9のストリーム1の#2シンボル群901-2は、「ストリーム1のデータシンボル群A-2」を含んでいる。図9のストリーム1の#3シンボル群901-3は、「ストリーム1のデータシンボル群A-3」を含んでいる。つまり、ストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、及び、ストリーム1の#3シンボル群901-3は、同一のデータシンボル群を含んでいる。
 また、「ストリーム2のデータシンボル群A」を構成するシンボルと同じシンボルで構成されたシンボル群「ストリーム2のデータシンボル群A-1」を用意する。「ストリーム2のデータシンボル群A」を構成するシンボル群と同じシンボルで構成されたシンボル群「ストリーム2のデータシンボル群A-2」を用意する。「ストリーム2のデータシンボル群A」を構成するシンボル群と同じシンボルで構成されたシンボル群「ストリーム2のデータシンボル群A-3」を用意する。
 つまり、「ストリーム2のデータシンボル群A-1」を構成するシンボルと、「ストリーム2のデータシンボル群A-2」を構成するシンボルと、「ストリーム2のデータシンボル群A-3」を構成するシンボルとは同じである。
 この場合、図9のストリーム2の#1シンボル群902-1は、「ストリーム2のデータシンボル群A-1」を含んでおり、図9のストリーム2の#2シンボル群902-2は、「ストリーム2のデータシンボル群A-2」を含んでおり、図9のストリーム2の#3シンボル群902-3は、「ストリーム2のデータシンボル群A-3」を含んでいる。つまり、ストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、及び、ストリーム2の#3シンボル群902-3は、同一のデータシンボル群を含んでいる。
 図10は、図9で説明した「ストリームXのシンボル群#Y」(X=1,2;Y=1,2,3)のフレーム構成の一例を示している。図10において、横軸は時間方向を示し、制御情報シンボル1001、及び、ストリームのデータシンボル群1002が、時間方向に配置されている。この場合、ストリームのデータシンボル群1002は、図9を用いて説明した「ストリーム1のデータシンボル群A」または「ストリーム2のデータシンボル群A」を伝送するためのシンボルである。
 なお、図10のフレーム構成において、OFDM(Orthogonal Frequency Division Multiplexing)方式などのマルチキャリア方式を用いてもよく、この場合、周波数軸方向にシンボルが存在していてもよい。また、各シンボルには、受信装置が時間及び周波数同期を行うためのリファレンスシンボル、受信装置が信号を検出するためのリファレンスシンボル、及び/又は、受信装置がチャネル推定を行うためのリファレンスシンボルなどが含まれていてもよい。フレーム構成は図10に限られず、制御情報シンボル1001、及び、ストリームのデータシンボル群1002は、どのように配置されてもよい。なお、リファレンスシンボルは、プリアンブル、又は、パイロットシンボルと呼ばれてもよい。
 次に、制御情報シンボル1001の構成について説明する。
 図11は、図10の制御情報シンボルとして送信するシンボルの構成の一例を示している。図11において、横軸は時間である。図11において、端末は、「端末が受信指向性制御を行うためのトレーニングシンボル」1101を受信することで、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」で実施する、受信時の指向性制御のための信号処理方法を決定する。
 端末は、「マルチキャストを行っているときの送信ストリーム数を通知するためのシンボル」1102を受信することで、得るストリーム数を知ることができる。
 端末は、「ストリームのデータシンボルがどのストリームのデータシンボルであるかを通知するためのシンボル」1103を受信することで、基地局が送信しているストリームのうち、どのストリームを受信できているか、を知ることができる。
 上記についての例を説明する。
 図7のように、基地局がストリームの送信ビームを送信している場合について説明する。そして、図9のストリーム1の#1シンボル群901-1における制御情報シンボルの具体的な情報について説明する。
 図7の場合、基地局は「ストリーム1」および「ストリーム2」を送信しているため、「マルチキャストを行っているときの送信ストリーム数を通知するためのシンボル」1102の情報は「2」となる。
 また、図9のストリーム1の#1シンボル群901-1は、ストリーム1のデータシンボルを送信しているため、「ストリームのデータシンボルがどのストリームのデータシンボルであるかを通知するためのシンボル」1103の情報は「ストリーム1」となる。
 例えば、端末が、図9のストリーム1の#1シンボル群901-1を受信した場合について説明する。このとき、端末は、「マルチキャストを行っているときの送信ストリーム数を通知するためのシンボル」1102から「送信ストリーム数が2」を、「ストリームのデータシンボル群がどのストリームのデータシンボルであるかを通知するためのシンボル」1103から「ストリーム1のデータシンボル」を得たことを認識する。
 そして、端末は、「送信ストリーム数が2」であり、得ているデータシンボルが「ストリーム1のデータシンボル」であると認識するため、「ストリーム2のデータシンボル」が得る対象であると認識する。よって、端末は、ストリーム2のシンボル群を探す作業を開始することができる。例えば、端末は、図9のストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、又は、ストリーム2の#3シンボル群902-3のうちのいずれかの送信ビームを、探す。
 そして、端末は、ストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、又は、ストリーム2の#3シンボル群902-3のうちのいずれかの送信ビームを得ることで、ストリーム1のデータシンボルとストリーム2のデータシンボルとの両者のデータシンボルを得る。
 このように制御情報シンボルを構成することにより、本実施の形態の効果として、端末は、的確にデータシンボルを得ることができる。
 以上のように、マルチキャストデータ伝送及びブロードキャストデータ伝送において、基地局は、データシンボルを複数の送信ビームを用いて送信し、端末は、複数の送信ビームから、品質のよいビームを選択的に受信する。基地局が送信する変調信号には、送信指向性制御、及び受信指向性制御が行われているため、本実施の形態の効果として、高いデータの受信品質が得られるエリアを広くすることができる。
 なお、上述の説明では、端末が受信指向性制御を行っているが、端末が受信指向性制御を行わなくても、上述の効果を得ることができる。
 また、図10の「ストリームのデータシンボル群」1002の変調方式は、どのような変調方式であってもよい。また、「ストリームのデータシンボル群」1002の変調方式のマッピング方法は、シンボルごとに切り替わってもよい。つまり、マッピング後に同相I-直交Q平面上において、コンスタレーションの位相が、シンボルごとに切り替わってもよい。
 図12は、基地局と端末の通信状態の図7とは異なる例である。なお、図12において、図7と同様に動作するものについては同一番号を付している。
 基地局700は、複数のアンテナを具備し、送信用のアンテナ701から、複数の送信信号を送信する。基地局700は、例えば、図1、図3のように構成されており、信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行うことで、送信ビームフォーミング(指向性制御)を行う。
 図12は、「変調信号1」を伝送するための送信ビーム1202-1、「変調信号1」を伝送するための送信ビーム1202-2、及び、「変調信号1」を伝送するための送信ビーム1202-3を示す。また、図12は、「変調信号2」を伝送するための送信ビーム1203-1、「変調信号2」を伝送するための送信ビーム1203-2、及び、「変調信号2」を伝送するための送信ビーム1203-3を示す。
 図12では、「変調信号1」を伝送するための送信ビームの数を3とし、「変調信号2」を伝送するための送信ビームの数を3としているが、送信ビームの数はこれに限れない。すなわち、「変調信号1」を伝送するための送信ビームが複数であり、「変調信号2」を伝送するための送信ビームが複数であればよい。なお、「変調信号1」、「変調信号2」については、後に詳しく説明する。
 図12は、端末704-1、704-2、704-3、704-4、704-5を含む。これらの端末は、例えば、図4、図5に示す構成であってよい。
 例えば、端末704-1は、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-1、および、受信指向性706-1を形成する。端末704-1は、受信指向性705-1により、「変調信号1」を伝送するための送信ビーム1202-1の受信及び復調が可能となり、受信指向性706-1により、「変調信号2」を伝送するための送信ビーム1203-1の受信及び復調が可能となる。
 同様に、端末704-2は、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-2、および、受信指向性706-2を形成する。端末704-2は、受信指向性705-2により、「変調信号1」を伝送するための送信ビーム1202-1の受信及び復調が可能となり、受信指向性706-2により、「変調信号2」を伝送するための送信ビーム1203-1の受信及び復調が可能となる。
 端末704-3は、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-3、および、受信指向性706-3を形成する。端末704-3は、受信指向性705-3により、「変調信号1」を伝送するための送信ビーム1202-2の受信及び復調が可能となり、受信指向性706-3により、「変調信号2」を伝送するための送信ビーム1203-2の受信及び復調が可能となる。
 端末704-4は、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-4、および、受信指向性706-4を形成する。端末704-4は、受信指向性705-4により、「変調信号1」を伝送するための送信ビーム1202-3の受信及び復調が可能となり、受信指向性706-4により、「変調信号2」を伝送するための送信ビーム1203-2の受信及び復調が可能となる。
 端末704-5は、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性705-5、および、受信指向性706-5を形成する。端末704-5は、受信指向性705-5により、「変調信号1」を伝送するための送信ビーム1202-3の受信及び復調が可能となり、受信指向性706-5により、「変調信号2」を伝送するための送信ビーム1203-3の受信及び復調が可能となる。
 図12では、端末が、「変調信号1」を伝送するための送信ビーム1202-1、1202-2、1202-3のうち、空間的な位置により、少なくとも一つの送信ビームを選択し、受信の指向性を向けることで、「変調信号1」を高い品質で得ることができる。また、端末が、「変調信号2」を伝送するための送信ビーム1203-1、1203-2、1203-3のうち、空間的な位置により、少なくとも一つの送信ビームを選択し、受信の指向性を向けることで、「変調信号2」を高い品質で得ることができる。
 基地局700は、「変調信号1」を伝送するための送信ビーム1202-1と「変調信号2」を伝送するための送信ビーム1203-1とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。基地局700は、「変調信号1」を伝送するための送信ビーム1202-2と「変調信号2」を伝送するための送信ビーム1203-2とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。基地局700は、「変調信号1」を伝送するための送信ビーム1202-3と「変調信号2」を伝送するための送信ビーム1203-3とを、同一周波数(同一周波数帯)及び同一時刻を用いて、送信する。
 「変調信号1」を伝送するための送信ビーム1202-1、1202-2、1202-3は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(異なる周波数帯)のビームであってもよい。「変調信号2」を伝送するための送信ビーム1203-1、1203-2、1203-3は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(異なる周波数帯)のビームであってもよい。
 上述の場合における、図1、図3に示す基地局の設定部158の動作について、説明する。
 設定部158は、設定信号160を入力としている。設定信号160は、「マルチキャスト用の送信を行うか、及び/又は、ユニキャスト用の送信を行うか」を示す情報を含んでいる。図12のような送信を基地局が行う場合、設定信号160により、「マルチキャスト用の送信を行う」という情報が、設定部158に入力される。
 設定信号160は、「マルチキャストを行うときの送信変調信号数」を示す情報を含んでいる。図12のような送信を基地局が行う場合、設定信号160により、「送信変調信号数は2」という情報が、設定部158に入力される。
 設定信号160は、「各変調信号をいくつの送信ビームで送信するか」を示す情報を含んでもよい。図12のような送信を基地局が行う場合、設定信号160により、「変調信号1を送信する送信ビーム数は3、変調信号2を送信する送信ビーム数は3」という情報が、設定部158に入力される。
 図1、図3の基地局は、データシンボルが「マルチキャスト用の送信であるか、及び/又は、ユニキャスト用の送信であるか」を示す情報、「マルチキャストを行うときの送信変調信号数」の情報、及び/又は、「各変調信号をいくつの送信ビームで送信するか」を示す情報等を含んだ制御情報シンボルを送信してもよい。これにより、端末は、適切な受信が可能となる。制御情報シンボルの構成の詳細については、後述する。
 図13は、図1、図3の#i情報101-iと、図12を用いて説明した「変調信号1」及び「変調信号2」との関係を説明するための図面である。
 例えば、#1情報101-1に対して、誤り訂正符号化などの処理を施し、誤り訂正符号化後のデータを得る。この誤り訂正符号化後のデータを「#1送信データ」と名付ける。そして、#1送信データに対してマッピングを行い、データシンボルを得る。そして、このデータシンボルを、ストリーム1用とストリーム2用とに振り分け、ストリーム1のデータシンボル(データシンボル群)と、ストリーム2のデータシンボル(データシンボル群)とを得る。シンボル番号iにおけるストリーム1のデータシンボルをs1(i)、ストリーム2のデータシンボルをs2(i)とする。この場合、シンボル番号iにおける「変調信号1」tx1(i)は、例えば、以下のようにあらわされる。
Figure JPOXMLDOC01-appb-M000003
 そして、シンボル番号iにおける「変調信号2」tx2(i)は、例えば、以下のようにあらわされる。
Figure JPOXMLDOC01-appb-M000004
 なお、式(3)、式(4)において、α(i)は、複素数で定義されるため、実数であってもよい。β(i)は、複素数で定義されるため、実数であってもよい。γ(i)は、複素数で定義されるため、実数であってもよい。δ(i)は、複素数で定義されるため、実数であってもよい。また、α(i)は、シンボル番号iの関数でなくてもよく、例えば、固定の値であってもよい。β(i)は、シンボル番号iの関数でなくてもよく、例えば、固定の値であってもよい。γ(i)は、シンボル番号iの関数でなくてもよく、例えば、固定の値であってもよい。δ(i)は、シンボル番号iの関数でなくてもよく、例えば、固定の値であってもよい。
 データシンボルから構成された「変調信号1のデータ伝送領域の信号」を含んだ「変調信号1のシンボル群」は、図1、図3の基地局から送信される。また、データシンボルから構成された「変調信号2のデータ伝送領域の信号」を含んだ「変調信号2のシンボル群」は、図1、図3の基地局から送信される。
 なお、「変調信号1」及び/又は「変調信号2」に対して、位相変更及び/又はCDD(Cyclic Delay Diversity)等の信号処理が行われてもよい。ただし、信号処理の方法はこれに限られない。
 図14は、横軸を時間としたときのフレーム構成の一例を示している。
 図14の変調信号1の#1シンボル群(1401-1)は、図12における変調信号1のデータを伝送するための送信ビーム1202-1のシンボル群である。
 図14の変調信号1の#2シンボル群(1401-2)は、図12における変調信号1のデータを伝送するための送信ビーム1202-2のシンボル群である。
 図14の変調信号1の#3シンボル群(1401-3)は、図12における変調信号1のデータを伝送するための送信ビーム1202-3のシンボル群である。
 図14の変調信号2の#1シンボル群(1402-1)は、図12における変調信号2のデータを伝送するための送信ビーム1203-1のシンボル群である。
 図14の変調信号2の#2シンボル群(1402-2)は、図12における変調信号2のデータを伝送するための送信ビーム1203-2のシンボル群である。
 図14の変調信号2の#3シンボル群(1402-3)は、図12における変調信号2のデータを伝送するための送信ビーム1203-3のシンボル群である。
 変調信号1の#1シンボル群(1401-1)、変調信号1の#2シンボル群(1401-2)、変調信号1の#3シンボル群(1401-3)、変調信号2の#1シンボル群(1402-1)、変調信号2の#2シンボル群(1402-2)、及び、変調信号2の#3シンボル群(1402-3)は、例えば、時間区間1に存在している。
 上述のように、変調信号1の#1シンボル群(1401-1)と変調信号2の#1シンボル群(1402-1)とは、同一周波数(同一周波数帯)を用いて送信されている。変調信号1の#2シンボル群(1401-2)と変調信号2の#2シンボル群(1402-2)とは、同一周波数(同一周波数帯)を用いて送信されている。変調信号1の#3シンボル群(1401-3)と変調信号2の#3シンボル群(1402-3)とは、同一周波数(同一周波数帯)を用いて送信されている。
 例えば、図13の手順で、情報から「変調信号1のデータ伝送領域の信号A」および「変調信号2のデータ伝送領域の信号A」を生成する。そして、「変調信号1のデータ伝送領域の信号A」を構成する信号と同等の信号で構成された信号「変調信号1のデータ伝送領域の信号A-1」を用意する。「変調信号1のデータ伝送領域の信号A」を構成する信号と同等の信号で構成された信号「変調信号1のデータ伝送領域の信号A-2」を用意する。「変調信号1のデータ伝送領域の信号A」を構成する信号と同等の信号で構成された信号「変調信号1のデータ伝送領域の信号A-3」を用意する。
 つまり、「変調信号1のデータ伝送領域の信号群A-1」を構成する信号と、「変調信号1のデータ伝送領域の信号A-2」を構成する信号と、「変調信号1のデータ伝送領域の信号A-3」を構成する信号とは同じである。
 この場合、図14の変調信号1の#1シンボル群(1401-1)は、「変調信号1のデータ伝送領域の信号A-1」を含んでいる。図14の変調信号1の#2シンボル群(1401-2)は、「変調信号1のデータ伝送領域の信号A-2」を含んでいる。図14の変調信号1の#3シンボル群(1401-3)は、「変調信号1のデータ伝送領域の信号A-3」を含んでいる。つまり、変調信号1の#1シンボル群(1401-1)、変調信号1の#2シンボル群(1401-2)、及び、変調信号1の#3シンボル群(1401-3)は、同等の信号を含んでいる。
 また、「変調信号2のデータ伝送領域の信号A」を構成する信号と同等の信号で構成された信号「変調信号2のデータ伝送領域の信号A-1」を用意する。「変調信号2のデータ伝送領域の信号A」を構成する信号と同等の信号で構成された信号「変調信号2のデータ伝送領域の信号A-2」を用意する。「変調信号2のデータ伝送領域の信号A」を構成する信号と同等の信号で構成された信号「変調信号2のデータ伝送領域の信号A-3」を用意する。
 つまり、「変調信号2のデータ伝送領域の信号A-1」を構成する信号と、「変調信号2のデータ伝送領域の信号A-2」を構成する信号と、「変調信号2のデータ伝送領域の信号A-3」を構成する信号とは同じである。
 この場合、図14の変調信号2の#1シンボル群(1402-1)は、「変調信号2のデータ伝送領域の信号A-1」を含んでいる。図14のストリーム2の#2シンボル群(1402-2)は、「変調信号2のデータ伝送領域の信号A-2」を含んでいる。図14の変調信号2の#3シンボル群(1402-3)は、「変調信号2のデータ伝送領域の信号A-3」を含んでいる。つまり、変調信号2の#1シンボル群(1402-1)、変調信号2の#2シンボル群(1402-2)、及び、変調信号2の#3シンボル群(1402-3)は、同等の信号を含んでいる。
 図15は、図14で説明した「変調信号Xのシンボル群#Y」(X=1,2;Y=1,2,3)のフレーム構成の一例を示している。図15において、横軸は時間方向を示し、制御情報シンボル1501、データ伝送用の変調信号送信領域1502が、時間軸方向に配置されている。この場合、データ伝送用の変調信号送信領域1502は、図14を用いて説明した「変調信号1のデータ伝送領域の信号A」または「変調信号2のデータ伝送領域の信号A」を伝送するためのシンボルである。
 なお、図15のフレーム構成において、OFDM(Orthogonal Frequency Division Multiplexing)方式などのマルチキャリア方式を用いてもよく、この場合、周波数軸方向にシンボルが存在していてもよい。また、各シンボルには、受信装置が時間及び周波数同期を行うためのリファレンスシンボル、受信装置が信号を検出するためのリファレンスシンボル、及び/又は、受信装置がチャネル推定を行うためのリファレンスシンボルなどが含まれていてもよい。フレーム構成は図15に限られず、制御情報シンボル1501、及び、データ伝送用の変調信号送信領域1502はどのように配置されてもよい。リファレンスシンボルは、例えば、プリアンブル、又は、パイロットシンボルと呼んでも良い。
 次に、制御情報シンボル1501の構成について説明する。
 図16は、図15の制御情報シンボルとして送信するシンボルの構成の一例を示している。図16において、横軸は時間である。図16において、端末は、「端末が受信指向性制御を行うためのトレーニングシンボル」1601を受信することで、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」で実施する、受信時の指向性制御のための信号処理方法を決定する。
 端末は、「マルチキャストを行っているときの送信変調信号数を通知するためのシンボル」1602を受信することで、得る変調信号数を知ることができる。
 端末は、「変調信号のデータ伝送用の変調信号送信領域がどの変調信号のデータ伝送用の変調信号送信領域であるかを通知するためのシンボル」1603を受信することで、基地局が送信している変調信号のうち、どの変調信号を受信できているか、を知ることができる。
 上記についての例を説明する。
 図12のように、基地局が「変調信号」の送信ビームを送信している場合を考える。そして、図14の変調信号1の#1シンボル群1401-1における制御情報シンボルの具体的な情報について説明する。
 図12の場合、基地局は「変調信号1」および「変調信号2」を送信しているため、「マルチキャストを行っているときの送信変調信号数を通知するためのシンボル」1602の情報は「2」となる。
 図14の変調信号1の#1シンボル群1401-1は、変調信号1のデータ伝送領域の信号を送信しているため、「変調信号のデータ伝送用の変調信号送信領域がどの変調信号のデータ伝送用の変調信号送信領域であるかを通知するためのシンボル」1603の情報は「変調信号1」となる。
 例えば、端末が、図14の変調信号1の#1シンボル群1401-1を受信した場合について説明する。このとき、端末は、「マルチキャストを行っているときの送信変調信号数を通知するためのシンボル」1602から「変調信号数が2」を、「変調信号のデータ伝送用の変調信号送信領域がどの変調信号のデータ伝送用の変調信号送信領域であるかを通知するためのシンボル」1603から「変調信号1」を得たことを認識する。
 そして、端末は、「変調信号数が2」であり、得ている変調信号が「変調信号1」であると認識するため、「変調信号2」を得る対象であると認識する。よって、端末は、「変調信号2」を探す作業を開始することができる。例えば、端末は、図14の「変調信号2の#1シンボル群」1402-1、「変調信号2の#2シンボル群」1402-2、又は、「変調信号2の#3シンボル群」1402-3のうちのいずれかの送信ビームを、探す。
 そして、端末は、「変調信号2の#1シンボル群」1402-1、「変調信号2の#2シンボル群」1402-2、又は、「変調信号2の#3シンボル群」1402-3のうちのいずれかの送信ビームを得ることで、「変調信号1」と「変調信号2」との両方を得ることができる。よって、端末は、ストリーム1のデータシンボル、及び、ストリーム2のデータシンボルを高品質に得ることができる。
 このように制御情報シンボルを構成することにより、本実施の形態の効果として、端末は、的確にデータシンボルを得ることができる。
 以上のように、マルチキャストデータ伝送及びブロードキャストデータ伝送において、基地局は、データシンボルを複数の送信ビームを用いて送信し、端末は、複数の送信ビームから、品質のよいビームを選択的に受信する。基地局が送信する変調信号には、送信指向性制御、受信指向性制御を行っているため、本実施の形態の効果として、高いデータの受信品質が得られるエリアを広くすることができる。
 なお、上述の説明では、端末が受信指向性制御を行っているが、端末が受信指向性制御を行わなくても、上述の効果を得ることができる。
 また、図7において、各端末は、ストリーム1の変調信号と、ストリーム2の変調信号との両方を得ているが、実施の形態は、必ずしもこれに限られない。例えば、ストリーム1の変調信号を得たい端末、ストリーム2の変調信号を得たい端末、ストリーム1の変調信号およびストリーム2の変調信号の両方を得たい端末が存在してもよい。すなわち、実施の形態は、端末によって得たい変調信号が異なってもよい。
 (実施の形態2)
 実施の形態1では、マルチキャストデータ伝送及びブロードキャストデータ伝送において、基地局が、データシンボルを複数の送信ビームを用いて送信する方法について説明した。本実施の形態では、実施の形態1の変形例として、基地局が、マルチキャストデータ伝送及びブロードキャストデータ伝送を行うとともに、ユニキャストのデータ伝送を行う場合について説明する。
 図17は、基地局(または、アクセスポイントなど)と端末の通信状態の一例を示している。図17において、図7と同様に動作するものについては、同一番号を付し、詳細な説明を省略する。
 基地局700は、複数アンテナを具備し、送信用のアンテナ701から、複数の送信信号を送信する。このとき、基地局700は、例えば、図1、図3のように構成されており、信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行うことで、送信ビームフォーミング(指向性制御)を行う。
 送信ビーム702-1、702-2、702-3、703-1、703-2、703-3の説明については、図7を用いて説明したとおりであるので、説明を省略する。
 端末704-1、704-2、704-3、704-4、704-5、および、受信指向性705-1、705-2、705-3、705-4、705-5、706-1、706-2、706-3、706-4、706-5の説明については、図7を用いて説明したとおりであるので、説明を省略する。
 図17では、基地局が、図7で説明したように、マルチキャストを行い、さらに、基地局700と端末(例えば1702)がユニキャストの通信を行う。
 基地局700は、マルチキャスト用の送信ビーム702-1、702-2、702-3、703-1、703-2、703-3に加え、図17では、ユニキャスト用の送信ビーム1701を生成し、端末1702に対し、個別データを伝送する。なお、図17では、基地局700が、端末1702に対して、送信ビーム1701の一つを送信している例を示している。しかし、送信ビームの数は、一つに限られない。基地局700は、端末1702に対し、複数の送信ビームを送信してもよい(或いは複数の変調信号を送信してもよい)。
 端末1702は、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、信号処理部605」により、受信時の指向性制御を行い、受信指向性1703を形成する。これにより、端末1702は、送信ビーム1701の受信及び復調が可能となる。
 送信ビーム1701を含む送信ビームを生成するために、基地局は、例えば、図1、図3のような構成における信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行う。
 端末1702が基地局700に対して変調信号を送信する場合、端末1702は、プリコーディング(または、重み付け合成)を行い、送信ビーム1703を送信する。基地局700は、受信時の指向性制御を行い、受信指向性1701を形成する。これにより、基地局700は、送信ビーム1703の受信及び復調が可能となる。
 基地局700は、ストリーム1のデータを伝送するための送信ビーム702-1とストリーム2のデータを伝送するための送信ビーム703-1とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。基地局700は、ストリーム1のデータを伝送するための送信ビーム702-2とストリーム2のデータを伝送するための送信ビーム703-2とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。基地局700は、ストリーム1のデータを伝送するための送信ビーム702-3とストリーム2のデータを伝送するための送信ビーム703-3とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。
 なお、ストリーム1のデータを伝送するための送信ビーム702-1、702-2、702-3は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(互いに異なる周波数帯)のビームであってもよい。ストリーム2のデータを伝送するための送信ビーム703-1、703-2、703-3は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(互いに異なる周波数帯)のビームであってもよい。
 ユニキャスト用の送信ビーム1701は、送信ビーム702-1、702-2、702-3、703-1、703-2、703-3と同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(互いに異なる周波数帯)のビームであってもよい。
 なお、図17では、ユニキャスト通信を行う端末を1台として説明したが、基地局とユニキャスト通信を行う端末の数は、複数であってもよい。
 図1、図3に示す基地局の構成における設定部158の動作について、説明する。
 設定部158は、設定信号160を入力としている。設定信号160は、「マルチキャスト用の送信を行うか、及び/又は、ユニキャスト用の送信を行うか」を示す情報を含んでいる。図17のような送信を基地局が行う場合、設定信号160により、「マルチキャスト用の送信、及び、ユニキャスト用の送信の両方を行う」という情報が、設定部158に入力される。
 設定信号160は、「マルチキャストを行うときの送信ストリーム数」を示す情報を含んでいる。図17のような送信を基地局が行う場合、設定信号160により、「送信ストリーム数は2」という情報が、設定部158に入力される。
 設定信号160は、「各ストリームをいくつの送信ビームで送信するか」を示す情報を含んでもよい。図17のような送信を基地局が行う場合、設定信号160により、「ストリーム1を送信する送信ビーム数は3、ストリーム2を送信する送信ビーム数は3」という情報が、設定部158に入力される。
 図1、図3の基地局は、データシンボルが「マルチキャスト用の送信であるか、及び/又は、ユニキャスト用の送信であるか」を示す情報、「マルチキャストを行うときの送信ストリーム数」を示す情報、及び/又は、「各ストリームをいくつの送信ビームで送信するか」を示す情報等を含んだ制御情報シンボルを送信してもよい。これにより、端末は、適切な受信が可能となる。
 基地局は、ユニキャスト通信を行う端末に対して、基地局が指向性制御を行うためのトレーニング用の制御情報シンボル、及び/又は、端末が指向性制御を行うためのトレーニング用の制御情報シンボルを送信してもよい。
 図18は、基地局(または、アクセスポイントなど)と端末の通信状態の一例を示している。図18において、図7、図12と同様に動作するものについては、同一番号を付し、詳細な説明を省略する。
 基地局700は、複数アンテナを具備し、送信用のアンテナ701から、複数の送信信号を送信する。このとき、基地局700は、例えば、図1、図3のように構成されており、信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行うことで、送信ビームフォーミング(指向性制御)を行う。
 送信ビーム1202-1、1202-2、1202-3、1203-1、1203-2、1203-3の説明については、図12を用いて説明したとおりであるので、説明を省略する。
 端末704-1、704-2、704-3、704-4、704-5、および、受信指向性705-1、705-2、705-3、705-4、705-5、706-1、706-2、706-3、706-4、706-5の説明については、図12を用いて説明したとおりであるので、説明を省略する。
 図18では、基地局が、図12で説明したように、マルチキャストを行い、さらに、基地局700と端末(例えば1702)がユニキャストの通信を行う。
 基地局700は、マルチキャスト用の送信ビーム1202-1、1202-2、1202-3、1203-1、1203-2、1203-3に加え、図18では、ユニキャスト用の送信ビーム1701を生成し、端末1702に対し、個別データを伝送する。なお、図18では、基地局700が、端末1702に対して、送信ビーム1701の一つを送信している例を示している。しかし、送信ビームの数は、一つに限られない。基地局700は、端末1702に対し、複数の送信ビームを送信してもよい(或いは複数の変調信号を送信してもよい)。
 端末1702は、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、信号処理部605」により、受信時の指向性制御を行い、受信指向性1703を形成する。これにより、端末1702は、送信ビーム1701の受信及び復調が可能となる。
 送信ビーム1701を含む送信ビームを生成するために、基地局は、例えば、図1及び図3のような構成における信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行う。
 端末1702が基地局700に対して変調信号を送信する場合、端末1702は、プリコーディング(または、重み付け合成)を行い、送信ビーム1701を送信する。基地局700は、受信時の指向性制御を行い、受信指向性1703を形成する。これにより、基地局700は、送信ビーム1701の受信及び復調が可能となる。
 基地局700は、「変調信号1」を伝送するための送信ビーム1202-1と「変調信号2」を伝送するための送信ビーム1203-1とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。基地局700は、「変調信号1」を伝送するための送信ビーム1202-2と「変調信号2」を伝送するための送信ビーム1203-2とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。基地局700は、「変調信号1」を伝送するための送信ビーム1202-3と「変調信号2」を伝送するための送信ビーム1203-3とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。
 なお、「変調信号1」を伝送するための送信ビーム1202-1、1202-2、1202-3は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(異なる周波数帯)のビームであってもよい。「変調信号2」を伝送するための送信ビーム1203-1、1203-2、1203-3は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(互いに異なる周波数帯)のビームであってもよい。
 ユニキャスト用の送信ビーム1701は、送信ビーム1202-1、1202-2、1202-3、1203-1、1203-2、1203-3と同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(互いに異なる周波数帯)のビームであってもよい。
 なお、図18では、ユニキャスト通信を行う端末を1台として説明したが、基地局とユニキャスト通信を行う端末の数は、複数であってもよい。
 上述の場合における、図1、図3に示す基地局の設定部158の動作について、説明する。
 設定部158は、設定信号160を入力としている。設定信号160は、「マルチキャスト用の送信を行うか、及び/又は、ユニキャスト用の送信を行うか」を示す情報を含んでいる。図18のような送信を基地局が行う場合、設定信号160により、「マルチキャスト用の送信、及び、ユニキャスト用の送信の両方を行う」という情報が、設定部158に入力される。
 設定信号160は、「マルチキャストを行うときの送信ストリーム数」を示す情報を含んでいる。図18のような送信を基地局が行う場合、設定信号160により、「送信ストリーム数は2」という情報が、設定部158に入力される。
 設定信号160は、「各ストリームをいくつの送信ビームで送信するか」を示す情報を含んでもよい。図18のような送信を基地局が行う場合、設定信号160により、「ストリーム1を送信する送信ビーム数は3、ストリーム2を送信する送信ビーム数は3」という情報が、設定部158に入力される。
 図1、図3の基地局は、データシンボルが「マルチキャスト用の送信であるか、及び/又は、ユニキャスト用の送信であるか」を示す情報、「マルチキャストを行うときの送信ストリーム数」を示す情報、及び/又は、「各ストリームをいくつの送信ビームで送信するか」を示す情報等を含んだ制御情報シンボルを送信してもよい。これにより、端末は、適切な受信が可能となる。
 基地局は、ユニキャスト通信を行う端末に対して、基地局が指向性制御を行うためのトレーニング用の制御情報シンボル、及び/又は、端末が指向性制御を行うためのトレーニング用の制御情報シンボルを送信してもよい。
 次に、実施の形態1の変形例として、基地局が、マルチキャストデータ伝送を複数送信する場合について説明する。
 図19は、基地局(または、アクセスポイントなど)と端末の通信状態の一例を示している。図19において、図7と同様に動作するものについては、同一番号を付し、詳細な説明を省略する。
 基地局700は、複数アンテナを具備し、送信用のアンテナ701から、複数の送信信号を送信する。このとき、基地局700は、例えば、図1、図3のように構成されており、信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行うことで、送信ビームフォーミング(指向性制御)を行う。
 送信ビーム702-1、702-2、702-3、703-1、703-2、703-3の説明については、図7を用いて説明したとおりであるので、説明を省略する。
 端末704-1、704-2、704-3、704-4、704-5、および、受信指向性705-1、705-2、705-3、705-4、705-5、706-1、706-2、706-3、706-4、706-5の説明については、図7を用いて説明したとおりであるので、説明を省略する。
 基地局700は、送信ビーム702-1、702-2、702-3、703-1、703-2、703-3に加えて送信ビーム1901-1、1901-2、1902-1、1902-2を送信する。
 送信ビーム1901-1は、ストリーム3のデータを伝送するための送信ビームである。また、送信ビーム1901-2も、ストリーム3のデータを伝送するための送信ビームである。送信ビーム1902-1は、ストリーム4のデータを伝送するための送信ビームである。また、送信ビーム1902-2も、ストリーム4のデータを伝送するための送信ビームである。
 端末704-1、704-2、704-3、704-4、704-5、1903-1、1903-2、1903-3は、例えば、図4、図5のように構成されている。なお、端末704-1、704-2、704-3、704-4、704-5の動作については、図7を用いて説明したとおりである。
 端末1903-1は、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-1、および、受信指向性1905-1を形成する。端末1903-1は、受信指向性1904-1により、ストリーム3のデータを伝送するための送信ビーム1901-2の受信及び復調が可能となり、受信指向性1905-1により、ストリーム4のデータを伝送するための送信ビーム1902-2の受信及び復調が可能となる。
 端末1903-2は、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-2、および、受信指向性1905-2を形成する。端末1903-2は、受信指向性1904-2により、ストリーム4のデータを伝送するための送信ビーム1902-1の受信及び復調が可能となり、受信指向性1905-2により、ストリーム3のデータを伝送するための送信ビーム1901-2の受信及び復調が可能となる。
 端末1903-3は、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-3、および、受信指向性1905-3を形成する。端末1903-3は、受信指向性1904-3により、ストリーム3のデータを伝送するための送信ビーム1901-1の受信及び復調が可能となり、受信指向性1905-3により、ストリーム4のデータを伝送するための送信ビーム1902-1の受信及び復調が可能となる。
 端末1903-4は、「信号処理部405」、「アンテナ401-1から401-N」、および/または、「乗算部603-1から603-L、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-4、および、受信指向性1905-4を形成する。端末1903-4は、受信指向性1904-4により、ストリーム2のデータを伝送するための送信ビーム703-1の受信及び復調が可能となり、受信指向性1905-4により、ストリーム3のデータを伝送するための送信ビーム1901-1の受信及び復調が可能となる。
 図19では、基地局が、マルチキャスト用のデータを含むストリームを複数送信し、さらに、各ストリームは、複数の送信ビームで送信されており、各端末は、複数のストリームのうち一つ以上のストリームの送信ビームを選択的に受信する。
 基地局700は、ストリーム1のデータを伝送するための送信ビーム702-1とストリーム2のデータを伝送するための送信ビーム703-1とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。基地局700は、ストリーム1のデータを伝送するための送信ビーム702-2とストリーム2のデータを伝送するための送信ビーム703-2とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。基地局700は、ストリーム1のデータを伝送するための送信ビーム702-3とストリーム2のデータを伝送するための送信ビーム703-3とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。
 基地局700は、ストリーム3のデータを伝送するための送信ビーム1901-1とストリーム4のデータを伝送するための送信ビーム1902-1とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。基地局700は、ストリーム3のデータを伝送するための送信ビーム1901-2とストリーム4のデータを伝送するための送信ビーム1902-2とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。
 なお、ストリーム1のデータを伝送するための送信ビーム702-1、702-2、702-3は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(互いに異なる周波数帯)のビームであってもよい。ストリーム2のデータを伝送するための送信ビーム703-1、703-2、703-3は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(異なる周波数帯)のビームであってもよい。
 ストリーム3のデータを伝送するための送信ビーム1901-1、1901-2は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(互いに異なる周波数帯)のビームであってもよい。ストリーム4のデータを伝送するための送信ビーム1902-1、1902-2は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(互いに異なる周波数帯)のビームであってもよい。
 また、図1の#1情報101-1からストリーム1のデータシンボル及びストリーム2のデータシンボルが生成され、#2情報101-2からストリーム3のデータシンボル及びストリーム4のデータシンボルが生成されてもよい。または、#1情報101-1及び#2情報101-2は、それぞれ、誤り訂正符号化が行われた後に、データシンボルが生成されてもよい。
 また、図1の#1情報101-1からストリーム1のデータシンボルが生成され、図1の#2情報101-2からストリーム2のデータシンボルが生成され、図1の#3情報101-3からストリーム3のデータシンボルが生成され、図1の#4情報101-4からストリーム4のデータシンボルが生成されてもよい。なお、#1情報101-1、#2情報101-2、#3情報101-3、及び#4情報101-4は、それぞれ、誤り訂正符号化が行われた後に、データシンボルが生成されてもよい。
 つまり、各ストリームのデータシンボルは、図1の情報のいずれから生成されてもよい。これにより、本実施の形態の効果として、端末は、マルチキャスト用のストリームを選択的に得ることができる。
 上述の場合における、図1、図3に示す基地局の設定部158の動作について、説明する。
 設定部158は、設定信号160を入力としている。設定信号160は、「マルチキャスト用の送信を行うか、及び/又は、ユニキャスト用の送信を行うか」を示す情報を含んでいる。図19のような送信を基地局が行う場合、設定信号160により、「マルチキャスト用の送信を行う」という情報が、設定部158に入力される。
 設定信号160は、「マルチキャストを行うときの送信ストリーム数」を示す情報を含んでいる。図19のような送信を基地局が行う場合、設定信号160により、「送信ストリーム数は4」という情報が、設定部158に入力される。
 設定信号160は、「各ストリームをいくつの送信ビームで送信するか」を示す情報を含んでもよい。図19のような送信を基地局が行う場合、設定信号160により、「ストリーム1を送信する送信ビーム数は3、ストリーム2を送信する送信ビーム数は3、ストリーム3を送信する送信ビーム数は2、ストリーム4を送信する送信ビーム数は2」という情報が、設定部158に入力される。
 図1、図3の基地局は、データシンボルが「マルチキャスト用の送信であるか、及び/又は、ユニキャスト用の送信であるか」を示す情報、「マルチキャストを行うときの送信ストリーム数」を示す情報、及び/又は、「各ストリームをいくつの送信ビームで送信するか」を示す情報等を含んだ制御情報シンボルを送信してもよい。これにより、端末は、適切な受信が可能となる。
 次に、実施の形態1の変形例として、基地局が、マルチキャストデータ伝送を複数送信する場合について説明する。
 図20は、基地局(または、アクセスポイントなど)と端末の通信状態の一例を示している。図20において、図7、図12、図19と同様に動作するものについては、同一番号を付し、詳細な説明を省略する。
 基地局700は、複数アンテナを具備し、送信用のアンテナ701から、複数の送信信号を送信する。このとき、基地局700は、例えば、図1、図3のように構成されており、信号処理部102(および/または、重み付け合成部301)において、プリコーディング(重み付け合成)を行うことで、送信ビームフォーミング(指向性制御)を行う。
 送信ビーム1202-1、1202-2、1202-3、1203-1、1203-2、1203-3の説明については、図12の説明と重複するので、説明を省略する。
 端末704-1、704-2、704-3、704-4、704-5、および、受信指向性705-1、705-2、705-3、705-4、705-5、706-1、706-2、706-3、706-4、706-5の説明については、図12の説明と重複するので、説明を省略する。
 基地局700は、送信ビーム1202-1、1202-2、1202-3、1203-1、1203-2、1203-3に加えて、送信ビーム2001-1、2001-2、2002-1、2002-2を送信する。
 送信ビーム2001-1は、「変調信号3」を伝送するための送信ビームである。また、送信ビーム2001-2も、「変調信号3」を伝送するための送信ビームである。
 送信ビーム2002-1は、「変調信号4」を伝送するための送信ビームである。また、送信ビーム2002-2も、「変調信号4」を伝送するための送信ビームである。
 端末704-1、704-2、704-3、704-4、704-5、1903-1、1903-2、1903-3は、例えば、図4、図5と同じ構成である。なお、端末704-1、704-2、704-3、704-4、704-5の動作については、図7の説明と同じである。
 端末1903-1は、「信号処理部405」、「アンテナ401-1からアンテナ401-Nまで」、および/または、「乗算部603-1から乗算部603-Lまで、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-1、および、受信指向性1905-1を形成する。端末1903-1は、受信指向性1904-1により、「変調信号3」を伝送するための送信ビーム2001-2の受信及び復調が可能となり、受信指向性1905-1により、「変調信号4」を伝送するための送信ビーム2002-2の受信及び復調が可能となる。
 端末1903-2は、「信号処理部405」、「アンテナ401-1からアンテナ401-Nまで」、および/または、「乗算部603-1から乗算部603-Lまで、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-2、および、受信指向性1905-2を形成する。端末1903-2は、受信指向性1904-2により、「変調信号4」を伝送するための送信ビーム2002-1の受信及び復調が可能となり、受信指向性1905-2により、「変調信号3」を伝送するための送信ビーム2001-2の受信及び復調が可能となる。
 端末1903-3は、「信号処理部405」、「アンテナ401-1からアンテナ401-Nまで」、および/または、「乗算部603-1から乗算部603-Lまで、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-3、および、受信指向性1905-3を形成する。端末1903-3は、受信指向性1904-3により、「変調信号3」を伝送するための送信ビーム2001-1の受信及び復調が可能となり、受信指向性1905-3により、「変調信号4」を伝送するための送信ビーム2002-1の受信及び復調が可能となる。
 端末1903-4は、「信号処理部405」、「アンテナ401-1からアンテナ401-Nまで」、および/または、「乗算部603-1から乗算部603-Lまで、および、処理部605」により、受信時の指向性制御を行い、受信指向性1904-4、および、受信指向性1905-4を形成する。端末1903-4は、受信指向性1904-4により、「変調信号3」を伝送するための送信ビーム2001-1の受信及び復調が可能となり、受信指向性1905-4により、「変調信号4」を伝送するための送信ビーム2002-1の受信及び復調が可能となる。
 図20において、基地局が、マルチキャスト用のデータを含む変調信号を複数送信し、各変調信号は、複数の送信ビームで送信されており、各端末は、複数の変調信号のうち一つ以上のストリームの送信ビームを選択的に受信する。
 基地局700は、「変調信号1」を伝送するための送信ビーム1202-1と、「変調信号2」を伝送するための送信ビーム1203-1とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。基地局700は、「変調信号1」を伝送するための送信ビーム1202-2と、「変調信号2」を伝送するための送信ビーム1203-2とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。基地局700は、「変調信号1」を伝送するための送信ビーム1202-3と、「変調信号2」を伝送するための送信ビーム1203-3とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。
 基地局700は、「変調信号3」を伝送するための送信ビーム2001-1と、「変調信号4」を伝送するための送信ビーム2002-1とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。基地局700は、「変調信号3」を伝送するための送信ビーム2001-2と、「変調信号4」を伝送するための送信ビーム2002-2とを、同一周波数(同一周波数帯)及び同一時間を用いて、送信する。
 なお、ストリーム1のデータを伝送するための送信ビーム702-1、702-2、702-3は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(互いに異なる周波数帯)のビームであってもよい。ストリーム2のデータを伝送するための送信ビーム703-1、703-2、703-3は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(互いに異なる周波数帯)のビームであってもよい。
 「変調信号3」を伝送するための送信ビーム2001-1、2001-2は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(互いに異なる周波数帯)のビームであってもよい。「変調信号4」を伝送するための送信ビーム2002-1、2002-2は、同一周波数(同一周波数帯)のビームであってもよいし、互いに異なる周波数(互いに異なる周波数帯)のビームであってもよい。
 図1又は図3に示す基地局の構成における設定部158の動作について、説明する。
 設定部158は、設定信号160を入力としている。設定信号160は、「マルチキャスト用の送信を行うか、及び/又は、ユニキャスト用の送信を行うか」を示す情報を含んでいる。図19に示す送信を基地局が行う場合、設定信号160により、「マルチキャスト用の送信を行う」という情報が、設定部158に入力される。
 設定信号160は、「マルチキャストを行うときの送信変調信号数」を示す情報を含んでいる。図20に示す送信を基地局が行う場合、設定信号160により、「送信変調信号数は4」という情報が、設定部158に入力される。
 設定信号160は、「各変調信号をいくつの送信ビームで送信するか」を示す情報を含んでもよい。図20に示す送信を基地局が行う場合、設定信号160により、「変調信号1を送信する送信ビーム数は3、変調信号2を送信する送信ビーム数は3、変調信号3を送信する送信ビーム数は2、変調信号4を送信する送信ビーム数は2」という情報が、設定部158に入力される。
 なお、図1、図3の基地局は、データシンボルが「マルチキャスト用の送信であるか/ユニキャスト用の送信であるか」を示す情報、「マルチキャストを行うときの送信ストリーム数」の情報、及び/又は、「各ストリームをいくつの送信ビームで送信するか」を示す情報等を含んだ制御情報シンボルを送信してもよい。これにより、端末は、適切な受信が可能となる。
 図20において、端末は、「変調信号1」の送信ビームと「変調信号2」の送信ビームとの両方を受信すると、高い受信品質でストリーム1のデータとストリーム2のデータを得ることができる。同様に、端末は、「変調信号3」の送信ビームと「変調信号4」の送信ビームとの両方を受信すると、高い受信品質でストリーム3のデータとストリーム4のデータを得ることができる。
 図20では、基地局が「変調信号1」、「変調信号2」、「変調信号3」、及び、「変調信号4」を送信する例を説明しているが、これは一例である。基地局は、さらに、ストリーム5のデータ及びストリーム6のデータを伝送する「変調信号5」及び「変調信号6」をそれぞれ送信してもよいし、それよりも多くのストリームを伝送するためにより多くの変調信号を送信してもよい。なお、変調信号のそれぞれは1以上の送信ビームを用いて送信される。
 また、図20には、図17、図18で説明したように、ユニキャスト用の送信ビーム(または受信指向性制御)が一つ以上存在していてもよい。
 「変調信号1」及び「変調信号2」の関係については、図13の説明と重複するので省略する。ここでは、「変調信号3」及び「変調信号4」の関係について、図21を用いて説明する。
 例えば、#2情報101-2に対して、誤り訂正符号化などの処理を施し、誤り訂正符号化後のデータを得る。この誤り訂正符号化後のデータを「#2送信データ」と名付ける。そして、#2送信データに対してマッピングを行い、データシンボルを得る。このデータシンボルを、ストリーム3用とストリーム4用とに振り分け、ストリーム3のデータシンボル(データシンボル群)とストリーム4のデータシンボル(データシンボル群)とを得る。このとき、シンボル番号iにおけるストリーム3のデータシンボルをs3(i)、ストリーム4のデータシンボルをs4(i)とする。この場合、シンボル番号iにおける「変調信号3」tx3(i)は、例えば、以下のようにあらわされる。
Figure JPOXMLDOC01-appb-M000005
 シンボル番号iにおける「変調信号4」tx4(i)は、例えば、以下のようにあらわされる。
Figure JPOXMLDOC01-appb-M000006
 式(5)、式(6)において、e(i)、f(i)、g(i)、h(i)は、それぞれ、複素数で定義されるため、実数であってもよい。また、e(i)、f(i)、g(i)、h(i)は、それぞれ、シンボル番号iの関数でなくてもよく、固定の値であってもよい。
 データシンボルから構成された「変調信号3のデータ伝送領域の信号」を含んだ「変調信号3のシンボル群」は、図1、図3の基地局から送信される。データシンボルから構成された「変調信号4のデータ伝送領域の信号」を含んだ「変調信号4のシンボル群」は、図1、図3の基地局から送信される。
 (補足)
 当然であるが、本明細書において説明した実施の形態は、その他の内容を複数組み合わせて、実施されてもよい。
 各実施の形態、及びその他の内容は、あくまでも例である。例えば、「変調方式、誤り訂正符号化方式(使用する誤り訂正符号、符号長、符号化率等)、制御情報など」の例示は、別の「変調方式、誤り訂正符号化方式(使用する誤り訂正符号、符号長、符号化率等)、制御情報など」を適用した場合でも、上述した同様の構成で実施できる。
 本明細書において説明した実施の形態、及びその他の内容は、本明細書に記載した変調方式以外の変調方式を使用しても実施可能である。例えば、APSK(Amplitude Phase Shift Keying)、PAM(Pulse Amplitude Modulation)、PSK(Phase Shift Keying)、QAM(Quadrature Amplitude Modulation)を適用してもよいし、各変調方式において、均一マッピング、非均一マッピングとしてもよい。APSKは、例えば、16APSK, 64APSK, 128APSK, 256APSK, 1024APSK, 4096APSKを含む。PAMは、例えば、4PAM, 8PAM, 16PAM, 64PAM, 128PAM, 256PAM, 1024PAM, 4096PAMを含む。PSKは、例えば、BPSK, QPSK, 8PSK, 16PSK, 64PSK, 128PSK, 256PSK, 1024PSK, 4096PSKを含む。QAMは、例えば、4QAM, 8QAM, 16QAM, 64QAM, 128QAM, 256QAM, 1024QAM, 4096QAMを含む。
 I-Q平面における2個、4個、8個、16個、64個、128個、256個、1024個等の信号点の配置方法(2個、4個、8個、16個、64個、128個、256個、1024個等の信号点をもつ変調方式)は、本明細書で示した変調方式の信号点配置方法に限られない。
 本明細書に記載の「基地局」は、例えば、放送局、基地局、アクセスポイント、端末、又は、携帯電話(mobile phone)などであってもよい。本明細書に記載の「端末」は、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、又は、基地局などであってもよい。本開示における「基地局」及び「端末」は、通信機能を有している機器であって、その機器が、テレビ、ラジオ、パーソナルコンピュータ、携帯電話等のアプリケーションを実行するための装置に何らかのインターフェースを解して接続できるようなに構成されてもよい。また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル、制御情報用のシンボルなどが、フレームにおいて、どのように配置されていてもよい。
 パイロットシンボル、及び/又は、制御情報用のシンボルは、どのように名付けられてもよい。例えば、送受信機において、PSK変調を用いて変調した既知のシンボルであってよい。または、送受信機において、受信機が同期することによって、受信機は、送信機が送信したシンボルを知ることができてもよい。受信機は、このシンボルを用いて、周波数同期、時間同期、各変調信号のチャネル推定(CSI(Channel State Information)の推定)、及び、信号の検出等を行う。なお、パイロットシンボルは、プリアンブル、ユニークワード、ポストアンブル、又は、リファレンスシンボル等と呼ばれることがある。
 制御情報用のシンボルは、データ(アプリケーション等のデータ)以外の通信を実現するための、通信相手に伝送する情報(例えば、通信に用いている変調方式、誤り訂正符号化方式、誤り訂正符号化方式の符号化率、及び/又は、上位レイヤーでの設定情報等)を伝送するためのシンボルである。
 なお、本開示は、各実施の形態に限定されず、種々変更して実施可能である。例えば、各実施の形態では、通信装置として行う場合について説明しているが、これに限られず、この通信方法をソフトウェア処理として行うことも可能である。
 例えば、上述の通信方法を実行するプログラムを、予めROM(Read Only Memory)に格納しておき、そのプログラムをCPU(Central Processor Unit)によって動作させるようにしても良い。
 または、上述の通信方法を実行するプログラムを、コンピュータが読み取り可能な記憶媒体に格納し、記憶媒体に格納されたプログラムをコンピュータのRAM(Random Access Memory)に記録して、コンピュータをそのプログラムにしたがって動作させるようにしても良い。
 上記の各実施の形態などの各構成は、典型的には、入力端子及び出力端子を有する集積回路であるLSI(Large Scale Integration)として実現されてもよい。これらは、個別に1チップ化されてもよいし、各実施の形態の全ての構成または一部の構成を含むように1チップ化されてもよい。LSIは、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSI、又は、ウルトラLSIと呼称されることもある。また、集積回路化の手法は、LSIに限られるものではなく、専用回路または汎用プロセッサで実現されても良い。LSIの製造後にプログラムが可能なFPGA(Field Programmable Gate Array)、或いは、LSI内部の回路セルの接続及び/又は設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。さらに、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行っても良い。バイオ技術の適応等が可能性としてあり得る。
 (実施の形態3)
 本実施の形態では、実施の形態1、及び/又は、実施の形態2とは異なるビームフォーミングを適用した場合におけるマルチキャスト通信方法について説明する。
 基地局の構成については、実施の形態1の図1から図3を用いて説明したとおりであるため、実施の形態1と同様に動作する部分については説明を省略する。また、基地局と通信を行う端末の構成についても、実施の形態1の図4から図6を用いて説明したとおりであるため、実施の形態1と同様に動作する部分については説明を省略する。
 以下では、本実施の形態における基地局と端末の動作の例を説明する。
 図22は、基地局が1つの端末に対して、マルチキャスト用送信ストリームを送信している場合を示している。
 図22において、基地局700は、送信用アンテナから「(マルチキャスト用)ストリーム1-1(ストリーム1の第1ビーム)」の送信ビーム2201-1を端末2202-1に対して送信している。端末2202-1は、指向性制御を行うことで、受信指向性2203-1を生成し、「ストリーム1-1」の送信ビーム2201-1を受信している。
 図23は、図22のような基地局と端末の通信状態のために行う「基地局と端末の通信を行うための手順」の説明を行う。
 [23-1]端末は、まず、基地局に対し、「ストリーム1のマルチキャスト送信の要求」を行う。
 [23-2]基地局は、[23-1]を受け、「ストリーム1のマルチキャスト送信を行っていない」ことを認識する。そこで、基地局は、端末に対し、ストリーム1のマルチキャスト送信を行うために、送信指向性制御用のトレーニングシンボル、及び、受信指向性制御用のトレーニングシンボルを送信する。
 [23-3]端末は、基地局が送信した送信指向性制御用のトレーニングシンボル、および、受信指向性制御用のトレーニングシンボルを受信する。そして、端末は、基地局が送信指向性制御を、端末が受信指向性制御を行うために、基地局に対し、フィードバック情報を送信する。
 [23-4]基地局は、端末が送信したフィードバック情報に基づいて、送信指向性制御方法(指向性制御を行うときに使用する重み付け係数の決定など)の決定を行う。そして、基地局は、送信指向性制御を行い、ストリーム1のデータシンボルを送信する。
 [23-5]端末は、受信指向性制御方法(指向性制御を行うときに使用する重み付け係数の決定など)の決定を行う。そして、端末は、基地局が送信したストリーム1のデータシンボルの受信を開始する。
 なお、図23の「基地局と端末の通信を行うための手順」は一例であり、各情報の送信の順番は、図23に限られない。例えば、各情報の送信の順番を入れ替えても、同様の実施が可能である。
 また、図23では、端末が受信指向性制御を行う例を説明しているが、端末が受信指向性制御を行わなくてもよい。この場合、図23において、基地局は、受信指向性制御用トレーニングシンボルを送信しなくてもよく、端末は、受信指向性制御方法の決定を行わなくてよい。
 基地局が送信指向性制御を行う場合において、基地局が図1の構成の場合は、例えば、図2の乗算部204-1、204-2、204-3、204-4における乗算係数が設定されてよい。基地局が図3の構成の場合は、例えば、重み付け合成部301において、重み付け係数が設定されてよい。なお、送信するストリーム数は、図22の場合は「1」であるが、これに限られない。
 端末が受信指向性制御を行う場合において、端末が図4の構成の場合は、例えば、図5の乗算部503-1、503-2、503-3、503-4における乗算係数が設定されてよい。端末が図6の構成の場合は、例えば、乗算部603-1、603-2、・・・、603-Lにおける乗算係数が設定されてよい。
 図24は、図23における基地局が、送信指向性制御用シンボル、受信指向性制御用シンボル、及び、データシンボルを送信する場合において、基地局が送信するシンボルと端末が送信するシンボルとを、時間方向に配置した例を示す。図24における(a)は、基地局が送信するシンボルを、時間方向に配置した例を示す。図24における(b)は、端末が送信するシンボルの一例を時間方向に配置した例を示す。図24の(a)及び(b)において、横軸は時間方向を示す。
 図23に示すように、基地局と端末との間で通信が行われた場合、図24に示すように、基地局はまず、「基地局送信指向性制御トレーニングシンボル」2401を送信する。例えば、「基地局送信指向性制御トレーニングシンボル」2401は、制御情報シンボルと既知のPSKシンボルとによって構成されている。
 そして、端末は、基地局が送信した「基地局送信指向性制御トレーニングシンボル」2401を受信し、例えば、基地局が送信に使用するアンテナの情報、及び指向性制御で使用する乗算係数(または、重み付け係数)に関する情報を、フィードバック情報シンボル2402として送信する。
 基地局は、端末が送信した「フィードバック情報シンボル」2402を受信し、フィードバック情報シンボル2402から送信に使用するアンテナを決定する。また、基地局は、フィードバック情報シンボル2402から送信指向性制御に用いる係数を決定する。そして、基地局は、「端末受信指向性制御トレーニングシンボル」2403を送信する。例えば、「端末受信指向性制御トレーニングシンボル」2403は、制御情報シンボルと既知PSKシンボルとによって構成されている。
 端末は、基地局が送信した「端末受信指向性制御トレーニングシンボル」2403を受信し、例えば、端末が受信に使用するアンテナ、及び、端末が受信指向性制御に使用する乗算係数を決定する。そして、端末は、データシンボルを受信する準備が完了したことを、フィードバック情報シンボル2404として送信する。
 基地局は、端末が送信した「フィードバック情報シンボル」2404を受信し、フィードバック情報シンボル2404に基づき、データシンボル2405を出力する。
 なお、図24に示す基地局と端末との間の通信は一例である。例えば、シンボルの送信の順番、又は、基地局の送信と端末の送信との順番は、これに限られない。また、「基地局送信指向性制御トレーニングシンボル」2401、「フィードバック情報シンボル」2402、「端末受信指向性制御トレーニングシンボル」2403、「フィードバック情報シンボル」2404、及び、「データシンボル」2405のそれぞれに、信号検出、時間同期、周波数同期、周波数オフセット推定及びチャネル推定のためのプリアンブル、リファレンスシンボル、パイロットシンボル、及び/又は、制御情報を伝送するためのシンボルなどが含まれていてもよい。
 図25は、図23における基地局と端末との間の通信が完了した後、基地局がストリーム1のデータシンボルを送信する場合に、基地局が送信するシンボルの例である。図25において、横軸は時間方向を示す。
 図25では、基地局は、「(マルチキャスト用)ストリーム1-1データシンボル(1)」2501-1-1として、ストリーム1の送信ビーム1の第1番目のデータシンボルを送信する。その後、データシンボル送信可能な区間2502-1が配置される。
 その後、基地局は、「(マルチキャスト用)ストリーム1-1データシンボル(2)」2501-1-2として、(マルチキャスト用)ストリーム1の送信ビーム1の第2番目のデータシンボルを送信する。その後、データシンボル送信可能な区間2502-2が配置される。
 その後、基地局は、「(マルチキャスト用)ストリーム1-1データシンボル(3)」2501-1-3として、(マルチキャスト用)ストリーム1の送信ビーム1の第3番目のデータシンボルを送信する。
 このようにして、基地局は、図22に示した「(マルチキャスト用)ストリーム1-1」2201-1のデータシンボルを、送信する。なお、図25において、「(マルチキャスト用)ストリーム1-1データシンボル(1)」2501-1-1、「(マルチキャスト用)ストリーム1-1データシンボル(2)」2501-1-2、「(マルチキャスト用)データシンボル1-1データシンボル(3)」2501-1-3、・・・には、データシンボル以外に、信号検出、時間同期、周波数同期、周波数オフセット推定、チャネル推定のためのプリアンブル、リファレンスシンボル、パイロットシンボル、及び/又は、制御情報を伝送するためのシンボルなどが含まれていてもよい。
 図25において、データシンボル送信可能な区間2502-1は、ユニキャスト送信区間2503-1を含む。また、データシンボル送信可能な区間2502-2は、ユニキャスト送信区間2503-2を含む。
 図25において、フレームは、ユニキャスト送信区間2503-1、2503-2を含む。例えば、図25において、基地局は、データシンボル送信可能な区間2502-1のユニキャスト送信区間2503-1を除く区間、および、データシンボル送信可能区間2502-2のユニキャスト送信区間2503-2を除く区間では、マルチキャスト用のシンボルを送信してもよい。なお、この点については、後に、例を用いて説明する。
 このように、ユニキャスト送信区間をフレームに設けることは、無線通信システムを安定的に動作させるために有用な構成要件となる。なお、この点については、後に、例を用いて説明する。また、ユニキャスト送信区間は、図25のような時間的位置でなくてもよく、どのように時間的に配置してもよい。また、ユニキャスト送信区間では、基地局がシンボルを送信してもよいし、端末がシンボルを送信してもよい。
 また、基地局は、直接的に、ユニキャスト送信区間を設定できてもよい。或いは、別の方法として、基地局は、マルチキャスト用のシンボルを送信するための最大送信データ伝送速度を設定できてもよい。
 例えば、基地局が送信可能なデータの伝送速度が2Gbps(bps: bits per second)であり、基地局がマルチキャスト用のシンボルの送信に割り当て可能なデータの最大伝送速度が1.5Gbpsである場合、500Mbpsに相当するユニキャスト送信区間を設定できる。
 このように、ユニキャスト送信区間を基地局において間接的に設定できるような構成であってもよい。なお、別の具体的な例については、後に説明する。
 なお、図22の状態に伴い、図25では、「(マルチキャスト用)ストリーム1-1データシンボル(1)」2501-1-1、「(マルチキャスト用)ストリーム1-1データシンボル(2)」2501-1-2、及び、「(マルチキャスト用)ストリーム1-1データシンボル(3)」2501-1-3が存在するフレーム構成を記載しているが、これに限られない。例えば、ストリーム1(ストリーム1-1)以外のマルチキャスト用のストリームのデータシンボルが存在してもよいし、ストリーム1の第2の送信ビームであるストリーム1-2のデータシンボル、及び/又は、ストリーム1の第3の送信ビームであるストリーム1-3のデータシンボルが存在していてもよい。この点については、後に説明する。
 図26は、図22に示す基地局が、1つの端末に対してマルチキャスト用送信ストリームを送信している状態において、新たな端末が1つ追加された状態を示している。なお、図26において、図22と同様に動作するものについては、同一番号を付している。
 図26において、端末2202-2が新たに追加されている。端末2202-2は、指向性制御を行うことで、受信指向性2203-2を生成し、「(マルチキャスト用)ストリーム1-1」の送信ビーム2201-1を受信する。
 次に、図26について説明する。
 図26は、基地局700と端末2202-1とがマルチキャスト通信を行っている状態において、新たに端末2202-2がマルチキャスト通信に参加するという状態を示す。以下、図26に示す状態を例に説明する。したがって、基地局は、図27に示すように、「端末受信指向性制御トレーニングシンボル」2701と「データシンボル」2702とを送信し、図24に示した「基地局送信トレーニングシンボル」を送信しない。なお、図27において、横軸は時間方向を示す。
 図28は、図26に示すような状態、すなわち、基地局が2つの端末に対してマルチキャスト用の送信ビームを送信するような状態を実現するために、基地局及び端末が行う動作の例を示している。
 [28-1]端末2202-2は、基地局に対して「ストリーム1のマルチキャスト送信の要求」を行う。「ストリーム1のマルチキャスト送信の要求」は、図25におけるユニキャスト送信区間にて送信される。
 [28-2]基地局は、上記[28-1]に示す要求を受け、「マルチキャスト用のストリーム1の送信を行っていること」を、端末2202-2に通知する。「マルチキャスト用のストリーム1の送信を行っていること」の通知は、図25におけるユニキャスト送信区間にて送信される。
 [28-3]端末2202-2は、上記[28-2]に示す通知を受け、マルチキャスト用のストリーム1の受信を開始するために、受信指向性制御を実施する。端末2202-2は、受信指向性制御を行い、「マルチキャスト用のストリーム1」の受信ができたことを、基地局に通知する。
 [28-4]基地局は、上記[28-3]に示す通知を受け、端末が「マルチキャスト用のストリーム1」を受信できたことを確認する。
 [28-5]端末2202-2は、受信指向性制御を行い、「マルチキャスト用のストリーム1」の受信を開始する。
 図29は、図22に示す基地局が、1つの端末に対してマルチキャスト用送信ストリームを送信している状態において、新たな端末が1つ追加された状態を示している。なお、図29において、図22と同様に動作するものについては、同一番号を付している。
 図29において、端末2202-2が新たに追加されている。図29が図26と異なる点は、基地局700が、「(マルチキャスト用)ストリーム1-2(ストリーム1の第2)」の送信ビーム2201-2を新たに送信し、端末2202-2が、指向性制御を行うことにより、受信指向性2203-2を生成し、「(マルチキャスト用)ストリーム1-2」の送信ビーム2201-2を受信する点である。
 次に、図29に示すような状態を実現するために、基地局及び端末において行われる制御について説明する。
 図29は、基地局700と端末2202-1とがマルチキャスト通信を行っている状態において、新たに端末2202-2がマルチキャスト通信に参加するという状態を示す。以下、図29に示す状態を例に説明する。
 図30は、図29に示すような状態、すなわち、基地局が2つの端末に対してマルチキャスト用の送信ビームを送信するような状態を実現するために、基地局及び端末が行う動作の例を示している。
 [30-1]端末2202-2は、基地局に対して「ストリーム1のマルチキャスト送信の要求」を行う。「ストリーム1のマルチキャスト送信の要求」は、図25におけるユニキャスト送信区間にて送信される。
 [30-2]基地局は、上記[30-1]に示す要求を受け、「マルチキャスト用のストリーム1の送信を行っていること」を、端末2202-2に通知する。「マルチキャスト用のストリーム1の送信を行っていること」の通知は、図25におけるユニキャスト送信区間にて送信される。
 [30-3]端末2202-2は、上記[30-2]に示す通知を受け、「マルチキャスト用のストリーム1を受信していないこと」を、基地局に通知する。「マルチキャスト用のストリーム1を受信していないこと」の通知は、図25におけるユニキャスト送信区間にて送信される。
 [30-4]基地局は、上記[30-3]に示す通知を受け、マルチキャスト用のストリーム1の別の送信ビーム(つまり、図29の送信ビーム2201-2)を送信すると決定する。なお、ここでは、マルチキャスト用のストリーム1の別の送信ビームを送信すると判断しているが、マルチキャスト用のストリーム1の別の送信ビームを送信しないと判断してもよい。この点については、後に説明する。
 そして、基地局は、端末2202-2に対し、ストリーム1のマルチキャスト送信を行うために、送信指向性制御用のトレーニングシンボル、及び、受信指向性制御用のトレーニングシンボルを送信する。なお、基地局は、これらのシンボルの送信とは別に、図29におけるストリーム1-1の送信ビームを、送信している。この点については、後で説明する。
 [30-5]端末2202-2は、基地局が送信した送信指向性制御用のトレーニングシンボル、および、受信指向性制御用のトレーニンシンボルを受信する。そして、端末2202-2は、基地局が送信指向性制御を、端末2202-2が受信指向性制御を行うために、基地局に対し、フィードバック情報を送信する。
 [30-6]基地局は、端末2202-2が送信したフィードバック情報に基づいて、送信指向性制御方法(指向性制御を行うときに使用する重み付け係数の決定など)の決定を行う。そして、基地局は、ストリーム1のデータシンボル(図29のストリーム1-2の送信ビーム2201-2)を送信する。
 [30-7]端末2202-2は、受信指向性制御方法(指向性制御を行うときに使用する重み付け係数の決定など)の決定を行う。そして、端末2202-2は、基地局が送信したストリーム1のデータシンボル(図29のストリーム1-2の送信ビーム2201-2)の受信を開始する。
 なお、図30の「基地局と端末の通信を行うための手順」は一例であり、各情報の送信の順番は、図30に限られない。例えば、各情報の送信の順番を入れ替えても、同様の実施が可能である。
 また、図30では、端末の受信指向性制御を行う例を説明しているが、端末が受信指向性制御を行わなくてもよい。この場合、図30において、基地局は、受信指向性制御用のトレーニングシンボルを送信しなくてもよく、端末は、受信指向性制御方法の決定を行わなくてもよい。
 基地局が送信指向性制御を行う場合において、基地局が図1の構成の場合は、例えば、図2の乗算部204-1、204-2、204-3、204-4における乗算係数が設定されてよい。基地局が図3の構成の場合は、例えば、重み付け合成部301において、重み付け係数が設定されてよい。なお、送信するストリーム数は、図29の場合は「2」であるが、これに限られない。
 端末2202-1、2202-2が受信指向性制御を行う場合において、端末が図4の構成の場合は、例えば、図5の乗算部503-1、503-2、503-3、503-4における乗算係数が設定されてよい。端末が図6の構成の場合は、例えば、乗算部603-1、603-2、・・・、603-Lにおける乗算係数が設定されてよい。
 図31は、図30における基地局と端末の通信が完了した後、基地局がストリーム1のデータシンボルを送信する場合に、基地局が送信するシンボルの例を示す。図31において、横軸は時間方向を示す。
 図31では、図29の「ストリーム1-1」が存在しているので、図25と同様に、「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、及び、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-M+2が存在する。なお、「(M)、(M+1)、(M+2)」と記載している理由は、(マルチキャスト用)ストリーム1-1は、(マルチキャスト用)ストリーム1-2が存在する前から存在しているからである。したがって、図31では、Mは2以上の整数である。
 図31に示すように、ユニキャスト送信区間2503-1及び2503-2以外の区間において、「(マルチキャスト用)ストリーム1-2データシンボル(1)」3101-1、「(マルチキャスト用)ストリーム1-2データシンボル(2)」3101-2、及び、「(マルチキャスト用)ストリーム1-2データシンボル(3)」3101-3が存在している。
 図31に例示するシンボルは、これまでの説明と同様、以下のように構成される。
 ・「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)、「(マルチキャスト用)ストリーム1-2データシンボル(1)」3101-1、「(マルチキャスト用)ストリーム1-2データシンボル(2)」3101-2、「(マルチキャスト用)ストリーム1-2データシンボル(3)」3101-3は、いずれも「ストリーム1」を伝送するためのデータシンボルである。
 ・端末は、「ストリーム1-1のデータシンボル」を得ることで、「ストリーム1のデータ」を得る。また、端末は、「ストリーム1-2のデータシンボル」を得ることで、「ストリーム1のデータ」を得る。
 ・「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)の送信ビームの指向性と、「(マルチキャスト用)ストリーム1-2データシンボル(1)」3101-1、「(マルチキャスト用)ストリーム1-2データシンボル(2)」3101-2、「(マルチキャスト用)ストリーム1-2データシンボル(3)」3101-3の送信ビームの指向性とは、互いに異なる。したがって、「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)の送信ビームを生成するために使用する基地局の送信装置の乗算係数(または重み付け係数)のセットと、「(マルチキャスト用)ストリーム1-2データシンボル(1)」3101-1、「(マルチキャスト用)ストリーム1-2データシンボル(2)」3101-2、「(マルチキャスト用)ストリーム1-2データシンボル(3)」3101-3の送信ビームを生成するために使用する基地局の送信装置の乗算係数(または重み付け係数)のセットとは、互いに異なる。
 以上の構成により、基地局が送信したマルチキャストストリームを、2つの端末が受信できる。このとき、送受信で指向性制御を行っているため、本実施の形態の効果として、マルチキャスト用のストリームを受信することができるエリアを広範にすることができる。また、ストリームの追加、及び/又は、送信ビームの追加は、適応的に行われるため、本実施の形態の効果として、データを伝送するための周波数、時間、及び/又は、空間の資源を有効に活用することができる。
 なお、以降に説明するような制御が行われてもよい。当該制御の詳細は以下のとおりである。
 図32は、図31と異なる「図30における基地局と端末の通信が完了した後、基地局が(ストリーム1の)データシンボルを送信する際の、基地局が送信するシンボルの例」である。図32において、横軸は時間方向を示す。なお、図32において、図25、図31と同様に動作するものについては、同一番号を付している。
 図32において、図31と異なる点は、ユニキャスト送信区間2503-1、2503-2を時間的に長く設定しているため、基地局は、これ以上のマルチキャスト用のシンボルを追加して、送信しない点である。
 図33は、図29に示すように基地局が2つの端末(端末2202-1、2202-2)に対してマルチキャスト用の送信ビームを送信し、さらに、新たな端末2202-3が基地局に対して、送信ビームの追加の要求を行う場合における動作の例を示す。なお、基地局が送信する変調信号のフレームを、図32に示す。
 [33-1]端末2202-3は、基地局に対して、「ストリーム1のマルチキャスト送信の要求」を行う。「ストリーム1のマルチキャスト送信の要求」は、図32におけるユニキャスト送信区間にて送信される。
 [33-2]基地局は、上記[33-1]に示す要求を受け、「マルチキャスト用のストリーム1の送信を行っていること」を、端末2202-3に通知する。「マルチキャスト用のストリーム1の送信を行っていることの通知」は、図32におけるユニキャスト送信区間にて送信される。
 [33-3]端末2202-3は、上記[33-2]に示す通知を受け、「マルチキャスト用のストリーム1を受信していないこと」を、基地局に通知する。「マルチキャスト用のストリーム1を受信していないことの通知」は、図32におけるユニキャスト送信区間にて送信される。
 [33-4]基地局は、上記[33-3]に示す通知を受け、マルチキャスト用ストリーム1の送信ビームとして、ストリーム1-1の送信ビーム及びストリーム1-2の送信ビームとは別の送信ビームを送信することができるか否かを判定する。この場合、図32に示すフレームであることを考慮し、基地局は、マルチキャスト用ストリーム1の別の送信ビームを送信しないと判定する。よって、基地局は、「マルチキャスト用ストリーム1の別の送信ビームを送信しないこと」を、端末2202-3に通知する。なお、「マルチキャスト用ストリーム1の別の送信ビームを送信しないことの通知」は、図32におけるユニキャスト送信区間にて送信される。
 [33-5]端末2202-3は、「マルチキャスト用ストリーム1の別の送信ビームを送信しないことの通知」を受信する。
 なお、図33の「基地局と端末の通信の手順」は一例であり、各情報の送信の順番は、図33に限られない。例えば、各送信の順番を入れ替えても、同様の実施が可能である。このように、マルチキャスト送信のための通信資源が不足している場合、マルチキャスト送信ビームの追加は、行われなくてもよい。
 図34は、図29に示す基地局が2つの端末(端末2202-1、2202-2)に対してマルチキャスト用の送信ビームを送信し、さらに、新たな端末2202-3が、基地局に対して、別のマルチキャスト用のストリーム(ストリーム2)の送信ビームの追加の要求を行う場合における動作の例を示している。なお、基地局が送信している変調信号のフレームは、図31のような状態である。
 [34-1]端末2202-3は、基地局に対して、「ストリーム2のマルチキャスト送信の要求」を行う。「ストリーム2のマルチキャスト送信の要求」は、図31におけるユニキャスト送信区間2503にて送信される。
 [34-2]基地局は、上記[34-1]に示す要求を受け、「マルチキャスト用のストリーム2の送信を行っていないこと」を、端末2202-3に通知する。また、基地局は、マルチキャスト用のストリーム2の送信ビームを基地局が追加して送信できるか否かを判定する。この場合、図31のようなフレーム状態であることを考慮し、「マルチキャスト用のストリーム2の送信ビームの送信に対応していること」を、端末2202-3に通知する。「マルチキャスト用のストリーム2の送信を行っていないことの通知」、および、「マルチキャスト用のストリーム2の送信ビームが送信可能であることの通知」は、図31におけるユニキャスト送信区間2503にて送信される。
 [34-3]端末2203-3は、上記[34-2]に示す通知を受け、「マルチキャスト用のストリーム2の受信準備が完了したこと」を、基地局に通知する。「マルチキャスト用のストリーム2の受信準備が完了したこと」の通知は、図31におけるユニキャスト送信区間2503にて送信される。
 [34-4]基地局は、上記[34-3]に示す通知を受け、マルチキャスト用のストリーム2の送信ビームを送信することを決定する。そこで、基地局は、端末2202-3に対して、ストリーム2のマルチキャスト送信を行うために、送信指向性制御用のトレーニングシンボル、及び、受信指向性制御用のトレーニングシンボルを送信する。なお、基地局は、これらのシンボルの送信とは別に、図31のようにストリーム1-1の送信ビーム、及び、ストリーム1-2の送信ビームを送信している。この点については、後に説明する。
 [34-5]端末2202-3は、基地局が送信した送信指向性制御用のトレーニングシンボル、および、受信指向性制御用のトレーニングシンボルを受信する。そして、端末2202-3は、基地局が送信指向性制御を、端末2202-3が受信指向性制御を行うために、基地局に対し、フィードバック情報を送信する。
 [34-6]基地局は、端末2202-3が送信したフィードバック情報に基づいて、送信指向性制御方法(指向性制御を行うときに使用する重み付け係数の決定など)の決定を行い、ストリーム2のデータシンボルを送信する。
 [34-7]端末2202-3は、受信指向性制御方法(指向性制御を行うときに使用する重み付け係数の決定など)の決定を行い、基地局が送信したストリーム2のデータシンボルの受信を開始する。
 なお、図34の「基地局と端末の通信を行うための手順」は、一例であり、各情報の送信の順番は、図34に限られない。例えば、各情報の送信の順番を入れ替えても、同様の実施が可能である。
 また、図34では、端末の受信指向性制御を行う例を説明しているが、端末が受信指向性制御を行わなくてもよい。この場合、図34において、基地局は、受信指向性制御用のトレーニングシンボルを送信しなくてもよく、端末は、受信指向性制御方法の決定を行わなくてもよい。
 基地局が送信指向性制御を行う場合において、基地局が図1の構成の場合は、例えば、図2の乗算部204-1、204-2、204-3、204-4における乗算係数が設定されてよい。
 端末2202-1、2202-2、2202-3が受信指向性制御を行う場合において、端末が図4の構成の場合は、例えば、図5の乗算部503-1、503-2、503-3、503-4における乗算係数が設定されてよい。端末が図6の構成の場合は、例えば、乗算部603-1、603-2、・・・、603-Lにおける乗算係数が設定されてよい。
 図35は、図34における基地局と端末との間の通信が完了した後、基地局が、ストリーム1及びストリーム2のデータシンボルを送信する場合に、基地局が送信するシンボルの例を示す。図35において、横軸は時間方向を示す。
 図35において、図31に示す「ストリーム1-1」及び「ストリーム1-2」が存在しているので、「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)が存在する。また、「(マルチキャスト用)ストリーム1-2データシンボル(N)」3101-N、「(マルチキャスト用)ストリーム1-2データシンボル(N+1)」3101-(N+1)、「(マルチキャスト用)ストリーム1-2データシンボル(N+2)」3101-(N+2)が存在する。なお、N、Mは、それぞれ、2以上の整数である。
 図35に示すように、ユニキャスト送信区間2503-1及び2503-2以外の区間において、「(マルチキャスト用)ストリーム2-1データシンボル(1)」3501-1、「(マルチキャスト用)ストリーム2-1データシンボル(2)」3501-2、及び、「(マルチキャスト用)ストリーム2-1データシンボル(3)」3501-3が存在している。
 図35に例示するシンボルは、これまでの説明と同様、以下のように構成される。
 ・「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)、「(マルチキャスト用)ストリーム1-2データシンボル(N)」3101-N、「(マルチキャスト用)ストリーム1-2データシンボル(N+1)」3101-(N+1)、「(マルチキャスト用)ストリーム1-2データシンボル(N+2)」3101-(N+2)は、いずれも「ストリーム1」を伝送するためのデータシンボルである。
 ・端末は、「ストリーム1-1のデータシンボル」を得ることで、「ストリーム1のデータ」を得る。また、端末は、「ストリーム1-2のデータシンボル」を得ることで、「ストリーム1のデータ」を得る。
 ・「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)の送信ビームの指向性と、「(マルチキャスト用)ストリーム1-2データシンボル(1)」3101-1、「(マルチキャスト用)ストリーム1-2データシンボル(2)」3101-2、「(マルチキャスト用)ストリーム1-2データシンボル(3)」3101-3の送信ビームの指向性とは、互いに異なる。したがって、「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)の送信ビームを生成するために使用する基地局の送信装置の乗算係数(または重み付け係数)のセットと、「(マルチキャスト用)ストリーム1-2データシンボル(1)」3101-1、「(マルチキャスト用)ストリーム1-2データシンボル(2)」3101-2、「(マルチキャスト用)ストリーム1-2データシンボル(3)」3101-3の送信ビームを生成するために使用する基地局の送信装置の乗算係数(または重み付け係数)のセットとは、互いに異なる。
 ・「(マルチキャスト用)ストリーム2-1データシンボル(1)」3501-1、「(マルチキャスト用)ストリーム2-1データシンボル(2)」3501-2、「(マルチキャスト用)ストリーム2-1データシンボル(3)」3501-3は、「ストリーム2」を伝送するためのデータシンボルである。
 ・端末は、「ストリーム2-1のデータシンボル」を得ることで、「ストリーム2」のデータを得る。
 以上の構成により、端末は、基地局が送信した複数のマルチキャストストリーム(ストリーム1とストリーム2)を受信できる。このとき、送受信で指向性制御を行っているため、本実施の形態の効果として、マルチキャスト用のストリームが受信可能なエリアを広範にすることができる。また、ストリームの追加、及び/又は、送信ビームの追加は、適応的に行われるため、本実施の形態の効果として、データを伝送するための周波数、時間、及び/又は、空間の資源を有効に活用することができる。
 なお、以降に説明するような制御が行なわれてもよい。当該制御の詳細は以下のとおりである。
 図32は、図35と異なる「基地局が(ストリーム1の)データシンボルを送信する際の、基地局が送信するシンボルの例」である。図32において、横軸は時間方向を示す。なお、図32において、図25、図31と同様に動作するものについては、同一番号を付している。
 図32において、図35と異なる点は、ユニキャスト送信区間2503-1、2503-2を時間的に長く設定しているため、基地局は、これ以上のマルチキャスト用のシンボル、例えば、新しいストリームのシンボルを追加して、送信しない点である。
 図36は、図29に示すように基地局が2つの端末(端末2202-1、2202-2)にマルチキャスト用の送信ビームを送信し、さらに、新たな端末2202-3が基地局に対して、別のマルチキャスト用のストリーム(ストリーム2)の送信ビームの追加の要求を行う場合における、動作の例を示す。なお、基地局が送信する変調信号のフレームを、図32に示す。
 [36-1]端末2202-3は、基地局に対して、「ストリーム2のマルチキャスト送信の要求」を行う。「ストリーム2のマルチキャスト送信の要求」は、図32におけるユニキャスト送信区間にて送信される。
 [36-2]基地局は、上記[36-1]に示す要求を受け、「マルチキャスト用のストリーム2の送信を行っていないこと」を、端末2202-3に通知する。「マルチキャスト用のストリーム2の送信を行っていないこと」は、図32におけるユニキャスト送信区間にて送信される。また、基地局は、マルチキャスト用ストリーム2の送信ビームを送信することができるか否かの判定を行う。基地局は、図32に示すフレームを考慮し、マルチキャスト用ストリーム2の送信ビームを送信しないと判定する。よって、基地局は、「マルチキャスト用ストリーム2の送信ビームを送信しないこと」を、端末2202-3に通知する。なお、「マルチキャスト用ストリーム2の送信ビームを送信しないことの通知」は、図32におけるユニキャスト送信区間にて送信される。
 [36-3]端末2202-3は、「マルチキャスト用ストリーム2の送信ビームを送信しないことの通知」を受信する。
 なお、図36の「基地局と端末の通信の手順」は一例であり、各情報の送信の順番は、図36に限られない。例えば、各送信の手順を入れ替えても、同様の実施が可能である。このように、マルチキャスト送信のための通信資源が不足している場合、ストリームの追加、及び/又は、マルチキャスト送信ビームの追加は、行われなくてもよい。
 なお、図35などで示したユニキャスト送信区間2503-1、2503-2の設定方法について補足説明をする。
 例えば、図35において、マルチキャスト用の送信ビームの数の最大値を、あらかじめ決定または設定する。
 そして、基地局は、各端末の要求を受け、マルチキャスト用の送信ビームの数の最大値以下となる、マルチキャスト用の送信ビームを送信する。例えば、図35の場合、マルチキャスト用の送信ビーム数は3である。そして、基地局は、マルチキャスト用の複数の送信ビームを送信し、これらを送信した後の時間的な空き時間をユニキャスト送信区間と定める。
 以上のように、ユニキャスト送信区間を定めてもよい。
 (補足1)
 補足1では、基地局が、複数の端末とユニキャスト通信、つまり、個別通信を行っている場合について説明する。
 例えば、図9のストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、および、ストリーム1の#3シンボル群901-3は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストする制御情報であってよい。つまり、これらのシンボル群は、ブロードキャストチャネルの情報であってよい。なお、制御情報は、例えば、基地局と端末との間でデータ通信を実現するために用いることができる情報である。
 例えば、図9のストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、および、ストリーム1の#3シンボル群901-3は、コモンサーチスペース(common search space)であってもよい。なお、コモンサーチスペースは、セル制御を行うための制御情報である。また、コモンサーチスペースは、複数の端末に対し、ブロードキャストされる制御情報である。
 例えば、図9のストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、および、ストリーム2の#3シンボル群902-3は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストする制御情報であってよい。つまり、これらのシンボル群は、ブロードキャストチャネルの情報であってよい。
 例えば、図9のストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、および、ストリーム2の#3シンボル群902-3は、コモンサーチスペースであってもよい。
 図9のストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、および、ストリーム1の#3シンボル群901-3、ストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、および、ストリーム2の#3シンボル群902-3の説明については、これまでの実施の形態にて説明したとおりであるので、説明を省略する。
 例えば、図14の変調信号1の#1シンボル群1401-1、変調信号1の#2シンボル群1401-2、および、変調信号1の#3シンボル群1401-3は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストする制御情報であってよい。つまり、これらのシンボル群は、ブロードキャストチャネルの情報であってよい。
 例えば、図14の変調信号1の#1シンボル群1401-1、変調信号1の#2シンボル群1401-2、および、変調信号1の#3シンボル群1401-3は、コモンサーチスペースであってもよい。
 例えば、図14の変調信号2の#1シンボル群1402-1、変調信号2の#2シンボル群1402-2、および、変調信号2の#3シンボル群1402-3は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストする制御情報であってよい。つまり、これらのシンボル群は、ブロードキャストチャネルの情報であってよい。
 例えば、図14の変調信号2の#1シンボル群1402-1、変調信号2の#2シンボル群1402-2、および、変調信号2の#3シンボル群1402-3は、コモンサーチスペースであってもよい。
 図14の変調信号1の#1シンボル群1401-1、変調信号1の#2シンボル群1401-2、および、変調信号1の#3シンボル群1401-3は、これまでの実施の形態にて説明したとおりである。図14の変調信号2の#1シンボル群1402-1、変調信号2の#2シンボル群1402-2、および、変調信号2の#3シンボル群1402-3は、これまでの実施の形態にて説明したとおりである。
 例えば、図25のストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、および、ストリーム1-1データシンボル(3)2501-1-3は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストする制御情報であってもよい。つまり、これらのシンボルは、ブロードキャストチャネルの情報であってよい。
 例えば、図25のストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、および、ストリーム1-1データシンボル(3)2501-1-3は、コモンサーチスペースであってもよい。
 なお、図25のストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、および、ストリーム1-1データシンボル(3)2501-1-3は、これまでの実施の形態にて説明したとおりである。
 例えば、図31、図32のストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、及び、ストリーム1-2データシンボル(3)3101-3は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストする制御情報であってもよい。つまり、これらのシンボルは、ブロードキャストチャネルの情報であってよい。
 例えば、図31、図32のストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、及び、ストリーム1-2データシンボル(3)3101-3は、コモンサーチスペースであってもよい。
 なお、図31、図32のストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、及び、ストリーム1-2データシンボル(3)3101-3は、これまでの実施の形態にて説明したとおりである。
 例えば、図35において、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、および、ストリーム1-2データシンボル(N+2)3101-(N+2)は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストする制御情報であってもよい。つまり、これらのシンボルは、ブロードキャストチャネルの情報であってよい。
 例えば、図35において、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、および、ストリーム1-2データシンボル(N+2)3101-(N+2)は、コモンサーチスペースであってもよい。
 例えば、図35のストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、および、ストリーム2-1データシンボル(3)3501-3は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストする制御情報であってもよい。つまり、これらのシンボルは、ブロードキャストチャネルの情報であってよい。
 例えば、図35のストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、および、ストリーム2-1データシンボル(3)3501-3は、コモンサーチスペースであってもよい。
 なお、図35において、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、および、ストリーム1-2データシンボル(N+2)3101-(N+2)は、これまでの実施の形態にて説明したとおりである。図35のストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、および、ストリーム2-1データシンボル(3)3501-3は、これまでの実施の形態にて説明したとおりである。
 図9、図14、図25、図31、図32、図35において、各データシンボルを送信する際、シングルキャリアの伝送方法を用いてもよいし、OFDMなどのマルチキャリアの伝送方式を用いてもよい。また、データシンボルの時間的な位置は、図9、図14、図25、図31、図32、図35に限られない。
 図25、図31、図32、図35において、横軸を時間方向として説明しているが、横軸を周波数(キャリア)方向としても、同様の実施が可能である。なお、横軸を周波数(キャリア)方向とした場合、基地局は、各データシンボルを、1つ以上のキャリア、または、サブキャリアを用いて、送信する。
 (補足2)
 補足2では、基地局が複数の端末とユニキャスト通信、つまり、個別通信を行っている場合について説明する。
 例えば、図9のストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、ストリーム1の#3シンボル群901-3、ストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、および、ストリーム2の#3シンボル群902-3は、基地局宛てのデータ又は通信を行っている複数端末のうちのいずれかの端末宛のデータであってもよい。この場合、データの中には、制御情報が含まれていてもよい。
 なお、図9のストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、ストリーム1の#3シンボル群901-3、ストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、および、ストリーム2の#3シンボル群902-3は、これまでの実施の形態にて説明したとおりである。
 例えば、図14の変調信号1の#1シンボル群1401-1、変調信号1の#2シンボル群1401-2、変調信号1の#3シンボル群1401-3、変調信号2の#1シンボル群1401-3、変調信号2の#2シンボル群1402-2、および、変調信号2の#3シンボル群1402-3は、基地局宛てのデータ又は通信を行っている複数端末のうちのいずれかの端末宛のデータであってもよい。この場合、データの中には、制御情報が含まれていてもよい。
 なお、図14の変調信号1の#1シンボル群1401-1、変調信号1の#2シンボル群1401-2、変調信号1の#3シンボル群1401-3、変調信号2の#1シンボル群1401-3、変調信号2の#2シンボル群1402-2、および、変調信号2の#3シンボル群1402-3は、これまでの実施の形態にて説明したとおりである。
 例えば、図25のストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、および、ストリーム1-1データシンボル(3)2501-1-3は、基地局宛てのデータ又は通信を行っている複数端末のうちのいずれかの端末宛のデータであってもよい。この場合、データの中には、制御情報が含まれていてもよい。
 なお、図25のストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、および、ストリーム1-1データシンボル(3)2501-1-3は、これまでの実施の形態にて説明したとおりである。
 例えば、図31、図32のストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、ストリーム1-2データシンボル(3)3101-3は、基地局宛てのデータ又は通信を行っている複数端末のうちのいずれかの端末宛のデータであってもよい。この場合、データの中には、制御情報が含まれていてもよい。
 なお、図31、図32のストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、ストリーム1-2データシンボル(3)3101-3は、これまでの実施の形態にて説明したとおりである。
 例えば、図35において、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、ストリーム1-2データシンボル(N+2)3101-(N+2)は、基地局宛てのデータ又は通信を行っている複数端末のうちのいずれかの端末宛のデータであってもよい。この場合、データの中には、制御情報が含まれていてもよい。
 例えば、図35のストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、および、ストリーム2-1データシンボル(3)3501-3は、基地局宛てのデータ又は通信を行っている複数端末のうちのいずれかの端末宛のデータであってもよい。この場合、データの中には、制御情報が含まれていてもよい。
 なお、図35において、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、ストリーム1-2データシンボル(N+2)3101-(N+2)、ストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、および、ストリーム2-1データシンボル(3)3501-3は、これまでの実施の形態にて説明したとおりである。
 図9、図14、図25、図31、図32、図35において、各データシンボルを送信する際、シングルキャリアの伝送方法を用いてもよいし、OFDMなどのマルチキャリアの伝送方式を用いてもよい。また、データシンボルの時間的な位置は、図9、図14、図25、図31、図32、図35に限られない。
 また、図25、図31、図32、図35において、横軸を時間方向として説明しているが、横軸を周波数(キャリア)方向としても、同様の実施が可能である。なお、横軸を周波数(キャリア)方向としたとき、基地局は、各データシンボルを、1つ以上のキャリア、または、サブキャリアを用いて、送信する。
 (補足3)
 基地局は、図9のフレーム構成のように、ストリーム1の#1シンボル群901-1、ストリーム1の#2シンボル群901-2、ストリーム1の#3シンボル群901-3、ストリーム2の#1シンボル群902-1、ストリーム2の#2シンボル群902-2、及び、ストリーム2の#3シンボル群902-3を送信している時間帯に、「ストリーム1の#1シンボル群901-1の送信ビーム、ストリーム1の#2シンボル群901-2の送信ビーム、ストリーム1の#3シンボル群901-3の送信ビーム、ストリーム2の#1シンボル群902-1の送信ビーム、ストリーム2の#2シンボル群902-2の送信ビーム、ストリーム2の#3シンボル群902-3の送信ビーム」とは別の送信ビームを用いて、別のシンボル群を、送信してもよい。
 また、図3の基地局は、「信号処理部102の信号処理、および、重み付け合成部301による信号処理」、または、「信号処理部102の信号処理、または、重み付け合成部301による信号処理」によって、上記の「別のシンボル群」のための送信ビームを生成してもよい。
 また、基地局は、図14のフレーム構成のように、変調信号1の#1シンボル群1401-1、変調信号1の#2シンボル群1401-2、変調信号1の#3シンボル群1401-3、変調信号2の#1シンボル群1402-1、変調信号2の#2シンボル群1402-2、及び、変調信号2の#3シンボル群1402-3を送信している時間帯に、「変調信号1の#1シンボル群1401-1の送信ビーム、変調信号1の#2シンボル群1401-2の送信ビーム、変調信号1の#3シンボル群1401-3の送信ビーム、変調信号2の#1シンボル群1402-1の送信ビーム、変調信号2の#2シンボル群1402-2の送信ビーム、変調信号2の#3シンボル群1402-3の送信ビーム」とは別の送信ビームを用いて、別のシンボル群を、送信してもよい。
 この場合、「別のシンボル群」は、ある端末宛のデータシンボルを含むシンボル群であってもよいし、本開示の他の部分で説明したような、制御情報シンボル群を含むシンボル群であってもよいし、他のマルチキャスト用のデータシンボルを含むシンボル群であってもよい。
 また、図3の基地局が、「信号処理部102の信号処理、および、重み付け合成部301による信号処理」、または、「信号処理部102の信号処理、または、重み付け合成部301による信号処理」によって、上記の「別のシンボル群」のための送信ビームを生成してもよい。
 (補足4)
 例えば、基地局は、図25のフレーム構成のように、ストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、又は、ストリーム1-1データシンボル(3)2501-1-3を送信している時間帯に、「ストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、ストリーム1-1データシンボル(3)2501-1-3を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を、送信してもよい。
 なお、図25において、横軸が周波数方向である場合も同様である。例えば、基地局は、ストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、又は、ストリーム1-1データシンボル(3)2501-1-3を送信している時間帯に、「ストリーム1-1データシンボル(1)2501-1-1、ストリーム1-1データシンボル(2)2501-1-2、ストリーム1-1データシンボル(3)2501-1-3を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を、送信してもよい。
 例えば、基地局は、図31、図32のフレーム構成のように、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、又は、ストリーム1-1データシンボル(M+2)2501-1-(M+2)を送信している時間帯に、「ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を送信してもよい。
 なお、図31、図32において、横軸が周波数方向である場合も同様である。例えば、基地局は、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、又は、ストリーム1-1データシンボル(M+2)2501-1-(M+2)を送信している時間帯に、「ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を送信してもよい。
 例えば、基地局は、図31、図32のフレーム構成のように、ストリーム1-2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、又は、ストリーム1-2データシンボル(3)3101-3を送信している時間帯に、「ストリーム1―2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、ストリーム1-2データシンボル(3)3101-3を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を送信してもよい。
 なお、図31、図32において、横軸が周波数方向である場合も同様である。例えば、基地局は、ストリーム1-2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、又は、ストリーム1-2データシンボル(3)3101-3を送信している時間帯に、「ストリーム1-2データシンボル(1)3101-1、ストリーム1-2データシンボル(2)3101-2、ストリーム1-2データシンボル(3)3101-3を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を送信してもよい。
 例えば、基地局は、図35のフレーム構成のように、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-(M+1)、又は、ストリーム1-1データシンボル(M+2)2501-(M+2)を送信している時間帯に、「ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-(M+1)、ストリーム1-1データシンボル(M+2)2501-(M+2)を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を送信してもよい。
 なお、図35において、横軸が周波数方向である場合も同様である。例えば、基地局は、ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-(M+1)、又は、ストリーム1-1データシンボル(M+2)2501-(M+2)を送信している時間帯に、「ストリーム1-1データシンボル(M)2501-1-M、ストリーム1-1データシンボル(M+1)2501-(M+1)、ストリーム1-1データシンボル(M+2)2501-(M+2)を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を送信してもよい。
 例えば、基地局が、図35のフレーム構成のように、ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、又は、ストリーム1-2データシンボル(N+2)3101-(N+2)を送信している時間帯に、「ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、ストリーム1-2データシンボル(N+2)3101-(N+2)を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を送信してもよい。
 なお、図35において、横軸が周波数方向である場合も同様である。例えば、基地局は、ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、又は、ストリーム1-2データシンボル(N+2)3101-(N+2)を送信している時間帯に、「ストリーム1-2データシンボル(N)3101-N、ストリーム1-2データシンボル(N+1)3101-(N+1)、ストリーム1-2データシンボル(N+2)3101-(N+2)を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を送信してもよい。
 例えば、基地局は、図35のフレーム構成のように、ストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、ストリーム2-1データシンボル(3)3501-3を送信している時間帯に、「ストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、ストリーム2-1データシンボル(3)3501-3を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を送信してもよい。
 なお、図35において、横軸が周波数方向である場合も同様である。例えば、基地局は、ストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、又は、ストリーム2-1データシンボル(3)3501-3を送信している時間帯に、「ストリーム2-1データシンボル(1)3501-1、ストリーム2-1データシンボル(2)3501-2、ストリーム2-1データシンボル(3)3501-3を送信する送信ビーム」とは別の送信ビームを用いて、別のシンボル群を送信してもよい。
 上記において、「別のシンボル群」とは、ある端末宛のデータシンボルを含むシンボル群であってもよいし、本明細書の他の部分で説明したような、制御情報シンボルを含むシンボル群であってもよいし、他のマルチキャスト用のデータシンボルを含むシンボル群であってもよい。
 この場合、図1の基地局は、信号処理部102の信号処理によって、上記の「別のシンボル群」のための送信ビームを生成してもよい。或いは、図1の基地局が、アンテナ部106-1からアンテナ部106-Mまでのアンテナを選択することで、上記の「別のシンボル群」のための送信ビームを生成してもよい。
 また、図3の基地局は、「信号処理部102の信号処理、および、重み付け合成部301による信号処理」、または、「信号処理部102の信号処理、または、重み付け合成部301による信号処理」によって、上記の「別のシンボル群」のための送信ビームを生成してもよい。
 また、図25、図31、図32、図35に記載されているようなユニキャスト送信区間2503-1、2503-2は設定されなくてもよい。
 (補足5)
 図31、図32に関する説明では、以下のような説明を行っている。
 ・「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)、「(マルチキャスト用)ストリーム1-2データシンボル(1)」3101-1、「(マルチキャスト用)ストリーム1-2データシンボル(2)」3101-2、及び、「(マルチキャスト用)ストリーム1-2データシンボル(3)」3101-3は、いずれも「ストリーム1」を伝送するためのデータシンボルである。
 ・端末は、「ストリーム1-1のデータシンボル」を得ることで、「ストリーム1のデータ」を得る。また、端末は、「ストリーム1-2のデータシンボル」を得ることで、「ストリーム1のデータ」を得る。
 また、図35に関する説明では、以下のような説明を行っている。
 ・「(マルチキャスト用)ストリーム1-1データシンボル(M)」2501-1-M、「(マルチキャスト用)ストリーム1-1データシンボル(M+1)」2501-1-(M+1)、「(マルチキャスト用)ストリーム1-1データシンボル(M+2)」2501-1-(M+2)、「(マルチキャスト用)ストリーム1-2データシンボル(N)」3101-N、「(マルチキャスト用)ストリーム1-2データシンボル(N+1)」3101-(N+1)、及び、「(マルチキャスト用)ストリーム1-2データシンボル(N+2)」3101-(N+2)は、いずれも「ストリーム1」を伝送するためのデータシンボルである。
 ・端末は、「ストリーム1-1のデータシンボル」を得ることで、「ストリーム1のデータ」を得る。また、端末は、「ストリーム1-2のデータシンボル」を得ることで、「ストリーム1のデータ」を得る。
 以下では、上述の内容について、補足説明を行う。例えば、図35において、以下の、<方法1-1>、<方法1-2>、<方法2-1>、または、<方法2-2>により、上述を実現できる。
 <方法1-1>
 ・ストリーム1-1データシンボル(M)2501-1-Mとストリーム1-2データシンボル(N)3101-Nとが同じデータを含んでいる。ストリーム1-1データシンボル(M+1)2501-1-(M+1)とストリーム1-2データシンボル(N+1)3101-(N+1)とが同じデータを含んでいる。ストリーム1-1データシンボル(M+2)2501-1-(M+2)とストリーム1-2データシンボル(N+2)3101-(N+2)とが同じデータを含んでいる。
 <方法1-2>
 ・ストリーム1-1データシンボル(K)2501-1-Kに含まれるデータと同じデータを含むストリーム1-2データシンボル(L)3101-Lが存在する。なお、K、Lは整数である。
 <方法2-1>
 ・ストリーム1-1データシンボル(M)2501-1-Mとストリーム1-2データシンボル(N)3101-Nとが一部同じデータを含んでいる。ストリーム1-1データシンボル(M+1)2501-1-(M+1)とストリーム1-2データシンボル(N+1)3101-(N+1)とが一部同じデータを含んでいる。ストリーム1-1データシンボル(M+2)2501-1-(M+2)とストリーム1-2データシンボル(N+2)3101-(N+2)が一部同じデータを含んでいる。
 <方法2-2>
 ・ストリーム1-1データシンボル(K)2501-1-Kが含むデータの一部を含んでいるストリーム1-2データシンボル(L)3101-Lが存在する。なお、K、Lは整数である。
 すなわち、第1の基地局または第1の送信システムは、第1のストリームのデータを含む第1のパケット群と、第1のストリームのデータを含む第2のパケット群とを生成し、第1のパケット群に含まれるパケットを第1の送信ビームを用いて第1の期間に送信し、第2のパケット群に含まれるパケットを第1の送信ビームとは異なる第2の送信ビームを用いて第2の期間に送信し、第1の期間と第2の期間は互いに重複していない。
 ここで、第2のパケット群は、第1のパケット群に含まれる第1のパケットが含むデータと同一のデータを含む第2のパケットを含んでいてもよい。また、上記とは別の構成として、第2のパケット群は、第1のパケット群に含まれる第1のパケットが含むデータの一部と同一のデータを含む第3のパケットを含んでいてもよい。
 また、第1の送信ビームと第2の送信ビームは、同一のアンテナ部を用いて送信される互いに異なる指向性を有する送信ビームであってもよいし、互いに異なるアンテナ部を用いて送信される送信ビームであってもよい。
 また、第2の基地局または第2の送信システムは、第1の基地局または第1の送信システムの構成に加えて、第1のストリームのデータを含む第3のパケット群をさらに生成し、第3のパケット群に含まれるパケットを第1の送信ビーム及び第2の送信ビームとは異なる第3の送信ビームを用いて第3の期間に送信し、第3の期間は第1の期間および第2の期間と重複していない。
 ここで、第2の基地局または第2の送信システムは、第1の期間、第2の期間及び第3の期間を所定の順序で繰り返し設定してもよい。
 また、第3の基地局または第3の送信システムは、第1の基地局または第1の送信システムの構成に加えて、第1のストリームのデータを含む第3のパケット群をさらに生成し、第3のパケット群に含まれるパケットを第1の送信ビーム及び第2の送信ビームとは異なる第3の送信ビームを用いて第3の期間に送信し、第3の期間の少なくとも一部は第1の期間と重複している。
 ここで、第3の基地局または第3の送信システムは、第1の期間、第2の期間及び第3の期間を繰り返し設定してもよく、繰り返し設定される第3の期間のいずれの第3の期間もその少なくとも一部が第1の期間と重複していてもよいし、繰り返し設定される第3の期間のうち少なくともいずれか一つの第3の期間も第1の期間と重複していなくてもよい。
 また、第4の基地局または第4の送信システムは、第1の基地局または第1の送信システムの構成に加えて、第2のストリームのデータを含む第4のパケットをさらに生成し、第4のパケットを第1の送信ビームとは異なる第4の送信ビームを用いて第4の期間に送信し、第4の期間の少なくとも一部は第1の期間と重複している。
 なお、上記の説明では、第1の期間と第2の期間は互いに重複していないと説明したが、第1の期間と第2の期間は一部が互いに重複していてもよいし、第1の期間の全部が第2の期間と重複していてもよいし、第1の期間の全部が第2の期間の全部と互いに重複していてもよい。
 また、第5の基地局または第5の送信システムは、第1のストリームのデータを含むパケット群を一つまたは複数生成し、パケット群毎に互いに異なる送信ビームを用いて送信し、端末から送信される信号に基づいて生成するパケット群の数を増加、または減少させるとしてもよい。
 なお、上述において、「ストリーム」と記載しているが、本明細書の他の箇所で記載しているように、図31、図32の「ストリーム1-1データシンボル(M)2501-1-M、および、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、および、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、および、ストリーム1-2データシンボル(1)3101-1、および、ストリーム1-2データシンボル(2)3101-2、ストリーム1-2データシンボル(3)3101-3」、および、図35の「ストリーム1-1データシンボル(M)2501-1-M、および、ストリーム1-1データシンボル(M+1)2501-1-(M+1)、ストリーム1-1データシンボル(M+2)2501-1-(M+2)、および、ストリーム1-2データシンボル(N)3101-N、および、ストリーム1-2データシンボル(N+1)3101-(N+1)、および、ストリーム1-2データシンボル(N+2)3101-(N+2)」は、ある端末宛のデータシンボルを含むシンボルであってもよいし、制御情報シンボルを含むシンボルであってもよいし、マルチキャスト用のデータシンボルを含むシンボルであってもよい。
 (実施の形態4)
 本実施の形態では、実施の形態1から実施の形態3で説明した通信システムの具体的な例について説明する。
 本実施の形態における通信システムは、例えば、(複数の)基地局と複数の端末で構成されている。例えば、図7、図12、図17、図19、図20、図26、又は図29などにおける、基地局700及び端末704-1、704-2などによって構成された通信システムを考える。
 図37は、基地局(700)の構成の一例を示している。
 論理チャネル生成部3703は、データ3701および制御データ3702を入力とし、論理チャネル信号3704を出力する。論理チャネル信号3704は、例えば、制御用の論理チャネルである「BCCH(Broadcast Control Channel)、PCCH(Paging Control Channel)、CCCH(Common Control Channel)、MCCH(Multicast Control Channel)、DCCH(Dedicated Control Channel)」、データ用の論理チャネルである「DTCH(Dedicated Traffic Channel)、及び/又は、MTCH(Multicast Traffic Channel)」などで構成されている。
 「BCCHは、下りリンク、システム制御情報の報知用チャネル」である。「PCCHは、下りリンク、ページング情報用チャネル」である。「CCCHは、下りリンク、RRC(Radio Resource Control)接続が存在しないときに使用する共通制御チャネル」である。「MCCHは、下りリンク、1対多のMBMS(Multimedia Broadcast Multicast Service)のためのマルチキャスト・チャネルスケジューリング、制御用チャネル」である。「DCCHは、下りリンク、RRC接続をもつ端末に使用される専用制御チャネル」である。「DTCHは、下りリンク、1台の端末UE(User Equipment)への専用トラフィック・チャネル、ユーザ・データ専用チャネル」である。「MTCHは、下りリンク、1対多のMBMSユーザ・データ用チャネル」である。
 トランスポートチャネル生成部3705は、論理チャネル信号3704を入力とし、トランスポートチャネル信号3706を生成し、出力する。トランスポートチャネル信号3706は、例えば、BCH(Broadcast Channel)、DL-SCH(Downlink Shared Channel)、PCH(Paging Channel)、MCH(Multicast Channel)などで構成されている。
 「BCHは、セル全域にわたって報知されるシステム情報用チャネル」である。「DL-SCHは、ユーザ・データ、制御情報とシステム情報を用いるチャネル」である。「PCHは、セル全域にわたって放置されるページング情報用チャネル」である。「MCHは、セル全域にわたって報知されるMBMSトラフィックならびに制御用チャネル」である。
 物理チャネル生成部3707は、トランスポートチャネル信号3706を入力とし、物理チャネル信号3708を生成し、出力する。物理チャネル信号3708は、例えば、PBCH(Physical; Broadcast Channel)、PMCH(Physical Multicast Channel)、PDSCH(Physical Downlink Shared Channel)、PDCCH(Physical Downlink Control Channel)などで構成されている。
 「PBCHは、BCHトランスポート・チャネルの伝送用」である。「PMCHは、MCHトランスポート・チャネル伝送用」である。「PDSCHは、DL-SCHならびにトランスポート・チャネルの伝送用」である。「PDCCHは下りリンクL1(Layer 1)/L2(Layer 2)制御信号の伝送用」である。
 変調信号生成部3709は、物理チャネル信号3708を入力とし、物理チャネル信号3708に基づいた変調信号3710を生成し、出力する。そして、基地局700は、変調信号3710を、電波として送信する。
 まず、基地局が、複数の端末とユニキャスト通信、つまり、個別通信を行っている場合を考える。
 この場合、例えば、図9における、ストリーム1のシンボル群#1(901-1)、および、ストリーム1のシンボル群#2(901-2)、および、ストリーム1のシンボル群#3(901-3)は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストされる制御情報であってよい。つまり、これらのシンボル群は、ブロードキャストチャネルの情報であってよい。制御情報は、例えば、基地局と端末との間でデータ通信を実現するために用いることができる情報である。
 ここで、ブロードキャストチャネルについて説明する。ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当する。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、及び、「MCH」が該当する。
 また、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、及び、「MTCH」が該当する。
 例えば、図9における、ストリーム2のシンボル群#1(902-1)、および、ストリーム2のシンボル群#2(902-2)、および、ストリーム2のシンボル群#3(902-3)は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストする制御情報であってよい。つまり、これらのシンボル群は、ブロードキャストチャネルの情報であってよい。制御情報は、例えば、基地局と端末との間でデータ通信を実現するために用いることができる情報である。
 なお、ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当する。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、及び、「MCH」が該当する。
 また、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、及び、「MTCH」が該当する。
 この場合、図9における、ストリーム1のシンボル群#1(901-1)、ストリーム1のシンボル群#2(901-2)、および、ストリーム1のシンボル群#3(901-3)の説明については、これまでの実施の形態にて説明したとおりであるので、説明を省略する。また、図9のストリーム2のシンボル群#1(902-1)、ストリーム2のシンボル群#2(902-2)、および、ストリーム2のシンボル群#3(902-3)の説明については、これまでの実施の形態にて説明したとおりであるので、説明を省略する。
 なお、図9のストリーム2のシンボル群#1(902-1)、ストリーム2のシンボル群#2(902-2)、及び/又は、ストリーム2のシンボル群#3(902-3)などのストリーム2が送信されない場合もあり得る。例えば、ブロードキャストチャネルの信号を送信する場合、基地局は、ストリーム2のシンボル群を、送信しなくてもよい。この場合、図7の例では、基地局701から、ストリーム703-1、703-2、703-3は、送信されない。
 例えば、図14の変調信号1のシンボル群#1(1401-1)、変調信号1のシンボル群#2(1401-2)、および、変調信号1のシンボル群#3(1401-3)は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストする制御情報であってよい。つまり、これらのシンボル群は、ブロードキャストチャネルの情報であってよい。制御情報は、例えば、基地局と端末との間でデータ通信を実現するために用いることができる情報である。
 なお、ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当する。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、及び、「MCH」が該当する。
 また、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、及び、「MTCH」が該当する。
 例えば、図14における、変調信号2のシンボル群#1(1402-1)、変調信号2のシンボル群#2(1402-2)、および、変調信号2のシンボル群#3(1402-3)は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストするための制御情報であってよい。つまり、これらのシンボル群は、ブロードキャストチャネルの情報であってよい。なお、制御情報は、例えば、基地局と端末との間でデータ通信を実現するために用いることができる情報である。
 なお、ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当する。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、及び、「MCH」が該当する。
 また、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、及び、「MTCH」が該当する。
 なお、図14の変調信号1のシンボル群#1(1401-1)、変調信号1のシンボル群#2(1401-2)、および、変調信号1のシンボル群#3(1401-3)の説明については、これまでの実施の形態にて説明したとおりであるので、説明を省略する。図14の変調信号2のシンボル群#1(1402-1)、変調信号2のシンボル群#2(1402-2)、および、変調信号2のシンボル群#3(1402-3)の説明については、これまでの実施の形態にて説明したとおりであるので、説明を省略する。
 例えば、図25における、ストリーム1-1データシンボル(1)(2501-1-1)、ストリーム1-1データシンボル(2)(2501-1-2)、および、ストリーム1-1データシンボル(3)(2501-1-3)は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストする制御情報であってよい。つまり、これらのシンボルは、ブロードキャストチャネルの情報であってよい。制御情報は、例えば、基地局と端末との間でデータ通信を実現するために用いることができる情報である。
 なお、ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当する。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、及び、「MCH」が該当する。
 また、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、及び、「MTCH」が該当する。
 なお、図25のストリーム1-1データシンボル(1)(2501-1-1)、ストリーム1-1データシンボル(2)(2501-1-2)、および、ストリーム1-1データシンボル(3)(2501-1-3)の説明については、これまでの実施の形態にて説明したとおりであるので、説明を省略する。
 例えば、図31、図32における、ストリーム1-1データシンボル(M)(2501-1-M)、ストリーム1-1データシンボル(M+1)(2501-1-(M+1))、ストリーム1-1データシンボル(M+2)(2501-1-(M+2))、ストリーム1-2データシンボル(1)(3101-1)、ストリーム1-2データシンボル(2)(3101-2)、及び、ストリーム1-2データシンボル(3)(3101-3)は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストする制御情報であってよい。つまり、これらのシンボルは、ブロードキャストチャネルの情報であってよい。制御情報は、例えば、基地局と端末との間でデータ通信を実現するために用いることができる情報である。
 なお、ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当する。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、及び、「MCH」が該当する。
 また、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、及び、「MTCH」が該当する。
 なお、図31、図32における、ストリーム1-1データシンボル(M)(2501-1-M)、ストリーム1-1データシンボル(M+1)(2501-1-(M+1))、ストリーム1-1データシンボル(M+2)(2501-1-(M+2))、ストリーム1-2データシンボル(1)(3101-1)、ストリーム1-2データシンボル(2)(3101-2)、ストリーム1-2データシンボル(3)(3101-3)の説明については、これまでの実施の形態にて説明したとおりであるので、説明を省略する。
 例えば、図35において、ストリーム1-1データシンボル(M)(2501-1-M)、ストリーム1-1データシンボル(M+1)(2501-1-(M+1))、ストリーム1-1データシンボル(M+2)(2501-1-(M+2))、ストリーム1-2データシンボル(N)(3101-N)、ストリーム1-2データシンボル(N+1)(3101-(N+1))、および、ストリーム1-2データシンボル(N+2)(3101-(N+2))は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストする制御情報であってよい。つまり、これらのシンボルは、ブロードキャストチャネルの情報であってよい。制御情報は、例えば、基地局と端末との間でデータ通信を実現するために用いることができる情報である。
 なお、ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当する。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、及び、「MCH」が該当する。
 また、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、及び、「MTCH」が該当する。
 例えば、図35において、ストリーム2-1データシンボル(1)(3501-1)、ストリーム2-1データシンボル(2)(3501-2)、および、ストリーム2-1データシンボル(3)(3501-3)は、基地局が、複数の端末とデータ通信を行うために、複数の端末に対してブロードキャストする制御情報であってよい。つまり、これらのシンボルは、ブロードキャストチャネルの情報であってよい。制御情報は、例えば、基地局と端末との間でデータ通信を実現するために用いることができる情報である。
 なお、ブロードキャストチャネルは、物理チャネル(物理チャネル信号3708)における、「PBCH」、「PMCH」、および、「PD-SCHの一部」が該当する。
 また、ブロードキャストチャネルは、トランスポートチャネル(トランスポートチャネル信号3706)における、「BCH」、「DL-SCHの一部」、「PCH」、及び、「MCH」が該当する。
 また、ブロードキャストチャネルは、論理チャネル(論理チャネル信号3704)における、「BCCH」、「CCCH」、「MCCH」、「DTCHの一部」、及び、「MTCH」が該当する。
 なお、図35において、ストリーム1-1データシンボル(M)(2501-1-M)、ストリーム1-1データシンボル(M+1)(2501-1-(M+1))、ストリーム1-1データシンボル(M+2)(2501-1-(M+2))、ストリーム1-2データシンボル(N)(3101-N)、ストリーム1-2データシンボル(N+1)(3101-(N+1))、および、ストリーム1-2データシンボル(N+2)(3101-(N+2))の説明については、これまでの実施の形態にて説明したとおりであるので、説明を省略する。図35において、ストリーム2-1データシンボル(1)(3501-1)、ストリーム2-1データシンボル(2)(3501-2)、および、ストリーム2-1データシンボル(3)(3501-3)の説明については、これまでの実施の形態にて説明したとおりであるので、説明を省略する。
 図9、図14、図25、図31、図32、図35において、各データシンボルを送信する際、シングルキャリアの伝送方法を用いてもよいし、OFDMなどのマルチキャリアの伝送方式を用いてもよい。また、データシンボルの時間的な位置は、図9、図14、図25、図31、図32、図35に限られない。
 また、図25、図31、図32、図35において、横軸を時間方向として説明しているが、横軸を周波数(キャリア)方向としても、同様の実施が可能である。なお、横軸を周波数(キャリア)方向とした場合、基地局は、各データシンボルを、1つ以上のキャリア、または、サブキャリアを用いて、送信する。
 なお、図9のストリーム1のシンボル群に、端末個別に送信するデータ(ユニキャスト用のデータ)(または、シンボル)が含まれてもよい。同様に、図9のストリーム2のシンボル群に、端末個別に送信するデータ(ユニキャスト用のデータ)(または、シンボル)が含まれてもよい。
 図14のストリーム1のシンボル群に、端末個別に送信するデータ(ユニキャスト用のデータ)(または、シンボル)が含まれてもよい。同様に、図14のストリーム2のシンボル群に、端末個別に送信するデータ(ユニキャスト用のデータ)(または、シンボル)が含まれてもよい。
 図25のストリーム1-1のシンボルに、端末個別に送信するデータ(ユニキャスト用のデータ)(または、シンボル)が含まれてもよい。図31、図32の、ストリーム1-1のシンボル及びストリーム1-2のシンボルに、端末個別に送信するデータ(ユニキャスト用のデータ)(または、シンボル)が含まれてもよい。
 PBCHは、例えば、「UEがセルサーチ後の最初に読む最低限の情報(システム帯域幅、システムフレーム番号、送信アンテナ数など)を送信するために使用される」構成であってもよい。
 PMCHは、例えば、「MBSFN(Multicast-broadcast single-frequency network)の運用に使用される」構成であってもよい。
 PDSCHは、例えば、「下りリンクのユーザデータを送信するための共有データチャネルであり、C(control)-plane/U(User)-planeに関係なくすべてのデータを集約して送信される」構成であってもよい。
 PDCCHは、例えば、「eNodeB(gNodeB)(基地局)がスケジューリングにより選択したユーザに対して、無線リソースの割り当て情報を通知するために使用される」構成であってもよい。
 以上のような実施の形態によれば、マルチキャスト又はブロードキャストによるデータ伝送において、基地局が、データシンボル及び制御情報シンボルを複数の送信ビームを用いて送信する。また、端末は、複数の送信ビームから、品質のよいビームを選択的に受信し、これに基づき、データシンボルの受信を行う。これにより、本実施の形態の効果として、端末は、高いデータの受信品質を得ることができる。
 (実施の形態5)
 本実施の形態では、基地局(700)が送信する図9のストリーム1のシンボル群とストリーム2のシンボル群の構成について補足説明を行う。
 図38は、基地局(700)が送信するストリーム1のフレーム構成の一例を示している。図38において、横軸は時間方向を示し、縦軸は周波数方向を示す。図38は、時刻1から時刻10における、キャリア1からキャリア40までのフレーム構成を示している。したがって、図38は、OFDM(Orthogonal Frequency Division Multiplexing)方式のようなマルチキャリア伝送方式のフレーム構成となる。
 図38において、ストリーム1のシンボル領域3801_1は、時刻1から時刻10におけるキャリア1からキャリア9に存在している。
 ストリーム1のシンボル群#i(3800_i)は、時刻1から時刻10におけるキャリア10からキャリア20に存在している。なお、ストリーム1のシンボル群#i(3800_i)は図9のストリーム1のシンボル群#i(901-i)に相当する。
 ストリーム1のシンボル領域3801_2は、時刻1から時刻10におけるキャリア21からキャリア40に存在している。
 この場合、例えば、実施の形態4などで説明したように、基地局は、1つ以上の端末に対し、個別のデータを伝送する(ユニキャストする)場合、図38のストリーム1のシンボル領域3801_1、及び、3801_2を使用することができる。
 また、実施の形態1、及び、実施の形態4などで説明したように、基地局は、マルチキャスト用のデータを伝送するために、図38のストリーム1のシンボル群#i(3800_i)を使用することができる。
 図39は、基地局(700)が送信するストリーム2のフレーム構成の一例を示している。図39において、横軸は時間方向を示し、縦軸は周波数方向を示す。図39は、時刻1から時刻10における、キャリア1からキャリア40までのフレーム構成を示している。したがって、図39は、OFDM方式のようなマルチキャリア伝送方式のフレーム構成となる。
 図39において、ストリーム2のシンボル領域3901_1は、時刻1から時刻10におけるキャリア1からキャリア9に存在している。
 ストリーム2のシンボル群#i(3900_i)は、時刻1から時刻10におけるキャリア10からキャリア20に存在している。なお、ストリーム2のシンボル群#i(3900_i)は、図9のストリーム2のシンボル群#i(902-i)に相当する。
 ストリーム2のシンボル領域3901_2は、時刻1から時刻10におけるキャリア21からキャリア40に存在している。
 この場合、例えば、実施の形態4などで説明したように、基地局は、1つ以上の端末に対し、個別のデータ伝送する(ユニキャストする)場合、図39のストリーム2のシンボル領域3901_1、及び、3901_2を使用することができる。
 また、実施の形態1、及び、実施の形態4などで説明したように、基地局は、マルチキャスト用のデータを伝送するために、図39のストリーム2のシンボル群#i(3900_i)を使用することができる。
 基地局は、図38の時刻X(図38の場合、Xは1以上10以下の整数)におけるキャリアY(図38の場合Yは1以上40以下の整数)のシンボルと、図39の時刻XにおけるキャリアYのシンボルとを、同一周波数及び同一時刻を用いて送信する。
 図9に示す、ストリーム1のシンボル群#1(901-1)、ストリーム1のシンボル群#2(901-2)、および、ストリーム1のシンボル群#3(901-3)の説明については、これまでの実施の形態にて説明したとおりであるので、説明を省略する。つまり、図38のストリーム1のシンボル群#iの説明については、図9のストリーム1のシンボル群と同様であり、これまでの実施の形態にて説明したとおりであるので、説明を省略する。
 図9に示す、ストリーム2のシンボル群#1(902-1)、ストリーム2のシンボル群#2(902-2)、および、ストリーム2のシンボル群#3(902-3)の説明については、これまでの実施の形態にて説明したとおりであるので、説明を省略する。つまり、図39のストリーム2のシンボル群#iの説明については、図9のストリーム2のシンボル群と同様であり、これまでの実施の形態にて説明したとおりであるので、説明を省略する。
 図38、図39に示すフレーム構成のキャリア10からキャリア20における時刻11以降にシンボルが存在する場合、そのキャリアは、マルチキャスト伝送に使用されてもよいし、個別データ伝送(ユニキャスト伝送)に使用されてもよい。
 基地局は、図38、図39に示すフレーム構成にて、図9のようなフレームを送信する場合、実施の形態1、及び、実施の形態4と同様のことを実施してもよい。
 以上のような実施によれば、マルチキャスト及び/又はブロードキャストのデータ伝送において、基地局は、データシンボル及び/又は制御情報シンボルを、複数の送信ビームを用いて送信する。端末は、複数の送信ビームから、品質のよいビームを選択的に受信し、これに基づき、データシンボルの受信を行う。これにより、本実施の形態の効果として、端末は、高いデータの受信品質を得ることができる。
 (実施の形態6)
 本実施の形態では、基地局(700)が送信する、図14の変調信号1のシンボル群と変調信号2のシンボル群との構成について補足説明を行う。
 図40は、基地局(700)が送信する変調信号1のフレーム構成の一例を示している。図40において、横軸は時間方向を示し、縦軸は周波数方向を示す。図40は、時刻1から時刻10における、キャリア1からキャリア40までのフレーム構成を示している。したがって、図40は、OFDM(Orthogonal Frequency Division Multiplexing)方式のようなマルチキャリア伝送方式のフレーム構成となる。
 図40において、変調信号1のシンボル領域4001_1は、時刻1から時刻10におけるキャリア1からキャリア9に存在している。
 変調信号1のシンボル群#i(4000_i)は、時刻1から時刻10におけるキャリア10からキャリア20に存在している。なお、変調信号1のシンボル群#i(4000_i)は、図14の変調信号1のシンボル群#i(1401-i)に相当する。
 変調信号1のシンボル領域4001_2は、時刻1から時刻10におけるキャリア21からキャリア40に存在している。
 この場合、例えば、実施の形態4などで説明したように、基地局は、1つ以上の端末に対し、個別のデータを伝送する(ユニキャストする)場合、図40のストリーム1のシンボル領域4001_1、及び、4001_2を使用することができる。
 また、実施の形態1、及び、実施の形態4などで説明したように、基地局は、マルチキャスト用のデータを伝送するために、図40の変調信号1のシンボル群#i(4000_i)を使用することができる。
 図41は、基地局(700)が送信する変調信号2のフレーム構成の一例を示している。図41において、横軸は時間方向を示し、縦軸は周波数方向を示す。図41は、時刻1から時刻10における、キャリア1からキャリア40までのフレーム構成を示している。したがって、図41は、OFDM方式のようなマルチキャリア伝送方式のフレーム構成となる。
 図41において、変調信号2のシンボル領域4101_1は、時刻1から時刻10におけるキャリア1からキャリア9に存在している。
 変調信号2のシンボル群#i(4100_i)は、時刻1から時刻10におけるキャリア10からキャリア20に存在している。なお、変調信号2のシンボル群#i(4100_i)は、図14の変調信号2のシンボル群#i(1402-i)に相当する。
 変調信号2のシンボル領域4101_2は、時刻1から時刻10におけるキャリア21からキャリア40に存在している。
 この場合、例えば、実施の形態4などで説明したように、基地局は、1つ以上の端末に対し、個別のデータ伝送する(ユニキャストする)場合、図41の変調信号2のシンボル領域4101_1、及び、4101_2を使用することができる。
 また、実施の形態1、及び、実施の形態4などで説明したように、基地局は、マルチキャスト用のデータを伝送するために、図41の変調信号2のシンボル群#i(4100_i)を使用することができる。
 基地局は、図40の時刻X(図40の場合、Xは1以上10以下の整数)におけるキャリアY(図40の場合Yは1以上40以下の整数)のシンボルと、図41の時刻XにおけるキャリアYのシンボルとを、同一周波数及び同一時刻を用いて送信する。
 図14に示す、ストリーム1のシンボル群#1(1401_1)、変調信号1のシンボル群#2(1401_2)、および、変調信号1のシンボル群#3(1401_3)の説明については、これまでの実施の形態にて説明したとおりであるので、説明を省略する。つまり、図40の変調信号1のシンボル群#iの説明については、図14の変調信号1のシンボル群と同様であり、これまでの実施の形態にて説明したとおりであるので、説明を省略する。
 図14に示す、変調信号2のシンボル群#1(1402_1)、変調信号2のシンボル群#2(1402_2)、および、変調信号2のシンボル群#3(1402_3)の説明については、これまでの実施の形態にて説明したとおりであるので、説明を省略する。つまり、図41の変調信号2のシンボル群#iの説明については、図14の変調信号2のシンボル群と同様であり、これまでの実施の形態にて説明したとおりであるので、説明を省略する。
 図40、図41に示すフレーム構成のキャリア10からキャリア20における時刻11以降にシンボルが存在する場合、そのキャリアは、マルチキャスト伝送に使用されてもよいし、個別データ伝送(ユニキャスト伝送)に使用されてもよい。
 基地局は、図40、図41に示すフレーム構成にて、図14のようなフレームを送信する場合、実施の形態1、及び、実施の形態4と同様のことを実施してもよい。
 上述の説明における、図38のストリーム1のシンボル領域3801_1、3801_2、図39のストリーム2のシンボル領域3901_1、3901_2、図40の変調信号1のシンボル領域4001_1、4001_2、及び、図41の変調信号2のシンボル領域4101_1、4102_2の使用方法の例について説明する。
 図42は、「図38のストリーム1のシンボル領域3801_1、3801_2、図39のストリーム2のシンボル領域3901_1、3901_2、図40の変調信号1のシンボル領域4001_1、4001_2、及び、図41の変調信号2のシンボル領域4101_1、4102_2」を、端末に割り当てる一例を示す。なお、図42において、横軸は時間方向を示し、縦軸は周波数(キャリア)方向を示す。
 図42に示すように、例えば、「図38のストリーム1のシンボル領域3801_1、3801_2、図39のストリーム2のシンボル領域3901_1、3901_2、図40の変調信号1のシンボル領域4001_1、4001_2、及び、図41の変調信号2のシンボル領域4101_1、4102_2」を周波数分割し、端末に対して割り当てる。図42は、端末#1用に割り当てられたシンボル群4201_1と、端末#2用に割り当てられたシンボル群4201_2と、端末#3用に割り当てられたシンボル群4201_3とを示す。
 例えば、基地局(700)は、端末#1、端末#2、及び/又は、端末#3と通信を行っている。基地局は、端末#1に対してデータを伝送する場合、図42の「端末#1用に割り当てられたシンボル群4201_1」を用いて、端末#1にデータを伝送する。基地局は、端末#2に対してデータを伝送する場合、図42の「端末#2用に割り当てられたシンボル群4201_2」を用いて、端末#2にデータを伝送する。基地局は、端末#3に対してデータを伝送する場合、図42の「端末#3用に割り当てられたシンボル群4201_3」を用いて、端末#3にデータを伝送する。
 なお、端末への割り当て方法は、図42に限られない。例えば、周波数帯域(キャリア数)は、時間により変化してもよいし、また、どのように設定されてもよい。また、時間とともに端末への割り当て方法を変更してもよい。
 図43は、「図38のストリーム1のシンボル領域3801_1、3801_2、図39のストリーム2のシンボル領域3901_1、3901_2、図40の変調信号1のシンボル領域4001_1、4001_2、及び、図41の変調信号2のシンボル領域4101_1、4102_2」を端末に割り当てる、図42とは異なる一例を示す。なお、図43において、横軸は時間方向を示し、縦軸は周波数(キャリア)方向を示す。
 図43に示すように、例えば、「図38のストリーム1のシンボル領域3801_1、3801_2、図39のストリーム2のシンボル領域3901_1、3901_2、図40の変調信号1のシンボル領域4001_1、4001_2、及び、図41の変調信号2のシンボル領域4101_1、4102_2」を時間分割及び周波数分割し、端末に対して割り当てる。図43は、端末#1用に割り当てられたシンボル群(4301_1は)と、端末#2用に割り当てられたシンボル群(4301_2)と、端末#3用に割り当てられたシンボル群(4301_3)と、端末#4用に割り当てられたシンボル群(4301_4)と、端末#5用に割り当てられたシンボル群(4301_5)と、端末#6用に割り当てられたシンボル群(4301_6)とを示す。
 例えば、基地局(700)は、端末#1、端末#2、端末#3、端末#4、端末#5、及び、端末#6と通信を行っている。基地局は、端末#1に対してデータを伝送する場合、図43の「端末#1用に割り当てられたシンボル群4301_1」を用いてデータを伝送する。基地局は、端末#2に対してデータを伝送する場合、図43の「端末#2用に割り当てられたシンボル群4301_2」を用いて、端末#2にデータを伝送する。基地局は、端末#3に対してデータを伝送する場合、図43の「端末#3用に割り当てられたシンボル群4301_3」を用いて、端末#3にデータを伝送する。基地局は、端末#4に対してデータを伝送する場合、図43の「端末#4用に割り当てられたシンボル群4301_4」を用いて、端末#4にデータを伝送する。基地局は、端末#5に対してデータを伝送する場合、図43の「端末#5用に割り当てられたシンボル群4301_5」を用いて、端末#5に対してデータを伝送する。基地局は、端末#6に対してデータを伝送する場合、図43の「端末#6用に割り当てられたシンボル群4301_6」を用いて、データを伝送する。
 なお、端末への割り当て方法は、図43に限られない。例えば、周波数帯域(キャリア数)、及び、時間幅は、変化してもよいし、また、どのように設定されてもよい。また、時間とともに端末への割り当て方法を変更してもよい。
 また、図38、図39、図40、図41における、ストリーム1のシンボル領域、ストリーム2のシンボル領域、変調信号1のシンボル領域、及び、変調信号2のシンボル領域では、キャリアごとに異なる重み付け合成を行ってもよいし、複数のキャリアを単位として、重み付け合成方法を決定してもよい。また、図42、図43のように割り当てた端末ごとに重み付け合成のパラメータを設定してもよい。キャリアにおける重み付け合成の方法の設定は、これらの例に限られない。
 以上のような実施によれば、マルチキャスト及び/又はブロードキャストのデータ伝送において、基地局は、データシンボル及び/又は制御情報シンボルを、複数の送信ビームを用いて送信する。端末は、複数の送信ビームから、品質のよいビームを選択的に受信し、これに基づき、データシンボルの受信を行う。これにより、本実施の形態の効果として、端末は、高いデータの受信品質を得ることができる。
 (実施の形態7)
 本明細書において、図7、図12、図17、図18、図19、図20、図22における基地局700、或いは、他の実施の形態で説明した基地局は、図44に示すような構成であってもよい。
 以下では、図44の基地局の動作について説明を行う。図44において、図1、図3と同様に動作するものについては、同一番号を付し、説明を省略する。
 重み付け合成部301は、信号処理後の信号103_1、103_2、・・・、103_M、および、制御信号159を入力とし、制御信号159に基づき、重み付け合成を行い、重み付け合成信号4401_1、4401_2、・・・、4401_Kを出力する。なお、Mは2以上の整数とし、Kは2以上の整数とする。
 例えば、信号処理後の信号103_i(iは1以上M以下の整数)をui(t)(tは時間)、重み付け合成後の信号4401_g(gは1以上K以下の整数)をvg(t)とあらわすと、vg(t)は次式であらわすことができる。
Figure JPOXMLDOC01-appb-M000007
 無線部104_gは、重み付け合成後の信号4401_g、制御信号159を入力とし、制御信号159に基づいて、所定の処理を行い、送信信号105_gを生成し、出力する。そして、送信信号105_gはアンテナ303_1から送信される。
 なお、基地局が対応している送信方法は、OFDMなどのマルチキャリア方式であってもよいし、シングルキャリア方式であってもよい。また、基地局は、マルチキャリア方式、及び、シングルキャリア方式の両方に対応していてもよい。この場合、本実施の形態は、シングルキャリア方式の変調信号を生成する複数の方法のうち、いずれの方法を採用しても、実施可能である。例えば、シングルキャリア方式の例として、「DFT(Discrete Fourier Transform)-Spread OFDM(Orthogonal Frequency Division Multiplexing)」、「Trajectory Constrained DFT-Spread OFDM」、「OFDM based SC(Single Carrier)」、「SC(Single Carrier)-FDMA(Frequency Division Multiple Access)」、「Guard interval DFT-Spread OFDM」などがある。
 式(7)では、時間の関数で記載しているが、OFDM方式などのマルチキャリア方式の場合、時間及び周波数の関数であってもよい。
 例えば、OFDM方式において、キャリアごとに異なる重み付け合成を行ってもよいし、複数のキャリアを1つの単位として、重み付け合成方法を決定してもよい。キャリアにおける重み付け合成の方法の設定は、これらの例に限られない。
 (補足6)
 当然であるが、本明細書において説明した実施の形態は、補足など、その他の内容を複数組み合わせて、実施されてもよい。
 基地局の構成は、図1及び図3の例に限られない。複数の送信アンテナを有し、複数の送信ビーム(送信指向性ビーム)を生成及び送信する基地局であれば、本開示を実施可能である。
 また、各実施の形態は、あくまでも例に過ぎない。例えば、「変調方式、誤り訂正符号化方式(使用する誤り訂正符号、符号長、符号化率等)、制御情報など」が例示されているとしても、別の「変調方式、誤り訂正符号化方式(使用する誤り訂正符号、符号長、符号化率等)、制御情報など」を適用し、同様の構成によって実施可能である。
 本明細書において説明した実施の形態、及びその他の内容は、本明細書に記載した変調方式以外の変調方式を使用しても実施可能である。例えば、APSK(例えば、16APSK, 64APSK, 128APSK, 256APSK, 1024APSK, 4096APSKなど)、PAM(例えば、4PAM, 8PAM, 16PAM, 64PAM, 128PAM, 256PAM, 1024PAM, 4096PAMなど)、PSK(例えば、BPSK, QPSK, 8PSK, 16PSK, 64PSK, 128PSK, 256PSK, 1024PSK, 4096PSKなど)、QAM(例えば、4QAM, 8QAM, 16QAM, 64QAM, 128QAM, 256QAM, 1024QAM, 4096QAMなど)などを適用してもよいし、各変調方式において、均一マッピング、非均一マッピングとしてもよい。また、I-Q平面における2個、4個、8個、16個、64個、128個、256個、1024個等の信号点の配置方法(2個、4個、8個、16個、64個、128個、256個、1024個等の信号点をもつ変調方式)は、本明細書で示した変調方式の信号点配置方法に限られない。
 本明細書において、送信装置を具備しているのは、例えば、放送局、基地局、アクセスポイント、端末、携帯電話(mobile phone)等の通信・放送機器であることが考えられる。この場合、受信装置を具備しているのは、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、基地局等の通信機器であることが考えられる。また、本開示における送信装置及び受信装置は、通信機能を有している機器であって、その機器が、テレビ、ラジオ、パーソナルコンピュータ、携帯電話等のアプリケーションを実行するための装置に何らかのインターフェースを解して接続できるような形態であることも考えられる。また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード、ポストアンブル、リファレンスシンボル等)及び制御情報用のシンボルなどが、フレームにどのように配置されていてもよい。本実施の形態では、パイロットシンボル及び制御情報用のシンボルと名付けられているが、これらは、どのように名付けられてもよい。つまり、異なる名称でも同様の機能を有する。
 パイロットシンボルは、例えば、送受信機において、PSK変調を用いて変調した既知のシンボルであればよい。受信機は、このシンボルを用いて、周波数同期、時間同期、各変調信号のチャネル推定(CSI(Channel State Information)の推定)、及び/又は、信号の検出等を行う。または、受信機は、パイロットシンボルを同期することによって、送信機が送信したシンボルを知ることができてもよい。
 また、制御情報用のシンボルは、データ(アプリケーション等のデータ)以外の通信を実現するための、通信相手に伝送する情報を伝送するためのシンボルである。例えば、制御情報用のシンボルは、通信に用いている変調方式、誤り訂正符号化方式、誤り訂正符号化方式の符号化率、及び/又は、上位レイヤーでの設定情報等を転送する。
 なお、本開示は各実施の形態に限定されず、種々変更して実施することが可能である。例えば、各実施の形態は、通信装置の動作として説明しているが、これに限られず、通信方法を実現するソフトウェアの動作として説明することもできる。
 例えば、上記通信方法を実行するプログラムを予めROMに格納しておき、そのプログラムをCPUによって動作させるようにしても良い。
 また、上記通信方法を実行するプログラムをコンピュータで読み取り可能な記憶媒体に格納し、記憶媒体に格納されたプログラムをコンピュータのRAMに記録して、コンピュータをそのプログラムにしたがって動作させるようにしても良い。
 そして、上記の各実施の形態などの各構成は、典型的には、入力端子及び出力端子を有する集積回路であるLSIとして実現されてもよい。これらは、個別に1チップ化されてもよいし、各実施の形態の全ての構成または一部の構成を含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限られるものではなく、専用回路または汎用プロセッサで実現しても良い。LSI製造後に、プログラムすることが可能なFPGAや、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。さらに、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行っても良い。バイオ技術の適応等が可能性としてあり得る。
 本明細書において、種々のフレーム構成について説明した。本明細書で説明したフレーム構成の変調信号を、図1の送信装置を具備する、例えば基地局(AP)が、OFDM方式などのマルチキャリア方式を用いて送信する。この場合、基地局(AP)と通信を行っている端末(ユーザー)が変調信号を送信する際、端末が送信する変調信号はシングルキャリア方式であるという適用方法を考えることができる。基地局(AP)はOFDM方式を用いることで、複数の端末に対し、同時にデータシンボル群を送信することができ、また、端末はシングルキャリア方式を用いることにより、消費電力を低減することが可能となる。
 また、基地局(AP)が送信する変調信号が使用する周波数帯域の一部を用いて、端末は変調方式を送信するTDD(Time Division Duplex)方式を適用してもよい。
 図1のアンテナ部106-1、106-2、・・・、106-Mの構成は、実施の形態において説明した構成に限られない。例えば、アンテナ部106-1、106-2、・・・、106-Mが、複数のアンテナで構成されていなくてもよい。また、アンテナ部106-1、106-2、・・・、106-Mは、信号159を入力としなくてもよい。
 図4のアンテナ部401-1、401-2、・・・、401-Nの構成は、実施の形態において説明した構成に限られない。例えば、アンテナ部401-1、401-2、・・・、401-Nが、複数のアンテナで構成されていなくてもよい。また、アンテナ部401-1、401-2、・・・、401-Nは、信号410を入力としなくてもよい。
 なお、基地局及び端末が対応している送信方法は、OFDMなどのマルチキャリア方式であってもよいし、シングルキャリア方式であってもよい。また、基地局は、マルチキャリア方式、及びシングルキャリア方式の両方に対応していてもよい。この場合、本実施の形態は、シングルキャリア方式の変調信号を生成する複数の方法のうち、いずれの方法を採用しても、実施可能である。例えば、シングルキャリア方式の例として、「DFT(Discrete Fourier Transform)-Spread OFDM(Orthogonal Frequency Division Multiplexing)」、「Trajectory Constrained DFT-Spread OFDM」、「OFDM based SC(Single Carrier)」、「SC(Single Carrier)-FDMA(Frequency Division Multiple Access)」、「Guard interval DFT-Spread OFDM」などがある。
 また、図1、図3、図44における情報#1(101_1)、情報#2(101_2)、・・・、情報#M(101_M)の中に、少なくともマルチキャスト(ブロードキャスト)のデータが存在する。例えば、図1において、情報#1(101_1)がマルチキャスト用のデータの場合、このデータを含んだ複数のストリームまたは変調信号を、信号処理部102により生成し、アンテナから出力する。
 図3において、情報#1(101_1)がマルチキャスト用のデータの場合、このデータを含んだ複数のストリームまたは変調信号を、信号処理部102および/または重み付け合成部301で生成し、アンテナから出力する。
 図44において、情報#1(101_1)がマルチキャスト用のデータの場合、このデータを含んだ複数のストリームまたは変調信号を、信号処理部102および/または重み付け合成部301で生成し、アンテナから出力する。
 なお、複数ストリームまたは変調信号の様子については、図7、図9、図12、図14、図17、図18、図19を用いて説明したとおりである。
 さらに、図1、図3、図44における情報#1(101_1)、情報#2(101_2)、・・・、情報#M(101_M)の中に、個別端末宛のデータを含んでいてもよい。この点については、本明細書の実施の形態で説明したとおりである。
 なお、FPGA(Field Programmable Gate Array)およびCPU(Central Processing Unit)の少なくとも一方が、本開示において説明した通信方法を実現するために必要なソフトウェアの全部あるいは一部を、無線通信または有線通信によりダウンロードできるような構成であってもよい。さらに、更新のためのソフトウェアの全部あるいは一部を、無線通信または有線通信によりダウンロードできるような構成であってもよい。そして、ダウンロードしたソフトウェアを記憶部に格納し、格納されたソフトウェアに基づいてFPGAおよびCPUの少なくとも一方を動作させることにより、本開示において説明したデジタル信号処理を実行するようにしてもよい。
 このとき、FPGAおよびCPUの少なくとも一方を具備する機器は、通信モデムと無線または有線で接続し、この機器と通信モデムにより、本開示において説明した通信方法を実現してもよい。
 例えば、本明細書で記載した基地局、AP、端末などの通信装置が、FPGAおよび、CPUのうち、少なくとも一方を具備しており、FPGA及びCPUの少なくとも一方を動作させるためのソフトウェアを外部から入手するためのインターフェースを通信装置が具備していてもよい。さらに、通信装置が外部から入手したソフトウェアを格納するための記憶部を具備し、格納されたソフトウェアに基づいて、FPGA、CPUを動作させることで、本開示において説明した信号処理を実現するようにしてもよい。
(実施の形態8)
 図45は、無線信号の中継器(以下単に「中継器」という)を用いたメッシュネットワークの構成の一例を示す図である。
 図45に示すように、複数の中継器は、所定のエリアの複数の地点にそれぞれ配置され、メッシュ型の無線バックホールを構成する。
 例えば、中継器4800Bは、中継器4800Aから受信した信号を、中継器4800Cへ送信する。また、中継器4800Bは、中継器4800Aから受信した信号を、当該中継器4800Bに接続されているエッジノード4810へ送信する。また、中継器4800Bは、当該中継器4800Bに接続されているエッジノード4810から受信した信号を、別の中継器4800Cへ送信する。
 例えば、エッジノードは、宅内のネットワークに対するゲートウェイ機器であってよい。当該ユースケースは、Wireless To The Home(WTTH)と呼ばれている。また、エッジノードは、ビルディング内のネットワークに対するゲートウェイ機器であってよい。当該ユースケースは、Wireless to the building(WTTB)と呼ばれている。また、エッジノードは、例えば、Wi-Fiのアクセスポイントであってもよい。このように、エッジノードを無線で接続するユースケースを、まとめてWireless to the X(WTTX)と呼ぶことにする。
 なお、「中継器」という呼称はあくまで一例であり、中継器は、例えば、通信装置、基地局、または、ノードと呼んでもよい。したがって、本明細書において、基地局の動作として記載している実施内容を、本実施の形態における中継器の動作としてもよい。
 図46は、実施の形態8に係る中継器同士の接続の一例を示す模式図である。
 図46において、中継器4900Bは、中継器4900Aの方向へビームの指向性を向けて、変調信号を送受信する。すなわち、中継器4900Bは、中継器4900Aの方向へ、ビームフォーミングBF1を行う。また、中継器4900Bは、中継器4900Cの方向へビームの指向性を向けて、変調信号を送受信する。すなわち、中継器4900Bは、中継器4900Cの方向へ、ビームフォーミングBF2を行う。
 図46において、中継器4900Bは、中継器4900Aが送信した変調信号4902Aを受信し、その変調信号4901Aに対応する変調信号4901Cを中継器4900Cへ送信する。また、中継器4900Bは、中継器4900Cが送信した変調信号4902Cを受信し、その変調信号4902Cに対応する変調信号4901Aを中継器4900Aへ送信する。すなわち、中継器4900Bは、中継器4900Aと中継器4900Cとの間の変調信号を中継する。
 なお、変調信号4902Aと変調信号4901Cは、同一の変調信号であるとは限らない。変調信号4902Aと変調信号4901Cは、同一の情報(第1の情報とよぶ)を少なくとも含んでいる、または、第1の情報に関連する情報を含んでいる。また、変調信号4902Aを生成するための変調方式と、変調信号4901Cを生成するための変調方式は同一であるとは限らない。
 さらに、変調信号4902Aを生成するための誤り訂正符号化方式と、変調信号4901Cを生成するための誤り訂正符号化方式は同一であるとは限らない。そして、変調信号4902Cと変調信号4901Aは、同一の変調信号であるとは限らない。変調信号4902Cと変調信号4901Aは、同一の情報(第2の情報とよぶ)を少なくとも含んでいる、または、第2の情報に関連する情報を含んでいる。
 また、変調信号4902Cを生成するための変調方式と、変調信号4901Aを生成するための変調方式は同一であるとは限らない。さらに変調信号4902Cを生成するための誤り訂正符号化方式と、変調信号4901Aを生成するための誤り訂正符号化方式は同一であるとは限らない。
 中継器4900Bは、中継器4900Aへ変調信号4901Aを送信する場合、及び、中継器4900Aから変調信号4902Aを受信する場合、中継器4900Aの方向へビームフォーミングBF1を行う。これにより、中継器4900Bと中継器4900Aとの間の変調信号の受信品質が向上する。
 また、中継器4900Bは、中継器4900Cへ変調信号4901Cを送信する場合、及び、中継器4900Cから変調信号4902Cを受信する場合、中継器4900Cの方向へビームフォーミングBF2を行う。これにより、中継器4900Bと中継器4900Cとの間の変調信号の受信品質が向上する。
 図47は、図46の中継器4900Bに対するスロット割り当ての一例を示す図である。
 中継器には、変調信号の送信用のスロット(以下「送信スロット」という)と、変調信号の受信用のスロット(以下「受信スロット」という)が割り当てられる。1スロットは、図47に示すように、所定の時間期間及び周波数を占めるリソース単位であり、時間軸上に配置される。なお、図47において1つに表現されているスロット(例えば送信スロット5001A)は、複数のスロットによって構成されてもよい。これは、他の図48、図50、図51、図53、図54、図55、図56についても同様である。
 図47の例は、中継器4900Bに対して、中継器4900Aへの送信スロット5001A、中継器4900Cへの送信スロット5001C、中継器4900Cからの受信スロット5002C、及び、中継器4900Cからの受信スロット5002Aが、時間軸上に順に割り当てられていることを示す。なお、後述するが、送信期間及び受信期間を合わせて、1つのTDD intervalを構成する。
 すなわち、図47は、送信スロットを時間軸上に連続に、及び、受信スロットを時間軸上に連続に割り当てた一例である。なお、送信スロットが連続的に割り当てられている期間を送信期間、受信スロットが連続的に割り当てられている期間を受信期間と呼ぶことにする。
 なお、送信スロット5001Aと送信スロット5001Cの間に他のシンボル(例えば、制御情報シンボル、データシンボル)が存在してもよいし、変調信号が存在しない時間期間があってもよい。そして、受信スロット5002Cと受信スロット5002Aの間に他のシンボル(例えば、制御情報シンボル、データシンボル)が存在してもよく、変調信号が存在しない時間期間があってもよい。
 送信スロット5001A及び送信スロット5001Cの期間長は、同じであっても良いし、互いに異なっても良い。同様に、受信スロット5002C及び受信スロット5002Aの期間長は、同じであっても良いし、互いに異なっても良い。これは、他の図48、図50、図51、図53、図54、図55、図56についても同様である。
 なお、図47は、中継器4900Bの或る時間におけるスロットの割り当てを示しており、当該時間以外においては、中継器4900Bに対して、図47と同じ順に送信スロット及び受信スロットが割り当てられても良いし、図47とは異なる順に送信スロット及び受信スロットが割り当てられても良い。これは、他の図48、図50、図51、図53、図54、図55、図56についても同様である。
 なお、図47における送信スロット5001A、5001Cで送信するデータは、1つ以上前のTDD intervalの受信スロット、または、1つ以上前のフレームで受信したデータであり、図47における受信スロット5002A、5002Cで受信したデータは、1つ以上後のTDD intervalの送信スロット、または、1つ以上後のフレームで送信されるデータである。これは、他の図48、図50、図51、図53、図54、図55、図56についても同様である。
 中継器4900Bは、送信スロット5001Aの期間において、中継器4900Aの方向へビームの指向性を向け(つまり、指向性制御を行い)、変調信号を送信する。また、中継器4900Bは、送信スロット5001Cの期間において、中継器4900Cの方向へビームの指向性を向け、変調信号を送信する。
 また、中継器4900Bは、受信スロット5002Cの期間において、中継器4900Cの方向へビームの指向性を向け、中継器4900Cが送信した変調信号を受信する。また、中継器4900Bは、受信スロット5002Aの期間において、中継器4900Aの方向へ指向性を向け、中継器4900Aが送信した変調信号を受信する。
 図47に示すように、送信スロット及び受信スロットの少なくとも1つを連続的(一定の時間及び一定の周波数帯域)に割り当てることにより、中継器4900Bにおける電力増幅器の負荷を低減でき、その結果、中継器4900Bの消費電力量を低減できる。また、送信スロット5001Aと送信スロット5001Cとの間にガード期間を設ける場合に、当該ガード期間を短くでき、その結果、データの伝送速度が向上する。
 図48は、図46の中継器4900Bに対するスロット割り当ての変形例を示す図である。
 図48の例は、中継器4900Bに対して、中継器4900Cからの受信スロット5102C、中継器4900Cへの送信スロット5101C、中継器4900Aからの受信スロット5102A、及び、中継器4900Aへの送信スロット5101Aが、時間軸上に順に割り当てられていることを示す。すなわち、図48は、連続的に割り当てられた「同じ中継器に対する受信スロット及び送信スロット」で構成するスロットのペアの一例である。
 受信スロット5102Cと送信スロット5101Cとの間には、ガード期間が設けられてよい。同様に、受信スロット5102Aと送信スロット5101Aとの間には、ガード期間が設けられてよい。なお、ガード期間とは、例えば、変調信号が存在しない期間である。
 中継器4900Bは、受信スロット5102Cの期間において、中継器4900Cの方向へビームの指向性を向け(指向性制御を行う)、中継器4900Cが送信した変調信号を受信する。また、中継器4900Bは、送信スロット5101Cの期間において、中継器4900Cの方向へビームの指向性を向け、変調信号を送信する。
 また、中継器4900Bは、受信スロット5102Aの期間において、中継器4900Aの方向へビームの指向性を向け、中継器4900Aが送信した変調信号を受信する。また、中継器4900Bは、送信スロット5101Aの期間において、中継器4900Aの方向へ指向性を向け、変調信号を送信する。
 図48に示すように、同じ中継器に対する受信スロット及び送信スロットを連続的に割り当てることにより、中継器4900Bは、受信スロット5102C及び送信スロット5101Cの期間では中継器4900Cの方向へビームの指向性を向け、受信スロット5102A及び送信スロット5101Aの期間では中継器4900Aの方向へビームの指向性を向ければ良い。よって、中継器4900Bにおけるビームの指向性制御が容易になる。
 なお、図47に示すスロット割り当て方式と、図48に示すスロット割り当て方式とは、無線通信及び/又は伝搬環境等の状況に応じて切り換えられてよい。例えば、中継器4900Bは、当該状況の変化に応じて、所定の切り替え情報を中継器4900A、4900Cへ送信し、スロット割り当て方式を切り換えてもよい。
 このようにすることで、通信状況に応じて、好適な伝送方法を選択するので、受信データ品質の向上、データ伝送速度の向上の両立を図ることができるという効果が得られる。
(実施の形態9)
 図49は、実施の形態9に係る中継器同士の接続の一例を示す図である。
 図49は、図46と比較して、中継器5200Bに機器5210が接続されている点が相違する。
 機器5210は、例えば、動画または静止画の撮影装置(例えば監視カメラ)、所定のセンサ又は無線基地局である。中継器5200Bと機器5210とは、例えばUSBといったI/F(インターフェース)で接続される。ただし、中継器5200Bと機器5210との間のI/Fはこれに限られず、例えばギガビッドクラスのEthernetであってもよい。また、当該I/Fは、有線に限られず、無線であっても良い。また、中継器5200Bと機器5210で構成された1つの機器、または、1つのシステムであってもよい。
 中継器5200Bは、図46と同様、中継器5200Aが送信した変調信号5202Aを受信し、受信した変調信号5202Aに対応する変調信号5201Cを中継器5200Cへ送信する。また、中継器5200Bは、中継器5200Cが送信した変調信号5202Cを受信し、受信した変調信号5202Cに対応する変調信号5201Aを中継器5200Aへ送信する。すなわち、中継器5200Bは、中継器5200Aと中継器5200Cとの間の変調信号の中継を行う。
 なお、変調信号5202Aと変調信号5201Cは、同一の変調信号であるとは限らない。変調信号5202Aと変調信号5201Cは、同一の情報(第1の情報とよぶ)を少なくとも含んでいる、または、第1の情報に関連する情報を含んでいる。
 また、変調信号5202Aを生成するための変調方式と、変調信号5201Cを生成するための変調方式は同一であるとは限らない。さらに、変調信号5202Aを生成するための誤り訂正符号化方式と、変調信号5201Cを生成するための誤り訂正符号化方式は同一であるとは限らない。そして、変調信号5202Cと変調信号5201Aは、同一の変調信号であるとは限らない。
 変調信号5202Cと変調信号5201Aは、同一の情報(第2の情報とよぶ)を少なくとも含んでいる、または、第2の情報に関連する情報を含んでいる。また、変調信号5202Cを生成するための変調方式と、変調信号5201Aを生成するための変調方式は同一であるとは限らない。さらに変調信号5202Cを生成するための誤り訂正符号化方式と、変調信号5201Aを生成するための誤り訂正符号化方式は同一であるとは限らない。
 これに加えて、中継器5200Bは、当該中継器5200Bに接続されている機器5210が送信したデータ、または、データを含む変調信号を受信し、機器5210が送信したデータの少なくとも一部、または、送信したデータに関連するデータの少なくとも一部を含む変調信号を生成し、変調信号5203Aとして、中継器5200Aへ送信する。
 また、中継器5200Bは、当該機器5210が送信したデータ、または、データを含む変調信号を受信し、機器5210が送信したデータの少なくとも一部、または、送信したデータに関連するデータの少なくとも一部を含む変調信号を生成し、変調信号5203Cとして、中継器5200Cへ送信する。
 なお、上述で、「関連する情報」、「関連データ」と記載しているが、この点について、一例を説明する。
 例えば、装置Aが、第1の場面の映像について第1の符号化を行い、第1のデータを生成し、第1の場面の映像について第2の符号化を行い、第2のデータを生成する。このとき、第1のデータと第2のデータは「関連する情報」、または、「関連データ」という関係になる。
 また、例えば、装置Bが、生成された第1のデータを得て、第1のデータから第1の場面の映像を生成し、再度、第2の符号化を行い、第2のデータを生成する。このとき、第1のデータと第2のデータは「関連する情報」、または、「関連データ」という関係になる。なお、この点については、本明細書に含まれる実施の形態のすべてにおいて、適用可能である。
 なお、変調信号の送受信時におけるビームの指向性制御については、図46の場合と基本的な動作は同様であるので、説明を省略する。
 図50は、図49の中継器5200Bに対するスロット割り当ての一例を示す図である。なお、図50において、横軸は時間であり、縦軸は周波数である。そして、第1の周波数帯において形成される第1チャネルと第2の周波数帯において形成される第2チャネルを図50では示している。
 図50は、中継器5200Bに対して、第1チャネルにおいて、中継器5200Aへの送信スロット5301A、中継器5200Cへの送信スロット5301C、中継器5200Cからの受信スロット5302C、及び、中継器5200Cからの受信スロット5302Aが、時間軸上に順に割り当てられていることを示している。
 これに加えて、図50は、中継器5200Bに対して、第2チャネルにおいて、機器5210が送信したデータの少なくとも一部、または、送信したデータに関連するデータの少なくとも一部を含む変調信号を中継器5200Aへ送信するための送信スロット5303Aと、機器5210が送信したデータの少なくとも一部、または、送信したデータに関連するデータの少なくとも一部を含む変調信号を中継器5200Cへ送信するための送信スロット5303Cと、が割り当てられていることを示している。なお、すでに説明したように、中継器5200Bは、機器5210が送信したデータを得るため機構を保持している。
 第1チャネルと第2チャネルとは互いに異なるチャネル(周波数領域)である。なお、第1チャネルと第2チャネルとは、互いに隣接していても良いし、互いに離間していても良い。
 これにより、中継器5200Bに新たに機器5210を接続した場合に、中継器5200Bに対する既存のスロットの割り当て(例えば第1チャネルにおけるスロットの割り当て)を変更することなく、中継器5200Bに対して、機器5210が送信したデータの少なくとも一部、または、送信したデータに関連するデータの少なくとも一部を含む変調信号を送信するための送信スロット5303A、5303Cを割り当てることができる。つまり、中継器に対して新たにスロットを割り当てる場合に、既存のスロットの割り当てを変更することを省略できる。
 また、図50に示すように、機器5210が送信したデータの少なくとも一部、または、送信したデータに関連するデータの少なくとも一部を含む変調信号を中継器5200Aへ送信するための送信スロット5303Aの期間は、同じく中継器5200Aへの送信スロット5301Aの期間内となるように割り当てることができる。
 同様に、機器5210が送信したデータの少なくとも一部、または、送信したデータに関連するデータの少なくとも一部を含む変調信号を中継器5200Cへ送信するための送信スロット5303Cの期間は、同じく中継器5200Cへの送信スロット5301Cの期間内となるように割り当てることができる。
 これにより、中継器5200Bは、送信スロット5301Aの期間では、中継器5200Aの方向へビームの指向性を向け、送信スロット5301Cの期間では、中継器5200Cの方向へビームの指向性を向ければ良い。よって、中継器5200Bにおけるビームの指向性制御が容易になる。例えば、中継器5200Bは、送信スロット5301A及び送信スロット5303Aについて、共通のプリコーディング行列を用いることができ、ビームフォーミングのための手続き、及び信号処理の少なくとも一部を簡略化できるという効果が得られる。
 なお、図50に示す受信スロット5302C、5302Aについては、図47の場合と基本的には同様であるので、説明を省略する。
 図51は、図49の中継器5200Bに対するスロット割り当ての変形例を示す図である。なお、図51において、図50と同様、横軸は時間であり、縦軸は周波数である。そして、第1の周波数帯において形成されるチャネルを第1チャネルと呼んでおり、第1チャネルは、1つ以上のキャリアで構成された第1キャリア群と1つ以上のキャリアで構成された第2キャリア群を含んでいる。
 図51は、中継器5200Bに対して、第1チャネルの第1キャリア群において、中継器5200Aへの送信スロット5401A、中継器5200Cへの送信スロット5401C、中継器5200Cからの受信スロット5402C、及び、中継器5200Cからの受信スロット5402Aが、時間軸上に順に割り当てられていることを示している。
 これに加えて、図51は、中継器5200Bに対して、第1チャネルの第2キャリア群において、機器5210が送信したデータの少なくとも一部、または、送信したデータに関連するデータの少なくとも一部を含む変調信号を中継器5200Aへ送信するための送信スロット5403Aと、機器5210が送信したデータの少なくとも一部、または、送信したデータに関連するデータの少なくとも一部を含む変調信号を中継器5200Cへ送信するための送信スロット5403Cと、が割り当てられていることを示す。なお、すでに説明したように、中継器5200Bは、機器5210が送信したデータを得るため機構を保持している。
 第1キャリア群及び第2キャリア群のそれぞれは、1つ以上のキャリアを含む。第1キャリア群と第2キャリア群とは互いに異なる周波数領域である。第1キャリア群と第2キャリア群のキャリア数は、同じであっても良いし、異なっても良い。第1キャリア群と第2キャリア群とは、隣接していても良いし、離間していても良い。
 これにより、中継器5200Bに新たに機器5210を接続した場合に、中継器5200Bに対する既存のスロットの割り当て(例えば第1キャリア群におけるスロットの割り当て)を変更することなく、中継器5200Bに対して、機器5210が送信したデータの少なくとも一部、または、送信したデータに関連するデータの少なくとも一部を含む変調信号を送信するための送信スロット5403A、5403Cを割り当てることができる。つまり、中継器に対して新たにスロットを割り当てる場合に、既存のスロットの割り当てを変更することを省略できる。
 また、キャリア群を構成するキャリア数を調整することにより、キャリア群におけるスロットのデータ伝送速度を調整できる効果が得られる。例えば、機器5210からの信号のデータ量が小さい場合は、第2キャリア群を少数のキャリア数で構成し、機器5210からの信号のデータ量が大きい場合は、第2キャリア群を多数のキャリア数で構成すればよい。
 また、図51に示すように、機器5210が送信したデータの少なくとも一部、または、送信したデータに関連するデータの少なくとも一部を含む変調信号を中継器5200Aへ送信するための送信スロット5403Aの期間は、同じく中継器5200Aへの送信スロット5401Aの期間内となるように割り当てられる。
 同様に、機器5210が送信したデータの少なくとも一部、または、送信したデータに関連するデータの少なくとも一部を含む変調信号を中継器5200Cへ送信するための送信スロット5403Cの期間は、同じく中継器5200Cへの送信スロット5401Cの期間内となるように割り当てられる。
 これにより、中継器5200Bは、送信スロット5401Aの期間では、中継器5200Aの方向へビームの指向性を向け、送信スロット5401Cの期間では、中継器5200Cの方向へビームの指向性を向ければ良い。
 よって、中継器5200Bにおけるビームの指向性制御が容易になる。例えば、中継器5200Bは、送信スロット5401A及び送信スロット5403Aについて、共通のプリコーディング行列を用いることができ、ビームフォーミングのための手続き、及び信号処理の少なくとも一部を簡略化できるという効果が得られる。
 なお、図51に示す受信スロット5402C、5402Aについては、図47の場合と基本的な動作は同様であるので、説明を省略する。
 図52は、実施の形態9に係る中継器同士の接続の変形例を示す図である。
 図52は、図49と比較して、中継器5200Aに機器5211が接続されている点が相違する。機器5211は、図49の機器5210と同様、例えば、動画または静止画の撮影装置(例えば監視カメラ)、所定のセンサ又は無線基地局である。
 中継器5200Bは、図49で説明した処理に加えて、次の処理も行う。すなわち、中継器5200Aは、機器5211が送信したデータを受信し、受信したデータの少なくとも一部、または、受信したデータに関連するデータの少なくとも一部を含む変調信号5205Aを中継器5200Bに送信する。
 そして、中継器5200Bは、この変調信号5205Aを受信することにより得たデータの少なくとも一部、または、得たデータに関連するデータの少なくとも一部を含む変調信号5204Cを中継器5200Cへ送信する。すなわち、中継器5200Bは、機器5211が送信したデータの少なくとも一部、または、機器5211が送信したデータに関連するデータの少なくとも一部を含む変調信号を中継器5200Cへ中継する。
 図53は、図52の中継器5200Bに対するスロット割り当ての一例を示す図である。
 図53は、図50と比較して、第2チャネルにおいて、以下の点が相違する。
 中継器5200Aは、接続されている機器5211から得られるデータの少なくとも一部、または、得られたデータに関連するデータの少なくとも一部によって生成された変調信号を送信する。そして、その送信された変調信号を、中継器5200Bは、受信する。この変調信号を中継器5200Bが受信するための受信スロットが、図53の受信スロット5305Aとなる。
 また、中継器5200Bは、1つ以上前における受信スロット5305Aで得たデータを中継器5200Cに伝送する。このデータを含む変調信号を中継器5200Bが送信するための送信スロットが、送信スロット5304Cとなる。
 これにより、中継器5200Aに新たに機器5211を接続した場合に、中継器5200Bに対する第1チャネルの既存のスロットの割り当て(例えば図50に示すスロットの割り当て)を変更することなく、第2チャネルとして送信スロット5304C、受信スロット5305Aを割り当てることができる。つまり、中継器に対して新たにスロットを割り当てる場合に、既存のスロットの割り当ての変更を省略できるという効果が得られる。
 また、図53に示すように、送信スロット5304Cの期間は、同じく中継器5200Cへの送信スロット5301Cの期間内、かつ、先に割り当て済みの送信スロット5303Cとは異なる期間となるように割り当てられる。
 これにより、中継器5200Bは、送信スロット5301Cの期間では、中継器5200Cの方向へビームの指向性を向ければよい。よって、中継器5200Bにおけるビームの指向性制御が容易になる。このため、例えば、中継器5200Bは、送信スロット5301C、送信スロット5303C、及び送信スロット5304Cについて、共通のプリコーディング行列を用いることができ、ビームフォーミングのための手続き、及び信号処理の少なくとも一部を簡略化することが可能となる効果が得られる。
 図54は、図52の中継器5200Bに対するスロット割り当ての第1の変形例を示す図である。
 図54は、図51と比較して、第1チャネルの第2キャリア群において、以下の点が相違する。
 中継器5200Aは、接続されている機器5211から得られるデータの少なくとも一部、または、得られるデータに関連するデータの少なくとも一部によって生成された変調信号を送信する。そして、中継器5200Bは、中継器5200Aが送信した変調信号を受信する。つまり、中継器5200Aからの受信に対するスロットが、図54の受信スロット5405Aとなる。
 また、中継器5200Bは、受信スロット5405Aで得たデータを中継器5200Cに送信する。中継器5200Cへ送信するデータを含む変調信号を送信するスロットが、送信スロット5404Cとなる。
 これにより、中継器5200Aに新たに機器5211が接続した場合に、中継器5200Bに対する既存のスロットの割り当て(例えば図51に示すスロットの割り当て)を変更することなく、送信スロット5404C、受信スロット5405Aを割り当てることができる。つまり、中継器に対して新たにスロットを割り当てる場合に、既存のスロットの割り当ての変更を省略できるという効果が得られる。
 また、図54に示すように、送信スロット5404Cの期間は、同じく中継器5200Cへの送信スロット5401Cの期間内、かつ、先に割り当て済みの送信スロット5403Cとは異なる期間となるように割り当てられる。
 これにより、中継器5200Bは、送信スロット5401Cの期間では、中継器5200Aの方向へビームの指向性を向ければよい。よって、中継器5200Bにおけるビームの指向性制御が容易になる。このため、例えば、中継器5200Bは、送信スロット5401C、送信スロット5403C、及び送信スロット5404Cについて、共通のプリコーディング行列を用いることができ、ビームフォーミングのための手続き、及び信号処理の少なくとも一部を簡略化することが可能となる効果が得られる。
 図55は、図52の中継器5200Bに対するスロット割り当ての第2の変形例を示す図である。
 図55は、図50と比較して、第3チャネルにおいて、以下の点が相違する。
 中継器5200Aは、接続されている機器5211から得られるデータの少なくとも一部、または、得られるデータに関連するデータの少なくとも一部によって生成された変調信号を送信する。そして、中継器5200Bは、送信された変調信号を受信する。中継器5200Aからの受信に対するスロットが、図55の受信スロット5307Aとなる。
 また、中継器5200Bは、受信スロット5307Aで得たデータを中継器5200Cに送信する。中継器5200Cへ送信するデータを含む変調信号を送信する送信スロットが、送信スロット5306Cとなる。
 これにより、中継器5200Aに新たに機器5211が接続された場合に、中継器5200Bに対する既存のスロットの割り当て(例えば図50に示すスロットの割り当て)を変更することなく、送信スロット5306C、受信スロット5307Aを割り当てることができる。つまり、中継器に対して新たにスロットを割り当てる場合に、既存のスロットの割り当ての変更を省略できるという効果が得られる。
 また、図55に示すように、送信スロット5306Cの期間は、同じく中継器5200Cへの送信スロット5301Cの期間内となるように、かつ、送信スロット5306Cのチャネルは、先に割り当て済みの送信スロット5301C、5303Cとは異なるチャネルとなるように割り当てられる。
 これにより、中継器5200Bは、送信スロット5301Cの期間では、中継器5200Cの方向へビームの指向性を向ければよい。よって、中継器5200Bにおけるビームの指向性制御が容易になる。このため、例えば、中継器5200Bは、送信スロット5301C、送信スロット5303C、及び送信スロット5306Cについて、共通のプリコーディング行列を用いることができ、ビームフォーミングのための手続き、及び信号処理の少なくとも一部を簡略化できるという効果が得られる。
 図56は、図52の中継器5200Bに対するスロット割り当ての第3の変形例を示す図である。
 図56は、図51と比較して、第3キャリア群において、以下の点が相違する。
 中継器5200Aは、接続されている機器5211から得られるデータの少なくとも一部、または、得られるデータに関連するデータの少なくとも一部によって生成された変調信号を送信する。そして、中継器5200Bは、中継器5200Aが送信した変調信号を受信する。つまり、中継器5200Aからの受信に対するスロットが、図56の受信スロット5407Aとなる。
 また、中継器5200Bは、受信スロット5407Aで得たデータを中継器5200Cに送信する。中継器5200Cへ送信するデータを含む変調信号を送信するスロットが、送信スロット5406Cとなる。
 これにより、中継器5200Aに新たに機器5211が接続した場合に、中継器5200Bに対する既存のスロットの割り当て(例えば図51に示すスロットの割り当て)を変更することなく、送信スロット5406C、受信スロット5407Aを割り当てることができる。つまり、中継器に対して新たにスロットを割り当てる場合に、既存のスロットの割り当てを変更することを省略できるという効果が得られる。
 また、図56に示すように、送信スロット5406Cの期間は、同じく中継器5200Cへの送信スロット5401Cの期間内となるように、かつ、送信スロット5406Cのキャリア群は、先に割り当て済みの送信スロット5401C、5403Cとは異なるキャリア群となるように割り当てられる。
 これにより、中継器5200Bは、送信スロット5401Cの期間では、中継器5200Cの方向へビームの指向性を向ければよい。よって、中継器5200Bにおけるビームの指向性制御が容易になる。このため、例えば、中継器5200Bは、送信スロット5401C、送信スロット5403C、及び送信スロット5406Cについて、共通のプリコーディング行列を用いることができ、ビームフォーミングのための手続き、及び信号処理の少なくとも一部を簡略化できるという効果が得られる。
 図57は、中継器間で送受信される信号の構成の一例を示す図である。
 中継器間における信号は、図57に示すIEEE802.11ad、IEEE802.11ayに係るフレームの構成を有してよい。
 図57は、横軸時間におけるフレーム構成の一例である。図57における「BTI」はBeacon Transmission Intervalである。「A-BFT」はAssociation Beamforming Trainingである。「ATI」はAnnouncement Transmission Intervalである。「CBAP1」、「CBAP2」が存在するが、「CBAP」はContention-Based Access Periodである。「SP」は、Scheduled Service Periodである。「TDD」はTime Division Duplexである。「STA」はStationである。「TX」はTransmitter、「RX」はReceiverである。
 図57のフレームでは、中継器は、「BTI」、「A-BFT」、「ATI」、「CBAP1」、「SP1」、「SP with TD(Time Division) channel access」、「CBAP2」の順に送信する。
 そして、「SP with TD channel access」は「TDD interval 1」、「TDD interval 2」、・・・、「TDD interval n」で構成されている。なお、nは1以上の整数とする。また、各「TDDinterval」は、1つ以上のTDD slotで構成されている。
 例えば、図45から図56において説明したスロットは、図57に示すTDD-slotで構成されてよい。例として、送信スロットは、図57に示すTDD-slot0~2に相当し、受信スロットは、図57に示すTDD-slot3~5に相当してよい。なお、図57では、周波数軸については、記載していない。
 また、図45から図56において説明した中継器は、例えば、図1に示す構成を有してよい。例えば、受信アンテナ群151、無線部群153、信号処理部155は、図45から図56の受信スロットを復調するための処理部(処理回路)となる。そして、信号処理部(信号処理回路)102、無線部(無線回路)104-1~104-M、アンテナ106-1~106-Mは、送信スロットの変調信号を送信するための処理が行われる。
 そして、設定部(設定回路)158では、送信スロット、受信スロットのスケジューリングが行われ、送信スロットの送信処理、受信スロットの受信処理が適切に行われる。
 なお、本実施の形態の図47、図48、図50、図51、図53、図54、図55、図56における送信スロット、受信スロットにおいて、「1つのストリーム(または、1つの変調信号)を送信する伝送方式」を用いてもよいし、「2つ以上のストリーム(または、2つ以上の変調信号)を送信する伝送方式」を用いてもよい。
 中継器の構成は、図1の構成に限ったものではない。例えば、送信機能、受信機能として、「1つのストリームの送受信」に対応するための中継器の構成であってもよい。したがって、例えば、図1において、無線部104-2~104-M、アンテナ106-2~106-Mを省略して、無線部104-1、アンテナ106-1により構成されてもよい。
 また、本実施の形態の図47、図48、図50、図51、図53、図54、図55、図56における送信スロット、受信スロットにおいて、他の実施の形態で説明したように、送信ビームの指向性制御と受信ビームの指向性制御をそれぞれ実施する場合、送信スロットと受信スロットが同一時間に存在していてもよい。
 そして、送信スロットが存在する周波数帯と受信スロットが存在する周波数帯を異なる周波数帯に配置してもよいし、また、送信スロットが存在するチャネルと受信スロットが存在するチャネルを異なるチャネルに配置してもよい。さらに、送信スロットが存在するキャリア群と受信スロットが存在するキャリア群を異なるキャリア群に配置してもよい。
 以上のように、中継器は、本実施の形態を実施することで、中継器以外の装置が提供したデータを、中継器に提供し、これにより、このデータが中継されることにより、新しい機能を追加することができ、本実施の形態のように中継方法を実施することで、既存のスロットの割り当ての変更を省略して、新規のスロットを割り当てられるという効果が得られる。
 (実施の形態9の変形例1)
 実施の形態9において、図49、図52の機器5210、および、図52における機器5211は、無線基地局でもよいと記載したが、無線通信の代わりに有線通信を用いた有線基地局、または、有線を用いた通信機器であってもよい。
 (補足説明)
 以下、本開示の送信装置、受信装置、送信方法、及び、受信方法について補足説明をする。
 本開示の一態様の送信装置は、複数の送信アンテナを備える送信装置であって、第1ストリームのデータを変調して第1ベースバンド信号を生成し、第2ストリームのデータを変調して第2ベースバンド信号を生成する信号処理部と、第1ベースバンド信号からそれぞれ指向性の異なる複数の第1送信信号を生成し、第2ベースバンド信号からそれぞれ指向性の異なる複数の第2送信信号を生成し、複数の第1送信信号及び複数の前記第2送信信号を同一時間に送信する送信部と、を備え、送信部は、さらに、端末から第1ストリームの送信の要求を受けた場合には、複数の第1送信信号とは異なり、かつ、それぞれ指向性の異なる複数の第3送信信号を、第1ベースバンド信号から生成して送信する。
 複数の第1送信信号及び複数の第2送信信号のそれぞれは、当該送信信号が第1ストリームおよび第2ストリームのうちのいずれのストリームのデータを伝送する信号であるかを通知するための制御信号を含んでいてもよい。
 複数の第1送信信号及び複数の第2送信信号のそれぞれは、受信装置が指向性制御を行うためのトレーニング信号を含んでいてもよい。
 本開示の一態様の受信装置は、複数の受信アンテナを備える受信装置であって、送信装置が同一時間に送信する第1ストリームのデータを伝送するそれぞれ指向性の異なる複数の第1信号及び第2ストリームのデータを伝送するそれぞれ指向性の異なる複数の第2信号のうち、少なくとも1つの第1信号及び少なくとも1つの第2信号を選択し、選択した複数の信号を受信するための指向性制御を行って信号を受信する受信部と、受信した信号を復調して前記第1ストリームのデータ及び前記第2ストリームのデータを出力する信号処理部と、受信部によって前記少なくとも1つの第1信号が受信されていない場合に、送信装置に対して第1ストリームの送信の要求を行う送信部とを備える。
 受信部は、複数の受信信号のそれぞれに含まれる前記第1ストリームおよび前記第2ストリームのうちのいずれのストリームのデータを伝送する信号であるかを通知するための制御信号に基づいて、前記少なくとも1つの第1信号及び前記少なくとも1つの第2信号を選択してもよい。
 受信部は、複数の受信信号のそれぞれに含まれるトレーニング信号を用いて指向性制御を行ってもよい。
 本開示の一態様の送信方法は、複数の送信アンテナを備える送信装置で実行される送信方法であって、第1ストリームのデータを変調して第1ベースバンド信号を生成し、第2ストリームのデータを変調して第2ベースバンド信号を生成する処理と、第1ベースバンド信号からそれぞれ指向性の異なる複数の第1送信信号を生成し、第2ベースバンド信号からそれぞれ指向性の異なる複数の第2送信信号を生成し、複数の第1送信信号及び複数の前記第2送信信号を同一時間に送信する処理とを含み、送信処理では、さらに、端末から第1ストリームの送信の要求を受けた場合には、複数の第1送信信号とは異なり、かつ、それぞれ指向性の異なる複数の第3送信信号を、第1ベースバンド信号から生成して送信する。
 本開示の一態様の受信方法は、複数の受信アンテナを備える受信装置で実行される受信方法あって、送信装置が同一時間に送信する第1ストリームのデータを伝送するそれぞれ指向性の異なる複数の第1信号及び第2ストリームのデータを伝送するそれぞれ指向性の異なる複数の第2信号のうち、少なくとも1つの第1信号及び少なくとも1つの第2信号を選択し、選択した複数の信号を受信するための指向性制御を行って信号を受信する処理と、受信した信号を復調して前記第1ストリームのデータ及び前記第2ストリームのデータを出力する処理と、受信処理において少なくとも1つの第1信号が受信されていない場合に、送信装置に対して第1ストリームの送信の要求を行う送信処理とを含む。
 本開示の一態様の通信装置は、第1の通信装置と第2の通信装置との間で送受信される中継信号を中継し、さらに第1の機器と接続する通信装置であって、第1の送信スロットを用いて、前記中継信号を送信し、第2の送信スロットを用いて、前記第1の機器からの信号を、前記第1の送信スロットの送信期間内に、前記第1の送信スロットと異なる周波数領域で送信する。
 本開示の一態様の通信装置は、前記第1の送信スロットの期間において、前記第1の送信スロットの送信先の通信装置の方向へ指向性を向ける。
 本開示の一態様の通信装置は、前記第1の通信装置又は前記第2の通信装置に第2の機器が接続され、第3の送信スロットを用いて、前記第2の機器が接続されている通信装置を介して受信した前記第2の機器からの信号を、前記第1の送信スロット及び前記第2の送信スロットと異なる周波数領域で送信する。
 本開示の一態様の通信装置は、前記第1の通信装置又は前記第2の通信装置に第2の機器が接続され、第3の送信スロットを用いて、前記第2の機器が接続されている通信装置を介して受信した前記第2の機器からの信号を、前記第1の送信スロットの期間内に、前記第2の送信スロットと共通の周波数領域で送信する。
 本開示の一態様の通信方法は、第1の通信装置と第2の通信装置との間で送受信される中継信号を中継し、さらに第1の機器と接続する通信装置における通信方法であって、第1の送信スロットを用いて、前記中継信号を送信し、第2の送信スロットを用いて、前記第1の機器からの信号を、前記第1の送信スロットの期間内に、前記第1の送信スロットと異なる周波数領域で送信する。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示によれば、疑似オムニパターンのアンテナを用いる場合と比較して、複数ストリームのマルチキャスト/ブロードキャスト通信における通信距離を拡大できる可能性がある。
 本開示は、複数のアンテナを用いる通信において有用である。
 700 基地局
 701 アンテナ
 702,703 送信ビーム
 704 端末
 705,706 受信指向性

Claims (5)

  1.  第1の通信装置と第2の通信装置との間で送受信される中継信号を中継し、さらに第1の機器と接続する通信装置であって、
     第1の送信スロットを用いて、前記中継信号を送信し、
     第2の送信スロットを用いて、前記第1の機器からの信号を、前記第1の送信スロットの送信期間内に、前記第1の送信スロットと異なる周波数領域で送信する、
     通信装置。
  2.  前記第1の送信スロットの期間において、前記第1の送信スロットの送信先の通信装置の方向へ指向性を向ける、
     請求項1に記載の通信装置。
  3.  前記第1の通信装置又は前記第2の通信装置に第2の機器が接続され、
     第3の送信スロットを用いて、前記第2の機器が接続されている通信装置を介して受信した前記第2の機器からの信号を、前記第1の送信スロット及び前記第2の送信スロットと異なる周波数領域で送信する、
     請求項1又は2に記載の通信装置。
  4.  前記第1の通信装置又は前記第2の通信装置に第2の機器が接続され、
     第3の送信スロットを用いて、前記第2の機器が接続されている通信装置を介して受信した前記第2の機器からの信号を、前記第1の送信スロットの期間内に、前記第2の送信スロットと共通の周波数領域で送信する、
     請求項2に記載の通信装置。
  5.  第1の通信装置と第2の通信装置との間で送受信される中継信号を中継し、さらに第1の機器と接続する通信装置における通信方法であって、
     第1の送信スロットを用いて、前記中継信号を送信し、
     第2の送信スロットを用いて、前記第1の機器からの信号を、前記第1の送信スロットの期間内に、前記第1の送信スロットと異なる周波数領域で送信する、
     通信方法。
PCT/JP2019/003062 2018-02-09 2019-01-30 通信装置、及び通信方法 WO2019155949A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2019570700A JP7148556B2 (ja) 2018-02-09 2019-01-30 通信装置、及び通信方法
US16/968,144 US11444682B2 (en) 2018-02-09 2019-01-30 Relay apparatus and relaying method for relaying signals
CN202310700116.5A CN116707603A (zh) 2018-02-09 2019-01-30 中继装置及通信方法
CN201980012300.2A CN111684851B (zh) 2018-02-09 2019-01-30 通信装置及通信方法
EP19750562.1A EP3751933A4 (en) 2018-02-09 2019-01-30 COMMUNICATION DEVICE AND COMMUNICATION METHOD
US17/880,547 US11799538B2 (en) 2018-02-09 2022-08-03 Relay apparatus and relaying method for relaying signals
JP2022150171A JP7312899B2 (ja) 2018-02-09 2022-09-21 通信装置、及び通信方法
US18/470,242 US20240007175A1 (en) 2018-02-09 2023-09-19 Relay apparatus and relaying method for relaying signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018022192 2018-02-09
JP2018-022192 2018-02-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/968,144 A-371-Of-International US11444682B2 (en) 2018-02-09 2019-01-30 Relay apparatus and relaying method for relaying signals
US17/880,547 Continuation US11799538B2 (en) 2018-02-09 2022-08-03 Relay apparatus and relaying method for relaying signals

Publications (1)

Publication Number Publication Date
WO2019155949A1 true WO2019155949A1 (ja) 2019-08-15

Family

ID=67548092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003062 WO2019155949A1 (ja) 2018-02-09 2019-01-30 通信装置、及び通信方法

Country Status (6)

Country Link
US (3) US11444682B2 (ja)
EP (1) EP3751933A4 (ja)
JP (3) JP7148556B2 (ja)
CN (2) CN111684851B (ja)
TW (2) TWI832474B (ja)
WO (1) WO2019155949A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112238829B (zh) * 2019-07-16 2023-06-02 华为技术有限公司 通信方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050853A (ja) * 2008-08-23 2010-03-04 Kyocera Corp 中継局および無線通信中継方法
US9591676B1 (en) * 2015-09-22 2017-03-07 Veniam, Inc. Systems and methods for managing mobility in a network of moving things

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0303602D0 (sv) * 2003-12-30 2003-12-30 Ericsson Telefon Ab L M Method and arrangement in self-organizing cooperative network
EP1848124A1 (en) * 2005-02-18 2007-10-24 Matsushita Electric Industrial Co., Ltd. Wireless communication method, relay station apparatus, and wireless transmitting apparatus
FI20060240A0 (fi) * 2006-03-13 2006-03-13 Nokia Corp Menetelmä informaation siirtämiseksi kanavanvaihdon aikana viestintäjärjestelmässä
CN101106807B (zh) * 2006-07-12 2012-04-11 株式会社Ntt都科摩 一种基于中继器的蜂窝网络以及空分双工通信方法
GB2449278B (en) * 2007-05-16 2009-10-07 Multitone Electronics Plc Telecommunications system and method
ES2719233T3 (es) * 2007-08-10 2019-07-09 Fujitsu Ltd Aparato de transmisión, sistema de comunicación, y método de comunicación
US20110053495A1 (en) * 2008-06-20 2011-03-03 Mitsubishi Electric Corporation Communication apparatus and wireless communication system
US20100110964A1 (en) * 2008-11-04 2010-05-06 Motorola, Inc. Method for Relays within Wireless Communication Systems
US8514768B2 (en) * 2008-12-11 2013-08-20 Lg Electronics Inc. Method and apparatus for transmitting reference signal performed by relay station in wireless communication system
US8649317B2 (en) * 2009-06-22 2014-02-11 Panasonic Corporation Wireless communication relay station apparatus, wireless communication apparatus, wireless communication relay method, and wireless communication method
JP5251776B2 (ja) * 2009-07-27 2013-07-31 ソニー株式会社 基地局、通信システム、移動端末および中継装置
AU2010296564A1 (en) * 2009-09-18 2012-04-05 Sony Corporation Relay station, relay method, and wireless communication device
EP2498415A4 (en) 2009-11-04 2017-05-03 Nec Corporation Control method for wireless communication system, wireless communication system, and wireless communication device
CN102118757B (zh) * 2009-12-31 2013-11-06 中兴通讯股份有限公司 一种无线中继装置及其与基站和终端通信的方法
JP5765758B2 (ja) * 2010-10-20 2015-08-19 国立大学法人電気通信大学 通信装置、通信方法、および通信システム
JP5648429B2 (ja) * 2010-11-02 2015-01-07 富士通株式会社 光伝送システム及び光伝送装置
JP5578619B2 (ja) * 2010-12-10 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および受信装置
WO2013174007A1 (zh) * 2012-05-25 2013-11-28 海能达通信股份有限公司 站点间无线互联系统、方法及站点
WO2014166074A1 (en) * 2013-04-09 2014-10-16 Motorola Solutions, Inc. Method and apparatus for managing trunking operations in an ad-hoc network
JP6255730B2 (ja) * 2013-06-17 2018-01-10 アイコム株式会社 無線通信システム、位置登録方法、中継装置、および無線端末装置
CN104811955B (zh) * 2014-01-24 2018-07-27 宏达国际电子股份有限公司 Lte tdd系统配置表格的方法及使用该方法的装置
US9420583B2 (en) * 2014-07-07 2016-08-16 The Boeing Company Combined voice and data communications in a distributed hybrid allocation and reservation multiple access mobile wireless network
CN107534980B (zh) * 2015-03-31 2021-08-17 索尼公司 移动通信网络、方法、基站、中继节点和通信终端
US10306660B2 (en) * 2016-03-24 2019-05-28 Qualcomm Incorporated Mechanisms for co-existence between communication modes in a mesh wide area network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050853A (ja) * 2008-08-23 2010-03-04 Kyocera Corp 中継局および無線通信中継方法
US9591676B1 (en) * 2015-09-22 2017-03-07 Veniam, Inc. Systems and methods for managing mobility in a network of moving things

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AT &T: "Wireless backhaul/relay for NR", 3GPP TSG-RAN WG1#86 RI-166488, 26 August 2016 (2016-08-26), XP051125396 *
SONY: "Discussion on discovery enhancements for feD2D", 3GPP TSG RAN WG1 #90 R1-1714056, 25 August 2017 (2017-08-25), XP051316848 *

Also Published As

Publication number Publication date
JP7148556B2 (ja) 2022-10-05
TW201935866A (zh) 2019-09-01
TW202306335A (zh) 2023-02-01
US20220385354A1 (en) 2022-12-01
JPWO2019155949A1 (ja) 2021-01-28
US11799538B2 (en) 2023-10-24
JP7312899B2 (ja) 2023-07-21
TWI783113B (zh) 2022-11-11
JP2023126326A (ja) 2023-09-07
US20210044346A1 (en) 2021-02-11
CN111684851B (zh) 2023-07-04
US11444682B2 (en) 2022-09-13
US20240007175A1 (en) 2024-01-04
TWI832474B (zh) 2024-02-11
EP3751933A1 (en) 2020-12-16
JP2022173323A (ja) 2022-11-18
CN116707603A (zh) 2023-09-05
CN111684851A (zh) 2020-09-18
JP7506228B2 (ja) 2024-06-25
EP3751933A4 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
JP7418341B2 (ja) 通信システム、端末、及び、制御方法
JP7336474B2 (ja) 送信装置および送信方法
JP7506228B2 (ja) 受信装置、及び通信方法
JP2024098080A (ja) 通信装置、及び、通信方法
JP2023178352A (ja) 通信装置、通信システム、及び、通信方法
JP7148404B2 (ja) 送信方法、送信装置、受信方法及び受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570700

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019750562

Country of ref document: EP

Effective date: 20200909