WO2013157775A1 - Method for producing colloidal cerium oxide - Google Patents

Method for producing colloidal cerium oxide Download PDF

Info

Publication number
WO2013157775A1
WO2013157775A1 PCT/KR2013/003022 KR2013003022W WO2013157775A1 WO 2013157775 A1 WO2013157775 A1 WO 2013157775A1 KR 2013003022 W KR2013003022 W KR 2013003022W WO 2013157775 A1 WO2013157775 A1 WO 2013157775A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium oxide
solution
precipitate
cerium
producing
Prior art date
Application number
PCT/KR2013/003022
Other languages
French (fr)
Korean (ko)
Inventor
김태현
Original Assignee
(주)디오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)디오 filed Critical (주)디오
Publication of WO2013157775A1 publication Critical patent/WO2013157775A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0047Preparation of sols containing a metal oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a method for producing a cerium oxide colloidal solution, and more particularly, to a method for producing a colloidal cerium oxide uniformly dispersed in several nanometers without aggregation.
  • Cerium oxide has a fluorite structure that is more stable than other oxides having oxygen ion conductivity, such as zirconium oxide and bismuth oxide. Because of these structural characteristics, cerium oxide is currently in the spotlight as a material for glass additives, glass abrasives, phosphors, oxygen gas sensors, catalyst supports for automobile exhaust systems, and solid electrolytes for solid oxide fuel cells. In addition, a cerium oxide film may be used as a catalyst material for removing carbon monoxide in the polymer electrolyte membrane fuel cell field.
  • the cerium oxide film is produced by various methods such as chemical vapor deposition, pulsed laser deposition, vapor deposition by electron beam evaporation, and coating by sol-gel method.
  • a technique using a solution phase such as a coating method using a sol-gel method
  • a technique using a solution phase can be manufactured with easy processes and devices, and has the advantage of uniform coating over a large area, compared to other methods.
  • the composition, thickness and structure of the film can be easily adjusted and has a very good price advantage.
  • the most important technique to use this sol-gel method is to prepare a high concentration of stabilized cerium oxide sol.
  • the technique for producing a high concentration of cerium oxide sol has a lot of difficulties so far, the main problem is that due to the characteristics of the nano-sized high concentration of cerium oxide is easily aggregated in the solution phase.
  • the researchers of the present invention have been studying a method for preparing agglomerated cerium oxide particles having a uniform distribution of several nanometers in solution, and for easily bridging and spontaneous dispersion of the agglomerated cerium oxide particles, and as a result, high concentration of nanoscale A method of preparing a transparent cerium oxide sol has been developed.
  • an object of the present invention is to provide a method for easily preparing a high concentration of cerium oxide sol.
  • the present invention comprises the steps of dissolving a cerium oxide precursor in an organic solvent to prepare a cerium oxide precursor solution; Preparing a cerium oxide surface-treated with a mixed solvent of alcohol and glycol by adjusting the pH of the precursor solution to precipitate a reaction; Washing the cerium oxide precipitate of the precipitation reaction step; And it provides a method for producing a cerium oxide colloidal solution comprising the step of peptizing and spontaneous dispersion of the cerium oxide precipitate.
  • the organic solvent is preferably a mixed solvent of a glycol solvent and an alcohol solvent.
  • the mixing volume ratio of the glycol solvent and the alcohol solvent is preferably 5: 5 to 9.98: 0.02.
  • an oxidation accelerator may be used in the precipitation reaction step.
  • the oxidation promoter is preferably oxygen gas, air or hydrogen peroxide.
  • the precipitation reaction step is preferably carried out at a temperature of 30 ⁇ 90 °C, pH 5.0 ⁇ 10.0 range.
  • cerium oxide precipitate in the washing step of the present invention is preferably washed with acetone or alcohol.
  • the peptizing and spontaneous dispersion step of the present invention is preferably carried out at a temperature of 30 ⁇ 75 °C and pH 0.01 ⁇ 4.0 after dispersing the cerium oxide precipitate in water.
  • the pH in the peptizing and spontaneous dispersion step of the present invention is preferably adjusted by acetic acid or nitric acid, or a mixture thereof.
  • the crystal size and the degree of dispersion of the cerium oxide particles can be adjusted according to the proportion of the organic solvent.
  • 1 is a graph showing the results of XRD analysis of cerium oxide particles according to a preferred embodiment of the present invention.
  • FIG. 2 is a SEM photograph of colloidal cerium oxide particles according to a preferred embodiment of the present invention.
  • 3 is a graph showing the results of XRD analysis of the cerium oxide particles according to the preferred and comparative examples of the present invention.
  • the present invention uses a mixed organic solvent to control the cerium oxide particle size to several nano size and avoid agglomeration between particles during the precipitation reaction of cerium ions, using acetone or ethanol to wash the cerium oxide particles of several nano size And a method for adjusting pH to stabilize the washed cerium oxide particles at a high concentration.
  • the cerium oxide of the present invention is prepared by a method of precipitating cerium oxide from a cerium precursor in solution.
  • distilled water is used as the solvent in the precipitation method.
  • distilled water forms hydrogen bonds on the surface of particles determined during the precipitation reaction, and induces bonds between particles. As a result, strong aggregates are formed as the crystallization progresses, which results in poor particle dispersibility.
  • the resulting product is weakly agglomerated and precipitated by the ethanol, a nano-sized cerium oxide surface modified with a cerium alkoxide compound.
  • the cerium oxide surface-treated with ethanol as described above acts as a functional group for dispersing at the particle surface because the surface of the particle is modified by bonding a carbon-based compound rather than a hydrogen bond to the surface.
  • each solvent has a unique dielectric constant value
  • the solvent's dielectric constant changes surface energy or surface charge in nucleation and crystal growth during powder synthesis, thereby affecting nucleation aggregation and growth, and thus powder Will affect the size and shape of the.
  • the cerium precursor is not particularly limited as long as it is a compound containing cerium, but is preferably in the form of a salt.
  • Non-limiting examples thereof include cerium nitride and ammonium cerium nitride. , Cerium chloride, cerium acetate, and the like.
  • an organic solvent is used in place of conventional distilled water.
  • the organic solvent used to prepare the cerium precursor solution in the present invention is a glycol solvent of ethylene glycol (ethylene glycol), 1-4, butenediol (1-4, buthanediol) and diethylene glycol (diethylene glycol) And alcohols such as methanol, ethanol, isopropanol, butanol, and the like, and preferably, at least one glycol and at least one alcohol solvent.
  • ethylene glycol ethylene glycol
  • alcohols such as methanol, ethanol, isopropanol, butanol, and the like, and preferably, at least one glycol and at least one alcohol solvent.
  • cerium oxide nanoparticles surface-modified with cerium alkoxide have very slow peptization and spontaneous dispersion and are difficult to completely disperse spontaneously, other organic solvents, glycol, are mixed in a volume ratio to precipitate cerium oxide.
  • cerium oxide nanoparticles surface-treated with cerium alkoxide and cerium glycolate are synthesized on the surface, and as described below, when the particles are dispersed in water, cerium alkoxide and glycolate are hydrated on the surface of cerium oxide to alkoxide groups and glycols.
  • bridge bridges and complete spontaneous dispersion occur, and at the same time, as a dispersant, a high concentration of stable cerium oxide colloid sol can be synthesized.
  • two or more organic solvents are used to control their crystal growth and aggregation during particle generation.
  • the above-mentioned mixed solution may be selected from at least one glycol solvent and at least one alcohol solvent, and may be mixed at a ratio of 5: 5 to 9.98: 0.02 in the mixing volume ratio of the glycol solvent to the alcohol solvent. It is desirable to.
  • the ratio of the alcohol-based solvent is more than 98% of the total solvent, the crystallinity of the cerium oxide precipitate is increased, it is difficult to form a cerium oxide sol in the later peptization reaction occurs.
  • the ratio of the alcohol solvent is lower than 50% of the total solvent, the crystallinity of the cerium oxide precipitate is lowered, leading to instability of the grain boundary, causing a problem of gelation.
  • the cerium precursor in consideration of the solubility between the solvent and the cerium precursor, can be dissolved in the mixed solvent by using a strong mixing system, an ultrasonic system, or ball milling.
  • the concentration of cerium precursor in the solution is suitably about 0.01M to 3.0M.
  • the concentration is lower than 0.01M, there is an advantage in terms of uniformity of the cerium oxide particles morphologically, but there is a disadvantage in terms of productivity due to the small amount of precipitated particles.
  • the concentration is higher than 3.0M, it is not easy to adjust the pH of the solution, so a large amount of precipitant is additionally required, and even if controlled, the solubility during the reaction increases, resulting in excess salt, resulting in particles.
  • a disadvantageous problem arises in terms of crystal growth or uniformity.
  • the precipitant for adjusting the pH is not particularly limited as long as it is a compound containing a hydroxyl group (OH ⁇ ), but one non-limiting example may be one of ammonium hydroxide, potassium hydroxide, and sodium hydroxide.
  • the pH of the reaction solution is adjusted to 5.0 to 10.0. If the pH is lower than 5.0, a small amount of precipitate is produced which is disadvantageous in terms of productivity. In addition, when the pH is higher than 10.0, the solubility of the reaction solution is lowered to produce non-uniform crystal grains.
  • the pH may be adjusted by adding directly into the cerium precursor solution.
  • the precipitant is a solid phase, it is preferable to dissolve in a portion of the mixed solvent in which the cerium precursor is dissolved, and then separately prepare a precipitation solution, and then adjust the pH while mixing the cerium precursor solution. If the solid precipitant does not dissolve in the mixed solvent, it may be dissolved using a strong mixing system, an ultrasonic system or ball milling.
  • an oxidation accelerator may be used to control the reaction rate in the precipitation reaction.
  • the oxidation promoter is not particularly limited as long as it contains a compound containing oxygen (O 2) ions, but a non-limiting example may be a method of adding hydrogen peroxide or mixing oxygen gas or air directly into the reaction.
  • the hydrogen peroxide may also play a role of controlling the size of cerium oxide.
  • Hydrogen peroxide is hydroxide (OH -) on the surface of cerium oxide particles in the growth process to form a layer, and has a tendency to prevent the growth of particles. Therefore, the present invention may be used to control the size of cerium oxide particles by using a small amount of hydrogen peroxide in the amount of 0.05 to 0.2 wt% relative to the cerium precursor.
  • the temperature of the precipitation reaction is preferably 30 ° C. or more, or less than the breaking point of each solvent.
  • the reaction was carried out at 90 ° C or less in consideration of the break point of the alcohol solvent, but used a condenser if necessary.
  • the precipitation reaction time in the present invention is preferably performed for 2 hours to 36 hours.
  • the reaction time is expected to be related to the yield of the precipitate. If the reaction is carried out in less than 2 hours, the reaction is not complete and causes a disadvantage in productivity. In addition, pure cerium oxide particles are not produced, resulting in unstable phases. In addition, if the reaction proceeds for more than 36 hours, it becomes disadvantageous in terms of process efficiency.
  • cerium oxide precipitate prepared by surface treatment with a mixed solvent of alcohol and glycol by the method described above is characterized by being prepared using an organic solvent. Need to be removed.
  • the cerium oxide precipitate prepared in the present invention may be washed by selecting one of a decanter to a centrifuge process.
  • acetone or ethanol it is preferable to use acetone or ethanol as the washing solution used in the washing step. If distilled water is used in the washing process, the hydration reaction proceeds and hydrogen bonds are formed between the particles, causing rapid aggregation.
  • the washed cerium oxide precipitate is peptized and spontaneously dispersed using a pH adjuster and distilled water.
  • Any acid may be used during titration in the peptizing and spontaneous dispersing step of the present invention, preferably nitric acid and / or acetic acid.
  • the pH is preferably adjusted in the range of 0.1 to 3.0.
  • the peptizing and spontaneous dispersion step in the present invention may be carried out by adding cerium oxide particles and pH adjusting agent, then mixing strongly using a paint shaker or homogenizer, and then adding water to adjust the solid concentration in the solution. have.
  • the mixture is mixed at a volume ratio of water to the pH adjuster in a ratio of 1: 9 to 2: 1, and then mixed strongly using a paint shaker or a homogenizer, thereby preparing a yellow transparent colloidal cerium oxide.
  • the cerium oxide particles prepared by using a mixed reactor and heat may be peptized. In this case, the reaction is slowly shaken at a temperature of 30 to 75 ° C. In some cases, it may take several days or more for peptizing and spontaneous dispersion.
  • the cerium oxide particles prepared by the above method were washed with centrifugation using ethanol (Ethanol; Duksan Co., 99.5%) as a washing solution. After washing, yellow precipitates could be obtained.
  • the crystalline size by the Scherrer equation was calculated to be 4.36 nm.
  • the slide glass was immersed in the colloidal solution prepared for 30 seconds, and dried at room temperature. A yellow transparent coating layer was formed on the dried glass surface and maintained its shape without flowing down.
  • Ethyene glycol (Duksan Co., 99.5%) and 210 ml of Ethanol (Duksan Co., 99.5%) are mixed and 26.04 g of cerium nitrideanhydrate (Aldrich 99.5%) is added. After that, the mixture was mixed at 150 rpm for 20 minutes. 1 ml of hydrogen peroxide (Junsel Co., 98.5%) was added to the mixed cerium precursor solution, followed by mixing at 150 rpm for 20 minutes. The pH was adjusted to 8.0-9.0 with addition of ammonium hydroxide (Duksan Co.) to the solution.
  • the cerium oxide particles prepared by the above method were washed by centrifugation using ethanol (Erhanol; Duksan Co., 99.5%) as a washing solution. At this time, the rotational speed was washed three times in a step of precipitation for 10 minutes at 5000 rpm. After washing, yellow precipitates could be obtained. The crystalline size was found to be 4.02 nm by the Scherrer equation.
  • the slide glass was immersed in the colloidal solution prepared for 30 seconds, and dried at room temperature.
  • a yellow transparent coating layer was formed on the dried glass surface and maintained its shape without flowing down.
  • the cerium oxide particles prepared by the above method were washed by centrifugation using ethanol (Ethanol; Duksan Co., 99.5%) as a washing solution. At this time, the rotational speed was washed three times in a step of precipitation for 10 minutes at 5000 rpm. After washing, yellow precipitates could be obtained. In addition, the crystalline size of the Scherrer equation was 4.16 nm.
  • the slide glass was immersed in the colloidal solution prepared for 30 seconds, and dried at room temperature. A yellow transparent coating layer was formed on the dried glass surface, and the shape was maintained without flowing down.
  • the cerium oxide particles prepared by the above method were washed by centrifugation using ethanol (Ethanol; Duksan Co., 99.5%) as a washing solution. At this time, the rotational speed was washed three times in a step of precipitation for 10 minutes at 5000 rpm. After washing, yellow precipitates could be obtained. In addition, the crystalline size was 4.21 nm according to the Scherrer equation.
  • the slide glass was immersed in the colloidal solution prepared for 30 seconds, and dried at room temperature. A yellow transparent coating layer was formed on the dried glass surface and maintained its shape without flowing down.
  • Cerium oxide particles were prepared and washed in the same manner as in Example 1. 10 g of cerium oxide prepared by the above method was added nitric acid (nitric acid; Duksan Co., 68%), and then mixed vigorously for 5 minutes using a paint shaker. 9 ml of distilled water was added to the solution, followed by vigorous mixing using a paint shaker. After 1 minute a yellow clear solution was obtained.
  • nitric acid nitric acid; Duksan Co., 68%
  • Cerium oxide particles were prepared and washed in the same manner as in Example 1, except that 60 ml of 1,4-butanediol was used instead of ethylene glycol. 2 ml of acetic acid was added to 10 g of cerium oxide particles prepared by the above method, followed by strong mixing for 5 minutes using a paint shaker. 8 ml of distilled water was added to the solution, followed by vigorous mixing using a paint shaker. After 10 minutes a yellow clear solution was obtained.
  • the cerium oxide particles prepared by the above method were washed by centrifugation using ethanol (Ethanol; Duksan Co., 99.5%) as a washing solution. At this time, the rotational speed was washed three times in a step of precipitation for 10 minutes at 5000 rpm. After washing, yellow precipitates could be obtained.
  • ethanol Esthanol; Duksan Co., 99.5%
  • the cerium oxide particles prepared by the above method were washed by centrifugation using ethanol (Ethanol; Duksan Co., 99.5%) as a washing solution. At this time, the rotational speed was washed three times in a step of precipitation for 10 minutes at 5000 rpm. 2 ml of acetic acid was added to 10 g of cerium oxide particles washed by the above method, and then mixed vigorously for 10 minutes using a paint shaker. 8 ml of distilled water was added to the solution, followed by vigorous mixing using a paint shaker. In 1 minute a yellow clear solution was prepared, with a solid concentration of 6.8 wt%.
  • the cerium oxide particles prepared by the above method were washed by centrifugation using ethanol (Ethanol; Duksan Co., 99.5%) as a washing solution. At this time, the rotational speed was washed three times in a step of precipitation for 10 minutes at 5000 rpm. After washing, yellow precipitates could be obtained.
  • ethanol Esthanol; Duksan Co., 99.5%

Abstract

Disclosed is a method for producing colloidal cerium oxide which is uniformly dispersed into a size of a few nanometers without cohesion. The present invention provides a method for producing a colloidal cerium oxide solution, which comprises the steps of: preparing a cerium oxide precursor solution by dissolving a cerium oxide precursor in an organic solvent; controlling the pH of the precursor solution to precipitate the surface-treated cerium oxide with a solvent mix of alcohol and glycol; cleansing the precipitate of the surface-treated cerium oxide with the solvent mix of alcohol and glycol; and deflocculating the cerium oxide precipitate to be self-dispersed. The present invention enables the production of a transparent colloidal cerium oxide solution self-dispersed into a size of a few nanometers.

Description

콜로이드 산화세륨 제조방법Method for producing colloidal cerium oxide
본 발명은 산화세륨 콜로이드 용액의 제조 방법에 관한 것으로 보다 상세하게는 응집 현상 없이 수 나노미터 크기로 균일하게 분산된 콜로이드 산화세륨을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a cerium oxide colloidal solution, and more particularly, to a method for producing a colloidal cerium oxide uniformly dispersed in several nanometers without aggregation.
산화세륨은 산화지르코늄이나 산화비스무스와 같이 산소 이온전도성을 갖는 다른 산화물과 비교하여 안정한 형태인 형석형 구조를 가지고 있다. 이러한 구조적 특성 때문에, 현재 산화세륨은 유리용 첨가제, 유리용 연마재, 인광물질, 산소가스센서, 자동차 배기계용 촉매지지체, 및 고체 산화 연료전지용 고체전해질의 재료로서 각광을 받고 있다. 또한 폴리머 전해질막 연료전지 분야에서 일산화탄소를 제거하기 위한 촉매물질로서 산화세륨계 필름이 사용되기도 한다.Cerium oxide has a fluorite structure that is more stable than other oxides having oxygen ion conductivity, such as zirconium oxide and bismuth oxide. Because of these structural characteristics, cerium oxide is currently in the spotlight as a material for glass additives, glass abrasives, phosphors, oxygen gas sensors, catalyst supports for automobile exhaust systems, and solid electrolytes for solid oxide fuel cells. In addition, a cerium oxide film may be used as a catalyst material for removing carbon monoxide in the polymer electrolyte membrane fuel cell field.
일반적으로 산화세륨 필름은 화학 증착법, 펄스레이저 증착법, 전자빔 증발에 의한 증착법, 및 졸-겔 법을 이용한 코팅 등 다양한 방법에 의해 제조된다. 이 중 졸-겔법을 이용한 코팅법과 같이 용액상을 이용한 기술은 다른 방법들과 비교하여, 쉬운 공정 및 장치들로 제조 가능하며, 넓은 면적을 대상으로 균일하게 코팅을 할 수 있는 장점을 가지고 있다. 또한 필름의 구성요소, 두께 및 구조를 쉽게 조절할 수 있으며 가격 경쟁력에서 매우 우수한 장점을 가지고 있다. 이러한 졸-겔법을 이용하기 위하여 가장 중요하게 고려되는 기술은 고농도의 안정화된 산화세륨 졸을 제조하는 것이다. 그러나, 이제까지 고농도의 산화세륨 졸을 생산하기 위한 기술은 많은 어려움을 가지고 있으며, 그 중 주요한 문제점은 나노크기의 고농도 산화세륨의 특성상 용액상에서 쉽게 응집이 된다는 것이다.In general, the cerium oxide film is produced by various methods such as chemical vapor deposition, pulsed laser deposition, vapor deposition by electron beam evaporation, and coating by sol-gel method. Among them, a technique using a solution phase, such as a coating method using a sol-gel method, can be manufactured with easy processes and devices, and has the advantage of uniform coating over a large area, compared to other methods. In addition, the composition, thickness and structure of the film can be easily adjusted and has a very good price advantage. The most important technique to use this sol-gel method is to prepare a high concentration of stabilized cerium oxide sol. However, the technique for producing a high concentration of cerium oxide sol has a lot of difficulties so far, the main problem is that due to the characteristics of the nano-sized high concentration of cerium oxide is easily aggregated in the solution phase.
따라서, 본 발명의 연구자들은 용액상에서 수 나노의 균일한 분포를 갖는 응집된 산화세륨 입자를 제조하고 응집된 산화세륨입자를 쉽게 해교 및 자발분산시키는 방법을 연구하여 왔으며, 그 결과로서 나노크기의 고농도의 투명한 산화세륨 졸을 제조하는 방법을 개발하였다.Therefore, the researchers of the present invention have been studying a method for preparing agglomerated cerium oxide particles having a uniform distribution of several nanometers in solution, and for easily bridging and spontaneous dispersion of the agglomerated cerium oxide particles, and as a result, high concentration of nanoscale A method of preparing a transparent cerium oxide sol has been developed.
상기한 종래기술의 문제점을 해결하기 위하여 본 발명은 고농도의 산화세륨 졸을 손쉽게 제조하는 방법을 제공하는 것을 목적으로 한다.In order to solve the above problems of the prior art, an object of the present invention is to provide a method for easily preparing a high concentration of cerium oxide sol.
또한 본 발명은 약한 응집을 형성하고 있는 산화세륨 나노 입자를 다량으로 쉽게 제조하는 방법을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a method for easily producing a large amount of cerium oxide nanoparticles that form weak aggregates.
또한 본 발명은 제조된 수 나노 크기의 산화세륨 입자를 세척하는 방법을 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide a method for washing the prepared cerium oxide particles of several nano size.
또한 본 발명은 세척된 수 나노 크기의 응집된 산화세륨 입자를 해교 및 자발분산시켜 안정화된 콜로이드 졸을 제조하는 방법을 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide a method for preparing a stabilized colloidal sol by peptizing and spontaneously dispersing washed nanoparticles of aggregated cerium oxide particles.
본 발명은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자가 명확하게 이해될 수 있을 것이다.The present invention is not limited to the above-mentioned technical problem, and other technical problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기 기술적 과제를 달성하기 위하여 본 발명은 유기 용매에 산화세륨 전구체를 용해하여 산화세륨 전구체 용액을 제조하는 단계; 상기 전구체 용액의 pH를 조절하여 침전 반응시켜 알콜 및 글리콜의 혼합용매로 표면처리된 산화세륨을 제조하는 단계; 상기 침전 반응 단계의 산화세륨 침전물을 세척하는 단계; 및 상기 산화세륨 침전물을 해교 및 자발분산시키는 단계를 포함하는 것을 특징으로 하는 산화세륨 콜로이드 용액의 제조 방법을 제공한다. In order to achieve the above technical problem, the present invention comprises the steps of dissolving a cerium oxide precursor in an organic solvent to prepare a cerium oxide precursor solution; Preparing a cerium oxide surface-treated with a mixed solvent of alcohol and glycol by adjusting the pH of the precursor solution to precipitate a reaction; Washing the cerium oxide precipitate of the precipitation reaction step; And it provides a method for producing a cerium oxide colloidal solution comprising the step of peptizing and spontaneous dispersion of the cerium oxide precipitate.
본 발명에서 상기 유기 용매는 글리콜계 용매와 알코올계 용매의 혼합 용매인 것이 바람직하다. 이 때 상기 글리콜계 용매와 알코올계 용매의 혼합 부피비율은 5:5 에서 9.98: 0.02사이인 것이 바람직하다. In the present invention, the organic solvent is preferably a mixed solvent of a glycol solvent and an alcohol solvent. At this time, the mixing volume ratio of the glycol solvent and the alcohol solvent is preferably 5: 5 to 9.98: 0.02.
또한, 상기 침전 반응 단계에서 산화촉진제를 사용할 수 있다. 이 때, 상기 산화촉진제는 산소 가스, 공기 또는 과산화수소인 것이 바람직하다. In addition, an oxidation accelerator may be used in the precipitation reaction step. At this time, the oxidation promoter is preferably oxygen gas, air or hydrogen peroxide.
또한, 상기 침전 반응 단계는 30~90℃의 온도, pH 5.0~10.0 범위에서 수행되는 것이 바람직하다. In addition, the precipitation reaction step is preferably carried out at a temperature of 30 ~ 90 ℃, pH 5.0 ~ 10.0 range.
또한, 본 발명의 상기 세척 단계에서 산화세륨 침전물은 아세톤 또는 알코올로 세척되는 것이 바람직하다. In addition, the cerium oxide precipitate in the washing step of the present invention is preferably washed with acetone or alcohol.
또한, 본 발명의 상기 해교 및 자발분산 단계는 산화세륨 침전물을 물에 분산시킨 후 30~75℃의 온도 및 pH 0.01~4.0 범위에서 수행되는 것이 바람직하다. 이 때, 본 발명의 해교 및 자발분산 단계에서 pH는 아세트산 또는 질산, 또는 이들의 혼합물에 의해 조절되는 것이 바람직하다. In addition, the peptizing and spontaneous dispersion step of the present invention is preferably carried out at a temperature of 30 ~ 75 ℃ and pH 0.01 ~ 4.0 after dispersing the cerium oxide precipitate in water. At this time, the pH in the peptizing and spontaneous dispersion step of the present invention is preferably adjusted by acetic acid or nitric acid, or a mixture thereof.
본 발명에 의하면, 유기용매의 비율에 따라 산화세륨 입자의 결정크기 및 분산 정도를 조절 할 수 있다. According to the present invention, the crystal size and the degree of dispersion of the cerium oxide particles can be adjusted according to the proportion of the organic solvent.
본 발명에 의하면, 고농도의 수 나노미터 크기로 자발분산되어 안정화 된 투명한 산화세륨 콜로이드 졸을 다량으로 손쉽게 제조할 수 있게 된다.According to the present invention, it is possible to easily prepare a large amount of transparent cerium oxide colloidal sol, which is spontaneously dispersed and stabilized at a high concentration of several nanometers.
도 1은 본 발명의 바람직한 실시예에 따른 산화세륨 입자의 XRD 분석 결과를 나타낸 그래프이다.1 is a graph showing the results of XRD analysis of cerium oxide particles according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 실시예에 따른 콜로이드 산화세륨 입자의 SEM 사진이다.2 is a SEM photograph of colloidal cerium oxide particles according to a preferred embodiment of the present invention.
도 3은 본 발명의 바람직한 실시예 및 비교예에 따른 산화세륨 입자의 XRD 분석 결과를 나타낸 그래프이다.3 is a graph showing the results of XRD analysis of the cerium oxide particles according to the preferred and comparative examples of the present invention.
도 4는 본 발명의 다른 비교예에 따른 산화세륨 입자의 XRD 분석 결과를 나타낸 그래프이다.4 is a graph showing an XRD analysis result of cerium oxide particles according to another comparative example of the present invention.
이하 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다. Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.
본 발명은 세륨 이온의 침전 반응시 산화세륨 입자 크기를 수 나노 크기로 조절하고 입자간 응집을 피하기 위하여 혼합 유기 용매를 사용하는 방법, 수 나노 크기의 산화세륨 입자를 세척하기 위하여 아세톤 내지는 에탄올을 이용하는 방법, 및 상기 세척된 산화세륨 입자를 고농도로 안정화시키기 위하여 pH를 조절하는 방법이 특징인 콜로이드 산화세륨의 제조 방법을 제공한다. The present invention uses a mixed organic solvent to control the cerium oxide particle size to several nano size and avoid agglomeration between particles during the precipitation reaction of cerium ions, using acetone or ethanol to wash the cerium oxide particles of several nano size And a method for adjusting pH to stabilize the washed cerium oxide particles at a high concentration.
이하 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 산화세륨은 용액상의 세륨 전구체로부터 산화세륨을 침전시키는 방법에 의해 제조된다. 통상적으로 침전법에는 용매로서 증류수가 사용된다. 하지만 증류수는 침전반응 과정에서 결정되는 입자 표면에 수소결합을 형성시키면서 입자간 결합을 유도하게 되고, 결국 결정화가 진행됨에 따라 강한 응집체가 형성되므로 추후 입자의 분산성에 좋지 않은 결과를 야기한다. The cerium oxide of the present invention is prepared by a method of precipitating cerium oxide from a cerium precursor in solution. Typically, distilled water is used as the solvent in the precipitation method. However, distilled water forms hydrogen bonds on the surface of particles determined during the precipitation reaction, and induces bonds between particles. As a result, strong aggregates are formed as the crystallization progresses, which results in poor particle dispersibility.
그러므로, 본 발명에서는 기존에 용매로서 사용되고 있는 증류수 대신 유기 용매를 사용함으로써 입자 생성시 표면에 카본기를 형성시켜 그것이 입자간 응집을 막는 분산제 역할을 함으로써, 이와 같은 문제점을 해결하고자 한다. Therefore, in the present invention, by using an organic solvent instead of distilled water, which is conventionally used as a solvent, by forming a carbon group on the surface during particle generation, it serves as a dispersant to prevent aggregation between particles.
예컨대 세륨 전구체로 질산 세륨을 사용하고, 용매로 물 대신 에탄올을 사용하고, pH 조절제로 수산화칼륨을 사용하였을 경우 침전되는 산화세륨의 표면에서 반응식은 아래와 같다.For example, when cerium nitrate is used as the cerium precursor, ethanol is used instead of water as the solvent, and potassium hydroxide is used as the pH adjuster, the reaction equation on the surface of cerium oxide precipitated is as follows.
(화학식 1)(Formula 1)
Ce(NO3)2·6H2O + 2(CH3CH2CH) + 2KOH → Ce(OCH3CH2) + 2KOH + 8H2OCe (NO 3 ) 2 · 6H 2 O + 2 (CH 3 CH 2 CH) + 2KOH → Ce (OCH 3 CH 2 ) + 2KOH + 8H 2 O
상기 반응식으로부터 알 수 있듯이, 결과물로는 에탄올에 의해 표면이 세륨 알콕사이트 화합물로 개질된 수나노크기의 산화세륨이 약하게 응집되어 침전되게 된다. 이와 같이 에탄올로 표면처리된 산화세륨은 표면에 수소 결합이 아니라 탄소계의 화합물이 결합하여 입자 표면이 개질되므로 입자 표면에서 분산을 위한 작용기로서 역할을 하게 된다.As can be seen from the above reaction scheme, the resulting product is weakly agglomerated and precipitated by the ethanol, a nano-sized cerium oxide surface modified with a cerium alkoxide compound. The cerium oxide surface-treated with ethanol as described above acts as a functional group for dispersing at the particle surface because the surface of the particle is modified by bonding a carbon-based compound rather than a hydrogen bond to the surface.
또한 용매는 각각 고유한 유전상수 값을 가지므로, 용매의 유전상수는 분말 합성 시 핵 생성 및 결정성장에 있어 표면 에너지나 표면 전하 등을 변화시켜, 핵의 응집 및 성장에 영항을 주고, 결국 분말의 크기 및 형상 등에 영향을 주게 된다. In addition, since each solvent has a unique dielectric constant value, the solvent's dielectric constant changes surface energy or surface charge in nucleation and crystal growth during powder synthesis, thereby affecting nucleation aggregation and growth, and thus powder Will affect the size and shape of the.
본 발명에서 상기 세륨 전구체로는 세륨을 포함하는 화합물이라면 특별히 제한되지는 않으나, 염의 형태인 것이 바람직하며, 그 비제한적인 예로는 세륨질화염(Cerium nitride), 암모늄 세륨 질화염(ammonium cerium nitride), 세륨 염화물 (cerium chloride), 및 세륨 아세테이트(cerium acetate) 등을 들 수 있다. In the present invention, the cerium precursor is not particularly limited as long as it is a compound containing cerium, but is preferably in the form of a salt. Non-limiting examples thereof include cerium nitride and ammonium cerium nitride. , Cerium chloride, cerium acetate, and the like.
전술한 바와 같이, 본 발명에서 이들 전구체의 용매로는 종래 통상적인 증류수를 대신하여 유기용매가 사용된다. As described above, in the present invention, as the solvent of these precursors, an organic solvent is used in place of conventional distilled water.
본 발명에서 상기 세륨 전구체 용액을 제조하기 위해 사용된 유기 용매로는 에틸렌 글리콜(ethylene glycol), 1-4, 부텐다이올(1-4, buthanediol) 및 다이에틸렌 글리콜 (diethylene glycol) 의 글리콜계 용매와 메탄올(methanol), 에탄올(ethanol), 이소프로판올 (iso-propanol), 부탄올(buthanol)의 알코올계 등이 사용 가능하며, 바람직하게는 이들 중 최소한 1종의 글리콜계 및 최소한 1종의 알코올계 용매를 혼합한 혼합용매에 세륨 전구체를 용해시켜 세륨 전구체 용액을 제조한다. The organic solvent used to prepare the cerium precursor solution in the present invention is a glycol solvent of ethylene glycol (ethylene glycol), 1-4, butenediol (1-4, buthanediol) and diethylene glycol (diethylene glycol) And alcohols such as methanol, ethanol, isopropanol, butanol, and the like, and preferably, at least one glycol and at least one alcohol solvent. To prepare a cerium precursor solution by dissolving the cerium precursor in a mixed solvent.
본 발명에서 2 종의 유기 용매는 다음과 같은 이유로 사용된다. In the present invention, two organic solvents are used for the following reasons.
세륨알콕사이드로 표면 개질된 산화세륨 나노입자는 해교 및 자발분산이 매우 느리고 완전 자발 분산을 시키는 것이 곤란하기 때문에 다른 유기용매인 글리콜을 부피비로 배합해서 산화세륨을 침전시킨다. 이 때 표면에는 세륨 알콕사이드와 세륨 글리콜레이트로 표면처리된 산화세륨 나노입자가 합성이 되며, 후술하는 바와 같이 이 입자를 물에서 분산시킬경우 산화세륨 표면에 세륨 알콕사이드와 글리콜레이트가 수화되어 알콕사이드기와 글리콜에이트기로 되면서 해교와 완전 자발 분산이 일어나며 분산제 역할도 동시에 수행하기 때문에 고농도의 안정된 투명한 세륨옥사이드 콜로이드졸을 합성할 수 있게 된다.Since cerium oxide nanoparticles surface-modified with cerium alkoxide have very slow peptization and spontaneous dispersion and are difficult to completely disperse spontaneously, other organic solvents, glycol, are mixed in a volume ratio to precipitate cerium oxide. At this time, cerium oxide nanoparticles surface-treated with cerium alkoxide and cerium glycolate are synthesized on the surface, and as described below, when the particles are dispersed in water, cerium alkoxide and glycolate are hydrated on the surface of cerium oxide to alkoxide groups and glycols. As an ate group, bridge bridges and complete spontaneous dispersion occur, and at the same time, as a dispersant, a high concentration of stable cerium oxide colloid sol can be synthesized.
본 발명은 이와 같이 2종 이상의 유기 용매를 사용하여 입자 생성 시 이들의 결정성장 및 응집현상을 조절하고자 하였다.In the present invention, two or more organic solvents are used to control their crystal growth and aggregation during particle generation.
본 발명에서 상기 언급된 혼합 용액은 글리콜계 용매 최소한 1종과 알코올계 용매 최소한 1종을 선택하되, 알코올계 용매 대비 글리콜계 용매의 혼합부피비율로 5:5 에서 9.98:0.02사이의 비율로 혼합하는 것이 바람직하다. In the present invention, the above-mentioned mixed solution may be selected from at least one glycol solvent and at least one alcohol solvent, and may be mixed at a ratio of 5: 5 to 9.98: 0.02 in the mixing volume ratio of the glycol solvent to the alcohol solvent. It is desirable to.
만약 알코올계 용매의 비율이 전체 용매의 98% 이상이 되면, 산화세륨 침전물의 결정성이 높아지게 되어, 추후에 해교반응에서 어려움이 발생하게 되어 산화세륨 졸을 형성하는데 어려움이 발생하게 된다. 또한 알코올계 용매의 비율이 전체 용매의 50% 이하로 낮게 혼합하게 되면, 산화세륨 침전물의 결정성이 낮아지게 되고, 입계의 불안정성을 유도하게 되어 겔화현상이 일어나는 문제점이 야기된다.If the ratio of the alcohol-based solvent is more than 98% of the total solvent, the crystallinity of the cerium oxide precipitate is increased, it is difficult to form a cerium oxide sol in the later peptization reaction occurs. In addition, when the ratio of the alcohol solvent is lower than 50% of the total solvent, the crystallinity of the cerium oxide precipitate is lowered, leading to instability of the grain boundary, causing a problem of gelation.
본 발명에서 상기 세륨 전구체 용액을 제조할 때는 용매와 세륨전구체 간의 용해도를 고려하여, 강한 혼합 시스템, 초음파 시스템 내지는 볼 밀링을 이용하여, 세륨전구체를 혼합용매에 용해시킬 수 있다.In preparing the cerium precursor solution in the present invention, in consideration of the solubility between the solvent and the cerium precursor, the cerium precursor can be dissolved in the mixed solvent by using a strong mixing system, an ultrasonic system, or ball milling.
본 발명에서 용액 내의 세륨 전구체 농도는 0.01M 내지는 3.0M 정도의 농도가 적당하다.In the present invention, the concentration of cerium precursor in the solution is suitably about 0.01M to 3.0M.
만약 0.01M 보다 농도가 낮은 경우, 형태학적으로 산화세륨 입자의 균일도 측면에서는 유리한 점이 있으나, 침전되는 입자의 양이 적어 생산성 측면에서는 불리한 점이 있다. 또한 3.0M 보다 농도가 높을 경우, 용액의 pH를 조절하기가 쉽지 않아 많은 양의 침전제가 추가적으로 필요하게 되며, 조절이 된다 하더라도 반응 중 용해도가 증가하여, 잉여되는 염이 발생하게 되고, 그 결과 입자의 결정성장 내지는 균일도 측면에서 불리한 문제가 발생하게 된다.If the concentration is lower than 0.01M, there is an advantage in terms of uniformity of the cerium oxide particles morphologically, but there is a disadvantage in terms of productivity due to the small amount of precipitated particles. In addition, when the concentration is higher than 3.0M, it is not easy to adjust the pH of the solution, so a large amount of precipitant is additionally required, and even if controlled, the solubility during the reaction increases, resulting in excess salt, resulting in particles. A disadvantageous problem arises in terms of crystal growth or uniformity.
본 발명에서 상기 pH를 조절하기 위한 침전제로는 수산화기 (OH-)를 포함하는 화합물이라면 특별히 제한되지는 않으나 그 비제한적인 예로는 수산화암모늄, 수산화칼륨, 및 수산화나트륨 중 1종이 사용될 수 있다. In the present invention, the precipitant for adjusting the pH is not particularly limited as long as it is a compound containing a hydroxyl group (OH ), but one non-limiting example may be one of ammonium hydroxide, potassium hydroxide, and sodium hydroxide.
본 발명에서는 상기 침전제를 이용하여, 반응 용액의 pH를 5.0 내지 10.0으로 조절한다. 만약 pH가 5.0 보다 낮아지게 되면, 적은 양의 침전물이 생성되어 생산성 측면에서 불리하게 된다. 또한 pH가 10.0보다 높아지게 되면, 반응 용액의 용해도가 낮아져 불균일한 결정입자를 생성시키게 된다.In the present invention, by using the precipitant, the pH of the reaction solution is adjusted to 5.0 to 10.0. If the pH is lower than 5.0, a small amount of precipitate is produced which is disadvantageous in terms of productivity. In addition, when the pH is higher than 10.0, the solubility of the reaction solution is lowered to produce non-uniform crystal grains.
또한 사용되는 침전제가 액상인 경우, 세륨 전구체 용액 내에 직접 추가시키는 방법으로 pH를 조절할 수 있다. 하지만 침전제가 고상일 경우, 세륨 전구체를 용해시키는 혼합용 매의 일부에 용해시켜, 따로 침전용액을 만든 뒤, 세륨 전구체 용액에 혼합해 가면서 pH를 조절하는 것이 바람직하다. 고상의 침전제가 혼합 용매에 용해가 안 될 경우에는 강한 혼합 시스템, 초음파 시스템 내지는 볼 밀링을 이용하여 용해시킬 수도 있다.In addition, when the precipitant used is a liquid, the pH may be adjusted by adding directly into the cerium precursor solution. However, when the precipitant is a solid phase, it is preferable to dissolve in a portion of the mixed solvent in which the cerium precursor is dissolved, and then separately prepare a precipitation solution, and then adjust the pH while mixing the cerium precursor solution. If the solid precipitant does not dissolve in the mixed solvent, it may be dissolved using a strong mixing system, an ultrasonic system or ball milling.
또한 본 발명에서는 상기 침전반응에서 반응 속도를 조절하기 위해 산화촉진제를 사용할 수 있다. 산화촉진제로는 산소 (O₂)이온을 포함하는 화합물이라면 특별히 제한되지는 않으나 그 비제한적인 예로는 과산화수소를 첨가하거나 산소 가스 혹은 공기를 직접 반응내부에 혼합하는 방법을 이용할 수 있다. In the present invention, an oxidation accelerator may be used to control the reaction rate in the precipitation reaction. The oxidation promoter is not particularly limited as long as it contains a compound containing oxygen (O 2) ions, but a non-limiting example may be a method of adding hydrogen peroxide or mixing oxygen gas or air directly into the reaction.
본 발명에서 상기 과산화수소는 산화세륨의 크기를 조절하는 역할도 병행할 수 있다. 과산화수소는 산화세륨 입자 성장과정에서 표면에 수산화 (OH-)층을 형성하여, 입자의 성장을 막는 경향을 갖는다. 따라서, 본 발명에서는 과산화수소를 세륨 전구체 대비 0.05 내지 0.2 wt% 정도로 소량 사용하여 산화세륨 입자의 크기를 조절하는 데 사용할 수 있다.In the present invention, the hydrogen peroxide may also play a role of controlling the size of cerium oxide. Hydrogen peroxide is hydroxide (OH -) on the surface of cerium oxide particles in the growth process to form a layer, and has a tendency to prevent the growth of particles. Therefore, the present invention may be used to control the size of cerium oxide particles by using a small amount of hydrogen peroxide in the amount of 0.05 to 0.2 wt% relative to the cerium precursor.
본 발명에서 상기 침전반응의 온도는 30˚C 이상, 각 용매의 끊는 점 이하인 것이 바람직하다. 본 발명에 서는 알코올계 용매의 끊는 점을 고려하여 90˚C 이하에서 반응을 진행하되 필요한 경우 응축기를 이용하였다.In the present invention, the temperature of the precipitation reaction is preferably 30 ° C. or more, or less than the breaking point of each solvent. In the present invention, the reaction was carried out at 90 ° C or less in consideration of the break point of the alcohol solvent, but used a condenser if necessary.
또한 본 발명에서 상기 침전반응 시간은 2시간 내지 36시간 동안 진행하는 것이 바람직하다. 반응 시간은 침전물의 수율과 관련이 있을 것으로 예측된다. 만약 2시간보다 적은 시간에서 반응을 하게 되면, 반응이 완전이 진행되지 않았으므로 생산성에서 불리한 문제점을 야기 시킨다. 또한 순수한 산화세륨 입자가 생산되지 않아 불안정한 상을 형성시키게 된다. 또한 36시간 이상 반응을 진행시키면, 공정효율 측면에서 불리하게 된다.In addition, the precipitation reaction time in the present invention is preferably performed for 2 hours to 36 hours. The reaction time is expected to be related to the yield of the precipitate. If the reaction is carried out in less than 2 hours, the reaction is not complete and causes a disadvantage in productivity. In addition, pure cerium oxide particles are not produced, resulting in unstable phases. In addition, if the reaction proceeds for more than 36 hours, it becomes disadvantageous in terms of process efficiency.
한편, 상기에 기재된 방법에 의해 알콜 및 글리콜의 혼합용매로 표면처리되어 제조된 산화세륨 침전물은 유기용매를 이용하여 제조된 것을 특징으로 하므로, 제조된 입자 표면 및 내부에 존재하고 있는 유기물 및 불순물들을 제거할 필요가 있다. Meanwhile, the cerium oxide precipitate prepared by surface treatment with a mixed solvent of alcohol and glycol by the method described above is characterized by being prepared using an organic solvent. Need to be removed.
본 발명에서 제조된 산화세륨 침전물은 디칸터 (decanter) 내지 원심분리(centrifuge) 공정 중 1종을 선택하여 세척을 할 수 있다.The cerium oxide precipitate prepared in the present invention may be washed by selecting one of a decanter to a centrifuge process.
본 발명에서 상기 세척공정에서 사용되는 세척용액으로는 아세톤 또는 에탄올을 사용하는 것이 바람직하다. 만약 세척공정에서 증류수를 사용하게 되면 수화반응이 진행되고 입자간 수소결합이 형성되어 급격한 응집이 발생될 수 있다.In the present invention, it is preferable to use acetone or ethanol as the washing solution used in the washing step. If distilled water is used in the washing process, the hydration reaction proceeds and hydrogen bonds are formed between the particles, causing rapid aggregation.
이어서, 상기 세척된 산화세륨 침전물을 pH 조절제와 증류수를 이용하여 해교 및 자발분산시킨다. 본 발명의 해교 및 자발분산 단계에서의 적정 시 임의의 산이 사용될 수 있는데, 바람직하게는 질산(nitric acid) 및/또는 아세트산(aceticacid)이 사용된다. 본 발명의 해교 단계에서 pH는 0.1 내지 3.0 범위에서 조절되는 것이 바람직하다. Subsequently, the washed cerium oxide precipitate is peptized and spontaneously dispersed using a pH adjuster and distilled water. Any acid may be used during titration in the peptizing and spontaneous dispersing step of the present invention, preferably nitric acid and / or acetic acid. In the peptizing step of the present invention, the pH is preferably adjusted in the range of 0.1 to 3.0.
본 발명에서 해교 및 자발분산 단계는 산화세륨 입자와 pH 조절제를 첨가한 후 페인트쉐이커 내지는 호모게나이저를 이용하여 강하게 혼합을 시킨 후 물을 첨가시켜, 용액 내의 고체 농도를 조절하는 방식으로 수행될 수 있다. 상기 과정에서 pH 조절제 대비 물의 부피비율로 1:9 내지 2:1로 혼합한 뒤 페인트쉐이커 내지는 호모게나이저를 이용하여 강하게 혼합을 하면 노란색의 투명한 콜로이드 산화세륨을 제조할 수 있다. 만약 경우에 따라 해교가 되지 않을 경우, 혼합반응기와 열을 이용하여 제조된 산화세륨 입자들을 해교할 수도 있다. 이 경우, 30 내지는 75˚C의 온도에서 서서히 흔들어 주며 반응을 진행시키는데, 경우에 따라서는 해교 및 자발분산을 위해 수 일 이상의 시간이 소요될 수도 있다.The peptizing and spontaneous dispersion step in the present invention may be carried out by adding cerium oxide particles and pH adjusting agent, then mixing strongly using a paint shaker or homogenizer, and then adding water to adjust the solid concentration in the solution. have. In the above process, the mixture is mixed at a volume ratio of water to the pH adjuster in a ratio of 1: 9 to 2: 1, and then mixed strongly using a paint shaker or a homogenizer, thereby preparing a yellow transparent colloidal cerium oxide. In some cases, when the peptizing does not work, the cerium oxide particles prepared by using a mixed reactor and heat may be peptized. In this case, the reaction is slowly shaken at a temperature of 30 to 75 ° C. In some cases, it may take several days or more for peptizing and spontaneous dispersion.
하기에서는 실시예를 통해 본 발명을 더욱 구체적으로 설명할 것이나, 본 발명은 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples.
[실시예 1]Example 1
60 ml의 에틸렌글리콜 (Ethylene glycol; Duksan Co., 99.5%)과 240 ml의 에탄올(Ethanol; Duksan CO., 99.5%)을 혼합한 뒤, 26.04g의 세륨질산염 (cerium nitrideanhydrate; Aldrich 99.5%)을 첨가한 후, 150 rpm으로 20분간 혼합하였다.  60 ml of ethylene glycol (Duksan Co., 99.5%) and 240 ml of ethanol (Ethanol; Duksan CO., 99.5%) were mixed, followed by 26.04 g of cerium nitrideanhydrate (Aldrich 99.5%). After addition, the mixture was mixed for 20 minutes at 150 rpm.
혼합된 세륨전구체 용액에 1 ml의 과산화수소 (hydrogen peroxide; Junsei Co., 98.5%)를 첨가한 후 150 rpm으로 20분간 혼합하였다. 상기 용액에 수산화암모늄 (ammonium hydroxide; Duksan Co.) 를 첨가하면서 pH를 8.0 내지 9.0으로 조절하였다. 반응 온도를 50˚C로 증가시킨 뒤, 반응 용액에 공기를 불어 넣어 주면서, 24시간 반응을 진행 하였다. 상기 방법에 의해 노란색의 침전물이 생성이 되었다. 상기 침전물을 XRD를 이용하여 분석한 결과 형석형 구조의 산화세륨 입자로 생성된 것을 확인할 수 있었다. 이것을 도 1(a)에 나타내었다.1 ml of hydrogen peroxide (Junsei Co., 98.5%) was added to the mixed cerium precursor solution, followed by mixing at 150 rpm for 20 minutes. The pH was adjusted to 8.0-9.0 with the addition of ammonium hydroxide (Duksan Co.) to the solution. After increasing the reaction temperature to 50 ° C, blowing the air into the reaction solution, the reaction proceeded for 24 hours. This method produced a yellow precipitate. As a result of analyzing the precipitate using XRD, it was confirmed that the precipitate was formed of cerium oxide particles having a fluorite structure. This is shown in Fig. 1 (a).
상기 방법에 의해 제조된 산화세륨 입자는 에탄올 (Ethanol; Duksan Co., 99.5%)을 세척용액으로 하여, 원심분리를 이용하여 세척을 하였다. 세척 후 노란색의 침전덩어리를 획득할 수 있었다. 또한 쉐러 등식 (Scherrer equation)에 의한 결정크기 (crystalline size)는 4.36nm로 계산되었다.The cerium oxide particles prepared by the above method were washed with centrifugation using ethanol (Ethanol; Duksan Co., 99.5%) as a washing solution. After washing, yellow precipitates could be obtained. In addition, the crystalline size by the Scherrer equation was calculated to be 4.36 nm.
상기 방법에 의해 세척된 10g의 산화세륨 입자에 2ml의 아세트산 (acetic acid; Aldrich)을 첨가 한 후, 페인트 쉐이커를 이용하여 10분간 강하게 섞어 주었다. 이 용액에 8 ml의 증류수를 첨가한 후, 페인트 쉐이커를 이용하여 강하게 섞어 주었다. 이 때 호모게나이저를 사용할 수도 있다. 혼합 후 5분 후에는 노란색의 투명한 용액을 획득 할 수 있으며, 이것을 도 1(b)에 XRD를 이용하여 나타내었다. 도 1(a)와 (b)로부터 알 수 있는 바와 같이, 두 물질간 결정구조 및 크기에는 변화가 없었다. 또한 HRTEM (high resoluton transmission electronmicroscopy)을 이용하여 산화세륨 입자가 콜로이드 형태로 잘 분산되어 있는 것을 도 2로부터 확인할 수 있다. 또한 이 때의 고체농도는 27.3 wt%로 존재하였다.2 ml of acetic acid (acetic acid; Aldrich) was added to 10 g of cerium oxide particles washed by the above method, and then mixed vigorously for 10 minutes using a paint shaker. 8 ml of distilled water was added to the solution, followed by vigorous mixing using a paint shaker. You can also use a homogenizer. After 5 minutes of mixing, a yellow transparent solution can be obtained, which is shown in FIG. 1 (b) using XRD. As can be seen from Figures 1 (a) and (b), there was no change in crystal structure and size between the two materials. In addition, it can be seen from FIG. 2 that cerium oxide particles are well dispersed in colloidal form using high resoluton transmission electron microscopy (HRTEM). In addition, the solid concentration at this time was 27.3 wt%.
상기 제조된 콜로이드 용액에 슬라이드 글라스를 30초간 담그고, 상온에서 건조하였다. 건조된 글라스 표면에는 노란색의 투명한 코팅층이 형성되었으며, 흘러내림이 없이 그 형태를 유지 하였다. The slide glass was immersed in the colloidal solution prepared for 30 seconds, and dried at room temperature. A yellow transparent coating layer was formed on the dried glass surface and maintained its shape without flowing down.
[실시예 2]Example 2
90 ml의 에틸렌글리콜 (Ethyene glycol; Duksan Co., 99.5%)과 210ml의 에탄올(Ethanol; Duksan Co., 99.5%)을 혼합한 뒤, 26.04g의 세륨질산염 (cerium nitrideanhydrate; Aldrich 99.5%)을 첨가한 후, 150 rpm으로 20분간 혼합하였다. 혼합된 세륨전구체 용액에 1ml의 과산화수소( hydrogen peroxide; Junsel Co., 98.5%)를 첨가한 후, 150 rpm으로 20분간 혼합하였다. 상기 용액에 수산화암모늄 (ammonium hydroxide; Duksan Co.)를 첨가하면서 pH를 8.0내지 9.0으로 조절하였다. 반응 온도를 50˚C로 증가 시킨 뒤, 반응 용액에 공기를 불어 넣어 주면서, 24시간 반응을 진행 하였다. 상기 방법에 의해 노란색의 침전물이 생성이 되었다. 상기 침전물을 XRD를 이용하여 분석한 결과 형석형 구조의 산화세륨 입자로 생성된 것을 확인할 수 있었다. X선 분석 결과를 도 3(a)에 나타내었다.90 ml of Ethyene glycol (Duksan Co., 99.5%) and 210 ml of Ethanol (Duksan Co., 99.5%) are mixed and 26.04 g of cerium nitrideanhydrate (Aldrich 99.5%) is added. After that, the mixture was mixed at 150 rpm for 20 minutes. 1 ml of hydrogen peroxide (Junsel Co., 98.5%) was added to the mixed cerium precursor solution, followed by mixing at 150 rpm for 20 minutes. The pH was adjusted to 8.0-9.0 with addition of ammonium hydroxide (Duksan Co.) to the solution. After increasing the reaction temperature to 50 ° C, blowing the air into the reaction solution, the reaction proceeded for 24 hours. This method produced a yellow precipitate. As a result of analyzing the precipitate using XRD, it was confirmed that the precipitate was formed of cerium oxide particles having a fluorite structure. X-ray analysis results are shown in Figure 3 (a).
상기 방법에 의해 제조된 산화세륨 입자는 에탄올 (Erhanol; Duksan Co., 99.5%)을 세척용액으로 사용하여, 원심분리를 이용하여 세척하였다. 이 때 회전속도는 5000 rpm으로 10분간 침전시키는 공정으로 3회 반복하여 세척을 하였다. 세척 후 노란색의 침전덩어리를 획득할 수 있었다. 획든된 침전 덩어리를 쉐러 등식(Scherrer equation)에 의해 구하면 결정크기 (crystalline size)는 4.02nm 였다.The cerium oxide particles prepared by the above method were washed by centrifugation using ethanol (Erhanol; Duksan Co., 99.5%) as a washing solution. At this time, the rotational speed was washed three times in a step of precipitation for 10 minutes at 5000 rpm. After washing, yellow precipitates could be obtained. The crystalline size was found to be 4.02 nm by the Scherrer equation.
상기 방법에 의해 세척된 10g의 산화세륨 입자에 2ml의 아세트산 (acetic acid)을 첨가한 후, 페인트 쉐이커를 이용하여 10분간 강하게 섞어 주었다. 이 용액에 8 ml의 증류수를 첨가한 후, 페인트 쉐이커를 이용하여 강하게 섞어 주었다. 1분 만에 노란색의 투명한 용액을 획득 할 수 있었다.2 ml of acetic acid was added to 10 g of cerium oxide particles washed by the above method, followed by vigorous mixing for 10 minutes using a paint shaker. 8 ml of distilled water was added to the solution, followed by vigorous mixing using a paint shaker. In 1 minute a yellow clear solution was obtained.
상기 제조된 콜로이드 용액에 슬라이드 글라스를 30초간 담그고, 상온에서 건조를 시켰다.The slide glass was immersed in the colloidal solution prepared for 30 seconds, and dried at room temperature.
건조된 글라스 표면에는 노란색의 투명한 코팅층이 형성되었으며, 흘러내림이 없이 그 형태를 유지 하였다.A yellow transparent coating layer was formed on the dried glass surface and maintained its shape without flowing down.
[실시예 3]Example 3
60ml의 에틸렌글리콜(Ethylene glycol; Duksan Co., 99.5%)과 240 ml의 에탄올(Ethanol; Duksan Co., 99.5%)을 혼합한 뒤, 26.04g의 세륨질산염(cerium nitrideanhydrate; Aldrich 99.5%)을 첨가한 후, 150 rpm으로 20분간 혼합하였다. 혼합된 세륨전구체 용액에 1 ml의 과산화수소(hydrogen peroxide; Junsei Co., 98.5%)를 첨가한 후, 150 rpm으로 20분간 혼합하였다. 상기 용액에 수산화암모늄(ammonium hydroxide; Duksan Co.)를 첨가하면서 pH를 8.0내지 9.0로 조절하였다. 반응 온도를 30˚C로 증가시킨 뒤, 반응 용액에 공기를 불어 넣어 주면서, 24시간 반응 하였다. 상기 침전몰을 XRD를 이용하여 분석한 결과 형석형 구조의 산화세륨 입자로 생성된 것을 확인할 수 있었다. 이것을 도 3(b)에 나타내었다. 상기 실시예 1내지 4와 같이 세척을 하였다. 상기 방법에 의해 세척된 10g의 산화세륨 입자에 2ml의 아세트산(acetic acid)을 첨가 한 후, 페인트 쉐이커를 이용하여 10분간 강하게 섞어 주었다. 이 용액에 8ml의 증류수를 첨가한 후, 페이트 쉐이커를 이용하여 강하게 섞어 주었다. 10분에 노란색의 투명한 용액을 획득 할 수 있었다.60 ml of ethylene glycol (Duksan Co., 99.5%) and 240 ml of ethanol (Ethanol; Duksan Co., 99.5%) are mixed and 26.04 g of cerium nitrideanhydrate (Aldrich 99.5%) is added. After that, the mixture was mixed at 150 rpm for 20 minutes. 1 ml of hydrogen peroxide (Junsei Co., 98.5%) was added to the mixed cerium precursor solution, followed by mixing at 150 rpm for 20 minutes. The pH was adjusted to 8.0-9.0 with the addition of ammonium hydroxide (Duksan Co.) to the solution. After increasing the reaction temperature to 30 ° C, blowing the air into the reaction solution, the reaction for 24 hours. As a result of analyzing the precipitated mole using XRD, it was confirmed that the precipitated mole was formed of cerium oxide particles having a fluorite structure. This is shown in Fig. 3 (b). Washing was carried out as in Examples 1 to 4. 2 ml of acetic acid was added to 10 g of cerium oxide particles washed by the above method, and then mixed vigorously for 10 minutes using a paint shaker. 8 ml of distilled water was added to the solution, followed by vigorous mixing using a fat shaker. At 10 minutes a yellow clear solution was obtained.
[실시예 4]Example 4
30ml의 에틸렌글리콜 (Ethylene glycol; Duksen Co., 99.5%)과 270ml의 에탄올 (Ethanol; Duksan Co., 99.5%)을 혼합한 뒤, 26.04g의 세륨질산염 (cerium nitrideanhydrate; Aldrich 99.5%)을 첨가한 후, 150rpm으로 20분간 혼합하였다. 혼합된 세륨전구체 용액에 1ml의 과산화수소(hydrogen peroxide; Junsei Co., 98.5%)를 첨가한 후, 150rpm으로 20분간 혼합하였다. 상기 용액에 수산화암모늄(ammonium hydroxide; Duksan Co.)를 첨가하면서 pH를 8.0내지 9.0으로 조절하였다. 반응 온도를 50˚C로 증가 시킨 뒤, 반응 용액에 공기를 불어 넣어 주면서, 24시간 반응을 진행 하였다. 상기 방법에 의해 노란색의 침전물이 생성이 되었다. 상기 침전물을 XRD를 이용하여 분석한 결과 형석형 구조의 산화세륨 입자로 생성된 것을 확인할 수 있었다. 이것을 도 3(c)에 나타내었다.30 ml of ethylene glycol (Duksen Co., 99.5%) and 270 ml of ethanol (Ethanol; Duksan Co., 99.5%) were mixed, followed by the addition of 26.04 g of cerium nitrideanhydrate (Aldrich 99.5%). After that, the mixture was mixed at 150 rpm for 20 minutes. 1 ml of hydrogen peroxide (Junsei Co., 98.5%) was added to the mixed cerium precursor solution, followed by mixing at 150 rpm for 20 minutes. The pH was adjusted to 8.0-9.0 with the addition of ammonium hydroxide (Duksan Co.) to the solution. After increasing the reaction temperature to 50 ° C, blowing the air into the reaction solution, the reaction proceeded for 24 hours. This method produced a yellow precipitate. As a result of analyzing the precipitate using XRD, it was confirmed that the precipitate was formed of cerium oxide particles having a fluorite structure. This is shown in Fig. 3 (c).
상기 방법에 의해 제조된 산화세륨 입자는 에탄올(Ethanol; Duksan Co., 99.5%)을 세척용액으로 사용하여, 원심분리를 이용하여 세척하였다. 이 때 회전속도는 5000 rpm으로 10분간 침전시키는 공정으로 3회 반복하여 세척을 하였다. 세척 후 노란색의 침전덩어리를 획득할 수 있었다. 또한 쉐러 (Scherrer equation)에 의한 결정크기 (crystalline size)는 4.16nm 였다.The cerium oxide particles prepared by the above method were washed by centrifugation using ethanol (Ethanol; Duksan Co., 99.5%) as a washing solution. At this time, the rotational speed was washed three times in a step of precipitation for 10 minutes at 5000 rpm. After washing, yellow precipitates could be obtained. In addition, the crystalline size of the Scherrer equation was 4.16 nm.
상기 방법에 의해 세척된 10g의 산화세륨 입자에 2ml의 아세트산 (acetic acid)을 첨가한 후, 페인트 쉐이커를 이용하여 20분간 강하게 섞어 주었다. 이 용액에 8ml의 증류수를 첨가한 후, 페인트 쉐이커를 이용하여 강하게 섞어 주었다. 30분만에 노란색의 투명한 용액을 획득 할 수 있었다.2 ml of acetic acid was added to 10 g of cerium oxide particles washed by the above method, followed by vigorous mixing for 20 minutes using a paint shaker. 8 ml of distilled water was added to the solution, followed by vigorous mixing using a paint shaker. In 30 minutes a yellow clear solution was obtained.
상기 제조된 콜로이드 용액에 슬라이드 글라스를 30초간 담그고, 상온에서 건조를 시켰다.건조된 글라스 표면에는 노란색의 투명한 코팅층이 형성되었으며, 흘러내림 없이 그 형태를 유지 하였다.The slide glass was immersed in the colloidal solution prepared for 30 seconds, and dried at room temperature. A yellow transparent coating layer was formed on the dried glass surface, and the shape was maintained without flowing down.
[실시예 5]Example 5
15 ml의 에틸렌글리콜(Ethylene glycol; Duksan Co., 99.5%)과 285 ml의 에탄올(Ethanol; Duksan Co., 99.5%)을 혼합한 뒤, 26.04g의 세륨질산염(cerium nitrideanhydrate; Aldrich 99.5%)을 첨가한 후, 150 rpm으로 20분간 혼합하였다. 혼합된 세륨전구체 용액에 1 ml의 과산화수소(hydrogen peroxide; Junsei Co., 98.5%)를 첨가한 후, 150 rpm으로 20분간 혼합하였다. 상기 용액에 수산화암모늄(ammonium hydroxide; Duksan Co.)를 첨가하면서 pH를 8.0 내지 9.0으로 조절하였다. 반응 온도를 50˚C로 증가 시킨 뒤, 반응 용액에 공기를 불어 넣어 주면서, 24시간 반응을 진행 하였다. 상기 방법에 의해 노란색의 침전물이 생성이 되었다. 상기 침전물을 XRD를 이용하여 분석한 결과 형석형 구조의 산화세륨 입자로 생성된 것을 확인할 수 있었다. 이것을 도3(d)에 나타내었다.After mixing 15 ml of ethylene glycol (Duksan Co., 99.5%) and 285 ml of ethanol (Ethanol; Duksan Co., 99.5%), 26.04 g of cerium nitrideanhydrate (Aldrich 99.5%) was added. After addition, the mixture was mixed for 20 minutes at 150 rpm. 1 ml of hydrogen peroxide (Junsei Co., 98.5%) was added to the mixed cerium precursor solution, followed by mixing at 150 rpm for 20 minutes. The pH was adjusted to 8.0-9.0 with the addition of ammonium hydroxide (Duksan Co.) to the solution. After increasing the reaction temperature to 50 ° C, blowing the air into the reaction solution, the reaction proceeded for 24 hours. This method produced a yellow precipitate. As a result of analyzing the precipitate using XRD, it was confirmed that the precipitate was formed of cerium oxide particles having a fluorite structure. This is shown in Fig. 3 (d).
상기 방법에 의해 제조된 산화세륨 입자는 에탄올(Ethanol; Duksan Co., 99.5%)을 세척용액으로 사용하여, 원심분리를 이용하여 세척하였다. 이 때 회전속도는 5000 rpm으로 10분간 침전시키는 공정으로 3회 반복하여 세척을 하였다. 세척 후 노란색의 침전덩어리를 획득할 수 있었다. 또한 쉐러 (Scherrer equation)에 의한 결정크기(crystalline size)는 4.21nm였다.The cerium oxide particles prepared by the above method were washed by centrifugation using ethanol (Ethanol; Duksan Co., 99.5%) as a washing solution. At this time, the rotational speed was washed three times in a step of precipitation for 10 minutes at 5000 rpm. After washing, yellow precipitates could be obtained. In addition, the crystalline size was 4.21 nm according to the Scherrer equation.
상기 방법에 의해 세척된 10g 의 산화세륨 입자에 2ml의 아세트산 (acetic acid)을 첨가한 후, 페인트 쉐이커를 이용하여 10분간 강하게 섞어 주었다. 이 용액에 8ml의 증류수를 첨가한 후, 페인트 쉐이커를 이용하여 강하게 섞어 주었다. 20분만에 노란색의 투명한 용액을 획득 할 수 있었다.2 ml of acetic acid was added to 10 g of cerium oxide particles washed by the above method, followed by vigorous mixing for 10 minutes using a paint shaker. 8 ml of distilled water was added to the solution, followed by vigorous mixing using a paint shaker. In 20 minutes a yellow clear solution was obtained.
상기 제조된 콜로이드 용액에 슬라이드 글라스를 30초간 담그고, 상온에서 건조를 시켰다. 건조된 글라스 표면에는 노란색의 투명한 코팅층이 형성되었으며, 흘러내림이 없이 그 형태를 유지 하였다.The slide glass was immersed in the colloidal solution prepared for 30 seconds, and dried at room temperature. A yellow transparent coating layer was formed on the dried glass surface and maintained its shape without flowing down.
[실시예 6] Example 6
상기 실시예 1과 동일한 방법에 의해 산화세륨 입자를 제조하고 세척하였다. 상기 방법에 의해 제조된 10g의 산화세륨 1ml의 질산(nitric acid; Duksan Co., 68%)을 첨가한 후, 페인트 쉐이커를 이용하여 5분간 강하게 섞어 주었다. 이 용액에 9ml의 증류수를 첨가한 후, 페인트 쉐이커를 이용하여 강하게 섞어 주었다. 1분 후에 노란색의 투명한 용액을 획득 할 수 있었다.Cerium oxide particles were prepared and washed in the same manner as in Example 1. 10 g of cerium oxide prepared by the above method was added nitric acid (nitric acid; Duksan Co., 68%), and then mixed vigorously for 5 minutes using a paint shaker. 9 ml of distilled water was added to the solution, followed by vigorous mixing using a paint shaker. After 1 minute a yellow clear solution was obtained.
[실시예 7]Example 7
상기 실시예 1에서 에틸렌 글리콜 대신 60ml의 1,4-부탄다이올을 사용한 것을 제외하고는 동일한 방법에 의해 산화세륨 입자를 제조하고 세척하였다. 상기 방법에 의해 제조된 10g의 산화세륨 입자에 2ml의 아세트산(acetic acid)을 첨가 한 후, 페인트 쉐이커를 이용하여 5분간 강하게 섞어 주었다. 이 용액에 8ml의 증류수를 첨가한 후, 페인트 쉐이커를 이용하여 강하게 섞어 주었다. 10분 후에 노란색의 투명한 용액을 획득 할 수 있었다.Cerium oxide particles were prepared and washed in the same manner as in Example 1, except that 60 ml of 1,4-butanediol was used instead of ethylene glycol. 2 ml of acetic acid was added to 10 g of cerium oxide particles prepared by the above method, followed by strong mixing for 5 minutes using a paint shaker. 8 ml of distilled water was added to the solution, followed by vigorous mixing using a paint shaker. After 10 minutes a yellow clear solution was obtained.
[비교예 1]Comparative Example 1
에틸렌글리콜 (Ethylene glycol; Duksan Co., 99.5%)를 혼합하는 것 없이 300ml의 에탄올(Ethanol; Duksan Co., 99.5%) 만을 사용하였다. 26.04g의 세륨질산염(cerium nitrideanhydrate; Aldrich 99.5%)을 에탄올에 첨가한 후, 150rpm으로 20분간 혼합하였다.Only 300 ml of ethanol (Ethanol; Duksan Co., 99.5%) was used without mixing ethylene glycol (Duksan Co., 99.5%). 26.04 g of cerium nitrideanhydrate (Aldrich 99.5%) was added to ethanol and then mixed at 150 rpm for 20 minutes.
혼합된 세륨전구체 용액에 1ml의 과산화수소 (hydrogen peroxide; Junsei Co., 98.5%)를 첨가한 후, 150 rpm으로 20분간 혼합하였다. 상기 용액에 수산화암모늄(ammoniumhydroxide; Duksan Co.)를 첨가하면서 pH를 8.0 내지 9.0으로 조절하였다. 반응 온도를 50˚C로 증가시킨 뒤, 반응 용액에 공기를 불어 넣어 주었다. 3시간 만에 노란색의 침전물이 생성이 되었으며, 12시간 동안 반응을 하였다. 상기 침전물을 XRD를 이용하여 분석한 결과 형석형 구조의 산화세륨 입자로 생성된 것을 확인할 수 있었다. 이것을 도 3(e)에 나타내었다. 또한 쉐러 (Scherrer equation)에 의한 결정크기 (crystalline size)는 8.48nm 였다.1 ml of hydrogen peroxide (Junsei Co., 98.5%) was added to the mixed cerium precursor solution, followed by mixing at 150 rpm for 20 minutes. The pH was adjusted to 8.0-9.0 with the addition of ammonium hydroxide (Duksan Co.) to the solution. After the reaction temperature was increased to 50 ° C., air was blown into the reaction solution. A yellow precipitate formed in 3 hours, and reacted for 12 hours. As a result of analyzing the precipitate using XRD, it was confirmed that the precipitate was formed of cerium oxide particles having a fluorite structure. This is shown in Fig. 3 (e). In addition, the crystalline size was 8.48 nm by the Scherrer equation.
상기 방법에 의해 제조된 산화세륨 입자는 에탄올(Ethanol; Duksan Co., 99.5%)을 세척용액으로 사용하여, 원심분리를 이용하여 세척하였다. 이 때 회전속도는 5000 rpm으로 10분간 침전시키는 공정으로 3회 반복하여 세척을 하였다. 세척 후 노란색의 침전덩어리를 획득할 수 있었다.The cerium oxide particles prepared by the above method were washed by centrifugation using ethanol (Ethanol; Duksan Co., 99.5%) as a washing solution. At this time, the rotational speed was washed three times in a step of precipitation for 10 minutes at 5000 rpm. After washing, yellow precipitates could be obtained.
상기 방법에 의해 세척된 10g의 산화세륨 입자에 2ml의 아세트산(acetic acid)을 첨가한 후, 페인트 쉐이커를 이용하여 10분간 강하게 섞어 주었다. 이 용액에 8ml의 증류수를 첨가한 후, 페인트 쉐이커를 이용하여 강하게 섞어 주었다. 투명해 지지 않았으며, 몇 분 후에 노란색 침전물이 생겼다.2 ml of acetic acid was added to 10 g of cerium oxide particles washed by the above method, followed by vigorous mixing for 10 minutes using a paint shaker. 8 ml of distilled water was added to the solution, followed by vigorous mixing using a paint shaker. It did not become clear and after a few minutes a yellow precipitate formed.
[비교예 2]Comparative Example 2
300ml의 에틸렌글리콜(Ethylene glycol; Duksan Co., 99.5%)에 26.04g의 세륨질산염(cerium nitride anhydrate; Aldrich 99.5%)을 첨가한 후, 150rpm으로 20분간 혼합하였다.26.04 g of cerium nitride anhydrate (Aldrich 99.5%) was added to 300 ml of ethylene glycol (Duksan Co., 99.5%), followed by mixing at 150 rpm for 20 minutes.
혼합된 세륨전구체 용액에 1 ml의 과산화수소 (hydrogen peroxide; Junsei Co., 98.5%)를 첨가한 후, 150rpm으로 20분간 혼합하였다. 상기 용액에 수산화암모늄(ammoniumhydroxide; Duksan Co.)를 첨가하면서 pH를 8.0내지 9.0으로 조절하였다. 반응 온도를 50˚C로 증가시킨 뒤, 반응 용액에 공기를 불어 넣어 주면서, 24시간 반응을 진행 하였다. 반응 후 진한 노란색의 침전물이 생성되었다. 이것을 아세톤으로 1회 에탄올로 2회 세척한 후에 건조를 한 후 XRD 분석을 하였다. 상기 건조된 입자를 도 4에 나타내었다. 또한 쉐러(Scherrer equation)에 의한 결정크기 (crystalline size)는 4.38nm 였다.1 ml of hydrogen peroxide (hydrogen peroxide; Junsei Co., 98.5%) was added to the mixed cerium precursor solution, followed by mixing at 150 rpm for 20 minutes. The pH was adjusted to 8.0-9.0 with the addition of ammonium hydroxide (Duksan Co.) to the solution. After increasing the reaction temperature to 50 ° C, blowing the air into the reaction solution, the reaction proceeded for 24 hours. A dark yellow precipitate formed after the reaction. This was washed twice with ethanol once with acetone and then dried and subjected to XRD analysis. The dried particles are shown in FIG. 4. In addition, the crystalline size of the Scherrer equation was 4.38 nm.
상기 방법에 의해 제조된 산화세륨 입자는 에탄올(Ethanol; Duksan Co., 99.5%)을 세척용액으로 사용하여, 원심분리를 이용하여 세척하였다. 이 때 회전속도는 5000 rpm으로 10분간 침전시키는 공정으로 3회 반복하여 세척을 하였다. 상기 방법에 의해 세척된 10g의 산화세륨 입자에 2ml의 아세트산(acetic acid)을 첨가 한 후, 페인트 쉐이커를 이용하여 10분간 강하게 섞어 주었다. 이 용액에 8ml의 증류수를 첨가한 후, 페인트 쉐이커를 이용하여 강하게 섞어 주었다. 1분만에 황색의 투명한 용액이 제조되었으며, 이 때의 고체농도는 6.8wt%로 존재하였다.The cerium oxide particles prepared by the above method were washed by centrifugation using ethanol (Ethanol; Duksan Co., 99.5%) as a washing solution. At this time, the rotational speed was washed three times in a step of precipitation for 10 minutes at 5000 rpm. 2 ml of acetic acid was added to 10 g of cerium oxide particles washed by the above method, and then mixed vigorously for 10 minutes using a paint shaker. 8 ml of distilled water was added to the solution, followed by vigorous mixing using a paint shaker. In 1 minute a yellow clear solution was prepared, with a solid concentration of 6.8 wt%.
[비교예 3]Comparative Example 3
60 ml의 에틸렌글리콜(Ethylene glycol; Duksan Co., 99.5%)과 240 ml의 에탄올(Ethanol; Duksan Co., 99.5%)을 혼합한 뒤, 26.04g의 세륨질산염(cerium nitrideanhydrate; Aldrich 99.5%)을 첨가한 후 , 150rpm으로 20분간 혼합하였다. 혼합된 세륨전구체 용액에 1ml의 과산화수소(hydrogen peroxide; Junsei Co., 98.5%)를 첨가한 후, 150rpm으로 20분간 혼합하였다. 상기 용액에 수산화암모늄(ammonium hydroxide; Duksan Co.,)를 첨가하면서 pH를 9.02로 조절하였다. 반응 온도를 75˚C로 증가시킨 뒤, 반응 용액에 공기를 불어 넣어 주면서, 24시간 반응 하였다. 상기 침전물을 XRD를 이용하여 분석한 결과 형석형 구조의 산화세륨 입자로 생성된 것을 확인할 수 있었다.60 ml of ethylene glycol (Duksan Co., 99.5%) and 240 ml of ethanol (Ethanol; Duksan Co., 99.5%) were mixed, followed by 26.04 g of cerium nitrideanhydrate (Aldrich 99.5%). After the addition, the mixture was mixed at 150 rpm for 20 minutes. 1 ml of hydrogen peroxide (Junsei Co., 98.5%) was added to the mixed cerium precursor solution, followed by mixing at 150 rpm for 20 minutes. The pH was adjusted to 9.02 while ammonium hydroxide (Duksan Co.,) was added to the solution. After increasing the reaction temperature to 75 ° C, blowing the air into the reaction solution, the reaction for 24 hours. As a result of analyzing the precipitate using XRD, it was confirmed that the precipitate was formed of cerium oxide particles having a fluorite structure.
상기 방법에 의해 제조된 산화세륨 입자는 에탄올(Ethanol; Duksan Co., 99.5%)을 세척용액으로 사용하여, 원심분리를 이용하여 세척하였다. 이 때 회전속도는 5000 rpm으로 10분간 침전시키는 공정으로 3회 반복하여 세척을 하였다. 세척 후 노란색의 침전덩어리를 획득할 수 있었다.The cerium oxide particles prepared by the above method were washed by centrifugation using ethanol (Ethanol; Duksan Co., 99.5%) as a washing solution. At this time, the rotational speed was washed three times in a step of precipitation for 10 minutes at 5000 rpm. After washing, yellow precipitates could be obtained.
상기 방법에 의해 세척된 10g의 산화세륨 입자에 5ml의 아세트산(acetic acid)을 첨가한 후, 페인트 쉐이커를 이용하여 10분간 강하게 섞어 주었다. 이 용액에 5ml의 증류수를 첨가한 후, 페인트 쉐이커를 이용하여 강하게 섞어 주었다. 12시간 혼합 후에도 투명한 콜로이드 산화세륨 용액을 획득할 수 있었다.5 ml of acetic acid was added to 10 g of cerium oxide particles washed by the above method, and then mixed vigorously for 10 minutes using a paint shaker. 5 ml of distilled water was added to the solution, followed by vigorous mixing using a paint shaker. Even after 12 hours of mixing, a clear colloidal cerium oxide solution could be obtained.

Claims (9)

  1. 유기 용매에 산화세륨 전구체를 용해하여 산화세륨 전구체 용액을 제조하는 단계;Dissolving a cerium oxide precursor in an organic solvent to prepare a cerium oxide precursor solution;
    상기 전구체 용액의 pH를 조절하여 유기용매로 표면처리된 산화세륨을 침전시키는 단계;Adjusting the pH of the precursor solution to precipitate cerium oxide surface-treated with an organic solvent;
    상기 침전 반응 단계의 산화세륨 침전물을 세척하는 단계; 및Washing the cerium oxide precipitate of the precipitation reaction step; And
    상기 산화세룸 침전물을 해교 및 자발분산시키는 단계를 포함하는 것을 특징으로 하는 산화세륨 콜로이드 용액의 제조 방법.Method for producing a cerium oxide colloidal solution comprising the step of peptizing and spontaneous dispersion of the cerium oxide precipitate.
  2. 제1항에 있어서, The method of claim 1,
    상기 유기 용매는 글리콜계 용매와 알코올계 용매의 혼합 용매인 것을 특징으로 하는 산화세륨 콜로이드 용액의 제조 방법.The organic solvent is a method of producing a cerium oxide colloidal solution, characterized in that a mixed solvent of a glycol solvent and an alcohol solvent.
  3. 제2항에 있어서, The method of claim 2,
    상기 글리콜계 용매와 알코올계 용매의 혼합 비율은 5:5 에서 9.98: 0.02사이인 것을 특징으로 하는 산화세륨 콜로이드 용액의 제조 방법.Method for producing a cerium oxide colloidal solution, characterized in that the mixing ratio of the glycol solvent and the alcohol solvent is 5: 5 to 9.98: 0.02.
  4. 제1항에 있어서, The method of claim 1,
    상기 침전 반응 단계에서 산화촉진제를 사용하는 것을 특징으로 하는 산화세륨 콜로이드 용액의 제조 방법.Method for producing a cerium oxide colloidal solution, characterized in that the oxidation promoter is used in the precipitation reaction step.
  5. 제1항에 있어서, The method of claim 1,
    상기 산화촉진제는 산소 가스, 공기 또는 과산화수소인 것을 특징으로 하는 산화세륨 콜로이드 용액의 제조 방법.The oxidation promoter is a method of producing a cerium oxide colloidal solution, characterized in that oxygen gas, air or hydrogen peroxide.
  6. 제1항에 있어서, The method of claim 1,
    상기 침전 반응 단계는 30~90℃의 온도, pH 5.0~10.0 범위에서 수행되는 것을 특징으로 하는 산화세륨 콜로이드 용액의 제조 방법.The precipitation reaction step is a method of producing a cerium oxide colloidal solution, characterized in that carried out at a temperature of 30 ~ 90 ℃, pH 5.0 ~ 10.0 range.
  7. 제1항에 있어서, The method of claim 1,
    상기 세척 단계에서 침전물은 아세톤 또는 알코올로 세척되는 것을 특징으로 하는 산화세륨 콜로이드 용액의 제조 방법.The method of producing a cerium oxide colloidal solution, characterized in that the precipitate in the washing step is washed with acetone or alcohol.
  8. 제1항에 있어서, The method of claim 1,
    상기 해교 및 자발분산 단계는 산화세륨 침전물을 물에 분산시킨 후 30~75℃의 온도 및 pH 0.01~4.0 범위에서 수행되는 것을 특징으로 하는 산화세륨 콜로이드 용액의 제조 방법.The peptizing and spontaneous dispersion step is a method of producing a cerium oxide colloidal solution, characterized in that the cerium oxide precipitate is dispersed in water and carried out at a temperature of 30 ~ 75 ℃ and pH 0.01 ~ 4.0 range.
  9. 제1항에 있어서, The method of claim 1,
    상기 해교 및 자발분산 단계에서 아세트산 또는 질산, 또는 이들의 혼합물에 의해 pH가 조절되는 것을 특징으로 하는 산화세륨 콜로이드 용액의 제조 방법.The method of producing a cerium oxide colloidal solution, characterized in that the pH is adjusted by acetic acid or nitric acid, or a mixture thereof in the peptizing and spontaneous dispersion step.
PCT/KR2013/003022 2012-04-16 2013-04-11 Method for producing colloidal cerium oxide WO2013157775A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0039278 2012-04-16
KR20120039278A KR101512359B1 (en) 2012-04-16 2012-04-16 Manufacturing Methods of Colloidal Cerium Oxides

Publications (1)

Publication Number Publication Date
WO2013157775A1 true WO2013157775A1 (en) 2013-10-24

Family

ID=49383675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003022 WO2013157775A1 (en) 2012-04-16 2013-04-11 Method for producing colloidal cerium oxide

Country Status (2)

Country Link
KR (1) KR101512359B1 (en)
WO (1) WO2013157775A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514945B1 (en) * 2014-07-07 2015-04-28 (주)티에스엠 Manufacturing method of gallium oxide nano particle using diethylene glycol and gallium oxide therefrom
KR102066708B1 (en) * 2016-09-29 2020-01-15 주식회사 엘지화학 Method for preparing calcium oxide nanoparticle
KR101864230B1 (en) * 2016-10-11 2018-06-04 창원대학교 산학협력단 Method for fabricating ceria nano-particle by using solvent heating process
US20230348753A1 (en) * 2020-08-31 2023-11-02 Soulbrain Co., Ltd. Cerium oxide particles, chemical mechanical polishing slurry composition comprising same, and method for manufacturing semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910010128B1 (en) * 1986-03-26 1991-12-17 롱 쁠랑 쉬미 Colloidal dispersions of cerium (iv) compounds and process for preparing the same
KR20080045326A (en) * 2006-11-20 2008-05-23 주식회사 엘지화학 Methodd for preparing cerium oxide powder using organic solvent and cmp slurry comprising the same
JP2010083741A (en) * 2008-10-03 2010-04-15 Mitsui Mining & Smelting Co Ltd Cerium oxide and method for producing the same
JP2011132107A (en) * 2009-12-25 2011-07-07 Jgc Catalysts & Chemicals Ltd Method of manufacturing cerium oxide fine particle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100088311A (en) * 2009-01-30 2010-08-09 주식회사 엘지화학 Method for preparing cerium oxide nano powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910010128B1 (en) * 1986-03-26 1991-12-17 롱 쁠랑 쉬미 Colloidal dispersions of cerium (iv) compounds and process for preparing the same
KR20080045326A (en) * 2006-11-20 2008-05-23 주식회사 엘지화학 Methodd for preparing cerium oxide powder using organic solvent and cmp slurry comprising the same
JP2010083741A (en) * 2008-10-03 2010-04-15 Mitsui Mining & Smelting Co Ltd Cerium oxide and method for producing the same
JP2011132107A (en) * 2009-12-25 2011-07-07 Jgc Catalysts & Chemicals Ltd Method of manufacturing cerium oxide fine particle

Also Published As

Publication number Publication date
KR101512359B1 (en) 2015-04-15
KR20130116671A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
WO2013157775A1 (en) Method for producing colloidal cerium oxide
US7674525B2 (en) Process for producing fine α-alumina particles
WO2014025125A1 (en) Method for preparing lithium metal phosphor oxide
WO2007029933A1 (en) Coating method of metal oxide superfine particles on the surface of metal oxide and coating produced therefrom
WO2023173627A1 (en) Spherical silver powder and preparation method therefor, and conductive paste
KR100843190B1 (en) Method of fabrication of zinc oxide by freeze drying at low temperature
CN103496744B (en) Preparation method of as-reduced ammonium tungsten bronze nanoparticles
Engelbrekt et al. Selective synthesis of clinoatacamite Cu 2 (OH) 3 Cl and tenorite CuO nanoparticles by pH control
CN1398789A (en) Prepn of nano barium sulfate
WO2015142035A1 (en) Plate-like aluminum oxide and preparation method therefor
WO2020130226A1 (en) Method of preparing yttria stabilized zirconia (ysz) nanosol having excellent dispersibility
US7829061B2 (en) Zirconium oxide hydrate particles and method for producing the same
CN1915836A (en) Method for preparting Nano powder of zirconia
Chen et al. Reduced activation energy and crystalline size for yttria-stabilized zirconia nano-crystals:: an experimental and theoretical study
WO2011091766A1 (en) Method for preparing modified micronized particles
WO2021172954A2 (en) Spherical inorganic particles having surface bumps formed thereon, and method of manufacturing same
WO2019004755A1 (en) Method for preparing nickel oxide nanoparticle and nickel oxide nanoparticle prepared using same
US20140147661A1 (en) Method for producing alumina-crystal-particle-dispersed alumina sol, alumina-crystal-particle-dispersed alumina sol obtained by the method, and aluminum coated member produced using the sol
JP2539483B2 (en) Manufacturing method of lithium aluminum powder with large specific surface area
KR20150041681A (en) Process for Preparing Ceria Nanoparticles
JPS6065719A (en) Preparation of lithium aluminate powder
KR102604811B1 (en) Method of manufacturing hexagonal tungsten oxide and method of manufacturing an electrochromic device comprising the same
WO2024090757A1 (en) Method for preparing reduced graphene oxide that has water dispersibility and redispersibility and can be mixed with dissimilar material
WO2022181850A1 (en) Method for preparing nanopowder having excellent dispersibility and uniform grain size
WO2024071312A1 (en) Crystalline titanium oxide core-shell particles and dispersion containing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778692

Country of ref document: EP

Kind code of ref document: A1