WO2019153989A1 - 一种led结构及投影系统 - Google Patents

一种led结构及投影系统 Download PDF

Info

Publication number
WO2019153989A1
WO2019153989A1 PCT/CN2019/070433 CN2019070433W WO2019153989A1 WO 2019153989 A1 WO2019153989 A1 WO 2019153989A1 CN 2019070433 W CN2019070433 W CN 2019070433W WO 2019153989 A1 WO2019153989 A1 WO 2019153989A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
insulating substrate
led light
led structure
led
Prior art date
Application number
PCT/CN2019/070433
Other languages
English (en)
French (fr)
Inventor
高志强
杨伟樑
董双剑
陈程
杨承德
林清云
Original Assignee
广景视睿科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景视睿科技(深圳)有限公司 filed Critical 广景视睿科技(深圳)有限公司
Publication of WO2019153989A1 publication Critical patent/WO2019153989A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources

Definitions

  • the embodiments of the present invention relate to the field of LED chip packaging technologies, and in particular, to an LED structure and a projection system.
  • LED light sources are widely used in the field of projection lighting, and LED heat dissipation, light type, and service life have become core issues. Most of the energy consumption of the LED light source will be converted into heat energy. If this part of heat is not dissipated in time, the temperature of the LED will be too high, the luminous efficiency will decrease, and the life will be reduced. 90% of the heat generated by the LED light source needs to be thermally conducted from the back of the LED package substrate to the heat sink via the metal substrate. Currently, many metal substrates are used, such as a copper substrate and an aluminum substrate.
  • Non-insulating substrates such as pure copper substrates
  • the non-insulating substrate and the heat sink may be short-circuited, so it is necessary to deal with the structure, for example, using a thermal pad, Heightening the screw column, adding a boss, etc., makes the design and the installation of the radiator difficult, and the process is more complicated and easily causes safety hazards.
  • the insulating substrate (such as the composite aluminum substrate) has a low thermal conductivity, and the heat dissipation effect is far worse than the non-insulating substrate, but can be directly contacted with the heat sink, and the installation is convenient.
  • the inventors of the present application found in the process of implementing the embodiments of the present application that the LED structure of the related art cannot meet the requirements of ensuring the heat dissipation effect and facilitating the installation.
  • the embodiment of the present application provides an LED structure and a projection system, which can meet the requirements of ensuring the heat dissipation effect and facilitating the installation of the heat sink.
  • An LED structure includes: a first non-insulating substrate; a first LED light source disposed on one side of the first non-insulating substrate; a second insulating substrate; and a second LED light source disposed on the second insulating substrate a heat sink, and the other side of the first non-insulating substrate and the other side of the second insulating substrate are attached to the heat sink.
  • An image receiving apparatus includes the above-described circuit board assembly.
  • a projection system comprising the LED structure described above.
  • an LED structure and a projection system provided by the embodiments of the present application provide a first non-insulated substrate and a second insulating substrate in the LED structure, and different substrates are used for patching for different light source characteristics, and At the same time, the first non-insulating substrate and the second insulating substrate are directly disposed on the heat sink, so that different LED light sources are not short-circuited, so that the LED structure can ensure the heat dissipation effect and facilitate the installation of the heat sink.
  • FIG. 1 is a schematic structural diagram of an LED structure according to an embodiment of the present application.
  • FIG. 2 is a schematic structural view of the first LED light source shown in FIG. 1;
  • FIG. 3 is a schematic structural view of the first non-insulating substrate shown in FIG. 1;
  • FIG. 4 is a schematic structural view of a second insulating substrate shown in FIG. 1;
  • FIG. 5 is a schematic structural view of a second insulating substrate shown in FIG. 1;
  • FIG. 6 is a schematic structural diagram of an LED structure according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an LED structure according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an LED structure according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a projection system according to another embodiment of the present application.
  • the LED structure and projection system in the embodiment of the present application can be applied to a Digital Light Processing (DLP) projector, wherein the LED structure provides a light source for the projection system.
  • DLP Digital Light Processing
  • the heat dissipation effect of the LED structure plays an important role in the performance of the projection system. Therefore, the embodiment of the present application provides an LED structure and a projection system that not only ensure the heat dissipation effect but also facilitate installation, thereby satisfying the requirement of ensuring the heat dissipation effect and facilitating the installation.
  • the LED structure 100 includes a first LED light source 10 , a first non-insulated substrate 11 , a second LED light source 20 , a second insulating substrate 21 , and heat dissipation . 30.
  • the first LED light source 10 is disposed on one side of the first non-insulating substrate 11
  • the second LED light source 20 is disposed on one side of the second insulating substrate 21, the other side of the first non-insulating substrate 11 and the second insulating substrate
  • the other side of the 21 is attached to the heat sink 30.
  • different substrates are disposed in the same LED structure, and different substrates are used for patching the characteristics of different light sources, so that the LED structure can meet the requirements of ensuring heat dissipation and convenient installation.
  • the first LED light source 10 is a red LED light source. Since the red LED light source is sensitive to temperature, there is a high demand for heat dissipation, and if it does not achieve good heat dissipation, severe light decay will occur.
  • the first LED light source 10 is provided on the first non-insulating substrate 11, and the heat dissipation effect can be ensured.
  • the first LED light source 10 includes an LED chip 101, a bracket 102, and a pin 103.
  • a portion of the two pins 103 exposed outside the bracket 102 is attached to the heat sink 30.
  • the LED chip 101 is a red LED chip.
  • the holder 102 is a plastic carrier or a resin carrier and has a substantially hollow rectangular parallelepiped shape.
  • the bracket 102 is provided with a receiving cavity (not shown). The LED chip 101 is received in the receiving cavity.
  • the receiving cavity is filled with a sealing glue
  • the sealing glue can be a transparent glue or a fluorescent glue to form an optical lens.
  • the encapsulant can also be filled outside the receiving cavity, which does not affect the LED light.
  • a gap is formed between the two pins 103, and the gap can be filled with plastic to separate the two pins 103.
  • the first LED light source 10 may not be a red LED light source, and may be an orange LED light source, a yellow LED light source, or the like, which has a higher heat dissipation effect. .
  • the first non-insulating substrate 11 is a copper substrate.
  • the thermal conductivity of the copper substrate is high, and the thermal conductivity of the pure copper substrate can theoretically reach 380 W/m.k, so that a better heat dissipation effect can be achieved.
  • the first non-insulating substrate 11 includes a first boss 111 and a first circuit board 112.
  • the first boss 111 is a T-shaped boss, and the first boss 111 is made of copper.
  • the bottom of the first boss 111 is directly attached to the heat sink 30.
  • the first boss 111 includes a first protrusion 1111.
  • the first circuit board 112 is disposed on two sides of the first protrusion 1111, and the first protrusion 1111 is slightly lower than the first circuit board 112 to make the first
  • the LED light source 10 is in contact with the first boss portion 1111.
  • the first circuit board 112 is used to solder the first LED light source 10, and the first circuit board 112 can be an FPC circuit board.
  • the FPC circuit board is prepared from the highest flame retardant insulation material.
  • the second LED light source 20 is a green or blue LED light source. Since the green or blue LED light source is not sensitive to temperature compared to the red LED light source, the need for heat dissipation is relatively low.
  • the second LED light source 20 is provided on the second insulating substrate 21 to ensure a heat dissipation effect.
  • the structure of the second LED light source 20 may be the same as that of the first LED light source 10 except for the color of the light source, and details are not described herein again.
  • the second LED light source 20 may not be a green or blue LED light source, and may have a relatively low heat dissipation effect for the cyan LED light source, the neon LED light source, and the like. Color LED light source.
  • the second insulating substrate 21 is a composite aluminum substrate.
  • the composite aluminum substrate has a relatively low thermal conductivity and a thermal conductivity of about 122 W/m.k, but it is used for a green or blue LED light source that is relatively insensitive to temperature and can meet its heat dissipation requirements.
  • the second insulating substrate 21 includes a second boss 211, a second circuit board 212, a thermally conductive insulating layer 213, an aluminum substrate 214, and an anode insulating layer 215.
  • the second boss 211 is made of copper.
  • the second boss 211 is a T-shaped boss, and the T-shaped boss can cover the entire heat-conductive insulating layer 213 with heat, thereby being transmitted to the aluminum substrate 214, the heat-conducting area is larger, the heat conduction speed is faster, and the effect is better.
  • the second boss 211 includes a second protrusion 2111, the second circuit board 212 is disposed on two sides of the second protrusion 2111, and the second protrusion 2111 is slightly lower than the second circuit board 212, so that the second The LED light source 20 is in contact with the second boss portion 2111.
  • the second circuit board 212 is used to solder the first LED light source 10, and the second circuit board 212 can be an FPC circuit board, and the FPC circuit board is prepared from the highest flame retardant insulation material.
  • the thermally conductive insulating layer 213 is composed of a highly thermally conductive, highly insulating ceramic dielectric filled polymer having insulating properties, heat aging resistance, and high bonding ability.
  • the thermally conductive insulating layer 213 is a hard oxide layer.
  • One side of the heat conductive insulating layer 213 is bonded to the bottom of the second boss 211, and the other side of the heat conductive insulating layer 213 is bonded to one side of the aluminum substrate 213.
  • the thermally conductive insulating layer 213 is used to separate the aluminum substrate 214 from the second boss 212.
  • the other side of the aluminum substrate 214 is provided with an anode insulating layer 215.
  • the anode insulating layer 215 may have a thickness of 1 to 15 ⁇ m, may be formed by directly reacting the aluminum substrate 214, or may be applied to the aluminum substrate 214.
  • the second insulating substrate 21 is bonded to the heat sink 30 through the anode insulating layer 215.
  • the heat generated by the second LED light source 20 is transmitted to the second boss 212.
  • the second boss 212 transfers heat to the aluminum substrate 214 through the thermally conductive insulating layer 213, and a portion of the heat is dissipated through the aluminum substrate 214. A portion of the heat transfers heat from the aluminum substrate 214 through the anode insulating layer 215 to the heat sink 30.
  • the second insulating substrate 21 can directly contact the heat sink 30 without using a thermal pad or the like, so that the mounting and design can be more convenient, more efficient, and safer.
  • the second insulating substrate 21 further includes a protective layer 216 disposed between the second bump 212 and the thermally conductive insulating layer 213 .
  • the protective layer 216 is a titanium metal layer for protecting the thermally conductive insulating layer 213 from being eroded by the etching liquid and other chemicals.
  • the second boss 212 can also have other shapes as long as the heat conduction area is increased and the heat conduction speed is increased.
  • the aluminum substrate 214 can also be prepared from other metals, and can be selected according to actual needs.
  • the ceramic substrate material is widely used in the fields of power electronics, electronic packaging, hybrid microelectronics, and multi-chip modules because of its excellent electrical conductivity, corrosion resistance, high temperature resistance, and low frequency loss.
  • the second insulating substrate 21 may also be a ceramic substrate, and the aluminum substrate 214 may be replaced by a ceramic sheet.
  • the first protrusion 1111 and the second protrusion 2111 may each be respectively coated with a diamond film (not shown), and the diamond film is directly connected to the first LED source 10 and the first When the two LED light sources 20 are in contact, the heat dissipation performance of the first non-insulating substrate 11 and the second insulating substrate 21 can be increased.
  • the heat sink 30 may be made of aluminum or copper.
  • the heat sink 30 includes a first side 31 and a second side 32, the first side 31 and the second side 32 being vertically connected.
  • the second side 32 is provided with a heat sink (not shown) for increasing the heat dissipation area to increase the heat dissipation speed.
  • the first non-insulating substrate 11 is disposed on the first side surface 31 , and the bottom of the first protrusion 111 of the first non-insulating substrate 11 is directly in contact with the first non-insulating substrate 11 ;
  • the second insulating substrate 21 is disposed on the second side 32 .
  • the anode insulating layer 215 of the second insulating substrate 21 is in direct contact with the second side surface 32.
  • the heat generated by the first non-insulating substrate 11 and the second insulating substrate 21 is transmitted to the first side surface 31 and the second side surface 32, respectively, thereby achieving heat dissipation.
  • the temperature-sensitive first LED light source 10 is disposed on the first non-insulating substrate 11, and the second temperature is relatively insensitive.
  • the LED light source 20 is disposed on the second insulating substrate 21, and is coated with different substrates for different light source characteristics, and at the same time, the first non-insulating substrate 11 and the second insulating substrate 21 are directly disposed on the heat sink 30, thereby making different LED light sources There is no short circuit between them, so that the LED structure 100 can ensure both the heat dissipation effect and the installation.
  • the LED structure 200 includes a first LED light source 10 , a first non-insulated substrate 11 , a second LED light source 20 , a second insulating substrate 21 , and heat dissipation.
  • the first LED light source 10, the first non-insulating substrate 11, the second LED light source 20, and the second insulating substrate 21 are the same as those of the above embodiment, and will not be described here.
  • the third LED light source 40 described above is a green or blue LED light source. Since the green or blue LED light source is not sensitive to temperature compared to the red LED light source, the need for heat dissipation is relatively low.
  • the third LED light source 40 is provided on the third insulating substrate 41, and the heat dissipation effect can be ensured.
  • the structure of the third LED light source 40 may be the same as that of the second LED light source 20 in the above embodiment except for the color of the light source, and details are not described herein again.
  • the first LED light source 10 is a red LED light source
  • the second LED light source 20 is a green LED light source
  • the third LED light source 30 is a blue LED light source, the combination of which enables the LED structure 200 to emit white light.
  • the structure of the third insulating substrate 41 may be the same as that of the second insulating substrate 21 in the above embodiment, and details are not described herein again.
  • the heat sink 30 further includes a third side 33 that is perpendicularly connected to the second side 32 and opposite the first side 31.
  • the third LED light source 40 is disposed on the third insulating substrate 41 side, and the other side of the third insulating substrate 41 is bonded to the third side surface 33 of the heat sink 30.
  • the LED structure 200 further includes a fourth LED light source 50 and a fourth insulating substrate 51 , and the fourth LED light source 50 is disposed on the fourth insulating substrate 51 , and the fourth insulation The substrate 51 is provided on the third side surface 33.
  • the structure of the fourth LED light source 50 may be the same as that of the second LED light source 20 in the above embodiment.
  • the structure of the fourth insulating substrate 51 may be the same as that of the second insulating substrate 21 in the above embodiment. No longer.
  • the first LED light source 10 is a red LED light source
  • the second LED light source 20 is a green LED light source
  • the third LED light source 30 is a blue LED light source
  • the fourth LED light source 30 is a blue LED light source.
  • the LED structure 200 further includes a fourth LED light source 50 and a fourth non-insulating substrate 52 , and the fourth LED light source 50 is disposed on the fourth non-insulating substrate 52 , The four non-insulating substrates 52 are disposed on the third side surface 33.
  • the structure of the fourth LED light source 50 may be the same as that of the second LED light source 20 in the above embodiment.
  • the structure of the fourth non-insulating substrate 52 may be the same as that of the first non-insulating substrate 11 in the above embodiment. I will not repeat them here.
  • the first LED light source 10 is a red LED light source
  • the second LED light source 20 is a blue LED light source
  • the third LED light source 30 is a blue LED light source
  • the fourth LED light source 30 is a green LED light source.
  • the LED structure 200 can ensure the heat dissipation effect and the installation convenience.
  • FIG. 9 is a projection system according to another embodiment of the present disclosure.
  • the projection system 600 includes the LED structure 100 or the LED structure 200 , the DMD chip 300 , the projection lens 400 , and the lens group 500 in the above embodiment.
  • the LED structure 200 will be described as an example.
  • the lens group 500 is disposed between the LED structure 200 and the projection lens 400, and is located in the normal direction of the receiving surface of the DMD chip 300.
  • the LED structure 200, the lens group 500, and the projection lens 400 are arranged in a straight line.
  • the layout of the projection system 600 is made compact and reasonable.
  • the receiving surface of the DMD chip 300 faces the lens group 500 such that the illumination light beam emitted from the lens group 500 can be received by the receiving surface of the DMD chip 300, while the projected light beam output from the DMD chip 300 can also be incident on the lens group 500.
  • the lens group 500 is located below the receiving surface of the DMD chip 300.
  • the lens group 500 may also be located above, on the left or right side of the receiving surface of the DMD chip 300.
  • the LED structure 200 is used to generate a white illumination beam.
  • the first LED light source 10 in the LED structure 200 is a red light source
  • the second LED light source 20 is a green light source
  • the third LED light source 40 is a blue light source.
  • the DMD chip 300 is used to output a projection beam
  • the projection lens 400 is used to project the projection beam into an external display screen to realize projection.
  • the lens group 500 is configured to receive an illumination beam emitted by the LED structure 200, and perform optical path conversion on the illumination beam to cause the illumination beam to be incident on the DMD chip 300, and receive a projection beam output by the DMD chip 300 according to the illumination beam, and to project a projection
  • the light beam is converted into an optical path and then emitted to the projection lens 400.
  • the specific working mode of the projection system 600 is: the LED structure 200 generates a white illumination beam, and the illumination beam emitted from the LED structure 200 is received by the lens group 500 and converted into an optical path, and the illumination beam after the optical path conversion is from the lens group.
  • the 500 is emitted to the DMD chip 300, and the DMD chip 300 outputs a projection beam and enters the lens group 500 to perform optical path conversion.
  • the converted optical beam is emitted from the lens group 500 to the projection lens 400 to form a projection.
  • the projection system 600 in this embodiment includes an LED structure that ensures both heat dissipation and installation, and can meet the requirements of ensuring both heat dissipation and installation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Abstract

一种LED结构(100)及投影系统(600)。其中LED结构(100)包括:第一非绝缘基板(11);第一LED光源(10),设于第一非绝缘基板(11)的一侧;第二绝缘基板(21);第二LED光源(20),设于第二绝缘基板(21)的一侧;散热器(30),第一非绝缘基板(11)的另一侧和第二绝缘基板(21)的另一侧贴合安设于散热器(30)。通过以上方式,能够有效满足既保证散热效果又方便散热器安装的需求。

Description

一种LED结构及投影系统 技术领域
本申请实施例涉及LED贴片封装技术领域,尤其涉及一种LED结构及投影系统。
背景技术
LED光源广泛应用在投影照明领域,而LED的散热、光型、使用寿命等成为核心问题。LED光源大部分能耗会被转化为热能,若不能及时地将这部分热量散去,将会导致LED的温度过高,发光效率下降,寿命降低。LED光源产生的热量90%都需要以热传导的方式从LED封装基板背部经由金属基板传导至散热器,目前使用较多的金属基板有铜基板和铝基板。
不绝缘基板(如纯铜基板)的热导性较好,但由于不绝缘基板的不绝缘特性,不绝缘基板与散热器可能发生短路,因此需要在结构上针对处理,例如:使用导热垫、加高螺丝柱、增设凸台等,给设计、以及散热器的安装造成一定难度,工艺更为复杂易造成安全隐患。绝缘基板(如复合铝基板)导热系数低,散热效果远差于不绝缘基板,但可以直接跟散热器接触,安装方便。
本申请的发明人在实现本申请实施例的过程中发现,相关技术的LED结构无法满足既保证散热效果又方便安装的需求。
发明内容
本申请实施例提供一种LED结构及投影系统,能够满足既保证散热效果又方便散热器安装的需求。
本申请实施例解决其技术问题提供以下技术方案:
一种LED结构,包括:第一非绝缘基板;第一LED光源,设于所述第一非绝缘基板的一侧;第二绝缘基板;第二LED光源,设于所述第二绝缘基板的一侧;散热器,所述第一非绝缘基板的另一侧和所述第二绝缘基板的另一侧贴合安设于所述散热器。
本申请实施例解决其技术问题还提供以下技术方案:
一种图像接收装置,包括上述的电路板组件。
本申请实施例解决其技术问题还提供以下技术方案:
一种投影系统,包括上述的LED结构。
与现有技术相比较,本申请实施例提供的一种LED结构及投影系统,在LED结构设置第一非绝缘基板和第二绝缘基板,针对不同光源的特性采用不同基板进行贴片,并且,同时第一非绝缘基板和第二绝缘基板直接设于散热器,从而使不同LED光源之间不会短路,使该LED结构能够既保证散热效果又方便散热器安装的需求。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请其中一实施例提供的一种LED结构的结构示意图;
图2为图1所示的第一LED光源的结构示意图;
图3为图1所示的第一非绝缘基板的结构示意图;
图4为图1所示的第二绝缘基板的结构示意图;
图5为图1所示的第二绝缘基板的结构示意图;
图6为本申请另一实施例提供的一种LED结构的结构示意图;
图7为本申请另一实施例提供的一种LED结构的结构示意图;
图8为本申请另一实施例提供的一种LED结构的结构示意图;
图9为本申请又一实施例提供的一种投影系统的结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、 或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的,并且仅表达实质上的位置关系,例如对于“垂直的”,如果某位置关系因为了实现某目的的缘故并非严格垂直,但实质上是垂直的,或者利用了垂直的特性,例如严格垂直定义为90度,而在一定误差范围(例如85度-95度)内的相对垂直也属于本说明书所述“垂直的”范畴。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本申请实施例中的LED结构及投影系统,能够应用于数字光处理(Digital Light Processing,DLP)投影机中,其中,该LED结构为该投影系统提供光源。LED结构的散热效果对投影系统的性能起着重要作用。因此,本申请实施例通过提供一种既保证散热效果又方便安装的LED结构及投影系统,从而满足既保证散热效果又方便安装的需求。
具体地,下面通过几个实施例对该LED结构及其投影系统进行阐述。
请参阅图1,为本申请其中一实施例提供的一种LED结构,该LED结构100包括第一LED光源10、第一非绝缘基板11、第二LED光源20、第二绝缘基板21以及散热器30。
其中,第一LED光源10设于第一非绝缘基板11的一侧,第二LED光源20设于第二绝缘基板21的一侧,第一非绝缘基板11的另一侧和第二绝缘基板21的另一侧贴合安设于散热器30。本实施例通过在同一LED结构设置不同基板,针对不同光源的特性采用不同基板进行贴片,使该LED结构能够满足既保证散热效果又方便安装的需求。
具体地,上述第一LED光源10为红光LED光源。由于红色LED光源对温度敏感,对散热效果的需求高,若达不到良好散热,则会产生严 重的光衰。将第一LED光源10设于第一非绝缘基板11,能够保证散热效果。
在一些实施例中,请参阅图2,第一LED光源10包括LED芯片101、支架102和引脚103。引脚103的数量有两个,两个引脚103分别部分嵌入支架102,LED芯片101设于支架102内,并分别与两个引脚103连接。两个引脚103露于支架102外的部分贴合安设于散热器30。其中,LED芯片101为红光LED芯片。支架102为塑胶载体或树脂载体,大致为中空长方体形状。支架102开设有收容腔(未标示),LED芯片101收容于该收容腔内,收容腔内填充有封装胶,封装胶可以为透明胶或荧光胶,从而形成出光透镜。当然在一些实施方式中,当收容腔的尺寸较小时,封装胶还可以填充在收容腔外,这两种情况都不会影响LED出光。两个引脚103之间形成间隙,间隙可以用塑胶填充,从而使两个引脚103隔开。
可以理解的是,在一些其他实施例中,第一LED光源10可以不为红光LED光源,可以为橙光LED光源、黄光LED光源等等对散热效果的需求较高的其他颜色LED光源。
请参阅图3,上述第一非绝缘基板11为铜基板。铜基板的导热系数高,纯铜基板的导热系数理论上可达到380W/m.k,从而能达到较好的散热效果。第一非绝缘基板11包括第一凸台111和第一电路板112。其中,第一凸台111为T型凸台,第一凸台111为铜制备而成,第一凸台111的底部直接贴合于散热器30。第一凸台111包括第一凸起部1111,第一电路板112设于第一凸起部1111的两侧,并且第一凸起部1111略低于第一电路板112,以使第一LED光源10与第一凸起部1111接触。其中,第一电路板112用于焊接第一LED光源10,第一电路板112可以为FPC电路板,FPC电路板均由最高阻燃级绝缘材料制备而成。
上述第二LED光源20为绿光或蓝光LED光源。由于与红光LED光源相比,绿光或蓝光LED光源对温度不敏感,对散热效果的需求相对不高。将第二LED光源20设于第二绝缘基板21,能够保证散热效果。
在一些实施例中,除了光源颜色,第二LED光源20的结构可以与 上述第一LED光源10的结构相同,此处不再赘述。
可以理解的是,在一些其他实施例中,第二LED光源20可以不为绿光或蓝光LED光源,可以为青光LED光源、靛光LED光源等等对散热效果的需求相对较低的其他颜色LED光源。
请参阅图4,上述第二绝缘基板21为复合铝基板。复合铝基板的导热系数相对较低,导热系数约122W/m.k,但使用于对温度相对不敏感的绿光或蓝光LED光源,能够满足其散热需求。
第二绝缘基板21包括第二凸台211、第二电路板212、导热绝缘层213、铝基板214和阳极绝缘层215。第二凸台211为铜制备而成。第二凸台211为T型凸台,T型凸台能够使热量覆盖整个导热绝缘层213,从而传递到铝基板214,导热面积更大,导热速度更快,效果更好。第二凸台211包括第二凸起部2111,第二电路板212设于第二凸起部2111的两侧,并且第二凸起部2111略低于第二电路板212,以使第二LED光源20与第二凸起部2111接触。第二电路板212用于焊接第一LED光源10,第二电路板212可以为FPC电路板,FPC电路板均由最高阻燃级绝缘材料制备而成。导热绝缘层213由高导热、高绝缘的陶瓷介质填充聚合物构成,具有绝缘性能、抗热老化能力以及高粘接能力。在本实施例中,导热绝缘层213为硬质氧化层。导热绝缘层213的一侧与第二凸台211的底部贴合,导热绝缘层213的另一侧与铝基板213的一侧贴合。导热绝缘层213用于将铝基板214与第二凸台212隔开。铝基板214的另一侧设有阳极绝缘层215。阳极绝缘层215的厚度可以为1-15微米,可以直接对铝基板214进行反应处理后生成,也可以涂覆于铝基板214上。第二绝缘基板21通过阳极绝缘层215与散热器30贴合。
在本实施例中,第二LED光源20产生的热量传递到第二凸台212,第二凸台212通过导热绝缘层213将热量传递到铝基板214,一部分热量通过铝基板214散除,另一部分热量从铝基板214通过阳极绝缘层215将热量传递到散热器30。通过以上方式,第二绝缘基板21可以直接与散热器30接触,无需使用导热垫等设计,使得安装、设计都能更方便、效率更高、更安全。
可以理解的是,在一些其他实施例中,请参阅图5,第二绝缘基板21还包括保护层216,保护层216设于第二凸台212和导热绝缘层213之间。保护层216为钛金属层,用于保护导热绝缘层213不被蚀刻液及其它化学物质侵蚀。
可以理解的是,在一些其他实施例中,第二凸台212还可以为其他形状,只要增大导热面积、加快导热速度即可。
可以理解的是,在一些其他实施例中,上述铝基板214还可以为其他金属制备而成,可以根据实际需求进行选择。
可以理解的是,在一些其他实施例中,陶瓷基板材料因其导电性能卓越,防腐蚀,耐高温,高频损耗小,广泛应用于功率电子、电子封装、混合微电子与多芯片模块等领域。上述第二绝缘基板21还可以为陶瓷基板,铝基板214可以用陶瓷片代替。
可以理解的是,在一些其他实施例中,第一凸起部1111和第二凸起部2111可均分别涂设金刚石膜(图未示),金刚石膜直接分别与第一LED光源10和第二LED光源20接触,可以增大第一非绝缘基板11和第二绝缘基板21的散热性能。
请一并参阅图1,上述散热器30可以为铝或铜制备而成。散热器30包括第一侧面31和第二侧面32,第一侧面31和第二侧面32垂直连接。第二侧面32设有散热片(未标示),该散热片用于增大散热面积,以提高散热速度。第一非绝缘基板11设于第一侧面31,且第一非绝缘基板11的第一凸台111的底部直接与第一非绝缘基板11接触;第二绝缘基板21设于第二侧面32,且第二绝缘基板21的阳极绝缘层215直接与第二侧面32接触。第一非绝缘基板11和第二绝缘基板21产生的热量分别传递到第一侧面31和第二侧面32,从而实现散热。
本实施例通过在LED结构100设置第一非绝缘基板11和第二绝缘基板21,将对温度敏感的第一LED光源10设于第一非绝缘基板11,将对温度相对不敏感的第二LED光源20设于第二绝缘基板21,针对不同光源的特性采用不同基板进行贴片,并且,同时第一非绝缘基板11和第二绝缘基板21直接设于散热器30,从而使不同LED光源之间不会短 路,使该LED结构100能够既保证散热效果又方便安装的需求。
请参阅图6,为本申请另一实施例提供的一种LED结构,该LED结构200包括第一LED光源10、第一非绝缘基板11、第二LED光源20、第二绝缘基板21、散热器30、第三LED光源40和第三绝缘基板41。其中,第一LED光源10、第一非绝缘基板11、第二LED光源20、第二绝缘基板21与上述实施例相同,此处不再阐述。
上述第三LED光源40为绿光或蓝光LED光源。由于与红光LED光源相比,绿光或蓝光LED光源对温度不敏感,对散热效果的需求相对不高。将第三LED光源40设于第三绝缘基板41,能够保证散热效果。
在一些实施例中,除了光源颜色,第三LED光源40的结构可以与上述实施例中的第二LED光源20的结构相同,此处不再赘述。
可选地,第一LED光源10为红光LED光源,第二LED光源20为绿光LED光源,第三LED光源30为蓝光LED光源,其组合能够使LED结构200发射白光。
上述第三绝缘基板41的结构可以与上述实施例中的第二绝缘基板21的结构相同,此处不再赘述。
上述散热器30还包括第三侧面33,第三侧面33与第二侧面32垂直连接,并且与第一侧面31相对。在本实施例中,第三LED光源40设于第三绝缘基板41一侧,第三绝缘基板41的另一侧贴合于散热器30的第三侧面33。
可以理解的是,在一些其他实施例中,请参阅图7,LED结构200还包括第四LED光源50和第四绝缘基板51,第四LED光源50设于第四绝缘基板51,第四绝缘基板51设于第三侧面33。其中,第四LED光源50的结构可以与上述实施例中的第二LED光源20的结构相同,第四绝缘基板51的结构可以与上述实施例中的第二绝缘基板21的结构相同,此处不再赘述。可选地,第一LED光源10为红光LED光源,第二LED光源20为绿光LED光源,第三LED光源30为蓝光LED光源,第四LED光源30为蓝光LED光源。
可以理解的是,在一些其他实施例中,请参阅图8,LED结构200还包括第四LED光源50和第四非绝缘基板52,第四LED光源50设于第四非绝缘基板52,第四非绝缘基板52设于第三侧面33。其中,第四LED光源50的结构可以与上述实施例中的第二LED光源20的结构相同,第四非绝缘基板52的结构可以与上述实施例中的第一非绝缘基板11的结构相同,此处不再赘述。可选地,第一LED光源10为红光LED光源,第二LED光源20为蓝光LED光源,第三LED光源30为蓝光LED光源,第四LED光源30为绿光LED光源。
本实施例通过在LED结构200设置多个不同颜色的LED光源,并根据不同光源的特性采用不同基板进行贴片,使该LED结构200能够既保证散热效果又方便安装的需求。
请参阅图9,为本申请又一实施例提供的一种投影系统,该投影系统600包括上述实施例中的LED结构100或LED结构200、DMD芯片300、投影镜头400以及透镜组500。在本实施例中,以LED结构200为例进行说明。
在本实施例中,透镜组500设于LED结构200和投影镜头400之间,并且位于DMD芯片300接收面的法线方向上,LED结构200、透镜组500和投影镜头400呈直线型排列,使得投影系统600的布局紧凑合理。
具体地,DMD芯片300的接收面朝向透镜组500,使得从透镜组500出射的照明光束能够被DMD芯片300的接收面接收,同时,DMD芯片300输出的投影光束也能够入射至透镜组500。
在本实施例中,透镜组500位于DMD芯片300的接收面下方,当然,在一些可替代实施方式中,透镜组500还可以位于DMD芯片300的接收面上方、左侧或者右侧等。
在本实施例中,LED结构200用于产生白色照明光束。其中,LED结构200中的第一LED光源10为红色光源,第二LED光源20为绿色光源,第三LED光源40为蓝色光源。DMD芯片300用于输出投影光束,投影镜头400则用于将该投影光束投影至外部显示屏中,实现投影。透镜 组500用于接收LED结构200出射的照明光束,并且对照明光束进行光路转换,以使所述照明光束入射至DMD芯片300,以及接收DMD芯片300根据照明光束输出的投影光束,并且对投影光束进行光路转换后出射至投影镜头400。
在本实施例中,投影系统600的具体工作方式为:LED结构200产生白色照明光束,从LED结构200出射的照明光束被透镜组500接收并进行光路转换,光路转换后的照明光束从透镜组500出射至DMD芯片300,DMD芯片300输出投影光束并入射至透镜组500,进行光路转换,光路转换后的投影光束从透镜组500出射至投影镜头400,从而形成投影。
本实施例中的投影系统600包括既保证散热效果又方便安装的LED结构,能够满足既保证散热效果又方便安装的需求。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (15)

  1. 一种LED结构,其特征在于,包括:
    第一非绝缘基板;
    第一LED光源,设于所述第一非绝缘基板的一侧;
    第二绝缘基板;
    第二LED光源,设于所述第二绝缘基板的一侧;
    散热器,所述第一非绝缘基板的另一侧和所述第二绝缘基板的另一侧贴合安设于所述散热器。
  2. 根据权利要求1所述的LED结构,其特征在于,所述第一非绝缘基板包括第一凸台和第一电路板,所述第一电路板设于所述第一凸台,所述第一凸台贴合于所述散热器;
    所述第一电路板用于焊接所述第一LED光源。
  3. 根据权利要求2所述的LED结构,其特征在于,所述第一凸台为T型凸台。
  4. 根据权利要求1所述的LED结构,其特征在于,所述第二绝缘基板包括第二凸台、第二电路板、导热绝缘层、铝基板和阳极绝缘层;
    所述第二电路板设于所述第二凸台,所述导热绝缘层的一侧与所述第二凸台贴合,所述导热绝缘层的另一侧与所述铝基板的一侧贴合,所述铝基板的另一侧设有所述阳极绝缘层,所述阳极绝缘层与所述散热器贴合。
  5. 根据权利要求4所述的LED结构,其特征在于,所述第二凸台为T型凸台。
  6. 根据权利要求4所述的LED结构,其特征在于,所述第二绝缘 基板还包括保护层;
    所述保护层设于所述第二凸台和所述导热绝缘层之间。
  7. 根据权利要求6所述的LED结构,其特征在于,所述保护层为钛金属层。
  8. 根据权利要求1所述的LED结构,其特征在于,
    所述第一LED光源为红光LED光源,所述第二LED光源为绿光/蓝光LED光源。
  9. 根据权利要求1-8任一项所述的LED结构,其特征在于,所述散热器包括第一侧面和第二侧面,所述第一侧面和所述第二侧面连接,所述第一非绝缘基板设于所述第一侧面,所述第二绝缘基板设于所述第二侧面。
  10. 根据权利要求9所述的LED结构,其特征在于,所述第二侧面设有散热片。
  11. 根据权利要求9所述的LED结构,其特征在于,所述散热器还包括第三侧面,所述第三侧面与所述第二侧面连接,并且,所述第三侧面与所述第一侧面相对;
    所述LED结构还包括:第三绝缘基板和第三LED光源;
    所述第三LED光源设于所述第三绝缘基板的一侧,所述第三绝缘基板的另一侧贴合于所述第三侧面。
  12. 根据权利要求11所述的LED结构,其特征在于,所述LED结构还包括:第四绝缘基板和第四LED光源;
    所述第四LED光源设于所述第四绝缘基板的一侧,所述第四绝缘基板的另一侧贴合于所述散热器的第三侧面。
  13. 根据权利要求11所述的LED结构,其特征在于,所述LED结构还包括:第四非绝缘基板和第四LED光源;
    所述第四LED光源设于所述第四非绝缘基板的一侧,所述第四非绝缘基板的另一侧贴合于所述散热器的第三侧面。
  14. 一种投影系统,其特征在于,包括权利要求1-13任一项所述的LED结构。
  15. 根据权利要求14所述的投影系统,其特征在于,还包括:DMD芯片、投影镜头以及透镜组;
    所述透镜组设于所述LED结构和所述投影镜头之间,并且,所述透镜组位于所述DMD芯片接收面的法线方向上,
    所述透镜组用于接收所述LED结构出射的照明光束,并且对所述照明光束进行光路转换,以使所述照明光束入射至所述DMD芯片;
    所述DMD芯片用于根据所述照明光束,输出投影光束;
    所述透镜组还用于接收所述DMD芯片输出的投影光束,并且对所述投影光束进行光路转换后出射至所述投影镜头。
PCT/CN2019/070433 2018-02-10 2019-01-04 一种led结构及投影系统 WO2019153989A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820250684.4U CN207831017U (zh) 2018-02-10 2018-02-10 一种led结构及投影系统
CN201820250684.4 2018-02-10

Publications (1)

Publication Number Publication Date
WO2019153989A1 true WO2019153989A1 (zh) 2019-08-15

Family

ID=63397911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070433 WO2019153989A1 (zh) 2018-02-10 2019-01-04 一种led结构及投影系统

Country Status (2)

Country Link
CN (1) CN207831017U (zh)
WO (1) WO2019153989A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207831017U (zh) * 2018-02-10 2018-09-07 广景视睿科技(深圳)有限公司 一种led结构及投影系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201606851U (zh) * 2009-12-21 2010-10-13 东莞华明灯具有限公司 灯具散热装置
CN202101017U (zh) * 2011-06-03 2012-01-04 中山市隆源光电有限公司 一种led球泡灯
US20130058098A1 (en) * 2011-09-05 2013-03-07 Jaehwan Kim Lighting apparatus
CN103797301A (zh) * 2011-06-30 2014-05-14 首尔半导体株式会社 Led灯
CN103987155A (zh) * 2013-02-13 2014-08-13 松下电器产业株式会社 点亮装置以及照明器具
CN207831017U (zh) * 2018-02-10 2018-09-07 广景视睿科技(深圳)有限公司 一种led结构及投影系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201606851U (zh) * 2009-12-21 2010-10-13 东莞华明灯具有限公司 灯具散热装置
CN202101017U (zh) * 2011-06-03 2012-01-04 中山市隆源光电有限公司 一种led球泡灯
CN103797301A (zh) * 2011-06-30 2014-05-14 首尔半导体株式会社 Led灯
US20130058098A1 (en) * 2011-09-05 2013-03-07 Jaehwan Kim Lighting apparatus
CN103987155A (zh) * 2013-02-13 2014-08-13 松下电器产业株式会社 点亮装置以及照明器具
CN207831017U (zh) * 2018-02-10 2018-09-07 广景视睿科技(深圳)有限公司 一种led结构及投影系统

Also Published As

Publication number Publication date
CN207831017U (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
JP2020115453A (ja) 発光装置
KR101203818B1 (ko) 공동 및 방열체를 포함하는 고상 금속 블록 반도체 발광소자 장착 기판, 패키지 및 그 패키지 방법
US9310062B2 (en) Light-emitting device and method of manufacturing the same
JP2007184542A (ja) 発光モジュールとその製造方法並びにそれを用いたバックライト装置
TW201600790A (zh) 全周光球泡型燈具
KR100646198B1 (ko) 엘이디 패키지의 열 방출 구조 및 그 구조를 구비한엘이디 패키지
JP2007324547A (ja) 発光ダイオード光源装置、照明装置、表示装置及び交通信号機
JP2004207367A (ja) 発光ダイオード及び発光ダイオード配列板
TWI329181B (en) Illumination device
JP2009164567A (ja) 発光装置
WO2019153989A1 (zh) 一种led结构及投影系统
TWI546916B (zh) 半導體封裝結構與其製造方法
TWI287300B (en) Semiconductor package structure
KR20120037238A (ko) 빔 프로젝션 엘이디 칩 패키지
JP2003282951A (ja) 発光装置
JP2010003946A (ja) 発光素子用パッケージ及び発光素子の製造方法
TWI753673B (zh) 高功率光源封裝結構及其製造方法
KR101237685B1 (ko) 방열 기판 및 그 제조방법
TWI449226B (zh) 用於發光二極體裝置的散熱結構
CN208197825U (zh) Uv-led固化光源系统
KR101452857B1 (ko) 발광소자 패키지 및 그 제조방법
WO2016042800A1 (ja) 発光モジュール用基板、発光モジュール及び照明器具
WO2005067064A1 (en) Light emitting diode and light emitting diode lamp
CN203799604U (zh) 一种增强散热的led显示单元模组
CN219392460U (zh) 一种投影仪led光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.12.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 19751340

Country of ref document: EP

Kind code of ref document: A1