WO2019154129A1 - 一种基于纤毛温度传感的柔性电子皮肤及其制备方法 - Google Patents

一种基于纤毛温度传感的柔性电子皮肤及其制备方法 Download PDF

Info

Publication number
WO2019154129A1
WO2019154129A1 PCT/CN2019/073174 CN2019073174W WO2019154129A1 WO 2019154129 A1 WO2019154129 A1 WO 2019154129A1 CN 2019073174 W CN2019073174 W CN 2019073174W WO 2019154129 A1 WO2019154129 A1 WO 2019154129A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
temperature sensing
layer
thin film
electronic skin
Prior art date
Application number
PCT/CN2019/073174
Other languages
English (en)
French (fr)
Inventor
刘玮书
张双猛
胡继真
张澎祥
刘勇
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62513754&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019154129(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 南方科技大学 filed Critical 南方科技大学
Priority to JP2020531808A priority Critical patent/JP6802597B2/ja
Publication of WO2019154129A1 publication Critical patent/WO2019154129A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • G01K1/18Special arrangements for conducting heat from the object to the sensitive element for reducing thermal inertia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples

Definitions

  • the invention relates to the field of flexible sensor technology, in particular to a flexible electronic skin based on ciliary temperature sensing and a preparation method thereof.
  • Electronic skin is one of the hot issues in international research today. It has very important application prospects in many fields such as bionic intelligent robots, human prosthetics, and wearable devices. Human skin can not only protect the internal organs of the human body from external interference, but also an important source of information acquisition, including the sensing of the force of pressure, tension and vibration, and the sensing of heat loss, cold and heat. At present, the research on electronic skin mainly focuses on the tactile sensing of force, and has made remarkable progress, while the research on temperature sensing is relatively rare.
  • thermoelectric p-n junctions Known types of temperature sensors for use in electronic skin are thermistors, thermally expandable composites, and thermoelectric p-n junctions.
  • the thermistor has a good linear relationship with the temperature change, but the external current needs to be input when measuring the temperature, and the change of the voltage value is also monitored. Therefore, the four-terminal lead wire is required to form a sandwich structure with the electrodes of the upper and lower plates. The structure is complicated, which increases the processing difficulty.
  • the three-wire method and the two-wire method of the combined lead wire have poor temperature measurement accuracy, and the change of the resistance value is affected by the pressure, so that the electronic skin temperature transmission with simple structure and accurate sensing is sought. There are major limitations in the application of Sense.
  • the composite material with conductive filler added to the polymer matrix increases the temperature of the matrix to make the filler distribution sparse and increase the electrical resistance.
  • the measurement is susceptible to deformation, the measurement accuracy is poor, the material performance is unstable, and there is no Long-term use characteristics.
  • the thermal p-n junction is based on the thermal activation of the carrier to measure the temperature, and the sensitivity is better than the thermistor, but it has the light-affecting property, which is easily interfered in practical applications and affects the accuracy of the temperature sensing change.
  • non-contact type infrared radiation, acoustic temperature measurement and the like are greatly affected by environmental factors of the gas; the semiconductor laser absorption absorption spectrum technology can be coordinated, the measuring device is complicated, expensive, and has a large The use limitations, poor measurement accuracy.
  • Contact type Thermistor and other heat capacity is large, the response to temperature is slow, and the temperature sensing required for the test is rigorous, and the temperature field that is easily disturbed is not applicable to the temperature sensing of the electronic skin.
  • the object of the present invention is to provide a flexible electronic skin based on ciliary temperature sensing and a preparation method thereof, which aims to solve the technical problems of low accuracy and slow response in temperature sensing in the prior art.
  • the technical solution adopted by the present invention is: a flexible electronic skin based on ciliary temperature sensing, comprising a temperature sensing unit, a heat transfer unit disposed on the temperature sensing unit, and transmitting the temperature
  • the sensing unit and the heat transfer unit are packaged in an integrated package layer
  • the temperature sensing unit comprises a flexible substrate, an insulating layer deposited on the flexible substrate from bottom to top, a transition layer, a plurality of thin film thermopiles, and a heat insulation
  • the protective layer, the heat transfer unit includes a plurality of heat transfer cilia respectively fixed to the heat transfer regions of each of the thin film thermopiles and extending out of the heat insulation protective layer and the package layer.
  • the insulating layer includes a thermal insulating layer deposited on the flexible substrate and an electrically insulating layer deposited on the thermal insulating layer.
  • each of the thin film thermopiles is a ring structure formed by a series of pairs of thin film thermocouples, and the heat transfer region is located in the annular structure.
  • the heat transfer cilia is a filament made of high thermal conductivity carbon fiber, graphite fiber, metal or polymer material.
  • the heat transfer cilia are fixed to the heat transfer region by a thermally conductive adhesive layer.
  • the invention also provides a preparation method of the above-mentioned ciliary temperature sensing-based flexible electronic skin, comprising the following process steps:
  • the temperature sensing unit and the heat transfer unit are integrally packaged, and each of the heat transfer bristles protrudes outside the package.
  • the flexible substrate material is a polyimide or polyvinyl alcohol film or a polyester film.
  • the insulating layer comprises a thermal insulating layer deposited on the flexible substrate and an electrically insulating layer deposited on the thermal insulating layer, the thermal insulating layer being a porous silicon layer or composed of yttria and zirconia A thermal barrier coating, the electrically insulating layer being a SiO 2 layer.
  • the thin film thermopile is formed by a series of pairs of thin film thermocouples, which are a T-type thermocouple or an S-type thermocouple or a B-type thermocouple or an E-type thermocouple or an R-type thermocouple or a K-type Thermocouple.
  • the heat transfer cilia is a filament made of carbon fiber, graphite fiber, metal or polymer material having high thermal conductivity.
  • the heat transfer cilia is sensitive to the external ambient temperature and transmitted to the thin film thermopile, which greatly shortens the response time and improves the response rate, and the temperature sensing does not require external current input, and the signal transmission does not need to form a circuit loop with the upper and lower substrates.
  • the temperature interferes with the accuracy of the temperature measurement, and also reduces the influence of the flexible substrate and the insulating layer on the temperature response rate of the thin film thermopile, greatly reduces the thermal inertia of the structure, improves the response rate of the thermopile temperature change, and further improves the flexible electron.
  • the perceived sensitivity of the skin moreover, the thin film thermopile has stable performance and is less affected by light and deformation.
  • it When applied to electronic skin, it has better applicability and stability for electronic skin; further, it can be used to prepare materials for thin film thermopiles. A wide variety, making it a wide range of applications, more application prospects .
  • FIG. 1 is a schematic structural view of a flexible electronic skin based on ciliary temperature sensing according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a flexible electronic skin based on ciliary temperature sensing according to an embodiment of the present invention
  • thermopile 3 is a schematic structural diagram of a thin-film thermopile in a flexible electronic skin based on ciliary temperature sensing according to an embodiment of the present invention
  • FIG. 4 is a flow chart of a method for preparing a flexible electronic skin based on ciliary temperature sensing according to an embodiment of the present invention
  • 10-temperature sensing unit 11-flexible substrate; 12-insulating layer; 121-thermal insulating layer; 122-electric insulating layer; 13-transition layer; 14-thin film thermopile; 141-heat transfer region; 142-NP film Thermocouple pair; 15-insulating protective layer; 20-heat transfer unit; 21-heat transfer cilia; 22-thermally conductive adhesive layer; 30-encapsulated layer.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.
  • a flexible electronic skin based on ciliary temperature sensing includes a temperature sensing unit 10, a heat transfer unit 20 disposed on the temperature sensing unit 10, and a temperature transfer.
  • the sensing unit 10 and the heat transfer unit 20 are packaged in an integrated encapsulation layer 30.
  • the temperature sensing unit 10 includes a flexible substrate 11, an insulating layer 12 and a transition layer 13 which are sequentially placed on the flexible substrate 11 from bottom to top, a plurality of thin film thermopiles 14 disposed on the transition layer 13 and spaced apart, and a package
  • Each of the thin film thermopiles 14 has a heat transfer region 141
  • the heat transfer unit 20 includes a plurality of heat transfer cilia 21, each of which is fixed to a thin film thermopile 14. On the heat transfer region 141, each of the heat transfer bristles 21 protrudes beyond the heat insulating protective layer 15 and the encapsulation layer 30.
  • the heat transfer cilia 21 is sensitive to the external environment temperature and transmitted to the thin film thermopile 14, which greatly shortens the response time and improves the response rate, and the temperature sensing does not require external current input, and the signal transmission does not need to be formed with the upper and lower substrates.
  • the circuit circuit has a simple structure and is convenient to manufacture, and is convenient for batch and integrated preparation.
  • the temperature measuring part adopts a thin film thermopile 14, which improves the output voltage and temperature measurement precision, and encapsulates the heat insulating protective layer 15 outside the thin film thermopile 14 to effectively prevent the environment.
  • the flexible substrate 11 is made of flexible polyimide, and the polyimide has a high temperature resistance of 400 ° C or higher and a long-term use temperature range of -200 to 300 ° C.
  • the use of the material to form the substrate not only improves the substrate. The reliability of the substrate makes it suitable for use in various environmental places.
  • the material is flexible, stretchable, and easily deformable, so that the electronic skin can be applied to fields such as machines, human prostheses, and wearable devices, and has high applicability.
  • the insulating layer 12 includes a thermal insulating layer 121 deposited on the flexible substrate 11 and an electrically insulating layer 122 deposited on the thermal insulating layer 121.
  • the thermal insulation layer 121 is a porous silicon layer or a thermal barrier coating composed of yttria and zirconia.
  • the electrically insulating layer 122 is a SiO 2 layer.
  • the thermal insulation layer 121 and the electrically insulating layer 122 are disposed to isolate the heat and electricity of the external environment, thereby avoiding interference with the temperature measurement of the thin film thermopile 14 and affecting the accuracy of temperature measurement.
  • the transition layer 13 is preferably a Ta 2 O 5 layer.
  • the thin film thermopile 14 is an annular structure formed by a series of pairs of thin film thermocouples, and the heat transfer region 141 is located in the annular structure.
  • the thin film thermopile 14 is formed by connecting N-P thin film thermocouple pairs 142 in series. The use of this thermocouple series structure makes the output voltage larger, and also improves the accuracy of temperature measurement.
  • the heat insulating protective layer 15 is a SiO 2 layer. Since SiO 2 has poor thermal conductivity, the ambient temperature is effectively prevented from interfering with the measurement accuracy of the thin film thermopile 14, and at the same time, the substrate attached to the thin film thermopile 14 is prevented. When there is a large thickness, mass and heat capacity, the response speed of the thin film thermopile 14 to temperature is lowered, thereby greatly reducing the thermal inertia of the structure and increasing the response rate of the temperature change.
  • the heat transfer cilia 21 is a filament made of carbon fiber, graphite fiber, metal (e.g., copper, silver, aluminum, etc.) or a polymer material having high thermal conductivity.
  • the filaments made of the above materials are cut to a set length, and are fixed to the heat transfer region 141 of the thin film thermopile 14 by the heat conductive adhesive layer 22, so that the heat of the outer environment or the airflow is utilized by the heat transfer cilia 21. It is transferred to the heat transfer region 141 of the thin film thermopile 14.
  • the encapsulating layer 30 is made of a flexible or elastic polydimethylsiloxane (PDMS) or polyethylene terephthalate (PET) material to protect the above devices and the external environment. Electrical insulation.
  • an embodiment of the present invention further provides a method for preparing the above flexible electronic skin, which comprises the following process steps:
  • the flexible substrate 11 is prepared, and the insulating layer 12 and the transition layer 13 are sequentially deposited from the bottom to the top on the flexible substrate 11, and a plurality of thin film thermopiles 14 are intermittently deposited on the transition layer 13, and a plurality of heat transfer cilia 21 are prepared.
  • the heat transfer region 141 of the stack 14 is fixed with a heat transfer bristles 21; a heat insulating protective layer 15 for encapsulating the respective thin film thermopiles 14 is deposited on the transition layer 13, and the heat transfer bristles 21 are extended outside the heat insulating protective layer 15.
  • a flexible polyimide is selected to fabricate the flexible substrate 11, the polyimide has a high temperature resistance of 400 ° C or higher, and a long-term use temperature range of -200 to 300 ° C, and the substrate is made of the material. It not only improves the reliability of the substrate, but also makes it suitable for various environmental places. Moreover, the material is flexible, stretchable and deformable, so that the electronic skin can be applied to the fields of machines, human prostheses, wearable devices, etc. Strong.
  • a porous silicon layer is then formed on the flexible substrate 11 to form the thermal insulating layer 121, or a thermal barrier coating composed of yttria and zirconia is deposited instead of the porous silicon layer to achieve thermal insulation.
  • An SiO 2 layer is deposited on the thermal insulating layer 121 as an electrically insulating layer 122 by magnetron sputtering.
  • the thermal insulation layer 121 and the electrically insulating layer 122 are disposed to isolate the heat and electricity of the external environment, thereby avoiding interference with the temperature measurement of the thin film thermopile 14 and affecting the accuracy of temperature measurement.
  • a Ta 2 O 5 layer was deposited as a transition layer 13 on the SiO 2 layer.
  • a thin film thermopile 14 is deposited on the Ta 2 O 5 layer.
  • the thin film thermopile 14 is formed by a plurality of pairs of thin film thermocouples.
  • the thin film thermocouple is a T-type thermocouple or an S-type thermocouple or a B-type thermocouple or an E-type thermocouple or Type R thermocouple or K type thermocouple.
  • the deposition pattern is formed into a thin film thermocouple, the pattern of the mask is designed to be controlled, wherein the circuit connection pads are uniformly integrated on one side.
  • the heat transfer cilia 21 is selected as carbon fibers of high thermal conductivity, graphite fibers, metals (such as copper, silver, aluminum, etc.) or filaments of a polymer material.
  • the heat transfer cilia 21 is preferably a thin copper wire having good heat conductivity. The copper wire is cut to a set length and fixed to the heat transfer region 141 of each thin film thermopile 14 by a thermally conductive adhesive layer 22.
  • a SiO 2 layer for encapsulating each of the thin film thermopiles 14 is deposited as a heat insulating protective layer 15 on the transition layer 13, and each of the heat transfer bristles 21 is extended outside the heat insulating protective layer 15.
  • the temperature sensing unit 10 and the heat transfer unit 20 are integrally packaged, and the heat transfer cilia 21 protrudes out of the package body.
  • the temperature sensing unit 10 and the heat transfer unit 20 are integrally packaged by using a flexible, elastic polydimethylsiloxane (PDMS) or polyethylene terephthalate (PET).
  • PDMS polydimethylsiloxane
  • PET polyethylene terephthalate
  • the main agent: hardener is prepared in a mass or volume ratio of 10:1, and then fully mixed and stirred, vacuumed to remove bubbles, and then poured in The prepared device was heated at 70 ° C for 1 hour and solidified to complete the preparation of the electronic skin. It adopts PDMS or PET flexible material, integrated casting, and the processing process is simplified.
  • the electronic skin has flexible properties and is suitable for different structural curved surfaces, which can meet various application requirements.
  • the flexible electronic skin is prepared by the above preparation method, the flexible electronic skin structure is simple, and the integrated package is formed, which is convenient for integrated preparation; and the formed electronic skin is flexible and elastic, and meets various application requirements; meanwhile, using cilia
  • the temperature sensing sensitivity is high, the accuracy is accurate, the temperature response time is short, and the temperature measurement range is wide.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种基于纤毛温度传感的柔性电子皮肤,包括温度传感单元(10)、置于温度传感单元(10)上的传热单元(20)以及将温度传感单元(10)及传热单元(20)封装于一体的封装层(30),温度传感单元(10)包括柔性基底(11)、由下至上依次沉积于柔性基底(11)上的绝缘层(12)、过渡层(13)、多个薄膜热电堆(14)以及隔热保护层(15),传热单元(20)包括多个分别固定于各薄膜热电堆(14)的传热区域(141)上并伸出隔热保护层(15)及封装层(30)外的传热纤毛(21)。一种基于纤毛温度传感的柔性电子皮肤的制备方法。

Description

一种基于纤毛温度传感的柔性电子皮肤及其制备方法 技术领域
本发明涉及柔性传感器技术领域,尤其提供一种基于纤毛温度传感的柔性电子皮肤及其制备方法。
背景技术
电子皮肤是当今国际研究的热点问题之一,其在仿生智能机器人、人体假肢、可穿戴设备等多个领域有非常重要的应用前景。人类皮肤不仅可以保护人体内部器官运行免受外界干扰,还是重要的信息获取来源,主要包括对压力、拉力、振动的感知的力的传感和对热量散失、冷、热的温度传感方面。目前电子皮肤的研究主要集中在力的触觉传感方面,并取得了显著进展,而对温度传感方面的研究相对较少。
已知的应用于电子皮肤的温度传感器类型有热敏电阻、热膨胀复合材料以及热电p-n结。其中,热敏电阻与温度变化有较好的线性关系,但测量温度时需要输入外部电流,同时也要监测电压值的变化,这样需要采用四端引线,与上下极板的电极组成三明治结构,结构复杂,增加了加工难度,而合并引线的三线法和两线法,测温精度较差,同时电阻值的变化会受压力的影响,因而在力求结构简单、传感精确的电子皮肤温度传感的应用中有较大的局限性。而在聚合物基体中加入导电填充物的复合材料,温度升高基体膨胀使填充物分布稀疏进而使电阻增大,测量时易受变形作用的影响,测量精度差,材料性能不稳定,不具有长期使用特性。热敏p-n结基于载流子的热活化来测温,灵敏度优于热敏电阻,但具有光影响特性,在实际应用中容易受到干扰,影响温度感应变化的准确度。
而且,目前的电子皮肤的温度传感主要适用于对固体表面的温度传感,而不能灵敏感知环境中(气流)温度变化。而应用于气体测温的方法中,非接触式:红外辐射,声学测温等受气体的环境因素影响较大;可协调半导体激光吸收吸收谱技术,测量装置复杂,价格昂贵,且有很大的使用局限性,测量精度差。接触式:热敏电阻等热容量较大,对温度的响应较慢,且对测试要求严格的温度传感,易扰动被测温度场,均不适用于电子皮肤的温度传感。
发明内容
本发明的目的在于提供一种基于纤毛温度传感的柔性电子皮肤及其制备方法,旨在解决现有技术中温度传感时存在的准确度低、响应慢等技术问题。
为实现上述目的,本发明采用的技术方案是:一种基于纤毛温度传感的柔性电子皮肤,包括温度传感单元、置于所述温度传感单元上的传热单元以及将所述温度传感单元及所述传热单元封装于一体的封装层,所述温度传感单元包括柔性基底、由下至上依次沉积于所述柔性基底上的绝缘层、过渡层、多个薄膜热电堆以及绝热保护层,所述传热单元包括多个分别固定于各所述薄膜热电堆的传热区域上并伸出所述隔热保护层及所述封装层外的传热纤毛。
进一步地,所述绝缘层包括沉积于所述柔性基底上的热绝缘层以及沉积于所述热绝缘层上的电绝缘层。
进一步地,各所述薄膜热电堆为由多对薄膜热电偶串联形成的环状结构,所述传热区域位于所述环状结构内。
进一步地,所述传热纤毛为采用高导热碳纤维、石墨纤维、金属或高分子材料制成的丝状物。
进一步地,所述传热纤毛通过导热粘结层固定于所述传热区域上。
本发明还提供了一种上述的基于纤毛温度传感的柔性电子皮肤的制备方法,包括以下工艺步骤:
制备温度传感单元及传热单元:
预备柔性基底,于所述柔性基底上由下至上依次沉积绝缘层、过渡层;
于所述过渡层上间隔沉积多个薄膜热电堆;
预备多个传热纤毛,在每个所述薄膜热电堆的传热区域固定一传热纤毛;
于所述过渡层上沉积用于封装各所述薄膜热电堆的绝热保护层,并使各所述传热纤毛伸出所述绝热保护层外;
封装:
将所述温度传感单元及所述传热单元封装为一体,且各所述传热纤毛伸出封装体外。
进一步地,所述柔性基底材料为聚酰亚胺或聚乙烯醇薄膜或聚酯薄膜。
进一步地,所述绝缘层包括沉积于所述柔性基底上的热绝缘层以及沉积于所述热绝缘层上的电绝缘层,所述热绝缘层为多孔硅层或由氧化钇与氧化锆组成的热障涂层,所述电绝缘层为SiO 2层。
进一步地,所述薄膜热电堆由多对薄膜热电偶串联形成,所述薄膜热电偶为T型热电偶或S型热电偶或B型热电偶或E型热电偶或R型热电偶或K型热电偶。
进一步地,所述传热纤毛为采用高导热的碳纤维、石墨纤维、金属或高分子材料制成的丝状物。
本发明的有益效果:
本发明中,利用传热纤毛可灵敏感应外面环境温度并传递给薄膜热电堆,极大地缩短响应时间,提高响应速率,而且温度感知无需外部电流输入,信号传递无需与上下基板形成电路回路,结构简单,制作方便,利于批量、集成化制备;同时,测温部分采用薄膜热电堆,与热电偶相比提高了输出电压与测温精度,且在薄膜热电堆外封装绝热保护层,有效防止环境温度对测温准确性的干扰,同时也减少了柔性基底及绝缘层对薄膜热电堆温度响应速率的影响,极大地降低了结构的热惯性,提高热电堆温度变化的响应速率,进而提高柔性电子皮肤的感知灵敏度;而且,薄膜热电堆性能稳定,受光照和变形的影响小,应 用于电子皮肤时,使电子皮肤具有更好的适用性及稳定性;进一步,可用于制备薄膜热电堆的材料种类多,使得其应用场所广泛,应用前景更好。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的基于纤毛温度传感的柔性电子皮肤的结构示意图;
图2为本发明实施例提供的基于纤毛温度传感的柔性电子皮肤的剖视图;
图3为本发明实施例提供的基于纤毛温度传感的柔性电子皮肤中薄膜热电堆的结构示意图;
图4为本发明实施例提供的基于纤毛温度传感的柔性电子皮肤的制备方法流程图;
其中,图中各附图标记:
10-温度传感单元;11-柔性基底;12-绝缘层;121-热绝缘层;122-电绝缘层;13-过渡层;14-薄膜热电堆;141-传热区域;142-N-P薄膜热电偶对;15-绝热保护层;20-传热单元;21-传热纤毛;22-导热粘结层;30-封装层。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、 “前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
请参考图1至图3,本发明实施例提供的一种基于纤毛温度传感的柔性电子皮肤,包括温度传感单元10、置于温度传感单元10上的传热单元20以及将温度传感单元10及传热单元20封装于一体的封装层30。具体地,温度传感单元10包括柔性基底11、由下至上依次置于柔性基底11上的绝缘层12及过渡层13、置于过渡层13上且间隔设置的多个薄膜热电堆14以及封装各薄膜热电堆14的绝热保护层15,各薄膜热电堆14均具有传热区域141,传热单元20包括多个传热纤毛21,每个传热纤毛21对应固定于一薄膜热电堆14的传热区域141上,且每个传热纤毛21伸出隔热保护层15及封装层30外。
本发明实施例中,利用传热纤毛21可灵敏感应外面环境温度并传递给薄膜热电堆14,极大地缩短响应时间,提高响应速率,而且温度感知无需外部电流输入,信号传递无需与上下基板形成电路回路,结构简单,制作方便,利于批量、集成化制备;同时,测温部分采用薄膜热电堆14,提高输出电压与测温精度, 在薄膜热电堆14外封装绝热保护层15,有效防止环境温度对测温准确性的干扰,同时也减少了柔性基底11及绝缘层12对薄膜热电堆14温度响应速率的影响,极大地降低了结构的热惯性,提高热电堆温度变化的响应速率,进而提高柔性电子皮肤的感知灵敏度;再者,薄膜热电堆14性能稳定,受光照和变形的影响小,应用于电子皮肤时,使电子皮肤具有更好的适用性及稳定性;进一步,可用于制备薄膜热电堆的材料种类多,使得其应用场所广泛,应用前景更好。
本实施例中,柔性基底11选择柔性的聚酰亚胺来制作,聚酰亚胺耐高温达400℃以上,长期使用温度范围-200~300℃,采用这种材料来制作基底,不仅提高了基底的可靠性,使其适用于各种环境场所,而且,这种材质柔性好、可拉伸,易变形,使得电子皮肤可应于机器、人体假肢、可穿戴设备等领域,适用性强。
参照图2,绝缘层12包括沉积于柔性基底11上的热绝缘层121以及沉积于热绝缘层121上的电绝缘层122。具体地,热绝缘层121为多孔硅层,或由氧化钇与氧化锆组成的热障涂层。电绝缘层122为SiO 2层。设置热绝缘层121及电绝缘层122,将外部环境的热、电进行隔离,避免对薄膜热电堆14的测温发生干扰而影响测温的准确性。
本实施例中,过渡层13优选为Ta 2O 5层。
进一步地,参照图3,本实施例中,薄膜热电堆14为由多对薄膜热电偶串联形成的环状结构,传热区域141位于环状结构内。图中薄膜热电堆14为N-P薄膜热电偶对142串联形成。利用这种热电偶串联结构,使得输出电压更大,同时也提升了温度测量的精度。
本实施例中,绝热保护层15为SiO 2层,由于SiO 2导热性较差,有效防止了环境温度对薄膜热电堆14测量准确性的干扰,同时,防止由于薄膜热电堆14所附着的基底有较大的厚度、质量和热容量时,而引起薄膜热电堆14对温度的响应速度降低,从而,极大降低了结构的热惯性,提高了温度变化的响应速率。
本实施例中,参照图2、图3,传热纤毛21为采用高导热的碳纤维、石墨 纤维、金属(如铜、银、铝等)或高分子材料制成的丝状物。在制作时,将上述材料制成的丝状物截取设定长度,利用导热粘结层22固定于薄膜热电堆14的传热区域141上,这样利用传热纤毛21将外面环境或气流的热量传递到薄膜热电堆14的传热区域141。本实施例中,封装层30采用具有柔、弹性的聚二甲基硅氧烷(PDMS)或聚对苯二甲酸乙二醇酯(PET)材质,实现对上述各器件的保护以及对外部环境的电绝缘。
结合图4,本发明实施例还提供了一种上述柔性电子皮肤的制备方法,包括以下工艺步骤:
S1、制备温度传感单元10及传热单元20:
预备柔性基底11,于柔性基底11上由下至上依次沉积绝缘层12及过渡层13,于过渡层13上间隔沉积多个薄膜热电堆14,预备多个传热纤毛21,在每个薄膜热电堆14的传热区域141固定一传热纤毛21;于过渡层13上沉积用于封装各薄膜热电堆14的绝热保护层15,并使各传热纤毛21伸出绝热保护层15外。
具体地,在本步骤中,选择柔性的聚酰亚胺来制作柔性基底11,聚酰亚胺耐高温达400℃以上,长期使用温度范围-200~300℃,采用这种材料来制作基底,不仅提高了基底的可靠性,使其适用于各种环境场所,而且,这种材质柔性好、可拉伸,易变形,使得电子皮肤可应于机器、人体假肢、可穿戴设备等领域,适用性强。
然后于柔性基底11上制备多孔硅层来形成热绝缘层121,或者沉积由氧化钇与氧化锆组成的热障涂层来代替多孔硅层来实现隔热。再采用磁控溅射方式于热绝缘层121上沉积SiO 2层作为电绝缘层122。设置热绝缘层121及电绝缘层122,将外部环境的热、电进行隔离,避免对薄膜热电堆14的测温发生干扰而影响测温的准确性。
再于SiO 2层上沉积Ta 2O 5层作为过渡层13。
于Ta 2O 5层上沉积薄膜热电堆14,薄膜热电堆14由多对薄膜热电偶串联形 成,薄膜热电偶为T型热电偶或S型热电偶或B型热电偶或E型热电偶或R型热电偶或K型热电偶。在沉积图形形成薄膜热电偶时,由设计制作的掩膜板的图案控制,其中,电路连接焊盘,统一集成在一侧。
在本步骤中,选择高导热的碳纤维、石墨纤维、金属(如铜、银、铝等)或高分子材料的丝状物作传热纤毛21。本实施例中,传热纤毛21优选为导热性能好的细铜丝。将铜丝截取为设定长度,利用导热粘结层22固定于各薄膜热电堆14的传热区域141上。
最后于过渡层13上沉积用于封装各薄膜热电堆14的SiO 2层作为绝热保护层15,并使各传热纤毛21伸出绝热保护层15外。
S2、封装:将温度传感单元10及传热单元20封装为一体,且传热纤毛21伸出封装体外。
在本步骤中,利用具有柔、弹性的聚二甲基硅氧烷(PDMS)或聚对苯二甲酸乙二醇酯(PET)将上述温度传感单元10及传热单元20封装为一体。本实施例中,优选采用聚二甲基硅氧烷(PDMS),按照主剂:硬化剂为10:1的质量或体积比例进行配制,然后充分混合搅拌后,抽真空去除气泡后,浇注在已制备的器件上,并在70℃加热1小时并凝固成型,完成电子皮肤的制备。采用PDMS或PET柔性材料,一体浇注成型,加工工艺简化;而且使电子皮肤具备柔性性能,适用于不同的结构曲面,可满足多种应用需求。
综上,采用上述制备方法制作来柔性电子皮肤,柔性电子皮肤结构简单,一体封装成型,便于集成化制备;且制作形成的电子皮肤柔性、弹性好,满足多种应用需求;同时,采用纤毛进行温度传感灵敏度高,精度准确,测温响应时间短,温度测量范围广。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于纤毛温度传感的柔性电子皮肤,包括温度传感单元、置于所述温度传感单元上的传热单元以及将所述温度传感单元及所述传热单元封装于一体的封装层,其特征在于:所述温度传感单元包括柔性基底、由下至上依次沉积于所述柔性基底上的绝缘层、过渡层、多个薄膜热电堆以及绝热保护层,所述传热单元包括多个分别固定于各所述薄膜热电堆的传热区域上并伸出所述隔热保护层及所述封装层外的传热纤毛。
  2. 根据权利要求1所述的基于纤毛温度传感的柔性电子皮肤,其特征在于:所述绝缘层包括沉积于所述柔性基底上的热绝缘层以及沉积于所述热绝缘层上的电绝缘层。
  3. 根据权利要求1所述的基于纤毛温度传感的柔性电子皮肤,其特征在于:各所述薄膜热电堆为由多对薄膜热电偶串联形成的环状结构,所述传热区域位于所述环状结构内。
  4. 根据权利要求1所述的基于纤毛温度传感的柔性电子皮肤,其特征在于:所述传热纤毛为采用高导热碳纤维、石墨纤维、金属或高分子材料制成的丝状物。
  5. 根据权利要求1或4所述的基于纤毛温度传感的柔性电子皮肤,其特征在于:所述传热纤毛通过导热粘结层固定于所述传热区域上。
  6. 一种基于权利要求1至5中任一项所述的基于纤毛温度传感的柔性电子皮肤的制备方法,其特征在于:包括以下工艺步骤:
    制备温度传感单元及传热单元:
    预备柔性基底,于所述柔性基底上由下至上依次沉积绝缘层、过渡层;
    于所述过渡层上间隔沉积多个薄膜热电堆;
    预备多个传热纤毛,在每个所述薄膜热电堆的传热区域固定一传热纤毛;
    于所述过渡层上沉积用于封装各所述薄膜热电堆的绝热保护层,并使各所 述传热纤毛伸出所述绝热保护层外;
    封装:
    将所述温度传感单元及所述传热单元封装为一体,且各所述传热纤毛伸出封装体外。
  7. 根据权利要求6所述的柔性电子皮肤的制备方法,其特征在于:所述柔性基底材料为聚酰亚胺或聚乙烯醇薄膜或聚酯薄膜。
  8. 根据权利要求6所述的柔性电子皮肤的制备方法,其特征在于:所述绝缘层包括沉积于所述柔性基底上的热绝缘层以及沉积于所述热绝缘层上的电绝缘层,所述热绝缘层为多孔硅层或由氧化钇与氧化锆组成的热障涂层,所述电绝缘层为SiO 2层。
  9. 根据权利要求6所述的柔性电子皮肤的制备方法,其特征在于:所述薄膜热电堆由多对薄膜热电偶串联形成,所述薄膜热电偶为T型热电偶或S型热电偶或B型热电偶或E型热电偶或R型热电偶或K型热电偶。
  10. 根据权利要求6所述的柔性电子皮肤的制备方法,其特征在于:所述传热纤毛为采用高导热的碳纤维、石墨纤维、金属或高分子材料制成的丝状物。
PCT/CN2019/073174 2018-02-08 2019-01-25 一种基于纤毛温度传感的柔性电子皮肤及其制备方法 WO2019154129A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020531808A JP6802597B2 (ja) 2018-02-08 2019-01-25 ファイバ温度検知ベースの可撓性電子皮膚及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810128938.X 2018-02-08
CN201810128938.XA CN108168734B (zh) 2018-02-08 2018-02-08 一种基于纤毛温度传感的柔性电子皮肤及其制备方法

Publications (1)

Publication Number Publication Date
WO2019154129A1 true WO2019154129A1 (zh) 2019-08-15

Family

ID=62513754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073174 WO2019154129A1 (zh) 2018-02-08 2019-01-25 一种基于纤毛温度传感的柔性电子皮肤及其制备方法

Country Status (3)

Country Link
JP (1) JP6802597B2 (zh)
CN (1) CN108168734B (zh)
WO (1) WO2019154129A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111012545A (zh) * 2019-12-24 2020-04-17 郑州大学 一种恒温电子皮肤及其制备方法和应用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168734B (zh) * 2018-02-08 2020-01-07 南方科技大学 一种基于纤毛温度传感的柔性电子皮肤及其制备方法
CN110108375B (zh) * 2019-04-26 2021-01-12 中国科学院上海硅酸盐研究所 一种基于MXene材料的电子皮肤及其制备方法
CN110738991A (zh) * 2019-10-11 2020-01-31 东南大学 基于柔性可穿戴传感器的语音识别设备
CN111855742B (zh) * 2019-12-16 2021-11-19 西安交通大学 一种检测爆炸对人体损伤程度的电子皮肤结构及检测方法
CN111595477A (zh) * 2020-05-28 2020-08-28 南昌欧菲显示科技有限公司 薄膜式热电偶、温度传感器及智能穿戴设备
WO2021237602A1 (zh) * 2020-05-28 2021-12-02 南昌欧菲显示科技有限公司 薄膜式热电偶、温度传感器及智能穿戴设备
CN111595479A (zh) * 2020-06-05 2020-08-28 南昌欧菲显示科技有限公司 薄膜式热电偶、温度传感器及智能穿戴设备
KR102330972B1 (ko) * 2020-11-26 2021-12-02 주식회사 글림시스템즈 침술 훈련기구
CN115061514A (zh) * 2022-05-17 2022-09-16 南方科技大学 假肢温觉系统及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1352381A (zh) * 2001-12-10 2002-06-05 武汉大学 一种环状热电堆温度传感器
JP2006205345A (ja) * 2005-01-31 2006-08-10 Tokai Rubber Ind Ltd 人工皮膚
US20110051775A1 (en) * 2009-08-26 2011-03-03 Ut-Battelle, Llc Carbon nanotube temperature and pressure sensors
CN104251751A (zh) * 2014-09-26 2014-12-31 中国科学院半导体研究所 一种多感官集成的电子皮肤及其制造方法
CN104523285A (zh) * 2014-12-12 2015-04-22 广东东邦科技有限公司 一种电子皮肤及其制备方法
CN104777934A (zh) * 2015-04-13 2015-07-15 深圳市华星光电技术有限公司 感应面板及其制作方法、感应压力和温度的方法
CN205163046U (zh) * 2015-11-28 2016-04-20 深圳市前海安测信息技术有限公司 用于检测体表温度的柔性电子皮肤
CN107551323A (zh) * 2017-08-29 2018-01-09 北京中硕众联智能电子科技有限公司 基于压电材料和热敏电阻材料的人工皮肤及其检测方法
CN107595433A (zh) * 2017-08-29 2018-01-19 北京中硕众联智能电子科技有限公司 一种人工智能皮肤及其检测湿度和温度的方法
CN107607222A (zh) * 2017-08-10 2018-01-19 常州大学 一种基于果胶/黄原胶共混膜的柔性温度传感器及其制备方法
CN108168734A (zh) * 2018-02-08 2018-06-15 南方科技大学 一种基于纤毛温度传感的柔性电子皮肤及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173226A (ja) * 2005-11-28 2007-07-05 Osaka Univ ゴム材料およびゴム材料の製造方法
CN204044096U (zh) * 2014-08-15 2014-12-24 中国电子科技集团公司第四十八研究所 一种复合薄膜烧蚀传感器
KR101781542B1 (ko) * 2015-02-27 2017-09-27 서울대학교산학협력단 피부 보철용 신축성 전자장치
CN105606291B (zh) * 2016-01-21 2018-06-15 清华大学 热式压力传感器及柔性电子皮肤
JP6256536B2 (ja) * 2016-07-04 2018-01-10 株式会社デンソー 熱流束センサモジュールおよびその製造方法
CN106017696B (zh) * 2016-07-13 2019-06-21 上海交通大学 热阻式薄膜热电堆型瞬态热流计及制备方法
CN107543618A (zh) * 2016-09-05 2018-01-05 北京卫星环境工程研究所 基于柔性薄膜热电堆的圆箔式辐射热流测量装置
CN106840435A (zh) * 2016-12-27 2017-06-13 上海交通大学 瞬态温度和热流密度联测传感器及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1352381A (zh) * 2001-12-10 2002-06-05 武汉大学 一种环状热电堆温度传感器
JP2006205345A (ja) * 2005-01-31 2006-08-10 Tokai Rubber Ind Ltd 人工皮膚
US20110051775A1 (en) * 2009-08-26 2011-03-03 Ut-Battelle, Llc Carbon nanotube temperature and pressure sensors
CN104251751A (zh) * 2014-09-26 2014-12-31 中国科学院半导体研究所 一种多感官集成的电子皮肤及其制造方法
CN104523285A (zh) * 2014-12-12 2015-04-22 广东东邦科技有限公司 一种电子皮肤及其制备方法
CN104777934A (zh) * 2015-04-13 2015-07-15 深圳市华星光电技术有限公司 感应面板及其制作方法、感应压力和温度的方法
CN205163046U (zh) * 2015-11-28 2016-04-20 深圳市前海安测信息技术有限公司 用于检测体表温度的柔性电子皮肤
CN107607222A (zh) * 2017-08-10 2018-01-19 常州大学 一种基于果胶/黄原胶共混膜的柔性温度传感器及其制备方法
CN107551323A (zh) * 2017-08-29 2018-01-09 北京中硕众联智能电子科技有限公司 基于压电材料和热敏电阻材料的人工皮肤及其检测方法
CN107595433A (zh) * 2017-08-29 2018-01-19 北京中硕众联智能电子科技有限公司 一种人工智能皮肤及其检测湿度和温度的方法
CN108168734A (zh) * 2018-02-08 2018-06-15 南方科技大学 一种基于纤毛温度传感的柔性电子皮肤及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111012545A (zh) * 2019-12-24 2020-04-17 郑州大学 一种恒温电子皮肤及其制备方法和应用
CN111012545B (zh) * 2019-12-24 2022-05-10 郑州大学 一种恒温电子皮肤及其制备方法和应用

Also Published As

Publication number Publication date
CN108168734B (zh) 2020-01-07
CN108168734A (zh) 2018-06-15
JP6802597B2 (ja) 2020-12-16
JP2020531866A (ja) 2020-11-05

Similar Documents

Publication Publication Date Title
WO2019154129A1 (zh) 一种基于纤毛温度传感的柔性电子皮肤及其制备方法
KR20130065705A (ko) 전기 소자
CN111637978A (zh) 一种dfn封装的数字式红外温度传感器
TW201321755A (zh) 無線式熱氣泡式加速儀及其製備方法
CN106840435A (zh) 瞬态温度和热流密度联测传感器及其制备方法
CN105806503B (zh) 一种用于流体动态温度测量的多点薄膜热电偶结构
CN101241786A (zh) Ntc薄膜热敏电阻及制备方法
CN207816885U (zh) 具有自加热和温度补偿功能的薄膜氢气传感器
TW201447303A (zh) 熱對流式線性加速儀
CN113325199B (zh) 一种热电堆式高灵敏度柔性加速度传感器及其制备方法
CN112432719B (zh) 一种热电堆热流传感器
CN107063493B (zh) 双功用测温加温传感器
CN208206329U (zh) 一种自标定薄膜热电偶
CN109282910A (zh) 双余度温度敏感元件
CN106908163A (zh) 一种高灵敏薄膜热电偶传感器芯片及制作方法
CN207215307U (zh) 绕制式双余度温度敏感元件
CN213366295U (zh) 双余度铂薄膜热敏电阻器
CN107101726B (zh) 一种基于t型热电偶堆的耐高温辐射传感器及其制造方法
Mori et al. Vacuum-encapsulated thermistor bolometer type miniature infrared sensor
CN108508263A (zh) 功率传感器
CN112729567A (zh) 一种新型红外热电堆传感器芯片及制备方法
CN206905927U (zh) 一种可以迅速响应的高精度集成式热敏电路
CN105784166A (zh) 一种基于热电偶的温度测试仪
Fraden et al. Temperature sensors
CN220871929U (zh) 一种薄膜热电偶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531808

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750466

Country of ref document: EP

Kind code of ref document: A1