CN115852333A - A kind of multi-layer coated quantum dot material and preparation method thereof - Google Patents
A kind of multi-layer coated quantum dot material and preparation method thereof Download PDFInfo
- Publication number
- CN115852333A CN115852333A CN202111121966.7A CN202111121966A CN115852333A CN 115852333 A CN115852333 A CN 115852333A CN 202111121966 A CN202111121966 A CN 202111121966A CN 115852333 A CN115852333 A CN 115852333A
- Authority
- CN
- China
- Prior art keywords
- quantum dot
- protective layer
- polymer
- polymer composite
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 129
- 239000000463 material Substances 0.000 title claims abstract description 37
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 229920000642 polymer Polymers 0.000 claims abstract description 100
- 238000000034 method Methods 0.000 claims abstract description 69
- 238000000576 coating method Methods 0.000 claims abstract description 55
- 239000011241 protective layer Substances 0.000 claims abstract description 42
- 239000011248 coating agent Substances 0.000 claims abstract description 37
- 239000011246 composite particle Substances 0.000 claims abstract description 29
- 238000000231 atomic layer deposition Methods 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 14
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 150000001875 compounds Chemical class 0.000 claims description 33
- 239000002994 raw material Substances 0.000 claims description 24
- 238000001694 spray drying Methods 0.000 claims description 24
- 239000002904 solvent Substances 0.000 claims description 23
- 239000010408 film Substances 0.000 claims description 21
- 239000010410 layer Substances 0.000 claims description 21
- VLKZOEOYAKHREP-UHFFFAOYSA-N hexane Substances CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 19
- 239000002243 precursor Substances 0.000 claims description 18
- 238000003756 stirring Methods 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 12
- 238000000967 suction filtration Methods 0.000 claims description 11
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 10
- 239000002033 PVDF binder Substances 0.000 claims description 9
- 239000003054 catalyst Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 9
- -1 amine cation Chemical class 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 8
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 8
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 7
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 7
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 7
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000005642 Oleic acid Substances 0.000 claims description 7
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 7
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 7
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- PMBXCGGQNSVESQ-UHFFFAOYSA-N 1-Hexanethiol Chemical compound CCCCCCS PMBXCGGQNSVESQ-UHFFFAOYSA-N 0.000 claims description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 239000004094 surface-active agent Substances 0.000 claims description 6
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 239000007800 oxidant agent Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims description 5
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 claims description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 4
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 claims description 4
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 3
- 235000021355 Stearic acid Nutrition 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 3
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 3
- 239000008117 stearic acid Substances 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 claims description 2
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 claims description 2
- UGZAJZLUKVKCBM-UHFFFAOYSA-N 6-sulfanylhexan-1-ol Chemical compound OCCCCCCS UGZAJZLUKVKCBM-UHFFFAOYSA-N 0.000 claims description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 claims description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 2
- 239000004760 aramid Substances 0.000 claims description 2
- 229920003235 aromatic polyamide Polymers 0.000 claims description 2
- 229920002301 cellulose acetate Polymers 0.000 claims description 2
- 229920001577 copolymer Polymers 0.000 claims description 2
- DWCMDRNGBIZOQL-UHFFFAOYSA-N dimethylazanide;zirconium(4+) Chemical compound [Zr+4].C[N-]C.C[N-]C.C[N-]C.C[N-]C DWCMDRNGBIZOQL-UHFFFAOYSA-N 0.000 claims description 2
- PDPJQWYGJJBYLF-UHFFFAOYSA-J hafnium tetrachloride Chemical compound Cl[Hf](Cl)(Cl)Cl PDPJQWYGJJBYLF-UHFFFAOYSA-J 0.000 claims description 2
- TZNXTUDMYCRCAP-UHFFFAOYSA-N hafnium(4+);tetranitrate Chemical compound [Hf+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O TZNXTUDMYCRCAP-UHFFFAOYSA-N 0.000 claims description 2
- ORTRWBYBJVGVQC-UHFFFAOYSA-N hexadecane-1-thiol Chemical compound CCCCCCCCCCCCCCCCS ORTRWBYBJVGVQC-UHFFFAOYSA-N 0.000 claims description 2
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 claims description 2
- SLYCYWCVSGPDFR-UHFFFAOYSA-N octadecyltrimethoxysilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OC)(OC)OC SLYCYWCVSGPDFR-UHFFFAOYSA-N 0.000 claims description 2
- 229920000196 poly(lauryl methacrylate) Polymers 0.000 claims description 2
- 229920002492 poly(sulfone) Polymers 0.000 claims description 2
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 2
- 239000011118 polyvinyl acetate Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 2
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 claims description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 2
- WOZZOSDBXABUFO-UHFFFAOYSA-N tri(butan-2-yloxy)alumane Chemical compound [Al+3].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-] WOZZOSDBXABUFO-UHFFFAOYSA-N 0.000 claims description 2
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 claims description 2
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 claims description 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 claims description 2
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims 2
- SDTMFDGELKWGFT-UHFFFAOYSA-N 2-methylpropan-2-olate Chemical compound CC(C)(C)[O-] SDTMFDGELKWGFT-UHFFFAOYSA-N 0.000 claims 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims 1
- 229910021529 ammonia Inorganic materials 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 125000002843 carboxylic acid group Chemical group 0.000 claims 1
- 229920002678 cellulose Polymers 0.000 claims 1
- 239000001913 cellulose Substances 0.000 claims 1
- 125000004093 cyano group Chemical group *C#N 0.000 claims 1
- 239000007888 film coating Substances 0.000 claims 1
- 238000009501 film coating Methods 0.000 claims 1
- 239000000843 powder Substances 0.000 abstract description 72
- 239000004005 microsphere Substances 0.000 abstract description 40
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 abstract description 4
- 230000007547 defect Effects 0.000 abstract description 3
- 230000004888 barrier function Effects 0.000 abstract 1
- 239000011247 coating layer Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 36
- 239000002131 composite material Substances 0.000 description 15
- 238000001035 drying Methods 0.000 description 9
- 239000013557 residual solvent Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000003828 vacuum filtration Methods 0.000 description 3
- JZDJFLPGYXQOCE-UHFFFAOYSA-N C(CCCCCCC)N.[I] Chemical compound C(CCCCCCC)N.[I] JZDJFLPGYXQOCE-UHFFFAOYSA-N 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- BGGIUGXMWNKMCP-UHFFFAOYSA-N 2-methylpropan-2-olate;zirconium(4+) Chemical compound CC(C)(C)O[Zr](OC(C)(C)C)(OC(C)(C)C)OC(C)(C)C BGGIUGXMWNKMCP-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- CNPURSDMOWDNOQ-UHFFFAOYSA-N 4-methoxy-7h-pyrrolo[2,3-d]pyrimidin-2-amine Chemical compound COC1=NC(N)=NC2=C1C=CN2 CNPURSDMOWDNOQ-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- KHSLHYAUZSPBIU-UHFFFAOYSA-M benzododecinium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 KHSLHYAUZSPBIU-UHFFFAOYSA-M 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000001748 luminescence spectrum Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- ZGSOBQAJAUGRBK-UHFFFAOYSA-N propan-2-olate;zirconium(4+) Chemical compound [Zr+4].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] ZGSOBQAJAUGRBK-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 1
- DPKBAXPHAYBPRL-UHFFFAOYSA-M tetrabutylazanium;iodide Chemical compound [I-].CCCC[N+](CCCC)(CCCC)CCCC DPKBAXPHAYBPRL-UHFFFAOYSA-M 0.000 description 1
- BGQMOFGZRJUORO-UHFFFAOYSA-M tetrapropylammonium bromide Chemical compound [Br-].CCC[N+](CCC)(CCC)CCC BGQMOFGZRJUORO-UHFFFAOYSA-M 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Landscapes
- Luminescent Compositions (AREA)
Abstract
本申请公开了一种多层包覆的量子点材料及其制备方法,所述多层包覆的量子点材料包括量子点/聚合物复合微粒,所述量子点/聚合物复合微粒表面包覆有保护层,所述保护层外侧包覆有金属氧化物薄膜。钙钛矿量子点/聚合物微球经过保护层包覆后,可以明显改善微球表面的缺陷,形成致密的球壳,同时使微粉均匀分散,利于后续的原子层沉积包覆。包覆后的钙钛矿量子点/聚合物微粉具有优异的发光性能,表面形成的致密包覆层提升了材料的阻水阻氧性能,改善了钙钛矿量子点/聚合物微粉的稳定性,该方法简单,具有制备成本低,保持粉末光学性能等优点。
The present application discloses a multilayer coated quantum dot material and a preparation method thereof. The multilayer coated quantum dot material includes quantum dot/polymer composite particles, and the surface of the quantum dot/polymer composite particle is coated There is a protective layer, and the outer side of the protective layer is coated with a metal oxide film. After the perovskite quantum dots/polymer microspheres are coated with a protective layer, it can significantly improve the defects on the surface of the microspheres, form a dense spherical shell, and at the same time disperse the micropowder evenly, which is beneficial to the subsequent atomic layer deposition coating. The coated perovskite quantum dots/polymer micropowders have excellent luminescent properties, and the dense coating layer formed on the surface improves the water and oxygen barrier properties of the material and improves the stability of the perovskite quantum dots/polymer micropowders , the method is simple, has the advantages of low preparation cost and maintaining the optical properties of the powder.
Description
技术领域technical field
本申请涉及一种多层包覆的量子点材料及其制备方法,属于显示技术领域。The application relates to a multilayer coated quantum dot material and a preparation method thereof, which belong to the field of display technology.
背景技术Background technique
钙钛矿量子点具有制备工艺简单、成本低、量子产率高、色纯度高等优异特点,可大幅提升显示器件的显示色域,因而受到了广泛关注。目前,基于钙钛矿量子点原位制备的发光薄膜已经成功实现显示领域的商业化应用,可将色域提升至100%NTSC以上。然而,钙钛矿量子点材料距离实现大范围工业化的应用还存在一定的差距,即实际应用中长期的稳定性存在一定的问题。造成钙钛矿量子点材料长期使用稳定性差的最主要原因是实际环境中的水氧侵入,导致量子点发生荧光淬灭,导致亮度衰减和色点变化。因此,一种提高钙钛矿量子点材料稳定性的方法是迫切需要的。Perovskite quantum dots have excellent characteristics such as simple preparation process, low cost, high quantum yield, and high color purity, which can greatly improve the display color gamut of display devices, so they have received extensive attention. At present, the in-situ preparation of luminescent films based on perovskite quantum dots has successfully achieved commercial application in the display field, which can increase the color gamut to above 100% NTSC. However, there is still a certain gap between perovskite quantum dot materials and the realization of large-scale industrial applications, that is, there are certain problems in long-term stability in practical applications. The most important reason for the poor long-term stability of perovskite quantum dot materials is the intrusion of water and oxygen in the actual environment, which leads to fluorescence quenching of quantum dots, resulting in brightness attenuation and color point changes. Therefore, a method to improve the stability of perovskite quantum dot materials is urgently needed.
目前已经报道的钙钛矿量子点的合成方法中,包括热注入法等方法,合成方法都存在合成时使用大量溶剂、添加剂的问题,造成原料的浪费;而且合成时需要提供高温或高温高压的环境,合成后需要多次清洗步骤,才能获得量子点,过程繁琐、浪费大量溶剂不利于大规模制备;除此之外,传统的合成方法都是先制备量子点,再进行后续提高稳定性的处理,如无机物壳层包覆、有机聚合物包覆等过程,这些过程产生的副产物会造成量子点表面的配体脱落,影响量子点的光学性能和稳定性,而且,后处理过程再次使用大量溶剂,且提纯过程依旧复杂繁琐,需要烘干、研磨等步骤,不利于大规模使用。因此,新的制备和表面处理技术对于提高钙钛矿量子点的稳定性是至关重要的。In the synthesis methods of perovskite quantum dots that have been reported so far, including methods such as hot injection method, there is a problem that a large amount of solvents and additives are used in the synthesis methods, resulting in waste of raw materials; and it is necessary to provide high temperature or high temperature and high pressure during synthesis. Environment, multiple cleaning steps are required after synthesis to obtain quantum dots. The process is cumbersome and a large amount of solvent is wasted, which is not conducive to large-scale preparation; in addition, the traditional synthesis method is to prepare quantum dots first, and then follow-up to improve stability. Treatment, such as inorganic shell coating, organic polymer coating and other processes, the by-products produced in these processes will cause the ligands on the surface of quantum dots to fall off, affecting the optical properties and stability of quantum dots, and the post-treatment process again A large amount of solvent is used, and the purification process is still complicated and cumbersome, requiring steps such as drying and grinding, which is not conducive to large-scale use. Therefore, new fabrication and surface treatment techniques are crucial to improve the stability of PQDs.
发明内容Contents of the invention
为解决上述问题,本发明提供了一种钙钛矿量子点/聚合物复合微粉的两层包覆处理技术,包括对钙钛矿量子点/聚合物复合微粉的溶液法包覆和原子层沉积包覆。该技术首先采用喷雾干燥方法制备钙钛矿量子点/聚合物发光微球,可以一步实现量子点的制备与聚合物的包覆,其工艺简单、稳定,远优于液相合成量子点的过程。在获得钙钛矿量子点/聚合物微球后,通过溶液法包覆的方法,在微球表面均匀的包覆一层保护层,使微球颗粒之间分散均匀。最后通过原子层沉积技术,在均匀分散的颗粒表面沉积一层致密的无机氧化物,阻碍水氧的侵入,从而提升钙钛矿量子点/聚合物微粉的稳定性。本发明的喷雾制备钙钛矿量子点/聚合物发光微球以及两层包覆复合材料的技术避免了传统液相合成法对资源的浪费和复杂的合成程序,且有效均匀的进行了聚合物包覆过程及后续的两层包覆过程,提高了发光微粉的稳定性,推动了钙钛矿量子点的商业化应用。In order to solve the above problems, the present invention provides a two-layer coating treatment technology of perovskite quantum dots/polymer composite micropowders, including solution coating and atomic layer deposition of perovskite quantum dots/polymer composite micropowders clad. This technology first uses the spray drying method to prepare perovskite quantum dots/polymer luminescent microspheres, which can realize the preparation of quantum dots and the coating of polymers in one step. The process is simple and stable, and it is far superior to the process of liquid phase synthesis of quantum dots. . After the perovskite quantum dots/polymer microspheres are obtained, a protective layer is evenly coated on the surface of the microspheres by the method of solution coating, so that the particles of the microspheres are uniformly dispersed. Finally, through atomic layer deposition technology, a layer of dense inorganic oxide is deposited on the surface of uniformly dispersed particles to prevent the intrusion of water and oxygen, thereby improving the stability of perovskite quantum dots/polymer micropowders. The spray preparation technology of perovskite quantum dots/polymer luminescent microspheres and the two-layer coating composite material of the present invention avoids the waste of resources and complicated synthesis procedures of the traditional liquid phase synthesis method, and effectively and uniformly synthesizes the polymer The coating process and the subsequent two-layer coating process improve the stability of the luminescent micropowder and promote the commercial application of perovskite quantum dots.
作为本申请的一个方面,本申请提供了一种多层包覆的量子点材料。本申请发明中使用溶液法包覆和原子层沉积两层包覆的方式对喷雾干燥制备的钙钛矿量子点/聚合物微球进行复合包覆的方法,提高阻水阻氧效果,提升钙钛矿量子点材料的稳定性和抗溶剂性,可分散于多个溶剂体系中。两层包覆后的钙钛矿量子点/聚合物微粉显示出超高的耐腐蚀性能,可以与各种光刻胶、UV胶、压敏胶和多种有机溶剂等材料共混,利用点胶、喷墨打印、丝网印刷、流延、光刻等多种工艺,制备出发光的点、线、膜等多种形态的发光材料,应用于显示背光等多种领域,拓宽了量子点复合材料的应用范围。As one aspect of the present application, the present application provides a multi-layer coated quantum dot material. In the invention of this application, the method of composite coating the perovskite quantum dots/polymer microspheres prepared by spray drying by using the method of solution coating and atomic layer deposition two-layer coating can improve the effect of water blocking and oxygen blocking, and increase the calcium The stability and solvent resistance of titanium ore quantum dot materials can be dispersed in multiple solvent systems. The two-layer coated perovskite quantum dots/polymer micropowders show ultra-high corrosion resistance, and can be blended with various photoresists, UV adhesives, pressure-sensitive adhesives, and various organic solvents. Glue, inkjet printing, screen printing, casting, photolithography and other processes to prepare luminescent materials in various forms such as dots, lines, films, etc. Applications of composite materials.
一种多层包覆的量子点材料,所述多层包覆的量子点材料包括量子点/聚合物复合微粒,所述量子点/聚合物复合微粒表面包覆有保护层,所述保护层外侧包覆有金属氧化物薄膜。A multilayer coated quantum dot material, the multilayer coated quantum dot material includes quantum dots/polymer composite particles, the surface of the quantum dots/polymer composite particles is coated with a protective layer, and the protective layer The outside is coated with a metal oxide film.
可选地,所述保护层量子点/聚合物复合微粒包括聚合物形成的空间网络结构,所述量子点嵌入在所述空间网络结构内;Optionally, the quantum dot/polymer composite particle of the protective layer includes a spatial network structure formed by a polymer, and the quantum dots are embedded in the spatial network structure;
可选地,所述量子点为钙钛矿类量子点;Optionally, the quantum dots are perovskite quantum dots;
可选地,所述聚合物包括聚偏氟乙烯、聚偏氟乙烯和三氟乙烯共聚物、聚丙烯腈、聚醋酸乙烯酯、醋酸纤维素、氰基纤维素、聚砜、芳香聚酰胺、聚酰亚胺、聚碳酸酯、聚苯乙烯、聚甲基丙烯酸甲酯、聚甲基丙烯酸月桂酯中的至少一种。Optionally, the polymer includes polyvinylidene fluoride, polyvinylidene fluoride and trifluoroethylene copolymer, polyacrylonitrile, polyvinyl acetate, cellulose acetate, cyanocellulose, polysulfone, aromatic polyamide, At least one of polyimide, polycarbonate, polystyrene, polymethyl methacrylate, polylauryl methacrylate.
可选地,所述保护层为二氧化硅和/或两性氢氧化物;Optionally, the protective layer is silicon dioxide and/or amphoteric hydroxide;
可选地,所述两性氢氧化物包括氢氧化铝、氢氧化钛、氢氧化锆中的至少一种。Optionally, the amphoteric hydroxide includes at least one of aluminum hydroxide, titanium hydroxide, and zirconium hydroxide.
可选地,所述金属氧化物薄膜包括括Al2O3薄膜、TiO2薄膜、HfO2薄膜、ZrO2薄膜中的至少一种;Optionally, the metal oxide film includes at least one of Al2O3 film, TiO2 film, HfO2 film, ZrO2 film;
可选地,所述量子点/聚合物复合微粒的粒径为1~100μm;Optionally, the particle size of the quantum dot/polymer composite particle is 1-100 μm;
所述保护层的厚度为10~500nm;The thickness of the protective layer is 10-500nm;
所述金属氧化物薄膜包覆保护层的厚度为1nm~100nm。The thickness of the protective layer covered by the metal oxide film is 1nm-100nm.
作为本申请的另一个方面,本申请还提供了一种多层包覆的量子点材料的制备方法,本申请发明中喷雾干燥制备钙钛矿量子点/聚合物微球的方法,工艺简单,容易工业大规模制备,而且制备得到的粉末,聚合物完全将钙钛矿量子点包裹,形成保护层,提高了钙钛矿量子点材料的稳定性。本申请发明中的溶液法包覆,通过水解反应对粉末表面包覆保护层,钙钛矿量子点/聚合物微球经过保护层包覆后,可以明显改善微球表面的缺陷,形成致密的球壳,提高稳定性;同时该溶液法包覆使微粉均匀分散,利于后续的原子层沉积包覆,提高包覆率。包覆使用的溶剂均可以回收利用,大大降低生产成本。本申请发明中的原子层沉积的方法在工业界有广泛的应用,工艺成熟,原子层沉积的方法能够在均匀分散的钙钛矿量子点/聚合物微球表面上继续沉积纳米厚度或亚微米厚度金属氧化物薄膜,完成整个微球的表面包覆处理过程。整个包覆过程不影响钙钛矿量子点/聚合物微球本身的光学性能。As another aspect of the present application, the present application also provides a method for preparing a multilayer coated quantum dot material. In the present application, the spray drying method for preparing perovskite quantum dots/polymer microspheres has a simple process. It is easy to industrially prepare on a large scale, and the prepared powder and polymer completely wrap the perovskite quantum dots to form a protective layer, which improves the stability of the perovskite quantum dot material. The solution method coating in the invention of the present application is to coat the powder surface with a protective layer through a hydrolysis reaction. After the perovskite quantum dots/polymer microspheres are coated with the protective layer, the defects on the surface of the microspheres can be significantly improved, forming a dense The spherical shell improves the stability; at the same time, the solution method coating makes the micro powder evenly dispersed, which is beneficial to the subsequent atomic layer deposition coating and improves the coating rate. All the solvents used in coating can be recycled, which greatly reduces the production cost. The method of atomic layer deposition in the invention of the present application is widely used in the industry, and the process is mature. The method of atomic layer deposition can continue to deposit nanometer thickness or submicron on the surface of uniformly dispersed perovskite quantum dots/polymer microspheres The thickness of the metal oxide film completes the surface coating process of the entire microsphere. The entire coating process does not affect the optical properties of the perovskite quantum dots/polymer microspheres themselves.
一种多层包覆的量子点材料的制备方法,包括如下步骤:A method for preparing a multilayer coated quantum dot material, comprising the steps of:
(a)获得量子点/聚合物复合微粒;(a) obtaining quantum dot/polymer composite particles;
(b)将含有量子点/聚合物复合微粒、保护层原料化合物和催化剂的溶液进行反应,得到包覆有保护层的量子点/聚合物复合微粒;(b) reacting the solution containing the quantum dot/polymer composite particle, the protective layer raw material compound and the catalyst to obtain the quantum dot/polymer composite particle coated with the protective layer;
(c)通过原子层沉积在步骤(b)中得到的包覆有保护层的量子点/聚合物复合微粒上形成金属氧化物薄膜。(c) forming a metal oxide thin film on the protective layer-coated quantum dot/polymer composite particles obtained in step (b) by atomic layer deposition.
可选地,所述步骤(a)中钙钛矿量子点前驱体聚合物溶液经输液管道由二流体雾化器形成雾化微液滴进入到干燥塔中,经过由进风口吹入的热风干燥后,形成钙钛矿量子点/聚合物微球,钙钛矿量子点聚合物微粉经由干燥罐下方的出气口进入旋风分离器,实现粉末的收集。Optionally, in the step (a), the perovskite quantum dot precursor polymer solution forms atomized micro-droplets from the two-fluid atomizer through the infusion pipeline and enters the drying tower, and passes through the hot air blown in from the air inlet. After drying, perovskite quantum dots/polymer microspheres are formed, and the perovskite quantum dot polymer micropowder enters the cyclone separator through the air outlet below the drying tank to realize powder collection.
可选地,量子采用钙钛矿类量子点。Optionally, Quantum uses perovskite quantum dots.
可选地,钙钛矿量子点合成原料包括AX、BXt和CX前驱体;其中,A选自NH2CHNH2 +(FA+)、CH3NH3 +(MA+)、Cs+、Rb+、K+中的至少一种;B选自Pb2+、Sn2+、Bi3+、Ti3+、Zn2+、Ni2+、Cd2+、Al3+、Mn2+、Mn4+、Ge3+中的至少一种;C选自芳香基或者碳原子数不小于3的烷基有机胺阳离子;X选自Br-、I-、SCN-、羧酸根中的至少一种;m=2、3或4;Optionally, raw materials for the synthesis of perovskite quantum dots include AX, BX t and CX precursors; wherein, A is selected from NH 2 CHNH 2 + (FA + ), CH 3 NH 3 + (MA + ), Cs + , Rb + , at least one of K + ; B is selected from Pb 2+ , Sn 2+ , Bi 3+ , Ti 3+ , Zn 2+ , Ni 2+ , Cd 2+ , Al 3+ , Mn 2+ , Mn At least one of 4+ and Ge 3+ ; C is selected from aromatic groups or alkyl organic amine cations with not less than 3 carbon atoms; X is selected from at least one of Br - , I - , SCN - and carboxylate ;m=2, 3 or 4;
可选地,所述钙钛矿量子点具有结构式AMX3、A3M2X9、A2MX6、Q2Am-1MmX3m+1中的至少一种;Optionally, the perovskite quantum dot has at least one of the structural formulas AMX 3 , A 3 M 2 X 9 , A 2 MX 6 , Q 2 A m-1 M m X 3m+1 ;
其中,A为NH2CHNH2 +、CH3NH3 +、Cs+中的至少一种;Wherein, A is at least one of NH 2 CHNH 2 + , CH 3 NH 3 + , and Cs + ;
M为Pb2+、Cd2+、Mn2+、Zn2+、Sn2+、Ge2+、Bi3+中的至少一种;M is at least one of Pb 2+ , Cd 2+ , Mn 2+ , Zn 2+ , Sn 2+ , Ge 2+ , Bi 3+ ;
X为卤素阴离子中的至少一种;X is at least one of the halide anions;
Q为芳香基或者碳原子数不小于3的烷基有机胺阳离子;Q is an aromatic group or an alkyl organic amine cation with not less than 3 carbon atoms;
m为1到100之间的任意数值。m is any value between 1 and 100.
可选地,所述的钙钛矿量子点前驱体AX、BXm和CX的摩尔比为0.5~10:1:0.5~10;Optionally, the molar ratio of the perovskite quantum dot precursors AX, BX m and CX is 0.5-10:1:0.5-10;
可选地,所述的溶剂包括是二甲基亚砜、正己烷、环己烷、正辛烷、十八烯、乙醇、甲醇、三甲基磷酸酯、磷酸三乙酯、N-甲基吡咯烷酮、二甲基乙酰胺、N,N-二甲基甲酰胺,异丙醇、乙酸乙酯、甲苯、丙酮中的至少一种。Optionally, the solvent includes dimethyl sulfoxide, n-hexane, cyclohexane, n-octane, octadecene, ethanol, methanol, trimethyl phosphate, triethyl phosphate, N-methyl At least one of pyrrolidone, dimethylacetamide, N,N-dimethylformamide, isopropanol, ethyl acetate, toluene, and acetone.
可选地,所述的钙钛矿量子点前驱体聚合物溶液中溶剂与聚合物基质的质量比为100:1~100。量子点前驱体材料与聚合物基质的质量比为1:1~200。Optionally, the mass ratio of the solvent to the polymer matrix in the perovskite quantum dot precursor polymer solution is 100:1-100. The mass ratio of the quantum dot precursor material to the polymer matrix is 1:1-200.
可选地,所述的喷雾干燥过程通过具有二流体雾化器的喷雾干燥设备实现。主要的工艺参数包含:溶液的进料速度:50ml/h~50000ml/h;对应的雾化器的进气压力:0.02~1MPa,进气速度:15L/min~100L/min;干燥器的进风温度:50~200℃。Optionally, the spray drying process is realized by spray drying equipment with a two-fluid atomizer. The main process parameters include: solution feed rate: 50ml/h~50000ml/h; corresponding atomizer inlet pressure: 0.02~1MPa, inlet speed: 15L/min~100L/min; Wind temperature: 50~200℃.
可选地,所述步骤(b)中,先将包覆有保护层的量子点/聚合物复合微粒剧烈搅拌均匀分散在大量溶剂中,充分搅拌得到粉末混合溶液;在混合溶液中依次加入表面活性剂、水解原料、催化剂、去离子水,充分发生水解反应,此时每个粉末颗粒表面均覆盖一层产物,包覆致密的保护层。Optionally, in the step (b), the quantum dots/polymer composite particles coated with the protective layer are vigorously stirred and evenly dispersed in a large amount of solvent, and fully stirred to obtain a powder mixed solution; Active agent, hydrolysis raw material, catalyst, and deionized water fully undergo hydrolysis reaction. At this time, the surface of each powder particle is covered with a layer of product, covering a dense protective layer.
可选地,所述步骤(b)中的保护层原料化合物包括铝源化合物、硅源化合物、钛源化合物、锆源化合物中的至少一种;Optionally, the protective layer raw material compound in the step (b) includes at least one of an aluminum source compound, a silicon source compound, a titanium source compound, and a zirconium source compound;
可选地,粉末与保护层原料化合物的质量比为1:0.1~100;Optionally, the mass ratio of the powder to the protective layer raw material compound is 1:0.1-100;
可选地,所述铝源化合物包括三乙基铝、仲丁醇铝、异丙醇铝中的至少一种;Optionally, the aluminum source compound includes at least one of triethylaluminum, aluminum sec-butoxide, and aluminum isopropoxide;
可选地,所述硅源化合物包括(3-巯基丙基)三甲氧基硅烷、双-[3-(三乙氧基硅)-丙基]-四硫化物、3-氨丙基三乙氧基硅烷、正硅酸甲酯、正硅酸乙酯、十八烷基三甲氧基硅烷的至少一种;Optionally, the silicon source compound includes (3-mercaptopropyl)trimethoxysilane, bis-[3-(triethoxysilyl)-propyl]-tetrasulfide, 3-aminopropyltriethyl At least one of oxysilane, methyl orthosilicate, ethyl orthosilicate, octadecyltrimethoxysilane;
可选地,所述钛源化合物包括钛酸四丁酯、钛酸异丙酯、钛酸四乙酯中的至少一种;Optionally, the titanium source compound includes at least one of tetrabutyl titanate, isopropyl titanate, and tetraethyl titanate;
可选地,所述锆源化合物包括正丁醇锆、叔丁醇锆、异丙醇锆中的至少一种。Optionally, the zirconium source compound includes at least one of zirconium n-butoxide, zirconium tert-butoxide, and zirconium isopropoxide.
可选地,所述催化剂包括甲基胺、氨水、二甲胺中的至少一种;Optionally, the catalyst includes at least one of methylamine, ammonia water, and dimethylamine;
可选地,粉末与催化剂的质量比为1:0.1~10。Optionally, the mass ratio of the powder to the catalyst is 1:0.1-10.
可选地,所述步骤(b)中的溶液还包含表面活性剂;Optionally, the solution in the step (b) also includes a surfactant;
可选地,所述表面活性剂包括6-巯基己醇、1-十六硫醇、己硫醇、油酸、硬脂酸中的至少一种;Optionally, the surfactant includes at least one of 6-mercaptohexanol, 1-hexadecanthiol, hexanethiol, oleic acid, and stearic acid;
可选地,粉末与表面活性剂的质量比为1:0.1~50。Optionally, the mass ratio of powder to surfactant is 1:0.1-50.
可选地,所述步骤(b)中将含有量子点/聚合物复合微粒、保护层原料化合物、催化剂和水的溶液在温度为20~50℃,搅拌速度为100~1000转/分的条件下进行反应,得到包覆有保护层的量子点/聚合物复合微粒;Optionally, in the step (b), the solution containing the quantum dot/polymer composite particle, the protective layer raw material compound, the catalyst and water is heated at a temperature of 20-50°C and a stirring speed of 100-1000 rpm. The reaction is carried out to obtain quantum dots/polymer composite particles coated with a protective layer;
可选地,所述步骤(b)中通过抽滤将包覆有保护层的量子点/聚合物复合微粒与溶液分离。Optionally, in the step (b), the quantum dot/polymer composite particle coated with the protective layer is separated from the solution by suction filtration.
可选地,真空抽滤的步骤包括:清洗抽滤瓶、组装抽滤瓶和真空泵、放置滤膜、倾倒混合液、开始抽滤、粉末收集。Optionally, the step of vacuum filtration includes: cleaning the filtration flask, assembling the filtration flask and a vacuum pump, placing the filter membrane, pouring the mixed solution, starting the suction filtration, and collecting the powder.
可选地,所述的抽滤瓶与真空泵之间有调压阀,可调节真空度和抽滤速度,确保抽滤速度不会太快,造成滤膜破损。Optionally, there is a pressure regulating valve between the suction filtration bottle and the vacuum pump, which can adjust the vacuum degree and suction filtration speed, so as to ensure that the suction filtration speed will not be too fast, causing damage to the filter membrane.
可选地,在真空泵之间与抽滤瓶之间加装防倒吸瓶。Optionally, an anti-suckback bottle is installed between the vacuum pumps and the filter bottles.
可选地,所述的滤膜是指微孔滤膜,微孔尺寸为0.1~5微米。Optionally, the filter membrane refers to a microporous filter membrane with a pore size of 0.1-5 microns.
可选地,所述步骤(c)原子层沉积中采用含金属元素的化合物原料与氧化剂反应生成金属氧化物薄膜;Optionally, in the step (c) atomic layer deposition, a metal element-containing compound raw material is used to react with an oxidant to form a metal oxide film;
可选地,所述步骤(c)中首先将微粒装在离心可旋转的腔体内,保持粉末的持续运动分散状态;向腔体内通入含金属元素的化合物,与微粒表面充分反应,随后通惰性气清除多余的含金属元素的化合物和副产物;向腔体内通入氧化剂,并使其与微粒表面的含金属元素的化合物充分反应,此时两者反应生成了首层原子层。操作重复进行,氧化物层厚度逐渐增加,直至完成整个微粒的表面包覆处理过程。Optionally, in the step (c), the particles are firstly placed in a centrifuge rotatable cavity to maintain the continuous movement and dispersion of the powder; a compound containing metal elements is introduced into the cavity to fully react with the surface of the particles, and then pass The inert gas removes excess metal element-containing compounds and by-products; the oxidant is introduced into the chamber to fully react with the metal element-containing compound on the particle surface, and the two react to form the first atomic layer. The operation is repeated, and the thickness of the oxide layer is gradually increased until the surface coating process of the entire particle is completed.
可选地,所述含金属元素的化合物原料包括三甲基铝、三氯化铝、四氯化钛、异丙醇钛、四(二甲基氨)基锆,四氯化铪,硝酸铪,二甲基氨基锆中的至少一种;Optionally, the raw material of the metal element-containing compound includes trimethylaluminum, aluminum trichloride, titanium tetrachloride, titanium isopropoxide, zirconium tetrakis (dimethylamino) base, hafnium tetrachloride, hafnium nitrate , at least one of zirconium dimethylamide;
可选地,所述氧化物包括水、臭氧、氧等离子体中的至少一种。Optionally, the oxide includes at least one of water, ozone, and oxygen plasma.
可选地,所述含金属元素的化合物和氧化剂的流量为10~500标准毫升每分钟,所述载气的流量为10~1000标准毫升每分钟。Optionally, the flow rate of the metal element-containing compound and the oxidant is 10-500 standard milliliters per minute, and the flow rate of the carrier gas is 10-1000 standard milliliters per minute.
可选地,所述的在各次原子层沉积反应中,所述含金属元素的化合物和氧化剂与微粒的反应时间均为0.1s~10s,腔体出口压力为50Pa~500Pa。Optionally, in each atomic layer deposition reaction, the reaction time of the metal element-containing compound, the oxidizing agent and the particles is 0.1s-10s, and the chamber outlet pressure is 50Pa-500Pa.
可选地,所述的每次反应后的冲洗时间为0.1s~10s,冲洗气体的流量为10~1000标准毫升每分钟。Optionally, the flushing time after each reaction is 0.1s-10s, and the flow rate of the flushing gas is 10-1000 standard milliliters per minute.
本发明能够产生的有益效果包括:The beneficial effects that the present invention can produce include:
1.本申请发明中使用溶液法包覆和原子层沉积两层包覆的方式对喷雾干燥制备的钙钛矿量子点/聚合物微球进行复合包覆的方法,提高阻水阻氧效果,提升钙钛矿量子点材料的稳定性和抗溶剂性,可分散于多个溶剂体系中。两层包覆后的钙钛矿量子点/聚合物微粉显示出超高的耐腐蚀性能,可以与各种光刻胶、UV胶、压敏胶和多种有机溶剂等材料共混,利用点胶、喷墨打印、丝网印刷、流延、光刻等多种工艺,制备出发光的点、线、膜等多种形态的发光材料,应用于显示背光等多种领域,拓宽了量子点复合材料的应用范围。1. In the invention of this application, the method of composite coating of perovskite quantum dots/polymer microspheres prepared by spray drying by using solution method coating and atomic layer deposition two-layer coating method improves the effect of water blocking and oxygen blocking, Improve the stability and solvent resistance of perovskite quantum dot materials, which can be dispersed in multiple solvent systems. The two-layer coated perovskite quantum dots/polymer micropowders show ultra-high corrosion resistance, and can be blended with various photoresists, UV adhesives, pressure-sensitive adhesives, and various organic solvents. Glue, inkjet printing, screen printing, casting, photolithography and other processes to prepare luminescent materials in various forms such as dots, lines, films, etc. Applications of composite materials.
2.本申请发明中喷雾干燥制备钙钛矿量子点/聚合物微球的方法,工艺简单,容易工业大规模制备,而且制备得到的粉末,聚合物完全将钙钛矿量子点包裹,形成保护层,提高了钙钛矿量子点材料的稳定性。本申请发明中的溶液法包覆,通过水解反应对粉末表面包覆保护层,钙钛矿量子点/聚合物微球经过保护层包覆后,可以明显改善微球表面的缺陷,形成致密的球壳,提高稳定性;同时该溶液法包覆使微粉均匀分散,利于后续的原子层沉积包覆,提高包覆率。此外,包覆使用的溶剂均可以回收利用,大大降低生产成本。本申请发明中的原子层沉积的方法在工业界有广泛的应用,工艺成熟。原子层沉积的方法能够在均匀分散的钙钛矿量子点/聚合物微球表面上继续沉积纳米厚度或亚微米厚度金属氧化物薄膜,完成整个微球的表面包覆处理过程。整个包覆过程不影响钙钛矿量子点/聚合物微球本身的光学性能。2. The method for preparing perovskite quantum dots/polymer microspheres by spray drying in the invention of this application has a simple process and is easy to produce on a large scale in industry, and the prepared powder and polymer completely wrap the perovskite quantum dots to form a protective layer, improving the stability of the perovskite quantum dot material. The solution method coating in the invention of the present application is to coat the powder surface with a protective layer through a hydrolysis reaction. After the perovskite quantum dots/polymer microspheres are coated with the protective layer, the defects on the surface of the microspheres can be significantly improved, forming a dense The spherical shell improves the stability; at the same time, the solution method coating makes the micro powder evenly dispersed, which is beneficial to the subsequent atomic layer deposition coating and improves the coating rate. In addition, the solvent used for coating can be recycled, which greatly reduces the production cost. The atomic layer deposition method in the invention of the present application is widely used in the industry, and the process is mature. The atomic layer deposition method can continue to deposit nanometer-thick or submicron-thick metal oxide films on the surface of uniformly dispersed perovskite quantum dots/polymer microspheres to complete the surface coating process of the entire microspheres. The entire coating process does not affect the optical properties of the perovskite quantum dots/polymer microspheres themselves.
附图说明Description of drawings
图1为溶液法包覆和原子层沉积两层包覆钙钛矿量子点/聚合物微球的微粉的结构示意图。其中1代表钙钛矿量子点;2代表聚合物基质,聚合物基质完全将钙钛矿量子点包裹;3代表溶液法包覆的保护层;4代表原子层沉积包覆的纳米或者亚微米级的氧化物层;Figure 1 is a schematic diagram of the structure of a micropowder coated with two layers of perovskite quantum dots/polymer microspheres by solution coating and atomic layer deposition. Among them, 1 represents perovskite quantum dots; 2 represents polymer matrix, and the polymer matrix completely wraps perovskite quantum dots; 3 represents the protective layer coated by solution method; 4 represents nanometer or submicron quantum dots coated by atomic layer deposition. oxide layer;
图2为本发明的工艺流程示意图;Fig. 2 is the technological process schematic diagram of the present invention;
图3为喷雾干燥制备的钙钛矿量子点聚合物微粉的照片;Fig. 3 is the photo of the perovskite quantum dot polymer micropowder prepared by spray drying;
图4为喷雾干燥制备的钙钛矿量子点聚合物微粉的荧光发射光谱图;Fig. 4 is the fluorescence emission spectrogram of the perovskite quantum dot polymer micropowder prepared by spray drying;
图5.为喷雾干燥制备的钙钛矿量子点聚合物微粉的扫描电子显微镜图片;Fig. 5. is the scanning electron microscope picture of the perovskite quantum dot polymer micropowder prepared for spray drying;
图6为原子层沉积包覆后粉末的扫描电子显微镜图片;Figure 6 is a scanning electron microscope picture of the powder coated by atomic layer deposition;
图7为基于未包覆与包覆的绿色微粉的亮度随老化时间的衰减对比曲线。Fig. 7 is a comparison curve of decay of brightness with aging time based on uncoated and coated green micropowders.
具体实施方式Detailed ways
下面结合实施例详述本申请,但本申请并不局限于这些实施例。实施例中所用的材料均通过商业途径购买。The present application is described in detail below in conjunction with the examples, but the present application is not limited to these examples. All materials used in the examples were purchased from commercial sources.
SEM照片采用日立公司SU8220冷场发射扫描电子显微镜测试得到。SEM photos were obtained by Hitachi SU8220 cold field emission scanning electron microscope.
荧光发射光谱图采用Admesy公司的光谱色度计测试得到,激发光源为455nm的蓝色LED。The fluorescence emission spectrum is obtained by testing with a spectrocolorimeter of Admesy Company, and the excitation light source is a blue LED with a wavelength of 455 nm.
实施例1Example 1
多层包覆的量子点材料的结构图1所示,其制备方法如图2所示。本实施例中选择MAPbBr3钙钛矿原料和聚合物聚偏氟乙烯进行喷雾干燥,制备复合粉末。将量子点材料前驱体MABr、PbBr2、四丙基溴化铵以摩尔比0.6mmol:0.6mmol:0.3mmol的比例溶于200ml的无水N、N二甲基甲酰胺(DMF)中,再加入10g聚偏氟乙烯(PVDF)形成钙钛矿量子点前驱体聚合物溶液,经过2小时的搅拌溶解后,进行喷雾干燥制备粉末。喷雾干燥参数设置为溶液的进料速度为500ml/h,进气压力为0.08MPa,进气速度为60L/min,干燥器进风温度为85摄氏度。制备的钙钛矿/聚合物微球粉末如图3所示,粉末呈明亮的绿色,其发光光谱如图4所示,发光峰位于523nm。此时钙钛矿量子点/聚合物粉末的扫描电子显微镜照片如图5所示,从图中可以看出,微粉基本呈现圆形状,微米尺寸分布。The structure of the multilayer coated quantum dot material is shown in FIG. 1 , and its preparation method is shown in FIG. 2 . In this example, MAPbBr 3 perovskite raw material and polymer polyvinylidene fluoride were selected for spray drying to prepare composite powder. The quantum dot material precursor MABr, PbBr 2 , tetrapropylammonium bromide are dissolved in the anhydrous N, N dimethylformamide (DMF) of 200ml with the ratio of molar ratio 0.6mmol: 0.6mmol: 0.3mmol, and then 10 g of polyvinylidene fluoride (PVDF) was added to form a perovskite quantum dot precursor polymer solution, and after stirring and dissolving for 2 hours, spray drying was carried out to prepare powder. The spray-drying parameters were set to be 500ml/h for the feed rate of the solution, 0.08MPa for the inlet pressure, 60L/min for the inlet speed, and 85°C for the dryer inlet air temperature. The prepared perovskite/polymer microsphere powder is shown in Figure 3, the powder is bright green, and its luminescence spectrum is shown in Figure 4, with a luminescence peak at 523nm. At this time, the scanning electron microscope photo of the perovskite quantum dot/polymer powder is shown in Figure 5. It can be seen from the figure that the micropowder basically presents a circular shape and a micron size distribution.
称量10g粉末,缓慢倒入2000ml的正己烷中,搅拌,将粉末在溶剂中分散均匀,依次加入10mL油酸、0.1mol正硅酸甲酯、100μL水,随后搅拌3h充分水解,获得溶液法包覆的粉末,随后使用最大真空度为0.1MPa的真空泵进行真空抽滤,将粉末与溶剂分离,烘干残留溶剂,获得均匀分布的粉末,后续实施例真空抽滤方法均一致。Weigh 10g of powder, slowly pour it into 2000ml of n-hexane, stir, disperse the powder evenly in the solvent, add 10mL of oleic acid, 0.1mol of orthosilicate, 100μL of water in sequence, and then stir for 3h to fully hydrolyze to obtain the solution method The coated powder was then subjected to vacuum filtration using a vacuum pump with a maximum vacuum degree of 0.1 MPa to separate the powder from the solvent, and dry the residual solvent to obtain a uniformly distributed powder. The vacuum filtration methods in the subsequent examples were all the same.
随后进行原子层沉积包覆。将所述粉末状产物放入离心夹持器中,一边控制夹持器旋转一边抽真空,然后加热腔体至80~100摄氏度;向粉末腔体内通入三甲基铝,吸附时间5秒,使其与粉末表面充分接触吸附,随后通惰性气清除多余的三甲基铝和副产物60秒;向腔体内通入水,反应时间为5秒,并使其与颗粒表面的三甲基铝充分反应,此时两个前驱体反应生成了首层原子层。操作重复进行,氧化物层厚度逐渐增加,直至完成整个微球的表面包覆处理过程。包覆后粉末的扫描电子显微镜照片如图6所示,从图中看出,微球显示出粗糙的表面,这是包覆的氧化物层。Subsequent atomic layer deposition cladding. Put the powdered product into the centrifugal holder, vacuumize while controlling the rotation of the holder, and then heat the cavity to 80-100 degrees Celsius; pass trimethylaluminum into the powder cavity, and the adsorption time is 5 seconds. Make it fully contact with the surface of the powder for adsorption, and then pass an inert gas to remove excess trimethylaluminum and by-products for 60 seconds; pass water into the cavity, the reaction time is 5 seconds, and make it fully contact with the trimethylaluminum on the particle surface reaction, where the two precursors react to form the first atomic layer. The operation is repeated, and the thickness of the oxide layer is gradually increased until the surface coating process of the entire microsphere is completed. The scanning electron micrograph of the coated powder is shown in Fig. 6. From the figure, it can be seen that the microspheres show a rough surface, which is the coated oxide layer.
将未包覆与双层包覆后的绿色粉末,装载在两层玻璃的夹层中,置于60摄氏度与90%RH湿度的环境试验箱之中进行老化实验。经过240小时的老化之后,其亮度衰减情况如图7所示,包覆后的绿色微粉经过240小时老化后,亮度衰减很少仅5%,而未包覆的样品此时衰减比例已经超出了15%。证明在钙钛矿/聚合物微粒在表面两层包覆氧化物薄膜,明显提升了材料的稳定性。The uncoated and double-coated green powders were loaded in the interlayer of two layers of glass, and placed in an environmental test chamber at 60 degrees Celsius and 90% RH humidity for aging experiments. After 240 hours of aging, its brightness attenuation is shown in Figure 7. After 240 hours of aging, the coated green micropowder has a luminance attenuation of only 5%, while the attenuation ratio of the uncoated sample has exceeded 15%. It is proved that the perovskite/polymer particles are coated with two oxide films on the surface, which significantly improves the stability of the material.
实施例2Example 2
本实施例中选择FAPbBr3钙钛矿原料和聚合物聚甲基丙烯酸甲酯进行喷雾干燥,量子点材料前驱体FABr、PbBr2、四丁基溴化铵以摩尔比0.7mmol:0.6mmol:0.3mmol,干燥器温度为85摄氏度,制备钙钛矿量子点聚合物复合粉末。制备的钙钛矿/聚合物微球粉末,粉末呈明亮的绿色。溶液法包覆过程:称量10g粉末,缓慢倒入2000ml的正己烷中,搅拌,将粉末在溶剂中分散均匀,依次加入5mL油酸、0.2mol3-氨丙基三乙氧基硅烷、200μL去离子水,随后搅拌3h充分水解,获得溶液法包覆的粉末,随后经过抽滤、烘干残留溶剂,获得均匀分布的粉末。随后进行原子层沉积包覆Al2O3过程,完成整个微球的表面包覆处理过程。In this example, FAPbBr 3 perovskite raw materials and polymer polymethyl methacrylate are selected for spray drying, and the quantum dot material precursors FABr, PbBr 2 , and tetrabutylammonium bromide are used in a molar ratio of 0.7mmol: 0.6mmol: 0.3 mmol, the temperature of the dryer is 85 degrees Celsius, and the perovskite quantum dot polymer composite powder is prepared. The prepared perovskite/polymer microsphere powder is bright green in color. Coating process of solution method: Weigh 10g powder, slowly pour it into 2000ml n-hexane, stir, disperse the powder evenly in the solvent, add 5mL oleic acid, 0.2mol 3-aminopropyltriethoxysilane, 200μL to Ionized water, followed by stirring for 3 hours to fully hydrolyze to obtain a solution-coated powder, followed by suction filtration and drying of the residual solvent to obtain a uniformly distributed powder. Subsequently, the process of coating Al 2 O 3 by atomic layer deposition is carried out to complete the surface coating treatment process of the entire microsphere.
实施例3Example 3
本实施例中选择CsPbBr3钙钛矿原料和聚合物聚偏氟乙烯进行喷雾干燥,量子点材料前驱体CsBr、PbBr2、十二烷基二甲基苄基溴化铵以摩尔比0.6mmol:0.6mmol:0.4mmol,干燥器温度为100摄氏度,制备钙钛矿量子点聚合物复合粉末。制备的钙钛矿/聚合物微球粉末,粉末呈明亮的绿色。溶液法包覆过程:称量10g粉末,缓慢倒入2000ml的正己烷中,搅拌,将粉末在溶剂中分散均匀,依次加入10mL油酸、0.5mol钛酸四丁酯、300μL去离子水,随后搅拌5h充分水解,获得溶液法包覆的粉末,随后经过抽滤、烘干残留溶剂,获得均匀分布的粉末。随后进行原子层沉积包覆TiO2过程,完成整个微球的表面包覆处理过程。In this example, CsPbBr 3 perovskite raw material and polymer polyvinylidene fluoride are selected for spray drying, and the quantum dot material precursors CsBr, PbBr 2 , and dodecyldimethylbenzyl ammonium bromide are in a molar ratio of 0.6mmol: 0.6mmol: 0.4mmol, the temperature of the dryer is 100 degrees Celsius, and the perovskite quantum dot polymer composite powder is prepared. The prepared perovskite/polymer microsphere powder is bright green in color. Coating process of solution method: Weigh 10g of powder, slowly pour it into 2000ml of n-hexane, stir, disperse the powder in the solvent evenly, add 10mL of oleic acid, 0.5mol of tetrabutyl titanate, 300μL of deionized water in sequence, and then Stir for 5 hours to fully hydrolyze to obtain a solution-coated powder, and then filter and dry the residual solvent to obtain a uniformly distributed powder. Subsequent atomic layer deposition coating TiO 2 process is carried out to complete the surface coating process of the entire microsphere.
实施例4Example 4
本实施例中选择MA0.9Cs0.1PbBr3钙钛矿原料和聚合物、聚合物聚偏氟乙烯和聚甲基丙烯酸甲酯混合进行喷雾干燥,量子点材料前驱体MABr、CsBr、PbBr2、辛胺溴以摩尔比0.6mmol:0.1mmol:0.6mmol:0.18mmol,干燥器温度为90摄氏度,制备钙钛矿量子点聚合物复合粉末。制备的钙钛矿/聚合物微球粉末,粉末呈明亮的绿色。溶液法包覆过程:称量10g粉末,缓慢倒入2000ml的正己烷中,搅拌,将粉末在溶剂中分散均匀,依次加入0.3mol正硅酸乙酯,随后敞口搅拌5h充分水解,获得溶液法包覆的粉末,随后经过抽滤、烘干残留溶剂,获得均匀分布的粉末。随后进行原子层沉积包覆ZrO2过程,完成整个微球的表面包覆处理过程。In this example, MA 0.9 Cs 0.1 PbBr 3 perovskite raw material and polymer, polymer polyvinylidene fluoride and polymethyl methacrylate are selected for spray drying. Quantum dot material precursor MABr, CsBr, PbBr 2 , octane The perovskite quantum dot polymer composite powder was prepared with amine bromide at a molar ratio of 0.6mmol: 0.1mmol: 0.6mmol: 0.18mmol, and a dryer temperature of 90 degrees Celsius. The prepared perovskite/polymer microsphere powder is bright green in color. Coating process of solution method: Weigh 10g of powder, slowly pour it into 2000ml of n-hexane, stir, disperse the powder in the solvent evenly, add 0.3mol tetraethyl orthosilicate in sequence, then stir in the open for 5 hours to fully hydrolyze to obtain a solution The powder coated by the method was then suction filtered and dried to obtain a uniformly distributed powder. Subsequent atomic layer deposition coating ZrO 2 process is carried out to complete the surface coating treatment process of the entire microsphere.
实施例5Example 5
本实施例中选择MA0.8FA0.2PbBr3钙钛矿原料和聚合物聚甲基丙烯酸甲酯进行喷雾干燥,量子点材料前驱体MABr、FABr、PbBr2、四辛基溴化铵以摩尔比0.48mmol:0.12mmol:0.6mmol:0.3mmol,干燥器温度为90摄氏度,制备钙钛矿量子点聚合物复合粉末。制备的钙钛矿/聚合物微球粉末,粉末呈明亮的绿色。溶液法包覆过程:称量10g粉末,缓慢倒入2000ml的正己烷中,搅拌,将粉末在溶剂中分散均匀,依次加入5mL硬脂酸、0.5mol正丁醇锆、400μL去离子水,随后敞口搅拌5h充分水解,获得溶液法包覆的粉末,随后经过抽滤、烘干残留溶剂,获得均匀分布的粉末。随后进行原子层沉积包覆Al2O3过程,完成整个微球的表面包覆处理过程。In this embodiment, MA 0.8 FA 0.2 PbBr 3 perovskite raw materials and polymer polymethyl methacrylate are selected for spray drying. mmol: 0.12mmol: 0.6mmol: 0.3mmol, the temperature of the dryer is 90 degrees Celsius, and the perovskite quantum dot polymer composite powder is prepared. The prepared perovskite/polymer microsphere powder is bright green in color. Coating process of solution method: Weigh 10g of powder, slowly pour it into 2000ml of n-hexane, stir, disperse the powder in the solvent evenly, add 5mL of stearic acid, 0.5mol of zirconium n-butoxide, 400μL of deionized water in sequence, and then Open and stirred for 5 hours to fully hydrolyze to obtain a solution-coated powder, and then through suction filtration and drying of the residual solvent to obtain a uniformly distributed powder. Subsequently, the process of coating Al 2 O 3 by atomic layer deposition is carried out to complete the surface coating treatment process of the entire microsphere.
实施例6Example 6
本实施例中选择MAPbI3钙钛矿原料和聚合物聚甲基丙烯酸甲酯进行喷雾干燥,量子点材料前驱体MAI、PbI2、四丁基碘化铵以摩尔比0.6mmol:0.6mmol:0.3mmol,干燥器温度为120摄氏度,制备钙钛矿量子点聚合物复合粉末。制备的钙钛矿/聚合物微球粉末,粉末呈明亮的红色。溶液法包覆过程:称量10g粉末,缓慢倒入2000ml的正己烷中,搅拌,将粉末在溶剂中分散均匀,依次加入10mL己硫醇、0.2mol正硅酸乙酯,随后敞口搅拌3h充分水解,获得溶液法包覆的粉末,随后经过抽滤、烘干残留溶剂,获得均匀分布的粉末。随后进行原子层沉积包覆Al2O3过程,完成整个微球的表面包覆处理过程。In this embodiment, MAPbI 3 perovskite raw materials and polymer polymethyl methacrylate are selected for spray drying, and the quantum dot material precursors MAI, PbI 2 , and tetrabutylammonium iodide are used in a molar ratio of 0.6mmol: 0.6mmol: 0.3 mmol, the temperature of the dryer is 120 degrees Celsius, and the perovskite quantum dot polymer composite powder is prepared. The prepared perovskite/polymer microsphere powder is bright red. Coating process of solution method: Weigh 10g of powder, slowly pour it into 2000ml of n-hexane, stir, disperse the powder in the solvent evenly, add 10mL of hexanethiol, 0.2mol of ethyl orthosilicate in sequence, and then stir for 3h Fully hydrolyzed to obtain a solution-coated powder, followed by suction filtration and drying of the residual solvent to obtain a uniformly distributed powder. Subsequently, the process of coating Al 2 O 3 by atomic layer deposition is carried out to complete the surface coating treatment process of the entire microsphere.
实施例7Example 7
本实施例中选择MAPb(Br/I)3钙钛矿原料和聚合物聚甲基丙烯酸甲酯进行喷雾干燥,量子点材料前驱体MAI、PbI2、辛胺碘、氢溴酸以摩尔比0.6mmol:0.6mmol:0.3mmol:0.3mmol,干燥器温度为110摄氏度,制备钙钛矿量子点聚合物复合粉末。制备的钙钛矿/聚合物微球粉末,粉末呈明亮的红色。溶液法包覆过程:称量10g粉末,缓慢倒入2000ml的正己烷中,搅拌,将粉末在溶剂中分散均匀,依次加入10mL油酸、0.5mol正硅酸乙酯,随后敞口搅拌3h充分水解,获得溶液法包覆的粉末,随后经过抽滤、烘干残留溶剂,获得均匀分布的粉末。随后进行原子层沉积包覆TiO2过程,完成整个微球的表面包覆处理过程。In this embodiment, MAPb(Br/I) 3 perovskite raw materials and polymer polymethyl methacrylate are selected for spray drying, and the quantum dot material precursor MAI, PbI 2 , octylamine iodine, and hydrobromic acid are mixed at a molar ratio of 0.6 mmol: 0.6mmol: 0.3mmol: 0.3mmol, the temperature of the dryer is 110 degrees Celsius, and the perovskite quantum dot polymer composite powder is prepared. The prepared perovskite/polymer microsphere powder is bright red. Coating process of solution method: Weigh 10g of powder, slowly pour it into 2000ml of n-hexane, stir, disperse the powder in the solvent evenly, add 10mL of oleic acid, 0.5mol ethyl orthosilicate in sequence, and then stir for 3 hours in the open to fully Hydrolyzed to obtain solution-coated powder, followed by suction filtration and drying of residual solvent to obtain evenly distributed powder. Subsequent atomic layer deposition coating TiO 2 process is carried out to complete the surface coating process of the entire microsphere.
实施例8Example 8
本实施例中选择CsPbI3钙钛矿原料和聚合物聚甲基丙烯酸甲酯进行喷雾干燥,量子点材料前驱体CsI、PbI2、辛胺碘以摩尔比0.6mmol:0.6mmol:0.3mmol,干燥器温度为120摄氏度,制备钙钛矿量子点聚合物复合粉末。制备的钙钛矿/聚合物微球粉末,粉末呈明亮的红色。溶液法包覆过程:称量10g粉末,缓慢倒入2000ml的正己烷中,搅拌,将粉末在溶剂中分散均匀,依次加入20ml油酸、0.5mol3-氨丙基三乙氧基硅烷,随后敞口搅拌5h充分水解,获得溶液法包覆的粉末,随后经过抽滤、烘干残留溶剂,获得均匀分布的粉末。随后进行原子层沉积包覆Al2O3过程,完成整个微球的表面包覆处理过程。In this embodiment, CsPbI 3 perovskite raw materials and polymer polymethyl methacrylate are selected for spray drying. Quantum dot material precursors CsI, PbI 2 , and octylamine iodine are dried at a molar ratio of 0.6mmol:0.6mmol:0.3mmol. The temperature of the device is 120 degrees Celsius, and the perovskite quantum dot polymer composite powder is prepared. The prepared perovskite/polymer microsphere powder is bright red. Coating process of solution method: Weigh 10g of powder, slowly pour it into 2000ml of n-hexane, stir, disperse the powder in the solvent evenly, add 20ml of oleic acid, 0.5mol of 3-aminopropyltriethoxysilane in sequence, and then open Stirring for 5 hours to fully hydrolyze to obtain a solution-coated powder, and then through suction filtration and drying of the residual solvent to obtain a uniformly distributed powder. Subsequently, the process of coating Al 2 O 3 by atomic layer deposition is carried out to complete the surface coating treatment process of the entire microsphere.
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。The above are only a few embodiments of the application, and do not limit the application in any form. Although the application is disclosed as above with preferred embodiments, it is not intended to limit the application. Any skilled person familiar with this field, Without departing from the scope of the technical solution of the present application, any changes or modifications made using the technical content disclosed above are equivalent to equivalent implementation cases, and all belong to the scope of the technical solution.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111121966.7A CN115852333A (en) | 2021-09-24 | 2021-09-24 | A kind of multi-layer coated quantum dot material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111121966.7A CN115852333A (en) | 2021-09-24 | 2021-09-24 | A kind of multi-layer coated quantum dot material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115852333A true CN115852333A (en) | 2023-03-28 |
Family
ID=85653080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111121966.7A Pending CN115852333A (en) | 2021-09-24 | 2021-09-24 | A kind of multi-layer coated quantum dot material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115852333A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115991922A (en) * | 2021-10-19 | 2023-04-21 | 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) | Composite material and preparation method and application thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104516034A (en) * | 2014-12-24 | 2015-04-15 | 合肥乐凯科技产业有限公司 | Quantum dot film |
CN105051152A (en) * | 2013-03-14 | 2015-11-11 | 纳米技术有限公司 | Multi-layer-coated quantum dot beads |
CN110305348A (en) * | 2018-03-20 | 2019-10-08 | 致晶科技(北京)有限公司 | A kind of multilayered structure and its preparation method and application |
CN110739385A (en) * | 2018-07-20 | 2020-01-31 | 纳晶科技股份有限公司 | Light emitting device and method of manufacturing the same |
CN112048296A (en) * | 2019-06-06 | 2020-12-08 | 纳米及先进材料研发院有限公司 | Method for preparing perovskite quantum dot/polymer/ceramic ternary complex |
CN112574438A (en) * | 2021-02-25 | 2021-03-30 | 昆山博益鑫成高分子材料有限公司 | Preparation method and application of perovskite quantum dot polymer microsphere with core-shell structure |
-
2021
- 2021-09-24 CN CN202111121966.7A patent/CN115852333A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105051152A (en) * | 2013-03-14 | 2015-11-11 | 纳米技术有限公司 | Multi-layer-coated quantum dot beads |
CN104516034A (en) * | 2014-12-24 | 2015-04-15 | 合肥乐凯科技产业有限公司 | Quantum dot film |
CN110305348A (en) * | 2018-03-20 | 2019-10-08 | 致晶科技(北京)有限公司 | A kind of multilayered structure and its preparation method and application |
CN110739385A (en) * | 2018-07-20 | 2020-01-31 | 纳晶科技股份有限公司 | Light emitting device and method of manufacturing the same |
CN112048296A (en) * | 2019-06-06 | 2020-12-08 | 纳米及先进材料研发院有限公司 | Method for preparing perovskite quantum dot/polymer/ceramic ternary complex |
CN112574438A (en) * | 2021-02-25 | 2021-03-30 | 昆山博益鑫成高分子材料有限公司 | Preparation method and application of perovskite quantum dot polymer microsphere with core-shell structure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115991922A (en) * | 2021-10-19 | 2023-04-21 | 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) | Composite material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112708416B (en) | A kind of preparation method of using oxide to coat inorganic perovskite nanocrystals | |
CN104861958B (en) | Perovskite/polymer composite luminescent material and preparation method thereof | |
WO2017144401A1 (en) | Luminescent particles | |
US11365347B2 (en) | Method for preparation of perovskite quantum dot (PQD)/polymer/ceramic ternary complex | |
CN103071396B (en) | Substrate induction method used for preparing ordered porous carbon film | |
CN110961079B (en) | Metal organic framework-MFI molecular sieve core-shell type composite material and preparation method thereof | |
JP2017520643A (en) | Particles containing quantum dots and method for producing the same | |
CN103721708A (en) | Silver/titanium dioxide composite heterostructure and preparation method thereof | |
CN110205110B (en) | Preparation method of pore confinement-shell isolation double-protection perovskite nano particles | |
CN106833614A (en) | The preparation method of quantum dot composite fluorescent powder | |
CN112973456B (en) | Two-dimensional metal organic framework nanosheet film, and preparation method and application thereof | |
CN115852333A (en) | A kind of multi-layer coated quantum dot material and preparation method thereof | |
CN112048296A (en) | Method for preparing perovskite quantum dot/polymer/ceramic ternary complex | |
CN103252202A (en) | Single-pore hollow-structured organosilicon microspheres and preparation method thereof | |
CN113061434A (en) | Perovskite quantum dot, preparation method thereof and photoelectric device | |
CN112121652B (en) | Preparation method of metal organic framework-ceramic membrane nanofiltration composite membrane | |
CN110739385B (en) | Light-emitting device and method of making the same | |
CN111013587A (en) | A kind of preparation method of monodisperse α-Fe2O3@TiO2 ellipsoid | |
CN108793226A (en) | A method of preparing transparent zinc oxide liquid dispersion | |
CN114525003B (en) | Optical film and preparation method thereof | |
CN114345144B (en) | A chiral CMS/AAO heterogeneous conjunctiva and its preparation method | |
CN110144215A (en) | A nanocrystalline surface directional passivation method and product based on atomic layer deposition | |
CN1206021C (en) | Collosol gel production method of nano NiO material | |
CN112844064A (en) | Disilane precursor silicon dioxide composite membrane, preparation method and application thereof | |
CN113087012B (en) | TiO of perovskite solar cell 2 Preparation method of electron transport layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |