WO2019153768A1 - 一种高电阻导热合金 - Google Patents

一种高电阻导热合金 Download PDF

Info

Publication number
WO2019153768A1
WO2019153768A1 PCT/CN2018/109574 CN2018109574W WO2019153768A1 WO 2019153768 A1 WO2019153768 A1 WO 2019153768A1 CN 2018109574 W CN2018109574 W CN 2018109574W WO 2019153768 A1 WO2019153768 A1 WO 2019153768A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
magnesium
conductive alloy
yttrium
molybdenum
Prior art date
Application number
PCT/CN2018/109574
Other languages
English (en)
French (fr)
Inventor
郭健
郭乃林
郭小芳
Original Assignee
盐城市鑫洋电热材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盐城市鑫洋电热材料有限公司 filed Critical 盐城市鑫洋电热材料有限公司
Publication of WO2019153768A1 publication Critical patent/WO2019153768A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys

Definitions

  • the present invention relates to the field of alloy technology, and in particular to a high resistance heat conductive alloy.
  • aluminum alloy has the characteristics of good processing performance, especially eutectic aluminum-silicon die-casting alloy, which not only has good processing performance, but also has light weight, beautiful surface and corrosion resistance; casting performance is good during casting, and product comprehensive performance is good. It is an excellent die-cast aluminum alloy that can be used in a wide variety of complex shapes and is widely used in many fields.
  • aluminum-lithium alloy has good cutting performance and processing and molding properties, and is one of the most ideal structural materials in the fields of aerospace, automotive, and 3C electronics. With the rapid development of 3C products, the demand for aluminum-lithium alloys is expanding.
  • aluminum-lithium alloy has other advantages: the compressive yield limit is 2/3 higher than ordinary aluminum alloy, insensitive to notch, good impact toughness, high flexural strength, inconsistent mechanical properties, and good plasticity. It is easy to deform and process, easy to be welded, and has a low specific heat capacity and low thermal conductivity.
  • Aluminum-lithium alloy can partially replace aluminum and other aluminum alloy materials currently used in aviation and aerospace, and has broad application prospects. Using advanced aluminum-lithium alloys instead of aluminum alloys to make aircraft, the weight can be reduced by 14.6%, the fuel can be saved by 55.4%, the aircraft cost will be reduced by 2.1%, and the annual flight cost of each aircraft will be reduced by 2.2%.
  • the invention provides an alloy which simultaneously improves the high electrical resistance and thermal conductivity of an aluminum alloy and a preparation method thereof.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide an alloy which simultaneously improves the high electrical resistance and thermal conductivity of an aluminum alloy and a preparation method thereof.
  • a high-resistance heat-conductive alloy having a chemical composition of magnesium (Mg): 10.0-13.0 wt.%, yttrium (Y): 3.0-5.0 wt.%, ⁇ (Ta) ): 2.0-4.0 wt.%, molybdenum (Mo): 5.0-8.0 wt.%, zinc (Zn): 6.0-10.0 wt.%, phosphorus (P): 0.8-1.5 wt.%, boron (B): 1.5-2.0 wt.%, cobalt (Co): 2.0-4.0 wt.%, the balance being aluminum.
  • the chemical composition of the high-resistance thermally conductive alloy is: magnesium (Mg): 10.0 wt.%, yttrium (Y): 3.0 wt.%, lanthanum (Ta): 2.0 wt.%, molybdenum. (Mo): 5.0 wt.%, zinc (Zn): 6.0 wt.%, phosphorus (P): 0.8 wt.%, boron (B): 1.5 wt.%, cobalt (Co): 2.0 wt.%, The amount is aluminum.
  • the chemical composition of the high-resistance thermally conductive alloy is: magnesium (Mg): 13.0 wt.%, yttrium (Y): 5.0 wt.%, lanthanum (Ta): 4.0 wt.%, molybdenum. (Mo): 8.0 wt.%, zinc (Zn): 10.0 wt.%, phosphorus (P): 1.5 wt.%, boron (B): 2.0 wt.%, cobalt (Co): 4.0 wt.%, The amount is aluminum.
  • the chemical composition of the high-resistance thermally conductive alloy is: magnesium (Mg): 12.5 wt.%, yttrium (Y): 4.0 wt.%, lanthanum (Ta): 3.0 wt.%, molybdenum. (Mo): 7.0 wt.%, zinc (Zn): 8.0 wt.%, phosphorus (P): 1.2 wt.%, boron (B): 1.8 wt.%, cobalt (Co): 3.0 wt.%, The amount is aluminum.
  • the invention also provides a preparation method of the above high-resistance heat-conductive alloy, and the preparation method comprises the following steps:
  • Aluminum (Al) is processed into a powder, and magnesium (Mg) and aluminum (Al) powders thereof are uniformly mixed together to form a magnesium (Mg)-aluminum (Al) powder mixture.
  • the magnesium (Mg)-aluminum (Al) powder mixture is heated to 680-700 ° C to melt, to obtain a magnesium (Mg)-aluminum (Al) melt;
  • step 3 secondary smelting, yttrium (Y), strontium (Ta), molybdenum (Mo), zinc (Zn), phosphorus (P), boron (B) is added to magnesium (Mg)-aluminum (Al) In the melt, the temperature of the secondary smelting is 900-1300 ° C, and magnesium (Mg)-yttrium (Y)-tellurium (Ta)-molybdenum (Mo)-zinc (Zn)-phosphorus (P)-boron is obtained.
  • the melt obtained in the step 3) is cooled to 700 ° C - 710 ° C, the cobalt oxide powder is blown into the melt by an inert gas, and then the gas is removed by inert gas.
  • the slag is subjected to pre-furnace component analysis, and after casting, it can be cast, that is, it contains magnesium (Mg), yttrium (Y), strontium (Ta), molybdenum (Mo), zinc (Zn), phosphorus (P), boron. (B), the high resistance heat conductive alloy of aluminum (Al) and cobalt (Co).
  • the smelting time is 20-30 min in the first smelting in step 2), and the smelting time is 30-60 min in the second smelting in step 3).
  • the resulting high resistance thermally conductive alloy has a heat transfer coefficient of from 150 to 160 W/m.K.
  • the high-resistance thermally conductive alloy produced has a yield strength of 400-650 MPa, a tensile strength of 500-750 MPa, and an elongation of 4-15%.
  • the present invention has the following beneficial effects:
  • the invention adopts two smelting and two kinds of mixed melting to achieve batch-mixing of primary and secondary alloy elements in batches, which changes the type and composition of oxide film and nitride film formed on the surface of the melt.
  • the content is effective to prevent the burning phenomenon of the aluminum alloy from being burned in the smelting state.
  • the high thermal conductivity alloy proposed in this patent has extremely excellent flame retardant properties under static conditions, and can be kept in the atmosphere at 700-1300 temperature for 5 hours without significant combustion.
  • the dynamic process for example, in the melt processing of stirring, blowing, etc. of the liquid alloy, when the surface film is destroyed by vigorous stirring, it can still be rapidly regenerated, and the oxidation combustion of the alloy is successfully hindered.
  • the surface oxide film of the obtained alloy has very good plasticity and viscosity, and can completely spread and cover the surface of the alloy, effectively blocking the intrusion of oxygen into the alloy liquid.
  • the high-resistance thermally conductive alloy of the present invention has a heat transfer coefficient of 150-160 W/m.K, a yield strength of 400-650 MPa, a tensile strength of 500-750 MPa, and an elongation of 4-15%.
  • the smelting and processing method is simple, the production cost is relatively low, and the requirements for equipment are lowered. While ensuring flame retardancy, it also further improves the service life of the alloy and the mechanical properties at high temperatures, facilitating industrialized large-scale applications.
  • the invention can be used for manufacturing structural parts with a use temperature of less than 100 degrees and has extremely remarkable weight reduction effect, and has great market prospect.
  • the melt obtained in the step 3) is cooled to 700 ° C, the metamorphic agent cobalt oxide powder is blown into the melt by an inert gas, and then the inert gas is used to degas the slag, and then the furnace is carried out.
  • the inert gas is used to degas the slag, and then the furnace is carried out.
  • it can be cast after being qualified, that is, it contains magnesium (Mg), yttrium (Y), strontium (Ta), molybdenum (Mo), zinc (Zn), phosphorus (P), boron (B), aluminum ( The high resistance heat conductive alloy of Al) and cobalt (Co).
  • the high-resistance heat-conductive alloy of the first embodiment has a heat transfer coefficient of 150 W/m.K, and the high-resistance heat-conductive alloy has a yield strength of 400 MPa, a tensile strength of 500 MPa, and an elongation of 6%.
  • the molten material obtained in the step 3) is cooled to 710 ° C, the cobalt oxide powder is blown into the melt by an inert gas, and then the inert gas is used to degas the slag, and then the furnace is carried out.
  • the inert gas is used to degas the slag, and then the furnace is carried out.
  • it can be cast after being qualified, that is, it contains magnesium (Mg), yttrium (Y), strontium (Ta), molybdenum (Mo), zinc (Zn), phosphorus (P), boron (B), aluminum ( The high resistance heat conductive alloy of Al) and cobalt (Co).
  • the high-resistance heat-conductive alloy of the second embodiment has a heat transfer coefficient of 160 W/m.K, and the high-resistance heat-conductive alloy has a yield strength of 650 MPa, a tensile strength of 750 MPa, and an elongation of 15%.
  • the overall performance parameters of the high-resistance heat-conductive alloy of the present invention are: yield strength of 400-650 MPa, tensile strength of 500-750 MPa, elongation of 4-15%, and heat transfer coefficient of 150-160 W/m.K.

Abstract

一种高电阻导热合金,按重量百分比计,化学成分为:镁(Mg):10.0-13.0wt.%,钇(Y):3.0-5.0wt.%,钽(Ta):2.0-4.0wt.%,钼(Mo):5.0-8.0wt.%,锌(Zn):6.0-10.0wt.%,磷(P):0.8-1.5wt.%,硼(B):1.5-2.0wt.%,钴(Co):2.0-4.0wt.%,余量为铝。其传热系数为150-160W/m.K。

Description

一种高电阻导热合金 技术领域
本发明涉及合金技术领域,具体地说,涉及一种高电阻导热合金。
背景技术
在合金领域,铝合金具有加工性能好的特点,尤其是共晶铝硅压铸合金,其不仅加工性能好,而且比重轻,表面美观且耐腐蚀;铸造时铸造性能较好,制品综合性能好,是优良的压铸铝合金,可用于各种各样的形状复杂的部件,在许多领域中得到广泛应用。
另外,铝锂合金具有良好的切削加工性能与加工成型性能,是航天航空、汽车、3C电子产业等领域最理想的结构材料之一。随着3C产品的快速发展,铝锂合金的需求日益扩大。此外,铝锂合金还具有其它一系列优点:抗压屈服极限超出普通铝合金2/3、对缺口不敏感、冲击韧性好、抗弯强度大、机械性能的各向异性不明显、塑性好、容易变形加工、容易焊接成形、比热容量大导热性低。铝锂合金可部分替代目前应用于航空、航天领域的铝材及其它铝合金材料,具有广泛的应用前景。采用先进铝锂合金取代铝合金来制造飞机,重量可以减轻14.6%,燃料可以节约55.4%,飞机成本就会下降2.1%,每一架飞机每年的飞行费用也会下降2.2%。
但是,为了满足现代电子行业发展需要,需要进一步的同时提高含铝合金的高电阻及导热性能,特别是适用于电子行业中对集成电路的散热问题的研究的深入、汽车及家电行业中对发热盘、散热器等要求的提高,以及近年来PC等电子电器产品趋向于高速化、小型化,目前所用材料已难满足产品的实际使用要求,研发高导热率的压铸铝合金材料,提高材料的高电阻以及同时提高热传导性能已成为一种发展趋势。
本发明提出一种同时提高含铝合金的高电阻及导热性能的合金及其制备方法。
发明内容
本发明目的在于克服现有技术的不足,提供一种一种同时提高含铝合金的高电阻及导热性能的合金及其制备方法。
为了实现上述目的,本发明采用如下技术方案:
一种高电阻导热合金,按重量百分比计,所述高电阻导热合金的化学成分为:镁(Mg):10.0-13.0wt.%,钇(Y):3.0-5.0wt.%,钽(Ta):2.0-4.0wt.%,钼(Mo):5.0-8.0wt.%,锌(Zn):6.0-10.0wt.%,磷(P):0.8-1.5wt.%,硼(B):1.5-2.0wt.%,钴(Co):2.0-4.0wt.%,余量为铝。
进一步的,按重量百分比计,所述高电阻导热合金的化学成分为:镁(Mg):10.0wt.%,钇(Y):3.0wt.%,钽(Ta):2.0wt.%,钼(Mo):5.0wt.%,锌(Zn):6.0wt.%,磷(P):0.8wt.%,硼(B):1.5wt.%,钴(Co):2.0wt.%,余量为铝。
进一步的,按重量百分比计,所述高电阻导热合金的化学成分为:镁(Mg):13.0wt.%,钇(Y):5.0wt.%,钽(Ta):4.0wt.%,钼(Mo):8.0wt.%,锌(Zn):10.0wt.%,磷(P):1.5wt.%,硼(B):2.0wt.%,钴(Co):4.0wt.%,余量为铝。
进一步的,按重量百分比计,所述高电阻导热合金的化学成分为:镁(Mg):12.5wt.%,钇(Y):4.0wt.%,钽(Ta):3.0wt.%,钼(Mo):7.0wt.%,锌(Zn):8.0wt.%,磷(P):1.2wt.%,硼(B):1.8wt.%,钴(Co):3.0wt.%,余量为铝。
本发明还提供了上述高电阻导热合金的制备方法,制备方法包含如下步骤:
1)粉末化;
2)一次熔炼;
3)二次熔炼;
4)合金化处理。
本发明的一个方面,在步骤1)粉末化中,将镁(Mg)、钇(Y)、钽(Ta)、钼(Mo)、锌(Zn)、磷(P)、硼(B)、铝(Al)均加工成粉末,将其中的镁(Mg)、铝(Al)粉末均匀混合在一起,形成镁(Mg)-铝(Al)粉末混合物。
本发明的一个方面,在步骤2)一次熔炼中,将镁(Mg)-铝(Al)粉末混合物加热到680-700℃熔融,得到镁(Mg)-铝(Al)熔融物;
在步骤3)二次熔炼中,将钇(Y)、钽(Ta)、钼(Mo)、锌(Zn)、磷(P)、硼(B)加入到镁(Mg)-铝(Al)熔融物中,所述二次熔炼的温度为900-1300℃,得到镁(Mg)-钇(Y)-钽(Ta)-钼(Mo)-锌(Zn)-磷(P)-硼(B)-铝(Al)熔融物;
在步骤4)合金化处理中,把步骤3)得到的所述熔融物降温到700℃—710℃,在熔体中通过惰性气体吹入变质剂氧化钴粉末,然后继续用惰性气体除气除渣,再进行炉前成分分析,合格后即可进行浇铸,即得到含有镁(Mg)、钇(Y)、钽(Ta)、钼(Mo)、锌(Zn)、磷(P)、硼(B)、铝(Al)和钴(Co)的所述的高电阻导热合金。
本发明的一个方面,在步骤2)一次熔炼中,熔炼时间为20-30min;在步骤3)二次熔炼中,熔炼时间为30-60min。
本发明的一个方面,制得的所述的高电阻导热合金的传热系数为150-160W/m.K。
本发明的一个方面,制得的所述的高电阻导热合金的屈服强度为400-650MPa,抗拉强度为500-750MPa,延伸率为4-15%。
与现有技术相比,本发明具有如下有益效果:
(1)本发明采用两次熔炼,两次混熔,达到了主要和次要合金元素分批次添加分批混熔,改变了熔体表面生成的氧化膜和氮化膜的类型,成分和含量,从而有效地防止在熔炼状态下铝合金发生燃烧现象进行烧损。通过优选的合金化办法,不仅可以大大降低合金元素使用量的缺点,还可以获得非常好的阻燃 效果,在阻燃元素含量明显降低的同时,合金燃点却大幅上升。
(2)本专利提出的高导热合金在静态下具有极其优异的阻燃性能,可以达到在700-1300温度范围内在大气环境下保温和静置5个小时而没有明显的燃烧。在动态过程中,例如对液态合金进行搅拌、吹气等熔体处理过程中,当其表面膜因剧烈搅拌被破坏后,仍能快速再生,成功阻碍合金的氧化燃烧。所得合金表面氧化膜都有非常好的塑性和粘度,能够完整地铺展和覆盖住合金表面,有效阻挡氧气侵入合金液内。
(3)本发明的高电阻导热合金的传热系数为150-160W/m.K,屈服强度为400-650MPa,抗拉强度为500-750MPa,延伸率为4-15%。
(4)冶炼加工方法简单,生产成本比较低,降低了对设备的要求。在保证具备阻燃性的同时,也使得合金使用寿命和高温下力学性能有了进一步提高,便于工业化大规模应用。本发明可用于制造在使用温度为100度以下结构件并具有极其显著的轻量化效果,具有巨大的市场前景。
具体实施方式
实施例1
本实施例的高电阻导热合金的制备方法,包含如下步骤:
1)粉末化:将镁(Mg)、钇(Y)、钽(Ta)、钼(Mo)、锌(Zn)、磷(P)、硼(B)、铝(Al)均加工成粉末,将其中的镁(Mg)、铝(Al)粉末均匀混合在一起,形成镁(Mg)-铝(Al)粉末混合物;
2)一次熔炼:将镁(Mg)-铝(Al)粉末混合物加热到680℃熔融,得到镁(Mg)-铝(Al)熔融物;熔炼时间为30min;
3)二次熔炼:将钇(Y)、钽(Ta)、钼(Mo)、锌(Zn)、磷(P)、硼(B)加入到镁(Mg)-铝(Al)熔融物中,所述二次熔炼的温度为1000℃,得到镁(Mg)-钇(Y)-钽(Ta)-钼(Mo)-锌(Zn)-磷(P)-硼(B)-铝(Al)熔融物;所述二次熔炼的熔炼时间为30-60min;
4)合金化处理:把步骤3)得到的所述熔融物降温到700℃,在熔体中通过惰性气体吹入变质剂氧化钴粉末,然后继续用惰性气体除气除渣,再进行炉前成分分析,合格后即可进行浇铸,即得到含有镁(Mg)、钇(Y)、钽(Ta)、钼(Mo)、锌(Zn)、磷(P)、硼(B)、铝(Al)和钴(Co)的所述的高电阻导热合金。
本实施例1的高电阻导热合金的传热系数为150W/m.K,所述的高电阻导热合金的屈服强度为400MPa,抗拉强度为500MPa,延伸率为6%。
实施例2
本实施例的高电阻导热合金的制备方法,包含如下步骤:
1)粉末化:将镁(Mg)、钇(Y)、钽(Ta)、钼(Mo)、锌(Zn)、磷(P)、硼(B)、铝(Al)均加工成粉末,将其中的镁(Mg)、铝(Al)粉末均匀混合在一起,形成镁(Mg)-铝(Al)粉末混合物;
2)一次熔炼:将镁(Mg)-铝(Al)粉末混合物加热到700℃熔融,得到镁(Mg)-铝(Al)熔融物;在步骤2)一次熔炼中,熔炼时间为30min;
3)二次熔炼:将钇(Y)、钽(Ta)、钼(Mo)、锌(Zn)、磷(P)、硼(B)加入到镁(Mg)-铝(Al)熔融物中,所述二次熔炼的温度为1300℃,得到镁(Mg)-钇(Y)-钽(Ta)-钼(Mo)-锌(Zn)-磷(P)-硼(B)-铝(Al)熔融物;在步骤3)二次熔炼中,熔炼时间为60min;
4)合金化处理:把步骤3)得到的所述熔融物降温到710℃,在熔体中通过惰性气体吹入变质剂氧化钴粉末,然后继续用惰性气体除气除渣,再进行炉前成分分析,合格后即可进行浇铸,即得到含有镁(Mg)、钇(Y)、钽(Ta)、钼(Mo)、锌(Zn)、磷(P)、硼(B)、铝(Al)和钴(Co)的所述的高电阻导热合金。
本实施例2的高电阻导热合金的传热系数为160W/m.K,所述的高电阻导热合金的屈服强度为650MPa,抗拉强度为750MPa,延伸率为15%。
本发明的高电阻导热合金总体性能参数为:屈服强度为400-650MPa,抗 拉强度为500-750MPa,延伸率为4-15%,传热系数为150-160W/m.K。

Claims (9)

  1. 一种高电阻导热合金,其特征在于,按重量百分比计,所述高电阻导热合金的化学成分为:镁(Mg):10.0-13.0wt.%,钇(Y):3.0-5.0wt.%,钽(Ta):2.0-4.0wt.%,钼(Mo):5.0-8.0wt.%,锌(Zn):6.0-10.0wt.%,磷(P):0.8-1.5wt.%,硼(B):1.5-2.0wt.%,钴(Co):2.0-4.0wt.%,余量为铝。
  2. 根据权利要求1所述高电阻导热合金,其特征在于,按重量百分比计,所述高电阻导热合金的化学成分为:镁(Mg):10.0wt.%,钇(Y):3.0wt.%,钽(Ta):2.0wt.%,钼(Mo):5.0wt.%,锌(Zn):6.0wt.%,磷(P):0.8wt.%,硼(B):1.5wt.%,钴(Co):2.0wt.%,余量为铝。
  3. 根据权利要求1所述高电阻导热合金,其特征在于,按重量百分比计,所述高电阻导热合金的化学成分为:镁(Mg):13.0wt.%,钇(Y):5.0wt.%,钽(Ta):4.0wt.%,钼(Mo):8.0wt.%,锌(Zn):10.0wt.%,磷(P):1.5wt.%,硼(B):2.0wt.%,钴(Co):4.0wt.%,余量为铝。
  4. 根据权利要求1所述高电阻导热合金,其特征在于,按重量百分比计,所述高电阻导热合金的化学成分为:镁(Mg):12.5wt.%,钇(Y):4.0wt.%,钽(Ta):3.0wt.%,钼(Mo):7.0wt.%,锌(Zn):8.0wt.%,磷(P):1.2wt.%,硼(B):1.8wt.%,钴(Co):3.0wt.%,余量为铝。
  5. 根据权利要求1-4任一项所述高电阻导热合金的制备方法,其特征在于,制备方法包含如下步骤:
    1)粉末化;
    2)一次熔炼;
    3)二次熔炼;
    4)合金化处理。
  6. 根据权利要求5所述的制备方法,其特征在于,在步骤1)粉末化中,将镁(Mg)、钇(Y)、钽(Ta)、钼(Mo)、锌(Zn)、磷(P)、硼(B)、铝(Al)均加工成粉末,将其中的镁(Mg)、铝(Al)粉末均匀混合在一起,形 成镁(Mg)-铝(Al)粉末混合物。
  7. 根据权利要求6所述的制备方法,其特征在于,
    在步骤2)一次熔炼中,将镁(Mg)-铝(Al)粉末混合物加热到680-700℃熔融,得到镁(Mg)-铝(Al)熔融物;
    在步骤3)二次熔炼中,将钇(Y)、钽(Ta)、钼(Mo)、锌(Zn)、磷(P)、硼(B)加入到镁(Mg)-铝(Al)熔融物中,所述二次熔炼的温度为900-1300℃,得到镁(Mg)-钇(Y)-钽(Ta)-钼(Mo)-锌(Zn)-磷(P)-硼(B)-铝(Al)熔融物;
    在步骤4)合金化处理中,把步骤3)得到的所述熔融物降温到700℃—710℃,在熔体中通过惰性气体吹入变质剂氧化钴粉末,然后继续用惰性气体除气除渣,再进行炉前成分分析,合格后即可进行浇铸,即得到含有镁(Mg)、钇(Y)、钽(Ta)、钼(Mo)、锌(Zn)、磷(P)、硼(B)、铝(Al)和钴(Co)的所述的高电阻导热合金。
  8. 根据权利要求7所述的制备方法,其特征在于,
    在步骤2)一次熔炼中,熔炼时间为20-30min;
    在步骤3)二次熔炼中,熔炼时间为30-60min。
  9. 根据权利要求8所述的制备方法,其特征在于,
    制得的所述的高电阻导热合金的传热系数为150-160W/m.K。
PCT/CN2018/109574 2018-02-08 2018-10-10 一种高电阻导热合金 WO2019153768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810130201.1A CN108300912A (zh) 2018-02-08 2018-02-08 一种高电阻导热合金
CN201810130201.1 2018-02-08

Publications (1)

Publication Number Publication Date
WO2019153768A1 true WO2019153768A1 (zh) 2019-08-15

Family

ID=62864768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109574 WO2019153768A1 (zh) 2018-02-08 2018-10-10 一种高电阻导热合金

Country Status (2)

Country Link
CN (1) CN108300912A (zh)
WO (1) WO2019153768A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108300912A (zh) * 2018-02-08 2018-07-20 盐城市鑫洋电热材料有限公司 一种高电阻导热合金

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167163A (zh) * 1997-04-25 1997-12-10 清华大学 铝及铝合金的铁碳硼复合细化剂
CN1313911A (zh) * 1998-07-29 2001-09-19 米巴·格来特来格股份公司 在铝基底上的合金中间层,尤其是粘结层
CN102031421A (zh) * 2009-09-29 2011-04-27 贵州铝厂 Cr-Gd高强耐热铝合金材料及其制备方法
WO2017077137A2 (en) * 2015-11-06 2017-05-11 Innomaq 21, S.L. Method for the economic manufacturing of metallic parts
CN108300912A (zh) * 2018-02-08 2018-07-20 盐城市鑫洋电热材料有限公司 一种高电阻导热合金

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163247A (en) * 1980-05-21 1981-12-15 Kobe Steel Ltd Manufacture of a -mg alloy plate
CN103305731A (zh) * 2013-05-16 2013-09-18 天津立中合金集团有限公司 一种添加稀土钇的超高强变形铝合金
CN103468996B (zh) * 2013-08-12 2016-05-18 安徽盛达前亮铝业有限公司 一种高导热铝合金型材的生产工艺
CN104878251A (zh) * 2015-05-20 2015-09-02 柳州市百田机械有限公司 高导热铸造铝合金的制备方法
CN105177368A (zh) * 2015-08-10 2015-12-23 高安市金良轩科技有限公司 高导热高导电的压铸稀土铝合金及其制备方法
CN107974587A (zh) * 2016-10-21 2018-05-01 河南智联寰宇知识产权运营有限公司 高强度耐腐蚀铝合金

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167163A (zh) * 1997-04-25 1997-12-10 清华大学 铝及铝合金的铁碳硼复合细化剂
CN1313911A (zh) * 1998-07-29 2001-09-19 米巴·格来特来格股份公司 在铝基底上的合金中间层,尤其是粘结层
CN102031421A (zh) * 2009-09-29 2011-04-27 贵州铝厂 Cr-Gd高强耐热铝合金材料及其制备方法
WO2017077137A2 (en) * 2015-11-06 2017-05-11 Innomaq 21, S.L. Method for the economic manufacturing of metallic parts
CN108300912A (zh) * 2018-02-08 2018-07-20 盐城市鑫洋电热材料有限公司 一种高电阻导热合金

Also Published As

Publication number Publication date
CN108300912A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
WO2017133415A1 (zh) 一种高导热压铸铝合金及其制备方法
CN109554589B (zh) 一种高导热稀土铝合金、制备方法及其应用
CN104264017B (zh) 一种高导热压铸铝合金及其制备方法
CN108504910B (zh) 一种铝合金及其制备方法
CN109971989B (zh) 一种高导耐高温铜合金制备方法
CN109055830A (zh) 一种高强韧铝合金及其制备方法
CN108265207B (zh) 一种高导热铝合金及其制备方法和散热体
CN108359853A (zh) 一种高导热铝合金及其制备方法
CN107881378B (zh) 铝合金组合物、铝合金元件、通讯产品及铝合金元件的制备方法
CN107338387A (zh) 一种铝合金气缸盖的制备方法
CN114015914B (zh) 一种高强度高导热性压铸铝合金材料及其制备方法
CN115044794A (zh) 一种具有优异性能的Cu-(Y2O3-HfO2)合金及其制备方法
WO2019153768A1 (zh) 一种高电阻导热合金
CN108251670A (zh) 耐高温金属间化合物合金的制备方法
CN103667759A (zh) Al-Mg-Si系合金α-Al晶粒细化剂及其制备方法
CN108929975B (zh) 一种铝合金材料及其制备方法
CN111455329A (zh) 一种铝钛硼靶材及其粉末固相合金化烧结方法
CN106676350A (zh) 一种2050合金铸造工艺方法
CN1325679C (zh) Sn-Zn-Bi-Cr合金无铅焊料的制备方法
CN112941349A (zh) 高韧耐腐性镁合金制备工艺
KR20220063940A (ko) 고강도 고열전도성 주조용 알루미늄 합금 및 이의 제조 방법
KR20110025509A (ko) 골드칼라를 구현하는 동합금의 제조 방법
KR20160147922A (ko) 알루미늄 합금으로 형성된 방열핀 및 그 제조방법
CN111826560A (zh) 一种高导热铝合金材料及其制备方法
CN111733351A (zh) 一种导热和强度高的铝合金材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905775

Country of ref document: EP

Kind code of ref document: A1