WO2019153501A1 - 微裂隙三轴应力渗流注浆试验系统及其使用方法 - Google Patents

微裂隙三轴应力渗流注浆试验系统及其使用方法 Download PDF

Info

Publication number
WO2019153501A1
WO2019153501A1 PCT/CN2018/083209 CN2018083209W WO2019153501A1 WO 2019153501 A1 WO2019153501 A1 WO 2019153501A1 CN 2018083209 W CN2018083209 W CN 2018083209W WO 2019153501 A1 WO2019153501 A1 WO 2019153501A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
pressure
pump
grouting
triaxial stress
Prior art date
Application number
PCT/CN2018/083209
Other languages
English (en)
French (fr)
Inventor
乔卫国
宋伟杰
常璐媛
杨旭旭
宋雪梅
林登阁
张帅
李彦志
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2019153501A1 publication Critical patent/WO2019153501A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0236Other environments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Definitions

  • the invention belongs to the field of machinery, and particularly relates to a micro-fracture triaxial stress seepage grouting experimental system and a using method thereof.
  • micro-cracks The seepage mechanism of micro-cracks is difficult to achieve by the test method.
  • the fundamental reason is that the micro-crack opening is very small, and the traditional monitoring device cannot meet the accuracy requirements.
  • Large-scale advanced detection equipment such as nuclear magnetic resonance and CT scanning are also difficult to directly observe the dynamic process of micro-scale cracks, resulting in the failure of real-time monitoring of micro-cracks.
  • the micro-cracks have higher requirements for equipment under high-pressure conditions. The goal of ensuring stable seepage and making the device sealed and watertight is a great challenge.
  • the present invention proposes a micro-fracture triaxial stress seepage grouting test system and a method for using the same, which is to further study the micro-fracture seepage mechanism and the micro-crack grouting and water blocking technology.
  • the foundation is to further study the micro-fracture seepage mechanism and the micro-crack grouting and water blocking technology.
  • One of the tasks of the present invention is to provide a micro-fracture triaxial stress seepage grouting test system, which can realize dynamic real-time monitoring of the sample seepage grouting process under high axial pressure and high confining pressure conditions.
  • a micro-fracture triaxial stress seepage grouting test system which comprises a micro-fracture triaxial stress seepage grouting experimental platform, a seepage grouting injection system, a drain pump, a first shaft pressure feed pump, a confining oil pump and a second Axial pressure inlet pump, characterized in that:
  • the seepage grouting injection system, the drain pump, the first shaft pressure feed pump, the confining pressure oil pump, and the second shaft pressure feed pump are all connected with the micro-fracture triaxial stress seepage grouting test platform;
  • the micro-fracture triaxial stress seepage grouting experimental platform comprises a micro-fracture triaxial stress seepage grouting experimental sealing device, a micro-fracture triaxial stress seepage grouting experimental support platform and a pulling engineering oil cylinder; a micro-fracture triaxial stress seepage grouting experiment
  • the sealing device consists of pressure chamber cylinder, experimental sample, sample sealing sleeve, end loading piston, axial pressure sealing cylinder, shaft pressure sealing cylinder cover, pulling engineering cylinder cover, exhaust valve, confining oil inlet control valve and confining pressure An oil discharge control valve, wherein the end surface loading piston and the shaft pressure sealing cylinder are embedded in the pressure chamber cylinder, and the shaft pressure sealing cylinder cover is embedded in the end surface loading piston and the shaft pressure seal a cavity between the cylinders, the pull-type engineering cylinder cover is placed outside the shaft-pressure seal cylinder cover, the exhaust valve is located at an upper position of the upper portion of the pressure chamber cylinder, the confining pressure inlet control valve and the a confining pressure oil discharge control
  • Two grating fiber-optic sensor terminals are arranged at the left end of the micro-fracture triaxial stress seepage grouting experimental sealing device, and two grating fiber-optic sensor communication channels are provided; the micro-cracked triaxial stress seepage grouting test seal Two acoustic emission sensor terminals are arranged at the right end of the device, and two acoustic emission sensor communication channels are provided;
  • the micro-cracked triaxial stress seepage grouting experimental support platform comprises a micro-fracture triaxial stress seepage grouting experimental support frame, a pulling engineering cylinder support frame, a pressure chamber moving linear guide, an end loading piston moving guide rail, an end loading piston guiding sliding device And a pressure chamber tube guiding sliding device, the pulling engineering cylinder support frame is fixed on the micro-fracture triaxial stress seepage grouting experimental support frame, wherein the end surface loading piston moving rail is provided with a rail limiting nut and a rail end fixing groove The rail end fixing groove body is fixed on the end surface loading piston moving rail, the pressure chamber cylinder guiding sliding device upper portion is connected with the pressure chamber cylinder, and the lower portion is embedded in the pressure chamber moving linear guide rail.
  • the upper end of the end loading piston guiding slide device is connected with the pressure chamber cylinder, and the lower portion is embedded on the moving end rail of the end surface loading piston, and can be loaded on the end surface
  • the piston moves on the guide rail to slide left and right;
  • the seepage grouting injection system includes a grout pump, a water injection pump, and a fluid converter.
  • the micro-cracked triaxial stress seepage grouting test system can realize the dynamic real-time monitoring of the sample seepage grouting process under the condition of high axial pressure and high confining pressure.
  • the forward and reverse simultaneous loading of the fluid during the seepage process can be achieved by the seepage grouting injection system and the drain pump, maintaining the pressure in the fracture seepage channel, achieving stable seepage, and having a simulated deep Conditions for complex rock mechanics environments.
  • the fiber grating sensor is used to dynamically monitor the strain of the entire seepage path, and the data is corrected to eliminate the influence of temperature on the result, and the strain value of the crack surface during the seepage process can be effectively extracted.
  • the stress value of the crack surface during the seepage process can be effectively obtained.
  • the acoustic emission sensor can monitor whether the crack is expanded during the whole test process, ensuring that the deformation of the crack is in a completely elastic range and is recoverable.
  • the design of the whole test system is targeted and reliable, and the method of use is scientific and clear. It provides a solution for simulating micro-fracture high-pressure water seepage and grouting in deep complex surrounding rock environment, and explores the mechanism of micro-crack seepage and sealing by grouting means. The realization of the micro-fracture technology has guiding significance.
  • the above-mentioned No. 1 shaft pressure feed pump, the confining pressure oil pump, and the No. 2 shaft pressure feed pump are all servo-loaded, and the maximum pressure that can be loaded is 80 MPa.
  • the sample sealing sleeve is provided with a sample sealing sleeve bracket, and the sample sealing sleeve and the sample sealing sleeve bracket are tightly connected by a superglue.
  • sample sealing sleeve bracket is respectively provided with a vertical channel of the sample sealing sleeve bracket and a horizontal channel of the sample sealing sleeve bracket, and both channels are cylindrical structures.
  • the upper part of the fluid converter is provided with a seepage grouting injection system outlet control valve, and is connected to the micro-cracked triaxial stress seepage grouting test platform through a fluid inlet pipe; and the grouting pump discharge control is arranged in the lower part of the fluid converter
  • the valve and the water injection water outlet control valve are respectively connected with the grouting pump and the water injection pump.
  • the inner and outer surfaces of the pressure chamber cylinder have a rectangular parallelepiped structure; the outer side of the axial pressure sealing cylinder has a rectangular parallelepiped structure, and the inner side has a cylindrical structure; the outer side of the end loading piston has a cylindrical structure; and the inner side of the axial pressure sealing cylinder cover is a cylinder.
  • the outer side is a rectangular parallelepiped structure; the outer side of the inner side of the pulling cylinder cover is a cylindrical structure.
  • the grating fiber sensor terminal is subjected to a maximum pressure of 60 MPa, and the grating fiber sensor communication channel is cylindrical; the acoustic emission sensor terminal is subjected to a maximum pressure of 60 MPa, and the acoustic emission sensor communication channel is cylindrical.
  • the above-mentioned grouting pump and the water injection pump have a capacity of 10 L, and the loading mode is servo hydraulic loading, and the maximum pressure that can be loaded is 60 MPa.
  • Another object of the present invention is to provide a method for using a micro-fracture triaxial stress seepage grouting test system, which in turn comprises the following steps:
  • A2 Install a monitoring sensor, paste the fiber grating sensor on the crack surface of the experimental sample, arrange the monitoring point, and then punch the upper and lower surfaces of the experimental sample and install the acoustic emission sensor;
  • the cable connected to the FBG sensor sequentially passes through the gasket, the grating fiber sensor channel, and the grating fiber sensor
  • the terminal is welded, the acoustic emission sensor sequentially passes through the sealing pad, the acoustic emission sensor communication channel, and is welded to the acoustic emission sensor terminal;
  • the sample end seal is placed on both sides of the experimental sample, and the shaft is placed Pressing and sealing the cylinder and fixing; then placing the end loading piston, the shaft pressure sealing cylinder cover and pulling the engineering cylinder cover in sequence;
  • the installed micro-cracked triaxial stress seepage grouting test platform is respectively connected with the seepage grouting injection system, the drain pump, the first shaft pressure feed pump, the confining pressure oil pump, and the second shaft pressure feed pump;
  • the axial pressure loading is performed, the first shaft pressure inlet pump and the second shaft pressure inlet pump are opened, and the loading shaft is pressed to the preset value S1;
  • the confining pressure is applied, and the exhaust valve and the confining oil inlet control valve are opened at the same time, and the confining oil pump is opened, and the exhaust valve is observed.
  • the exhaust valve is out of oil, the exhaust valve is closed, and the confining pressure is applied until the pressure is applied. Go to the preset value S2; when the confining pressure reaches the preset value S2, close the confining pressure inlet control valve, and the process of enclosing the oil discharge control valve is kept closed;
  • the grouting pressure is unloaded, and after the slurry seepage is stabilized, the pressure of the grouting pump and the drain pump is gradually reduced until the pressure is reduced to zero.
  • step c opening the water injection pump, the water injection control valve of the water injection pump, and the liquid discharge control valve of the seepage grout injection system provided in the upper part of the fluid converter, and setting the pressure target value of the water injection pump to P1, and simultaneously opening the liquid discharge.
  • the invention can realize dynamic real-time monitoring of the seepage grouting process of the sample under the condition of high axial pressure and high confining pressure by the micro-fracture triaxial stress seepage grouting experimental platform, and the grating fiber optic sensor can be used for the whole
  • the stress and strain changes of the fracture surface of the seepage path are quantitatively described.
  • the acoustic emission sensor can track the fracture state of the sample in real time, and finally the description of the seepage grouting law of micro-crack under microscopic conditions can be realized.
  • the theory of fracture seepage grouting can effectively solve the problem of micro-crack seepage in complex stress environment, and provide a basis for grouting and water-blocking practice in underground engineering and hydraulic engineering.
  • FIG. 1 is a schematic structural view of a micro-fracture triaxial stress seepage grouting test system of the present invention
  • FIG. 2 is a schematic structural view of a micro-fracture triaxial stress seepage grouting experimental platform of the present invention
  • FIG. 3 is a schematic structural view of a micro-cracked triaxial stress seepage grouting experimental sealing device of the present invention
  • FIG. 4 is a schematic structural view of a micro-cracked triaxial stress seepage grouting test support frame according to the present invention.
  • Figure 5 is a schematic structural view of a seepage grouting injection system of the present invention.
  • FIG. 6 is a top view of a micro-fracture triaxial stress seepage grouting experimental platform of the present invention.
  • FIG. 7 and FIG. 8 are cross-sectional views of the sample sealing sleeve of the present invention.
  • Figure 9 is a schematic view of the liquid discharge pump of the present invention.
  • 10 is a triaxial stress-strain curve diagram of an experimental sample of a similar material of a stack of fine sandstones
  • Figure 11 is a layout diagram of a measuring point of a fiber grating sensor of an experimental sample
  • the present invention provides a micro-fracture triaxial stress seepage grouting test system and a method for using the same.
  • the present invention will be described in detail below with reference to specific embodiments.
  • the micro-cracked triaxial stress seepage grouting test system of the present invention comprises a micro-fracture triaxial stress seepage grouting test platform, a seepage grouting injection system 2, a drain pump 3, and a first shaft pressure feed liquid.
  • the liquid pump 6 is connected with the micro-fracture triaxial stress seepage grouting experimental platform 1, and the specific connection relationship is: micro-fracture triaxial stress seepage grouting experimental platform 1 and seepage grouting injection system 2 through the first shaft pressing into the oil pipe 21
  • the connection is connected with the drain pump 3 through the fluid outlet pipe 26, and is connected to the first shaft pressure feed pump 4 through the first shaft pressure inlet pipe 21, and is connected with the pressure-enclosed oil pump 5 through the confining pressure inlet and outlet oil pipe 32, and the second number
  • the axial pressure inlet pump 6 is connected through the second shaft pressure inlet pipe 25, and the pipe ports of the first shaft pressure inlet pipe 21, the fluid outlet pipe 26, and the second shaft pressure inlet pipe 25 are provided with threads, and the thread is passed through the thread.
  • the fractured triaxial stress seepage grouting experimental platform is connected.
  • the micro-cracked triaxial stress seepage grouting experimental platform 1 comprises a micro-fracture triaxial stress seepage grouting experimental sealing device, a micro-fracture triaxial stress seepage grouting experimental support platform and a pulling engineering cylinder 8 .
  • the micro-cracked triaxial stress seepage grouting experimental sealing device is connected with the pressure chamber moving linear guide 40 of the micro-cracked triaxial stress seepage grouting experimental support platform through the pressure chamber tube 11 guiding sliding device, and the micro-cracked triaxial stress seepage grouting experiment The sealing device can slide back and forth on the micro-fracture triaxial stress seepage grouting experimental support platform.
  • the pulling engineering cylinder 8 is connected to the micro-cracked triaxial stress seepage grouting experimental sealing device by pulling the thread of the engineering cylinder end interface 19.
  • the micro-cracked triaxial stress seepage grouting experimental sealing device comprises a pressure chamber cylinder 11, an experimental sample 14, a sample sealing sleeve 52, an end surface loading piston 10, a shaft pressure sealing cylinder 15, a shaft pressure sealing cylinder cover 17, and a pulling engineering cylinder.
  • the cover plate 16, the exhaust valve 12, the confining pressure oil inlet control valve 30, and the confining pressure oil discharge control valve 31 are composed.
  • the inner and outer surfaces of the pressure chamber have a rectangular parallelepiped structure, and a rectangular parallelepiped sample is placed in the middle.
  • the sample sealing sleeve 52 and the pressure chamber cylinder are tightly connected by a superglue, and the ultimate pressure can be 60 MPa.
  • the outer side of the shaft pressure sealing cylinder has a rectangular parallelepiped structure, and the inner side has a cylindrical structure.
  • the outer side of the end face loading piston 10 has a cylindrical configuration.
  • the inside of the axial seal cylinder cover 17 has a cylindrical structure and the outer side has a rectangular parallelepiped structure. Pulling the inside of the inside of the engineering cylinder cover is a cylindrical structure.
  • the end surface loading piston 10 is embedded in the pressure chamber cylinder 11, and its position is fixed by a shaft pressure sealing cylinder and a shaft pressure sealing cylinder cover.
  • the shaft pressure sealing cylinder is embedded in the pressure chamber cylinder and connected to the pressure chamber cylinder through the shaft pressure sealing cylinder fastening nut 24.
  • the shaft seal cylinder cover is embedded in the cavity between the shaft seal seal cylinder and the end load piston, and the engineering cylinder cover is pulled outside the shaft seal cylinder cover, and the shaft seal seal cylinder cover is provided through the cylinder cover and the cover fastening nut 27. Pull the engineering cylinder cover to the shaft seal cylinder.
  • An exhaust valve is disposed at an intermediate position of the upper portion of the pressure chamber cylinder, and a confining pressure oil inlet control valve and a confining pressure oil outlet control valve are disposed at a lower intermediate position.
  • the cavity formed between the axial seal cylinder, the end face loading piston and the shaft seal cylinder cover is an axial hydraulic oil chamber 54.
  • the left end of the sealing device is provided with two grating fiber-optic sensor terminals 9, and two grating fiber-optic sensor communication channels 22 are provided, and the grating fiber-optic sensor terminal can withstand the ultimate pressure of 60 MPa, grating fiber
  • the sensor communication channel 22 is cylindrical and has a diameter of 10 mm to 15 mm.
  • two acoustic emission sensor terminals 28 are disposed at the right end, and two acoustic emission sensor communication channels 29 are provided, and the acoustic emission sensor terminal 28 can withstand a limit pressure of 60 MPa, and the acoustic emission sensor communication channel 29 is cylindrical.
  • the diameter is 10mm-15mm.
  • the sample sealing sleeve includes a sample sealing sleeve holder 13, a sample sealing sleeve holder cavity 23, and a sample sealing sleeve and a bracket cavity 56. Both the inside and the outside of the sample seal sleeve have a rectangular parallelepiped structure.
  • the sample sealing sleeve and the sample sealing sleeve are tightly connected by a strong glue, and the ultimate pressure can be 60 MPa.
  • the sample sealing sleeve bracket is respectively provided with a sample sealing sleeve bracket vertical passage 33 and a sample sealing sleeve bracket horizontal passage 55, all of which are cylindrical structures.
  • a sample end face seal 53 between the test sample and the end face loading piston which is made of rubber and has a rectangular shape.
  • the micro-cracked triaxial stress seepage grouting experimental support platform includes a micro-fracture triaxial stress seepage grouting experimental support frame 7, a pulling engineering cylinder support frame 42, a pressure chamber moving linear guide, an end-loading piston moving guide 18, and an end-loading piston guide The slide device 35 and the pressure chamber cylinder guide slide device 39.
  • Pulling the engineering cylinder support frame 42 is connected with the micro-cracked triaxial stress seepage grouting test support frame by pulling the engineering cylinder support frame fixing nut 41.
  • the end surface loading piston moving rail 18 is respectively provided with a rail limiting nut 34 and a rail end fixing groove body 36.
  • the rail end fixing groove body 36 is fixed on the end surface loading piston moving rail by the rail end fixing nut 37.
  • the upper part of the pressure chamber cylinder guide sliding device 39 is connected to the pressure chamber cylinder through the pressure chamber cylinder guide sliding device fixing nut 38, and the lower portion is embedded in the pressure chamber moving linear guide rail, and can slide back and forth.
  • the upper part of the end-loading piston guiding slide device 35 is connected to the pressure chamber cylinder by welding, and the lower portion is embedded on the moving rail of the end-face loading piston, and can slide left and right.
  • the percolation grouting injection system includes a grouting pump 43, a water injection pump 48, and a fluid converter 50.
  • the upper portion of the fluid converter 50 is provided with a seepage grouting injection system outlet control valve 46, and is connected to the micro-fracture triaxial stress seepage grouting test platform through the fluid inlet pipe 20; the grouting pump outlet control valve 44 is disposed at the lower portion of the fluid converter
  • the water injection pump outlet control valve 47 is connected to the grouting pump 43 and the water injection pump through the connecting duct 51, and the connecting duct 51 and the water injection pump are connected through the duct transfer port 49.
  • the above-mentioned grouting pump and water injection pump 48 have a capacity of 10L, and the loading mode is servo hydraulic loading, and the maximum pressure that can be loaded is 60 MPa.
  • the first shaft pressure inlet pump, the confining pressure pump and the second shaft pressure inlet pump are all hydraulically loaded, and the maximum pressure that can be loaded is 80 MPa.
  • the present invention also refers to the use of a micro-fracture triaxial stress seepage grouting test system, as shown in FIG. 12, which adopts the above-described micro-fracture triaxial stress seepage grouting test system, including the following steps:
  • Step 1 Preparation of the grouting equipment. Fill the grouting pump with 10L of slurry, fill the injection pump with 10L of pure water, and inject 5L of pure water into the drainage pump.
  • Step 2 Install the monitoring sensor. Three sets of experimental samples were prepared. On the crack surface of the three sets of experimental samples, a fiber grating sensor was attached, and a total of six monitoring points were set. Three holes were placed on the upper and lower surfaces of the first experimental sample, and an acoustic emission sensor was installed. The first set of experimental samples were subjected to a seepage grouting test, and the second and third sets of experimental samples were placed for use.
  • Step 3 Install a micro-fracture triaxial stress seepage grouting experimental platform.
  • the first set of experimental samples are placed in a pressure chamber tube, and the fiber grating sensor cable passes through the sealing pad and the grating fiber sensor communication channel in sequence, and is welded to the grating fiber sensor terminal, and the acoustic emission sensor sequentially passes through the sealing pad and acoustic emission.
  • the sensor communication channel is welded to the acoustic emission sensor terminal.
  • the outside of the grating fiber sensor terminal is connected to the fiber grating demodulator through a cable, and the outside of the acoustic emission sensor terminal is connected to the acoustic emission detector through a cable.
  • Step 4 Connect the various parts of the system.
  • the micro-fracture triaxial stress seepage grouting experimental platform is connected with the seepage grouting injection system through the fluid inlet pipe, and is connected to the first shaft pressure feed pump through the No. 1 shaft pressure inlet pipe, and is pressed into the oil pipe through the No. 2 shaft and the No. 2
  • the shaft pressure inlet pump is connected, and is connected to the drain pump through the fluid outlet pipe, and is connected to the pressure-pressure pump through the confining pressure inlet and outlet pipes.
  • Step 5 Axial pressure loading. At the same time, the first shaft pressure inlet pump and the second shaft pressure inlet pump are opened, and the loading shaft is pressed to the preset value S1.
  • Step 6 Confining pressure loading.
  • close the exhaust valve close the exhaust valve, and then pressurize and load until the preset value S2.
  • the confining pressure inlet control valve is closed, and the process of enclosing the oil discharge control valve is kept closed.
  • Step 7 Start the seepage grouting experiment.
  • the fiber grating demodulator and the acoustic emission detector are turned on for experimental monitoring, and the temperature value of the fluid temperature monitor 45 is monitored in real time.
  • the pressure target value of the pump is P2, and the pressure target value P1 should be set based on the triaxial stress-strain curve of the experimental sample to ensure that the experimental specimen can undergo significant elastic deformation without plastic deformation, and the pressure target value P2 should be less than P1.
  • Step 8 Water injection and grout conversion.
  • T1 the temperature of the water injection experimental temperature monitor
  • T2 the strain data of the fiber grating demodulator
  • the micro-fracture strain dynamic data of the water injection experiment is obtained, and Resume monitoring again.
  • the water pressure generated by the water injection pump and the drain pump has elastically deformed the surface of the micro-crack, realizing the effect of expansion.
  • the water injection water control valve, the seepage grout injection system discharge control valve, and the discharge pump discharge control valve are simultaneously closed, and then the water injection pump and the discharge pump are closed.
  • the grouting pump and the drain pump After completing the above steps, open the grouting pump and the drain pump, set the grouting pump pressure target value to P1, and the drain pump pressure target value to P2.
  • the slurry pump discharge control valve, the seepage injection injection system discharge control valve and the discharge pump outlet control valve start the slurry seepage.
  • the temperature of the grouting experiment temperature monitor is obtained as T2
  • the strain data of the fiber grating demodulator is saved, and the micro-fracture strain dynamic data of the grouting experiment is obtained, and the monitoring is resumed.
  • Step 9 The grouting pressure is unloaded. After the slurry seepage is stable, the pressure of the grouting pump and the drain pump is gradually reduced until the pressure is reduced to zero.
  • the strain data of the fiber Bragg grating demodulator was saved, and the micro-fracture strain dynamic data of the grouting pressure relief experiment was obtained. Throughout the experiment, the fracturing state of the experimental sample was monitored by an acoustic emission detector, and the experimental sample was monitored for fracturing and the location of the fracture. If significant fracturing occurs, stop the experiment immediately.
  • Step 10 Strain data correction.
  • the fiber Bragg grating sensor is greatly affected by temperature, and the temperature change will cause significant deformation of the fiber grating sensor.
  • the strain data should be corrected.
  • the second set of experimental samples were placed in purified water at a temperature of T1
  • the third set of experimental samples were placed in a slurry of temperature T2 to obtain a micro-fracture strain dynamic data and a grouting test at a temperature in the water injection experiment. Micro-crack strain dynamic data under action.
  • Step 11 Generate strain data.
  • the micro-fracture strain dynamic data of the water injection experiment was subtracted from the micro-fracture strain dynamic data of the water injection experiment under temperature, and finally the dynamic real data of the micro-fracture strain of the water injection experiment was obtained.
  • the micro-fracture strain dynamic data of the grouting experiment is subtracted from the micro-fracture strain dynamic data of the grouting experiment under temperature, and finally the micro-fracture strain dynamic real data of the grouting experiment is obtained.
  • Step 12 Generate stress data.
  • the elastic modulus E is obtained, and the dynamic real data of the micro-fracture strain of the water injection experiment and the dynamic real data of the micro-fracture strain of the grouting experiment are respectively multiplied by the elasticity under the triaxial condition of the experimental sample.
  • the modulus obtained the micro-fracture stress dynamic real data of the water injection experiment and the micro-fracture stress dynamic real data of the grouting experiment.
  • Step 13 Experiment finishing work. Close the fiber grating demodulator and the acoustic emission detector, remove the outer cable of the fiber grating sensor and the grating fiber sensor terminal, and remove the outer cable of the acoustic emission sensor and the acoustic emission sensor terminal. Stop the operation of the water injection pump and the drain pump, unload the confining pressure through the confining pressure oil pump, and then unload the shaft pressure through the No. 1 shaft pressure inlet pump and the No. 2 shaft pressure inlet pump, and inject the seepage grout into the system and drain.
  • the pump, the No. 1 shaft pressure feed pump, the confining pressure oil pump, the No. 2 shaft pressure feed pump and the micro-fracture triaxial stress seepage grouting experimental platform are separated.
  • Measuring point number Fluid temperature / °C Strain value Measuring point 1 20 0.000392 Measuring point 2 20 0.000357 Measuring point 3 20 0.000321 Measuring point 4 20 0.000302 Measuring point 5 20 0.000283 Measuring point 6 20 0.000274
  • Measuring point number Fluid temperature / °C Strain value Measuring point 1 20 0.000059 Measuring point 2 20 0.000047 Measuring point 3 20 0.000051 Measuring point 4 20 0.000049 Measuring point 5 20 0.000055 Measuring point 6 20 0.000050
  • Measuring point number Fluid temperature / °C Strain value Measuring point 1 25 0.000037 Measuring point 2 25 0.000041 Measuring point 3 25 0.000032 Measuring point 4 25 0.000033 Measuring point 5 25 0.000039 Measuring point 6 25 0.000040
  • Measuring point number Fluid temperature / °C Strain value Measuring point 1 20 0.000323 Measuring point 2 20 0.000250 Measuring point 3 20 0.000200 Measuring point 4 20 0.000171 Measuring point 5 20 0.000153 Measuring point 6 20 0.000149
  • Measuring point number Fluid temperature / °C Measuring point stress value / MPa Measuring point 1 20 2.28105 Measuring point 2 20 2.12350 Measuring point 3 20 1.84950 Measuring point 4 20 1.73305 Measuring point 5 20 1.56180 Measuring point 6 20 1.53440
  • Measuring point number Fluid temperature / °C Measuring point stress value / MPa Measuring point 1 25 2.7674 Measuring point 2 25 2.3838 Measuring point 3 25 2.1920 Measuring point 4 25 1.9728 Measuring point 5 25 1.8221 Measuring point 6 25 1.76045

Abstract

公开了一种微裂隙三轴应力渗流注浆试验系统及其使用方法。该试验系统包括微裂隙三轴应力渗流注浆实验平台(1)、渗流注浆注入系统(2)、排液泵(3)、一号轴压进液泵(4)、围压油泵(5)和二号轴压进液泵(6),微裂隙三轴应力渗流注浆实验平台(1)包括微裂隙三轴应力渗流注浆实验密封装置、微裂隙三轴应力渗流注浆实验支撑平台和拉动工程油缸(8),在微裂隙三轴应力渗流注浆实验密封装置左端设置光栅光纤传感器接线柱(9),右端设置声发射传感器接线柱(28)。该试验系统可实现在高轴压高围压条件下对试样渗流注浆过程的动态实时监测,解决了现有技术中试验系统存在的难以直接观测微米级裂隙的动态变化过程,导致微裂隙的整个渗流过程无法实时监测等技术缺陷。

Description

微裂隙三轴应力渗流注浆试验系统及其使用方法 技术领域
本发明属于机械领域,具体涉及一种微裂隙三轴应力渗流注浆实验系统及其使用方法。
背景技术
地下工程、水利工程建设过程中存在大量的水,高压水往往无法有效控制,进而引发自然灾害。通过传统注浆,可以将较大开度裂隙有效封堵,但仍有部分微裂隙以大面积均匀汗渗形式出水。取样电镜分析表明,该砂岩渗水通道属开度为0.03-0.1mm的微裂隙。为了更好地治理工程中因微裂隙水而引发的灾害,必须对微裂隙的渗流规律进行研究。获取微裂隙在不同三轴应力条件下,裂隙表面沿渗流路径的应力及应变,并对整个渗流过程进行实时动态监测,对通过注浆堵水手段封堵微裂隙技术的实现具有理论价值与指导意义。
微裂隙的渗流机理通过试验方法难以实现,其根本原因在于:微裂隙开度非常微小,传统的监测装置无法满足其精度要求。核磁共振、CT扫描等大型先进检测设备也很难直接观测微米级裂隙的动态变化过程,导致微裂隙的整个渗流过程无法实时监测;并且微裂隙在高压条件下渗流对设备要求较高,达到既保证能稳定渗流,又使得装置密闭不漏水的目标存在很大的挑战。
为解决上述问题,研制一种在三轴高应力条件下,微裂隙渗流过程中可实时动态监测微裂隙表面的应力、应变变化规律的试验系统是十分必要的。
发明内容
为了解决上述现有技术中存在的技术缺陷,本发明提出了一种微裂隙三轴应力渗流注浆试验系统及其使用方法,其为进一步研究微裂隙渗流机理和微裂隙注浆堵水技术奠定了基础。
本发明的任务之一在于提供一种微裂隙三轴应力渗流注浆试验系统,该试验系统可实现在高轴压高围压条件下对试样渗流注浆过程的动态实时监测。
其技术解决方案包括:
一种微裂隙三轴应力渗流注浆试验系统,其包括微裂隙三轴应力渗流注浆实验平台、渗流注浆注入系统、排液泵、一号轴压进液泵、围压油泵和二号轴压进液泵,其特征在于:
所述渗流注浆注入系统、排液泵、一号轴压进液泵、围压油泵、二号轴压进液泵均与所述微裂隙三轴应力渗流注浆实验平台连接;
所述微裂隙三轴应力渗流注浆实验平台包括微裂隙三轴应力渗流注浆实验密封装置、微裂隙三轴应力渗流注浆实验支撑平台和拉动工程油缸;微裂隙三轴应力渗流注浆实验密封装置由压力室筒、实验试样、试样密封套、端面加载活塞、轴压密封油缸、轴压密封油缸盖、 拉动工程油缸盖板、排气阀、围压进油控制阀和围压出油控制阀组成,其中,所述端面加载活塞与所述轴压密封油缸均嵌设在所述压力室筒内,所述轴压密封油缸盖嵌入所述端面加载活塞与所述轴压密封油缸之间的空腔,所述轴压密封油缸盖外侧放置所述拉动工程油缸盖板,所述排气阀位于所述压力室筒上部中间位置,所述围压进油控制阀和所述围压出油控制阀位于所述压力室筒下部中间位置;所述实验试样配设有试样密封套,所述实验试样与所述端面加载活塞之间还设置有一层试样端面密封垫;所述轴压密封油缸、端面加载活塞和轴压密封油缸盖之间形成的空腔为轴向液压油腔体;
在所述微裂隙三轴应力渗流注浆实验密封装置左端设置有两个光栅光纤传感器接线柱,并配套设有两个光栅光纤传感器通讯通道;在所述微裂隙三轴应力渗流注浆实验密封装置右端设置两个声发射传感器接线柱,并配套设有两个声发射传感器通讯通道;
所述微裂隙三轴应力渗流注浆实验支撑平台包括微裂隙三轴应力渗流注浆实验支撑架、拉动工程油缸支撑架、压力室移动直线导轨、端面加载活塞移动导轨、端面加载活塞导向滑动装置和压力室筒导向滑动装置,拉动工程油缸支撑架固定在所述微裂隙三轴应力渗流注浆实验支撑架上,所述端面加载活塞移动导轨中设置有导轨限位螺母和导轨端部固定槽体,所述导轨端部固定槽体固定在所述端面加载活塞移动导轨上,所述压力室筒导向滑动装置上部与所述压力室筒连接,下部嵌在所述压力室移动直线导轨上,并可在所述压力室移动直线导轨上前后滑动;所述端面加载活塞导向滑动装置上部与所述压力室筒连接,下部嵌在所述端面加载活塞移动导轨上,并可在所述端面加载活塞移动导轨上左右滑动;
所述渗流注浆注入系统包括注浆泵、注水泵和流体转换器。
上述方案直接带来的有益技术效果为:
上述微裂隙三轴应力渗流注浆试验系统可实现在高轴压高围压条件下对试样渗流注浆过程的动态实时监测。在不同三轴应力条件下,通过渗流注浆注入系统和排液泵可实现渗流过程中流体的正向和反向同时加载,维持了裂隙渗流通道内的压力,可实现稳定渗流,具备模拟深部复杂岩石力学环境的条件。实验过程中,通过光纤光栅传感器对整个渗流路径应变的实施动态监测,同时校正数据,消除温度对结果的影响,可有效提取渗流过程中裂隙表面的应变值。结合裂隙试样的三轴应力应变曲线,可有效获得渗流过程中裂隙表面的应力值。通过声发射传感器可对整个试验过程中裂隙是否扩展进行监测,保证了裂隙的变形是处于完全弹性范围内,是可恢复的。整个试验系统设计具有针对性与可靠性,使用方法科学、明确,为模拟深部复杂围岩环境下微裂隙高压水渗流及注浆提供了解决方案,对探究微裂隙渗流机理及通过注浆手段封堵微裂隙技术的实现具有指导意义。
作为本发明的一个优选方案,上述一号轴压进液泵、围压油泵、二号轴压进液泵均为伺 服液压加载,所能加载的最大压力为80MPa。
作为本发明的另一个优选方案,上述试样密封套配设有试样密封套支架,试样密封套与试样密封套支架通过强力胶紧密连接。
进一步的,上述试样密封套支架中分别设置有试样密封套支架垂直通道、试样密封套支架水平通道,两个通道均为圆柱体构造。
优选的,上述流体转换器上部设置渗流注浆注入系统出液控制阀,通过流体进液管与上述微裂隙三轴应力渗流注浆实验平台连接;上述流体转换器下部设置注浆泵出液控制阀和注水泵出水控制阀,二者分别与注浆泵、注水泵连接。
优选的,上述压力室筒内外表面均为长方体构造;上述轴压密封油缸外侧为长方体构造,内侧为圆柱体构造;上述端面加载活塞外侧为圆柱体构造;上述轴压密封油缸盖内侧为圆柱体构造,外侧为长方体构造;上述拉动工程油缸盖板内侧外侧均为圆柱体构造。
优选的,上述光栅光纤传感器接线柱承受最大压力为60MPa,上述光栅光纤传感器通讯通道为圆柱形;上述声发射传感器接线柱承受最大压力为60MPa,上述声发射传感器通讯通道为圆柱形。
优选的,上述注浆泵、注水泵容量均为10L,加载方式均为伺服液压加载,所能加载的最大压力为60MPa。
本发明的另一任务在于提供一种微裂隙三轴应力渗流注浆试验系统的使用方法,依次包括以下步骤:
a、准备并安装微裂隙三轴应力渗流注浆实验平台,并连接所述试验系统的各部分,分为以下子步骤:
a1、准备渗流注浆注入系统;
a2、安装监测传感器,在实验试样裂隙表面,粘贴光纤光栅传感器,布置监测点,然后在该实验试样上下表面打孔并安装声发射传感器;
a3、将安装有声发射传感器的实验试样放入所述压力室筒内,所述光纤光栅传感器连接的线缆依次穿过所述密封垫、所述光栅光纤传感器通道,与所述光栅光纤传感器接线柱熔接,所述声发射传感器依次穿过所述密封垫、所述声发射传感器通讯通道,与声发射传感器接线柱熔接;在实验试样两侧放置试样端面密封垫,放置所述轴压密封油缸并固定;然后依次放置所述端面加载活塞、轴压密封油缸盖和拉动工程油缸盖板;
a4、将安装好的微裂隙三轴应力渗流注浆实验平台分别与渗流注浆注入系统、排液泵、一号轴压进液泵、围压油泵、二号轴压进液泵连接;
b、进行加载,
首先进行轴压加载,打开一号轴压进液泵和二号轴压进液泵,加载轴压到预设值S1;
接着进行围压加载,同时打开排气阀和围压进油控制阀,并打开围压油泵,观察排气阀,当排气阀出油后,关闭排气阀,此时进行围压加载直至到预设值S2;当围压达到与预设值S2后,关闭围压进油控制阀,该过程围压出油控制阀一直保持关闭状态;
c、开始渗流注浆实验,同时打开光纤光栅解调器、声发射检测仪进行实验监测,并实时监测流体温度监测器的温度值;
d、注水与注浆转换,当注水泵和排液泵达到压力目标值实现稳定渗流,此时,获取注水实验温度监测器的温度为T1,对光纤光栅解调器应变数据进行保存,获得注水实验微裂隙应变动态数据,并且重新开始继续监测;
e、注浆压力卸载,浆液渗流稳定后,开始逐渐降低注浆泵、排液泵的压力,直至压力降低至零。
进一步的,步骤c具体步骤为:打开注水泵、注水泵出水控制阀和流体转换器上部设置的渗流注浆注入系统出液控制阀,并设置注水泵的压力目标值为P1,同时打开排液泵和排液泵上的出液控制阀,并设置排液泵的压力目标值为P2,压力目标值P2应小于P1,P1、P2数值均小于S1、S2数值。
与现有技术相比,本发明通过微裂隙三轴应力渗流注浆实验平台可实现在高轴压高围压条件下对试样渗流注浆过程的动态实时监测,配合光栅光纤传感器可对整个渗流路径裂隙表面的应力、应变变化规律实现定量描述,配合声发射传感器可对试样压裂状态进行实时跟踪,最终可实现在微观条件下对微裂隙的渗流注浆规律的描述,进而探索微裂隙渗流注浆理论,使得复杂应力环境下微裂隙渗水问题可有效得到解决,为地下工程、水利工程注浆堵水实践提供基础。
附图说明
下面结合附图对本发明做进一步说明:
图1为本发明微裂隙三轴应力渗流注浆试验系统结构示意图;
图2为本发明微裂隙三轴应力渗流注浆实验平台结构示意图;
图3为本发明微裂隙三轴应力渗流注浆实验密封装置结构示意图;
图4为本发明微裂隙三轴应力渗流注浆实验支撑架结构示意图;
图5为本发明渗流注浆注入系统结构示意图;
图6为本发明微裂隙三轴应力渗流注浆实验平台俯视图;
图7、图8为本发明试样密封套剖面图;
图9为本发明排液泵示意图;
图10为实施例二叠系细砂岩相似材料实验试样的三轴应力应变曲线图;
图11为实施例实验试样光纤光栅传感器测点布置图;
图12为本发明微裂隙三轴应力渗流注浆试验系统使用方法流程图;
图中:1-微裂隙三轴应力渗流注浆实验平台,2-渗流注浆注入系统,3-排液泵,4-一号轴压进液泵,5-围压油泵,6-二号轴压进液泵,7-微裂隙三轴应力渗流注浆实验支撑架,8-拉动工程油缸,9-光栅光纤传感器接线柱,10-端面加载活塞,11-压力室筒,12-排气阀,13-试样密封套支架,14-实验试样,15-轴压密封油缸,16-拉动工程油缸盖板,17-轴压密封油缸盖,18-端面加载活塞移动导轨,19-拉动工程油缸端部接口,20-流体进液管,21-一号轴压进油管,22-光栅光纤传感器通讯通道,23-试样密封套支架腔体,24-轴压密封油缸紧固螺母,25-二号轴压进油管,26-流体出液管,27-油缸盖及盖板紧固螺母,28-声发射传感器接线柱,29-声发射传感器通讯通道,30-围压进油控制阀,31-围压出油控制阀,32-围压进出油管,33-试样密封套支架垂直通道,34-导轨限位螺母,35-端面加载活塞导向滑动装置,36-导轨端部固定槽体,37-导轨端部固定螺母,38-压力室筒导向滑动装置固定螺母,39-压力室筒导向滑动装置,40-压力室移动直线导轨,41-拉动工程油缸支撑架固定螺母,42-拉动工程油缸支撑架,43-注浆泵,44-注浆泵出液控制阀,45-流体温度监测器,46-渗流注浆注入系统出液控制阀,47-注水泵出水控制阀,48-注水泵,49-管道转接端口,50-流体转换器,51-连接管道,52-试样密封套,53-试样端面密封垫,54-轴向液压油腔体,55-试样密封套支架水平通道,56-试样密封套与支架间腔体,57-排液泵出液控制阀。
具体实施方式
本发明提出了一种微裂隙三轴应力渗流注浆试验系统及其使用方法,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施例对本发明做详细说明。
如图1所示,本发明微裂隙三轴应力渗流注浆试验系统,包括微裂隙三轴应力渗流注浆实验平台1、渗流注浆注入系统2、排液泵3、一号轴压进液泵4、围压油泵5、二号轴压进液泵6,其中,渗流注浆注入系统2、排液泵3、一号轴压进液泵4、围压油泵5、二号轴压进液泵6均与微裂隙三轴应力渗流注浆实验平台1连接,具体的连接关系为:微裂隙三轴应力渗流注浆实验平台1与渗流注浆注入系统2通过一号轴压进油管21连接,与排液泵3通过流体出液管26连接,与一号轴压进液泵4通过一号轴压进油管21连接,与围压油泵5通过围压进出油管32连接,与二号轴压进液泵6通过二号轴压进油管25连接,上述一号轴压进油管21、流体出液管26、二号轴压进油管25的管道端口均设置有螺纹,通过螺纹与微裂隙三轴应力渗流注浆实验平台连接。
结合图2至图6所示,上述微裂隙三轴应力渗流注浆实验平台1包括微裂隙三轴应力渗 流注浆实验密封装置、微裂隙三轴应力渗流注浆实验支撑平台和拉动工程油缸8。微裂隙三轴应力渗流注浆实验密封装置通过压力室筒11导向滑动装置与微裂隙三轴应力渗流注浆实验支撑平台的压力室移动直线导轨40搭接,微裂隙三轴应力渗流注浆实验密封装置可在微裂隙三轴应力渗流注浆实验支撑平台上面前后滑动。拉动工程油缸8通过拉动工程油缸端部接口19的螺纹与微裂隙三轴应力渗流注浆实验密封装置连接。
上述微裂隙三轴应力渗流注浆实验密封装置由压力室筒11、实验试样14、试样密封套52、端面加载活塞10、轴压密封油缸15、轴压密封油缸盖17、拉动工程油缸盖板16、排气阀12、围压进油控制阀30和围压出油控制阀31组成。压力室筒内外表面长方体构造,中间放置长方体试样,试样密封套52与压力室筒通过强力胶紧密连接,可承受极限的压力为60MPa。轴压密封油缸外侧为长方体构造,内侧为圆柱体构造。端面加载活塞10外侧为圆柱体构造。轴压密封油缸盖17内侧为圆柱体构造,外侧为长方体构造。拉动工程油缸盖板内侧外侧均为圆柱体构造。端面加载活塞10嵌入压力室筒11内,通过轴压密封油缸、轴压密封油缸盖固定其位置。轴压密封油缸嵌在压力室筒内,通过轴压密封油缸紧固螺母24与压力室筒连接。轴压密封油缸盖嵌入轴压密封油缸与端面加载活塞之间的空腔,在轴压密封油缸盖外侧放置拉动工程油缸盖板,通过油缸盖及盖板紧固螺母27将轴压密封油缸盖、拉动工程油缸盖板固定在轴压密封油缸上。在压力室筒上部中间位置设置排气阀,下部中间位置设置围压进油控制阀和围压出油控制阀。轴压密封油缸、端面加载活塞和轴压密封油缸盖之间形成的空腔为轴向液压油腔体54。
微裂隙三轴应力渗流注浆实验密封装置左端设置两个光栅光纤传感器接线柱9,并配套设有两个光栅光纤传感器通讯通道22,光栅光纤传感器接线柱可承受极限的压力为60MPa,光栅光纤传感器通讯通道22为圆柱形,直径为10mm-15mm。同样地,右端设置两个声发射传感器接线柱28,并配套设有两个声发射传感器通讯通道29,声发射传感器接线柱28可承受极限的压力为60MPa,声发射传感器通讯通道29为圆柱形,直径为10mm-15mm。
结合图7、图8所示,上述试样密封套包括试样密封套支架13、试样密封套支架腔体23和试样密封套与支架间腔体56。试样密封套内侧和外侧均为长方体构造。试样密封套与试样密封套支架通过强力胶紧密连接,可承受极限的压力为60MPa。试样密封套支架中分别设置有试样密封套支架垂直通道33、试样密封套支架水平通道55,所有通道均为圆柱体构造。
本发明优选在实验试样与端面加载活塞之间设置一层试样端面密封垫53,其材质为橡胶,形状为长方形。
上述微裂隙三轴应力渗流注浆实验支撑平台包括微裂隙三轴应力渗流注浆实验支撑架7、拉动工程油缸支撑架42、压力室移动直线导轨、端面加载活塞移动导轨18、端面加载活塞导 向滑动装置35和压力室筒导向滑动装置39。拉动工程油缸支撑架42通过拉动工程油缸支撑架固定螺母41与微裂隙三轴应力渗流注浆实验支撑架连接。端面加载活塞移动导轨18中分别设置导轨限位螺母34和导轨端部固定槽体36,导轨端部固定槽体36通过导轨端部固定螺母37固定在端面加载活塞移动导轨上。压力室筒导向滑动装置39上部通过压力室筒导向滑动装置固定螺母38与压力室筒连接,下部嵌在压力室移动直线导轨上,可前后滑动。端面加载活塞导向滑动装置35上部通过焊接与压力室筒连接,下部嵌在端面加载活塞移动导轨上,可左右滑动。
结合图6和图9所示,上述渗流注浆注入系统包括注浆泵43、注水泵48和流体转换器50组成。流体转换器50上部设置渗流注浆注入系统出液控制阀46,通过流体进液管20与微裂隙三轴应力渗流注浆实验平台连接;流体转换器下部设置注浆泵出液控制阀44和注水泵出水控制阀47通过连接管道51分别与注浆泵43、注水泵连接,连接管道51与注水泵之间通过管道转接端口49连接。
上述注浆泵、注水泵48容量均为10L,加载方式为伺服液压加载,所能加载的最大压力为60MPa。
优选的,上述一号轴压进液泵、围压油泵、二号轴压进液泵均为伺服液压加载,所能加载的最大压力为80MPa。
此外,本发明还提到微裂隙三轴应力渗流注浆试验系统的使用方法,如图12所示,该方法采用上述的微裂隙三轴应力渗流注浆试验系统,包括以下步骤:
步骤1:注浆设备准备。将注浆泵注满10L浆液,将注水泵注满10L纯净水,将排液泵注5L纯净水。
步骤2:安装监测传感器。准备三组实验试样,在三组实验试样裂隙表面,粘贴光纤光栅传感器,共设置6个监测点,在第一组实验试样上下表面各打3个孔,安装声发射传感器。第一组实验试样进行渗流注浆实验,第二组、第三组实验试样放置待用。
步骤3:安装微裂隙三轴应力渗流注浆实验平台。将第一组实验试样放入压力室筒内,光纤光栅传感器线缆依次穿过密封垫、光栅光纤传感器通讯通道,与光栅光纤传感器接线柱熔接,声发射传感器依次穿过密封垫、声发射传感器通讯通道,与声发射传感器接线柱熔接。光栅光纤传感器接线柱外侧通过线缆与光纤光栅解调器相连,声发射传感器接线柱外侧通过线缆与声发射检测仪相连。然后在实验试样两侧放置试样端面密封垫,放置轴压密封油缸并安装轴压密封油缸紧固螺母固定。然后依次放置端面加载活塞、轴压密封油缸盖和拉动工程油缸盖板,并安装油缸盖及盖板紧固螺母固定。
步骤4:连接系统各部分。微裂隙三轴应力渗流注浆实验平台通过流体进液管与渗流注 浆注入系统连接,通过一号轴压进油管与一号轴压进液泵连接,通过二号轴压进油管与二号轴压进液泵连接,通过流体出液管与排液泵连接,通过围压进出油管与围压油泵连接。
步骤5:轴压加载。同时打开一号轴压进液泵和二号轴压进液泵,加载轴压到预设值S1。
步骤6:围压加载。同时打开排气阀和围压进油控制阀,并打开围压油泵,观察排气阀,当排气阀出油后,关闭排气阀,此时进行围压加载直至到预设值S2。当围压达到与预设值S2后,关闭围压进油控制阀,该过程围压出油控制阀一直保持关闭状态。
步骤7:开始渗流注浆实验。同时打开光纤光栅解调器、声发射检测仪进行实验监测,并实时监测流体温度监测器45的温度值。打开注水泵、注水泵出水控制阀和渗流注浆注入系统出液控制阀,并设置注水泵的压力目标值为P1,同时打开排液泵和排液泵出液控制阀57,并设置排液泵的压力目标值为P2,压力目标值P1的设定应基于实验试样的三轴应力应变曲线,保证实验试样可发生明显的弹性变形且不发生塑性变形,压力目标值P2应小于P1,使得当压力卸载之后,微裂隙表面的弹性变形可恢复,同时在正向、反向加压的条件下,维持了裂隙渗流通道内的压力,且存在一定压力差,可实现稳定渗流。实验过程中。P1、P2数值均小于S1、S2数值。
步骤8:注水与注浆转换。当注水泵和排液泵达到压力目标值实现稳定渗流,此时,获取注水实验温度监测器的温度为T1,对光纤光栅解调器应变数据进行保存,获得注水实验微裂隙应变动态数据,并且重新开始继续监测。注水泵与排液泵产生的水压已经使微裂隙表面发生弹性变形,实现了扩缝效应。此时,对同时关闭注水泵出水控制阀、渗流注浆注入系统出液控制阀和排液泵出液控制阀,然后关闭注水泵和排液泵。完成上述步骤后,打开注浆泵、排液泵,设置注浆泵压力目标值为P1,排液泵压力目标值为P2,当注浆泵、排液泵达到压力目标值后,同时打开注浆泵出液控制阀、渗流注浆注入系统出液控制阀和排液泵出液控制阀,开始进行浆液渗流。当浆液渗流稳定后,获取注浆实验温度监测器的温度为T2,对光纤光栅解调器应变数据进行保存,获得注浆实验微裂隙应变动态数据,并且重新开始继续监测。
步骤9:注浆压力卸载。浆液渗流稳定后,开始逐渐降低注浆泵、排液泵的压力,直至压力降低至0。对光纤光栅解调器应变数据进行保存,获得注浆卸压实验微裂隙应变动态数据。整个实验过程通过声发射检测仪监测对实验试样的压裂状态进行监测,监测实验试样是否发生压裂,以及压裂的位置。如果发生明显的压裂现象,立即停止实验。
步骤10:应变数据校正。光纤光栅传感器受温度影响较大,温度变化会使光纤光栅传感器发生明显变形,为了消除温度对实验产生的误差,应进行应变数据校正。将第二组实验试样放入温度为T1的纯净水中,将第三组实验试样放入温度为T2的浆液中,获得注水实验在温度作用下微裂隙应变动态数据和注浆实验在温度作用下微裂隙应变动态数据。
步骤11:生成应变数据。注水实验微裂隙应变动态数据减去注水实验在温度作用下微裂隙应变动态数据,最终获得注水实验微裂隙应变动态真实数据。同样地,注浆实验微裂隙应变动态数据减去注浆实验在温度作用下微裂隙应变动态数据,最终获得注浆实验微裂隙应变动态真实数据。
步骤12:生成应力数据。根据实验试样的三轴应力应变曲线,获取其弹性模量E,将注水实验微裂隙应变动态真实数据、注浆实验微裂隙应变动态真实数据分别乘以实验试样的三轴条件下的弹性模量获得注水实验微裂隙应力动态真实数据和注浆实验微裂隙应力动态真实数据。
步骤13:实验收尾工作。关闭光纤光栅解调仪、声发射检测仪,卸下光纤光栅传感器与光栅光纤传感器接线柱外侧线缆,卸下声发射传感器与声发射传感器接线柱外侧线缆。停止注水泵、排液泵的工作,通过围压油泵将围压卸载,然后通过一号轴压进液泵、二号轴压进液泵将轴压卸载,将渗流注浆注入系统、排液泵、一号轴压进液泵、围压油泵、二号轴压进液泵与微裂隙三轴应力渗流注浆实验平台分离。卸下油缸盖及盖板紧固螺母,启动拉动工程油缸将拉动工程油缸盖板移动至端部,卸下轴压密封油缸紧固螺母,依次将轴压密封油缸盖、端面加载活塞和轴压密封油缸取出,切断光纤光栅传感器与光栅光纤传感器接线柱内侧线缆,切断声发射传感器与声发射传感器接线柱内侧线缆。取出实验试样,卸下声发射传感器,对整个微裂隙三轴应力渗流注浆实验系统进行清理,完成整个实验操作。
上述实验结果,在不同测点监测到的注水实验微裂隙应变动态数据,如表1-表8所示。
表1注水实验微裂隙应变动态数据
测点序号 流体温度/℃ 测点应变值
测点1 20 0.000392
测点2 20 0.000357
测点3 20 0.000321
测点4 20 0.000302
测点5 20 0.000283
测点6 20 0.000274
表2注浆实验微裂隙应变动态数据
测点序号 流体温度/℃ 测点应变值
测点1 25 0.000441
测点2 25 0.000389
测点3 25 0.000352
测点4 25 0.000321
测点5 25 0.000305
测点6 25 0.000297
表3注水实验在温度作用下微裂隙应变动态数据
测点序号 流体温度/℃ 测点应变值
测点1 20 0.000059
测点2 20 0.000047
测点3 20 0.000051
测点4 20 0.000049
测点5 20 0.000055
测点6 20 0.000050
表4注浆实验在温度作用下微裂隙应变动态数据
测点序号 流体温度/℃ 测点应变值
测点1 25 0.000037
测点2 25 0.000041
测点3 25 0.000032
测点4 25 0.000033
测点5 25 0.000039
测点6 25 0.000040
表5注水实验微裂隙应变动态真实数据
测点序号 流体温度/℃ 测点应变值
测点1 20 0.000323
测点2 20 0.000250
测点3 20 0.000200
测点4 20 0.000171
测点5 20 0.000153
测点6 20 0.000149
表6注浆实验微裂隙应变动态真实数据
测点序号 流体温度/℃ 测点应变值
测点1 25 0.000404
测点2 25 0.000298
测点3 25 0.000256
测点4 25 0.000208
测点5 25 0.000173
测点6 25 0.000157
表7注水实验微裂隙应力动态真实数据
测点序号 流体温度/℃ 测点应力值/MPa
测点1 20 2.28105
测点2 20 2.12350
测点3 20 1.84950
测点4 20 1.73305
测点5 20 1.56180
测点6 20 1.53440
表8注浆实验微裂隙应力动态真实数据
测点序号 流体温度/℃ 测点应力值/MPa
测点1 25 2.7674
测点2 25 2.3838
测点3 25 2.1920
测点4 25 1.9728
测点5 25 1.8221
测点6 25 1.76045
上述试验结果如图10二叠系细砂岩相似材料实验试样的三轴应力应变曲线图、图11实验试样光纤光栅传感器测点布置图。
本发明中未述及的部分借鉴现有技术即可实现。
尽管本文中较多的使用了诸如微裂隙三轴应力渗流注浆实验平台、渗流注浆注入系统、试样密封套支架等术语,但并不排除使用其它术语的可能性,本领域技术人员在本发明的启示下对这些术语所做的简单替换,均应在本发明的保护范围之内。

Claims (10)

  1. 一种微裂隙三轴应力渗流注浆试验系统,其包括微裂隙三轴应力渗流注浆实验平台、渗流注浆注入系统、排液泵、一号轴压进液泵、围压油泵和二号轴压进液泵,其特征在于:
    所述渗流注浆注入系统、排液泵、一号轴压进液泵、围压油泵、二号轴压进液泵均与所述微裂隙三轴应力渗流注浆实验平台连接;
    所述微裂隙三轴应力渗流注浆实验平台包括微裂隙三轴应力渗流注浆实验密封装置、微裂隙三轴应力渗流注浆实验支撑平台和拉动工程油缸;微裂隙三轴应力渗流注浆实验密封装置由压力室筒、实验试样、试样密封套、端面加载活塞、轴压密封油缸、轴压密封油缸盖、拉动工程油缸盖板、排气阀、围压进油控制阀和围压出油控制阀组成,其中,所述端面加载活塞与所述轴压密封油缸均嵌设在所述压力室筒内,所述轴压密封油缸盖嵌入所述端面加载活塞与所述轴压密封油缸之间的空腔,所述轴压密封油缸盖外侧放置所述拉动工程油缸盖板,所述排气阀位于所述压力室筒上部中间位置,所述围压进油控制阀和所述围压出油控制阀位于所述压力室筒下部中间位置;所述实验试样配设有试样密封套,所述实验试样与所述端面加载活塞之间还设置有一层试样端面密封垫;所述轴压密封油缸、端面加载活塞和轴压密封油缸盖之间形成的空腔为轴向液压油腔体;
    在所述微裂隙三轴应力渗流注浆实验密封装置左端设置有两个光栅光纤传感器接线柱,并配套设有两个光栅光纤传感器通讯通道;在所述微裂隙三轴应力渗流注浆实验密封装置右端设置两个声发射传感器接线柱,并配套设有两个声发射传感器通讯通道;
    所述微裂隙三轴应力渗流注浆实验支撑平台包括微裂隙三轴应力渗流注浆实验支撑架、拉动工程油缸支撑架、压力室移动直线导轨、端面加载活塞移动导轨、端面加载活塞导向滑动装置和压力室筒导向滑动装置,拉动工程油缸支撑架固定在所述微裂隙三轴应力渗流注浆实验支撑架上,所述端面加载活塞移动导轨中设置有导轨限位螺母和导轨端部固定槽体,所述导轨端部固定槽体固定在所述端面加载活塞移动导轨上,所述压力室筒导向滑动装置上部与所述压力室筒连接,下部嵌在所述压力室移动直线导轨上,并可在所述压力室移动直线导轨上前后滑动;所述端面加载活塞导向滑动装置上部与所述压力室筒连接,下部嵌在所述端面加载活塞移动导轨上,并可在所述端面加载活塞移动导轨上左右滑动;
    所述渗流注浆注入系统包括注浆泵、注水泵和流体转换器。
  2. 根据权利要求1所述的一种微裂隙三轴应力渗流注浆试验系统,其特征在于:所述一号轴压进液泵、围压油泵、二号轴压进液泵均为伺服液压加载,所能加载的最大压力为80MPa。
  3. 根据权利要求1所述的一种微裂隙三轴应力渗流注浆试验系统,其特征在于:所述试样密封套配设有试样密封套支架,所述试样密封套与所述试样密封套支架通过强力胶紧密连接。
  4. 根据权利要求3所述的一种微裂隙三轴应力渗流注浆试验系统,其特征在于:所述试样密封套支架中分别设置有试样密封套支架垂直通道、试样密封套支架水平通道,两个通道均为圆柱体构造。
  5. 根据权利要求1所述的一种微裂隙三轴应力渗流注浆试验系统,其特征在于:所述流体转换器上部设置渗流注浆注入系统出液控制阀,通过流体进液管与所述微裂隙三轴应力渗流注浆实验平台连接;所述流体转换器下部设置注浆泵出液控制阀和注水泵出水控制阀,二者分别与注浆泵、注水泵连接。
  6. 根据权利要求1所述的一种微裂隙三轴应力渗流注浆试验系统,其特征在于:所述压力室筒内外表面均为长方体构造;所述轴压密封油缸外侧为长方体构造,内侧为圆柱体构造;所述端面加载活塞外侧为圆柱体构造;所述轴压密封油缸盖内侧为圆柱体构造,外侧为长方体构造;所述拉动工程油缸盖板内侧外侧均为圆柱体构造。
  7. 根据权利要求1所述的一种微裂隙三轴应力渗流注浆试验系统,其特征在于:所述光栅光纤传感器接线柱承受最大压力为60MPa,所述光栅光纤传感器通讯通道为圆柱形;所述声发射传感器接线柱承受最大压力为60MPa,所述声发射传感器通讯通道为圆柱形。
  8. 根据权利要求1所述的一种微裂隙三轴应力渗流注浆试验系统,其特征在于:所述注浆泵、注水泵容量均为10L,加载方式均为伺服液压加载,所能加载的最大压力为60MPa。
  9. 根据权利要求1所述的一种微裂隙三轴应力渗流注浆试验系统的使用方法,其特征在于,依次包括以下步骤:
    a、准备并安装微裂隙三轴应力渗流注浆实验平台,并连接所述试验系统的各部分,分为以下子步骤:
    a1、准备渗流注浆注入系统;
    a2、安装监测传感器,在实验试样裂隙表面,粘贴光纤光栅传感器,布置监测点,然后在该实验试样上下表面打孔并安装声发射传感器;
    a3、将安装有声发射传感器的实验试样放入所述压力室筒内,所述光纤光栅传感器连接的线缆依次穿过所述密封垫、所述光栅光纤传感器通道,与所述光栅光纤传感器接线柱熔接,所述声发射传感器依次穿过所述密封垫、所述声发射传感器通讯通道,与声发射传感器接线柱熔接;在实验试样两侧放置试样端面密封垫,放置所述轴压密封油缸并固定;然后依次放置所述端面加载活塞、轴压密封油缸盖和拉动工程油缸盖板;
    a4、将安装好的微裂隙三轴应力渗流注浆实验平台分别与渗流注浆注入系统、排液泵、一号轴压进液泵、围压油泵、二号轴压进液泵连接;
    b、进行加载,
    首先进行轴压加载,打开一号轴压进液泵和二号轴压进液泵,加载轴压到预设值S1;
    接着进行围压加载,同时打开排气阀和围压进油控制阀,并打开围压油泵,观察排气阀,当排气阀出油后,关闭排气阀,此时进行围压加载直至到预设值S2;当围压达到与预设值S2后,关闭围压进油控制阀,该过程围压出油控制阀一直保持关闭状态;
    c、开始渗流注浆实验,同时打开光纤光栅解调器、声发射检测仪进行实验监测,并实时监测流体温度监测器的温度值;
    d、注水与注浆转换,当注水泵和排液泵达到压力目标值实现稳定渗流,此时,获取注水实验温度监测器的温度为T1,对光纤光栅解调器应变数据进行保存,获得注水实验微裂隙应变动态数据,并且重新开始继续监测;
    e、注浆压力卸载,浆液渗流稳定后,开始逐渐降低注浆泵、排液泵的压力,直至压力降低至零。
  10. 根据权利要求9所述的一种微裂隙三轴应力渗流注浆试验系统的使用方法,其特征在于:步骤c具体步骤为:打开注水泵、注水泵出水控制阀和流体转换器上部设置的渗流注浆注入系统出液控制阀,并设置注水泵的压力目标值为P1,同时打开排液泵和排液泵上的出液控制阀,并设置排液泵的压力目标值为P2,压力目标值P2应小于P1,P1、P2数值均小于S1、S2数值。
PCT/CN2018/083209 2018-02-08 2018-04-16 微裂隙三轴应力渗流注浆试验系统及其使用方法 WO2019153501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810125702.0A CN108507879B (zh) 2018-02-08 2018-02-08 微裂隙三轴应力渗流注浆试验系统及其使用方法
CN201810125702.0 2018-02-08

Publications (1)

Publication Number Publication Date
WO2019153501A1 true WO2019153501A1 (zh) 2019-08-15

Family

ID=63374533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083209 WO2019153501A1 (zh) 2018-02-08 2018-04-16 微裂隙三轴应力渗流注浆试验系统及其使用方法

Country Status (2)

Country Link
CN (1) CN108507879B (zh)
WO (1) WO2019153501A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984539A (zh) * 2021-11-29 2022-01-28 四川大学 复杂水力载荷渗流-应力耦合三轴试验装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707538B (zh) * 2020-08-03 2021-05-11 中南大学 岩石真三轴应力-渗流测试装置及方法
CN113777123B (zh) * 2021-09-16 2024-01-12 安徽理工大学 一种核磁共振真三轴夹持器及应用方法
CN114910198B (zh) * 2022-03-28 2023-05-05 中交第二航务工程局有限公司 一种光纤光栅侧摩阻力传感器及标定装置与方法
CN116359077B (zh) * 2022-12-29 2023-10-10 中国科学院武汉岩土力学研究所 富热泉地区深部地层注浆运移扩散模拟试验系统及方法
CN116430004B (zh) * 2023-03-17 2024-01-23 中国科学院武汉岩土力学研究所 一种水力剪切临界条件下注浆试验装置及测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813604A (zh) * 2010-04-23 2010-08-25 同济大学 一种抗水压注浆岩体耐久性试验装置
CN102419303A (zh) * 2011-08-15 2012-04-18 山东科技大学 复杂条件下的裂隙注浆可视化试验装置
CN103267722A (zh) * 2013-05-07 2013-08-28 中国矿业大学 一种承压渗透注浆加固试验装置及方法
JP2014009544A (ja) * 2012-07-02 2014-01-20 Shimizu Corp 止水材の注入方法および止水材の注入装置
KR101469766B1 (ko) * 2014-05-01 2014-12-15 주식회사 지에스이 압축공기 충전 및 토출압 조절을 이용한 충격식 주입 그라우팅 장치
CN105181471A (zh) * 2015-09-11 2015-12-23 中国矿业大学 一种带ct实时扫描系统的岩石真三轴试验系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840812B2 (ja) * 2006-08-21 2011-12-21 国立大学法人 香川大学 透水試験機および透水試験方法
CN103940719B (zh) * 2014-04-15 2015-12-02 西安科技大学 一种煤体渗透特性测试系统及方法
CN104614497B (zh) * 2015-03-09 2016-04-20 中国矿业大学 真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统
CN106383076B (zh) * 2016-08-19 2019-03-01 青岛石大石仪科技有限责任公司 一种高温岩心夹持装置及其实验方法
CN106370581A (zh) * 2016-09-29 2017-02-01 中国科学院武汉岩土力学研究所 适于高渗透压的岩体真三轴剪切渗流试验装置及其方法
CN107144470B (zh) * 2017-05-05 2020-08-25 山东大学 隧道及地下工程中突水突泥灾害实时监测装置与操作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813604A (zh) * 2010-04-23 2010-08-25 同济大学 一种抗水压注浆岩体耐久性试验装置
CN102419303A (zh) * 2011-08-15 2012-04-18 山东科技大学 复杂条件下的裂隙注浆可视化试验装置
JP2014009544A (ja) * 2012-07-02 2014-01-20 Shimizu Corp 止水材の注入方法および止水材の注入装置
CN103267722A (zh) * 2013-05-07 2013-08-28 中国矿业大学 一种承压渗透注浆加固试验装置及方法
KR101469766B1 (ko) * 2014-05-01 2014-12-15 주식회사 지에스이 압축공기 충전 및 토출압 조절을 이용한 충격식 주입 그라우팅 장치
CN105181471A (zh) * 2015-09-11 2015-12-23 中国矿业大学 一种带ct实时扫描系统的岩石真三轴试验系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984539A (zh) * 2021-11-29 2022-01-28 四川大学 复杂水力载荷渗流-应力耦合三轴试验装置

Also Published As

Publication number Publication date
CN108507879B (zh) 2019-03-12
CN108507879A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
WO2019153501A1 (zh) 微裂隙三轴应力渗流注浆试验系统及其使用方法
CN110987638A (zh) 一种可视化真三轴水力劈裂试验装置及方法
CN110487697B (zh) 注超临界二氧化碳煤岩力学特性测试及压裂实验装置
CN108548763B (zh) 侵蚀及渗流作用下注浆加固体稳定性三维模型试验系统及方法
CN108226441B (zh) 可实现石门巷道掘进诱导煤与瓦斯突出的定量模拟试验系统及方法
CN110160891B (zh) 一种堆积体-岩石界面的剪切渗流耦合试验装置
CN103389247B (zh) 一种用于模拟高水压下混凝土构件水力劈裂的试验系统
CN109540769B (zh) 一种基于声发射探测技术的弯曲渗流试验装置及试验方法
CN207300746U (zh) 一种高压钢管水压试验密封装置
CN107036911A (zh) 一种ct实时三维扫描的渗流、剪切耦合岩石三轴试验系统
CN110687274B (zh) 岩石剪切-渗流试验机及其试验方法
CN104075854A (zh) 盾构管片接头抗渗性能试验装置
CN104535727B (zh) 一种水力加砂压裂系统
CN109406291A (zh) 一种用于模拟岩石原位破碎的透x射线试验装置及方法
CN103697284A (zh) 一种管件试压装置
CN105241750B (zh) 用于室内三轴水力压裂试验的压头系统
CN113418851B (zh) 一种渗流检测试验仪
CN110529107A (zh) 煤层应变、渗流、驱替及射流综合试验装置及方法
CN103698492A (zh) 高土石坝堆石料抗震特性多功能试验仪
CN211740921U (zh) 深部高温高压环境岩石拉伸与拉压循环力学实验装置
CN112924296B (zh) 海底盾构隧道受力变形及止水失效试验系统及方法
CN104155428B (zh) 一种污染土体剪切渗透试验装置
CN203628136U (zh) 一种管件试压装置
CN110857944A (zh) 一种固定裂缝的钻井液堵漏模拟评价装置
JP2012220023A (ja) Frp高圧管接着継ぎ手の構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905198

Country of ref document: EP

Kind code of ref document: A1