WO2011030950A9 - Organic-inorganic hybrid photonic crystal, and preparation method thereof - Google Patents

Organic-inorganic hybrid photonic crystal, and preparation method thereof Download PDF

Info

Publication number
WO2011030950A9
WO2011030950A9 PCT/KR2009/005786 KR2009005786W WO2011030950A9 WO 2011030950 A9 WO2011030950 A9 WO 2011030950A9 KR 2009005786 W KR2009005786 W KR 2009005786W WO 2011030950 A9 WO2011030950 A9 WO 2011030950A9
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
photonic crystal
organic
block copolymer
inorganic hybrid
Prior art date
Application number
PCT/KR2009/005786
Other languages
French (fr)
Korean (ko)
Other versions
WO2011030950A1 (en
Inventor
강영종
강창준
김은주
구준모
양정윤
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2011030950A1 publication Critical patent/WO2011030950A1/en
Publication of WO2011030950A9 publication Critical patent/WO2011030950A9/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a photonic crystal and a method of manufacturing the same, and more particularly, to an organic-inorganic hybrid photonic crystal using a block copolymer and a metal oxide and a method of manufacturing the same.
  • Photonic crystals have a photonic band gap in which the refractive index of the material is changed periodically so that electromagnetic waves in a specific wavelength band are not transmitted. Applicability to various optoelectronic devices.
  • Photo-crystal manufacturing method is largely a top-down method based on nano-micron processing technology such as lithography, ion beam etching, and physical or colloidal particles or polymers It can be divided into bottom-up methods using chemical self-assembly.
  • the micro-machining technique has a disadvantage that the process is complicated, expensive optical equipment is required, and it is expensive.
  • colloidal particle self-assembly does not require expensive auxiliary equipment, so there is an advantage in that it is possible to make photonic crystals at low cost.
  • it is difficult to control fine colloidal particles and since one material exhibits only one stop-band, photonic crystals must be grown each time in a different colloidal solution to form a photonic crystal structure having various optical band gaps. There was an inconvenience.
  • the present invention has been made in an effort to provide a photonic crystal manufacturing method capable of obtaining photonic crystals having different optical bandgaps from a block copolymer film, and a photonic crystal prepared therefrom.
  • the photonic crystal includes a hydrophobic-hydrophilic block copolymer film having a structure in which a hydrophobic polymer domain and a hydrophilic polymer domain are alternately repeated, and a metal oxide introduced into the hydrophilic polymer domain of the film.
  • the block copolymer film may be made of polystyrene-poly (vinylpyridine) copolymer, polystyrene-polymethylmethacrylate (poly (methylmethacrylate)) copolymer, polystyrene-poly (t-butylacrylate) ( poly (tert-butylacrylate) copolymer, polyisoprene-poly (ethyleneoxide) copolymer, polystyrene-polylactide copolymer, polycyclohexylethylene -Polylactide copolymer, or polymethylstyrene-polyhydroxystyrene copolymer,
  • the block copolymer film may be a polystyrene-polyvinylpyridine copolymer film. .
  • the structure in which the hydrophobic polymer domain and the hydrophilic polymer domain are alternately repeated may be a lamellar structure.
  • the metal oxide may be any one selected from the group consisting of SiO 2 , TiO 2 , ZnO, Al 2 O 3, and ZrO 2 .
  • a block copolymer having a hydrophobic polymer block and a hydrophilic polymer block is self-assembled to form a hydrophobic-hydrophilic block copolymer film having a structure in which the hydrophobic polymer domain and the hydrophilic polymer domain are alternately repeated.
  • the block copolymer film is immersed in a hydrophilic solvent to swell the hydrophilic polymer domain.
  • Metal oxides are introduced into the swollen hydrophilic polymer domain.
  • the block copolymer may be polystyrene-polyvinylpyridine copolymer, polystyrene-polymethylmethacrylate copolymer, polystyrene-poly (t-butylacrylate) copolymer, polyisoprene-poly (ethylene oxide) copolymer, polystyrene-poly Lactide copolymers, polycyclohexylethylene-polylactide copolymers, or polymethylstyrene-polyhydroxystyrene copolymers.
  • the block copolymer may be a polystyrene-polyvinylpyridine copolymer.
  • the block copolymer film may be formed by preparing a solution containing the block copolymer, applying the solution onto a substrate to form a film, and then annealing the film.
  • Haloalkane may be added to the hydrophilic solvent.
  • the haloalkane may be methyl iodide.
  • the glass transition temperature of the hydrophobic polymer domain may be higher than the temperature at which the swelling step is performed.
  • Introduction of the metal oxide into the swollen hydrophilic polymer domain is performed by adding a metal oxide precursor into a hydrophilic solvent in which the block copolymer film is immersed, and then adding the metal oxide precursor to a sol-gel reaction. can do.
  • a photonic crystal having an optical band gap in a desired band of all wavelength bands of ultraviolet-visible-infrared rays can be manufactured from one block copolymer film formed by self-assembly.
  • the copolymer since a relatively low molecular weight block copolymer may be used, the copolymer may have advantages in synthesis and control of the copolymer as compared with the case of using a high molecular weight block copolymer.
  • FIG. 1 is a flowchart illustrating a method of manufacturing an organic-inorganic hybrid photonic crystal according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a method of manufacturing an organic-inorganic hybrid photonic crystal according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view showing a cross section of an organic-inorganic hybrid photonic crystal according to an embodiment of the present invention.
  • FIG. 6 is a photograph of organic-inorganic hybrid photonic crystals prepared according to Preparation Examples 1 to 6 under white light.
  • 1 and 2 are a flow chart and a schematic diagram showing a method for manufacturing an organic-inorganic hybrid photonic crystal according to an embodiment of the present invention, respectively.
  • a block copolymer having a hydrophobic polymer block and a hydrophilic polymer block is self-assembled to alternately repeat a hydrophobic polymer domain (P a ) and a hydrophilic polymer domain (P b ).
  • a copolymer film (BF) is formed (S10).
  • the hydrophobic polymer domain (P a ) and the hydrophilic polymer domain (P b ) mean regions that are predominantly occupied by hydrophobic polymers and hydrophilic polymers, respectively.
  • the block copolymer may be, for example, a polystyrene-poly (vinylpyridine) copolymer, a polystyrene-polymethyl methacrylate copolymer, a polystyrene-poly (t-butylacryl) (Poly (tert-butylacrylate) copolymer, polyisoprene-poly (ethyleneoxide) copolymer, polystyrene-polylactide copolymer, polycyclohexylethylene (poly ( cyclohexylethylene))-polylactide copolymer, or polymethylstyrene-polyhydroxystyrene copolymer, but is not limited to polystyrene, polyisoprene, polycyclohexylethylene, And polymethylstyrene corresponds to a hydrophobic polymer, and polyvinylpyridine, polymethylmethacrylate, poly (t-butylacryl
  • Forming the block copolymer film (BF) is specifically, preparing a block copolymer solution containing a hydrophobic-hydrophilic block copolymer and a solvent, and applying the block copolymer solution on a substrate to form a block copolymer film After forming, the film may be annealed.
  • the solvent in the block copolymer solution may be appropriately selected in consideration of the viscosity of the block copolymer solution and the mobility during the self-assembly process.
  • the solvent is butyrolactone, cyclopentanone, cyclohexanone, dimethylacetamide, dimethylformamide, dimethylsulfoxide, N-methyl pyrrolidone, tetrahydroperfural alcohol, propylene glycol monomethyl ether (PGME ), Propylene glycol monomethyl ether acetate (PGMEA), ethyl lactate or mixtures thereof.
  • the block copolymer solution is coated on a substrate by spin coating, dip coating, ink-jet printing, spray coating, or screen printing. It may be a screen printing method, a drop casting method or a doctor blade method.
  • Annealing the film may be carried out using thermal annealing or solvent annealing. In the annealing process, the degree of repeat alignment of the hydrophobic polymer domain and the hydrophilic polymer domain in the block copolymer film may be greatly improved.
  • the repeating alignment structure of the hydrophobic polymer domain (P a ) and the hydrophilic polymer domain (P b ) in the block copolymer film (BF) is a lamellar according to the volume fraction of the hydrophobic polymer block and the hydrophilic polymer block contained in the block copolymer. It may have a structure, a cylinder structure or a spherical structure. Although the lamellar structure is illustrated as a repeating alignment structure in the drawings, the present invention is not limited thereto.
  • the hydrophobic polymer domain (P a ) and the hydrophilic polymer domain (P b ) in the block copolymer film (BF) may be repeatedly aligned in a lamellar structure. Can be.
  • the block copolymer film (BF) is immersed in an optional solvent to selectively swell any one of the polymer domains, and the hydrophilic polymer domain (P b ) is selective when the selective solvent is a hydrophilic solvent. Swelling (S12).
  • the hydrophilic solvent may be water or a hydrophilic organic solvent, and the hydrophilic organic solvent may be an alcohol.
  • suitable additives may be added in the hydrophilic solvent to facilitate the selective penetration of the hydrophilic solvent into the hydrophilic polymer domain (P b ).
  • the hydrophilic polymer block in the hydrophilic polymer domain (P b ) is poly (2-vinylpyridine)
  • haloalkanes haloalkane
  • the hydrophilic solvent may be water.
  • the haloalkaine may be methyl iodide (CH 3 I).
  • hydrophilic polymer domain P b As the hydrophilic polymer domain P b is swollen by the hydrophilic solvent, formation of a substantial volume of regions in the hydrophilic polymer domain P b is not occupied by the hydrophilic polymer.
  • the hydrophilic polymer domain (P b ) may be selectively swollen in the normal direction, that is, Z-axis direction with respect to the block copolymer film (BF).
  • the glass transition temperature of the hydrophobic polymer domain (P a ) is higher than the temperature of the environment in which the swelling process is carried out, so that the hydrophobic polymer domain (P a ) has little elasticity during the swelling process ( glass state).
  • a metal oxide (MO) is introduced into the swollen hydrophilic polymer domain (P b ) (S14) to form an organic-inorganic hybrid photonic crystal (PC).
  • the metal oxide (MO) may be introduced into a region that is not occupied by the hydrophilic polymer block in the swollen hydrophilic polymer domain (P b ).
  • the metal oxide (MO) may be any one selected from the group consisting of SiO 2 , TiO 2 , ZnO, Al 2 O 3, and ZrO 2 .
  • the introduction of the metal oxide may be performed by adding a precursor of the metal oxide to the hydrophilic solvent in a state in which the block copolymer film (BF) is immersed in the hydrophilic solvent.
  • the added metal oxide precursor is selectively introduced into the swollen hydrophilic polymer domain (P b ), and then the metal in the hydrophilic polymer domain (P b ) through a sol-gel reaction.
  • Oxide nanoparticles (MO) may be formed.
  • the metal oxide nanoparticles (MO) formed during the sol-gel reaction may form a continuous network by growth and aggregation. Accordingly, even after the block copolymer film (BF) is taken out of the solvent and dried, the swollen hydrophilic polymer domain (P b ) is not completely shrunk and is constant in proportion to the degree of introduction of the metal oxide (MO). It is possible to maintain an increased thickness (meaning an increased thickness than the thickness of the hydrophilic polymer domain before swelling). Accordingly, in the present specification, the process of selective swelling of the hydrophilic polymer domain (P b ) and fixation to a constant thickness by introduction of a metal oxide (MO) is taken into consideration, which is called a swelling-freezing method. On the other hand, the amount of the metal oxide (MO) is introduced and the degree of increase in the thickness of the hydrophilic polymer domain (P b ) can be controlled by controlling the sol-gel reaction time.
  • the pH of the solution in which the sol-gel reaction takes place needs to be appropriately adjusted so that the metal oxide is not overcoated and can be gelated at an appropriate rate.
  • the metal oxide precursor is tetraethoxysilane (TEOS) and the metal oxide produced therefrom is SiO 2
  • TEOS tetraethoxysilane
  • SiO 2 under acidic conditions, a transparent monolith gel is formed and rapid gelation occurs
  • a network gel in the form of a powder is produced. Therefore, when the reaction is performed only under the basic conditions, the optical properties of the manufactured photonic crystal may be deteriorated due to the overcoating phenomenon of the powder-type gel, which reduces the sharpness of color due to scattering of reflected wavelengths.
  • FIG 3 is a cross-sectional view showing a cross section of an organic-inorganic hybrid photonic crystal according to an embodiment of the present invention.
  • the refractive index (n 2 ′) of the hydrophilic polymer domain (P b ) may be different from the refractive index of the pure hydrophilic polymer domain, which is a Lorentz-Lorentz mixing rule (Lorentz). Can be calculated by the Lorenz mixing rule.
  • the hydrophilic polymer domain (P b ) is a polyvinylpyridine domain having a refractive index of about 1.62 and the hydrophobic polymer domain (P a ) is a polystyrene domain having a refractive index of about 1.62 and the metal oxide has a refractive index of about 1.25 to 1.34.
  • the refractive index of the polyvinylpyridine domain in which the SiO 2 is introduced may exhibit a value between the refractive index of the polyvinylpyridine domain and the refractive index of SiO 2 . Accordingly, the refractive index n 2 ′ of the polyvinylpyridine domain in which SiO 2 is introduced may be smaller than the refractive index n 1 of the polystyrene domain. As such, the metal oxide (MO) may be introduced to control the refractive index n 2 ′ of the hydrophilic polymer domain P b .
  • the light L incident on the photonic crystal PC has the two domains P b , It can be totally reflected on either side between P a ).
  • the wavelength ⁇ satisfying the following Equation 1 may be selectively reflected.
  • n is a positive integer.
  • the wavelength ⁇ that is selectively reflected depends on the spacing d between the total reflection surfaces TR, and the spacing d between the total reflection surfaces is a metal as described above. It can be controlled by adjusting the thickness increase of the hydrophilic polymer domain (P b ) in accordance with the introduction of the oxide. As described above, the thickness adjustment of such a hydrophilic polymer domain (P b) can be carried out by controlling the amount of metal oxide that is selectively introducing within the hydrophilic polymer domains (P b).
  • the block copolymer film in which the metal oxide (MO) is selectively introduced into the hydrophilic polymer domain (P b ) may serve as a photonic crystal that reflects a specific wavelength.
  • the wavelength ( ⁇ ) of the reflected light can be varied.
  • the selectively reflected wavelength ⁇ is called an optical band gap, and the optical band gap is easily set to a desired band among all wavelength bands of the ultraviolet-visible-infrared ray through the thickness control of the hydrophilic polymer domain P b . Can be.
  • the increase in the thickness of the polymer domain may be performed by increasing the molecular weight of the polymer (> 1Mg / mol).
  • the molecular weight increases, the viscosity of the polymer increases, which makes it difficult to self-assemble and thus it is very difficult to arrange the domains regularly.
  • the photocrystal may be formed using a block copolymer having polymer blocks having a relatively low molecular weight.
  • a block copolymer having a relatively low molecular weight may be used as compared to the molecular weight ( ⁇ 10 6 g / mol) theoretically required to have an optical band gap in the block copolymer photonic crystal. Therefore, in addition to having an advantage in terms of synthesis of the block copolymer, there is an advantage in improving the alignment of the hydrophobic polymer domain and the hydrophilic polymer domain by lowering the viscosity and increasing the mobility in the self-assembly process.
  • PMMA propylene glycol monomethyl ether acetate
  • the prepared block copolymer film was placed in a container (100 ml) containing methanol (50 ml), and then slowly added TEOS (tetraethoxysilane) (5 ml) and NH 4 OH (1 ml) while stirring at about 600 rpm. After stirring for about 20 minutes, HCl (0.2 ml) was further added, and after a certain time, the block copolymer film was taken out of the container and dried.
  • TEOS tetraethoxysilane
  • the time taken to remove the block copolymer film from the addition of HCl that is, the aging time ( ⁇ a ) was set to 15 minutes.
  • FIG. 4 is a transmission spectrum of organic-inorganic hybrid photonic crystals prepared according to Preparation Examples 1 to 6, respectively, and FIG. 5 is a aging time ( ⁇ ) of organic-inorganic hybrid photonic crystals prepared according to Preparation Examples 1 to 6, respectively. It is a graph showing the maximum reflection wavelength ( ⁇ max ) for a), Figure 6 is a photograph taken under the white light of the organic-inorganic hybrid photonic crystals prepared according to Preparation Examples 1 to 6. The downward peak in FIG. 4 represents a wavelength band in which reflection occurs by the photonic crystal.
  • the organic-inorganic hybrid photonic crystal also has a wavelength at which reflection occurs as the aging time ⁇ a increases. From this, it can be seen that the thickness of the hydrophilic polymer domain is increased as the aging time ( ⁇ a ) is increased, and the increase in the thickness of the hydrophilic polymer domain is due to the increase of the amount of metal oxide introduced into the hydrophilic polymer domain. It is feed.
  • FIG. 7 is an SEM image of a block copolymer film before introducing a metal oxide
  • FIGS. 8, 9, and 10 are SEM images of organic-inorganic hybrid photonic crystals prepared according to Preparation Example 1, Preparation Example 3, and Preparation Example 6, respectively. .
  • the thickness of the P2VP domain was selectively increased after the introduction of the metal oxide (SiO 2 ) compared to the block copolymer film before the introduction of the metal oxide.
  • the thickness of the P2VP domain increases as the amount of SiO 2 introduced increases.
  • FIG. 10 a unique structure in which P2VP chains, which were originally entangled with each other, is divided into two regions to form an empty space between the two regions, and the two regions are connected by silica bridges.
  • an organic-inorganic hybrid photonic crystal having an optical band gap of a desired wavelength band among a wide wavelength band of ultraviolet-visible-ultraviolet rays is obtained by using a swelling-fixing method from one self-assembled block copolymer film. Easy to manufacture

Abstract

Provided are an organic-inorganic hybrid photonic crystal, and a preparation method thereof. The photonic crystal comprises a hydrophobic-hydrophilic block copolymer film having an alternate structure of a hydrophobic polymer domain and a hydrophilic polymer domain, and a metal oxide introduced into the hydrophobic polymer domain of the film. The photonic crystal can be formed by forming a hydrophobic-hydrophilic block copolymer film having an alternate structure of a hydrophobic polymer domain and a hydrophilic polymer domain by the self-assembly of a block copolymer having a hydrophobic polymer block and a hydrophilic polymer block, dipping the block copolymer film in a hydrophilic solvent to swell the hydrophilic polymer domain, and introducing a metal oxide into the swollen hydrophilic polymer domain. The photonic crystal having a photonic band gap in a desired band among a wide wavelength band can be prepared by selectively introducing a metal oxide into the hydrophilic polymer domain inside one block copolymer film formed by self-assembly. In addition, the synthesis and control of a copolymer are advantageous since a block copolymer having a relatively low molecular weight can be used.

Description

유기-무기 하이브리드 광결정 및 그 제조방법Organic-Inorganic Hybrid Photonic Crystals and Manufacturing Method Thereof
본 발명은 광결정 및 그 제조방법에 관한 것으로, 보다 상세하게는 블록 공중합체 및 금속 산화물을 이용한 유무기 하이브리드 광결정 및 그 제조방법에 관한 것이다. The present invention relates to a photonic crystal and a method of manufacturing the same, and more particularly, to an organic-inorganic hybrid photonic crystal using a block copolymer and a metal oxide and a method of manufacturing the same.
초고속 정보화 사회의 구현을 위해 그 효율과 집적도 면에서 향상된 광전자 소자(photoelectronic device)에 대한 개발의 필요성이 증대되고 있으며, 이에 미시적 공간에서 광자를 제어할 수 있는 광결정(photonic crystal)의 이용에 관심이 집중되고 있다. 광결정은 물질의 굴절률을 주기적으로 변화시켜 특정 파장 대역의 전자기파가 전달되지 않는 광밴드갭(photonic band gap)을 갖는 물질로서 광 필터, 마이크로레이저, 전기발광소자, 광기전소자, 광 스위치, 센서 등 다양한 광전자 소자에의 응용성을 가지고 있다. There is an increasing need for the development of photoelectronic devices with improved efficiency and integration in order to realize a high-speed information society, and interest in the use of photonic crystals that can control photons in micro spaces. It is concentrated. Photonic crystals have a photonic band gap in which the refractive index of the material is changed periodically so that electromagnetic waves in a specific wavelength band are not transmitted. Applicability to various optoelectronic devices.
광결정을 제작하는 방법은 크게 리소그라피(lithography), 이온빔 에칭(ion beam etching) 등 나노 미세 가공기술을 바탕으로 한 탑-다운(top-down) 방법과 콜로이드 입자(colloidal particle)나 고분자 등의 물리적 또는 화학적 자기조립(self-assembly)을 이용하는 바텀-업(bottom-up) 방법으로 나눌 수 있다.Photo-crystal manufacturing method is largely a top-down method based on nano-micron processing technology such as lithography, ion beam etching, and physical or colloidal particles or polymers It can be divided into bottom-up methods using chemical self-assembly.
그러나, 미세 가공기술은 공정이 복잡하고, 고가의 광학 장비가 필요하며, 많은 비용이 소요된다는 단점이 있다. 반면, 콜로이드 입자 자기조립법의 경우 고가의 부대장비를 필요로 하지 않으므로 저렴하게 광결정을 만들 수 있는 장점이 있다. 하지만, 미세한 콜로이드 입자를 제어하기가 어려운 문제가 있으며, 한 물질이 하나의 저지 대역(stop-band)만을 나타내므로 다양한 광밴드갭을 갖는 광결정 구조체를 형성하기 위해서는 매번 다른 콜로이드 용액에서 광결정을 성장시켜야 하는 불편함이 있었다.However, the micro-machining technique has a disadvantage that the process is complicated, expensive optical equipment is required, and it is expensive. On the other hand, colloidal particle self-assembly does not require expensive auxiliary equipment, so there is an advantage in that it is possible to make photonic crystals at low cost. However, it is difficult to control fine colloidal particles, and since one material exhibits only one stop-band, photonic crystals must be grown each time in a different colloidal solution to form a photonic crystal structure having various optical band gaps. There was an inconvenience.
본 발명이 해결하고자 하는 기술적 과제는 한 종류의 블록 공중합체 필름으로부터 광밴드갭이 서로 다른 광결정을 얻을 수 있는 광결정 제조방법 및 이로부터 제조된 광결정을 제공함에 있다.SUMMARY OF THE INVENTION The present invention has been made in an effort to provide a photonic crystal manufacturing method capable of obtaining photonic crystals having different optical bandgaps from a block copolymer film, and a photonic crystal prepared therefrom.
상기 기술적 과제를 이루기 위하여 본 발명의 일 측면은 유무기 하이브리드 광결정을 제공한다. 상기 광결정은 소수성 고분자 도메인과 친수성 고분자 도메인이 교대로 반복된 구조를 갖는 소수성-친수성 블록 공중합체 필름과 상기 필름의 친수성 고분자 도메인에 도입된 금속 산화물을 구비한다.One aspect of the present invention to achieve the above technical problem provides an organic-inorganic hybrid photonic crystal. The photonic crystal includes a hydrophobic-hydrophilic block copolymer film having a structure in which a hydrophobic polymer domain and a hydrophilic polymer domain are alternately repeated, and a metal oxide introduced into the hydrophilic polymer domain of the film.
상기 블록 공중합체 필름은 폴리스티렌(polystyrene)-폴리비닐피리딘(poly(vinylpyridine)) 공중합체, 폴리스티렌-폴리메틸메타크릴레이트(poly(methylmethacrylate)) 공중합체, 폴리스티렌-폴리(t-부틸아크릴레이트)(poly(tert-butylacrylate) 공중합체, 폴리아이소프렌(polyisoprene)-폴리(에틸렌옥사이드)(poly(ethyleneoxide)) 공중합체, 폴리스티렌-폴리락티드(polylactide) 공중합체, 폴리사이클로헥실에틸렌(poly(cyclohexylethylene))-폴리락티드 공중합체, 또는 폴리메틸스티렌(polymethylstyrene)-폴리하이드록시스티렌(polyhydroxystyrene) 공중합체를 함유할 수 있다. 바람직하게는 상기 블록 공중합체 필름은 폴리스티렌-폴리비닐피리딘 공중합체 필름일 수 있다.The block copolymer film may be made of polystyrene-poly (vinylpyridine) copolymer, polystyrene-polymethylmethacrylate (poly (methylmethacrylate)) copolymer, polystyrene-poly (t-butylacrylate) ( poly (tert-butylacrylate) copolymer, polyisoprene-poly (ethyleneoxide) copolymer, polystyrene-polylactide copolymer, polycyclohexylethylene -Polylactide copolymer, or polymethylstyrene-polyhydroxystyrene copolymer, Preferably, the block copolymer film may be a polystyrene-polyvinylpyridine copolymer film. .
상기 소수성 고분자 도메인과 상기 친수성 고분자 도메인이 교대로 반복된 구조는 라멜라 구조일 수 있다.The structure in which the hydrophobic polymer domain and the hydrophilic polymer domain are alternately repeated may be a lamellar structure.
상기 금속 산화물은 SiO2, TiO2, ZnO, Al2O3 및 ZrO2로 이루어지는 군에서 선택되는 어느 하나일 수 있다.The metal oxide may be any one selected from the group consisting of SiO 2 , TiO 2 , ZnO, Al 2 O 3, and ZrO 2 .
상기 기술적 과제를 이루기 위하여 본 발명의 다른 측면은 유무기 하이브리드 광결정의 제조방법을 제공한다. 먼저, 소수성 고분자 블록과 친수성 고분자 블록을 갖는 블록 공중합체를 자기조립시켜 소수성 고분자 도메인과 친수성 고분자 도메인이 교대로 반복된 구조를 갖는 소수성-친수성 블록 공중합체 필름을 형성한다. 상기 블록 공중합체 필름을 친수성 용매에 침지하여 상기 친수성 고분자 도메인을 팽윤시킨다. 상기 팽윤된 친수성 고분자 도메인 내에 금속 산화물을 도입한다.Another aspect of the present invention to achieve the above technical problem provides a method for producing an organic-inorganic hybrid photonic crystal. First, a block copolymer having a hydrophobic polymer block and a hydrophilic polymer block is self-assembled to form a hydrophobic-hydrophilic block copolymer film having a structure in which the hydrophobic polymer domain and the hydrophilic polymer domain are alternately repeated. The block copolymer film is immersed in a hydrophilic solvent to swell the hydrophilic polymer domain. Metal oxides are introduced into the swollen hydrophilic polymer domain.
상기 블록 공중합체는 폴리스티렌-폴리비닐피리딘 공중합체, 폴리스티렌-폴리메틸메타크릴레이트 공중합체, 폴리스티렌-폴리(t-부틸아크릴레이트) 공중합체, 폴리아이소프렌-폴리(에틸렌옥사이드) 공중합체, 폴리스티렌-폴리락티드 공중합체, 폴리사이클로헥실에틸렌-폴리락티드 공중합체, 또는 폴리메틸스티렌-폴리하이드록시스티렌 공중합체일 수 있다. 바람직하게는 상기 블록 공중합체는 폴리스티렌-폴리비닐피리딘 공중합체일 수 있다.The block copolymer may be polystyrene-polyvinylpyridine copolymer, polystyrene-polymethylmethacrylate copolymer, polystyrene-poly (t-butylacrylate) copolymer, polyisoprene-poly (ethylene oxide) copolymer, polystyrene-poly Lactide copolymers, polycyclohexylethylene-polylactide copolymers, or polymethylstyrene-polyhydroxystyrene copolymers. Preferably the block copolymer may be a polystyrene-polyvinylpyridine copolymer.
상기 블록 공중합체 필름은 상기 블록 공중합체를 함유하는 용액을 준비하고, 상기 용액을 기판 상에 도포하여 필름을 형성한 후, 상기 필름을 어닐링하여 형성할 수 있다.The block copolymer film may be formed by preparing a solution containing the block copolymer, applying the solution onto a substrate to form a film, and then annealing the film.
상기 친수성 용매 내에 할로알케인(haloalkane)을 추가할 수 있다. 상기 할로알케인은 요오드화 메틸일 수 있다.Haloalkane may be added to the hydrophilic solvent. The haloalkane may be methyl iodide.
상기 소수성 고분자 도메인의 유리전이온도는 상기 팽윤 단계가 수행되는 온도에 비해 높을 수 있다.The glass transition temperature of the hydrophobic polymer domain may be higher than the temperature at which the swelling step is performed.
상기 팽윤된 친수성 고분자 도메인 내에 금속 산화물을 도입하는 것은 금속 산화물 전구체를 상기 블록 공중합체 필름이 침지된 친수성 용매 내에 첨가한 후, 상기 첨가된 금속 산화물 전구체를 졸-겔(sol-gel) 반응시켜 수행할 수 있다.Introduction of the metal oxide into the swollen hydrophilic polymer domain is performed by adding a metal oxide precursor into a hydrophilic solvent in which the block copolymer film is immersed, and then adding the metal oxide precursor to a sol-gel reaction. can do.
상술한 바와 같이 본 발명에 따르면, 자기조립에 의해 형성된 하나의 블록 공중합체 필름으로부터 자외선-가시광선-적외선의 전 파장 대역 중 원하는 대역에서 광밴드갭을 갖는 광결정을 제조할 수 있는 장점이 있다. 또한, 비교적 낮은 분자량의 블록 공중합체를 이용할 수 있으므로 높은 분자량의 블록 공중합체를 이용하는 경우에 비해 공중합체의 합성 및 공중합체 제어 상의 이점을 가질 수 있다.As described above, according to the present invention, there is an advantage in that a photonic crystal having an optical band gap in a desired band of all wavelength bands of ultraviolet-visible-infrared rays can be manufactured from one block copolymer film formed by self-assembly. In addition, since a relatively low molecular weight block copolymer may be used, the copolymer may have advantages in synthesis and control of the copolymer as compared with the case of using a high molecular weight block copolymer.
다만, 본 발명의 효과들은 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명의 일 실시예에 따른 유무기 하이브리드 광결정의 제조방법을 나타낸 흐름도이다.1 is a flowchart illustrating a method of manufacturing an organic-inorganic hybrid photonic crystal according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 유무기 하이브리드 광결정의 제조방법을 나타낸 개략도이다. 2 is a schematic view showing a method of manufacturing an organic-inorganic hybrid photonic crystal according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 유무기 하이브리드 광결정의 단면을 나타낸 단면도이다.3 is a cross-sectional view showing a cross section of an organic-inorganic hybrid photonic crystal according to an embodiment of the present invention.
도 4는 상기 제조예 1 내지 제조예 6에 따라 각각 제조된 유무기 하이브리드 광결정의 투과 스펙트럼이다.4 is a transmission spectrum of organic-inorganic hybrid photonic crystals prepared according to Preparation Examples 1 to 6, respectively.
도 5는 상기 제조예 1 내지 제조예 6에 따라 각각 제조된 유무기 하이브리드 광결정의 숙성시간(τa)에 대한 최대반사파장(λmax)을 나타낸 그래프이다.5 is a graph showing the maximum reflection wavelength (λ max) versus the aging time (τa) of the organic-inorganic hybrid photonic crystals prepared according to Preparation Examples 1 to 6, respectively.
도 6은 상기 제조예 1 내지 제조예 6에 따라 각각 제조된 유무기 하이브리드 광결정을 백색광 하에서 촬영한 사진이다.FIG. 6 is a photograph of organic-inorganic hybrid photonic crystals prepared according to Preparation Examples 1 to 6 under white light.
도 7은 금속 산화물을 도입하기 전의 블록 공중합체 필름의 SEM 이미지이다.7 is an SEM image of a block copolymer film before introducing a metal oxide.
도 8, 9 및 10은 각각 상기 제조예 1, 제조예 3 및 제조예 6에 따라 제조된 유무기 하이브리드 광결정의 SEM 이미지이다.8, 9 and 10 are SEM images of organic-inorganic hybrid photonic crystals prepared according to Preparation Example 1, Preparation Example 3 and Preparation Example 6, respectively.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 그러나, 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면들에 있어서, 층 및 대역들의 두께는 명확성을 기하기 위하여 과장된 것이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and to fully convey the spirit of the present invention to those skilled in the art. In the drawings, the thicknesses of layers and bands are exaggerated for clarity.
도 1 및 도 2는 각각 본 발명의 일 실시예에 따른 유무기 하이브리드 광결정의 제조방법을 나타낸 플로우 챠트 및 개략도이다.1 and 2 are a flow chart and a schematic diagram showing a method for manufacturing an organic-inorganic hybrid photonic crystal according to an embodiment of the present invention, respectively.
도 1 및 도 2를 참조하면, 소수성 고분자 블록과 친수성 고분자 블록을 구비하는 블록 공중합체를 자기조립시켜 소수성 고분자 도메인(Pa)과 친수성 고분자 도메인(Pb)이 교대로 반복되는 구조를 갖는 블록 공중합체 필름(BF)을 형성한다(S10). 상기 소수성 고분자 도메인(Pa) 및 상기 친수성 고분자 도메인(Pb)은 각각 소수성 고분자와 친수성 고분자로 우세하게 점유된 영역을 의미한다.1 and 2, a block copolymer having a hydrophobic polymer block and a hydrophilic polymer block is self-assembled to alternately repeat a hydrophobic polymer domain (P a ) and a hydrophilic polymer domain (P b ). A copolymer film (BF) is formed (S10). The hydrophobic polymer domain (P a ) and the hydrophilic polymer domain (P b ) mean regions that are predominantly occupied by hydrophobic polymers and hydrophilic polymers, respectively.
상기 블록 공중합체는 예를 들어, 폴리스티렌(polystyrene)-폴리비닐피리딘(poly(vinylpyridine)) 공중합체, 폴리스티렌-폴리메틸메타크릴레이트(poly(methylmethacrylate)) 공중합체, 폴리스티렌-폴리(t-부틸아크릴레이트)(poly(tert-butylacrylate) 공중합체, 폴리아이소프렌(polyisoprene)-폴리(에틸렌옥사이드)(poly(ethyleneoxide)) 공중합체, 폴리스티렌-폴리락티드(polylactide) 공중합체, 폴리사이클로헥실에틸렌(poly(cyclohexylethylene))-폴리락티드 공중합체, 또는 폴리메틸스티렌(polymethylstyrene)-폴리하이드록시스티렌(polyhydroxystyrene) 공중합체일 수 있다. 그러나 이에 한정되는 것은 아니다. 여기서, 폴리스티렌, 폴리아이소프렌, 폴리사이클로헥실에틸렌, 및 폴리메틸스티렌은 소수성 고분자에 해당하고, 폴리비닐피리딘, 폴리메틸메타크릴레이트, 폴리(t-부틸아크릴레이트), 폴리(에틸렌옥사이드), 폴리락티드, 폴리하이드록시스티렌은 친수성 고분자에 해당할 수 있다.The block copolymer may be, for example, a polystyrene-poly (vinylpyridine) copolymer, a polystyrene-polymethyl methacrylate copolymer, a polystyrene-poly (t-butylacryl) (Poly (tert-butylacrylate) copolymer, polyisoprene-poly (ethyleneoxide) copolymer, polystyrene-polylactide copolymer, polycyclohexylethylene (poly ( cyclohexylethylene))-polylactide copolymer, or polymethylstyrene-polyhydroxystyrene copolymer, but is not limited to polystyrene, polyisoprene, polycyclohexylethylene, And polymethylstyrene corresponds to a hydrophobic polymer, and polyvinylpyridine, polymethylmethacrylate, poly (t-butylacrylate), poly (ethylene Oxide), polylactide, polyhydroxystyrene may correspond to a hydrophilic polymer.
상기 블록 공중합체 필름(BF)을 형성하는 것은 구체적으로, 소수성-친수성 블록 공중합체와 용매를 함유한 블록 공중합체 용액을 준비하고, 상기 블록 공중합체 용액을 기판 상에 도포하여 블록 공중합체 필름을 형성한 후, 상기 필름을 어닐링(annealing)하여 수행할 수 있다.Forming the block copolymer film (BF) is specifically, preparing a block copolymer solution containing a hydrophobic-hydrophilic block copolymer and a solvent, and applying the block copolymer solution on a substrate to form a block copolymer film After forming, the film may be annealed.
여기서, 상기 블록 공중합체 용액 내의 용매는 상기 블록 공중합체 용액의 점성과 자기조립 과정 중의 이동도 등을 고려하여 적절하게 선택할 수 있다. 일 예로, 상기 용매는 부티로락톤, 시클로펜타논, 시클로헥사논, 디메틸아세트아미드, 디메틸포름아미드, 디메틸설폭사이드, N-메틸 피롤리돈, 테트라히드로퍼퓨랄 알코올, 프로필렌 글리콜 모노메틸 에테르(PGME), 프로필렌 글리콜 모노메틸 에테르 아세테이트(PGMEA), 에틸락테이트 또는 이들의 혼합물일 수 있다.Herein, the solvent in the block copolymer solution may be appropriately selected in consideration of the viscosity of the block copolymer solution and the mobility during the self-assembly process. In one example, the solvent is butyrolactone, cyclopentanone, cyclohexanone, dimethylacetamide, dimethylformamide, dimethylsulfoxide, N-methyl pyrrolidone, tetrahydroperfural alcohol, propylene glycol monomethyl ether (PGME ), Propylene glycol monomethyl ether acetate (PGMEA), ethyl lactate or mixtures thereof.
상기 블록 공중합체 용액을 기판 상에 도포하는 방법은 스핀 코팅(spin coating)법, 딥 코팅(dip coating)법, 잉크젯 프린팅(ink-jet printing)법, 스프레이 코팅(spray coating)법, 스크린 프린팅(screen printing)법, 드롭 캐스팅(drop casting)법 또는 닥터 블레이드(doctor blade)법일 수 있다.The block copolymer solution is coated on a substrate by spin coating, dip coating, ink-jet printing, spray coating, or screen printing. It may be a screen printing method, a drop casting method or a doctor blade method.
상기 필름을 어닐링하는 것은 열 어닐링(thermal annealing)법 또는 용매 어닐링(solvent annealing)법을 사용하여 수행할 수 있다. 상기 어닐링 과정에서 상기 블록 공중합체 필름 내의 소수성 고분자 도메인과 친수성 고분자 도메인의 반복 정렬 정도는 크게 향상될 수 있다.Annealing the film may be carried out using thermal annealing or solvent annealing. In the annealing process, the degree of repeat alignment of the hydrophobic polymer domain and the hydrophilic polymer domain in the block copolymer film may be greatly improved.
한편, 상기 블록 공중합체 필름(BF) 내의 소수성 고분자 도메인(Pa)과 친수성 고분자 도메인(Pb)의 반복 정렬 구조는 블록 공중합체 내에 함유된 소수성 고분자 블록과 친수성 고분자 블록의 부피 분율에 따라 라멜라 구조, 실린더 구조 또는 구형 구조를 가질 수 있다. 도면에는 반복 정렬 구조로서 라멜라 구조가 도시되었으나 이에 한정되는 것은 아니다. 다만, 소수성 고분자 블록과 친수성 고분자 블록이 서로 비슷한 부피 분율을 갖는 경우에, 상기 블록 공중합체 필름(BF) 내의 소수성 고분자 도메인(Pa)과 친수성 고분자 도메인(Pb)은 라멜라 구조로 반복 정렬될 수 있다. Meanwhile, the repeating alignment structure of the hydrophobic polymer domain (P a ) and the hydrophilic polymer domain (P b ) in the block copolymer film (BF) is a lamellar according to the volume fraction of the hydrophobic polymer block and the hydrophilic polymer block contained in the block copolymer. It may have a structure, a cylinder structure or a spherical structure. Although the lamellar structure is illustrated as a repeating alignment structure in the drawings, the present invention is not limited thereto. However, when the hydrophobic polymer block and the hydrophilic polymer block have similar volume fractions, the hydrophobic polymer domain (P a ) and the hydrophilic polymer domain (P b ) in the block copolymer film (BF) may be repeatedly aligned in a lamellar structure. Can be.
이 후, 상기 블록 공중합체 필름(BF)을 선택적 용매에 침지하여 상기 고분자 도메인들 중 어느 한 도메인을 선택적으로 팽윤시키되, 상기 선택적 용매가 친수성 용매인 경우에 상기 친수성 고분자 도메인(Pb)이 선택적으로 팽윤된다(S12).Thereafter, the block copolymer film (BF) is immersed in an optional solvent to selectively swell any one of the polymer domains, and the hydrophilic polymer domain (P b ) is selective when the selective solvent is a hydrophilic solvent. Swelling (S12).
상기 친수성 용매는 물 또는 친수성 유기용매일 수 있으며, 상기 친수성 유기용매는 알코올일 수 있다.The hydrophilic solvent may be water or a hydrophilic organic solvent, and the hydrophilic organic solvent may be an alcohol.
이에 더하여, 상기 친수성 고분자 도메인(Pb) 내로 상기 친수성 용매를 선택적으로 침투시키는 것을 용이하게 하기 위하여, 상기 친수성 용매 내에 적절한 첨가제를 추가할 수도 있다. 예를 들어, 상기 친수성 고분자 도메인(Pb) 내의 상기 친수성 고분자 블록이 폴리(2-비닐피리딘)인 경우 할로알케인(haloalkane) 등을 첨가제로 사용하여, 피리딘의 질소와 할로알케인 사이의 친핵성 치환반응을 통해 피리딘을 피리디늄으로 4가화(quaternization)시킴으로써, 상기 친수성 용매의 침투를 용이하게 할 수 있다. 이 경우, 상기 친수성 용매는 물일 수 있다. 또한, 상기 할로알케인은 요오드화 메틸(CH3I)일 수 있다.In addition, suitable additives may be added in the hydrophilic solvent to facilitate the selective penetration of the hydrophilic solvent into the hydrophilic polymer domain (P b ). For example, when the hydrophilic polymer block in the hydrophilic polymer domain (P b ) is poly (2-vinylpyridine), haloalkanes (haloalkane) and the like are used as additives, so that the It is possible to facilitate the penetration of the hydrophilic solvent by quaternization of pyridine to pyridinium through a nuclear substitution reaction. In this case, the hydrophilic solvent may be water. In addition, the haloalkaine may be methyl iodide (CH 3 I).
상기 친수성 용매에 의해 상기 친수성 고분자 도메인(Pb)이 팽윤됨에 따라, 상기 친수성 고분자 도메인(Pb) 내에는 친수성 고분자로 점유되지 않는 상당한 부피의 영역이 형성이 형성될 수 있다.As the hydrophilic polymer domain P b is swollen by the hydrophilic solvent, formation of a substantial volume of regions in the hydrophilic polymer domain P b is not occupied by the hydrophilic polymer.
상기 친수성 고분자 도메인(Pb)은 상기 블록 공중합체 필름(BF)에 대한 법선 방향 즉, Z축 방향으로 선택적으로 팽윤될 수 있다. 이를 위해, 상기 소수성 고분자 도메인(Pa)의 유리전이온도를 상기 팽윤 과정이 수행되는 환경의 온도에 비해 높게 하여, 상기 팽윤 과정 동안 상기 소수성 고분자 도메인(Pa)을 탄성이 거의 없는 유리 상태(glass state)로 유지시킬 수 있다.The hydrophilic polymer domain (P b ) may be selectively swollen in the normal direction, that is, Z-axis direction with respect to the block copolymer film (BF). To this end, the glass transition temperature of the hydrophobic polymer domain (P a ) is higher than the temperature of the environment in which the swelling process is carried out, so that the hydrophobic polymer domain (P a ) has little elasticity during the swelling process ( glass state).
그 후, 상기 팽윤된 친수성 고분자 도메인(Pb) 내에 금속 산화물(MO)을 도입하여(S14), 유무기 하이브리드 광결정(PC)를 형성한다. 구체적으로, 상기 팽윤된 친수성 고분자 도메인(Pb) 내에서 친수성 고분자 블록으로 점유되지 않는 영역 내에 상기 금속 산화물(MO)이 도입될 수 있다. 상기 금속 산화물(MO)은 SiO2, TiO2, ZnO, Al2O3 및 ZrO2로 이루어지는 군에서 선택되는 어느 하나일 수 있다.Thereafter, a metal oxide (MO) is introduced into the swollen hydrophilic polymer domain (P b ) (S14) to form an organic-inorganic hybrid photonic crystal (PC). Specifically, the metal oxide (MO) may be introduced into a region that is not occupied by the hydrophilic polymer block in the swollen hydrophilic polymer domain (P b ). The metal oxide (MO) may be any one selected from the group consisting of SiO 2 , TiO 2 , ZnO, Al 2 O 3, and ZrO 2 .
상기 금속 산화물을 도입하는 것은, 구체적으로 상기 블록 공중합체 필름(BF)을 상기 친수성 용매에 침지시킨 상태에서 상기 친수성 용매 내에 상기 금속 산화물의 전구체를 첨가하여 수행할 수 있다. 이 때, 상기 첨가된 금속 산화물 전구체는 상기 팽윤된 친수성 고분자 도메인(Pb) 내로 선택적으로 도입되고, 그 후 졸-겔(sol-gel) 반응을 통해 상기 친수성 고분자 도메인(Pb) 내에서 금속 산화물 나노 입자들(MO)을 형성할 수 있다. In particular, the introduction of the metal oxide may be performed by adding a precursor of the metal oxide to the hydrophilic solvent in a state in which the block copolymer film (BF) is immersed in the hydrophilic solvent. At this time, the added metal oxide precursor is selectively introduced into the swollen hydrophilic polymer domain (P b ), and then the metal in the hydrophilic polymer domain (P b ) through a sol-gel reaction. Oxide nanoparticles (MO) may be formed.
상기 졸-겔 반응 과정에서 형성된 금속 산화물 나노입자들(MO)은 성장과 응집에 의해 연속적인 네트워크를 형성할 수 있다. 이에 따라, 상기 블록 공중합체 필름(BF)을 상기 용매로부터 꺼내고 또한 건조시킨 후에도, 팽윤된 친수성 고분자 도메인(Pb)은 완전하게 수축되지 않고 또한 상기 금속 산화물(MO)의 도입 정도에 비례하여 일정하게 증가된 두께(팽윤 전 친수성 고분자 도메인의 두께보다 증가된 두께를 의미함)를 유지할 수 있게 된다. 이에, 본 명세서 상에서는 상기 친수성 고분자 도메인(Pb)의 선택적 팽윤과 금속 산화물(MO)의 도입에 의한 일정한 두께로의 고정이라는 프로세스에 착안하여 이를 팽윤-고정(swelling-freezing)법이라고 명명하였다. 한편, 상기 금속 산화물(MO)이 도입되는 양 및 상기 친수성 고분자 도메인(Pb)의 두께 증가정도는 졸-겔 반응시간을 조절함으로써 조절 가능하다.The metal oxide nanoparticles (MO) formed during the sol-gel reaction may form a continuous network by growth and aggregation. Accordingly, even after the block copolymer film (BF) is taken out of the solvent and dried, the swollen hydrophilic polymer domain (P b ) is not completely shrunk and is constant in proportion to the degree of introduction of the metal oxide (MO). It is possible to maintain an increased thickness (meaning an increased thickness than the thickness of the hydrophilic polymer domain before swelling). Accordingly, in the present specification, the process of selective swelling of the hydrophilic polymer domain (P b ) and fixation to a constant thickness by introduction of a metal oxide (MO) is taken into consideration, which is called a swelling-freezing method. On the other hand, the amount of the metal oxide (MO) is introduced and the degree of increase in the thickness of the hydrophilic polymer domain (P b ) can be controlled by controlling the sol-gel reaction time.
상기 졸-겔 반응이 일어나는 용액의 pH는 금속 산화물이 오버코팅(over coating)되지 않고, 적당한 속도로 겔화(gelation)될 수 있도록 적절히 조절할 필요가 있다. 일 예로, 상기 금속 산화물 전구체가 TEOS(tetraethoxysilane)이고, 이로부터 생성된 금속 산화물이 SiO2인 경우에, 산 조건하에서는 투명한 모놀리스 겔(monolith gel)이 만들어지며 빠른 겔화(gelation)가 일어나는 반면, 염기 조건하에서는 분말(powder) 형태의 네트워크 겔(network gel)이 만들어진다. 따라서, 염기 조건하에서만 반응을 진행하는 경우 분말 형태의 겔의 오버코팅(over coating) 현상으로 인해 반사파장의 산란 등에 의한 색의 선명도가 감소되는 등 제조된 광결정의 광특성이 떨어질 수 있다. 반면, 산 조건하에서만 반응을 진행하는 경우 빠른 겔화에 의해 충분한 양의 SiO2가 친수성 고분자 도메인 내에 도입되기 전에 굳어버리는 현상이 발생한다. 그러므로, 초기에는 염기 조건 하에서 반응을 진행시켜 적당량의 SiO2 나노입자를 형성시킨 후, 산의 첨가에 따라 pH를 살짝 낮춤으로써 SiO2가 친수성 고분자 도메인 내에 적절히 응집(aggregation)되며 고정되도록 할 필요가 있다.The pH of the solution in which the sol-gel reaction takes place needs to be appropriately adjusted so that the metal oxide is not overcoated and can be gelated at an appropriate rate. For example, when the metal oxide precursor is tetraethoxysilane (TEOS) and the metal oxide produced therefrom is SiO 2 , under acidic conditions, a transparent monolith gel is formed and rapid gelation occurs, Under basic conditions a network gel in the form of a powder is produced. Therefore, when the reaction is performed only under the basic conditions, the optical properties of the manufactured photonic crystal may be deteriorated due to the overcoating phenomenon of the powder-type gel, which reduces the sharpness of color due to scattering of reflected wavelengths. On the other hand, when the reaction proceeds only under acidic conditions, a phenomenon in which a sufficient amount of SiO 2 hardens before being introduced into the hydrophilic polymer domain by rapid gelation occurs. Therefore, it is necessary to initially proceed the reaction under basic conditions to form an appropriate amount of SiO 2 nanoparticles, and then lower the pH slightly according to the addition of acid so that SiO 2 is properly aggregated and fixed in the hydrophilic polymer domain. have.
도 3은 본 발명의 일 실시예에 따른 유무기 하이브리드 광결정의 단면을 나타낸 단면도이다.3 is a cross-sectional view showing a cross section of an organic-inorganic hybrid photonic crystal according to an embodiment of the present invention.
도 3을 참조하면, 금속 산화물(MO)이 도입됨에 따라 친수성 고분자 도메인(Pb)의 굴절율(n2′)은 순수한 친수성 고분자 도메인의 굴절율과는 달라질 수 있으며, 이는 로렌쯔-로렌쯔 혼합 규칙(Lorentz- Lorenz mixing rule)에 의해 계산될 수 있다. 일 예로서, 상기 친수성 고분자 도메인(Pb)이 굴절율이 약 1.62인 폴리비닐피리딘 도메인이고 상기 소수성 고분자 도메인(Pa)이 굴절율이 약 1.62인 폴리스티렌 도메인이고 상기 금속 산화물이 굴절율이 약 1.25 ~ 1.34인 SiO2인 경우에, 로렌쯔-로렌쯔 혼합 규칙에 따르면 상기 SiO2가 도입된 폴리비닐피리딘 도메인의 굴절율은 폴리비닐피리딘 도메인의 굴절율과 SiO2의 굴절율 사이의 값을 나타날 수 있다. 이에 따라, SiO2가 도입된 폴리비닐피리딘 도메인의 굴절률(n2′)은 폴리스티렌 도메인의 굴절율(n1)에 비해 작아질 수 있다. 이와 같이, 금속 산화물(MO)을 도입하여 친수성 고분자 도메인(Pb)의 굴절율(n2′)을 조절할 수 있다.Referring to FIG. 3, as the metal oxide (MO) is introduced, the refractive index (n 2 ′) of the hydrophilic polymer domain (P b ) may be different from the refractive index of the pure hydrophilic polymer domain, which is a Lorentz-Lorentz mixing rule (Lorentz). Can be calculated by the Lorenz mixing rule. As an example, the hydrophilic polymer domain (P b ) is a polyvinylpyridine domain having a refractive index of about 1.62 and the hydrophobic polymer domain (P a ) is a polystyrene domain having a refractive index of about 1.62 and the metal oxide has a refractive index of about 1.25 to 1.34. In the case of phosphorus SiO 2 , according to the Lorentz-Lorentz mixing rule, the refractive index of the polyvinylpyridine domain in which the SiO 2 is introduced may exhibit a value between the refractive index of the polyvinylpyridine domain and the refractive index of SiO 2 . Accordingly, the refractive index n 2 ′ of the polyvinylpyridine domain in which SiO 2 is introduced may be smaller than the refractive index n 1 of the polystyrene domain. As such, the metal oxide (MO) may be introduced to control the refractive index n 2 ′ of the hydrophilic polymer domain P b .
상기 친수성 고분자 도메인(Pb)과 상기 소수성 고분자 도메인(Pa)의 굴절율의 차이로 인해, 상기 광결정(PC)으로 입사된 광(L)은 그 진행방향에 따라 상기 두 도메인들(Pb, Pa) 사이의 면들 중 어느 한 면에서 전반사될 수 있다.Due to the difference in refractive index between the hydrophilic polymer domain (P b ) and the hydrophobic polymer domain (P a ), the light L incident on the photonic crystal PC has the two domains P b , It can be totally reflected on either side between P a ).
이 때, 상기 광결정(PC)으로 입사된 광(L)의 여러 파장대역 중 하기 수학식 1을 만족하는 파장(λ)은 선택적으로 반사될 수 있다. In this case, among the various wavelength bands of the light L incident to the photonic crystal PC, the wavelength λ satisfying the following Equation 1 may be selectively reflected.
[수학식 1][Equation 1]
2dsinθ=nλ 2dsinθ = nλ
상기 식에서, θ는 입사광과 전반사면이 이루는 각도이고, d는 전반사면들 (TR) 사이의 거리이고, n은 양의 정수이다.Is the angle between the incident light and the total reflection surface, d is the distance between the total reflection surfaces TR, and n is a positive integer.
상기 수학식 1을 참고하면, 선택적으로 반사되는 파장(λ)은 상기 전반사면들(TR) 사이의 간격(d)에 의존하는데, 상기 전반사면들 사이의 간격(d)은 앞서 설명한 바와 같이 금속 산화물의 도입에 따른 친수성 고분자 도메인(Pb)의 두께 증가 정도를 조절함으로써 조절할 수 있다. 앞서 설명한 바와 같이, 이러한 친수성 고분자 도메인(Pb)의 두께 조절은 친수성 고분자 도메인(Pb) 내에 선택적으로 도입되는 금속 산화물의 양을 조절함으로써 수행할 수 있다.Referring to Equation 1, the wavelength λ that is selectively reflected depends on the spacing d between the total reflection surfaces TR, and the spacing d between the total reflection surfaces is a metal as described above. It can be controlled by adjusting the thickness increase of the hydrophilic polymer domain (P b ) in accordance with the introduction of the oxide. As described above, the thickness adjustment of such a hydrophilic polymer domain (P b) can be carried out by controlling the amount of metal oxide that is selectively introducing within the hydrophilic polymer domains (P b).
이와 같이, 친수성 고분자 도메인(Pb) 내에 선택적으로 금속 산화물(MO)이 도입된 블록 공중합체 필름은 특정 파장을 반사하는 광결정으로서의 역할을 할 수 있다. 또한, 상기 친수성 고분자 도메인(Pb)의 두께를 조절함으로써, 반사광의 파장(λ)을 가변할 수 있다. 상기 선택적으로 반사되는 파장(λ)을 광밴드갭이라고 하며, 이러한 광밴드갭은 친수성 고분자 도메인(Pb)의 두께 조절을 통해 자외선-가시광선-적외선의 전 파장 대역 중 원하는 대역으로 용이하게 설정할 수 있다.As such, the block copolymer film in which the metal oxide (MO) is selectively introduced into the hydrophilic polymer domain (P b ) may serve as a photonic crystal that reflects a specific wavelength. In addition, by adjusting the thickness of the hydrophilic polymer domain (P b ), the wavelength (λ) of the reflected light can be varied. The selectively reflected wavelength λ is called an optical band gap, and the optical band gap is easily set to a desired band among all wavelength bands of the ultraviolet-visible-infrared ray through the thickness control of the hydrophilic polymer domain P b . Can be.
한편, 블록 공중합체를 사용하여 광결정을 형성함에 있어, 고분자 도메인의 두께 증가는 고분자의 분자량을 증가시켜(>1Mg/mol) 수행할 수도 있다. 그러나, 분자량을 증가시킬수록 고분자의 점성도가 증가되어 자기 조립이 어렵고 이에 따라 도메인들을 규칙적으로 배열시키기 매우 어려울 수 있다. 이에 반해, 본 실시예에서는 비교적 낮은 분자량을 갖는 고분자 블록들을 갖는 블록 공중합체를 사용하여 광결정을 형성할 수 있다. 다시 말해서, 블록 공중합체 광결정에 있어 광밴드갭을 갖기 위해 이론적으로 요구되던 분자량(~106g/mol)에 비해 비교적 낮은 분자량의 블록 공중합체를 이용할 수 있다. 따라서, 블록 공중합체의 합성 면에서 이점을 가질 수 있을 뿐만 아니라, 자기조립 과정에서 점성을 낮추고 이동도를 증가시켜 소수성 고분자 도메인과 친수성 고분자 도메인의 정렬도를 향상시킬 수 있는 장점이 있다.On the other hand, in forming the photonic crystal using the block copolymer, the increase in the thickness of the polymer domain may be performed by increasing the molecular weight of the polymer (> 1Mg / mol). However, as the molecular weight increases, the viscosity of the polymer increases, which makes it difficult to self-assemble and thus it is very difficult to arrange the domains regularly. In contrast, in the present embodiment, the photocrystal may be formed using a block copolymer having polymer blocks having a relatively low molecular weight. In other words, a block copolymer having a relatively low molecular weight may be used as compared to the molecular weight (˜10 6 g / mol) theoretically required to have an optical band gap in the block copolymer photonic crystal. Therefore, in addition to having an advantage in terms of synthesis of the block copolymer, there is an advantage in improving the alignment of the hydrophobic polymer domain and the hydrophilic polymer domain by lowering the viscosity and increasing the mobility in the self-assembly process.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예(example)를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid the understanding of the present invention. However, the following experimental examples are only for helping understanding of the present invention, and the present invention is not limited to the following experimental examples.
유무기 Organic weapons 하이브리드hybrid 광결정의Photonic 제조 Produce
<제조예 1><Manufacture example 1>
폴리스티렌-b-폴리(2-비닐피리딘) 공중합체(polystyrene-b-poly(2-vinyl pyridine copolymer, PS-b-P2VP)인 PS190-b-P2VP190 (Mn × 103 = 190/190, PDI = 1.10, Polymer Source Inc, Dorval, Canada로부터 구매)를 프로필렌 글리콜 모노메틸 에테르 아세테이트(propylene glycol monomethyl ether acetate, PGMEA)에 5wt%로 녹여 소수성-친수성 블록 공중합체를 함유한 유기 용액을 준비하였다. 이 유기 용액을 슬라이드 글라스(slide glass)에 1분간 600rpm으로 스핀 코팅하였다. 슬라이드 글라스에 코팅된 필름을 7일 동안 50℃에서 클로로포름 증기(chloroform vapor)로 용매 어닐링(solvent annealing)시켜 층상구조로 잘 배열된 블록 공중합체 필름을 제조하였다.Polystyrene-b-poly (2-vinylpyridine) copolymer (polystyrene-b-poly (2-vinyl pyridine copolymer, PS-b-P2VP) PS190-b-P2VP190 (Mn                  × 103 = 190/190, PDI = 1.10, purchased from Polymer Source Inc, Dorval, Canada), dissolved in 5 wt% of propylene glycol monomethyl ether acetate (PGMEA) to contain an organic hydrophobic-hydrophilic block copolymer. The solution was prepared. This organic solution was spin coated on slide glass at 600 rpm for 1 minute. The film coated on the slide glass was solvent annealed with chloroform vapor at 50 ° C. for 7 days to prepare a block copolymer film well arranged in a layered structure.
상기 제조된 블록 공중합체 필름을 메탄올(50ml)이 담긴 용기(100ml)에 넣은 후, 약 600rpm으로 교반하면서 TEOS(tetraethoxysilane)(5ml)와 NH4OH(1ml)를 서서히 첨가하였다. 약 20분간 교반한 뒤 HCl(0.2ml)을 추가로 넣어준 다음, 일정 시간 경과 후에 블록 공중합체 필름을 용기에서 꺼내어 건조시켰다.The prepared block copolymer film was placed in a container (100 ml) containing methanol (50 ml), and then slowly added TEOS (tetraethoxysilane) (5 ml) and NH 4 OH (1 ml) while stirring at about 600 rpm. After stirring for about 20 minutes, HCl (0.2 ml) was further added, and after a certain time, the block copolymer film was taken out of the container and dried.
여기서, HCl의 첨가로부터 블록 공중합체 필름을 꺼내는데 까지 걸리는 시간 즉, 숙성시간(aging time, τa)을 15분으로 설정하였다.Here, the time taken to remove the block copolymer film from the addition of HCl, that is, the aging time (τ a ) was set to 15 minutes.
<제조예 2><Manufacture example 2>
τa = 30분으로 설정한 것을 제외하고는 제조예 1과 동일한 방법을 사용하여 유무기 하이브리드 광결정을 제조하였다.An organic-inorganic hybrid photonic crystal was manufactured in the same manner as in Preparation Example 1, except that τ a = 30 minutes.
<제조예 3><Manufacture example 3>
τa = 40분으로 설정한 것을 제외하고는 제조예 1과 동일한 방법을 사용하여 유무기 하이브리드 광결정을 제조하였다.An organic-inorganic hybrid photonic crystal was manufactured in the same manner as in Preparation Example 1, except that τ a = 40 minutes.
<제조예 4><Manufacture example 4>
τa = 60분으로 설정한 것을 제외하고는 제조예 1과 동일한 방법을 사용하여 유무기 하이브리드 광결정을 제조하였다.An organic-inorganic hybrid photonic crystal was manufactured in the same manner as in Preparation Example 1, except that τ a = 60 minutes.
<제조예 5>Production Example 5
τa = 90분으로 설정한 것을 제외하고는 제조예 1과 동일한 방법을 사용하여 유무기 하이브리드 광결정을 제조하였다.An organic-inorganic hybrid photonic crystal was manufactured in the same manner as in Preparation Example 1, except that τ a = 90 minutes.
<제조예 6><Manufacture example 6>
τa = 120분으로 설정한 것을 제외하고는 제조예 1과 동일한 방법을 사용하여 유무기 하이브리드 광결정을 제조하였다.An organic-inorganic hybrid photonic crystal was manufactured in the same manner as in Preparation Example 1, except that τ a = 120 minutes.
도 4는 상기 제조예 1 내지 제조예 6에 따라 각각 제조된 유무기 하이브리드 광결정의 투과 스펙트럼이고, 도 5는 상기 제조예 1 내지 제조예 6에 따라 각각 제조된 유무기 하이브리드 광결정의 숙성시간(τa)에 대한 최대반사파장(λmax)을 나타낸 그래프이고, 도 6은 상기 제조예 1 내지 제조예 6에 따라 각각 제조된 유무기 하이브리드 광결정을 백색광 하에서 촬영한 사진이다. 도 4에서 아래로 향한 피크는 광결정에 의해 반사가 일어나는 파장 대역을 나타낸다4 is a transmission spectrum of organic-inorganic hybrid photonic crystals prepared according to Preparation Examples 1 to 6, respectively, and FIG. 5 is a aging time (τ) of organic-inorganic hybrid photonic crystals prepared according to Preparation Examples 1 to 6, respectively. It is a graph showing the maximum reflection wavelength (λ max ) for a), Figure 6 is a photograph taken under the white light of the organic-inorganic hybrid photonic crystals prepared according to Preparation Examples 1 to 6. The downward peak in FIG. 4 represents a wavelength band in which reflection occurs by the photonic crystal.
도 4, 도 5 및 도 6을 참조하면, 유무기 하이브리드 광결정은 숙성시간(τa)이 증가함에 따라 반사가 일어나는 파장 또한 증가함을 알 수 있다. 이로부터, 숙성시간(τa)이 증가함에 따라 친수성 고분자 도메인의 두께가 증가된 것을 알 수 있으며, 이러한 친수성 고분자 도메인의 두께 증가는 친수성 고분자 도메인 내에 도입된 금속 산화물의 양의 증가에 기인하는 것으로 사료된다.4, 5 and 6, it can be seen that the organic-inorganic hybrid photonic crystal also has a wavelength at which reflection occurs as the aging time τ a increases. From this, it can be seen that the thickness of the hydrophilic polymer domain is increased as the aging time (τ a ) is increased, and the increase in the thickness of the hydrophilic polymer domain is due to the increase of the amount of metal oxide introduced into the hydrophilic polymer domain. It is feed.
도 7은 금속 산화물을 도입하기 전의 블록 공중합체 필름의 SEM 이미지이고, 도 8, 9 및 10은 각각 상기 제조예 1, 제조예 3 및 제조예 6에 따라 제조된 유무기 하이브리드 광결정의 SEM 이미지이다.FIG. 7 is an SEM image of a block copolymer film before introducing a metal oxide, and FIGS. 8, 9, and 10 are SEM images of organic-inorganic hybrid photonic crystals prepared according to Preparation Example 1, Preparation Example 3, and Preparation Example 6, respectively. .
도 7 내지 10을 참조하면, 금속 산화물을 도입하기 전의 블록 공중합체 필름에 비해 금속 산화물(SiO2)을 도입한 후에는 P2VP 도메인의 두께가 선택적으로 증가되었음을 알 수 있다. 또한, P2VP 도메인의 두께는 SiO2의 도입량이 많을수록 증가됨을 확인할 수 있다. 이로써, 금속 산화물이 도입되는 양에 따라 친수성 고분자 도메인의 두께를 조절함으로써, 유무기 하이브리드 광결정이 특정 대역의 광밴드갭을 갖도록 조절할 수 있음을 알 수 있다.7 to 10, it can be seen that the thickness of the P2VP domain was selectively increased after the introduction of the metal oxide (SiO 2 ) compared to the block copolymer film before the introduction of the metal oxide. In addition, it can be seen that the thickness of the P2VP domain increases as the amount of SiO 2 introduced increases. Thus, it can be seen that by adjusting the thickness of the hydrophilic polymer domain according to the amount of introduction of the metal oxide, the organic-inorganic hybrid photonic crystal can be adjusted to have a specific band optical band gap.
특히, 도 10의 경우, 원래 서로 얽혀있던 P2VP 사슬들이 두 영역으로 갈라져 상기 두 영역 사이에 빈 공간이 형성되고, 상기 두 영역이 실리카 다리에 의해 연결되어 있는 독특한 구조가 나타나고 있다.In particular, in FIG. 10, a unique structure in which P2VP chains, which were originally entangled with each other, is divided into two regions to form an empty space between the two regions, and the two regions are connected by silica bridges.
상기 제조예에서는 가시광선 영역에서 광밴드갭을 갖는 광결정만을 제조하였으나, 이는 시각적인 검증을 통해 쉽게 발명의 완성을 확인할 수 있도록 하기 위함일 뿐이다. 그 외에도, 친수성 고분자 영역의 두께를 변화시킴으로써 가시광선 영역뿐만 아니라, 자외선 및 적외선 영역에서도 광밴드갭을 갖는 유무기 하이브리드 광결정을 제조할 수 있음은 자명하다.In the above manufacturing example, only a photonic crystal having an optical band gap in the visible light region was manufactured, but this is only for easily confirming the completion of the invention through visual verification. In addition, it is apparent that by changing the thickness of the hydrophilic polymer region, it is possible to produce an organic-inorganic hybrid photonic crystal having an optical band gap not only in the visible region but also in the ultraviolet and infrared regions.
상기 살펴본 바와 같이 본 발명에 따르면, 하나의 자기조립된 블록 공중합체 필름으로부터 팽윤-고정법을 이용하여 자외선-가시광선-자외선의 넓은 파장 대역 중 원하는 파장 대역의 광밴드갭을 갖는 유무기 하이브리드 광결정을 손쉽게 제조할 수 있다.As described above, according to the present invention, an organic-inorganic hybrid photonic crystal having an optical band gap of a desired wavelength band among a wide wavelength band of ultraviolet-visible-ultraviolet rays is obtained by using a swelling-fixing method from one self-assembled block copolymer film. Easy to manufacture
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다. In the above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications and changes by those skilled in the art within the spirit and scope of the present invention. Changes are possible.

Claims (15)

  1. 소수성 고분자 도메인과 친수성 고분자 도메인이 교대로 반복된 구조를 갖는 소수성-친수성 블록 공중합체 필름; 및Hydrophobic-hydrophilic block copolymer films having a structure in which hydrophobic polymer domains and hydrophilic polymer domains are alternately repeated; And
    상기 필름의 친수성 고분자 도메인에 도입된 금속 산화물을 포함하는 유무기 하이브리드 광결정.An organic-inorganic hybrid photonic crystal comprising a metal oxide introduced into the hydrophilic polymer domain of the film.
  2. 제1항에 있어서,The method of claim 1,
    상기 블록 공중합체 필름은 폴리스티렌(polystyrene)-폴리비닐피리딘(poly(vinylpyridine)) 공중합체, 폴리스티렌-폴리메틸메타크릴레이트(poly(methylmethacrylate)) 공중합체, 폴리스티렌-폴리(t-부틸아크릴레이트)(poly(tert-butylacrylate) 공중합체, 폴리아이소프렌(polyisoprene)-폴리(에틸렌옥사이드)(poly(ethyleneoxide)) 공중합체, 폴리스티렌-폴리락티드(polylactide) 공중합체, 폴리사이클로헥실에틸렌(poly(cyclohexylethylene))-폴리락티드 공중합체, 또는 폴리메틸스티렌(polymethylstyrene)-폴리하이드록시스티렌(polyhydroxystyrene) 공중합체를 함유하는 유무기 하이브리드 광결정.The block copolymer film may be made of polystyrene-poly (vinylpyridine) copolymer, polystyrene-polymethylmethacrylate (poly (methylmethacrylate)) copolymer, polystyrene-poly (t-butylacrylate) ( poly (tert-butylacrylate) copolymer, polyisoprene-poly (ethyleneoxide) copolymer, polystyrene-polylactide copolymer, polycyclohexylethylene An organic-inorganic hybrid photonic crystal containing a polylactide copolymer or a polymethylstyrene-polyhydroxystyrene copolymer.
  3. 제1항에 있어서,The method of claim 1,
    상기 블록 공중합체 필름은 폴리스티렌-폴리비닐피리딘 공중합체 필름인 유무기 하이브리드 광결정.The block copolymer film is a polystyrene-polyvinylpyridine copolymer film organic-inorganic hybrid photonic crystal.
  4. 제1항에 있어서,The method of claim 1,
    상기 소수성 고분자 도메인과 상기 친수성 고분자 도메인이 교대로 반복된 구조는 라멜라 구조인 유무기 하이브리드 광결정.The structure in which the hydrophobic polymer domain and the hydrophilic polymer domain are alternately repeated is a lamellar structure.
  5. 제1항에 있어서, The method of claim 1,
    상기 금속 산화물은 SiO2, TiO2, ZnO, Al2O3 및 ZrO2로 이루어지는 군에서 선택되는 어느 하나인 유무기 하이브리드 광결정.The metal oxide is any one selected from the group consisting of SiO 2 , TiO 2 , ZnO, Al 2 O 3 and ZrO 2 organic-inorganic hybrid photonic crystal.
  6. 소수성 고분자 블록과 친수성 고분자 블록을 갖는 블록 공중합체를 자기조립시켜 소수성 고분자 도메인과 친수성 고분자 도메인이 교대로 반복된 구조를 갖는 소수성-친수성 블록 공중합체 필름을 형성하는 단계;Self-assembling a block copolymer having a hydrophobic polymer block and a hydrophilic polymer block to form a hydrophobic-hydrophilic block copolymer film having a structure in which the hydrophobic polymer domain and the hydrophilic polymer domain are alternately repeated;
    상기 블록 공중합체 필름을 친수성 용매에 침지하여 상기 친수성 고분자 도메인을 팽윤시키는 단계; 및Dipping the block copolymer film in a hydrophilic solvent to swell the hydrophilic polymer domain; And
    상기 팽윤된 친수성 고분자 도메인 내에 금속 산화물을 도입하는 단계를 포함하는 유무기 하이브리드 광결정 제조방법.Introducing a metal oxide into the swollen hydrophilic polymer domain.
  7. 제6항에 있어서,The method of claim 6,
    상기 블록 공중합체는 폴리스티렌-폴리비닐피리딘 공중합체, 폴리스티렌-폴리메틸메타크릴레이트 공중합체, 폴리스티렌-폴리(t-부틸아크릴레이트) 공중합체, 폴리아이소프렌-폴리(에틸렌옥사이드) 공중합체, 폴리스티렌-폴리락티드 공중합체, 폴리사이클로헥실에틸렌-폴리락티드 공중합체, 또는 폴리메틸스티렌-폴리하이드록시스티렌 공중합체인 유무기 하이브리드 광결정 제조방법.The block copolymer may be polystyrene-polyvinylpyridine copolymer, polystyrene-polymethylmethacrylate copolymer, polystyrene-poly (t-butylacrylate) copolymer, polyisoprene-poly (ethylene oxide) copolymer, polystyrene-poly A method for producing an organic-inorganic hybrid photonic crystal, which is a lactide copolymer, a polycyclohexylethylene-polylactide copolymer, or a polymethylstyrene-polyhydroxystyrene copolymer.
  8. 제6항에 있어서,The method of claim 6,
    상기 블록 공중합체는 폴리스티렌-폴리비닐피리딘 공중합체인 유무기 하이브리드 광결정 제조방법.The block copolymer is a polystyrene-polyvinylpyridine copolymer organic-inorganic hybrid photonic crystal manufacturing method.
  9. 제6항에 있어서,The method of claim 6,
    상기 소수성 고분자 도메인과 상기 친수성 고분자 도메인이 교대로 반복된 구조는 라멜라 구조인 유무기 하이브리드 광결정 제조방법.The hydrophobic polymer domain and the hydrophilic polymer domain alternately repeated structure is a lamellar structure organic-inorganic hybrid photonic crystal manufacturing method.
  10. 제6항에 있어서, 상기 블록 공중합체 필름을 형성하는 단계는,The method of claim 6, wherein forming the block copolymer film,
    상기 블록 공중합체를 함유하는 용액을 준비하는 단계;Preparing a solution containing the block copolymer;
    상기 용액을 기판 상에 도포하여 필름을 형성하는 단계; 및Applying the solution onto a substrate to form a film; And
    상기 필름을 어닐링하는 단계를 포함하는 유무기 하이브리드 광결정 제조방법.An organic-inorganic hybrid photonic crystal manufacturing method comprising the step of annealing the film.
  11. 제6항에 있어서,The method of claim 6,
    상기 친수성 용매 내에 할로알케인(haloalkane)을 추가하는 유무기 하이브리드 광결정 제조방법.An organic-inorganic hybrid photonic crystal manufacturing method of adding haloalkane (haloalkane) in the hydrophilic solvent.
  12. 제11항에 있어서,The method of claim 11,
    상기 할로알케인은 요오드화 메틸인 유무기 하이브리드 광결정 제조방법.The haloalkaine is methyl iodide organic-inorganic hybrid photonic crystal manufacturing method.
  13. 제6항에 있어서,The method of claim 6,
    상기 소수성 고분자 도메인의 유리전이온도는 상기 팽윤 단계가 수행되는 온도에 비해 높은 유무기 하이브리드 광결정 제조방법.The glass transition temperature of the hydrophobic polymer domain is higher than the temperature at which the swelling step is performed.
  14. 제6항에 있어서, The method of claim 6,
    상기 금속 산화물은 SiO2, TiO2, ZnO, Al2O3 및 ZrO2로 이루어지는 군에서 선택되는 어느 하나인 유무기 하이브리드 광결정 제조방법.The metal oxide is any one selected from the group consisting of SiO 2 , TiO 2 , ZnO, Al 2 O 3 and ZrO 2 organic-inorganic hybrid photonic crystal manufacturing method.
  15. 제6항에 있어서, 상기 금속 산화물을 도입하는 단계는,The method of claim 6, wherein introducing the metal oxide comprises:
    금속 산화물 전구체를 상기 블록 공중합체 필름이 침지된 친수성 용매 내에 첨가하는 단계; 및Adding a metal oxide precursor into a hydrophilic solvent in which the block copolymer film is dipped; And
    상기 첨가된 금속 산화물 전구체를 졸-겔(sol-gel) 반응시키는 단계를 포함하는 것인 유무기 하이브리드 광결정 제조방법.Organic-inorganic hybrid photonic crystal manufacturing method comprising the step of sol-gel (sol-gel) reaction of the added metal oxide precursor.
PCT/KR2009/005786 2009-09-14 2009-10-09 Organic-inorganic hybrid photonic crystal, and preparation method thereof WO2011030950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0086327 2009-09-14
KR20090086327 2009-09-14

Publications (2)

Publication Number Publication Date
WO2011030950A1 WO2011030950A1 (en) 2011-03-17
WO2011030950A9 true WO2011030950A9 (en) 2011-06-03

Family

ID=43732601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005786 WO2011030950A1 (en) 2009-09-14 2009-10-09 Organic-inorganic hybrid photonic crystal, and preparation method thereof

Country Status (2)

Country Link
KR (1) KR101192941B1 (en)
WO (1) WO2011030950A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102023948B1 (en) * 2012-12-31 2019-09-24 엘지디스플레이 주식회사 Organic light emitting display device and method for fabricating the same
KR102101203B1 (en) * 2013-12-30 2020-04-16 엘지디스플레이 주식회사 Encapsulation material, organic light emitting display device and fabrication method of organic light emitting display device using thereof
US9733467B2 (en) 2014-12-03 2017-08-15 Hyundai Motor Company Smart glass using guided self-assembled photonic crystal
KR101862468B1 (en) * 2016-09-08 2018-05-29 연세대학교 산학협력단 Photonic crystal structure and a method of fabricating the same
CN115354511A (en) * 2022-08-09 2022-11-18 浙江理工大学 Three-dimensional printed fabric and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003235731A1 (en) * 2002-01-04 2003-07-24 Surface Logix, Inc. Non-linear photonic switch and method of making the same
US7168266B2 (en) * 2003-03-06 2007-01-30 Lucent Technologies Inc. Process for making crystalline structures having interconnected pores and high refractive index contrasts
KR100717923B1 (en) * 2005-03-16 2007-05-11 주식회사 엘지화학 Fabrication of spherical colloidal crystals using micropipet apparatus
KR100863489B1 (en) * 2007-03-27 2008-10-15 한국과학기술원 Method for manufacturing photonic crystallines using emulsions, photonic crystallines formed by using the same and multiple porous polymer-structure using the same
WO2009042207A2 (en) * 2007-09-27 2009-04-02 Massachusetts Institute Of Technology Broad wavelength range chemically-tunable photonic materials

Also Published As

Publication number Publication date
KR101192941B1 (en) 2012-10-18
WO2011030950A1 (en) 2011-03-17
KR20110029066A (en) 2011-03-22

Similar Documents

Publication Publication Date Title
WO2011030950A9 (en) Organic-inorganic hybrid photonic crystal, and preparation method thereof
US10435513B2 (en) Composite of silicon oxide nanoparticles and silsesquioxane polymer, method for producing same, and composite material produced using composite thereof
DE60124128T2 (en) PROCESS FOR PREPARING ORGANIC SILICATE POLYMER
KR20140029327A (en) Composition and method for preparing pattern on a substrate
WO2011071269A2 (en) Method for preparing a coating solution for increasing the light transmittance of solar cell module glass, and coating solution composition prepared by the method
DE10200760A1 (en) Nanocomposite material for the production of refractive index gradient films
WO2014038760A1 (en) Anti-reflective coating composition comprising siloxane compound, and anti-reflective film using same
US7144453B2 (en) Composition for preparing porous dielectric thin film containing saccharides porogen
WO2014073815A1 (en) Ultra-hydrophilic antireflective coating composition comprising siloxane compound, ultra-hydrophilic antireflective film using same, and method for preparing ultra-hydrophilic antireflective film
WO2015060190A1 (en) Method for manufacturing optical waveguide
JP6640381B2 (en) Composition for black matrix, black matrix, and method for producing black matrix
WO2020138124A1 (en) Method for producing quantum dot-containing film and composition for forming quantum dot-containing film
US6856745B2 (en) Waveguide and applications therefor
JPH1017768A (en) Polymer composite material and its production
WO2011030951A9 (en) Dye sensitized solar cell including organic/inorganic hybrid photonic crystal
TW201942211A (en) Polymetalloxane, composition, cured film, member, electronic component, fiber, binder for ceramic molding, cured film production method, and fiber production method
JP2001281475A (en) Organic/inorganic composite material for optical waveguide and method for manufacturing optical waveguide using the same
WO2012060620A2 (en) Anti-biofouling ssq/peg network and preparation method thereof
JP2014152331A (en) Block copolymer compound and method related the same
WO2015069271A1 (en) Fluorinated siloxanes and methods for their preparation
Zhang et al. Elliptical concave microlens arrays built in the photosensitive TiO2/ormosils hybrid films
JP4025397B2 (en) Organic / inorganic polymer composite and production method thereof
O'Brien et al. Reliability Analysis of an Inorganic-Organic Hybrid Sol-gel Material System for Waveguiding Applications
CN109401173B (en) High-performance vacuum antireflection film and preparation method thereof
JPH11106658A (en) Optically transparent hydrogensilsesquioxane resin composition, its production and silicon oxide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849267

Country of ref document: EP

Kind code of ref document: A1