WO2018135685A1 - Method for producing hollow silica particle from sodium silicate using zno inorganic template particle - Google Patents

Method for producing hollow silica particle from sodium silicate using zno inorganic template particle Download PDF

Info

Publication number
WO2018135685A1
WO2018135685A1 PCT/KR2017/001119 KR2017001119W WO2018135685A1 WO 2018135685 A1 WO2018135685 A1 WO 2018135685A1 KR 2017001119 W KR2017001119 W KR 2017001119W WO 2018135685 A1 WO2018135685 A1 WO 2018135685A1
Authority
WO
WIPO (PCT)
Prior art keywords
zno
particles
inorganic template
silica
particle
Prior art date
Application number
PCT/KR2017/001119
Other languages
French (fr)
Korean (ko)
Inventor
이성의
이지선
이영철
노경재
김용우
Original Assignee
한국산업기술대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국산업기술대학교산학협력단 filed Critical 한국산업기술대학교산학협력단
Publication of WO2018135685A1 publication Critical patent/WO2018135685A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Definitions

  • the present invention relates to a method for producing hollow silica particles from sodium silicate using ZnO inorganic template particles, and more particularly, to preparing hollow silica particles by synthesizing ZnO as an inorganic template particle and using sodium silicate as a silica precursor. It is about a method.
  • the hollow inorganic particles have a hollow shape in which shells containing nano pores are surrounded by outer shells.
  • Micro and nano-sized hollow inorganic particles have high application potential in academic and industrial fields due to their unique physical properties such as relatively low density, large specific surface area and surface permeability.
  • silica produced from TEOS is coated on the surface of the organic mold to form a core shell structure primarily, and finally, hollow silica particles may be obtained by removing the organic template using heat treatment or an organic solvent.
  • An object of the present invention is to provide a method for producing hollow silica particles from sodium silicate using a ZnO inorganic template that can be easily removed through an acid treatment process without using a separate firing process or an organic solvent.
  • Another object of the present invention to control the shape and size of the ZnO inorganic template particles to produce hollow silica particles having a variety of shapes and various hollow sizes to provide hollow silica particles required according to the application.
  • ZnO inorganic template particles according to the present invention are characterized in that it comprises the steps of mixing the Zn precursor and the alkaline precipitating agent and applying heat to the solution.
  • the Zn precursor is characterized in that any one of zinc chloride (ZnCl 2 ), zinc acetate (Zn (CH 3 COO) 2 ).
  • the Zn precursor is zinc chloride (ZnCl 2 )
  • the alkaline precipitant is NaOH, LiOH, NaCO 3
  • the ZnO inorganic template particles are characterized in that the sphere of 190nm to 200nm diameter.
  • the Zn precursor is zinc chloride (ZnCl 2 )
  • the alkaline precipitant is NaOH
  • the ZnO inorganic template particles are characterized in that the particle size of 200nm to 300nm plate-shaped.
  • the Zn precursor is zinc chloride (ZnCl 2 )
  • the alkaline precipitant is NaOH
  • the ZnO inorganic template particles are characterized in that the columnar shape of 500nm to 2.0 ⁇ m.
  • the Zn precursor is zinc chloride (ZnCl 2 )
  • the alkaline precipitant is characterized in that NH 4 OH.
  • the ZnO inorganic template particles are characterized in that the plate-shaped of 0.4 ⁇ m to 1.0 ⁇ m.
  • the ZnO inorganic template particles are characterized in that the oval having a particle length of 2.0 ⁇ m to 3.0 ⁇ m.
  • the method may further include dispersing the ZnO inorganic template particles by applying ultrasonic waves to a solution in which the heated Zn precursor and the alkaline precipitant are mixed.
  • Hollow silica particles according to the present invention is heated to a solution mixed with a Zn precursor and an alkaline precipitant to prepare a ZnO inorganic template particles (S100), by reacting the silica precursor and salt with the ZnO inorganic template particles Forming a silica shell on the surface of the ZnO inorganic template particles to prepare ZnO / silica core-shell particles (S200) and removing the ZnO inorganic template particles from the ZnO / silica core-shell particles (S300) Characterized in that it comprises a.
  • the silica precursor of step S200 is characterized in that the sodium silicate (sodi ⁇ m silicate).
  • the concentration of the sodium silicate is characterized in that 0.2 M to 0.6 M.
  • the salt of the step S200 is (NH 4 ) 2 SO 4 Or NaH (CO 3 ) 2 .
  • reaction temperature for forming the ZnO / silica core-shell particles of the step S200 is characterized in that 60 °C to 90 °C.
  • the removal of the ZnO inorganic template particles in the step S300 is performed by dispersing the core shell particles of ZnO / silica in distilled water, stirring and dropping the acid solution to dissolve the ZnO inorganic template particles. It features.
  • the acid (acid) solution is characterized in that any one of dilute hydrochloric acid solution or sulfate diluent.
  • the present invention through the above problem solving means to produce hollow silica particles using ZnO inorganic template particles that can be easily removed through the acid treatment process without using a separate heat treatment or organic solvent, heat treatment and organic solvent Particle agglomeration and contamination can be prevented during the mold particle removal process.
  • the size and shape of the ZnO inorganic mold particles can be controlled to maximize the hollow size of the hollow silica and improve the hollow efficiency. Particles can be provided.
  • reaction solvent is water
  • TEOS TEOS
  • FIG. 1 is a flow chart showing a manufacturing process of hollow silica particles according to the present invention.
  • Figure 2 is a schematic diagram showing a process of forming hollow silica particles according to the present invention.
  • Figure 3 is a flow chart showing a process for producing a ZnO inorganic template particles according to the present invention.
  • 4A and 4B are SEM images showing ZnO inorganic template particles according to the type of ZnO precursor.
  • 5A, 5B, and 5C are SEM images of ZnO inorganic template particles according to concentrations of ZnO precursors.
  • 6A, 6B, and 6C are SEM images showing ZnO inorganic template particles according to the type of alkaline precipitant.
  • FIG. 7 are SEM images showing ZnO inorganic template particles according to pH.
  • FIG. 8 are SEM images showing ZnO inorganic template particles according to reaction temperature.
  • FIG. 9 is an SEM image showing an elliptical ZnO inorganic template particle according to the present invention.
  • FIG. 10 is a SEM image of the spherical ZnO inorganic template particles of 0.1 ⁇ m to 0.2 ⁇ m size according to the present invention.
  • FIG. 11 is an SEM image of a cross section of a coating film after coating hollow silica synthesized using spherical ZnO inorganic template particles having a size of 0.1 ⁇ m to 0.2 ⁇ m on a substrate.
  • FIG. 1 is a flow chart showing a manufacturing process of hollow silica particles according to the present invention.
  • a ZnO inorganic template particle is prepared by applying heat to a solution in which a Zn precursor and an alkaline precipitant are mixed (S100), and a silica precursor and a salt of the ZnO inorganic template particle. Reacting to form a silica shell on the surface of the ZnO inorganic template particles to produce ZnO / silica core-shell particles (S200) and to remove the ZnO inorganic template particles from the ZnO / silica core-shell particles It characterized in that it comprises a step (S300).
  • the ZnO inorganic template particles become the basic skeleton of the hollow silica particles, controlling the shape of the ZnO inorganic template particles affects the shape of the hollow silica particles.
  • the Zn precursor and the alkaline precipitant are mixed using a sedimentation method, and then reacted with heat to form ZnO inorganic template particles.
  • the Zn precursor may be zinc chloride (ZnCl 2 ), zinc acetate (Zn (CH 3 COO) 2 ), and the like
  • the alkaline precipitant may be NaOH, LiOH, NaCO 3 , NH 4 OH, or the like.
  • the shape and size of the ZnO inorganic template particles may be determined by the type of Zn precursor, Zn precursor concentration, type of alkaline precipitant, pH, reaction temperature, and the like.
  • the shape and size of the ZnO inorganic template particles are the biggest factor in determining the shape and hollow efficiency of the hollow silica, and it is important to control and control them.
  • the size and shape of the ZnO particles can be adjusted according to the type of Zn precursor. This is because the reaction mechanism is the same, but the reaction rates with salts and precipitants produced during the reaction are different.
  • zinc chloride has a faster reaction rate with a precipitant than zinc acetate, so that the particle size increases as the particle formation proceeds faster.
  • the higher the concentration of the Zn precursor in the Zn precursor concentration the larger the particle size.
  • the lower the concentration the slower the nucleation rate, and therefore, the smaller the agglomeration between the formed nuclei and the smaller the particle size.
  • 100 nm spherical particles are formed in zinc chloride 0.5M, and 200 nm spherical particles are formed in zinc choride 1.5M.
  • the shape and size of the ZnO template particles may vary depending on the type of alkaline precipitant.
  • sodium hydroxide (NaOH) lithium hydroxide (LiOH), sodium carbonate (Na 2 CO 3 )
  • spherical particles of several nanometers are formed, and when using ammonium hydroxide ((NH 4 ) OH), unlike other precipitants Particles on the order of micrometers can be formed, and long oval or plate-shaped ZnO inorganic template particles can be obtained.
  • the particles grow in the crystal c-axis direction, which is a direction for reducing the surface energy of the particles, thereby forming ZnO close to the plate rather than the spherical particles.
  • the pH of the reaction solvent increases, the particles grow in the crystal c-axis direction, which is a direction for reducing the surface energy of the particles, thereby forming ZnO close to the plate rather than the spherical particles.
  • plate-shaped particles are formed.
  • the spherical particle size increases, and in the case of plate particles, columnar particles are formed by growing in the c-axis direction.
  • the particle size increases significantly above the reaction temperature of 70 °C.
  • FIG. 1 is a flow chart showing a manufacturing process of hollow silica particles according to the present invention.
  • a ZnO inorganic template particle is prepared by applying heat to a solution in which a Zn precursor and an alkaline precipitant are mixed (S100), and a silica precursor and a salt of the ZnO inorganic template particle. Reacting to form a silica shell on the surface of the ZnO inorganic template particles to produce ZnO / silica core-shell particles (S200) and to remove the ZnO inorganic template particles from the ZnO / silica core-shell particles It characterized in that it comprises a step (S300).
  • the ZnO inorganic template particles become the basic skeleton of the hollow silica particles, controlling the shape of the ZnO inorganic template particles affects the shape of the hollow silica particles.
  • the Zn precursor and the alkaline precipitant are mixed using a sedimentation method, and then reacted with heat to form ZnO inorganic template particles.
  • the Zn precursor may be zinc chloride (ZnCl 2 ), zinc acetate (Zn (CH 3 COO) 2 ), and the like
  • the alkaline precipitant may be NaOH, LiOH, NaCO 3 , NH 4 OH, or the like.
  • the shape and size of the ZnO inorganic template particles may be determined by the type of Zn precursor, Zn precursor concentration, type of alkaline precipitant, pH, reaction temperature, and the like.
  • the shape and size of the ZnO inorganic template particles are the biggest factor in determining the shape and hollow efficiency of the hollow silica, and it is important to control and control them.
  • the size and shape of the ZnO particles can be adjusted according to the type of Zn precursor. This is because the reaction mechanism is the same, but the reaction rates with salts and precipitants produced during the reaction are different.
  • zinc chloride has a faster reaction rate with a precipitant than zinc acetate, so that the particle size increases as the particle formation proceeds faster.
  • the higher the concentration of the Zn precursor in the Zn precursor concentration the larger the particle size.
  • the lower the concentration the slower the nucleation rate, and therefore, the smaller the agglomeration between the formed nuclei and the smaller the particle size.
  • 100 nm spherical particles are formed in zinc chloride 0.5M, and 200 nm spherical particles are formed in zinc choride 1.5M.
  • the shape and size of the ZnO template particles may vary depending on the type of alkaline precipitant.
  • sodium hydroxide (NaOH) lithium hydroxide (LiOH), sodium carbonate (Na 2 CO 3 )
  • spherical particles of several nanometers are formed, and when using ammonium hydroxide ((NH 4 ) OH), unlike other precipitants Particles on the order of micrometers can be formed, and long oval or plate-shaped ZnO inorganic template particles can be obtained.
  • the particles grow in the crystal c-axis direction, which is a direction for reducing the surface energy of the particles, thereby forming ZnO close to the plate rather than the spherical particles.
  • the pH of the reaction solvent increases, the particles grow in the crystal c-axis direction, which is a direction for reducing the surface energy of the particles, thereby forming ZnO close to the plate rather than the spherical particles.
  • plate-shaped particles are formed.
  • the spherical particle size increases, and in the case of plate particles, columnar particles are formed by growing in the c-axis direction.
  • the particle size increases significantly above the reaction temperature of 70 °C.
  • the silica precursor and the ammonium salt or the metal salt are simultaneously dropped in a solution in which the ZnO inorganic template particles are dispersed, and the ZnO inorganic template A silica shell is formed on the surface of the particles to obtain core shell particles of ZnO / silica.
  • the silica precursor may be sodium silicate (Sodi ⁇ m Silicate)
  • the ammonium salt or metal salt may be ammonium sulfate ((NH 4 ) 2 SO 4 ), sodium bicarbonate (NaH (CO 3 ) 2 ). have.
  • the ZnO inorganic template particles are agglomerated or precipitated, the content of the silica precursor is increased compared to the surface area of the ZnO inorganic template particles. This is because a silica shell of one thickness or shape cannot be formed. Accordingly, it is required that all ZnO inorganic template particles be used in the core shell reaction by applying ultrasonic waves so that the ZnO inorganic template particles in the solution can be well dispersed. In one embodiment, the ultrasound may be applied for about 20 minutes at a frequency of about 40 kHz.
  • the shell thickness and shape of the hollow silica may be controlled by the size and shape of the ZnO inorganic template particles, the dispersion degree of the ZnO inorganic template particles, the concentration and the reaction temperature of the silica precursor, and the like.
  • the hollow efficiency can be expanded by controlling the thickness of the silica shell formed by lowering the concentration of the silica precursor.
  • the silica precursor concentration is extremely low, the amount of generated silica is insufficient compared to the surface area of the surface of the ZnO inorganic template particle, so that the hollow silica is formed in the form of broken silica shell.
  • an appropriate concentration of silica precursor is added.
  • the shell formation was best formed at about 0.2M of sodium silicate. At concentrations below 0.2M, the shells form broken, above 0.2M, the shell thickness gradually increases, and above 0.6M, unwanted spherical silica particles form on the shell surface.
  • the reaction temperature when the reaction temperature is low based on the same reaction time when forming the silica shell, the size of the silica spherical particles constituting the silica shell is small, it is possible to control the shell thickness thinly.
  • the reaction temperature if the reaction temperature is too low, the reaction rate of shell formation is slowed down, and thus the silica is not coated on the surface of the ZnO inorganic mold, thereby forming a hollow hollow silica.
  • the reaction temperature when the reaction temperature is high, the shell formation reaction rate may be increased, and thus the silica shell may be easily formed on the surface of the ZnO inorganic mold. have.
  • the shell is formed in a broken form at a reaction temperature of 60 ° C. or lower, and the shell is formed well at a temperature of 60 ° C. or higher, but the shell surface becomes rough at 90 ° C. or higher.
  • the reaction temperature is preferably adjusted according to the added ZnO inorganic template size and silica precursor concentration, and by controlling the size of the silica spherical particles constituting the silica shell by controlling the reaction temperature, it is possible to ultimately control the hollow silica shell thickness.
  • the step S300 of removing the ZnO inorganic template particles will be described.
  • the acid solution is added dropwise at room temperature while stirring to form hollow silica by melting the ZnO inorganic template particles.
  • the acid solution may be dilute hydrochloric acid or dilute sulfate.
  • the hollow silica dispersion from which the ZnO inorganic template particles have been removed is washed with distilled water using a filter, and finally, the hollow silica particles are obtained.
  • the core in the silica shell can be easily removed using an acid solution, hollow silica particles can be manufactured by a simple method without undergoing a calcination process or an extraction process using an organic solvent.
  • Figure 2 is a schematic diagram showing a process of forming hollow silica particles according to the present invention.
  • (a), (b) and (c) show a process in which the silica precursor forms a silica shell on the surface of the ZnO inorganic template particle to form ZnO / silica coreshell particles, and (d) shows a coreshell of the formed ZnO / silica.
  • Hollow silica particles are formed by removing ZnO inorganic template particles from the particles.
  • 4A and 4B are SEM images showing ZnO inorganic template particles according to the type of Zn precursor.
  • 5A, 5B, and 5C are SEM images of ZnO inorganic template particles according to concentrations of ZnO precursors.
  • 6A, 6B, and 6C are SEM images showing ZnO inorganic template particles according to the type of alkaline precipitant.
  • FIG. 7 are SEM images showing ZnO inorganic template particles according to pH.
  • the sphere is formed at 200 nm in size, but when the pH is increased to 12 or 13, it can be seen that the plate is formed at 200 to 300 nm in size.
  • Specific experimental conditions are shown in Table 4 below.
  • FIG. 8 are SEM images showing ZnO inorganic template particles according to reaction temperature.
  • FIG. 9 is an SEM image showing an elliptical ZnO inorganic template particle according to the present invention.
  • the size of the elliptical ZnO inorganic template particles formed through the experiment was 2 to 3 micrometers ( ⁇ m). Specific experimental conditions are shown in Table 6 below.
  • Figure 11 is a SEM image of the cross section of the hollow silica.
  • ZnO inorganic template particles were prepared in a spherical shape so as to have a diameter of 0.1 to 0.2 ⁇ m.
  • 11 is a cross-sectional SEM image of a hollow silica formed using the spherical ZnO inorganic template particles (0.1 to 0.2 ⁇ m) to the substrate and then coated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention relates to a method for producing a hollow silica particle, the method comprising: a step for producing a ZnO inorganic template particle by applying heat to a solution obtained by mixing a Zn precursor and an alkaline precipitant; a step for producing a ZnO/silica core-shell particle by forming a silica shell on the surface of the ZnO inorganic template particle by reacting a silica precursor and a salt with the ZnO inorganic template particle; and a step for removing the ZnO inorganic template particle from the ZnO/silica core-shell particle. The method of the present invention produces a hollow silica particle by using a ZnO inorganic template particle which may be easily removed through an acid-treatment process without performing a separate heat treatment or using an organic solvent, and thus can prevent problems of contamination and particle coagulation that occur during a process for removing a template particle using an organic solvent and a heat treatment. In addition, the method of the present invention improves hollowing efficiency by maximizing the hollow size of hollow silica by controlling the size and shape of a ZnO inorganic template particle, and can provide the hollow silica particle that is required according to the field of application.

Description

ZnO 무기주형입자를 이용한 소듐실리케이트부터의 중공 실리카 입자 제조방법Method for producing hollow silica particles from sodium silicate using nano inorganic particles
본 발명은 ZnO 무기주형입자를 이용한 소듐실리케이트부터의 중공 실리카 입자 제조방법에 관한 것으로, 더욱 상세하게는 ZnO를 합성하여 무기 주형입자로 사용하고 소듐실리케이트를 실리카 전구체로 사용하여 중공 실리카 입자를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing hollow silica particles from sodium silicate using ZnO inorganic template particles, and more particularly, to preparing hollow silica particles by synthesizing ZnO as an inorganic template particle and using sodium silicate as a silica precursor. It is about a method.
중공구조의 무기물 입자는 나노 기공을 포함하는 쉘이 외각에 둘러싸인 입자로 속이 비어있는 형태를 가지고 있다. 마이크로, 나노크기의 중공형 무기물 입자는 상대적으로 낮은 밀도와 큰 비표면적, 표면 투과기능 등의 독특한 물리적 성질 때문에 학문 및 산업 분야에 높은 응용잠재력을 가지고 있다. The hollow inorganic particles have a hollow shape in which shells containing nano pores are surrounded by outer shells. Micro and nano-sized hollow inorganic particles have high application potential in academic and industrial fields due to their unique physical properties such as relatively low density, large specific surface area and surface permeability.
중공형 무기물 입자를 합성하기 위한 다양한 제조방법들이 여러 연구자들에 의해 연구되어왔는데, 현재 일반적인 중공 실리카 합성방법으로는 폴리스티렌 라텍스(PSS) 유기주형을 이용하여 TEOS(tetraethylorthosilicate) 로부터 중공실리카를 형성하는 액상합성법이 알려져 있다. Various preparation methods for synthesizing hollow inorganic particles have been studied by various researchers. Currently, as a general method for synthesizing hollow silica particles, a liquid phase in which hollow silica is formed from tetraethylorthosilicate (TEOS) using polystyrene latex (PSS) organic template is used. Synthetic methods are known.
유기주형을 이용할 경우 TEOS로부터 생성된 실리카가 유기주형 표면 위에 코팅되어 코어쉘 구조를 1차적으로 형성한 후, 열처리 또는 유기용매를 이용하여 유기주형을 제거함으로써 최종적으로 중공 실리카 입자를 얻을 수 있다. In the case of using an organic template, silica produced from TEOS is coated on the surface of the organic mold to form a core shell structure primarily, and finally, hollow silica particles may be obtained by removing the organic template using heat treatment or an organic solvent.
그러나 상기와 같은 유기주형 입자를 사용할 경우 유기용매를 이용하여 유기주형을 제거하는 공정에서 발생하는 유기 주형의 잔여물로 인한 중공실리카 오염 문제 및 잔여물의 세척공정이 어렵고 번거롭다는 문제가 있다. 또한 높은 온도로 소성하여 유기주형을 제거할 경우 합성된 중공 실리카의 응집이 발생한다는 문제점이 있었다. 또한 실리카 전구체가 TEOS 일 경우 반응용매를 알코올과 암모니아수를 사용하기 때문에 이에 따른 폐수발생으로 인한 환경적인 문제도 존재하는 실정이었다.However, when using the organic mold particles as described above, there is a problem that the hollow silica contamination caused by the residue of the organic mold generated in the process of removing the organic mold using the organic solvent and the washing process of the residue is difficult and cumbersome. In addition, there is a problem that agglomeration of the synthesized hollow silica occurs when the organic template is removed by firing at a high temperature. In addition, when the silica precursor is TEOS, since the reaction solvent uses alcohol and ammonia water, there are also environmental problems due to wastewater generation.
본 발명의 목적은 별도의 소성공정이나 유기용매를 이용하지 않고, 산(acid) 처리 공정을 통해 손쉽게 제거될 수 있는 ZnO 무기주형을 이용한 소듐실리케이트부터의 중공 실리카 입자 제조 방법을 제공하는 것이다.An object of the present invention is to provide a method for producing hollow silica particles from sodium silicate using a ZnO inorganic template that can be easily removed through an acid treatment process without using a separate firing process or an organic solvent.
본 발명의 또 다른 목적은 ZnO 무기주형입자의 형상과 크기를 제어하여 다양한 형상과 다양한 중공크기를 가지는 중공실리카 입자를 제조하여 적용분야에 따라 요구되는 중공 실리카 입자를 제공하는 것이다.Another object of the present invention to control the shape and size of the ZnO inorganic template particles to produce hollow silica particles having a variety of shapes and various hollow sizes to provide hollow silica particles required according to the application.
상기 기술적 과제를 해결하기 위하여 본 발명에 따르는 ZnO 무기주형입자는 Zn 전구체 및 알칼리성 침전제를 혼합하는 단계 및 상기 용액에 열을 가하는 단계를 포함하는 것을 특징으로 한다.In order to solve the above technical problem, ZnO inorganic template particles according to the present invention are characterized in that it comprises the steps of mixing the Zn precursor and the alkaline precipitating agent and applying heat to the solution.
또한 상기 Zn 전구체는 zinc chloride(ZnCl2), zinc acetate(Zn(CH3COO)2) 중 어느 하나인 것을 특징으로 한다.In addition, the Zn precursor is characterized in that any one of zinc chloride (ZnCl 2 ), zinc acetate (Zn (CH 3 COO) 2 ).
또한 상기 Zn 전구체는 zinc chloride(ZnCl2), 상기 알칼리성 침전제는 NaOH, LiOH, NaCO3 중 어느 하나로, 상기 ZnO 무기주형입자는 직경 190nm 내지 200nm의 구형인 것을 특징으로 한다.In addition, the Zn precursor is zinc chloride (ZnCl 2 ), the alkaline precipitant is NaOH, LiOH, NaCO 3 In one of the above, the ZnO inorganic template particles are characterized in that the sphere of 190nm to 200nm diameter.
또한 상기 Zn 전구체는 zinc chloride(ZnCl2), 상기 알칼리성 침전제는 NaOH로, 상기 ZnO 무기주형입자는 입자크기 200nm 내지 300nm 판상형인 것을 특징으로 한다.In addition, the Zn precursor is zinc chloride (ZnCl 2 ), the alkaline precipitant is NaOH, the ZnO inorganic template particles are characterized in that the particle size of 200nm to 300nm plate-shaped.
또한 상기 Zn 전구체는 zinc chloride(ZnCl2), 상기 알칼리성 침전제는 NaOH로, 상기 ZnO 무기주형입자는 500nm 내지 2.0μm의 기둥형인 것을 특징으로 한다.In addition, the Zn precursor is zinc chloride (ZnCl 2 ), the alkaline precipitant is NaOH, the ZnO inorganic template particles are characterized in that the columnar shape of 500nm to 2.0μm.
또한 상기 Zn 전구체는 zinc chloride(ZnCl2), 상기 알칼리성 침전제는 NH4OH인 것을 특징으로 한다.In addition, the Zn precursor is zinc chloride (ZnCl 2 ), the alkaline precipitant is characterized in that NH 4 OH.
또한 상기 ZnO 무기주형입자는 0.4μm 내지 1.0μm의 판상형인 것을 특징으로 한다.In addition, the ZnO inorganic template particles are characterized in that the plate-shaped of 0.4μm to 1.0μm.
또한 상기 ZnO 무기주형입자는 입자 길이 2.0μm 내지 3.0μm의 타원형인 것을 특징으로 한다.In addition, the ZnO inorganic template particles are characterized in that the oval having a particle length of 2.0μm to 3.0μm.
또한 상기 열을 가한 Zn 전구체 및 알칼리성 침전제를 혼합한 용액에 초음파를 가하여 상기 ZnO 무기주형입자를 분산시키는 단계를 더 포함하는 것을 특징으로 한다.The method may further include dispersing the ZnO inorganic template particles by applying ultrasonic waves to a solution in which the heated Zn precursor and the alkaline precipitant are mixed.
본 발명에 따르는 중공 실리카 입자는 Zn 전구체 및 알칼리성 침전제를 혼합한 용액에 열을 가해 ZnO 무기주형입자를 제조하는 단계(S100), 실리카(silica) 전구체 및 염을 상기 ZnO 무기주형입자와 반응시켜 상기 ZnO 무기주형입자 표면에 실리카 쉘을 형성하여 ZnO/실리카 코어쉘(core-shell)입자를 제조하는 단계(S200) 및 상기 ZnO/실리카 코어쉘입자에서 상기 ZnO 무기주형입자를 제거하는 단계(S300)를 포함하는 것을 특징으로 한다.Hollow silica particles according to the present invention is heated to a solution mixed with a Zn precursor and an alkaline precipitant to prepare a ZnO inorganic template particles (S100), by reacting the silica precursor and salt with the ZnO inorganic template particles Forming a silica shell on the surface of the ZnO inorganic template particles to prepare ZnO / silica core-shell particles (S200) and removing the ZnO inorganic template particles from the ZnO / silica core-shell particles (S300) Characterized in that it comprises a.
또한 상기 S200 단계의 상기 실리카 전구체는 소듐실리케이트(sodiμm silicate)인 것을 특징으로 한다.In addition, the silica precursor of step S200 is characterized in that the sodium silicate (sodiμm silicate).
또한 상기 소듐실리케이트의 농도는 0.2 M 내지 0.6 M인 것을 특징으로 한다.In addition, the concentration of the sodium silicate is characterized in that 0.2 M to 0.6 M.
또한 상기 S200 단계의 상기 염은 (NH4)2SO4 또는 NaH(CO3)2 중 어느 하나인 것을 특징으로 한다.In addition, the salt of the step S200 is (NH 4 ) 2 SO 4 Or NaH (CO 3 ) 2 .
또한 상기 S200 단계의 ZnO/실리카 코어쉘(core-shell)입자를 형성하는 반응온도는 60℃ 내지 90℃인 것을 특징으로 한다.In addition, the reaction temperature for forming the ZnO / silica core-shell particles of the step S200 is characterized in that 60 ℃ to 90 ℃.
또한 상기 S300 단계의 상기 ZnO 무기주형입자의 제거는 증류수에 상기 ZnO/실리카의 코어쉘 입자를 분산시킨 후, 교반하고 산(acid) 용액을 적하하여 ZnO 무기주형입자를 녹여내는 과정으로 수행되는 것을 특징으로 한다.In addition, the removal of the ZnO inorganic template particles in the step S300 is performed by dispersing the core shell particles of ZnO / silica in distilled water, stirring and dropping the acid solution to dissolve the ZnO inorganic template particles. It features.
또한 상기 산(acid) 용액은 염산희석액 또는 황산희석액 중 어느 하나인 것을 특징으로 한다.In addition, the acid (acid) solution is characterized in that any one of dilute hydrochloric acid solution or sulfate diluent.
상기한 과제 해결수단을 통해 본 발명은 별도의 열처리나 유기용매를 이용하지 않고 산처리 공정을 통해 용이하게 제거될 수 있는 ZnO 무기주형입자를 이용하여 중공실리카 입자를 생성하는바, 열처리 및 유기용매를 이용한 주형입자 제거 공정시 발생하는 입자 응집과 오염문제를 방지할 수 있다.The present invention through the above problem solving means to produce hollow silica particles using ZnO inorganic template particles that can be easily removed through the acid treatment process without using a separate heat treatment or organic solvent, heat treatment and organic solvent Particle agglomeration and contamination can be prevented during the mold particle removal process.
또한 ZnO 무기주형입자 형상 및 크기의 조절이 비교적 용이하므로, ZnO 무기주형입자의 크기 및 형상을 제어함으로써 중공실리카의 중공크기를 최대화하여 중공 효율을 향상 시킬 수 있으며, 적용분야에 따라 요구되는 중공 실리카 입자를 제공할 수 있다.In addition, since the shape and size of the ZnO inorganic mold particles are relatively easy to control, the size and shape of the ZnO inorganic mold particles can be controlled to maximize the hollow size of the hollow silica and improve the hollow efficiency. Particles can be provided.
또한 소듐실리케이트를 실리카 전구체로 사용하기 때문에 TEOS에 비해 제조원가가 낮다. In addition, since sodium silicate is used as a silica precursor, the manufacturing cost is lower than that of TEOS.
또한 반응용매가 물이므로, TEOS를 실리카 전구체로 이용한 중공실리카 합성방식보다 환경 친화적인 효과가 있다.In addition, since the reaction solvent is water, there is an environmentally friendly effect than the hollow silica synthesis method using TEOS as a silica precursor.
다만, 본 발명의 실시 예들에 따른 ZnO 무기주형입자를 이용한 소듐실리케이트부터의 중공 실리카 입자 제조방법이 달성할 수 있는 효과는 이상에서 언급한 것들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the effect that can be achieved by the method for preparing hollow silica particles from sodium silicate using ZnO inorganic template particles according to the embodiments of the present invention is not limited to those mentioned above, and other effects not mentioned are as follows. From the description will be clearly understood by those skilled in the art.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, included as part of the detailed description in order to provide a thorough understanding of the present invention, provide examples of the present invention and together with the description, describe the technical idea of the present invention.
도 1은 본 발명에 따른 중공 실리카 입자의 제조 공정을 나타내는 순서도이다.1 is a flow chart showing a manufacturing process of hollow silica particles according to the present invention.
도 2는 본 발명에 따른 중공 실리카 입자를 형성하는 과정을 나타낸 모식도이다.Figure 2 is a schematic diagram showing a process of forming hollow silica particles according to the present invention.
도 3은 본 발명에 따른 ZnO 무기주형입자를 제조하는 과정을 나타낸 순서도이다.Figure 3 is a flow chart showing a process for producing a ZnO inorganic template particles according to the present invention.
도 4의 (a), (b)는 ZnO 전구체의 종류에 따른 ZnO 무기주형입자를 나타내는 SEM 이미지이다.4A and 4B are SEM images showing ZnO inorganic template particles according to the type of ZnO precursor.
도 5의 (a), (b), (c)는 ZnO 전구체의 농도에 따른 ZnO 무기주형입자를 나타내는 SEM 이미지이다.5A, 5B, and 5C are SEM images of ZnO inorganic template particles according to concentrations of ZnO precursors.
도 6의 (a), (b), (c)는 알칼리성 침전제의 종류에 따른 ZnO 무기주형입자를 나타내는 SEM 이미지이다.6A, 6B, and 6C are SEM images showing ZnO inorganic template particles according to the type of alkaline precipitant.
도 7의 (a), (b), (c)는 pH에 따른 ZnO 무기주형입자를 나타내는 SEM 이미지이다.(A), (b) and (c) of FIG. 7 are SEM images showing ZnO inorganic template particles according to pH.
도 8의 (a), (b), (c)는 반응온도에 따른 ZnO 무기주형입자를 나타내는 SEM 이미지이다.(A), (b) and (c) of FIG. 8 are SEM images showing ZnO inorganic template particles according to reaction temperature.
도 9은 본 발명에 따른 타원형의 ZnO 무기주형입자를 나타내는 SEM 이미지이다.9 is an SEM image showing an elliptical ZnO inorganic template particle according to the present invention.
도 10는 본 발명에 따른 0.1μm내지 0.2μm 크기의 구형 ZnO 무기주형입자의 SEM 이미지이다.10 is a SEM image of the spherical ZnO inorganic template particles of 0.1μm to 0.2μm size according to the present invention.
도 11은 0.1μm 내지 0.2μm 크기의 구형 ZnO 무기주형입자를 사용하여 합성한 중공실리카를 기판에 코팅한 후 코팅막의 단면을 촬영한 SEM 이미지이다.FIG. 11 is an SEM image of a cross section of a coating film after coating hollow silica synthesized using spherical ZnO inorganic template particles having a size of 0.1 μm to 0.2 μm on a substrate.
도 1은 본 발명에 따른 중공 실리카 입자의 제조 공정을 나타내는 순서도이다.1 is a flow chart showing a manufacturing process of hollow silica particles according to the present invention.
본 발명에 따르는 중공(hollow) 실리카 입자 제조는 Zn 전구체 및 알칼리성 침전제를 혼합한 용액에 열을 가해 ZnO 무기주형입자를 제조하는 단계(S100), 실리카(silica) 전구체 및 염을 상기 ZnO 무기주형입자와 반응시켜 상기 ZnO 무기주형입자 표면에 실리카 쉘을 형성하여 ZnO/실리카 코어쉘(core-shell)입자를 제조하는 단계(S200) 및 상기 ZnO/실리카 코어쉘입자에서 상기 ZnO 무기주형입자를 제거하는 단계(S300)를 포함하는 것을 특징으로 한다.In the preparation of hollow silica particles according to the present invention, a ZnO inorganic template particle is prepared by applying heat to a solution in which a Zn precursor and an alkaline precipitant are mixed (S100), and a silica precursor and a salt of the ZnO inorganic template particle. Reacting to form a silica shell on the surface of the ZnO inorganic template particles to produce ZnO / silica core-shell particles (S200) and to remove the ZnO inorganic template particles from the ZnO / silica core-shell particles It characterized in that it comprises a step (S300).
도 3을 함께 참조하여 ZnO 무기주형입자를 형성하는 단계(S100) 및 상기 무기주형입자의 크기 및 형상을 조절하는 요인에 대하여 설명한다.Referring to Figure 3 together to form a ZnO inorganic template particles (S100) and the factors for controlling the size and shape of the inorganic template particles will be described.
ZnO 무기주형입자는 중공 실리카입자의 기본 골격이 되는바, ZnO 무기주형입자의 형태를 조절하는 것은, 중공 실리카입자의 형태에 영향을 미치게 된다.Since the ZnO inorganic template particles become the basic skeleton of the hollow silica particles, controlling the shape of the ZnO inorganic template particles affects the shape of the hollow silica particles.
기본적으로 침전법(sedimentation method)을 이용하여 Zn전구체와 알칼리성 침전제를 혼합한 후, 열을 가해 반응시켜 ZnO 무기주형입자를 형성한다. 이 때, 상기 Zn전구체는 zinc chloride(ZnCl2), zinc acetate (Zn(CH3COO)2)등일 수 있으며, 상기 알칼리성 침전제로는 NaOH, LiOH, NaCO3, NH4OH 등 일 수 있다. Basically, the Zn precursor and the alkaline precipitant are mixed using a sedimentation method, and then reacted with heat to form ZnO inorganic template particles. In this case, the Zn precursor may be zinc chloride (ZnCl 2 ), zinc acetate (Zn (CH 3 COO) 2 ), and the like, and the alkaline precipitant may be NaOH, LiOH, NaCO 3 , NH 4 OH, or the like.
ZnO 무기주형입자의 형상 및 크기는, Zn전구체 종류, Zn전구체 농도, 알칼리성 침전제의 종류, pH, 반응온도 등에 의해 결정될 수 있다. ZnO 무기주형입자의 형상 및 크기는 중공 실리카의 형상 및 중공효율을 결정하는 가장 큰 요인이 되는바 이를 조절 및 제어하는 것이 중요하다.The shape and size of the ZnO inorganic template particles may be determined by the type of Zn precursor, Zn precursor concentration, type of alkaline precipitant, pH, reaction temperature, and the like. The shape and size of the ZnO inorganic template particles are the biggest factor in determining the shape and hollow efficiency of the hollow silica, and it is important to control and control them.
Zn전구체의 종류에 따라 ZnO 입자의 크기 및 형상을 조절 할 수 있다. 이는 반응 메카니즘은 동일하나, 반응중에 생성되는 염(salt) 및 침전제와의 반응 속도가 상이하기 때문이다. 일실시예로서 염화아연(zinc chloride)의 경우 아세트산 아연(zinc acetate)보다 침전제와의 반응속도가 빠르므로 입자 형성이 빠르게 진행됨에 따라 입자크기가 크게 형성된다.The size and shape of the ZnO particles can be adjusted according to the type of Zn precursor. This is because the reaction mechanism is the same, but the reaction rates with salts and precipitants produced during the reaction are different. In one embodiment, zinc chloride has a faster reaction rate with a precipitant than zinc acetate, so that the particle size increases as the particle formation proceeds faster.
또한, Zn 전구체의 농도에 있어 Zn 전구체의 농도가 높을수록 입자크기가 증가한다. 즉, 농도가 낮을수록 핵 생성 속도가 느리므로, 형성된 핵간의 응집이 적어 입자 크기가 작게 형성되기 때문이다. 일실시예로서 염화아연(zinc chloride) 0.5M 에서는 100nm구형 입자가 염화아연(zinc choride) 1.5M에선 200nm 구형입자가 형성된다.In addition, the higher the concentration of the Zn precursor in the Zn precursor concentration, the larger the particle size. In other words, the lower the concentration, the slower the nucleation rate, and therefore, the smaller the agglomeration between the formed nuclei and the smaller the particle size. In one embodiment, 100 nm spherical particles are formed in zinc chloride 0.5M, and 200 nm spherical particles are formed in zinc choride 1.5M.
알칼리성 침전제 종류에 따라 ZnO주형입자의 형상 및 크기를 달리할 수 있다. 수산화 나트륨(NaOH), 수산화 리튬(LiOH), 탄산나트륨(Na2CO3)를 사용할 경우, 수 나노미터 정도의 구형입자가 형성되며, 수산화 암모늄((NH4)OH)을 사용할 경우 다른 침전제와 달리 마이크로미터 정도의 입자를 형성할 수 있으며, 긴 타원형 형상 혹은 판상형 ZnO 무기주형입자를 얻을 수 있다.The shape and size of the ZnO template particles may vary depending on the type of alkaline precipitant. When using sodium hydroxide (NaOH), lithium hydroxide (LiOH), sodium carbonate (Na 2 CO 3 ), spherical particles of several nanometers are formed, and when using ammonium hydroxide ((NH 4 ) OH), unlike other precipitants Particles on the order of micrometers can be formed, and long oval or plate-shaped ZnO inorganic template particles can be obtained.
반응용매의 pH가 높아질수록 입자의 표면에너지를 줄이기 위한 방향인 결정 c축 방향으로 입자가 성장하여 구형입자가 아닌 판상에 가까운 ZnO가 형성된다. 실험적으로 pH 12이상에서는 판상형 입자가 형성된다.As the pH of the reaction solvent increases, the particles grow in the crystal c-axis direction, which is a direction for reducing the surface energy of the particles, thereby forming ZnO close to the plate rather than the spherical particles. Experimentally, above pH 12, plate-shaped particles are formed.
반응온도가 증가할 경우 구형입자 크기는 증가하고, 판상입자의 경우 c축 방향으로 성장하여 기둥형 입자가 형성된다. 실험적으로 반응온도 70℃ 이상에서 입자크기가 현저히 증가한다.As the reaction temperature increases, the spherical particle size increases, and in the case of plate particles, columnar particles are formed by growing in the c-axis direction. Experimentally, the particle size increases significantly above the reaction temperature of 70 ℃.
본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해서 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. 이하에서는, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 ZnO 무기주형입자 제조방법 및 이를 기반으로 하는 중공 실리카 입자 제조방법을 상세하게 설명하기로 한다.The terms or words used in this specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way. Based on the principle that it can, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only one of the most preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, which can be replaced at the time of the present application It should be understood that there may be various equivalents and variations. Hereinafter, with reference to the accompanying drawings will be described in detail ZnO inorganic template particle production method and hollow silica particle production method based on the same according to an embodiment of the present invention.
도 1은 본 발명에 따른 중공 실리카 입자의 제조 공정을 나타내는 순서도이다.1 is a flow chart showing a manufacturing process of hollow silica particles according to the present invention.
본 발명에 따르는 중공(hollow) 실리카 입자 제조는 Zn 전구체 및 알칼리성 침전제를 혼합한 용액에 열을 가해 ZnO 무기주형입자를 제조하는 단계(S100), 실리카(silica) 전구체 및 염을 상기 ZnO 무기주형입자와 반응시켜 상기 ZnO 무기주형입자 표면에 실리카 쉘을 형성하여 ZnO/실리카 코어쉘(core-shell)입자를 제조하는 단계(S200) 및 상기 ZnO/실리카 코어쉘입자에서 상기 ZnO 무기주형입자를 제거하는 단계(S300)를 포함하는 것을 특징으로 한다.In the preparation of hollow silica particles according to the present invention, a ZnO inorganic template particle is prepared by applying heat to a solution in which a Zn precursor and an alkaline precipitant are mixed (S100), and a silica precursor and a salt of the ZnO inorganic template particle. Reacting to form a silica shell on the surface of the ZnO inorganic template particles to produce ZnO / silica core-shell particles (S200) and to remove the ZnO inorganic template particles from the ZnO / silica core-shell particles It characterized in that it comprises a step (S300).
도 3을 함께 참조하여 ZnO 무기주형입자를 형성하는 단계(S100) 및 상기 무기주형입자의 크기 및 형상을 조절하는 요인에 대하여 설명한다.Referring to Figure 3 together to form a ZnO inorganic template particles (S100) and the factors for controlling the size and shape of the inorganic template particles will be described.
ZnO 무기주형입자는 중공 실리카입자의 기본 골격이 되는바, ZnO 무기주형입자의 형태를 조절하는 것은, 중공 실리카입자의 형태에 영향을 미치게 된다.Since the ZnO inorganic template particles become the basic skeleton of the hollow silica particles, controlling the shape of the ZnO inorganic template particles affects the shape of the hollow silica particles.
기본적으로 침전법(sedimentation method)을 이용하여 Zn전구체와 알칼리성 침전제를 혼합한 후, 열을 가해 반응시켜 ZnO 무기주형입자를 형성한다. 이 때, 상기 Zn전구체는 zinc chloride(ZnCl2), zinc acetate (Zn(CH3COO)2)등일 수 있으며, 상기 알칼리성 침전제로는 NaOH, LiOH, NaCO3, NH4OH 등 일 수 있다. Basically, the Zn precursor and the alkaline precipitant are mixed using a sedimentation method, and then reacted with heat to form ZnO inorganic template particles. In this case, the Zn precursor may be zinc chloride (ZnCl 2 ), zinc acetate (Zn (CH 3 COO) 2 ), and the like, and the alkaline precipitant may be NaOH, LiOH, NaCO 3 , NH 4 OH, or the like.
ZnO 무기주형입자의 형상 및 크기는, Zn전구체 종류, Zn전구체 농도, 알칼리성 침전제의 종류, pH, 반응온도 등에 의해 결정될 수 있다. ZnO 무기주형입자의 형상 및 크기는 중공 실리카의 형상 및 중공효율을 결정하는 가장 큰 요인이 되는바 이를 조절 및 제어하는 것이 중요하다.The shape and size of the ZnO inorganic template particles may be determined by the type of Zn precursor, Zn precursor concentration, type of alkaline precipitant, pH, reaction temperature, and the like. The shape and size of the ZnO inorganic template particles are the biggest factor in determining the shape and hollow efficiency of the hollow silica, and it is important to control and control them.
Zn전구체의 종류에 따라 ZnO 입자의 크기 및 형상을 조절 할 수 있다. 이는 반응 메카니즘은 동일하나, 반응중에 생성되는 염(salt) 및 침전제와의 반응 속도가 상이하기 때문이다. 일실시예로서 염화아연(zinc chloride)의 경우 아세트산 아연(zinc acetate)보다 침전제와의 반응속도가 빠르므로 입자 형성이 빠르게 진행됨에 따라 입자크기가 크게 형성된다.The size and shape of the ZnO particles can be adjusted according to the type of Zn precursor. This is because the reaction mechanism is the same, but the reaction rates with salts and precipitants produced during the reaction are different. In one embodiment, zinc chloride has a faster reaction rate with a precipitant than zinc acetate, so that the particle size increases as the particle formation proceeds faster.
또한, Zn 전구체의 농도에 있어 Zn 전구체의 농도가 높을수록 입자크기가 증가한다. 즉, 농도가 낮을수록 핵 생성 속도가 느리므로, 형성된 핵간의 응집이 적어 입자 크기가 작게 형성되기 때문이다. 일실시예로서 염화아연(zinc chloride) 0.5M 에서는 100nm구형 입자가 염화아연(zinc choride) 1.5M에선 200nm 구형입자가 형성된다.In addition, the higher the concentration of the Zn precursor in the Zn precursor concentration, the larger the particle size. In other words, the lower the concentration, the slower the nucleation rate, and therefore, the smaller the agglomeration between the formed nuclei and the smaller the particle size. In one embodiment, 100 nm spherical particles are formed in zinc chloride 0.5M, and 200 nm spherical particles are formed in zinc choride 1.5M.
알칼리성 침전제 종류에 따라 ZnO주형입자의 형상 및 크기를 달리할 수 있다. 수산화 나트륨(NaOH), 수산화 리튬(LiOH), 탄산나트륨(Na2CO3)를 사용할 경우, 수 나노미터 정도의 구형입자가 형성되며, 수산화 암모늄((NH4)OH)을 사용할 경우 다른 침전제와 달리 마이크로미터 정도의 입자를 형성할 수 있으며, 긴 타원형 형상 혹은 판상형 ZnO 무기주형입자를 얻을 수 있다.The shape and size of the ZnO template particles may vary depending on the type of alkaline precipitant. When using sodium hydroxide (NaOH), lithium hydroxide (LiOH), sodium carbonate (Na 2 CO 3 ), spherical particles of several nanometers are formed, and when using ammonium hydroxide ((NH 4 ) OH), unlike other precipitants Particles on the order of micrometers can be formed, and long oval or plate-shaped ZnO inorganic template particles can be obtained.
반응용매의 pH가 높아질수록 입자의 표면에너지를 줄이기 위한 방향인 결정 c축 방향으로 입자가 성장하여 구형입자가 아닌 판상에 가까운 ZnO가 형성된다. 실험적으로 pH 12이상에서는 판상형 입자가 형성된다.As the pH of the reaction solvent increases, the particles grow in the crystal c-axis direction, which is a direction for reducing the surface energy of the particles, thereby forming ZnO close to the plate rather than the spherical particles. Experimentally, above pH 12, plate-shaped particles are formed.
반응온도가 증가할 경우 구형입자 크기는 증가하고, 판상입자의 경우 c축 방향으로 성장하여 기둥형 입자가 형성된다. 실험적으로 반응온도 70℃ 이상에서 입자크기가 현저히 증가한다.As the reaction temperature increases, the spherical particle size increases, and in the case of plate particles, columnar particles are formed by growing in the c-axis direction. Experimentally, the particle size increases significantly above the reaction temperature of 70 ℃.
실리카 쉘을 형성하는 단계(S200) 및 상기 실리카 쉘의 두께 및 형상을 조절하는 요인에 대하여 설명한다.Forming the silica shell (S200) and the factors that control the thickness and shape of the silica shell will be described.
실리카 쉘을 형성하는 단계는 상기 ZnO 무기주형입자를 형성하는 단계(S100) 이후에 실리카 전구체와 암모늄 염 혹은 금속염을 ZnO 무기주형입자가 분산된 용액 내에 동시에 적하(適下)하여, 상기 ZnO 무기주형입자의 표면에 실리카 쉘을 형성시켜 ZnO/실리카의 코어쉘 입자를 획득하는 단계이다. 일실시예로서 상기 실리카 전구체는 소듐실리케이트(Sodiμm Silicate)가 사용될 수 있으며, 암모늄 염 혹은 금속염은 황산 암모늄((NH4)2SO4), 탄산수소나트륨(NaH(CO3)2)이 사용될 수 있다.In the forming of the silica shell, after the forming of the ZnO inorganic template particles (S100), the silica precursor and the ammonium salt or the metal salt are simultaneously dropped in a solution in which the ZnO inorganic template particles are dispersed, and the ZnO inorganic template A silica shell is formed on the surface of the particles to obtain core shell particles of ZnO / silica. As an example, the silica precursor may be sodium silicate (Sodiμm Silicate), and the ammonium salt or metal salt may be ammonium sulfate ((NH 4 ) 2 SO 4 ), sodium bicarbonate (NaH (CO 3 ) 2 ). have.
실리카 쉘 형성반응을 시작하기 전 ZnO 무기주형입자를 용액 내에 완전히 분산시키는 것이 바람직한데, 이는 ZnO 무기주형입자가 응집 또는 침전이 되어있으면 ZnO 무기주형입자의 표면적에 비해 실리카 전구체 함량이 많아지게 되어 의도한 두께나 형상의 실리카 쉘을 형성할 수 없기 때문이다. 이에 따라 초음파를 가하여 용액 내 ZnO 무기 주형입자가 잘 분산될 수 있도록 함으로써 모든 ZnO 무기 주형입자가 코어쉘 반응에 사용되도록 하는 것이 요구된다. 일실시예로서 상기 초음파는 약 40khz 주파수로 약 20분 동안 가해질 수 있다.It is desirable to completely disperse the ZnO inorganic template particles in the solution before starting the silica shell formation reaction. If the ZnO inorganic template particles are agglomerated or precipitated, the content of the silica precursor is increased compared to the surface area of the ZnO inorganic template particles. This is because a silica shell of one thickness or shape cannot be formed. Accordingly, it is required that all ZnO inorganic template particles be used in the core shell reaction by applying ultrasonic waves so that the ZnO inorganic template particles in the solution can be well dispersed. In one embodiment, the ultrasound may be applied for about 20 minutes at a frequency of about 40 kHz.
쉘 형성 반응 시 ZnO 무기주형입자의 크기 및 형상, ZnO 무기주형입자의 분산도, 실리카 전구체의 농도 및 반응 온도 등에 의해 중공 실리카의 쉘 두께 및 형상을 조절할 수 있다.During the shell formation reaction, the shell thickness and shape of the hollow silica may be controlled by the size and shape of the ZnO inorganic template particles, the dispersion degree of the ZnO inorganic template particles, the concentration and the reaction temperature of the silica precursor, and the like.
실리카 쉘 형성 반응 시, 실리카 전구체의 농도를 낮춰 형성되는 실리카 쉘의 두께를 얇게 제어함으로 중공의 효율을 확대할 수 있다. 그러나 실리카 전구체 농도가 극히 적을 경우 ZnO 무기 주형입자 표면의 표면적에 비해 생성되는 실리카 양이 부족하여 실리카 쉘이 깨진 형태로 중공실리카가 형성된다. 반대로 실리카 전구체 농도를 높여 실리카 쉘 두께를 두껍게 제어할 수 있으나, 농도가 너무 높을 경우, 과량의 실리카가 생성되어 ZnO 무기주형 표면을 완전히 코팅하고 남은 잔여 실리카의 표면 흡착에 의해 쉘 표면에 원치 않는 구형입자가 형성되게 된다. 사용한 ZnO 무기주형입자의 크기와 형상에 대한 표면적에 따라 적절한 농도의 실리카 전구체가 투입되는 것이 바람직하다.In the silica shell formation reaction, the hollow efficiency can be expanded by controlling the thickness of the silica shell formed by lowering the concentration of the silica precursor. However, when the silica precursor concentration is extremely low, the amount of generated silica is insufficient compared to the surface area of the surface of the ZnO inorganic template particle, so that the hollow silica is formed in the form of broken silica shell. On the contrary, it is possible to control the thickness of the silica shell by increasing the concentration of the silica precursor, but if the concentration is too high, excess silica is produced to completely coat the surface of the ZnO inorganic mold and the unwanted spherical shape on the surface of the shell due to surface adsorption of the remaining silica. Particles will form. According to the surface area of the size and shape of the ZnO inorganic template particles used, it is preferable that an appropriate concentration of silica precursor is added.
실험적으로 0.1 내지 0.2μm 크기의 구형 ZnO 무기주형을 사용하였을 때, 소듐실리케이트 약 0.2M에서 쉘 형성이 가장 잘 형성된다. 0.2M 이하의 농도에서는 쉘이 깨진 형태로 형성되며, 0.2M 이상에서는 쉘 두께가 점점 증가하고 0.6M이상에서는 쉘 표면에 원치 않는 구형 실리카 입자가 형성된다.Experimentally, when a spherical ZnO inorganic template of 0.1 to 0.2 μm size was used, the shell formation was best formed at about 0.2M of sodium silicate. At concentrations below 0.2M, the shells form broken, above 0.2M, the shell thickness gradually increases, and above 0.6M, unwanted spherical silica particles form on the shell surface.
또한 실리카 쉘 형성 시 동일한 반응시간을 기준으로 반응온도가 낮을 경우 실리카 쉘을 구성하는 실리카 구형입자 크기가 작아 쉘 두께를 얇게 제어할 수 있다. 그러나 반응온도가 너무 낮을 경우 쉘 형성 반응 속도가 느려지게 되어 ZnO 무기주형 표면에 실리카가 모두 코팅되지 않아 깨진 형태의 중공실리카가 형성된다. 반면 반응 온도가 높은 경우 쉘 형성 반응 속도가 빨라지게 되어 ZnO 무기주형 표면에 실리카 쉘이 용이하게 형성될 수 있으나 실리카 쉘을 구성하는 실리카 구형입자 크기가 증가하여 표면 거칠기가 거친 실리카 쉘이 형성될 수 있다. 실제로 반응온도 60℃ 이하에서는 쉘이 깨진 형태로 형성되며, 60℃ 이상 온도에서는 비교적 쉘 형성이 잘 되나 90℃ 이상에서는 쉘 표면이 거칠어 진다.In addition, when the reaction temperature is low based on the same reaction time when forming the silica shell, the size of the silica spherical particles constituting the silica shell is small, it is possible to control the shell thickness thinly. However, if the reaction temperature is too low, the reaction rate of shell formation is slowed down, and thus the silica is not coated on the surface of the ZnO inorganic mold, thereby forming a hollow hollow silica. On the other hand, when the reaction temperature is high, the shell formation reaction rate may be increased, and thus the silica shell may be easily formed on the surface of the ZnO inorganic mold. have. In practice, the shell is formed in a broken form at a reaction temperature of 60 ° C. or lower, and the shell is formed well at a temperature of 60 ° C. or higher, but the shell surface becomes rough at 90 ° C. or higher.
반응 온도는 첨가한 ZnO 무기주형 크기와 실리카 전구체 농도에 따라 조절하는 것이 바람직하며, 이러한 반응온도 조절에 의한 실리카 쉘을 이루는 실리카 구형입자 크기를 제어하여 궁극적으로 중공실리카 쉘 두께를 조절할 수 있다.The reaction temperature is preferably adjusted according to the added ZnO inorganic template size and silica precursor concentration, and by controlling the size of the silica spherical particles constituting the silica shell by controlling the reaction temperature, it is possible to ultimately control the hollow silica shell thickness.
ZnO 무기주형입자를 제거하는 단계(S300)에 대하여 설명한다.The step S300 of removing the ZnO inorganic template particles will be described.
상기 S200 단계를 통하여 ZnO/실리카의 코어쉘입자를 형성한 후, 여과기를 이용하여 세척 한 후 ZnO/실리카의 코어쉘입자를 획득한다. 이 후 증류수에 ZnO/실리카의 코어쉘 입자를 분산시킨 후 교반하면서 상온에서 산 용액을 적하하여 ZnO 무기주형입자를 녹여냄으로서 중공실리카를 형성한다. 이 때 산 용액은 염산희석액 혹은 황산희석액 일 수 있다. After forming the core shell particles of ZnO / silica through the step S200, after washing using a filter to obtain the core shell particles of ZnO / silica. After dispersing the core shell particles of ZnO / silica in distilled water, the acid solution is added dropwise at room temperature while stirring to form hollow silica by melting the ZnO inorganic template particles. In this case, the acid solution may be dilute hydrochloric acid or dilute sulfate.
ZnO 무기주형입자가 제거된 중공실리카 분산액을 여과기를 이용하여 증류수로 세척한 후 최종적으로 중공실리카 입자를 획득한다. 상기 S300 단계는 산 용액을 이용하여 상기 실리카 쉘 내의 코어를 용이하게 제거할 수 있기에 소성 공정 또는 유기 용제를 이용한 추출 공정 등을 거치지 않고도 간단한 방법으로 중공 실리카 입자를 제조할 수 있다.The hollow silica dispersion from which the ZnO inorganic template particles have been removed is washed with distilled water using a filter, and finally, the hollow silica particles are obtained. In the step S300, since the core in the silica shell can be easily removed using an acid solution, hollow silica particles can be manufactured by a simple method without undergoing a calcination process or an extraction process using an organic solvent.
도 2는 본 발명에 따른 중공 실리카 입자를 형성하는 과정을 나타낸 모식도이다.Figure 2 is a schematic diagram showing a process of forming hollow silica particles according to the present invention.
(a), (b), (c)는 실리카 전구체가 ZnO 무기 주형입자 표면에 실리카 쉘을 형성하여 ZnO/실리카 코어쉘 입자를 형성하는 과정을 나타내며, (d)는 형성된 ZnO/실리카의 코어쉘 입자에서 ZnO 무기주형입자를 제거하여 형성되는 중공실리카 입자를 나타낸 것이다.(a), (b) and (c) show a process in which the silica precursor forms a silica shell on the surface of the ZnO inorganic template particle to form ZnO / silica coreshell particles, and (d) shows a coreshell of the formed ZnO / silica. Hollow silica particles are formed by removing ZnO inorganic template particles from the particles.
도 4의 (a), (b)는 Zn 전구체의 종류에 따른 ZnO 무기주형입자를 나타내는 SEM 이미지이다. 4A and 4B are SEM images showing ZnO inorganic template particles according to the type of Zn precursor.
Zn 전구체로 (a)는 염화아연(Zinc chloride)을 (b)는 아세트산아연(Zinc acetate)를 사용하였다. 사용되는 Zn 전구체에 따라 ZnO 무기주형입자의 크기가 변하는 것을 알 수 있다. 구체적인 실험조건은 하기 표 1과 같다.As a Zn precursor, (a) zinc chloride was used and (b) zinc acetate was used. It can be seen that the size of the ZnO inorganic template particles changes depending on the Zn precursor used. Specific experimental conditions are shown in Table 1 below.
실험변수Experiment variable Zn 전구체Zn precursor 알칼리성침전제Alkaline precipitation agent Zn몰농도Zn molar concentration pHpH 반응온도Reaction temperature 모양(크기)Shape (size)
(a)(a) Zn 전구체종류Zn precursor types Zinc chlorideZinc chloride NaOHNaOH 1M1M 77 80℃80 ℃ 구형(105nm)Spherical (105nm)
(b)(b) Zinc actateZinc actate 구형(100nm)Spherical (100nm)
도 5의 (a), (b), (c)는 ZnO 전구체의 농도에 따른 ZnO 무기주형입자를 나타내는 SEM 이미지이다.5A, 5B, and 5C are SEM images of ZnO inorganic template particles according to concentrations of ZnO precursors.
(a), (b), (c) 모두 Zn 전구체로 염화아연(Zinc chloride)을 사용하여, 각각 몰농도 0.5M, 1M, 1.5M에서 실험하였다. Zn 전구체의 농도가 0.5M에서 1M 또는 1.5M로 증가함에 따라 ZnO 무기주형입자크기가 커지는 것을 알 수 있다. 구체적인 실험조건은 하기 표 2와 같다.(a), (b), and (c) were all tested at molar concentrations of 0.5M, 1M, and 1.5M, using zinc chloride as a Zn precursor. It can be seen that the ZnO inorganic template particle size increases as the concentration of the Zn precursor increases from 0.5M to 1M or 1.5M. Specific experimental conditions are shown in Table 2 below.
실험변수Experiment variable Zn 전구체Zn precursor 알칼리성침전제Alkaline precipitation agent Zn몰농도Zn molar concentration pHpH 반응온도Reaction temperature 모양(크기)Shape (size)
(a)(a) Zn 전구체농도Zn precursor concentration Zinc chlorideZinc chloride NaOHNaOH 0.5M0.5M 77 80℃80 ℃ 구형(약100nm)Spherical (about 100nm)
(b)(b) 1.0M1.0M 구형(약200nm)Spherical (approx. 200 nm)
(c)(c) 1.5M1.5M 구형(약200nm)Spherical (approx. 200 nm)
도 6의 (a), (b), (c)는 알칼리성 침전제의 종류에 따른 ZnO 무기주형입자를 나타내는 SEM 이미지이다.6A, 6B, and 6C are SEM images showing ZnO inorganic template particles according to the type of alkaline precipitant.
알칼리성 침전제로 (a)는 NaOH, (b)는 LiOH, (c)는 NH4OH를 사용하였다. NaOH와 LiOH의 경우 ZnO 무기주형입자의 모양 및 크기에 별다른 차이점이 없었으나, NH4OH를 사용하는 경우, NaOH, LiOH와 다르게 모양이 판상형 또는 기둥형으로 형성되며, 크기 또한 0.4 내지 1 마이크로 미터(μm)로 더 크게 형성되는 것을 알 수 있다. 구체적인 실험조건은 하기 표 3과 같다.As the alkaline precipitant, (a) was NaOH, (b) was LiOH, and (c) was NH 4 OH. In the case of NaOH and LiOH, there was no difference in the shape and size of the ZnO inorganic template particles.However, when NH 4 OH is used, the shape is formed in the shape of a plate or column, unlike NaOH and LiOH, and the size is 0.4 to 1 micrometer. It can be seen that the larger the formation (μm). Specific experimental conditions are shown in Table 3 below.
실험변수Experimental variable Zn 전구체Zn precursor 알칼리성침전제Alkaline precipitation agent Zn몰농도Zn molar concentration pHpH 반응온도Reaction temperature 모양(크기)Shape (size)
(a)(a) 알칼리성 침전제 종류Alkaline Precipitant Class Zinc chlorideZinc chloride NaOHNaOH 1M1M 77 80℃80 ℃ 구형(약200nm)Spherical (approx. 200 nm)
(b)(b) LiOHLiOH 구형(약200nm)Spherical (approx. 200 nm)
(c)(c) NH4OHNH 4 OH 판상형(0.4 내지 1μm)Plate-shaped (0.4-1 μm)
도 7의 (a), (b), (c)는 pH에 따른 ZnO 무기주형입자를 나타내는 SEM 이미지이다.(A), (b) and (c) of FIG. 7 are SEM images showing ZnO inorganic template particles according to pH.
pH 7에서는 구형에 크기가 200nm로 형성되나, pH가 12 또는 13으로 높아지는 경우 판상형에 크기가 200 내지 300nm로 형성되는 것을 알 수 있다. 구체적인 실험조건은 하기 표 4와 같다.At pH 7, the sphere is formed at 200 nm in size, but when the pH is increased to 12 or 13, it can be seen that the plate is formed at 200 to 300 nm in size. Specific experimental conditions are shown in Table 4 below.
실험변수Experimental variable Zn 전구체Zn precursor 알칼리성침전제Alkaline precipitation agent Zn몰농도Zn molar concentration pHpH 반응온도Reaction temperature 모양(크기)Shape (size)
(a)(a) pHpH Zinc chlorideZinc chloride NaOHNaOH 1M1M 77 30℃30 ℃ 구형(200nm)Spherical (200nm)
(b)(b) 1212 판상형(200 내지 300nm)Plate-shaped (200-300 nm)
(c)(c) 1313 판상형(200 내지 300nm)Plate-shaped (200-300 nm)
도 8의 (a), (b), (c)는 반응온도에 따른 ZnO 무기주형입자를 나타내는 SEM 이미지이다.(A), (b) and (c) of FIG. 8 are SEM images showing ZnO inorganic template particles according to reaction temperature.
기본적으로 온도가 높아짐에 따라 모양은 판상형에서 기둥형으로 변화하며, 입자크기는 커지는 것을 알 수 있다. 구체적인 실험조건은 하기 표 5와 같다.Basically, as the temperature increases, the shape changes from plate-shaped to columnar, and it can be seen that the particle size increases. Specific experimental conditions are shown in Table 5 below.
실험변수Experimental variable Zn 전구체Zn precursor 알칼리성침전제Alkaline precipitation agent Zn몰농도Zn molar concentration pHpH 반응온도Reaction temperature 모양(크기)Shape (size)
(a)(a) 반응온도Reaction temperature Zinc chlorideZinc chloride NaOHNaOH 1M1M 1313 30℃30 ℃ 판상형(200 내지 300nm)Plate-shaped (200-300 nm)
(b)(b) 50℃50 ℃ 판상형(300nm)Plate-shaped (300 nm)
(c)(c) 70℃70 ℃ 기둥형(500nm)Columnar (500 nm)
(d)(d) 95℃95 ℃ 기둥형(1 내지 2μm)Columnar (1 to 2 μm)
도 9은 본 발명에 따른 타원형의 ZnO 무기주형입자를 나타내는 SEM 이미지이다. 실험을 통해 형성된 타원형 ZnO 무기주형입자의 크기는 2 내지 3 마이크로미터(μm)를 나타내었다. 구체적인 실험조건은 하기 표 6과 같다.9 is an SEM image showing an elliptical ZnO inorganic template particle according to the present invention. The size of the elliptical ZnO inorganic template particles formed through the experiment was 2 to 3 micrometers (μm). Specific experimental conditions are shown in Table 6 below.
Zn 전구체Zn precursor 알칼리성침전제Alkaline precipitation agent Zn 몰농도Zn molarity pHpH 반응온도Reaction temperature 모양(크기)Shape (size)
Zinc chlorideZinc chloride NH4OHNH 4 OH 0.2M0.2M 77 80℃80 ℃ 타원형(크기 2 내지 3μm)Oval (Size 2-3 μm)
도 10는 본 발명에 따른 ZnO 무기주형입자의 SEM 이미지, 도 11은 중공실리카의 단면을 촬영한 SEM 이미지이다.10 is an SEM image of ZnO inorganic template particles according to the present invention, Figure 11 is a SEM image of the cross section of the hollow silica.
도 10에 나타난 바와 같이, ZnO 무기주형입자를 구형의 형상으로 직경이 0.1 내지 0.2μm가 되도록 제조하였다. 도 11은 상기 구형의 ZnO 무기주형입자(0.1 내지 0.2μm)를 이용하여 형성된 중공실리카를 기판에 도포한 후 그 단면을 SEM 이미지로 나타낸 것이다.As shown in FIG. 10, ZnO inorganic template particles were prepared in a spherical shape so as to have a diameter of 0.1 to 0.2 μm. 11 is a cross-sectional SEM image of a hollow silica formed using the spherical ZnO inorganic template particles (0.1 to 0.2μm) to the substrate and then coated.
이상에서 본 발명의 대표적인 실시예들을 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.While the exemplary embodiments of the present invention have been described in detail above, those skilled in the art will appreciate that various modifications can be made to the above-described embodiments without departing from the scope of the present invention. . Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.

Claims (16)

  1. Zn 전구체 및 알칼리성 침전제를 혼합하는 단계; 및 Mixing the Zn precursor and the alkaline precipitant; And
    상기 용액에 열을 가하는 단계;Applying heat to the solution;
    를 포함하는 ZnO 무기주형입자 제조방법.ZnO inorganic template particles production method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 Zn 전구체는 zinc chloride(ZnCl2), zinc acetate(Zn(CH3COO)2) 중 어느 하나인 것을 특징으로 하는 ZnO 무기주형입자 제조방법.The Zn precursor is a zinc chloride (ZnCl 2 ), zinc acetate (Zn (CH 3 COO) 2 ) ZnO inorganic template particle production method characterized in that any one of.
  3. 제1항에 있어서,The method of claim 1,
    상기 Zn 전구체는 zinc chloride(ZnCl2), 상기 알칼리성 침전제는 NaOH, LiOH, NaCO3 중 어느 하나로, 상기 ZnO 무기주형입자는 직경 190nm 내지 210nm의 구형인 것을 특징으로 하는 ZnO 무기주형입자를 제조하는 방법.The Zn precursor is zinc chloride (ZnCl 2 ), the alkaline precipitant is NaOH, LiOH, NaCO 3 In any one of the above, the ZnO inorganic template particles are a method for producing a ZnO inorganic template particles, characterized in that the sphere of 190nm to 210nm spherical.
  4. 제1항에 있어서,The method of claim 1,
    상기 Zn 전구체는 zinc chloride(ZnCl2), 상기 알칼리성 침전제는 NaOH로, 상기 ZnO 무기주형입자는 입자크기 200nm 내지 300nm 판상형인 것을 특징으로 하는 ZnO 무기주형 입자 제조방법.The Zn precursor is zinc chloride (ZnCl 2 ), the alkaline precipitant is NaOH, the ZnO inorganic template particles are ZnO inorganic template particle production method, characterized in that the particle size of 200nm to 300nm plate-shaped.
  5. 제1항에 있어서,The method of claim 1,
    상기 Zn 전구체는 zinc chloride(ZnCl2), 상기 알칼리성 침전제는 NaOH로, 상기 ZnO 무기주형입자는 500nm 내지 2.0μm의 기둥형인 것을 특징으로 하는 ZnO 무기주형입자 제조방법.The Zn precursor is zinc chloride (ZnCl 2 ), the alkaline precipitant is NaOH, the ZnO inorganic template particles are ZnO inorganic template particles manufacturing method characterized in that the columnar shape of 500nm to 2.0μm.
  6. 제1항에 있어서,The method of claim 1,
    상기 Zn 전구체는 zinc chloride(ZnCl2), 상기 알칼리성 침전제는 NH4OH인 것을 특징으로 하는 ZnO 무기주형입자 제조방법. The Zn precursor is zinc chloride (ZnCl 2 ), ZnO inorganic template particles, characterized in that the alkaline precipitant is NH 4 OH.
  7. 제6항에 있어서,The method of claim 6,
    상기 ZnO 무기주형입자는 입자크기 0.4μm 내지 1.0μm의 판상형인 것을 특징으로 하는 ZnO 무기주형입자 제조방법.The ZnO inorganic template particles are ZnO inorganic template particles production method, characterized in that the particle size of 0.4μm to 1.0μm plate-shaped.
  8. 제6항에 있어서,The method of claim 6,
    상기 ZnO 무기주형입자는 입자크기 2.0μm 내지 3.0μm의 타원형인 것을 특징으로 하는 ZnO 무기주형입자 제조방법.The ZnO inorganic template particles are prepared ZnO inorganic template particles, characterized in that the particle size of 2.0μm to 3.0μm oval.
  9. 제1항에 있어서,The method of claim 1,
    상기 열을 가한 Zn 전구체 및 알칼리성 침전제를 혼합한 용액에 초음파를 가하여 상기 ZnO 무기주형입자를 분산시키는 단계를 더 포함하는 것을 특징으로 하는 ZnO 무기주형입자를 제조방법.And dispersing the ZnO inorganic template particles by applying ultrasonic waves to a solution in which the heated Zn precursor and an alkaline precipitant are mixed.
  10. Zn 전구체 및 알칼리성 침전제를 혼합한 용액에 열을 가해 ZnO 무기주형입자를 제조하는 단계(S100);Adding Zn precursor and an alkaline precipitant to heat to prepare ZnO inorganic template particles (S100);
    실리카(silica) 전구체 및 염을 상기 ZnO 무기주형입자와 반응시켜 상기 ZnO 무기주형입자 표면에 실리카 쉘을 형성하여 ZnO/실리카 코어쉘(core-shell)입자를 제조하는 단계(S200); 및Preparing a ZnO / silica core-shell particle by reacting a silica precursor and a salt with the ZnO inorganic template particle to form a silica shell on the surface of the ZnO inorganic template particle (S200); And
    상기 ZnO/실리카 코어쉘입자에서 상기 ZnO 무기주형입자를 제거하는 단계(S300);Removing the ZnO inorganic template particles from the ZnO / silica core shell particles (S300);
    를 포함하는 것을 특징으로 하는 중공 실리카 입자 제조방법.Hollow silica particles production method comprising a.
  11. 제10항에 있어서,The method of claim 10,
    상기 S200 단계의 상기 실리카 전구체는 소듐실리케이트(sodiμm silicate)인 것을 특징으로 하는 중공 실리카 입자 제조방법.The silica precursor of step S200 is sodium silicate (sodiμm silicate) characterized in that the hollow silica particles production method.
  12. 제11항에 있어서,The method of claim 11,
    상기 소듐실리케이트의 농도는 0.2 M 내지 0.6 M인 것을 특징으로 하는 중공 실리카 입자 제조방법.The concentration of the sodium silicate is 0.2 M to 0.6 M hollow silica particle production method characterized in that.
  13. 제10항에 있어서,The method of claim 10,
    상기 S200 단계의 상기 염은 (NH4)2SO4 또는 NaH(CO3)2 중 어느 하나인 것을 특징으로 하는 중공 실리카 입자 제조방법.The salt of step S200 is (NH 4 ) 2 SO 4 Or NaH (CO 3 ) 2 , characterized in that the hollow silica particles production method.
  14. 제10항에 있어서,The method of claim 10,
    상기 S200 단계의 ZnO/실리카 코어쉘(core-shell)입자를 형성하는 반응온도는 60℃ 내지 90℃인 것을 특징으로 하는 중공 실리카 입자 제조방법.The reaction temperature for forming the ZnO / silica core-shell particles of the step S200 is 60 ℃ to 90 ℃ characterized in that the hollow silica particle production method.
  15. 제10항에 있어서,The method of claim 10,
    상기 S300 단계의 상기 ZnO 무기주형입자의 제거는 증류수에 상기 ZnO/실리카의 코어쉘 입자를 분산시킨 후, 교반하고 산(acid) 용액을 적하하여 ZnO 무기주형입자를 녹여내는 과정으로 수행되는 것을 특징으로 하는 중공 실리카 입자 제조방법.The removal of the ZnO inorganic template particles in step S300 is performed by dispersing the core shell particles of ZnO / silica in distilled water, stirring and dropping the acid solution to dissolve the ZnO inorganic template particles. Hollow silica particles production method.
  16. 제15항에 있어서,The method of claim 15,
    상기 산(acid) 용액은 염산희석액 또는 황산희석액 중 어느 하나인 것을 특징으로 하는 중공 실리카 입자 제조방법.The acid solution is a hollow silica particle production method, characterized in that any one of dilute hydrochloric acid solution or sulfate diluent.
PCT/KR2017/001119 2017-01-23 2017-02-02 Method for producing hollow silica particle from sodium silicate using zno inorganic template particle WO2018135685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170010254A KR20180086616A (en) 2017-01-23 2017-01-23 METHOD OF SILICA PARTICLES FROM SODIΜM SILICATE USING ZnO INORGANIC TEMPLATE PARTICLES
KR10-2017-0010254 2017-01-23

Publications (1)

Publication Number Publication Date
WO2018135685A1 true WO2018135685A1 (en) 2018-07-26

Family

ID=62908112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001119 WO2018135685A1 (en) 2017-01-23 2017-02-02 Method for producing hollow silica particle from sodium silicate using zno inorganic template particle

Country Status (2)

Country Link
KR (1) KR20180086616A (en)
WO (1) WO2018135685A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111607127A (en) * 2020-06-09 2020-09-01 江西宝弘纳米科技有限公司 Rubber vulcanization activator and preparation method and application thereof
CN115175873A (en) * 2020-02-28 2022-10-11 协和化学工业株式会社 Hollow particle, resin composition, and resin molded body and laminate using same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANZLOVAR, ALOJZ ET AL.: "Impact of Inorganic Hydroxides on ZnO Nanoparticle Formation and Morphology", CRYSTAL GROWTH & DESIGN, vol. 14, no. 9, 12 August 2014 (2014-08-12), pages 4262 - 4269, XP055508870 *
HAN, KUN ET AL.: "The Sol-gel Preparation of ZnO/silica Core-shell Composites and Hollow Silica Structure", MATERIALS LETTERS, vol. 61, no. 2, December 2006 (2006-12-01), pages 363 - 368, XP005787124 *
OSKAM, GERKO ET AL.: "Synthesis of ZnO and Ti02 Nanoparticles", JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, vol. 37, no. 3, March 2006 (2006-03-01), pages 157 - 160, XP019213089 *
SIN, N. D. MD ET AL.: "Improvement Sensitivity Humidity Sensor Based on ZnO/SnO2 Cubic Structure", IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING, vol. 46, no. 1, 6 June 2013 (2013-06-06), pages 1 - 7, XP055508866 *
ZUAS, OMAN ET AL.: "Synthesis Of ZnO Nanoparticles for Microwave Induced Rapid Catalytic Decolorization of Congo Red Dye", ADVANCED MATERIALS LETTERS, vol. 4, no. 9, 2013, pages 662 - 667, XP055508867 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115175873A (en) * 2020-02-28 2022-10-11 协和化学工业株式会社 Hollow particle, resin composition, and resin molded body and laminate using same
CN111607127A (en) * 2020-06-09 2020-09-01 江西宝弘纳米科技有限公司 Rubber vulcanization activator and preparation method and application thereof

Also Published As

Publication number Publication date
KR20180086616A (en) 2018-08-01

Similar Documents

Publication Publication Date Title
CN111547729B (en) Low-dielectric-constant hollow alumina/silicon dioxide nano composite material and application thereof
WO2010024564A2 (en) Method for manufacturing metal flakes
WO2018135685A1 (en) Method for producing hollow silica particle from sodium silicate using zno inorganic template particle
WO2015194850A1 (en) Silver-coated copper nanowire and preparation method therefor
WO2017026722A1 (en) Production method for silver powder for high-temperature sintering type of electrically-conductive paste
WO2011019171A2 (en) Method for producing nanoscale lithium titanate particles
CN111620342B (en) Small-size monodisperse hollow silica microsphere and preparation method and application thereof
CN107098700B (en) BMN suspension ink with high solid content and suitable for direct-write printing and preparation method thereof
WO2023284240A1 (en) Hollow silica spherical particle, preparation method therefor and application thereof
WO2014025125A1 (en) Method for preparing lithium metal phosphor oxide
CN112694093A (en) Low dielectric loss silicon dioxide microsphere and preparation method thereof
WO2020071841A1 (en) Silver powder and method for manufacturing same
WO2018186546A1 (en) Method for producing acicular metal-silica composite aerogel particles and acicular metal-silica composite aerogel particle produced thereby
WO2019216719A1 (en) Method for manufacture of transition metal oxide fine particles
WO2013157775A1 (en) Method for producing colloidal cerium oxide
CN112705053A (en) Preparation method and application of acid-resistant zeolite molecular sieve membrane
WO2019151559A1 (en) Method for manufacturing hollow silica particles having titanium dioxide shell
CN108862304B (en) Hydrophobic hybrid silicon-aluminum molecular sieve containing organic groups and having micro-nano hierarchical structure and preparation method thereof
EP3208238A1 (en) Method for aligning nanocrystals, method for producing nanocrystal structure, nanocrystal structure forming substrate, and method for manufacturing nanocrystal structure forming substrate
Chaudhari et al. A new insight into the adsorption–dissolution growth mechanism of zinc oxide hollow hexagonal nanotowers
WO2020106120A1 (en) Method for preparing monodispersed silver powder
CN115135601B (en) Hollow particle, method for producing the same, resin composition, and resin molded body and laminate using the same
JP3207886B2 (en) Method for producing metal oxide thin film
KR100383089B1 (en) Alumina single-dispersion particulate synthesis method
KR100417694B1 (en) Preparation method of spherical monodispersed bariumtitanate particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892706

Country of ref document: EP

Kind code of ref document: A1