WO2019151559A1 - Method for manufacturing hollow silica particles having titanium dioxide shell - Google Patents

Method for manufacturing hollow silica particles having titanium dioxide shell Download PDF

Info

Publication number
WO2019151559A1
WO2019151559A1 PCT/KR2018/002002 KR2018002002W WO2019151559A1 WO 2019151559 A1 WO2019151559 A1 WO 2019151559A1 KR 2018002002 W KR2018002002 W KR 2018002002W WO 2019151559 A1 WO2019151559 A1 WO 2019151559A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
particles
titanium dioxide
hollow silica
silica particles
Prior art date
Application number
PCT/KR2018/002002
Other languages
French (fr)
Korean (ko)
Inventor
이성의
이영철
노기연
이지선
Original Assignee
한국산업기술대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국산업기술대학교산학협력단 filed Critical 한국산업기술대학교산학협력단
Publication of WO2019151559A1 publication Critical patent/WO2019151559A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • C01P2004/86Thin layer coatings, i.e. the coating thickness being less than 0.1 time the particle radius
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • C01P2004/88Thick layer coatings

Definitions

  • the present invention relates to a method for producing hollow silica particles having a titanium dioxide shell.
  • Nanomaterials have superior physical properties compared to conventional bulk materials that have a large area from the outset due to the large surface area resulting from nanosizes.
  • hollow hollow nanoparticles having a hollow form of nanomaterials have a large pore volume and a large surface area as compared to general nanoparticles.
  • Such hollow structured nanoparticles are used as drug carriers for supporting drugs, or applied as catalyst carriers for supporting catalyst materials, and are also being studied as filler components for introducing refractive index into polymer composites to change refractive index. .
  • a method of using polymer particles as a hard mold and a method of manufacturing hollow structure nanoparticles using a soft mold using a surfactant are used.
  • a complex process is required for washing the residue of the organic mold, and when the organic mold is removed by heat treatment at a high temperature, aggregation and breakage between the synthesized hollow nanoparticles is performed.
  • the method of manufacturing hollow structured nanoparticles using a soft mold through a surfactant may increase the processing cost due to the use of expensive surfactants.
  • multilayer thin film coating structures have a substrate structure in which high and low refractive index thin films are alternately repeatedly coated. As the number of layers increases, the transmittance decreases and the reflectance increases. Such a multilayer thin film has a problem in performance and mass productivity since it is impossible to recover once a defect occurs in the coating process.
  • hollow silica nanoparticles are hollow low-refractive materials that are used as materials to reduce the relative refractive index between the media, improve the light transmittance by reducing the reflection coefficient, infrared wavelength band of 200 nm to 800 nm And the visible light and the ultraviolet light.
  • the hollow nano silica particles have a difficulty in controlling particle shape and size due to the characteristics of materials and structures, and have a problem of transmitting all of light of a specific wavelength, and thus, the shape and size of the particles can be controlled.
  • the present invention is to solve the problems as described above, by forming a titanium dioxide shell on the hollow nanoparticles containing silica, having physical, chemical, mechanical stability and biochemical stability to easily control the size of the particles and It is to provide a method for producing hollow nanoparticles having good uniformity and shape stability.
  • hollow nanoparticles that can effectively block light of a specific wavelength, and that the low and high refractive materials can easily control the thickness of the thin film in one particle.
  • a method of manufacturing hollow silica particles having a titanium dioxide shell includes preparing an inorganic mold particle, and forming a first shell including silicon and silica on the surface of the inorganic mold particle. Removing the inorganic template particles to form hollow silica particles, and forming a second shell including titanium dioxide on the hollow silica particle surface.
  • the forming of the second shell may include preparing a reaction solvent including a titanium dioxide precursor and an alcohol or IPA (Isopropyl Alcohol), and dropping the reaction solvent into a reaction solvent.
  • a reaction solvent including a titanium dioxide precursor and an alcohol or IPA (Isopropyl Alcohol)
  • IPA Isopropyl Alcohol
  • One method selected from the group consisting of spraying, coating, and dipping is performed to form the second shell, and the titanium dioxide precursor includes titanium isopropoxide, tetrabutyl titanium, or both. It may be.
  • the mixed mass ratio of the titanium dioxide precursor and the alcohol or IPA may be 1:25 to 2:25.
  • the hollow silica particles may have a particle diameter of 60 nm to 90 nm.
  • the thickness of the second shell may be 5 nm to 10 nm.
  • the hollow silica particles in which the titanium dioxide shell is formed may be 50% to 80%.
  • hollow silica particles having a titanium dioxide shell of the present invention preparing an inorganic mold particle, forming a first shell containing silicon and silica on the surface of the inorganic mold particle, removing the inorganic mold particle Forming hollow silica particles, and forming a second shell including titanium dioxide on the hollow silica particle surface to efficiently block specific wavelengths and to control the thickness of the thin film.
  • preparing an inorganic mold particle forming a first shell containing silicon and silica on the surface of the inorganic mold particle, removing the inorganic mold particle Forming hollow silica particles, and forming a second shell including titanium dioxide on the hollow silica particle surface to efficiently block specific wavelengths and to control the thickness of the thin film.
  • a hollow silica particle in which a titanium dioxide shell is formed according to an embodiment of the present invention in which a high refractive material and a low refractive material is mixed without stacking two different materials is used as one material.
  • the optical filter can be provided.
  • FIG. 1 is a flowchart illustrating a method of manufacturing hollow silica particles in which a titanium dioxide shell according to the present invention is formed according to an embodiment of the present invention.
  • FIG. 2 exemplarily illustrates a process of manufacturing hollow silicon particles in which a titanium dioxide shell according to the present invention is formed, according to an embodiment of the present invention.
  • An aqueous solution of OAl 2 O 3 (0.16 molrity concentration, 400 ml) was added dropwise at the same time for 120 minutes and reacted for 60 minutes to obtain a precipitate of inorganic template particles in the reaction solution.
  • the core was ultrafiltration and washed and then dispersed in ethanol to prepare a core dispersion.
  • methyltrimethoxysilane (8 g) and tetraethyl orthosilicate (2.9 g) were mixed with 0.25 wt% of the core dispersion (00 g), followed by stirring (200 rpm) at a temperature of 60 ° C. for 5 hours.
  • a core / shell structure was prepared in which silica and silicon shells were formed on inorganic template particles.
  • the core / shell was ultrafiltered and washed and then dispersed in water to prepare a core / shell dispersion.
  • acid diluent HCl, 17.5 wt%, 400 g
  • the hollow silica particles were ultrafiltered and washed and then dried at 60 ° C. for 24 hours.
  • the hollow silica particles were immersed in a dispersion medium such as ethanol.
  • reaction solvent in which titanium isopropoxide was dissolved in 0.15 g of distilled water (DIW) as a titanium dioxide precursor was prepared, and the reaction solvent was added dropwise to the hollow silica particles.
  • DIW distilled water
  • the mixed solution was stirred at 300 RPM for 3 hours at 40 ° C (Stirring).
  • the present invention uses a silica precursor mixed with a silicon precursor in a specific ratio to form a shell on the inorganic mold particle core, and the pores are formed in the shell partially by the silica, so that a simple method such as acid treatment
  • the inorganic mold particles were easily removed to prepare hollow silica particles.
  • the titanium dioxide shell may be formed to include a second shell having a high refractive index, and may be suitable for the optical filter by blocking light of a specific wavelength band.
  • the present invention compared to the conventional optical filter that was difficult to control the thickness in the process of laminating two or more materials in seven or more layers by a titanium dioxide shell, it is easy to control the thickness and size of the filter, improving the light blocking efficiency You can.
  • the method for producing hollow silica particles in which a titanium dioxide shell is formed preparing an inorganic mold particles, forming a first shell containing silicon and silica on the surface of the inorganic mold particles, the inorganic Removing the mold particles to form hollow silica particles, and forming a second shell including titanium dioxide on the hollow silica particle surface.
  • Hollow silica particles formed with a titanium dioxide shell according to the present invention is that the titanium dioxide film is coated on a polymer in which silicon containing oxygen and oxygen, etc. are connected by a chemical bond, which means that pores are formed by introducing silica into the silicon shell. And, it is easy to form a hollow structure, it is possible to prevent the aggregation and contamination between the particles during the manufacturing process.
  • preparing the inorganic mold particles (S100) may include preparing a metal precursor solution (S110) and forming inorganic mold particles (S110).
  • the inorganic mold particles can be easily adjusted in shape and size, and can be easily removed using an acid treatment or the like during formation of the hollow structure.
  • the shape and size of the inorganic mold particles may be adjusted by the type of precursor, precursor concentration, type of precipitant, pH, reaction temperature, stirring speed, and the like during the formation of the inorganic mold particles.
  • the shape and size of the inorganic mold particles may be an important factor in the shape and hollow efficiency of the hollow silica particles.
  • the preparing of the metal precursor solution (S110) refers to preparing a metal precursor solution including a metal oxide salt. More specifically, the metal oxide salt is sodium silicate (Na 2 SiO 3 ), sodium It may include one or more selected from the group consisting of aluminate (NaAlO 2 ) and sodium silica aluminate (Na 2 OAl 2 O 3 xSiO 2 ).
  • the metal oxide salt is sodium silicate (Na 2 SiO 3 ), sodium It may include one or more selected from the group consisting of aluminate (NaAlO 2 ) and sodium silica aluminate (Na 2 OAl 2 O 3 xSiO 2 ).
  • the metal precursor solution may include an organic solvent such as alcohol having 1 to 4 carbon atoms, water, or both.
  • the concentration of the metal precursor solution may be 0.05 M to 0.2 M.
  • Forming the inorganic mold particles (S120) means mixing the metal precursor solution and the precipitant to precipitate the inorganic mold particles, preferably, dropping (precipitation) to the metal precursor solution (precipitation) or The metal precursor solution may be mixed by dropping the precipitant.
  • the concentration of the inorganic precursor since the rate of nucleation is slower as the concentration is slower, there is less aggregation between the formed nuclei, the size of the particles is formed smaller, and the concentration of the precursor increases the particle size.
  • Forming the inorganic template particles (S120), after mixing the metal precursor solution and the precipitant at room temperature, when heated to a temperature above room temperature and below 80 °C, may promote the precipitation reaction.
  • the inorganic mold particles may be formed by stirring at 100 rpm to 1000 rpm for 2 hours to 5 hours or 2 hours to 3 hours.
  • the precipitant is not particularly limited as long as it is a precipitant capable of precipitating the metal precursor.
  • the precipitant may include an ammonium salt precipitant, an alkaline precipitant, or both.
  • the ammonium salt precipitant is, for example, (NH 4 ) 2 SO 4 (ammonium sulfate), NH 4 NO 3 (ammonium nitrate salt), (NH 4 ) 2 CO 3 (ammonium carbonate), NH 4 HCO 3 (ammonium bicarbonate) And the like, and preferably (NH 4 ) 2 SO 4 (ammonium sulfate).
  • the alkaline precipitating agent is, for example, aqueous ammonia ((NH 4) OH), LiOH, NaOH, KOH, LiHCO 3, Li2CO 3, NaHCO 3, Na 2 CO 3, KHCO 3, and the like K 2 CO 3.
  • aqueous ammonia ((NH 4) OH)
  • the shape and size of the inorganic template particles may be controlled according to the concentration and type of the precipitant, for example, may form several nano-class spherical particles when applied, such as LiOH, NaOH, Na 2 CO 3 ,
  • the application of ammonia water can form microscopic long oval particles.
  • the mixed mass ratio of the alkaline precipitant and the ammonium salt precipitant may be 1: 0.1 to 1: 0.5 or 1: 0.1 to 1: 0.3.
  • the mixed mass ratio may be applied to induce a sufficient reaction between the metal oxide salt and the precipitant to form particles of a uniform form.
  • the precipitant may be applied as an aqueous solution, and may further include alcohols having 1 to 4 carbon atoms, acetone, and the like.
  • concentration of the precipitant aqueous solution by adjusting the precipitation rate, reaction rate, etc. of the inorganic template particles, it is possible to adjust the shape and size of the inorganic template particles, preferably, the concentration of the aqueous solution of the precipitant is 0.05 M to 0.2 M
  • the concentration of the aqueous solution of the precipitant is 0.05 M to 0.2 M
  • the inorganic mold particles obtained in the step of forming the inorganic mold particles (S120) is dried and powdered or the inorganic solution particles precipitated after the step of forming the inorganic mold particles (S120) immediately applied to the next step Alternatively, the inorganic mold particles may be filtered and then dispersed in water and applied to the next step.
  • the shell including the silicon and the silica on the inorganic mold particles may be mixed by mixing the dispersion solution of the inorganic mold particles with the reaction solution of the silicon precursor and the silica precursor.
  • the formed inorganic shell particle core / silicon and a shell of silica may be formed into a coreshell structure.
  • the shell thickness and shape may be adjusted by the dispersion degree of the inorganic mold particles, the concentration of the silicon precursor and the silica precursor, the reaction temperature, and the like during the first shell formation reaction.
  • the manufacturing cost is lowered, and when the silicon shell is formed, the silica precursor is applied to form a shell in which the pores are partially formed, thereby easily forming the inorganic mold particles through the pores. Removal can improve the manufacturing process and manufacturing cost of the hollow silica particles.
  • the silicon precursor is C 1-10 alkyltriC 1-10 alkoxysilane, and is propyltrimethoxysilane, ethyltrimethoxysilane, methyltrimethoxysilane, propyltriethoxysilane, vinyltriethoxysilane and methyltrie It may include one or more selected from the group consisting of oxysilane, preferably methyltrimethoxysilane.
  • the silica precursor may include at least one selected from the group consisting of tetramethyl orthosilicate, tetraethyl orthosilicate, tetrapropyl orthosilicate and tetrabutyl orthosilicate, preferably tetraethyl orthosilicate Can be.
  • the mixed mass ratio of the inorganic template particles to the silicon precursor and the silica precursor may be mixed in a range of 1: 3 to 1:15, 1: 5 to 1:10 or 1: 6 to 1: 8, within the range of the mixing ratio.
  • a first cell of uniform thickness is formed over the entire surface of the inorganic mold particles, to prevent the increase of the thickness of the shell due to excessive application of silicon and silica, and to prevent agglomeration of silica, silicon particles, etc. on the shell layer. Can be.
  • the concentration of the inorganic template particles in the dispersion solution of the inorganic template particles may be a concentration of 0.001% by weight to 0.01% by weight. When it is in the said range, it prevents the quantity of the silicon / silica produced
  • the concentration of the silicon precursor and the silica precursor in the reaction solution of the precursor may be in a concentration of 0.001% by weight to 0.01% by weight, and if included in the above range, only a shell having sufficient stability is formed on the surface of the inorganic mold particles. However, it is possible to improve the hollow efficiency and to prevent the formation of unwanted spherical particles on the shell surface by surface adsorption of residual silicon after forming the shell on the inorganic mold particle surface.
  • the reaction solution of the precursor includes an alcohol having 1 to 4 carbon atoms, such as methanol, ethanol, isopropyl alcohol, butanol, and may further include water.
  • the mixed mass ratio of the silicon precursor to the silica precursor in the reaction solution of the precursor may be included as 1: 0.01 to 1: 0.5, 1: 0.1 to 1: 0.3, or 1: 0.1 to 1: 0.25.
  • the silica pores are formed properly, it is possible to prevent the reduction of the silicon particle characteristics due to the increase of the silica.
  • the dispersion solution of the inorganic template particles and the reaction solution of the silicon precursor and the silica precursor may be simultaneously dropped (dropped) and mixed with each other, or the reaction solution of the silicon precursor and the silica precursor may be dropped into the dispersion solution of the inorganic template particles. have.
  • the thickness of the shell can be controlled by adjusting the particle size of the silica. For example, when a low reaction temperature is applied, the size of the silicon and silica spherical particles is small, so that the thickness of the shell can be adjusted thinly, and the high reaction temperature is applied. In doing so, the size of the silicon and silica spherical particles can be increased to thicken the shell thickness.
  • the step of forming the first shell (S200), may be stirred and mixed for 2 to 5 hours at room temperature to 80 °C temperature, if included in the temperature and time range, on the surface of the inorganic mold particles A sufficient reaction of the silica precursor and the silicon precursor may be induced to facilitate the coating of the shell, and to prevent the formation of hollow silicon particles in which the shell is broken, surface protrusions, and the like are formed.
  • the core / shell particles may be filtered and washed with a washing solution such as water, and the filtration may be ultrafiltration.
  • Removing the inorganic mold particles to form hollow silica particles (S300) is a step of melting and removing the inorganic mold particles through the pores formed by the silica in the shell by adding an acid solution. That is, the shell containing silica and silicon can easily remove the inorganic template particles forming the core through the pores formed by the silica by acid treatment, and thus, complex processes such as an annealing process and an extraction process using an organic solvent or the like. Hollow silica particles can be obtained without this need, and contamination due to the remaining inorganic template particles can be prevented.
  • the acid solution may include a dilute hydrochloric acid solution, a dilute sulfuric acid solution, or both, and may be 0.1 N to 2 N.
  • the filtration may be ultrafiltration.
  • Forming a second shell containing titanium dioxide on the hollow silica particle surface means forming a titanium dioxide shell on the hollow silica particles, as described above, the formation reaction of the second shell At the time, the dispersion thickness of the inorganic template particles, the concentration of the silicon precursor, the silica precursor and the reaction temperature may be influenced by the shell thickness and the shape of the hollow silica.
  • the forming of the second shell may include preparing a reaction solvent containing a titanium dioxide precursor and an alcohol or IPA (Isopropyl Alcohol), and dropping the reaction solvent.
  • Forming a second shell by performing one method selected from the group consisting of a spraying method, a coating method and an immersion method, and the titanium dioxide precursor is not particularly limited as long as it is an inorganic or organic compound containing titanium. May be titanium isopropoxide, tetrabutyl titanium or both.
  • the hollow silica may be added dropwise to a solution immersed in a dispersion medium such as ethanol by a dropping method, and the dropping speed of the reaction solvent is adjusted to adjust the thickness of the titanium dioxide shell. It can be adjusted properly.
  • a dispersion medium such as ethanol
  • the mixed mass ratio of the titanium dioxide precursor and the alcohol or IPA is 1: 25 To 2:25.
  • the concentration of the titanium dioxide precursor is less than 1:25, the shell cannot be formed on the hollow silica particles.
  • the concentration of the titanium dioxide precursor is higher than 2:25, the remaining residue after coating the hollow silica particles Water may be adsorbed on the surface of titanium dioxide and formed by agglomeration of particles on the surface of the shell.
  • the hollow silica particles formed with a titanium dioxide shell is a hollow structure formed with a hollow core and a first shell containing silicon and silica and a second shell containing titanium dioxide, wherein the first shell is a first shell It may be a partially porous shell with pores formed in at least a portion of the shell, for example in the silica distribution region.
  • the hollow silica particles mean a core-shell structure except for the titanium dioxide shell (second shell), and by adjusting the mixing ratio of the silicon and silica of the hollow silica particles, the porosity can be adjusted, more specifically,
  • the mixed mass ratio of the silicon to the silica may be 1: 0.01 to 1: 0.5, preferably 1: 0.1 to 1: 0.4, and more preferably 1: 0.1 to 1: 0.25.
  • the particle diameter of the hollow silica particles may be from 60 nm to 90 nm.
  • the hollow silica particles may include various particle diameters according to the application field, but may preferably be from 60 nm to 90 nm, the particle diameter means the diameter, length, or size of the particles, depending on the shape of the particles can do.
  • the thickness of the second shell may be 5 nm to 10 nm.
  • the total particle diameter of the hollow silica particles in which the titanium dioxide shell is formed includes the particle diameter of the hollow silica and the thickness of the second shell, and when the total particle diameter of the hollow silica particles in which the titanium dioxide shell is formed exceeds 100 nm.
  • the hollow silica particles may be agglomerated with each other to reduce dispersibility and a blocking rate of a specific wavelength.
  • the hollow silica particles in which the titanium dioxide shell is formed may have a transmittance of 50% to 80% at a wavelength of 200 nm to 400 nm.
  • the hollow silica particles in which the titanium dioxide shell is formed may be used in an optical filter to effectively block light having a specific wavelength, preferably 200 nm to 400 nm, and have a low refractive index of about 1.4 and a high refractive index of about 2.9. Titanium dioxide having a may be a desirable property to be included in one particle.
  • the optical filter including the hollow silica particles in which the titanium dioxide shell is formed may improve light transmittance by reducing the relative refractive index between the media and the reflection coefficient, and a conventional optical filter in which 7 or more layers are mixed by mixing different materials. Compared with, it is easy to adjust the thickness of the filter, it is possible to prevent problems such as defects occurring after the filter laminated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Silicon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to a method for manufacturing hollow silica particles having a titanium dioxide shell and, more specifically, to a method for manufacturing hollow silica particles, the method comprising the steps of: preparing inorganic template particles; forming a first shell containing silicon and silica on a surface of the inorganic template particles; removing the inorganic template particles to form hollow silica particles; and forming a second shell containing titanium dioxide on a surface of the hollow silica particles.

Description

이산화타이타늄 쉘이 형성된 중공 실리카 입자의 제조방법Method for producing hollow silica particles with titanium dioxide shell
본 발명은, 이산화타이타늄 쉘이 형성된 중공 실리카 입자의 제조방법에 관한 것이다.The present invention relates to a method for producing hollow silica particles having a titanium dioxide shell.
나노 물질은, 나노크기로부터 비롯되는 넓은 표면적으로 인하여, 처음부터 대면적을 가지는 기존의 벌크 물질에 비해서 우수한 물성을 가지게 된다. 특히, 나노물질의 속이 빈 형태의 중공구조 나노 입자는, 일반적인 나노입자에 비해서, 큰 기공 부피와 넓은 표면적을 가지고 있어서 최근 다양한 방법으로 연구가 진행되고 있다. 이와 같은, 중공구조 나노 입자는 약물을 담지하여, 약물 전달체로써 이용되거나, 촉매물질을 담지한 촉매 담지체 등으로 응용되며, 고분자 복합체에 도입되어 굴절률을 변화시키는 충진제 구성요소 등으로도 연구되고 있다.Nanomaterials have superior physical properties compared to conventional bulk materials that have a large area from the outset due to the large surface area resulting from nanosizes. In particular, hollow hollow nanoparticles having a hollow form of nanomaterials have a large pore volume and a large surface area as compared to general nanoparticles. Such hollow structured nanoparticles are used as drug carriers for supporting drugs, or applied as catalyst carriers for supporting catalyst materials, and are also being studied as filler components for introducing refractive index into polymer composites to change refractive index. .
중공 구조의 나노 입자 제조에 있어서, 일반적으로 고분자 입자를 경질 주형으로 이용하는 방법과 계면활성제를 통한 연질 주형을 이용하여 중공구조 나노 입자를 제조하는 방법이 사용되고 있는데, 유기 주형을 이용하여 중공구조 나노 입자를 제조하는 방법은, 유기 주형을 제거할 경우에, 유기 주형의 잔여물 세척을 위해서 복잡한 공정이 요구되고, 높은 온도로 열처리하여 유기 주형을 제거할 경우, 합성된 중공 나노 입자들 간의 응집, 깨짐 등이 발생하는 문제점이 있다. 계면활성제를 통한 연질 주형을 이용하여 중공구조 나노 입자를 제조하는 방법은, 고가의 계면활성제의 사용으로 인한 공정 비용이 증가될 수 있다.In the production of hollow nanoparticles, generally, a method of using polymer particles as a hard mold and a method of manufacturing hollow structure nanoparticles using a soft mold using a surfactant are used. In the method for preparing the organic mold, a complex process is required for washing the residue of the organic mold, and when the organic mold is removed by heat treatment at a high temperature, aggregation and breakage between the synthesized hollow nanoparticles is performed. There is a problem that occurs. The method of manufacturing hollow structured nanoparticles using a soft mold through a surfactant may increase the processing cost due to the use of expensive surfactants.
중공구조 나노 입자의 활용 분야 가운데, 광학 필터의 고반사 코팅의 경우, 현재, 설계된 다층 박막 코팅 구조는 고굴절률 박막과 저굴절률 박막을 교대로 반복하여 코팅하는 기판 구조를 가지는데, 다층 박막 코팅의 층수가 증가할수록, 투과율은 작아지고 반사율은 커진다. 이와 같은 다층 박막은, 코팅 공정에서 한번 불량이 발생하게 되면, 복구가 불가능하므로 성능과 양산성에 있어서 문제점이 있다.Among the applications of hollow structured nanoparticles, in the case of highly reflective coatings of optical filters, currently designed multilayer thin film coating structures have a substrate structure in which high and low refractive index thin films are alternately repeatedly coated. As the number of layers increases, the transmittance decreases and the reflectance increases. Such a multilayer thin film has a problem in performance and mass productivity since it is impossible to recover once a defect occurs in the coating process.
이와 관련하여, 전술한 바와 같이, 굴절률을 변화시키는 충진제로서 사용되는 나노 물질을 개선하기 위한 연구가 계속되고 있다. 특히, 중공구조의 나노 실리카 입자는 중공 형태의 저굴절 재료로 매질간의 상대 굴절률을 줄여주고, 반사계수를 줄여 광 투과율을 향상 시키는 재료로 이용되고 있으며, 200 nm 내지 800 nm 파장의 적외선 영역대 파장과 가시광선 영역대 파장 및 자외선 영역대 파장을 투과하고 있다.In this regard, as discussed above, research continues to improve nanomaterials used as fillers to change the refractive index. In particular, hollow silica nanoparticles are hollow low-refractive materials that are used as materials to reduce the relative refractive index between the media, improve the light transmittance by reducing the reflection coefficient, infrared wavelength band of 200 nm to 800 nm And the visible light and the ultraviolet light.
그러나, 상기 중공구조의 나노 실리카 입자는 소재 및 구조의 특성상, 입자 형상 및 크기의 조절에 다소 어려움이 있으며, 특정 파장의 빛까지도 모두 투과시키는 문제점이 있어서, 입자의 형상 및 크기 조절이 가능하고, 특정 파장의 차단율이 향상된 중공구조 나노 입자의 개발이 요구되고 있다.However, the hollow nano silica particles have a difficulty in controlling particle shape and size due to the characteristics of materials and structures, and have a problem of transmitting all of light of a specific wavelength, and thus, the shape and size of the particles can be controlled. There is a need for development of hollow structured nanoparticles having improved blocking rates at specific wavelengths.
본 발명은 전술한 바와 같은 문제점을 해결하기 위한 것으로, 실리카를 포함하는 중공 나노 입자에 이산화타이타늄 쉘을 형성하여, 물리적, 화학적, 기계적 안정성 및 생화학적 안정성을 가져서 입자의 크기 조절이 용이하고 입자의 균일성 및 형태 안정성이 좋은 중공 나노 입자의 제조방법을 제공하는 것이다.The present invention is to solve the problems as described above, by forming a titanium dioxide shell on the hollow nanoparticles containing silica, having physical, chemical, mechanical stability and biochemical stability to easily control the size of the particles and It is to provide a method for producing hollow nanoparticles having good uniformity and shape stability.
보다 구체적으로, 특정 파장의 빛을 효과적으로 차단할 수 있고, 저굴절 재료와 고굴절 재료가 한 입자에 있어서 박막의 두께를 용이하게 조절할 수 있는 중공 나노 입자를 제공할 수 있다.More specifically, it is possible to provide hollow nanoparticles that can effectively block light of a specific wavelength, and that the low and high refractive materials can easily control the thickness of the thin film in one particle.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 분야 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 실시예에 따른 이산화타이타늄 쉘이 형성된 중공 실리카 입자의 제조방법은, 무기 주형 입자를 준비하는 단계, 상기 무기 주형 입자 표면에 실리콘 및 실리카를 포함하는 제1 쉘을 형성하는 단계, 상기 무기 주형 입자를 제거하여 중공 실리카 입자를 형성하는 단계 및 상기 중공 실리카 입자 표면에 이산화타이타늄을 포함하는 제2 쉘을 형성하는 단계를 포함한다.According to one or more exemplary embodiments, a method of manufacturing hollow silica particles having a titanium dioxide shell includes preparing an inorganic mold particle, and forming a first shell including silicon and silica on the surface of the inorganic mold particle. Removing the inorganic template particles to form hollow silica particles, and forming a second shell including titanium dioxide on the hollow silica particle surface.
본 발명의 일 실시예에 따라, 상기 제2 쉘을 형성하는 단계는, 이산화타이타늄 전구체와 알코올 또는 IPA(Isopropyl Alcohol)를 포함하는 반응 용매를 제조하고, 상기 반응 용매로 드롭핑(dropping)법, 분사법, 도포법 및 침지법으로 이루어진 군에서 선택되는 하나의 방법을 수행하여 제2 쉘을 형성하는 것이고, 상기 이산화타이타늄 전구체는, 타이타늄이소프로폭시드, 테트라부틸타이타늄 또는 이 둘을 모두 포함하는 것일 수 있다.According to an embodiment of the present invention, the forming of the second shell may include preparing a reaction solvent including a titanium dioxide precursor and an alcohol or IPA (Isopropyl Alcohol), and dropping the reaction solvent into a reaction solvent. One method selected from the group consisting of spraying, coating, and dipping is performed to form the second shell, and the titanium dioxide precursor includes titanium isopropoxide, tetrabutyl titanium, or both. It may be.
본 발명의 일 실시예에 따라, 상기 반응 용매를 제조하는 단계에서 상기 이산화타이타늄 전구체와 상기 알코올 또는 IPA(Isopropyl Alcohol)의 혼합 질량비는, 1 : 25 내지 2 : 25 인 것일 수 있다.According to one embodiment of the present invention, in the step of preparing the reaction solvent, the mixed mass ratio of the titanium dioxide precursor and the alcohol or IPA (Isopropyl Alcohol) may be 1:25 to 2:25.
본 발명의 일 실시예에 따라, 상기 중공 실리카 입자의 입경은, 60 nm 내지 90 nm인 것일 수 있다.According to an embodiment of the present invention, the hollow silica particles may have a particle diameter of 60 nm to 90 nm.
본 발명의 일 실시예에 따라, 상기 제2 쉘의 두께는, 5 nm 내지 10 nm인 것일 수 있다.According to an embodiment of the present invention, the thickness of the second shell may be 5 nm to 10 nm.
본 발명의 일 실시예에 따라, 상기 이산화타이타늄 쉘이 형성된 중공 실리카 입자는, 200 nm 내지 400 nm 파장의 투과율이 50 % 내지 80 % 인 것일 수 있다.According to one embodiment of the invention, the hollow silica particles in which the titanium dioxide shell is formed, the transmittance of 200 nm to 400 nm wavelength may be 50% to 80%.
본 발명의 이산화타이타늄 쉘이 형성된 중공 실리카 입자의 제조방법은, 무기 주형 입자를 준비하는 단계, 상기 무기 주형 입자 표면에 실리콘 및 실리카를 포함하는 제1 쉘을 형성하는 단계, 상기 무기 주형 입자를 제거하여 중공 실리카 입자를 형성하는 단계 및 상기 중공 실리카 입자 표면에 이산화타이타늄을 포함하는 제2 쉘을 형성하는 단계를 포함하여, 특정 파장을 효율적으로 차단하고, 박막의 두께를 조절할 수 있는 중공 실리카 입자를 제공할 수 있다.In the method for producing hollow silica particles having a titanium dioxide shell of the present invention, preparing an inorganic mold particle, forming a first shell containing silicon and silica on the surface of the inorganic mold particle, removing the inorganic mold particle Forming hollow silica particles, and forming a second shell including titanium dioxide on the hollow silica particle surface to efficiently block specific wavelengths and to control the thickness of the thin film. Can provide.
보다 구체적으로는, 광학필터에서 서로 다른 2가지 물질을 적층하지 않고, 고굴절 재료와 저굴절 재료가 혼합된 본 발명의 실시예에 따른 이산화타이타늄 쉘이 형성된 중공 실리카 입자를 이용하여, 하나의 물질로 된 광학필터를 제공할 수 있다.More specifically, in the optical filter, a hollow silica particle in which a titanium dioxide shell is formed according to an embodiment of the present invention in which a high refractive material and a low refractive material is mixed without stacking two different materials is used as one material. The optical filter can be provided.
도1은 본 발명의 일 실시예에 따른, 본 발명에 의한 이산화타이타늄 쉘이 형성된 중공 실리카 입자의 제조방법의 흐름도를 예시적으로 나타낸 것이다.1 is a flowchart illustrating a method of manufacturing hollow silica particles in which a titanium dioxide shell according to the present invention is formed according to an embodiment of the present invention.
도 2는, 본 발명의 일 실시예에 따른, 본 발명에 의한 이산화타이타늄 쉘이 형성된 중공 실리콘 입자의 제조방법의 공정을 예시적으로 나타낸 것이다.FIG. 2 exemplarily illustrates a process of manufacturing hollow silicon particles in which a titanium dioxide shell according to the present invention is formed, according to an embodiment of the present invention.
실시예 및 비교예에 의하여 본 발명의 실시를 위한 최선의 형태를 설명하고자 한다.By way of examples and comparative examples will be described the best mode for carrying out the invention.
단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are only for illustrating the present invention, and the contents of the present invention are not limited to the following examples.
실시예. 이산화타이타늄 쉘이 형성된 중공 실리카 입자Example. Hollow Silica Particles with Titanium Dioxide Shell
1. 무기 주형 입자를 준비하는 단계1. Preparing Inorganic Mold Particles
80 ℃ 온도에서 NaOH 수용액(0.81 wt% 농도, 400 ml)에 (NH 4) 2SO 4 수용액(0.13 molarity 농도, 400 ml,)와 Na 2SiO 3수용액(0.07 molarity 농도, 400 ml), Na 2OAl 2O 3수용액 (0.16 molrity 농도, 400 ml)을 동시에 120분 동안 적하하고, 60분 동안 반응하여 반응액 내에 무기 주형 입자의 침전물을 획득하였다.Aqueous solution of (NH 4 ) 2 SO 4 (0.13 molarity, 400 ml) and Na 2 SiO 3 solution (0.07 molarity, 400 ml), Na 2 An aqueous solution of OAl 2 O 3 (0.16 molrity concentration, 400 ml) was added dropwise at the same time for 120 minutes and reacted for 60 minutes to obtain a precipitate of inorganic template particles in the reaction solution.
2. 제 1 쉘 형성 단계2. First shell forming step
상기 코어는 한외 여과하고 세척한 이후에 에탄올 내에 분산시켜 코어 분산액을 제조하였다.The core was ultrafiltration and washed and then dispersed in ethanol to prepare a core dispersion.
다음으로, 0.25 wt%의 코어 분산액 (00 g)에 메틸트리메톡시실란 (8 g) 및 테트라에틸 오르소실리케이트 (2.9 g)를 혼합한 이후 60 ℃ 온도에서 5시간 동안 교반(200 rpm)하여 무기 주형 입자 상에 실리카 및 실리콘 쉘이 형성된 코어/쉘 구조체를 제조하였다.Next, methyltrimethoxysilane (8 g) and tetraethyl orthosilicate (2.9 g) were mixed with 0.25 wt% of the core dispersion (00 g), followed by stirring (200 rpm) at a temperature of 60 ° C. for 5 hours. A core / shell structure was prepared in which silica and silicon shells were formed on inorganic template particles.
3. 중공 실리카 입자를 형성하는 단계3. Forming Hollow Silica Particles
상기 코어/쉘은 한외여과하고 세척한 이후에 물 내에 분산시켜 코어/쉘 분산액을 제조하였다. 다음으로, 상기 코어/쉘 분산액에 산희석액(HCl, 17.5 wt%, 400 g)을 적하한 이후 2시간 동안 교반하여 무기 주형 입자로 이루어진 코어를 제거 하여 중공 실리카 입자를 획득하였다. 상기 중공 실리카 입자는 한외여과하고 세척한 이후에 60 ℃ 온도에서 24시간 동안 건조하였다.The core / shell was ultrafiltered and washed and then dispersed in water to prepare a core / shell dispersion. Next, acid diluent (HCl, 17.5 wt%, 400 g) was added dropwise to the core / shell dispersion, followed by stirring for 2 hours to remove the core made of inorganic template particles to obtain hollow silica particles. The hollow silica particles were ultrafiltered and washed and then dried at 60 ° C. for 24 hours.
4. 제 2 쉘 형성 단계4. Second Shell Forming Step
상기 중공 실리카 입자를 에탄올 등의 분산매에 침지시켰다.The hollow silica particles were immersed in a dispersion medium such as ethanol.
다음으로, 증류수(DIW) 0.15 g에 이산화타이타늄 전구체로서 타이타늄이소프로폭시드를 용해시킨 반응 용매를 제조하여, 상기 반응 용매를 중공 실리카 입자에 적하하였다.Next, a reaction solvent in which titanium isopropoxide was dissolved in 0.15 g of distilled water (DIW) as a titanium dioxide precursor was prepared, and the reaction solvent was added dropwise to the hollow silica particles.
상기 혼합 용액을 40 ℃ 에서 3시간동안 300 RPM으로 저어주었다(Stirring).The mixed solution was stirred at 300 RPM for 3 hours at 40 ° C (Stirring).
본 발명은, 실리콘 전구체와 특정 비율로 혼합된 실리카 전구체를 이용하여, 무기 주형 입자 코어 상에 쉘을 형성하고, 상기 실리카에 의해 상기 쉘에 부분적으로 기공이 형성되므로, 산처리와 같은 간이한 방법으로 무기 주형 입자를 용이하게 제거하여 중공 실리카 입자를 제조하였다. 그 이후, 이산화타이타늄 쉘을 형성하여, 고굴절을 갖는 제 2 쉘을 포함하여, 특정 파장대의 빛을 차단하여 광학 필터용으로 적합할 수 있다. 또한 본 발명은, 이산화타이타늄 쉘에 의하여, 2가지 이상의 물질을 7층 이상으로 적층하는 과정에서 두께 조절에 어려웠던 종래의 광학 필터에 비해, 필터의 두께 및 크기 조절이 용이하고, 빛 차단 효율을 향상시킬 수 있다.The present invention uses a silica precursor mixed with a silicon precursor in a specific ratio to form a shell on the inorganic mold particle core, and the pores are formed in the shell partially by the silica, so that a simple method such as acid treatment The inorganic mold particles were easily removed to prepare hollow silica particles. Thereafter, the titanium dioxide shell may be formed to include a second shell having a high refractive index, and may be suitable for the optical filter by blocking light of a specific wavelength band. In addition, the present invention, compared to the conventional optical filter that was difficult to control the thickness in the process of laminating two or more materials in seven or more layers by a titanium dioxide shell, it is easy to control the thickness and size of the filter, improving the light blocking efficiency You can.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is represented by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다.Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings.
이하에서 설명하는 실시예들에는 다양한 변경이 가해질 수 있다. 아래 설명하는 실시예들은 발명의 범위를 설명된 실시 형태로 한정하려는 것이 아니며, 본 출원을 통해 권리로서 청구하고자 하는 범위는 이들에 대한 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Various changes may be made to the embodiments described below. The examples described below are not intended to limit the scope of the invention to the described embodiments, and it is to be understood that the scope claimed as right through this application includes all modifications, equivalents, and substitutes for them.
실시예에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 실시예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of examples. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present disclosure does not exclude the presence or the possibility of addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
구성 요소(element) 또는 층이 다른 요소 또는 층 "상에(on)", "에 연결된(connected to)", 또는 "에 결합된(coupled to)" 것으로서 나타낼 때, 이것이 직접적으로 다른 구성 요소 또는 층에 있을 수 있거나, 연결될 수 있거나 결합될 수 있거나 또는 간섭 구성 요소 또는 층(intervening elements and layer)이 존재할 수 있는 것으로 이해될 수 있다.When an element or layer is represented as "on", "connected to" or "coupled to" another element or layer, this is directly another element or layer. It may be understood that the layers may be present, connected or combined, or there may be intervening elements and layers.
이하, 본 발명의 이산화타이타늄 쉘이 형성된 중공 실리카 입자의 제조방법에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다.Hereinafter, a method of manufacturing hollow silica particles having a titanium dioxide shell according to the present invention will be described in detail with reference to Examples and drawings. However, the present invention is not limited to these embodiments and drawings.
본 발명의 일 측면에서, 이산화타이타늄 쉘이 형성된 중공 실리카 입자의 제조방법은, 무기 주형 입자를 준비하는 단계, 상기 무기 주형 입자 표면에 실리콘 및 실리카를 포함하는 제1 쉘을 형성하는 단계, 상기 무기 주형 입자를 제거하여 중공 실리카 입자를 형성하는 단계 및 상기 중공 실리카 입자 표면에 이산화타이타늄을 포함하는 제2 쉘을 형성하는 단계를 포함한다.In one aspect of the invention, the method for producing hollow silica particles in which a titanium dioxide shell is formed, preparing an inorganic mold particles, forming a first shell containing silicon and silica on the surface of the inorganic mold particles, the inorganic Removing the mold particles to form hollow silica particles, and forming a second shell including titanium dioxide on the hollow silica particle surface.
본 발명에 의한 이산화타이타늄 쉘이 형성된 중공 실리카 입자는, 유기기를 함유한 실리콘과 산소 등이 화학결합으로 연결된 형태의 폴리머 위에 이산화타이타늄 막을 씌운 것으로서, 실리콘 쉘에 실리카를 도입하여 기공을 형성한 것을 의미하며, 중공구조의 형성이 용이하고, 제조 공정 중 입자들 간의 응집 및 오염을 방지할 수 있다.Hollow silica particles formed with a titanium dioxide shell according to the present invention is that the titanium dioxide film is coated on a polymer in which silicon containing oxygen and oxygen, etc. are connected by a chemical bond, which means that pores are formed by introducing silica into the silicon shell. And, it is easy to form a hollow structure, it is possible to prevent the aggregation and contamination between the particles during the manufacturing process.
본 발명에서, 상기 무기 주형 입자를 준비하는 단계(S100)는, 금속 전구체 용액을 제조하는 단계(S110) 및 무기 주형 입자를 형성하는 단계(S110)를 포함할 수 있다.In the present invention, preparing the inorganic mold particles (S100) may include preparing a metal precursor solution (S110) and forming inorganic mold particles (S110).
상기 무기 주형 입자는, 형상 및 크기 조절이 용이하고, 중공 구조체의 형성시 산처리 등을 이용하여 용이하게 제거할 수 있다.The inorganic mold particles can be easily adjusted in shape and size, and can be easily removed using an acid treatment or the like during formation of the hollow structure.
상기 무기 주형 입자를 준비하는 단계(S100)는, 무기 주형 입자의 형성 반응 시 전구체의 종류, 전구체 농도, 침전제의 종류, pH, 반응온도, 교반 속도 등에 의해서 무기 주형 입자의 형태 및 크기를 조절할 수 있으며, 이러한 무기 주형 입자의 형태 및 크기는 중공 실리카 입자의 형상 및 중공 효율에 중요한 요인이 될 수 있다.In the preparing of the inorganic mold particles (S100), the shape and size of the inorganic mold particles may be adjusted by the type of precursor, precursor concentration, type of precipitant, pH, reaction temperature, stirring speed, and the like during the formation of the inorganic mold particles. In addition, the shape and size of the inorganic mold particles may be an important factor in the shape and hollow efficiency of the hollow silica particles.
상기 금속 전구체 용액을 제조하는 단계(S110)는, 금속 산화물염을 포함하는 금속 전구체 용액을 제조하는 단계를 의미하며, 보다 구체적으로, 상기 금속 산화물염은, 소듐실리케이트(Na 2SiO 3), 소듐알루미네이트(NaAlO 2) 및 소듐실리코알루미네이트(Na 2OAl 2O 3xSiO 2)로 이루어진 군에서 선택된1종 이상을 포함할 수 있다.The preparing of the metal precursor solution (S110) refers to preparing a metal precursor solution including a metal oxide salt. More specifically, the metal oxide salt is sodium silicate (Na 2 SiO 3 ), sodium It may include one or more selected from the group consisting of aluminate (NaAlO 2 ) and sodium silica aluminate (Na 2 OAl 2 O 3 xSiO 2 ).
상기 금속 전구체 용액은, 탄소수 1 내지 4의 알코올 등의 유기 용매, 물 또는 이 둘을 포함할 수 있다.The metal precursor solution may include an organic solvent such as alcohol having 1 to 4 carbon atoms, water, or both.
상기 금속 전구체 용액의 농도에 따라 침전제와의 반응 속도를 조절하여, 무기 주형 입자의 형태 및 크기를 조절할 수 있으며, 바람직하게는, 상기 금속 전구체 용액의 농도는 0.05 M 내지 0.2 M일 수 있다.By controlling the reaction rate with the precipitant according to the concentration of the metal precursor solution, the shape and size of the inorganic template particles can be adjusted, preferably, the concentration of the metal precursor solution may be 0.05 M to 0.2 M.
상기 무기 주형 입자를 형성하는 단계(S120)는, 상기 금속 전구체 용액과 침전제를 혼합하여 무기 주형 입자를 침전시키는 단계를 의미하며, 바람직하게는, 상기 금속 전구체 용액에 침전제를 드롭핑(dropping) 하거나 상기 침전제에 상기 금속 전구체 용액을 드롭핑하여 혼합할 수 있다.Forming the inorganic mold particles (S120) means mixing the metal precursor solution and the precipitant to precipitate the inorganic mold particles, preferably, dropping (precipitation) to the metal precursor solution (precipitation) or The metal precursor solution may be mixed by dropping the precipitant.
상기 무기 주형 입자를 형성하는 단계(S120)는, 침전 온도에 따라 염의 침전 속도, 핵생성 속도 등을 조절하여, 무기 주형 입자의 크기 및 형태를 조절할 수 있으며, 구체적으로는 0 ℃ 내지 100 ℃, 바람직하게는 10 ℃ 내지 80 ℃, 더욱 바람직하게는 상온 내지 80 ℃ 또는 상온 내지 60 ℃일 수 있다.Forming the inorganic template particles (S120), by adjusting the precipitation rate of the salt, the nucleation rate, etc. according to the precipitation temperature, it is possible to control the size and shape of the inorganic template particles, specifically 0 ℃ to 100 ℃, Preferably from 10 ° C to 80 ° C, more preferably from room temperature to 80 ° C or from room temperature to 60 ° C.
상기 무기물 전구체의 농도의 경우, 농도가 늦을수록 핵 생성 속도가 느리므로, 형성된 핵간의 응집이 적어, 입자의 크기가 작게 형성되며, 전구체의 농도가 높을수록 입자 크기가 증가한다.In the case of the concentration of the inorganic precursor, since the rate of nucleation is slower as the concentration is slower, there is less aggregation between the formed nuclei, the size of the particles is formed smaller, and the concentration of the precursor increases the particle size.
상기 무기 주형 입자를 형성하는 단계(S120)는, 상온에서 상기 금속 전구체 용액과 침전제를 혼합한 이후, 상온 초과 및 80 ℃ 이하의 온도로 가열할 때, 침전 반응을 촉진시킬 수 있다.Forming the inorganic template particles (S120), after mixing the metal precursor solution and the precipitant at room temperature, when heated to a temperature above room temperature and below 80 ℃, may promote the precipitation reaction.
상기 무기 주형 입자를 형성하는 단계(S120)는, 100 rpm 내지 1000 rpm으로 2시간 내지 5시간 또는 2시간 내지 3시간 동안 교반하여 무기 주형 입자를 형성할 수 있다.In the forming of the inorganic mold particles (S120), the inorganic mold particles may be formed by stirring at 100 rpm to 1000 rpm for 2 hours to 5 hours or 2 hours to 3 hours.
상기 무기 주형 입자를 형성하는 단계(S120)에서, 상기 침전제는, 상기 금속 전구체를 침전시킬 수 있는 침전제라면 특별히 제한되지 않으나, 바람직하게는, 암모늄염 침전제, 알칼리성 침전제 또는 이 둘을 포함할 수 있다.In the forming of the inorganic template particles (S120), the precipitant is not particularly limited as long as it is a precipitant capable of precipitating the metal precursor. Preferably, the precipitant may include an ammonium salt precipitant, an alkaline precipitant, or both.
상기 암모늄염 침전제는, 예를 들어, (NH 4) 2SO 4(황산암모늄염), NH 4NO 3(질산암모늄염), (NH 4) 2CO 3(탄산암모늄), NH 4HCO 3(중탄산암모늄) 등일 수 있고, 바람직하게는 (NH 4) 2SO 4(황산암모늄염)일 수 있다.The ammonium salt precipitant is, for example, (NH 4 ) 2 SO 4 (ammonium sulfate), NH 4 NO 3 (ammonium nitrate salt), (NH 4 ) 2 CO 3 (ammonium carbonate), NH 4 HCO 3 (ammonium bicarbonate) And the like, and preferably (NH 4 ) 2 SO 4 (ammonium sulfate).
상기 알칼리성 침전제는, 예를 들어, 암모니아수((NH 4)OH), LiOH, NaOH, KOH, LiHCO 3, Li2CO 3, NaHCO 3, Na 2CO 3, KHCO 3, K 2CO 3등일 수 있다.The alkaline precipitating agent is, for example, aqueous ammonia ((NH 4) OH), LiOH, NaOH, KOH, LiHCO 3, Li2CO 3, NaHCO 3, Na 2 CO 3, KHCO 3, and the like K 2 CO 3.
상기 침전제의 농도 및 종류 등에 따라 무기 주형 입자의 형태 및 크기의 조절이 이루어질 수 있으며, 예를 들어, LiOH, NaOH, Na 2CO 3등의 적용 시 수 나노급의 구형입자를 형성할 수 있고, 암모니아수의 적용 시 마이크로급의 긴 타원형 형상의 입자를 형성할 수 있다.The shape and size of the inorganic template particles may be controlled according to the concentration and type of the precipitant, for example, may form several nano-class spherical particles when applied, such as LiOH, NaOH, Na 2 CO 3 , The application of ammonia water can form microscopic long oval particles.
상기 알칼리성 침전제 및 상기 암모늄염 침전제의 혼합 질량비는, 1 : 0.1 내지 1 : 0.5 또는 1 : 0.1 내지 1 : 0.3 일 수 있다. 상기 혼합 질량비를 적용하여 금속 산화물염과 침전제의 충분한 반응을 유도하고 균일한 형태의 입자를 형성할 수 있다.The mixed mass ratio of the alkaline precipitant and the ammonium salt precipitant may be 1: 0.1 to 1: 0.5 or 1: 0.1 to 1: 0.3. The mixed mass ratio may be applied to induce a sufficient reaction between the metal oxide salt and the precipitant to form particles of a uniform form.
상기 침전제는, 수용액으로 적용될 수 있고, 탄소수 1 내지 4의 알코올, 아세톤 등이 더 포함될 수 있다. 상기 침전제 수용액의 농도를 조절하여, 무기 주형 입자의 침전 속도, 반응 속도 등을 조절하여, 무기 주형 입자의 형태 및 크기 등을 조절할 수 있으며, 바람직하게, 상기 침전제 수용액의 농도는 0.05 M 내지 0.2 M 일 수 있으며, 상기 범위 내에 포함되면, 고농도의 적용 시 미반응물에 의한 불순물의 증가, 침전물 간의 응집 등의 발생을 방지하고, 적절한 수율로 무기 주형 입자의 침전물을 획득할 수 있다.The precipitant may be applied as an aqueous solution, and may further include alcohols having 1 to 4 carbon atoms, acetone, and the like. By adjusting the concentration of the precipitant aqueous solution, by adjusting the precipitation rate, reaction rate, etc. of the inorganic template particles, it is possible to adjust the shape and size of the inorganic template particles, preferably, the concentration of the aqueous solution of the precipitant is 0.05 M to 0.2 M When included in the above range, it is possible to prevent the increase of impurities due to the unreacted matter, aggregation between the precipitates, etc. when the application of high concentration, and to obtain the precipitate of the inorganic template particles in an appropriate yield.
상기 무기 주형 입자를 형성하는 단계(S120)에서 획득한 무기 주형 입자를 건조하여 분말화하거나 또는 무기 주형 입자를 형성하는 단계(S120) 이후에 무기 주형 입자가 침전된 반응 용액을 다음 단계에 바로 적용하거나 또는 무기 주형 입자를 여과한 이후에 물에 분산시켜 다음 단계에 적용할 수 있다.The inorganic mold particles obtained in the step of forming the inorganic mold particles (S120) is dried and powdered or the inorganic solution particles precipitated after the step of forming the inorganic mold particles (S120) immediately applied to the next step Alternatively, the inorganic mold particles may be filtered and then dispersed in water and applied to the next step.
상기 실리콘 및 실리카를 포함하는 제1 쉘을 형성하는 단계(S200)는, 무기 주형 입자의 분산 용액과 실리콘 전구체 및 실리카 전구체의 반응 용액을 혼합하여 무기 주형 입자 상에 실리콘 및 실리카를 포함하는 쉘이 형성된 무기 주형 입자 코어/실리콘 및 실리카의 쉘로 이루어진 코어쉘 구조로 형성될 수 있다. 제1 쉘을 형성하는 단계(S200)는, 상기 제 1 쉘 형성 반응 시 무기 주형 입자의 분산도, 실리콘 전구체 및 실리카 전구체의 농도, 반응 온도 등에 의해 쉘 두께 및 형상을 조절할 수 있다. 또한, 가격이 낮은 실리콘 전구체로 사용하기 때문에 제조단가가 낮아지는 효과가 있고, 실리콘 쉘의 형성 시 실리카 전구체를 적용하여 부분적으로 기공이 형성된 쉘을 형성하므로, 상기 기공을 통하여 무기 주형 입자를 용이하게 제거하여 중공 실리카 입자의 제조 공정 및 제조 비용을 개선시킬 수 있다.In the forming of the first shell including the silicon and the silica (S200), the shell including the silicon and the silica on the inorganic mold particles may be mixed by mixing the dispersion solution of the inorganic mold particles with the reaction solution of the silicon precursor and the silica precursor. The formed inorganic shell particle core / silicon and a shell of silica may be formed into a coreshell structure. In the forming of the first shell (S200), the shell thickness and shape may be adjusted by the dispersion degree of the inorganic mold particles, the concentration of the silicon precursor and the silica precursor, the reaction temperature, and the like during the first shell formation reaction. In addition, since it is used as a low-cost silicon precursor, the manufacturing cost is lowered, and when the silicon shell is formed, the silica precursor is applied to form a shell in which the pores are partially formed, thereby easily forming the inorganic mold particles through the pores. Removal can improve the manufacturing process and manufacturing cost of the hollow silica particles.
상기 실리콘 전구체는, C1-10알킬트리C1-10알콕시실란이며, 프로필트리메톡시실란, 에틸트리메톡시실란, 메틸트리메톡시실란, 프로필트리에톡시실란, 비닐트리에톡시실란 및 메틸트리에톡시실란으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으며, 바람직하게는 메틸트리메톡시실란일 수 있다.The silicon precursor is C 1-10 alkyltriC 1-10 alkoxysilane, and is propyltrimethoxysilane, ethyltrimethoxysilane, methyltrimethoxysilane, propyltriethoxysilane, vinyltriethoxysilane and methyltrie It may include one or more selected from the group consisting of oxysilane, preferably methyltrimethoxysilane.
상기 실리카 전구체는, 테트라메틸오르소실리케이트, 테트라에틸오르소실리케이트, 테트라프로필오르소실리케이트 및 테트라부틸오르소실리케이트로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으며, 바람직하게는 테트라에틸오르소실리케이트일 수 있다.The silica precursor may include at least one selected from the group consisting of tetramethyl orthosilicate, tetraethyl orthosilicate, tetrapropyl orthosilicate and tetrabutyl orthosilicate, preferably tetraethyl orthosilicate Can be.
상기 무기 주형 입자 대 상기 실리콘 전구체 및 실리카 전구체의 혼합 질량비는, 1 : 3 내지 1 : 15, 1 : 5 내지 1 : 10 또는 1 : 6 내지 1 : 8 로 혼합될 수 있으며, 상기 혼합비의 범위 내에 포함되면, 상기 무기 주형 입자의 표면 전체에 걸쳐 균일한 두께의 제1 셀이 형성되고, 과도한 실리콘 및 실리카의 적용에 따른 쉘의 두께 증가, 쉘 층 상에 실리카, 실리콘 입자들의 응집 등을 방지할 수 있다.The mixed mass ratio of the inorganic template particles to the silicon precursor and the silica precursor may be mixed in a range of 1: 3 to 1:15, 1: 5 to 1:10 or 1: 6 to 1: 8, within the range of the mixing ratio. When included, a first cell of uniform thickness is formed over the entire surface of the inorganic mold particles, to prevent the increase of the thickness of the shell due to excessive application of silicon and silica, and to prevent agglomeration of silica, silicon particles, etc. on the shell layer. Can be.
상기 무기 주형 입자의 분산 용액에서 무기 주형 입자의 농도는 0.001 중량% 내지 0.01 중량% 농도일 수 있다. 상기 범위 내에 포함되면, 무기 주형 입자의 표면의 표면적에 비하여 생성되는 실리콘/실리카의 양이 부족되는 것을 방지하고, 고농도의 무기 주형 입자에 의한 불균일한 형태를 갖는 쉘의 형성을 방지하고, 무기 주형 입자 간의 응집 등을 방지할 수 있다.The concentration of the inorganic template particles in the dispersion solution of the inorganic template particles may be a concentration of 0.001% by weight to 0.01% by weight. When it is in the said range, it prevents the quantity of the silicon / silica produced | generated compared with the surface area of the surface of an inorganic mold particle, and prevents formation of the shell which has a non-uniform form by a high concentration of inorganic mold particle, Aggregation between particles can be prevented.
상기 전구체의 반응 용액에서 실리콘 전구체 및 실리카전구체의 농도는, 0.001 중량% 내지 0.01 중량% 농도일 수 있으며, 상기 범위 내에 포함되면, 상기 무기 주형 입자의 표면 상에 충분한 안정성을 갖는 쉘이 형성될 뿐만 아니라, 중공 효율을 개선시키고, 무기 주형 입자 표면 상에 쉘을 형성한 이후에 잔여 실리콘의 표면 흡착에 의한 쉘 표면에 원치 않는 구형 입자의 생성을 방지할 수 있다.The concentration of the silicon precursor and the silica precursor in the reaction solution of the precursor may be in a concentration of 0.001% by weight to 0.01% by weight, and if included in the above range, only a shell having sufficient stability is formed on the surface of the inorganic mold particles. However, it is possible to improve the hollow efficiency and to prevent the formation of unwanted spherical particles on the shell surface by surface adsorption of residual silicon after forming the shell on the inorganic mold particle surface.
상기 전구체의 반응 용액은, 메탄올, 에탄올, 이소프로필알코올, 부탄올, 등의 탄소수 1 내지 4의 알코올을 포함하고, 물을 더 포함할 수 있다.The reaction solution of the precursor includes an alcohol having 1 to 4 carbon atoms, such as methanol, ethanol, isopropyl alcohol, butanol, and may further include water.
상기 전구체의 반응 용액에서 실리콘 전구체 대 실리카 전구체의 혼합 질량비는, 1 : 0.01 내지 1 : 0.5, 1 : 0.1 내지 1 : 0.3, 또는 1 : 0.1 내지 1 : 0.25 로 포함될 수 있다. 상기 혼합비의 범위 내에 포함되면, 실리카 기공이 적절하게 형성되고, 실리카의 증가에 따른 실리콘 입자 특성의 감소를 방지할 수 있다.The mixed mass ratio of the silicon precursor to the silica precursor in the reaction solution of the precursor may be included as 1: 0.01 to 1: 0.5, 1: 0.1 to 1: 0.3, or 1: 0.1 to 1: 0.25. When included in the range of the mixing ratio, the silica pores are formed properly, it is possible to prevent the reduction of the silicon particle characteristics due to the increase of the silica.
상기 무기 주형 입자의 분산 용액과 실리콘 전구체 및 실리카 전구체의 반응 용액은 서로 동시에 드롭핑(적하)되어 혼합되거나 또는 상기 무기 주형 입자의 분산 용액 내에 상기 실리콘 전구체 및 실리카 전구체의 반응 용액을 드롭핑할 수 있다.The dispersion solution of the inorganic template particles and the reaction solution of the silicon precursor and the silica precursor may be simultaneously dropped (dropped) and mixed with each other, or the reaction solution of the silicon precursor and the silica precursor may be dropped into the dispersion solution of the inorganic template particles. have.
실리카의 입자 크기를 조절하여 쉘의 두께를 조절할 수 있으며, 예를 들어, 낮은 반응온도를 적용할 경우에 실리콘 및 실리카 구형 입자의 크기가 작아 쉘의 두께를 얇게 조절할 수 있고, 높은 반응온도를 적용할 경우에, 실리콘 및 실리카 구형 입자의 크기가 증가되어 쉘 두께를 두껍게 할 수 있다. 예를 들어, 제 1 쉘을 형성하는 단계(S200)는, 상온 내지 80 ℃ 온도에서 2시간 내지 5시간 동안 교반되어 혼합될 수 있으며, 상기 온도 및 시간 범위 내에 포함되면, 무기 주형 입자의 표면에 실리카 전구체 및 실리콘 전구체의 충분한 반응을 유도하여 쉘의 코팅이 잘 이루어지게 하고, 쉘이 깨진 형태, 표면 돌기 등이 형성된 중공 실리콘 입자의 형성을 방지할 수 있다.The thickness of the shell can be controlled by adjusting the particle size of the silica. For example, when a low reaction temperature is applied, the size of the silicon and silica spherical particles is small, so that the thickness of the shell can be adjusted thinly, and the high reaction temperature is applied. In doing so, the size of the silicon and silica spherical particles can be increased to thicken the shell thickness. For example, the step of forming the first shell (S200), may be stirred and mixed for 2 to 5 hours at room temperature to 80 ℃ temperature, if included in the temperature and time range, on the surface of the inorganic mold particles A sufficient reaction of the silica precursor and the silicon precursor may be induced to facilitate the coating of the shell, and to prevent the formation of hollow silicon particles in which the shell is broken, surface protrusions, and the like are formed.
상기 제1 쉘을 형성하는 단계(S200) 이후에 코어/쉘 입자를 여과하고 물, 등의 세척 용액으로 세척할 수 있으며, 상기 여과는 한외 여과일 수 있다.After forming the first shell (S200), the core / shell particles may be filtered and washed with a washing solution such as water, and the filtration may be ultrafiltration.
상기 무기 주형 입자를 제거하여 중공 실리카 입자를 형성하는 단계(S300)는, 산 용액을 가하여 상기 쉘 내에 실리카에 의해 형성된 기공을 통하여 무기 주형 입자를 녹여서 제거하는 단계이다. 즉, 실리카 및 실리콘을 포함하는 쉘은, 실리카에 의해서 형성된 기공을 통하여 코어를 형성하는 무기 주형 입자를 산처리로 용이하게 제거할 수 있으므로, 열처리 공정 및 유기 용매 등을 이용한 추출 공정 등과 같은 복잡한 공정이 필요 없이 중공 실리카 입자를 획득할 수 있고, 잔여 무기 주형 입자에 따른 오염 등을 방지할 수 있다.Removing the inorganic mold particles to form hollow silica particles (S300) is a step of melting and removing the inorganic mold particles through the pores formed by the silica in the shell by adding an acid solution. That is, the shell containing silica and silicon can easily remove the inorganic template particles forming the core through the pores formed by the silica by acid treatment, and thus, complex processes such as an annealing process and an extraction process using an organic solvent or the like. Hollow silica particles can be obtained without this need, and contamination due to the remaining inorganic template particles can be prevented.
상기 무기 주형 입자를 제거하여 중공 실리카 입자를 형성하는 단계(S300)는, 상기 코어/쉘을 물과 혼합하여 코어/쉘 분산액을 제조하고, 15 ℃ 내지 상온에서 상기 분산액을 교반하면서 산용액을 적하하여 코어를 제거할 수 있다. 예를 들어, 상기 산 용액은, 염산 희석액, 황산 희석액 또는 이 둘을 포함할 수 있으며, 0.1 N 내지 2 N일 수 있다.Removing the inorganic mold particles to form hollow silica particles (S300), by mixing the core / shell with water to prepare a core / shell dispersion, dropping the acid solution while stirring the dispersion at 15 ℃ to room temperature To remove the core. For example, the acid solution may include a dilute hydrochloric acid solution, a dilute sulfuric acid solution, or both, and may be 0.1 N to 2 N.
상기 무기 주형 입자를 제거하여 중공 실리카 입자를 형성하는 단계(S300) 이후에 여과하고 물, 등의 세척 용액으로 세척할 수 있으며, 상기 여과는 한외 여과일 수 있다.After removing the inorganic template particles to form hollow silica particles (S300) may be filtered and washed with a washing solution, such as water, the filtration may be ultrafiltration.
상기 중공 실리카 입자 표면에 이산화타이타늄을 포함하는 제2 쉘을 형성하는 단계(S400)는, 상기 중공 실리카 입자 위에 이산화타이타늄 쉘을 형성하는 단계를 의미하고, 전술한 바와 같이, 제 2쉘의 형성 반응 시, 무기 주형 입자의 분산도, 실리콘 전구체, 실리카 전구체의 농도 및 반응 온도 등에 의해 형성된 중공 실리카의 쉘 두께 및 형상에 의해 영향을 받을 수 있다.Forming a second shell containing titanium dioxide on the hollow silica particle surface (S400) means forming a titanium dioxide shell on the hollow silica particles, as described above, the formation reaction of the second shell At the time, the dispersion thickness of the inorganic template particles, the concentration of the silicon precursor, the silica precursor and the reaction temperature may be influenced by the shell thickness and the shape of the hollow silica.
본 발명의 일 실시예에 따를 때, 상기 제 2 쉘을 형성하는 단계는, 이산화타이타늄 전구체와 알코올 또는 IPA(Isopropyl Alcohol)를 포함하는 반응 용매를 제조하고, 상기 반응 용매로 드롭핑(dropping)법, 분사법, 도포법 및 침지법으로 이루어진 군으로부터 선택되는 하나의 방법을 수행하여 제 2 쉘을 형성하는 것이고, 상기 이산화타이타늄 전구체는 타이타늄을 함유한 무기 또는 유기 화합물이면 특별히 제한되지 않으나, 바람직하게는 타이타늄이소프로폭시드, 테트라부틸타이타늄 또는 이 둘을 모두 포함하는 것일 수 있다.According to an embodiment of the present invention, the forming of the second shell may include preparing a reaction solvent containing a titanium dioxide precursor and an alcohol or IPA (Isopropyl Alcohol), and dropping the reaction solvent. , Forming a second shell by performing one method selected from the group consisting of a spraying method, a coating method and an immersion method, and the titanium dioxide precursor is not particularly limited as long as it is an inorganic or organic compound containing titanium. May be titanium isopropoxide, tetrabutyl titanium or both.
바람직하게는, 상기 반응 용매로, 드롭핑(dropping)법에 의해서 상기 중공 실리카를 에탄올 등의 분산매에 침지한 용액에 적하할 수 있으며, 반응 용매의 적하 속도를 조절하여, 이산화타이타늄 쉘의 두께를 적절히 조절할 수 있다.Preferably, as the reaction solvent, the hollow silica may be added dropwise to a solution immersed in a dispersion medium such as ethanol by a dropping method, and the dropping speed of the reaction solvent is adjusted to adjust the thickness of the titanium dioxide shell. It can be adjusted properly.
본 발명의 일 실시예에 따를 때, 상기 제2 쉘을 형성하는 단계의, 상기 반응 용매를 제조하는 단계에서, 상기 이산화타이타늄 전구체와 상기 알코올 또는 IPA(Isopropyl Alcohol)의 혼합 질량비는, 1 : 25 내지 2 : 25 일 수 있다. 상기 혼합비와 관련하여, 이산화타이타늄 전구체의 농도가 1 : 25 보다 작을 때에는 중공 실리카 입자 위에 쉘을 형성하지 못하며, 반대로 이산화타이타늄 전구체의 농도가 2 : 25 보다 높을 경우, 중공 실리카 입자를 코팅하고 남은 잔여물이 이산화타이타늄 표면에 흡착되어 쉘 표면에 입자들이 뭉쳐서 형성될 수 있다.According to one embodiment of the invention, in the step of preparing the reaction solvent of the step of forming the second shell, the mixed mass ratio of the titanium dioxide precursor and the alcohol or IPA (Isopropyl Alcohol) is 1: 25 To 2:25. In relation to the above mixing ratio, when the concentration of the titanium dioxide precursor is less than 1:25, the shell cannot be formed on the hollow silica particles. On the contrary, when the concentration of the titanium dioxide precursor is higher than 2:25, the remaining residue after coating the hollow silica particles Water may be adsorbed on the surface of titanium dioxide and formed by agglomeration of particles on the surface of the shell.
본 발명에서, 이산화타이타늄 쉘이 형성된 중공 실리카 입자는, 속이 빈 코어 및 실리콘 및 실리카를 포함하는 제 1쉘 및 이산화타이타늄을 포함하는 제2 쉘이 형성된 중공 구조체이며, 상기 제1 쉘은, 제1 쉘 내의 적어도 일부분, 예를 들어 실리카 분포 영역에 기공이 형성된 부분적 다공성 쉘일 수 있다.In the present invention, the hollow silica particles formed with a titanium dioxide shell is a hollow structure formed with a hollow core and a first shell containing silicon and silica and a second shell containing titanium dioxide, wherein the first shell is a first shell It may be a partially porous shell with pores formed in at least a portion of the shell, for example in the silica distribution region.
상기 중공 실리카 입자는, 이산화타이타늄 쉘(제2 쉘)을 제외한 나머지 코어-쉘구조를 의미하며, 상기 중공 실리카 입자의 상기 실리콘 및 실리카의 혼합비를 조절하여, 다공도를 조절할 수 있으며, 보다 구체적으로, 상기 실리콘 대 상기 실리카의 혼합 질량비는 1 : 0.01 내지 1 : 0.5일 수 있으며, 바람직하게는 1 : 0.1 내지 1 : 0.4 일 수 있고, 보다 바람직하게는 1 : 0.1 내지 1 : 0.25 일 수 있다. 상기 혼합비 내에 포함되면, 실리콘 입자의 특성은 유지하면서 중공 구조의 형성에 용이하고, 균일하게 분포된 실리카 기공을 제공할 수 있다.The hollow silica particles mean a core-shell structure except for the titanium dioxide shell (second shell), and by adjusting the mixing ratio of the silicon and silica of the hollow silica particles, the porosity can be adjusted, more specifically, The mixed mass ratio of the silicon to the silica may be 1: 0.01 to 1: 0.5, preferably 1: 0.1 to 1: 0.4, and more preferably 1: 0.1 to 1: 0.25. When included in the mixing ratio, it is easy to form a hollow structure while maintaining the properties of the silicon particles, it is possible to provide a uniformly distributed silica pores.
본 발명의 일 실시예에 따를 때, 상기 중공 실리카 입자의 입경은, 60 nm 내지 90 nm 인 것일 수 있다.According to one embodiment of the invention, the particle diameter of the hollow silica particles, may be from 60 nm to 90 nm.
상기 중공 실리카 입자는, 적용 분야에 따라 다양한 입경을 포함할 수 있으나, 바람직하게는 60 nm 내지 90 nm 일 수 있으며, 상기 입경은 입자의 형태에 따라, 입자의 직경, 길이, 또는 크기 등을 의미할 수 있다.The hollow silica particles may include various particle diameters according to the application field, but may preferably be from 60 nm to 90 nm, the particle diameter means the diameter, length, or size of the particles, depending on the shape of the particles can do.
본 발명의 일 실시예에 따를 때, 상기 제 2 쉘의 두께는, 5 nm 내지 10 nm 인 것일 수 있다.According to an embodiment of the present invention, the thickness of the second shell may be 5 nm to 10 nm.
상기 이산화타이타늄 쉘이 형성된 중공 실리카 입자의 전체 입경은 상기 중공 실리카의 입경과 상기 제 2쉘의 두께를 포함하는 것으로써, 상기 이산화타이타늄 쉘이 형성된 중공 실리카 입자의 전체 입경이 100 nm를 초과하는 경우 광학 필터 내에서 상기 중공 실리카 입자끼리 서로 뭉치게 되어 분산성이 떨어지고 특정 파장의 차단율이 떨어질 수 있다.The total particle diameter of the hollow silica particles in which the titanium dioxide shell is formed includes the particle diameter of the hollow silica and the thickness of the second shell, and when the total particle diameter of the hollow silica particles in which the titanium dioxide shell is formed exceeds 100 nm. In the optical filter, the hollow silica particles may be agglomerated with each other to reduce dispersibility and a blocking rate of a specific wavelength.
본 발명의 일 실시예에 따를 때, 상기 이산화타이타늄 쉘이 형성된 중공 실리카 입자는, 200 nm 내지 400 nm 파장의 투과율이 50 % 내지 80 %인 것일 수 있다.According to an embodiment of the present invention, the hollow silica particles in which the titanium dioxide shell is formed may have a transmittance of 50% to 80% at a wavelength of 200 nm to 400 nm.
상기 이산화타이타늄 쉘이 형성된 중공 실리카 입자는, 광학 필터에 사용되어 특정 파장, 바람직하게는 200 nm 내지 400 nm 파장 대의 빛을 효과적으로 차단할 수 있으며, 굴절률 1.4 정도의 저굴절을 가지는 실리카와 2.9 정도의 고굴절을 가지는 이산화타이타늄이 한 입자에 포함되어 일어나는 바람직한 특성일 수 있다.The hollow silica particles in which the titanium dioxide shell is formed may be used in an optical filter to effectively block light having a specific wavelength, preferably 200 nm to 400 nm, and have a low refractive index of about 1.4 and a high refractive index of about 2.9. Titanium dioxide having a may be a desirable property to be included in one particle.
상기 이산화타이타늄 쉘이 형성된 중공 실리카 입자를 포함하는 광학 필터는, 매질간의 상대 굴절률을 줄이고 반사 계수를 줄여 광 투과율을 향상시킬 수 있으며, 서로 다른 물질을 혼합하여 7층 이상으로 적층하는 종래의 광학필터와 비교할 때, 필터의 두께를 조절이 용이하고, 필터 적층 이후에 발생하는 결함 등의 문제를 방지할 수 있다.The optical filter including the hollow silica particles in which the titanium dioxide shell is formed may improve light transmittance by reducing the relative refractive index between the media and the reflection coefficient, and a conventional optical filter in which 7 or more layers are mixed by mixing different materials. Compared with, it is easy to adjust the thickness of the filter, it is possible to prevent problems such as defects occurring after the filter laminated.

Claims (6)

  1. 무기 주형 입자를 준비하는 단계;Preparing an inorganic template particle;
    상기 무기 주형 입자 표면에 실리콘 및 실리카를 포함하는 제1 쉘을 형성하는 단계;Forming a first shell comprising silicon and silica on the surface of the inorganic mold particle;
    상기 무기 주형 입자를 제거하여 중공 실리카 입자를 형성하는 단계; 및Removing the inorganic template particles to form hollow silica particles; And
    상기 중공 실리카 입자 표면에 이산화타이타늄을 포함하는 제2 쉘을 형성하는 단계;Forming a second shell including titanium dioxide on the hollow silica particle surface;
    를 포함하는,Including,
    이산화타이타늄 쉘이 형성된 중공 실리카 입자의 제조방법.Method for producing hollow silica particles in which a titanium dioxide shell is formed.
  2. 제1항에 있어서,The method of claim 1,
    상기 제2 쉘을 형성하는 단계는,Forming the second shell,
    이산화타이타늄 전구체와 알코올 또는 IPA(Isopropyl Alcohol)를 포함하는 반응 용매를 제조하고,Preparing a reaction solvent containing a titanium dioxide precursor and alcohol or IPA (Isopropyl Alcohol),
    상기 반응 용매로 드롭핑(dropping)법, 분사법, 도포법 및 침지법으로 이루어진 군으로부터 선택되는 하나의 방법을 수행하여 제2 쉘을 형성하는것이고,A second shell is formed by performing one method selected from the group consisting of a dropping method, a spraying method, an application method, and an immersion method with the reaction solvent,
    상기 이산화타이타늄 전구체는, 타이타늄이소프로폭시드, 테트라부틸타이타늄 또는 이 둘을 모두 포함하는 것인,The titanium dioxide precursor, titanium isopropoxide, tetrabutyl titanium or both will include,
    이산화타이타늄 쉘이 형성된 중공 실리카 입자의 제조방법.Method for producing hollow silica particles in which a titanium dioxide shell is formed.
  3. 제2항에 있어서,The method of claim 2,
    상기 반응 용매를 제조하는 단계에서 상기 이산화타이타늄 전구체와 상기 알코올 또는 IPA(Isopropyl Alcohol)의 혼합 질량비는,In the step of preparing the reaction solvent, the mixed mass ratio of the titanium dioxide precursor and the alcohol or IPA (Isopropyl Alcohol) is
    1 : 25 내지 2 : 25 인 것인,1: 25 to 2: 25,
    이산화타이타늄 쉘이 형성된 중공 실리카 입자의 제조방법.Method for producing hollow silica particles in which a titanium dioxide shell is formed.
  4. 제1항에 있어서,The method of claim 1,
    상기 중공 실리카 입자의 크기는,The size of the hollow silica particles,
    60 nm 내지 90 nm 인 것인,60 nm to 90 nm,
    이산화타이타늄 쉘이 형성된 중공 실리카 입자의 제조방법.Method for producing hollow silica particles in which a titanium dioxide shell is formed.
  5. 제1항에 있어서,The method of claim 1,
    상기 제2 쉘의 두께는,The thickness of the second shell,
    5 nm 내지 10 nm 인 것인,5 nm to 10 nm,
    이산화타이타늄 쉘이 형성된 중공 실리카 입자의 제조방법.Method for producing hollow silica particles in which a titanium dioxide shell is formed.
  6. 제1항에 있어서,The method of claim 1,
    상기 이산화타이타늄 쉘이 형성된 중공 실리카 입자는,Hollow silica particles in which the titanium dioxide shell is formed,
    200 nm 내지 400 nm 파장의 투과율이 50 % 내지 80 %인 것인,The transmittance of the wavelength of 200 nm to 400 nm is 50% to 80%,
    이산화타이타늄 쉘이 형성된 중공 실리카 입자의 제조방법.Method for producing hollow silica particles in which a titanium dioxide shell is formed.
PCT/KR2018/002002 2018-01-31 2018-02-19 Method for manufacturing hollow silica particles having titanium dioxide shell WO2019151559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0012095 2018-01-31
KR1020180012095A KR102087011B1 (en) 2018-01-31 2018-01-31 Method for producing Hollow silica particles with TiO2 shell

Publications (1)

Publication Number Publication Date
WO2019151559A1 true WO2019151559A1 (en) 2019-08-08

Family

ID=67478337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002002 WO2019151559A1 (en) 2018-01-31 2018-02-19 Method for manufacturing hollow silica particles having titanium dioxide shell

Country Status (2)

Country Link
KR (1) KR102087011B1 (en)
WO (1) WO2019151559A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102610941B1 (en) * 2021-06-29 2023-12-07 주식회사 나노신소재 Hollow-type nanoparticles and manufacturing methods, and functional materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050244322A1 (en) * 2002-12-30 2005-11-03 Jianfeng Chen Hollow-structured mesoporous silica material and preparation process
KR20110074115A (en) * 2009-12-24 2011-06-30 서울대학교산학협력단 Fabrication of silica-titania mixed hollow nanostructured nanoparticles using sonication-induced etching and redeposition method
KR20130034693A (en) * 2011-09-29 2013-04-08 (주)석경에이티 Preparation method of hollow silica nano powder with high purity and low reflection coating membrane comprising the powder
KR20150109191A (en) * 2014-03-19 2015-10-01 한양대학교 에리카산학협력단 Inorganic hollow beads coated photocatalyst for a water treatment and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218720B2 (en) * 2007-03-28 2013-06-26 Jsr株式会社 Method for producing silica hollow particle dispersion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050244322A1 (en) * 2002-12-30 2005-11-03 Jianfeng Chen Hollow-structured mesoporous silica material and preparation process
KR20110074115A (en) * 2009-12-24 2011-06-30 서울대학교산학협력단 Fabrication of silica-titania mixed hollow nanostructured nanoparticles using sonication-induced etching and redeposition method
KR20130034693A (en) * 2011-09-29 2013-04-08 (주)석경에이티 Preparation method of hollow silica nano powder with high purity and low reflection coating membrane comprising the powder
KR20150109191A (en) * 2014-03-19 2015-10-01 한양대학교 에리카산학협력단 Inorganic hollow beads coated photocatalyst for a water treatment and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, YONG HWAN: "Application of Nano Hollow Silica Spheres for Insulation Film", RESEAT ANALYSIS REPORT, 20 October 2014 (2014-10-20), pages 1 - 6 *

Also Published As

Publication number Publication date
KR20190092850A (en) 2019-08-08
KR102087011B1 (en) 2020-03-10

Similar Documents

Publication Publication Date Title
JP4046921B2 (en) Silica-based fine particles, method for producing the fine particle dispersion, and coated substrate
US6291535B1 (en) Silica-magnesium fluoride hydrate composite sols and process for their preparation
WO2017026722A1 (en) Production method for silver powder for high-temperature sintering type of electrically-conductive paste
JP4428923B2 (en) Method for producing silica-based hollow fine particles
CN111620342B (en) Small-size monodisperse hollow silica microsphere and preparation method and application thereof
JP2010189268A (en) Fine particle, sol having fine particle dispersed therein, and substrate having coating film thereon
WO2019151559A1 (en) Method for manufacturing hollow silica particles having titanium dioxide shell
TWI634074B (en) Hollow-type aluminosilicate nanoparticle and preparation method thereof
CN112705053B (en) Preparation method and application of acid-resistant zeolite molecular sieve membrane
WO2018135685A1 (en) Method for producing hollow silica particle from sodium silicate using zno inorganic template particle
WO2013157775A1 (en) Method for producing colloidal cerium oxide
WO2011030950A9 (en) Organic-inorganic hybrid photonic crystal, and preparation method thereof
JP4382872B1 (en) Method for producing titanium oxide particles
CN107602105B (en) Preparation method of zeolite molecular sieve membrane on surface of support body containing mullite phase
CN101935167B (en) Method for preparing thin polymer film with polarization performance on glass surface
CN115852333A (en) Multi-layer coated quantum dot material and preparation method thereof
WO2011099760A2 (en) Particle and method for manufacturing same
WO2013100734A1 (en) Production method of zeolite film in which one axis is completely vertically oriented, using steam under synthetic gel-free condition
KR20140106959A (en) Hollow-type metal oxide-silcate nanoparticle and preparation method thereof
JP2022089560A (en) Modified hollow particle and method for producing the same
JP5766251B2 (en) Method for producing a coating for forming a transparent film
JP3207886B2 (en) Method for producing metal oxide thin film
EP1250295A1 (en) Sol-gel process for producing synthetic silica glass
JP3709260B2 (en) Glass manufacturing method
CN1262685C (en) Submicron non metallic microsphere with metal and electrolyle double layer anao film and its preparation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903586

Country of ref document: EP

Kind code of ref document: A1