WO2019155653A1 - 半導体ユニット及び半導体装置 - Google Patents

半導体ユニット及び半導体装置 Download PDF

Info

Publication number
WO2019155653A1
WO2019155653A1 PCT/JP2018/025082 JP2018025082W WO2019155653A1 WO 2019155653 A1 WO2019155653 A1 WO 2019155653A1 JP 2018025082 W JP2018025082 W JP 2018025082W WO 2019155653 A1 WO2019155653 A1 WO 2019155653A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
semiconductor unit
case
semiconductor chip
emitter
Prior art date
Application number
PCT/JP2018/025082
Other languages
English (en)
French (fr)
Inventor
渡邉 尚威
伊東 弘晃
優太 市倉
麻美 水谷
田多 伸光
大祐 平塚
関谷 洋紀
久里 裕二
匠太 田代
尚隆 飯尾
仁嗣 松村
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Publication of WO2019155653A1 publication Critical patent/WO2019155653A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • Embodiments relate to a semiconductor unit and a semiconductor device.
  • the large-current power converter is configured by connecting a plurality of current control semiconductor units in parallel and in series. Each semiconductor unit is mounted with one or more semiconductor chips. In such a power converter, it is desirable that even if a failure occurs in one semiconductor chip, the expansion of damage is suppressed and the entire power converter can be operated continuously.
  • An object of the embodiment is to provide a semiconductor unit and a semiconductor device capable of suppressing expansion of damage even if a defect occurs in a semiconductor chip.
  • a semiconductor unit includes a metal case, a semiconductor chip provided in the case, a first electrode provided on a first surface, and a second electrode provided on a second surface; And a first metal plate stacked on the first surface of the semiconductor chip.
  • the first metal plate is connected to the first electrode.
  • the first portion of the end of the first metal plate extends in the first direction from the first surface toward the second surface on the side of the semiconductor chip.
  • the tip of the first portion is disposed on the first direction side with respect to the first surface.
  • the semiconductor device includes a plate-like main body, a heat sink having a plurality of protrusions protruding from the main body, and a plurality of the semiconductor units. Each said semiconductor unit is joined to each said convex part.
  • 1 is a perspective view showing a semiconductor unit according to a first embodiment. It is sectional drawing which shows the semiconductor unit which concerns on 1st Embodiment. It is a perspective view which shows the laminated body of the semiconductor unit which concerns on 1st Embodiment. It is a perspective view which shows the laminated body of the semiconductor unit which concerns on 1st Embodiment. It is a perspective view which shows the laminated body of the semiconductor unit which concerns on 1st Embodiment. It is a perspective view which shows the laminated body of the semiconductor unit which concerns on 1st Embodiment. It is a disassembled perspective view which shows the laminated body of the semiconductor unit which concerns on 1st Embodiment. It is sectional drawing which shows operation
  • FIG. 1 is a perspective view showing a semiconductor unit according to this embodiment.
  • FIG. 2 is a cross-sectional view showing the semiconductor unit according to this embodiment.
  • 3 to 5 are perspective views showing a stacked body of semiconductor units according to this embodiment.
  • FIG. 6 is an exploded perspective view showing a stack of semiconductor units according to this embodiment. Each figure is schematic and each component is omitted and simplified suitably.
  • the semiconductor unit 1 is provided with a case 90 made of metal, for example, stainless steel.
  • the shape of the case 90 is a substantially rectangular parallelepiped, and the inside is hollow.
  • the entire one surface 90a is opened, and the central portion of the other one surface 90b adjacent to the opened surface 90a is also opened. That is, an opening 90c is formed at the center of the surface 90b.
  • the shape of the opening 90c is, for example, a rectangle with rounded corners.
  • an XYZ orthogonal coordinate system corresponding to the direction in which the six surfaces of the case 90 face is adopted.
  • the direction in which the surface 90a of the case 90 faces is referred to as “ ⁇ Y direction”, and the opposite direction is referred to as “+ Y direction”.
  • the direction in which the surface 90b faces is referred to as “ ⁇ Z direction”, and the opposite direction is referred to as “+ Z direction”.
  • ⁇ X direction and ⁇ X direction are defined.
  • “ ⁇ X direction” and “+ X direction” are also collectively referred to as “X direction”.
  • the + Z direction is also referred to as “up” and the ⁇ Z direction is also referred to as “down”, this expression is also convenient and is not related to the direction of gravity.
  • the conductive laminate 10 is provided. Further, a resin member 91 is filled between the laminate 10 and the case 90. In order to ensure the withstand voltage, the distance between the laminate 10 and the case 90 is set to about 0.5 to 3 mm (millimeters).
  • a resin member 92 is provided on the surface of the case 90. The thickness of the resin member 92 is 0.5 to 3 mm. The resin member 92 substantially covers the case 90. However, as will be described later, several members protrude from the surface corresponding to the surface 90 a of the resin member 92. Further, the resin member 92 is not provided in the opening 90 c except for a thin film portion covering the end surface of the opening 90 c in the case 90.
  • one clad material 11 As shown in FIGS. 1 to 6, in the laminated body 10, from the opening 90c side toward the + Z direction, one clad material 11, one solder sheet 12, one collector block 13, two sheets Solder sheet 14, two semiconductor chips 15, two solder sheets 16, two spacers 17, two solder sheets 18, one gate terminal frame 19, one bent emitter plate 20, one sheet The solder sheet 21, one emitter block 22, one solder sheet 23, and one emitter terminal 24 are laminated in this order.
  • two bonding wires 27 and two signal pins 28 are also provided.
  • only one member is provided with a longitudinal direction in the X direction. The two members provided are spaced apart from each other along the X direction.
  • the clad material 11 is made of a metal material having high conductivity and heat conductivity, and its shape is a rectangular plate shape.
  • the clad material 11 is, for example, a plate material having a three-layer structure in which an aluminum plate is sandwiched between copper plates.
  • the clad material 11 is connected to the outside of the semiconductor unit 1 through the opening 90 c of the case 90.
  • the solder sheet 12 is made of solder and has a rectangular plate shape.
  • the collector block 13 is made of a metal material such as copper, and has a rectangular parallelepiped block shape. The collector block 13 is joined to the clad material 11 by the solder sheet 12. In the present specification, “joined” means a state in which two members are mechanically coupled and electrically connected.
  • the solder sheet 14 is made of solder and has a rectangular plate shape.
  • the semiconductor chip 15 is a silicon element for current control, such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor: metal oxide semiconductor field effect transistor). It is a switching element provided with a control electrode.
  • the voltage applied to the semiconductor chip 15 is, for example, several kV, and the driving power is several MW.
  • a collector electrode (not shown) is provided on substantially the entire surface of the semiconductor chip 15 on the ⁇ Z direction side (hereinafter referred to as “lower surface 15a”), and a surface (hereinafter referred to as “upper surface 15b”) on the + Z direction side.
  • the shape of the emitter electrode 15e is L-shaped, and the shape of the gate electrode 15g is a rectangle with two sides facing the emitter electrode 15e.
  • the collector electrode is joined to the collector block 13 by a solder sheet 14.
  • the solder sheet 16 is made of solder
  • the spacer 17 is made of a metal material such as copper
  • the solder sheet 18 is made of solder.
  • the solder sheet 16 and the spacer 17 are L-shaped corresponding to the emitter electrode 15e.
  • a main body portion 17a and a convex portion 17b are integrally provided in the spacer 17, a main body portion 17a and a convex portion 17b are integrally provided.
  • the convex portion 17b projects in the + Z direction from the surface on the + Z direction side of the main body portion 17a.
  • the shape of the convex portion 17b is an L-shape that is slightly smaller than the main body portion 17a.
  • the shape of the solder sheet 18 is a C-shape including a region where the convex portions 17b of the two spacers 17 are connected.
  • the main body portion 17 a of the spacer 17 is joined to the emitter electrode 15 e by the solder sheet 16.
  • the spacer 17 is separated from the gate electrode 15 g of the semiconductor chip 15.
  • the gate terminal frame 19 is made of a metal material such as copper.
  • the gate terminal frame 19 is formed with two L-shaped openings 19a. As viewed from the Z direction, the shape and dimensions of the opening 19a are L-shaped corresponding to the protrusions 17b of the spacer 17, and the thickness of the gate terminal frame 19 is substantially the same as the height of the protrusions 17b. Thereby, the convex part 17b is fitted in the opening part 19a.
  • the bending emitter plate 20 is made of a metal material such as copper. When viewed from the + Z direction, the bent emitter plate 20 is C-shaped. That is, a base portion 20a extending in the X direction, an extending portion 20b extending from the both ends in the X direction of the base portion 20a to the ⁇ Y direction side, and a bending portion 20c curved from the tip of the extending portion 20b toward the ⁇ Z direction. Are integrally formed.
  • the base 20a of the bent emitter plate 20 includes a portion located around the two openings 19a of the gate terminal frame 19 and a convex portion of the spacer 17 disposed in each of the two openings 19a of the gate terminal frame 19. 17b is joined together by the solder sheet 18.
  • the tip 20d on the ⁇ Z direction side of the bent portion 20c of the bent emitter plate 20 is located at least on the ⁇ Z direction side with respect to the upper surface 15b of the semiconductor chip 15, and preferably on the ⁇ Z direction side with respect to the lower surface 15a. ing.
  • the distance L1 between the surface 90b and the tip 20d of the case 90 is shorter than the distance L2 between the surface 90b and the upper surface 15b, and preferably shorter than the distance L3 between the surface 90b and the lower surface 15a. That is, L1 ⁇ L2, and preferably L1 ⁇ L3.
  • the distance between the lower surface 15a and the tip 20d in the Z direction is, for example, 2 mm or less.
  • the solder sheet 21 is made of solder
  • the emitter block 22 is made of a metal material such as copper
  • the solder sheet 23 is made of solder.
  • the shapes of the solder sheet 21, the emitter block 22, and the solder sheet 23 are C-shaped corresponding to the portion of the bent emitter plate 20 excluding the bent portion 20c.
  • the emitter block 22 is joined to the bent emitter plate 20 by a solder sheet 21.
  • the emitter terminal 24 is made of a metal material such as copper.
  • the base portion 24a extending in the X direction
  • the extending portion 24b extending in the ⁇ Y direction from the + X direction end portion of the base portion 24a
  • the ⁇ X direction end portion of the base portion 24a An extending portion 24c extending in the Y direction and a vertical portion 24d extending in the + Z direction from the tip of the extending portion 24c are integrally formed.
  • the length of the extending part 24c in the Y direction is longer than the length of the extending part 24b.
  • the emitter terminal 24 is disposed in a region including the region directly above the emitter block 22.
  • the shape of the member disposed on the collector side, that is, on the ⁇ Z direction side of the semiconductor chip 15 in the stacked body 10 is a substantially rectangular shape that overlaps the entire semiconductor chip 15 when viewed from the Z direction.
  • the shape of the member disposed on the emitter side, that is, the + Z direction side from the semiconductor chip 15 in the stacked body 10 is a substantially C shape that does not include the region directly above the gate electrode 15g when viewed from the Z direction.
  • the solder sheet 16 on the + Z direction side of the gate electrode 15g of the semiconductor chip 15, the solder sheet 16, the spacer 17, the solder sheet 18, the gate terminal frame 19, the bent emitter plate 20, the solder sheet 21, the emitter block 22, the solder sheet 23, and The emitter terminal 24 is not arranged. For this reason, these members are not connected to the gate electrode 15g.
  • the emitter side member is not arranged in the region immediately above the gate electrode 15g, and is an empty space.
  • the gate electrode 15g is drawn out using this empty space.
  • the bonding wire 27 is made of a metal material, for example, aluminum (Al).
  • the signal pin 28 is made of the same material as the gate terminal frame 19, for example, a metal material such as copper.
  • the signal pin 28 is provided with a joint portion 28a to which the bonding wire 27 is joined. After the lead wire portion 28b is once drawn in the + Z direction from the joint portion 28a, the lead wire portion 28b is drawn in the -Y direction and bent. It extends in the Z direction and terminates.
  • the signal pin 28 is formed integrally with the gate terminal frame 19. The signal pin 28 is positioned by fitting the opening 19 a of the gate terminal frame 19 to the protrusion 17 b of the spacer 17, and after the bonding wire 27 is joined, It is separated from the terminal frame 19.
  • FIG. 7 is a cross-sectional view showing the operation of the semiconductor unit 1 according to this embodiment.
  • the semiconductor unit 1 according to the present embodiment is used by being incorporated in, for example, a high-current power converter.
  • an emitter-collector voltage is applied between the vertical portion 24 d of the emitter terminal 24 and the lower surface of the clad material 11.
  • an emitter-collector voltage is applied between the emitter electrode 15e (see FIG. 6) and the collector electrode (not shown) of the semiconductor chip 15.
  • a gate potential is applied to the conducting wire portion 28 b of the signal pin 28.
  • a gate potential is applied to the gate electrode 15g (see FIG. 6) of the semiconductor chip 15, and the current flowing between the emitter electrode 15e and the collector electrode in the semiconductor chip 15 is controlled.
  • an emitter-collector voltage of several kV is applied to the semiconductor chip 15 and a current of several MW flows in the on state.
  • the crack 121 when the crack 121 reaches the outer surface of the semiconductor unit, the vaporized material is ejected to the outside through the crack 121. In this case, the ejected matter contaminates the periphery of the semiconductor unit 1 and induces further troubles. Further, since a part of the material of the semiconductor unit is lost, the crack 121 is not closed, and the semiconductor unit is separated vertically. In this case, a large current suddenly flows between the emitter and the collector every time an arc is generated through the crack 121, and when the arc is not generated, there is a high possibility that the state becomes an open state that becomes an open state. . As a result, the operation of the power converter incorporating this semiconductor unit also becomes extremely unstable. In addition, the peripheral circuits connected to the semiconductor unit are also adversely affected.
  • a case 90 made of metal, for example, stainless steel, covering the laminated body 10 is provided, and a resin is provided between the laminated body 10 and the case 90.
  • the member 91 is filled.
  • a bent portion 20c of the bent emitter plate 20 is provided on the surface 90a side when viewed from the laminate 10.
  • the tip 20d on the ⁇ Z direction side of the bent portion 20c extends below the upper surface 15b of the semiconductor chip 15. For this reason, even if the crack 121 generated from the semiconductor chip 15 starts toward the surface 90a, there is a high possibility that it will be blocked by the bent portion 20c. If the tip 20d of the bent portion 20c extends below the lower surface 15a of the semiconductor chip 15, the progress of the crack 121 can be more reliably prevented.
  • the crack 121 does not easily reach the outer surface of the semiconductor unit 1.
  • the material of the semiconductor unit 1 is ejected to the outside of the semiconductor unit 1 through the crack 121 and lost.
  • the material such as silicon once vaporized is solidified to form a short circuit path.
  • the semiconductor unit 1 is in a stable short circuit state.
  • this semiconductor unit 1 does not function as a switching element, the operation of the power converter is stabilized by being in a stable short-circuit state. Further, it is possible to suppress the surroundings from being contaminated by the ejected material.
  • FIG. 8 is a cross-sectional view showing the semiconductor unit according to this embodiment.
  • the semiconductor unit 2 according to this embodiment is provided with a bent emitter plate 20 as compared with the semiconductor unit 1 according to the first embodiment described above (see FIGS. 1 to 6). Instead, a bent collector plate 30 is provided.
  • the bent collector plate 30 is made of a metal material such as copper.
  • the shape of the bent collector plate 30 is C-shaped. That is, a base portion 30a extending in the X direction and a bent portion 30c drawn in the ⁇ Y direction from both ends in the X direction of the base portion 30a and curved in the + Z direction are integrally formed.
  • the base portion 30a of the bent collector plate 30 is disposed between the collector block 13 and the semiconductor chip 15, and is joined to the collector block 13 by a solder sheet (not shown), and the semiconductor chip 15 by the solder sheet 14. To the collector electrode (not shown).
  • the bent collector plate 30 is connected to the outside through the opening 90 c of the case 90.
  • the tip 30d on the + Z direction side of the bent portion 30c of the bent collector plate 30 is located at least on the + Z direction side with respect to the lower surface 15a of the semiconductor chip 15, and preferably on the + Z direction side with respect to the upper surface 15b.
  • the distance L4 between the surface 90b and the tip 30d of the case 90 is longer than the distance L3 between the surface 90b and the lower surface 15a, and preferably longer than the distance L2 between the surface 90b and the upper surface 15b. That is, L3 ⁇ L4, and preferably L2 ⁇ L4.
  • a case 90 that covers the stacked body 10 is provided, and a resin member 91 is filled between the stacked body 10 and the case 90.
  • the surface 90a of the case 90 is open, but the bent portion 30c of the bent collector plate 30 is provided on the surface 90a side when viewed from the semiconductor chip 15.
  • the tip 30d on the + Z direction side of the bent portion 30c extends upward from the lower surface 15a of the semiconductor chip 15. For this reason, even if the crack 121 (see FIG. 7) generated from the semiconductor chip 15 as a starting point progresses toward the surface 90a, there is a high possibility that the bent portion 30c prevents the crack. If the tip 30d of the bent portion 30c extends above the upper surface 15b of the semiconductor chip 15, the progress of the crack 121 can be more reliably prevented.
  • the crack 121 reaches the outer surface of the semiconductor unit 1 even when the defect 120 (see FIG. 7) occurs in the semiconductor chip 15. This can be suppressed and the semiconductor unit 2 can be brought into a stable short-circuit state.
  • Other configurations, operations, and effects of the present embodiment are the same as those of the first embodiment.
  • FIG. 9A is a perspective view showing members on the collector side of the semiconductor unit according to this modification
  • FIG. 9B is a cross-sectional view thereof.
  • the semiconductor unit 2a according to this modification is a bent collector plate 30 as compared with the semiconductor unit 2 according to the second embodiment (see FIG. 8).
  • the point that the vertical board 31 is provided instead of is different.
  • the vertical plate 31 is made of a material having high strength, for example, stainless steel.
  • the shape of the vertical plate 31 is a plate shape, and its main surface is parallel to the XZ plane.
  • the vertical plate 31 is joined to the side surface of the collector block 13 facing the ⁇ Y direction by screws 32.
  • the upper part of the vertical plate 31 extends above the collector block 13, that is, in the + Z direction, and its upper end 31d is located above the lower surface 15a of the semiconductor chip 15 (see FIG. 8), preferably the upper surface. It is located above 15b (see FIG. 8).
  • a recess 31e is formed on the upper edge of the vertical plate 31.
  • the bonding wire 27 and the signal pin 28 pass through the recess 31e.
  • the vertical plate 31 is not interposed in the current path between the emitter and the collector, it is not always necessary to form it with a material having high conductivity, and a material having excellent strength, rigidity, cost, etc. You can choose. Further, as compared with the second embodiment, since the bending process for forming the bent collector plate 30 is not required, the manufacturing is facilitated. Configurations, operations, and effects other than those described above in the present modification are the same as those in the second embodiment described above.
  • FIG. 10 is a cross-sectional view showing members on the collector side of the semiconductor unit according to this modification.
  • the semiconductor unit 2b according to the present modification is compared with the semiconductor unit 2a according to the first modification of the above-described second embodiment (see FIGS. 9A and 9B).
  • the difference is that the vertical plate 31 is joined to the collector block 13 by press fitting instead of the screw 32 (see FIGS. 9A and 9B).
  • the vertical plate 31 can be simply joined to the collector block 13 by press-fitting.
  • the configuration, operation, and effects of the present modification other than those described above are the same as those of the first modification of the second embodiment described above.
  • FIG. 11A is a perspective view showing the semiconductor device according to the present embodiment
  • FIGS. 11B and 11E are exploded perspective views thereof.
  • FIG. 12 is a cross-sectional view showing the semiconductor device according to the present embodiment.
  • a water cooling jacket 101 is provided, and a heat sink 102 is provided thereon.
  • a heat sink 102 is provided in the heat sink 102.
  • the main body 102a has a substantially plate shape that extends along the XY plane.
  • the shape of the convex part 102b is a substantially rectangular parallelepiped shape.
  • the convex portions 102b protrude upward (+ Z direction) from the main body portion 102a, and are arranged in a matrix along the X direction and the Y direction on the upper surface of the main body portion 102a.
  • a solder sheet 103 is provided on the upper surface of each convex portion 102b.
  • One semiconductor unit 1 is provided on each convex portion 102b.
  • the configuration of the semiconductor unit 1 is as described in the first embodiment.
  • the convex portion 102 b of the heat sink 102 is joined to the clad material 11 by the solder sheet 103 via the opening 90 c of the case 90 of the semiconductor unit 1.
  • a plurality of semiconductor units 1 are mounted on one heat sink 102.
  • the semiconductor units 1 adjacent in the Y direction are arranged so that the surface 90a of the case 90 faces each other.
  • 11 (a) to 11 (e) show an example in which 24 semiconductor units 1 are arranged in the X direction and 4 in the Y direction, the number and arrangement of the semiconductor units 1 are shown. Is not limited to this.
  • An insulating member 104 is provided on the main body 102a of the heat sink 102, and an emitter bus 105 is provided thereon.
  • the emitter bus 105 is electrically isolated from the heat sink 102.
  • the emitter bus 105 is provided with a horizontal portion 105a extending in the X direction and a column portion 105b erected in the + Z direction from the horizontal portion 105a.
  • the horizontal portion 105 a is provided for each group of a plurality of semiconductor units 1 arranged in two rows along the X direction, and is disposed on the surface 90 a side of the case 90 of each semiconductor unit 1.
  • the column part 105 b is provided for each semiconductor unit 1.
  • the column part 105 b is connected to the vertical part 24 d of the emitter terminal 24 of the semiconductor unit 1.
  • a drive substrate 106 is provided on the horizontal portion 105 a of the emitter bus 105.
  • the shape of the drive substrate 106 is a tree shape in which one trunk portion 106a extending in the Y direction and a plurality of branch portions 106b extending in the X direction are integrally provided.
  • the branch portion 106 b is disposed on the surface 90 a side of the case 90 of each semiconductor unit 1.
  • wiring (not shown) made of, for example, copper is printed inside and on the upper surface of an insulating sheet made of an insulating material such as a resin material.
  • the wiring of the drive substrate 106 is connected to the conductor portion 28 b of the signal pin 28 of the semiconductor unit 1 and is drawn out of the semiconductor device 100.
  • the wiring of the drive substrate 106 is insulated from the heat sink 102 and the emitter bus 105.
  • Side walls 107 made of a highly conductive metal such as copper are provided at both ends in the X direction of the semiconductor device 100.
  • the side wall 107 is connected to the horizontal portion 105 a of the emitter bus 105.
  • an insulating lid 108 is provided so as to cover the side surface facing the X direction, the side surface facing the Y direction, and the top surface facing the + Z direction of the semiconductor device 100.
  • the collector block 13 of the semiconductor unit 1 is connected to the heat sink 102 via the clad material 11.
  • the emitter terminal 24 of the semiconductor unit 1 is connected to the side wall 107 via the emitter bus 105.
  • the gate terminal frame 19 of the semiconductor unit 1 is connected to the wiring of the drive substrate 106 via bonding wires 27 and signal pins 28. Therefore, the plurality of semiconductor units 1 mounted on the semiconductor device 100 are connected in parallel between the heat sink 102 and the side wall 107.
  • the gate terminal frame 19 of each semiconductor unit 1 is commonly connected to the wiring of the drive substrate 106.
  • the semiconductor device 100 is mounted on, for example, a power converter.
  • a power converter In the power converter, a plurality of semiconductor devices 100 are connected in series.
  • each semiconductor device 100 an emitter-collector voltage is applied to each semiconductor unit 1 by applying a collector potential to the heat sink 102 and applying an emitter potential to the side wall 107.
  • a gate potential to the wiring of the drive substrate 106, the conduction state of the semiconductor chip 15 provided in each semiconductor unit 1 can be controlled, and the current flowing through the semiconductor device 100 can be controlled.
  • the case 90 and the bent portion 20c of the bent emitter plate 20 suppress the internal pressure and suppress the propagation of cracks, so that the semiconductor unit 1 can be brought into a stable short-circuit state. Thereby, it can avoid that the other semiconductor unit 1 is damaged.
  • the semiconductor device 100 including the semiconductor unit 1 in which a failure has occurred is in a stable short circuit state. Thereby, operation
  • fins may be provided on the lower surface of the main body 102a of the heat sink 102.
  • the semiconductor unit 2 according to the second embodiment the semiconductor unit 2a according to the first modification of the second embodiment, or the second embodiment.
  • a vertical plate 31 as shown in FIGS. 9A and 9B is provided in place of the bent emitter plate 20, and this is joined to the emitter block 22 by screws or press-fitting. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

半導体ユニットは、金属製のケースと、前記ケース内に設けられ、第1面に第1電極が設けられ、第2面に第2電極が設けられた半導体チップと、前記ケース内に設けられ、前記半導体チップの前記第1面上に積層された第1金属板と、を備える。前記第1金属板は、前記第1電極に接続されている。前記第1金属板の端部の第1部分は、前記半導体チップの側方において、前記第1面から前記第2面に向かう第1方向に向けて延出している。前記第1部分の先端は、前記第1面よりも前記第1方向側に配置されている。

Description

半導体ユニット及び半導体装置
 実施形態は、半導体ユニット及び半導体装置に関する。
 大電流用の電力変換器は、複数の電流制御用の半導体ユニットが並列及び直列に接続されて構成されている。各半導体ユニットには、1個以上の半導体チップが実装されている。このような電力変換器においては、1つの半導体チップに不具合が生じた場合でも、被害の拡大を抑制し、電力変換器全体としては継続して動作可能であることが望ましい。
特許第3258200号公報 特許第4385324号公報
 実施形態の目的は、半導体チップに不具合が生じても、被害の拡大を抑制できる半導体ユニット及び半導体装置を提供することである。
 実施形態に係る半導体ユニットは、金属製のケースと、前記ケース内に設けられ、第1面に第1電極が設けられ、第2面に第2電極が設けられた半導体チップと、前記ケース内に設けられ、前記半導体チップの前記第1面上に積層された第1金属板と、を備える。前記第1金属板は、前記第1電極に接続されている。前記第1金属板の端部の第1部分は、前記半導体チップの側方において、前記第1面から前記第2面に向かう第1方向に向けて延出している。前記第1部分の先端は、前記第1面よりも前記第1方向側に配置されている。
 実施形態に係る半導体装置は、板状の本体部と、前記本体部から突出した複数の凸部と、を有したヒートシンクと、複数個の前記半導体ユニットと、を備える。各前記半導体ユニットは、各前記凸部に接合されている。
第1の実施形態に係る半導体ユニットを示す斜視図である。 第1の実施形態に係る半導体ユニットを示す断面図である。 第1の実施形態に係る半導体ユニットの積層体を示す斜視図である。 第1の実施形態に係る半導体ユニットの積層体を示す斜視図である。 第1の実施形態に係る半導体ユニットの積層体を示す斜視図である。 第1の実施形態に係る半導体ユニットの積層体を示す分解斜視図である。 第1の実施形態に係る半導体ユニットの動作を示す断面図である。 第2の実施形態に係る半導体ユニットを示す断面図である。 (a)は第2の実施形態の第1の変形例に係る半導体ユニットを示す斜視図であり、(b)はその断面図である。 第2の実施形態の第2の変形例に係る半導体ユニットを示す断面図である。 (a)は、第3の実施形態に係る半導体装置を示す斜視図であり、(b)~(e)はその分解斜視図である。 第3の実施形態に係る半導体装置を示す断面図である。
 (第1の実施形態)
 まず、第1の実施形態について説明する。
 本実施形態は、電流制御用の半導体チップを実装した半導体ユニットの実施形態である。
 図1は、本実施形態に係る半導体ユニットを示す斜視図である。
 図2は、本実施形態に係る半導体ユニットを示す断面図である。
 図3~図5は、本実施形態に係る半導体ユニットの積層体を示す斜視図である。
 図6は、本実施形態に係る半導体ユニットの積層体を示す分解斜視図である。
 なお、各図は模式的なものであり、各構成要素は適宜省略及び簡略化されている。
 図1及び図2に示すように、本実施形態に係る半導体ユニット1においては、金属、例えば、ステンレス鋼からなるケース90が設けられている。ケース90の形状は略直方体であり、内部は中空である。ケース90においては、一つの面90aの全体が開口しており、この開口した面90aに隣接する他の一つの面90bの中央部分も開口している。すなわち、面90bの中央部には、開口部90cが形成されている。開口部90cの形状は、例えば、角部が丸められた矩形である。
 以下、本実施形態においては、説明の便宜上、ケース90の6つの面が向く方向に対応したXYZ直交座標系を採用する。ケース90の面90aが向いている方向を「-Y方向」とし、その反対方向を「+Y方向」とする。また、面90bが向いている方向を「-Z方向」とし、その反対方向を「+Z方向」とする。更に、この直交座標系を右手系の座標系とすることにより、「-X方向」及び「+X方向」を定義する。「-X方向」及び「+X方向」を総称して「X方向」ともいう。Y方向及びZ方向についても同様である。また、+Z方向を「上」ともいい、-Z方向を「下」ともいうが、この表現も便宜的なものであり、重力の方向とは無関係である。
 ケース90内には、導電性の積層体10が設けられている。また、積層体10とケース90との間には、樹脂部材91が充填されている。絶縁耐圧を確保するために、積層体10とケース90との距離は、0.5~3mm(ミリメートル)程度とする。ケース90の表面上には、樹脂部材92が設けられている。樹脂部材92の厚さは、0.5~3mmである。樹脂部材92はケース90を略覆っている。但し、後述するように、樹脂部材92における面90aに相当する面からは、いくつかの部材が突出している。また、開口部90c内には、ケース90における開口部90cの端面を覆う薄い皮膜部分を除き、樹脂部材92は設けられていない。
 図1~図6に示すように、積層体10においては、開口部90c側から+Z方向に向かって、1枚のクラッド材11、1枚の半田シート12、1個のコレクタブロック13、2枚の半田シート14、2枚の半導体チップ15、2枚の半田シート16、2枚のスペーサ17、2枚の半田シート18、1つのゲート端子フレーム19、1枚の曲げエミッタ板20、1枚の半田シート21、1個のエミッタブロック22、1枚の半田シート23、及び、1枚のエミッタ端子24が、この順に積層されている。また、積層体10においては、2本のボンディングワイヤ27、及び、2本の信号ピン28も設けられている。上述の部材のうち、1つのみ設けられている部材の長手方向はX方向である。また、2つ設けられている部材は、X方向に沿って相互に離隔して配置されている。
 クラッド材11は導電性及び伝熱性が高い金属材料からなり、その形状は長方形の板状である。クラッド材11は、例えば、アルミニウム板を銅板でサンドイッチした三層構造の板材である。クラッド材11は、ケース90の開口部90cを介して、半導体ユニット1の外部に接続される。半田シート12は半田からなり、その形状は長方形の板状である。コレクタブロック13は金属材料、例えば銅からなり、その形状は直方体のブロック状である。コレクタブロック13は半田シート12によってクラッド材11に接合されている。なお、本明細書において、「接合されている」とは、2つの部材が機械的に連結されると共に電気的に接続された状態をいう。半田シート14は半田からなり、その形状は長方形の板状である。
 半導体チップ15は電流制御用のシリコン素子であり、例えば、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)又はMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor:金属酸化物半導体電界効果トランジスタ)等の制御電極を備えたスイッチング素子である。半導体チップ15に印加される電圧は例えば数kVであり、駆動電力は数MWである。
 半導体チップ15の-Z方向側の面(以下、「下面15a」という)の略全面には、コレクタ電極(図示せず)が設けられており、+Z方向側に面(以下、「上面15b」という)には、エミッタ電極15e及びゲート電極15gが設けられている。+Z方向から見て、エミッタ電極15eの形状はL字形であり、ゲート電極15gの形状は2辺がエミッタ電極15eに対向した長方形である。コレクタ電極は半田シート14によってコレクタブロック13に接合されている。
 半田シート16は半田からなり、スペーサ17は銅等の金属材料からなり、半田シート18は半田からなる。Z方向から見て、半田シート16及びスペーサ17の形状は、エミッタ電極15eに対応したL字状である。スペーサ17においては、本体部17a及び凸部17bが一体的に設けられている。凸部17bは本体部17aの+Z方向側の面から、+Z方向に突出している。+Z方向から見て、凸部17bの形状は、本体部17aを一回り小さくしたL字状である。半田シート18の形状は、2つのスペーサ17の凸部17bを連結した領域を含むC字状である。スペーサ17の本体部17aは、半田シート16によってエミッタ電極15eに接合されている。スペーサ17は、半導体チップ15のゲート電極15gからは離隔している。
 ゲート端子フレーム19は、銅等の金属材料からなる。ゲート端子フレーム19には、L字状の開口部19aが2か所に形成されている。Z方向から見て、開口部19aの形状及び寸法は、スペーサ17の凸部17bに対応したL字状であり、ゲート端子フレーム19の厚さは、凸部17bの高さと略同じである。これにより、凸部17bは開口部19aに嵌合している。
 曲げエミッタ板20は、銅等の金属材料からなる。+Z方向から見て、曲げエミッタ板20の形状はC字状である。すなわち、X方向に延びるベース部20a、ベース部20aのX方向両端部から-Y方向側に延出した延出部20b、延出部20bの先端から-Z方向に向けて湾曲した曲げ部20cが一体的に形成されている。曲げエミッタ板20のベース部20aは、ゲート端子フレーム19の2つの開口部19aの周辺に位置する部分、及び、ゲート端子フレーム19の2つの開口部19a内にそれぞれ配置されたスペーサ17の凸部17bに、半田シート18によって一括して接合されている。
 曲げエミッタ板20の曲げ部20cの-Z方向側の先端20dは、少なくとも、半導体チップ15の上面15bよりも-Z方向側に位置し、好ましくは、下面15aよりも-Z方向側に位置している。換言すれば、ケース90の面90bと先端20dとの距離L1は、面90bと上面15bとの距離L2よりも短く、好ましくは、面90bと下面15aとの距離L3よりも短い。すなわち、L1<L2であり、好ましくは、L1<L3である。一方、Z方向における下面15aと先端20dとの距離は、例えば、2mm以下である。
 半田シート21は半田からなり、エミッタブロック22は銅等の金属材料からなり、半田シート23は半田からなる。+Z方向から見て、半田シート21、エミッタブロック22、半田シート23の形状は、曲げエミッタ板20における曲げ部20cを除く部分に対応したC字状である。エミッタブロック22は半田シート21によって曲げエミッタ板20に接合されている。
 エミッタ端子24は銅等の金属材料からなる。エミッタ端子24においては、X方向に延びるベース部24a、ベース部24aの+X方向側の端部から-Y方向に延出した延出部24b、ベース部24aの-X方向側の端部から-Y方向に延出した延出部24c、延出部24cの先端から+Z方向に延出した鉛直部24dが一体的に形成されている。Y方向における延出部24cの長さは、延出部24bの長さよりも長い。エミッタ端子24は、エミッタブロック22の直上域を含む領域に配置されている。
 このように、積層体10における半導体チップ15よりもコレクタ側、すなわち、-Z方向側に配置された部材の形状は、Z方向から見て、半導体チップ15全体と重なる略矩形である。一方、積層体10における半導体チップ15よりもエミッタ側、すなわち、+Z方向側に配置された部材の形状は、Z方向から見て、ゲート電極15gの直上域を含まない略C字状である。すなわち、半導体チップ15のゲート電極15gの+Z方向側には、半田シート16、スペーサ17、半田シート18、ゲート端子フレーム19、曲げエミッタ板20、半田シート21、エミッタブロック22、半田シート23、及び、エミッタ端子24は配置されていない。このため、これらの部材は、ゲート電極15gに接続されていない。
 このように、ゲート電極15gの直上域にはエミッタ側の部材は配置されておらず、空きスペースとなっている。そして、この空きスペースを用いて、ゲート電極15gが引き出されている。
 すなわち、ゲート電極15gにはボンディングワイヤ27の一端が接合されており、ボンディングワイヤ27の他端は信号ピン28の一端に接続されている。ボンディングワイヤ27は金属材料、例えば、アルミニウム(Al)からなる。信号ピン28はゲート端子フレーム19と同じ材料、例えば、銅等の金属材料からなる。信号ピン28においては、ボンディングワイヤ27が接合される接合部28aが設けられており、接合部28aから導線部28bが一旦+Z方向に引き出された後、-Y方向に引き出され、屈曲して-Z方向に延び、終端している。信号ピン28は、ゲート端子フレーム19と一体的に形成され、ゲート端子フレーム19の開口部19aがスペーサ17の凸部17bに嵌合することによって位置決めされ、ボンディングワイヤ27が接合された後、ゲート端子フレーム19から分離されたものである。
 次に、本実施形態に係る半導体ユニット1の動作について説明する。
 図7は、本実施形態に係る半導体ユニット1の動作を示す断面図である。
 本実施形態に係る半導体ユニット1は、例えば、大電流用の電力変換器に組み込まれて使用される。
 図7に示すように、半導体ユニット1においては、エミッタ端子24の鉛直部24dとクラッド材11の下面との間にエミッタ-コレクタ電圧を印加する。これにより、半導体チップ15のエミッタ電極15e(図6参照)とコレクタ電極(図示せず)との間に、エミッタ-コレクタ電圧が印加される。また、信号ピン28の導線部28bにゲート電位を印加する。これにより、半導体チップ15のゲート電極15g(図6参照)にゲート電位が印加され、半導体チップ15内において、エミッタ電極15eとコレクタ電極との間に流れる電流が制御される。例えば、半導体チップ15には数kVのエミッタ-コレクタ電圧が印加され、オン状態においては数MWの電流が流れる。
 このような動作において、半導体チップ15に欠陥120が発生し、局所的に抵抗が低下すると、欠陥120を含む部分に数MWの大電流が集中して流れる。そうすると、ジュール熱によって電流経路周辺の材料、例えば、シリコン、銅及び半田等が気化し、体積が膨張して圧力が急上昇する。これにより、欠陥120を起点として、クラック121が発生する。クラック121は、樹脂部材91内を主として半導体チップ15の下面15a又は上面15bの延長面に沿って伝播する。
 仮に、このクラック121が半導体ユニットの外表面に到達すると、気化した材料がクラック121を介して外部に噴出する。この場合、噴出物が半導体ユニット1の周辺を汚染し、更なる不具合を誘発する。また、半導体ユニットの材料の一部が失われるため、クラック121が塞がらず、半導体ユニットが上下に分離してしまう。この場合、エミッタ-コレクタ間は、クラック121を介してアークが発生する度に突発的に大電流が流れ、アークが発生していないときはオープン状態となる不安定な状態になる可能性が高い。この結果、この半導体ユニットを組み込んだ電力変換器の動作も著しく不安定になる。また、半導体ユニットに接続された周辺の回路にも悪影響を及ぼしてしまう。
 これに対して、本実施形態に係る半導体ユニット1においては、積層体10を覆う金属製、例えば、ステンレス鋼製のケース90が設けられており、積層体10とケース90との間には樹脂部材91が充填されている。これにより、ケース90が上昇した内圧を抑え込み、積層体10が上下に分離したり、材料が噴出することを抑制できる。
 また、ケース90の面90aは開口しているが、積層体10から見て面90a側には、曲げエミッタ板20の曲げ部20cが設けられている。曲げ部20cの-Z方向側の先端20dは、半導体チップ15の上面15bよりも下方まで延出している。このため、半導体チップ15を起点として発生したクラック121が、面90aに向かって進展したとしても、曲げ部20cによって阻止される可能性が高い。曲げ部20cの先端20dが半導体チップ15の下面15aよりも下方まで延出していると、クラック121の進展をより確実に阻止することができる。
 このように、本実施形態によれば、半導体チップ15に欠陥120が発生しても、クラック121が半導体ユニット1の外表面に到達しにくい。この結果、半導体ユニット1の材料がクラック121を介して半導体ユニット1の外部に噴出し、失われることを抑制できる。これにより、欠陥120が発生した半導体ユニット1内においては、一旦気化したシリコン等の材料が凝固し、短絡経路を形成する。この結果、半導体ユニット1は安定した短絡状態となる。この半導体ユニット1は、スイッチング素子としては機能しなくなるが、安定した短絡状態となることにより、電力変換器の動作は安定する。また、噴出した材料によって周囲を汚染することを抑制できる。
 (第2の実施形態)
 次に、第2の実施形態について説明する。
 図8は、本実施形態に係る半導体ユニットを示す断面図である。
 図8に示すように、本実施形態に係る半導体ユニット2は、前述の第1の実施形態に係る半導体ユニット1(図1~図6参照)と比較して、曲げエミッタ板20が設けられておらず、その代わりに、曲げコレクタ板30が設けられている。曲げコレクタ板30は、銅等の金属材料により形成されている。
 +Z方向から見て、曲げコレクタ板30の形状はC字状である。すなわち、X方向に延びるベース部30a、及び、ベース部30aのX方向両端部から-Y方向に引き出され、+Z方向に向けて湾曲した曲げ部30cが一体的に形成されている。曲げコレクタ板30のベース部30aは、コレクタブロック13と半導体チップ15との間に配置されており、半田シート(図示せず)によってコレクタブロック13に接合されると共に、半田シート14によって半導体チップ15のコレクタ電極(図示せず)に接合されている。曲げコレクタ板30は、ケース90の開口部90cを介して、外部に接続される。
 曲げコレクタ板30の曲げ部30cの+Z方向側の先端30dは、少なくとも、半導体チップ15の下面15aよりも+Z方向側に位置し、好ましくは、上面15bよりも+Z方向側に位置している。換言すれば、ケース90の面90bと先端30dとの距離L4は、面90bと下面15aとの距離L3よりも長く、好ましくは、面90bと上面15bとの距離L2よりも長い。すなわち、L3<L4であり、好ましくは、L2<L4である。
 本実施形態に係る半導体ユニット2においても、積層体10を覆うケース90が設けられており、積層体10とケース90との間には樹脂部材91が充填されている。これにより、半導体チップ15が短絡して材料の一部が気化した場合でも、ケース90が内圧を抑え込み、積層体10が上下に分離したり、材料が噴出することを抑制できる。
 また、ケース90の面90aは開口しているが、半導体チップ15から見て面90a側には、曲げコレクタ板30の曲げ部30cが設けられている。曲げ部30cの+Z方向側の先端30dは、半導体チップ15の下面15aよりも上方まで延出している。このため、半導体チップ15を起点として発生したクラック121(図7参照)が、面90aに向かって進展したとしても、曲げ部30cによって阻止される可能性が高い。曲げ部30cの先端30dが半導体チップ15の上面15bよりも上方まで延出していると、クラック121の進展をより確実に阻止することができる。
 このように、本実施形態によっても、前述の第1の実施形態と同様に、半導体チップ15に欠陥120(図7参照)が発生しても、クラック121が半導体ユニット1の外表面に到達することを抑制し、半導体ユニット2を安定した短絡状態とすることができる。
 本実施形態における上記以外の構成、動作及び効果は、前述の第1の実施形態と同様である。
 (第2の実施形態の第1の変形例)
 次に、第2の実施形態の第1の変形例について説明する。
 図9(a)は、本変形例に係る半導体ユニットのコレクタ側の部材を示す斜視図であり、(b)はその断面図である。
 図9(a)及び(b)に示すように、本変形例に係る半導体ユニット2aは、前述の第2の実施形態に係る半導体ユニット2(図8参照)と比較して、曲げコレクタ板30の替わりに鉛直板31が設けられている点が異なっている。
 鉛直板31は、強度が高い材料からなり、例えば、ステンレス鋼からなる。鉛直板31の形状は板状であり、その主面はXZ平面に対して平行である。鉛直板31は、ネジ32によってコレクタブロック13の-Y方向に向いた側面に接合されている。鉛直板31の上部はコレクタブロック13よりも上方、すなわち、+Z方向に延出しており、その上端31dは、半導体チップ15の下面15a(図8参照)よりも上方に位置し、好ましくは、上面15b(図8参照)よりも上方に位置している。また、鉛直板31の上縁には、凹部31eが形成されている。ボンディングワイヤ27及び信号ピン28(図8参照)は、凹部31e内を通過する。
 本変形例に係る半導体ユニット2aにおいて、鉛直板31をエミッタ-コレクタ間の電流経路に介在させないため、必ずしも導電性が高い材料により形成する必要がなく、強度、剛性及びコスト等が優れた材料を選択することができる。また、第2の実施形態と比較して、曲げコレクタ板30を形成するための曲げ加工が不要になるため、製造が容易になる。
 本変形例における上記以外の構成、動作及び効果は、前述の第2の実施形態と同様である。
 (第2の実施形態の第2の変形例)
 次に、第2の実施形態の第2の変形例について説明する。
 図10は、本変形例に係る半導体ユニットのコレクタ側の部材を示す断面図である。
 図10に示すように、本変形例に係る半導体ユニット2bにおいては、前述の第2の実施形態の第1の変形例に係る半導体ユニット2a(図9(a)及び(b)参照)と比較して、鉛直板31が、ネジ32(図9(a)及び(b)参照)ではなく、圧入加工によりコレクタブロック13に接合されている点が異なっている。
 本変形例によれば、圧入加工により、鉛直板31をコレクタブロック13により簡便に接合することができる。
 本変形例における上記以外の構成、動作及び効果は、前述の第2の実施形態の第1の変形例と同様である。
 (第3の実施形態)
 次に、第3の実施形態について説明する。
 本実施形態は、第1の実施形態に係る半導体ユニットが複数個実装された半導体装置の実施形態である。
 図11(a)は、本実施形態に係る半導体装置を示す斜視図であり、(b)~(e)はその分解斜視図である。
 図12は、本実施形態に係る半導体装置を示す断面図である。
 図11(a)~(e)及び図12に示すように、本実施形態に係る半導体装置100においては、水冷ジャケット101が設けられており、その上にヒートシンク102が設けられている。ヒートシンク102においては、1枚の本体部102aと、複数の凸部102bが一体的に設けられている。本体部102aの形状は、XY平面に沿って拡がる略板状である。凸部102bの形状は、略直方体状である。凸部102bは本体部102aから上方(+Z方向)に突出しており、本体部102aの上面にX方向及びY方向に沿ってマトリクス状に配列されている。各凸部102bの上面上には、半田シート103が設けられている。
 各凸部102b上には、1つの半導体ユニット1が設けられている。半導体ユニット1の構成は、第1の実施形態において説明したとおりである。ヒートシンク102の凸部102bは、半田シート103により、半導体ユニット1のケース90の開口部90cを介して、クラッド材11に接合されている。これにより、1枚のヒートシンク102上に、複数個の半導体ユニット1が実装されている。Y方向において隣り合う半導体ユニット1は、ケース90の面90aを対向させるように配置されている。なお、図11(a)~(e)においては、24個の半導体ユニット1が、X方向に4個、Y方向に6個配列された例を示しているが、半導体ユニット1の数及び配列は、これには限定されない。
 ヒートシンク102の本体部102a上には、絶縁部材104が設けられており、その上には、エミッタバス105が設けられている。エミッタバス105は、ヒートシンク102から電気的に分離されている。エミッタバス105には、X方向に延びる水平部105aと、水平部105aから+Z方向に起立した柱部105bが設けられている。水平部105aは、X方向に沿って2列に配列された複数個の半導体ユニット1のグループ毎に設けられており、各半導体ユニット1のケース90の面90a側に配置されている。柱部105bは、半導体ユニット1毎に設けられている。柱部105bは、半導体ユニット1のエミッタ端子24の鉛直部24dに接続されている。
 エミッタバス105の水平部105a上には、ドライブ基板106が設けられている。ドライブ基板106の形状は、Y方向に延びる1本の幹部106a及びX方向に延びる複数本の枝部106bが一体的に設けられた樹形状である。枝部106bは、各半導体ユニット1のケース90の面90a側に配置されている。ドライブ基板106においては、樹脂材料等の絶縁材料からなる絶縁シートの内部及び上面上に、例えば銅からなる配線(図示せず)がプリントされている。ドライブ基板106の配線は、半導体ユニット1の信号ピン28の導線部28bに接続されると共に、半導体装置100の外部に引き出されている。また、ドライブ基板106の配線は、ヒートシンク102及びエミッタバス105からは絶縁されている。
 半導体装置100のX方向両端部には、銅等の高伝導性の金属からなる側壁107が設けられている。側壁107はエミッタバス105の水平部105aに接続されている。また、半導体装置100のX方向に向いた側面、Y方向に向いた側面、及び+Z方向に向いた上面を覆うように、絶縁性の蓋108が設けられている。
 上述のごとく、半導体ユニット1のコレクタブロック13は、クラッド材11を介して、ヒートシンク102に接続されている。また、半導体ユニット1のエミッタ端子24は、エミッタバス105を介して側壁107に接続されている。更に、半導体ユニット1のゲート端子フレーム19は、ボンディングワイヤ27及び信号ピン28を介して、ドライブ基板106の配線に接続されている。従って、半導体装置100に実装された複数個の半導体ユニット1は、ヒートシンク102と側壁107との間に相互に並列に接続されている。また、各半導体ユニット1のゲート端子フレーム19は、ドライブ基板106の配線に共通接続されている。
 次に、本実施形態に係る半導体装置100の動作について説明する。
 半導体装置100は、例えば、電力変換器に搭載される。電力変換器においては、複数の半導体装置100が直列に接続されている。
 各半導体装置100においては、ヒートシンク102にコレクタ電位を印加し、側壁107にエミッタ電位を印加することにより、各半導体ユニット1にエミッタ-コレクタ電圧が印加される。この状態で、ドライブ基板106の配線にゲート電位を印加することにより、各半導体ユニット1に設けられた半導体チップ15の導通状態を制御し、半導体装置100に流れる電流を制御することができる。
 そして、半導体装置100に設けられた複数の半導体ユニット1のうち、1つの半導体ユニット1に含まれる1枚の半導体チップ15に不具合が発生しても、前述の第1の実施形態において説明したように、ケース90及び曲げエミッタ板20の曲げ部20cが内圧を抑え込むと共にクラックの伝播を抑制し、この半導体ユニット1を安定した短絡状態とすることができる。これにより、他の半導体ユニット1が損傷することを回避できる。また、不具合が発生した半導体ユニット1を含む半導体装置100が、安定した短絡状態となる。これにより、電力変換器全体としては、運転を継続することができる。
 なお、本実施形態においては、水冷ジャケット101の替わりに、ヒートシンク102の本体部102aの下面にフィンを設けてもよい。
 以上説明した実施形態によれば、半導体チップに不具合が生じても、被害の拡大を抑制できる半導体ユニット及び半導体装置を実現することができる。
 なお、前述の実施形態及び変形例は、相互に組み合わせて実施することもできる。例えば、第3の実施形態に係る半導体装置100に、第2の実施形態に係る半導体ユニット2、第2の実施形態の第1の変形例に係る半導体ユニット2a、又は、第2の実施形態の第2の変形例に係る半導体ユニット2bを実装してもよい。また、第1の実施形態において、曲げエミッタ板20の替わりに、図9(a)及び(b)に示すような鉛直板31を設け、これをエミッタブロック22にネジ又は圧入加工により接合してもよい。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明及びその等価物の範囲に含まれる。

Claims (6)

  1.  金属製のケースと、
     前記ケース内に設けられ、第1面に第1電極が設けられ、第2面に第2電極が設けられた半導体チップと、
     前記ケース内に設けられ、前記半導体チップの前記第1面上に積層され、前記第1電極に接続され、前記半導体チップの側方において、端部の第1部分が前記第1面から前記第2面に向かう第1方向に向けて延出し、前記第1部分の先端が前記第1面よりも前記第1方向側に配置された第1金属板と、
     を備えた半導体ユニット。
  2.  前記第1金属板の前記第1部分の先端が、前記第2面よりも前記第1方向側に配置された請求項1記載の半導体ユニット。
  3.  前記半導体チップ及び前記第1金属板を含む積層体と、前記ケースとの間に充填された樹脂部材をさらに備えた請求項1または2に記載の半導体ユニット。
  4.  前記半導体チップの前記第2面上に積層され、前記第2電極に接続された第2金属板をさらに備え、
     前記ケースには開口部が形成されており、前記第2金属板は前記開口部を介して外部に接続される請求項1~3のいずれか1つに記載の半導体ユニット。
  5.  前記ケースには開口部が形成されており、前記第1金属板は前記開口部を介して外部に接続される請求項1~3のいずれか1つに記載の半導体ユニット。
  6.  板状の本体部と、前記本体部から突出した複数の凸部と、を有したヒートシンクと、
     請求項1~5のいずれか1つに記載の複数個の半導体ユニットと、
     を備え、
     各前記半導体ユニットは、各前記凸部に接合された半導体装置。
PCT/JP2018/025082 2018-02-07 2018-07-02 半導体ユニット及び半導体装置 WO2019155653A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018020235A JP2021061263A (ja) 2018-02-07 2018-02-07 半導体ユニット及び半導体装置
JP2018-020235 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019155653A1 true WO2019155653A1 (ja) 2019-08-15

Family

ID=67549325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025082 WO2019155653A1 (ja) 2018-02-07 2018-07-02 半導体ユニット及び半導体装置

Country Status (2)

Country Link
JP (1) JP2021061263A (ja)
WO (1) WO2019155653A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019613A1 (ja) * 2019-07-26 2021-02-04 株式会社 東芝 半導体ユニット及び半導体装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270742A (ja) * 2001-03-12 2002-09-20 Unisia Jecs Corp 半導体装置
WO2009020061A1 (ja) * 2007-08-07 2009-02-12 Rohm Co., Ltd. 高効率モジュール
JP2010141279A (ja) * 2008-11-14 2010-06-24 Calsonic Kansei Corp 素子の放熱構造及び方法
JP2012222324A (ja) * 2011-04-14 2012-11-12 Mitsubishi Electric Corp 半導体装置
WO2014064806A1 (ja) * 2012-10-25 2014-05-01 三菱電機株式会社 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270742A (ja) * 2001-03-12 2002-09-20 Unisia Jecs Corp 半導体装置
WO2009020061A1 (ja) * 2007-08-07 2009-02-12 Rohm Co., Ltd. 高効率モジュール
JP2010141279A (ja) * 2008-11-14 2010-06-24 Calsonic Kansei Corp 素子の放熱構造及び方法
JP2012222324A (ja) * 2011-04-14 2012-11-12 Mitsubishi Electric Corp 半導体装置
WO2014064806A1 (ja) * 2012-10-25 2014-05-01 三菱電機株式会社 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019613A1 (ja) * 2019-07-26 2021-02-04 株式会社 東芝 半導体ユニット及び半導体装置

Also Published As

Publication number Publication date
JP2021061263A (ja) 2021-04-15

Similar Documents

Publication Publication Date Title
JP5098951B2 (ja) 半導体装置
JP7457812B2 (ja) 半導体モジュール
US20220319975A1 (en) Semiconductor device
US11490516B2 (en) Power module structure
JP4349364B2 (ja) 半導体装置
JP2023062046A (ja) 半導体モジュール
US20170170150A1 (en) Semiconductor module and semiconductor device
NL2025200A (en) Semiconductor device
WO2019155653A1 (ja) 半導体ユニット及び半導体装置
US11929307B2 (en) Plurality of lead frames for cooling a power device
JP2019021684A (ja) 半導体パッケージ
US11495527B2 (en) Semiconductor module
JP6344197B2 (ja) 半導体装置
US20220301966A1 (en) Semiconductor device
WO2021019613A1 (ja) 半導体ユニット及び半導体装置
JP4266814B2 (ja) 接続端子構造
JP2021082794A (ja) 電子部品および電子装置
JP2008205083A (ja) 半導体装置および取出し電極用ストラップ
US11658231B2 (en) Semiconductor device
US20230132511A1 (en) Semiconductor device
US20230298977A1 (en) Wiring structure, semiconductor module, and vehicle
IT201800004782A1 (it) Dispositivo a semiconduttore di potenza con incapsulamento a montaggio superficiale a doppia isola
US20220301993A1 (en) Semiconductor device
US20220375845A1 (en) Semiconductor device
JP6922002B2 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP