WO2019151109A1 - 路面情報取得方法 - Google Patents
路面情報取得方法 Download PDFInfo
- Publication number
- WO2019151109A1 WO2019151109A1 PCT/JP2019/002288 JP2019002288W WO2019151109A1 WO 2019151109 A1 WO2019151109 A1 WO 2019151109A1 JP 2019002288 W JP2019002288 W JP 2019002288W WO 2019151109 A1 WO2019151109 A1 WO 2019151109A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- road surface
- information
- lane marking
- intensity
- reflected wave
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Definitions
- the present invention relates to a road surface information acquisition method.
- Patent Document 1 describes an example of a method for estimating a current position using a feature position as a landmark detected using LiDAR and a feature of map information.
- Patent Document 2 describes that a white line is detected using LiDAR, and the relative position of the white line in the horizontal direction with respect to the vehicle or the direction in which the vehicle is facing the white line is detected with high accuracy.
- an object of the present invention is, for example, to provide a road surface information acquisition method that improves the detection (recognition) accuracy of a lane marking.
- the road surface information acquisition method which is made to solve the above-described problem, receives a reflected wave in which an electromagnetic wave transmitted to the road surface is reflected by the road surface, and based on the intensity of the reflected wave, Recognizing an end of a lane marking formed on the road surface.
- the road surface information acquisition device wherein a transmission unit capable of transmitting an electromagnetic wave to a road surface, a reception unit capable of receiving a reflected wave in which the transmitted electromagnetic wave is reflected by the road surface, and the reflected wave A recognition unit that recognizes an end of a lane marking formed on the road surface based on strength.
- the road surface information acquisition program recognizes an end portion of a lane marking formed on the road surface based on an intensity of a reflected wave received by the electromagnetic wave transmitted to the road surface being reflected by the road surface.
- the computer is made to function as a recognition unit.
- a recording medium is characterized in that the road surface information acquisition program according to the eleventh aspect is recorded.
- the road surface information acquisition device wherein an acquisition unit that acquires an image of a road surface imaged by an imaging unit, and an end portion of a lane marking formed on the road surface based on luminance information of the acquired image And a recognition unit for recognizing.
- FIG. 1 It is a block diagram which shows one Embodiment of the driving assistance system which implements the road surface information acquisition method, lane marking information creation method, and present position estimation method of this invention. It is a function block diagram of the 1st vehicle equipment shown by FIG. It is a function block diagram of the server apparatus shown by FIG. It is explanatory drawing for demonstrating the map information before the edge part of a lane marking is recorded. It is explanatory drawing for demonstrating the map information after the edge part of the lane marking was recorded. It is a functional block diagram of the 2nd vehicle equipment shown by FIG. It is a flowchart which shows the procedure of the road surface information acquisition process which the 1st vehicle equipment shown in FIG. 1 performs.
- a road surface information acquisition method receives a reflected wave in which an electromagnetic wave transmitted to a road surface is reflected by the road surface, and is formed on the road surface based on the intensity of the reflected wave. It is characterized by recognizing the end of the line. Thereby, the edge part of a division line can be recognized accurately. Further, since the end of the recognized lane marking can be used as a landmark and used for estimation of the current position, it is possible to improve the position estimation accuracy in the moving direction of the moving body.
- the electromagnetic wave may be transmitted from a sensor arranged on the moving body.
- a sensor By mounting the sensor on the moving body, it is possible to easily recognize the end portions of a wide range of lane markings.
- the end of the lane marking may be recognized based on a change in the intensity of the reflected wave along the longitudinal direction of the lane marking. Thereby, the recognition precision of the edge part of a division line can be aimed at.
- the end of the partition line may be recognized based on a change along the longitudinal direction of the intensity of the reflected wave on a plurality of lines arranged in a direction perpendicular to the longitudinal direction of the partition line. .
- the recognition accuracy of the end of the lane marking can be further improved.
- a position where the intensity of the reflected wave changes along the longitudinal direction on all the lines and the rate of change thereof is equal to or higher than a first threshold value may be recognized as an end of the lane marking.
- a location where the end cannot be accurately recognized due to a problem such as blurring is not recognized as the end of the lane marking.
- the position where the intensity of the reflected wave changes along the longitudinal direction on all the lines and the rate of change is less than the first threshold is recognized as a non-end portion that is not an end portion of the lane marking. May be.
- the end of the partition line may be recognized based on the intensity distribution of the reflected wave in the reflection area scanned along the longitudinal direction of the partition line. Thereby, the recognition precision of the edge part of a division line can be aimed at.
- the position where the intensity of the reflected wave changes while the dispersion of the intensity distribution of the reflected wave is less than the second threshold may be recognized as the end of the lane marking.
- a location where the end cannot be accurately recognized due to a problem such as blurring is not recognized as the end of the lane marking.
- the position where the variance of the intensity distribution of the reflected wave becomes the second threshold value or more and the intensity of the reflected wave changes may be recognized as a non-end portion of the lane marking.
- a road surface information acquisition device includes a transmission unit capable of transmitting an electromagnetic wave to a road surface, and a reception unit capable of receiving a reflected wave in which the transmitted electromagnetic wave is reflected by the road surface. And a recognizing unit for recognizing an end of a lane marking formed on the road surface based on the intensity of the reflected wave. Thereby, the edge part of a division line can be recognized accurately. Further, since the end of the recognized lane marking can be used as a landmark and used for estimation of the current position, it is possible to improve the position estimation accuracy in the moving direction of the moving body.
- a road surface information acquisition program that causes the computer to execute the road surface information acquisition method described above may be used. Since the program is executed by the computer in this way, dedicated hardware or the like is not necessary, and can be installed and functioned in a general-purpose information processing apparatus.
- the above road surface information acquisition program may be stored in a computer-readable recording medium.
- the program can be distributed as a single unit in addition to being incorporated in the device, and version upgrades can be easily performed.
- a road surface information acquisition device includes an acquisition unit that acquires an image of a road surface imaged by an imaging unit, and a section formed on the road surface based on luminance information of the acquired image.
- a recognition unit for recognizing the end of the line. Thereby, the edge part of a division line can be recognized accurately. Further, since the end of the recognized lane marking can be used as a landmark and used for estimation of the current position, it is possible to improve the position estimation accuracy in the moving direction of the moving body.
- the driving support system 1 includes a first in-vehicle device 2 as a road surface information acquisition device, an external device, a server device 3 as a lane marking information creation device, and a second in-vehicle device 4.
- the 1st vehicle equipment 2 is an apparatus which acquires road surface information and transmits to the server apparatus 3, for example, is mounted in the measurement vehicle 5 for the purpose of producing map information.
- the measurement vehicle 5 is a moving body that travels on a road.
- the server device 3 acquires road surface information from the first in-vehicle device 2 and creates map information.
- the server device 3 can communicate with the first in-vehicle device 2 via a network N such as the Internet, and acquires road surface information from the first in-vehicle device 2 using the network N.
- a network N such as the Internet
- the server device 3 can communicate with the first in-vehicle device 2 via a network N such as the Internet, and acquires road surface information from the first in-vehicle device 2 using the network N.
- the server device 3 can communicate with the first in-vehicle device 2 via a network N such as the Internet, and acquires road surface information from the first in-vehicle device 2 using the network N.
- a network N such as the Internet
- the second in-vehicle device 4 can communicate with the server device 3 via the network N.
- the second in-vehicle device 4 is a device that receives the map information from the server device 3 and performs driving support, and is mounted on the vehicle 6, for example.
- the vehicle 6 is a moving body that receives driving assistance.
- the first and second in-vehicle devices 2 and 4 mounted on the vehicles 5 and 6 as terminals that can communicate with the server device 3 will be described as an example. Possible portable terminals may be used.
- reception of the map information of the 2nd vehicle equipment 4 it is not limited to the above-mentioned form, For example, without using the network N, an operator etc. map information from the server apparatus 3 to the 2nd vehicle equipment 4 manually. May be moved.
- the functional configuration of the first in-vehicle device 2 is shown in FIG.
- the first in-vehicle device 2 includes a control unit 21, an input / output unit 22, and a sensor unit 23.
- the control unit 21 functions as a CPU (Central Processing Unit) of the first in-vehicle device 2 and controls the first in-vehicle device 2.
- the control part 21 recognizes the edge part of a lane marking, etc. using LiDAR23B mentioned later, and transmits to the server apparatus 3 as road surface information.
- the control unit 21 may acquire peripheral information other than road surface information and transmit it to the server device 3.
- the lane marking is a white line or a yellow line formed on the road surface.
- the input / output unit 22 functions as a network interface of the first in-vehicle device 2 and transmits road surface information.
- the sensor unit 23 includes a GPS (Global Positioning System) receiver 23A, LiDAR 23B, and the like.
- the sensor unit 23 includes a LiDAR 23B as an example of a sensor capable of transmitting electromagnetic waves.
- LiDAR 23B is a transmission unit and a reception unit.
- the GPS receiver 23 ⁇ / b> A detects the current position information of the measurement vehicle 5.
- the GPS receiver 23A periodically receives radio waves oscillated from a plurality of GPS satellites as known, obtains current position information and time, and outputs them to the control unit 21.
- the LiDAR 23B outputs a pulsed laser while changing the output direction in a predetermined detection area, receives the reflected wave of the laser, and generates point cloud information.
- the LiDAR 23B outputs a plurality of pulses of laser within the detection region, and generates point cloud information based on the reflected waves of the plurality of pulses of laser.
- Each piece of information constituting the point cloud information is information indicating the output direction of the laser, the distance to the object that reflects the laser, and the intensity of the reflected wave.
- the LiDAR 23B irradiates the laser toward the road surface, and uses the road surface as a detection region. For this reason, point cloud information turns into information which shows the distance to the road surface as a target object.
- the LiDAR 23B may emit laser light other than on the road surface to acquire peripheral information other than road surface information.
- the server device 3 is installed in an office that provides map information.
- the functional configuration of the server device 3 is shown in FIG.
- the server device 3 includes a storage unit 31 as a storage device, a control unit 32, and an input / output unit 33.
- the storage unit 31 functions as a storage device such as a hard disk of the server device 3 and stores map information.
- map information already includes information about the lane markings.
- Information on the lane marking will be described with reference to FIG.
- the information point P 1 showing the division line, ..., and a P 14.
- position information (latitude, longitude) is assigned to the point information P 1 ,... P 14 , respectively.
- a processor such as a CPU of the server device 3 functions to control the entire server device 3.
- the control unit 32 is an end point among the point information P 1 ,..., P 14 based on the road surface information such as the end of the lane marking transmitted from the first in-vehicle device 2.
- the end information indicating the end of the lane marking is given to the recognized one (indicated by a white circle in the figure).
- the second vehicle-mounted device 4 that has received the map information determines the end of the lane line from the information about the lane line. Can be recognized.
- the input / output unit 33 functions as a network interface of the server device 3, receives road surface information from the first in-vehicle device 2, and transmits map information to the second in-vehicle device 4.
- the functional configuration of the second in-vehicle device 4 is shown in FIG.
- the second in-vehicle device 4 includes a sensor unit 41, a control unit 42, and an input / output unit 43.
- the sensor unit 41 includes a GPS receiver 41A, LiDAR 41B, and the like. Since the GPS receiver 41A is a device having the same function as the GPS receiver 23A of the first in-vehicle device 2 and the LiDAR 41B are the same as the LiDAR 23B of the first in-vehicle device 2, detailed description thereof is omitted here.
- a processor such as a CPU of the second in-vehicle device 4 functions to control the entire second in-vehicle device 4.
- the control unit 42 performs driving support using information obtained from the sensor unit 41 and map information obtained from the server device 3.
- driving assistance means control of a steering wheel, an accelerator, a brake, etc., presentation of information about driving, and the like.
- automatic driving control is performed as driving support.
- the control unit 42 needs to estimate the current position of the host vehicle in order to perform automatic driving control.
- the control unit 42 determines the current position based on the information indicating the edge of the lane line recognized using the LiDAR 41B and the edge information of the lane line included in the map information obtained from the server device 3. Is estimated.
- the input / output unit 43 functions as the network interface of the second in-vehicle device 4 and receives map information.
- the 1st vehicle equipment 2 becomes a road surface information acquisition program which makes a road surface information acquisition method perform by a computer by making the flowchart shown in FIG. 7 into a computer program.
- the first vehicle-mounted device 2 executes road surface information acquisition processing while traveling.
- the first in-vehicle device 2 controls the LiDAR 23B to acquire the point cloud information related to the traveling road surface described above (step S1).
- the 1st vehicle equipment 2 extracts a lane marking segment based on point cloud information. Specifically, an orthoimage of a point cloud is generated based on the acquired point cloud information. Then, image processing is performed on the ortho image, and for example, a line segment (straight line) or the like is detected. Then, grouping of detected line segments (straight lines) or the like is performed, and lane marking segments forming the outline of one lane marking are extracted (step S2). Note that KS in FIG.
- step S3 the first in-vehicle device 2 recognizes the end and non-end of the lane line formed on the running road surface from the extracted lane line segment (step S3). ).
- step S4 the first vehicle-mounted device 2 interpolates the point sequence between the recognized end and non-end (step S4), and then returns to step S1.
- interpolating the point sequence between the recognized end portion and the non-end portion is to interpolate the point sequence in a continuous portion between the end portion and the end portion.
- step S3 Details of step S3 will be described with reference to FIGS.
- FIG. 8 shows a case where there is no defect such as blurring on the lane marking
- FIG. 9 shows a case where there is a defect such as blurring on the lane marking.
- the intensity of the reflected wave on each of the plurality of lines L1 to L4 along the longitudinal direction of the lane marking (hereinafter referred to as “reflection intensity”).
- the method of recognizing the end part and non-end part of a lane marking based on the change of the direction along the said longitudinal direction of the above is mentioned. Note that the non-end portion is a location where the end portion cannot be detected accurately due to a defect such as blurring on the lane marking.
- the reflection intensity of the lane marking changes along the longitudinal direction, but the change is not due to the edge of the lane marking, but is recognized as a problem such as blurring. It is.
- the defect may be thin, dirty, or overlap of lines other than fading.
- the laser reflectivity is high on the road surface where the lane marking is formed, and the laser reflectivity is low on the road surface where the lane marking is not formed. Therefore, in LiDAR 23B, the reflected wave is received from the road surface on which the lane marking is formed with higher intensity than the road surface on which no lane marking is formed. Therefore, the first vehicle-mounted device 2 estimates the position of the marking line from the laser reflection intensity, and sets lines L1 to L4 along the longitudinal direction on the marking line. The reflected intensity of the laser is the intensity of the reflected wave received by the LiDAR 23B.
- the reflection intensity changes abruptly on each of the lines L1 to L4 along the longitudinal direction of the lane marking. For this reason, the end of the lane marking that is free from defects such as fading is less likely to vary when the LiDAR 41B mounted on the vehicle 6 detects the end of the lane marking, and can be used as a landmark.
- the reflection intensity gradually changes in all or part of the lines L1 to L4 along the longitudinal direction of the lane marking.
- the end of the lane marking with blur is likely to vary in the detection position when the LiDAR 41B mounted on the vehicle 6 detects the end of the lane marking, and the traveling direction of the vehicle 6 (the longitudinal direction of the lane marking) ) Is not suitable as a landmark for self-position estimation.
- the first in-vehicle device 2 recognizes the positions on the lines L1 to L4 where the reflection intensity changes rapidly as the end portions T1 of the lane markings, and the lines L1 to L4 where the reflection intensity changes gently.
- the upper position is recognized as the non-end portion T2 of the lane marking.
- the blur is uniformly generated in the left-right direction. However, the actual blur may not occur uniformly in the left-right direction, and may occur only at the upper side, the lower side, and the center of the lane marking.
- the first in-vehicle device 2 recognizes the position where the reflection intensity changes as the end T1 of the lane marking, If the change in the reflection intensity is moderate even in one of the lines, the position where the reflection intensity changes is recognized as the non-end portion T2 of the lane marking.
- the reflection intensity on all the lines L1 to L4 is low reflected on the road surface other than the lane line from the high state (simply high state) reflected on the lane line. If it changes to a state (simply a low state) and the rate of change on all the lines L1 to L4 is equal to or higher than the first threshold value, it is recognized as the end T1 of the partition line. Further, the first vehicle-mounted device 2 is divided if the reflection intensity on all the lines L1 to L4 changes from a low state to a high state and the change rate on all the lines L1 to L4 is equal to or higher than the first threshold value. Recognized as a line end T1.
- the first vehicle-mounted device 2 changes from a state in which the reflection intensity on all the lines L1 to L4 is high to a low state, and the rate of change of any one of all the lines L1 to L4 is less than the first threshold value. If so, it is recognized as a non-end portion T2 of the lane marking. Further, the first vehicle-mounted device 2 changes from the low reflection intensity state to the high state even in one of all the lines L1 to L4, and if the rate of change is less than the first threshold value, the end of the lane marking Recognized as part T2.
- the first vehicle-mounted device 2 associates the end T1 or the non-end T2 on the same partition line (the same continuous line in the case of a broken line) with respect to the recognized end T1 or the non-end T2.
- the first in-vehicle device 2 is adjacent to each other if the reflectance between the two end portions T1 adjacent to each other along the longitudinal direction is high between the two non-end portions T2 or the end portions T1 to T2.
- Two end portions T1, two non-end portions T2 or adjacent end portions T1-non-end portions T2 are stored in association with each other as being on the same partition line.
- step S3 there is a method of recognizing the end of the lane marking based on the intensity distribution of the reflected waves reflected by the reflection areas A1 to A4.
- the first vehicle-mounted device 2 estimates the position of the lane marking from the reflection intensity of the laser, and sets the reflection areas A1 to A4 along the longitudinal direction on the lane marking.
- the reflection areas A1 to A4 are areas scanned along the longitudinal direction of the partition line.
- the reflection intensity changes abruptly while maintaining a small dispersion state. That is, in the example shown in FIG. 10, the intensity distribution in the reflection area A1 formed at the end on the lane marking has a small dispersion and a high reflection intensity.
- the reflection area A2 adjacent to the reflection area A1, the reflection area A3 adjacent to the reflection area A2, and the reflection area A4 adjacent to the reflection area A3 are reflected on a road surface on which no dividing line is formed. For this reason, the intensity distribution of the reflection areas A2 to A3 is abruptly smaller than the reflection area A1 while maintaining a small dispersion state.
- the intensity distribution around the edge of the lane marking having a defect such as blurring is increased in dispersion and the reflection intensity gradually changes. That is, in the example shown in FIG. 11, the intensity distribution in the reflection area A1 formed at the end on the lane marking has a small dispersion and a high reflection intensity.
- the reflection area A2 adjacent to the reflection area A1 and the reflection area A3 adjacent to the reflection area A2 are formed in a portion where a defect such as blurring on the partition line occurs. For this reason, the intensity distribution in the reflection areas A2 and A3 has a large dispersion and the reflection intensity is smaller than that of the reflection area A1. Further, since the reflection area A4 adjacent to the reflection area A3 is reflected on the road surface where no lane marking is formed, its intensity distribution has a small dispersion and the reflection intensity is smaller than that of the reflection areas A2 and A3.
- the first vehicle-mounted device 2 recognizes the position where the reflection intensity changes while the dispersion of the intensity distribution in the reflection areas A1 to A4 is small as the end T1 of the lane marking. Further, the first vehicle-mounted device 2 recognizes the position where the reflection intensity changes without maintaining the dispersion of the intensity distribution in the reflection areas A1 to A4 as the non-end portion T2 of the lane marking.
- the first vehicle-mounted device 2 is in a high state in which the intensity of the reflection area is reflected on the lane marking while the dispersion of the intensity distribution of the reflection area is less than the second threshold (hereinafter simply high state).
- a position that changes to a low state (hereinafter simply referred to as “low state”) reflected on the road surface other than the lane marking is recognized as an end T1 of the lane marking.
- the first vehicle-mounted device 2 recognizes the position where the intensity of the reflection area changes from a low state to a high state while the variance of the intensity distribution of the reflection area is less than the second threshold as the end T2 of the lane marking.
- the first vehicle-mounted device 2 recognizes the position where the dispersion of the intensity distribution of the reflection area is equal to or greater than the second threshold value and changes from the high state to the low state as the non-end portion T2 of the lane marking. Further, the first vehicle-mounted device 2 recognizes, as the non-end portion T2 of the lane marking, a position where the dispersion of the intensity distribution of the reflection area is equal to or greater than the second threshold and the intensity of the reflection area changes from a low state to a high state.
- the first vehicle-mounted device 2 has an end T1 or a non-end on the same lane line associated with the positions of the end T1 and the non-end T2 and the recognized ends T1 and T2 of the lane line at a predetermined timing.
- Road surface information including information about T2 is transmitted to the server device 3.
- the server device 3 uses the lane line information creation process as a computer program, the road surface information acquisition program causes the computer to execute the lane line information creation method.
- the server device 3 When the server device 3 receives the road surface information including the positions of the end portions and the non-end portions of the lane markings, the information about the lane markings shown in FIG. Either non-end portion information (with a defect) or non-end portion information (without a defect) indicating that it is not an end portion is included. Specifically, as shown in FIG. 5, the server device 3 has points corresponding to the positions of the end and non-end portions of the received lane line to the points P 1 to P 14 stored as information about the lane line. If there is, end information and non-end information (with defects) are given to the point. In the example shown in FIG.
- end information is assigned to points P 1 , P 8 , and P 13 indicated by white circles, and non-end information (having a defect) is assigned to a point P 7 indicated by diagonal lines.
- continuous information indicating that the sections continuously exist may be assigned to the corresponding point information. That is, continuous information may be given to point information that is not an end, and continuous information may not be given to point information that is assumed to be an end. Note that point information that is not an end indicates non-end portion information (with a defect) and non-end portion information (without a defect).
- the server device 3 determines the information about the lane line if the points P 1 to P 14 stored as the information about the lane line do not have points corresponding to the positions of the end and non-end portions of the received lane line. In addition, points corresponding to the positions of the end and non-end portions of the lane marking are added, and end information and non-end information (with defects) are added to the points. In the example shown in FIG. 5, points P 15 , P 16 , and P 18 to which edge information indicated by white circles are added are added, and a point P 17 to which non-edge information (having a defect) indicated by diagonal lines is added. It is done.
- the server apparatus 3 provides non-end part information (no defect) to a point between the end part and the non-end part on the same partition line.
- non-end portion information is given to points P 2 to P 6 , P 9 , P 11 , and P 14 indicated by black circles.
- the server device 3 executes the driving support process to implement the current position estimation method.
- the 2nd vehicle equipment 4 acquires point cloud information from LiDAR41B (step S10).
- the second vehicle-mounted device 4 performs object detection from the point cloud information and also detects the end of the lane marking based on the point cloud information from the LiDAR 41B (step S11).
- the second in-vehicle device 4 executes a so-called object recognition process based on the point cloud information, thereby detecting an object and recognizing its type (building, pedestrian, other vehicle, etc.). As a result, the type of object and the distance to the object can be recognized around the vehicle. Moreover, the 2nd vehicle equipment 4 detects the edge part of a division line using the determination method similar to the 1st vehicle equipment 2, and recognizes the distance to an edge part.
- the second in-vehicle device 4 communicates with the server device 3 to acquire map information around the current position detected by a signal from the GPS receiver 41A (step S12). Thereafter, the second vehicle-mounted device 4 estimates the current position using the recognized object or the end of the lane marking as a landmark (step S13). That is, in step S13, the second vehicle-mounted device 4 estimates the current position based on the positional relationship between the position information of the feature included in the map information and the position of the object recognized in step S10. Further, the current position is estimated by comparing the positional relationship between the information about the lane line included in the map information and the position of the end of the lane line recognized in step S11.
- step S14 the second in-vehicle device 4 performs driving support based on the estimated current position (step S14), and returns to step S10 again.
- the laser transmitted to the road surface receives the reflected wave reflected by the road surface, and recognizes the end of the lane marking formed on the road surface based on the intensity of the reflected wave. Yes. Thereby, the edge part of a division line can be recognized accurately.
- the end of the recognized lane marking can be used as a landmark and used for estimation of the current position, the position estimation accuracy in the moving direction of the vehicle 6 can be improved.
- the laser is transmitted from the LiDAR 23B arranged in the measurement vehicle 5.
- the LiDAR 23B mounted on the measurement vehicle 5, it is possible to easily recognize the end portions of a wide range of lane markings.
- the end of the lane marking is recognized based on the change in the reflection intensity on the lines L1 to L4 along the longitudinal direction of the lane marking. Therefore, the recognition precision of the edge part of a division line can be aimed at.
- the end of the partition line is recognized based on the change in the reflection intensity along the longitudinal direction on the plurality of lines L1 to L4 arranged in the direction perpendicular to the longitudinal direction. .
- the recognition accuracy of the end of the lane marking can be further improved.
- the position where the intensity of the reflected wave changes along the longitudinal direction on all the lines L1 to L4 and the rate of change is equal to or higher than the first threshold is set to the end of the partition line. It is recognized as. As a result, a location where the end cannot be accurately recognized due to a problem such as blurring is not recognized as the end of the lane marking.
- the intensity of the reflected wave changes along the longitudinal direction on all the lines L1 to L4, and the change rate is less than the first threshold at the end of the lane marking. Not recognized as non-end. As a result, it is possible to recognize as a non-end portion of the lane marking a portion where the end portion cannot be accurately recognized due to a problem such as fading.
- the edge of the partition line is recognized based on the intensity distribution of the reflected wave in the reflection areas A1 to A4 scanned along the longitudinal direction of the partition line.
- the recognition precision of the edge part of a division line can be aimed at.
- the position where the intensity of the reflected wave changes while the dispersion of the intensity distribution of the reflected wave is less than the second threshold is recognized as the end of the lane marking.
- the position where the dispersion of the intensity distribution of the reflected wave is equal to or higher than the second threshold and the intensity of the reflected wave changes is recognized as a non-end portion of the lane marking.
- the information about the lane markings included in the map information includes the edge information indicating the edge of the lane marking, and the non-edge information indicating that the lane marking is included in the lane marking. And.
- the edge part of a lane marking can be used as a landmark and can be used for estimation of the current position, the position estimation accuracy in the moving direction of the vehicle 6 can be improved.
- the information about the lane markings included in the map information is point information indicating the latitude and longitude on the lane markings, and is given to the edge information and the non-edge information. Thereby, end part information and non-end part information can be easily given.
- the non-end portion information includes non-end portion information (no defect) indicating that there is no defect on the lane line, and non-end information indicating that there is a defect on the lane line.
- the part information (with defects) is given to be identifiable. Thereby, since it is possible not to use a portion having a defect on the lane marking as a landmark, it is possible to further improve the position estimation accuracy in the moving direction of the vehicle 6.
- the 2nd vehicle equipment 2 acquires the edge part information which shows the edge part of the lane marking from the server apparatus 3 which is an external device, and the road surface recognized by LiDAR41B arrange
- the current position of the vehicle 6 is estimated based on the information indicating the end of the upper lane marking and the acquired end information. Thereby, the position estimation accuracy in the moving direction of the vehicle 6 can be improved.
- the end information and the non-end information are added to the points constituting the information about the lane markings already stored in the storage unit 31 of the server device 3, but this is not the only case. It is not a thing.
- the server device 3 may newly create information about the lane marking based on the road surface information received from the first in-vehicle device 2. In this case, for example, when the server apparatus 3 receives road surface information including the positions of the end portions and the non-end portions of the lane markings, the server device 3 creates information about the lane markings as shown in FIG.
- the server apparatus 3 gives edge information to the points P 20 , P 27 , P 30 , P 31 , P 34 , and P 37 indicating the position of the edge received from the first in-vehicle device 2. Moreover, the server apparatus 3 gives non-end part information (with a defect) to the points P 26 and P 33 indicating the position of the non-end part received from the first in-vehicle device 2.
- the server device 3 is configured such that the point P 20 -P 26 , the point P 27 -P 30 , the point P 31 -the point P 33 , the point P corresponding to the end part and the non-end part on the same division line 34 - the point P P 21 points evenly spaced along the partition line between 37 ⁇ P 25, the point P 28 ⁇ P 29, the point P 32, grant points P 35 ⁇ P 36, the point P 21 ⁇ Non-end portion information (no defect) is assigned to P 25 , points P 28 to P 29 , point P 32 , and points P 35 to P 36 .
- the server apparatus 3 has divisions continuously at points other than the points P 20 , P 27 , P 30 , P 31 , P 34 , and P 37 indicating the position of the end portion received from the first in-vehicle device 2. Continuous information (in other words, information indicating that it is not an end) may be given.
- the server device 3 the information about the broken line, the point P 28 ⁇ P 29, the point P 32, grant points P 35 ⁇ P 36, the point P 28 ⁇ P 29
- the point P 32 and the points P 35 to P 36 are provided with non-end portion information (no defect), but the present invention is not limited to this.
- the first in-vehicle device 2 is mounted on the measurement vehicle 6 dedicated to measurement
- the second in-vehicle device 4 is mounted on the vehicle 6 that receives driving assistance.
- the present invention is not limited to this.
- the functions of both the first in-vehicle device 2 and the second in-vehicle device 4 may be given to the in-vehicle device 4 mounted on the vehicle 6 that receives driving assistance.
- the first vehicle-mounted device 2 recognizes the end portion and the non-end portion.
- the 1st vehicle equipment 2 may transmit only point group information to the server apparatus 3, and the server apparatus 3 may make it recognize an edge part and a non-end part.
- the non-end portion information (with a defect) and the non-end portion information (without a defect) can be identified as non-end portion information.
- the present invention is not limited to this.
- the non-end portion information may be given to distinguish between the defective portion and the non-defective portion.
- the end where a defect such as fading has occurred is recognized as a non-end, but the present invention is not limited to this. You may make it recognize as an edge part, even if malfunctions, such as a blur, have arisen.
- the server device 3 adds edge information and non-edge information to the information about the lane markings, but the present invention is not limited to this.
- an operator of the map maker may manually add end information and non-end information by looking at the road surface information transmitted from the first in-vehicle device 2.
- the map information including information about the lane markings is stored and held in the server 3 (storage unit 31).
- the in-vehicle device 2 and the second in-vehicle device 4 can also store / hold at least a part of the map information.
- the process which provides the edge part information and the non-edge part information described above may be performed on the measurement vehicle side (first in-vehicle device 2).
- the server device 3 performs the map information generation processing including the above-described recognition processing of the end and non-end of the lane marking (step S3 in FIG. 7) and the processing of adding end information or non-end information. It is good also as implementing, and good also as implementing on the measurement vehicle side (1st vehicle equipment 2).
- the sensor unit 23 mounted on the first in-vehicle device 2 includes the LiDAR 23B as an example.
- the sensor unit 23 mounted on the first vehicle-mounted device may include an imaging unit 23 ⁇ / b> C that captures a road surface on which the measurement vehicle 5 travels.
- the control unit 21 of the first vehicle-mounted device 2 acquires the road surface image captured by the imaging unit 23C from the imaging unit 23C, and is formed on the road surface based on the luminance information of the acquired image. Recognize the end of a lane marking.
- the photographing unit 23C is configured by, for example, a stereo camera that can detect the distance to an object to be photographed.
- the first vehicle-mounted device 2 replaces or adds to “acquire point cloud information” in step S1 when executing the road surface information acquisition process illustrated in FIG. Then, an image of the road surface photographed by the photographing unit 23C is acquired from the photographing unit 23C. Then, similarly to step S3, after recognizing the end and non-end of the lane marking formed on the running road surface from the acquired image (step S3), the process returns to step S1. More specifically, in step S3, the first vehicle-mounted device (the control unit 21) converts the acquired captured image into an ortho image, and uses the luminance information of the ortho image and the end of the partition line (white line). Recognize non-ends.
- the imaging unit 23C is configured with a monocular camera, an image of a road surface imaged by the monocular camera is acquired, and the image is associated with the point cloud information acquired from the LiDAR 23B. Also good.
- the point cloud information acquired from the LiDAR 23B in other words, 3D information as it is
- the portion of the road surface where the lane marking is formed in the photographed image has high luminance
- the portion of the road surface where the lane marking is not formed has low luminance.
- the luminance intensity abruptly changes on each of the lines L1 to L4 along the longitudinal direction of the lane markings in the captured image.
- the reflection intensity gradually changes on each of the lines L1 to L4 along the longitudinal direction of the lane marking in the captured image.
- the first vehicle-mounted device 2 sets lines L1 to L4 along the longitudinal direction of the lane markings on the captured image, and based on the result of detecting and recognizing the luminance change along this, Similar to the above-described embodiment, the end and non-end of the partition line (white line) can be recognized.
- the “luminance information” of the lane markings in the captured image of this modification can be handled in the same way as the “reflection intensity” of the lane markings of the above-described embodiments.
- the “reflection intensity” in FIGS. 8 to 11 can be appropriately replaced with “luminance” in the captured image.
- the sensor unit 41 mounted on the second in-vehicle device 4 includes the LiDAR 41B as an example.
- the second in-vehicle device 4 is used instead of or in addition to this.
- the sensor unit 41 mounted on the vehicle may include a photographing unit 41C that photographs a road surface on which the vehicle 6 travels. That is, by the above-described method, the second vehicle-mounted device 4 may recognize the end of the lane marking from the captured image, and may execute the driving support process illustrated in FIG.
- First in-vehicle device (road surface information acquisition device) 3 Server device (external device, lane marking information creation device) 5 Vehicle (moving body) 6 Measuring vehicle (moving body) 23B LiDAR (sensor, transmitter, receiver) 31 Storage unit (storage device) 41B LiDAR (sensor) L1 to L4 line A1 to A4 Reflection area
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Traffic Control Systems (AREA)
Abstract
移動体の移動方向の位置推定精度の向上を図った路面情報取得方法を提供する。計測車両(5)に搭載された第1車載機(2)は、LiDAR(23B)を有している。第1車載機(2)は、路面に対して送信されたレーザが当該路面により反射された反射波を受信し、反射波の強度に基づき、路面に形成された区画線の端部を認識する。第1車載機(2)は、移認識した区画線の端部を含む路面情報を、ネットワーク(N)を介してサーバ装置(3)に送信する。サーバ装置(3)は、路面情報に基づいて地図情報に含まれる区画線についての情報に、当該区画線の端部を示す端部情報と、非端部情報(不具合あり)と、非端部情報(不具合なし)とを付与する。車両(6)に搭載された第2車載機は、サーバ装置(3)から区画線についての情報を取得し、LiDAR(41B)によって認識された区画線の端部と、サーバ装置(3)から取得した区画線の端部を示す情報とを比較して、現在位置を推定する。
Description
本発明は、路面情報取得方法に関する。
自動運転車両では、LiDAR(Light Detection and Ranging)などのセンサで計測した地物位置と、自動運転用の地図情報の地物位置と、をマッチングして高精度に現在位置を推定する必要がある。特許文献1は、LiDARを用いて検出したランドマークとしての地物の位置と、地図情報の地物とを用いて現在位置を推定する手法の一例が記載されている。
また、特許文献2には、LiDARを用いて白線を検出し、車両に対する白線の横方向の相対位置または白線に対して車両が向いている方向を高精度に検出することが記載されている。
上述のように、LiDAR等のセンサを用いて白線等の区画線を検出し、車両の現在位置を推定する際には、精度良く白線等の区画線を検出する必要があり、特許文献2に記載の検出方法には改善の余地がある。
本発明は、このような問題点に対処することを課題の一例とするものである。即ち、本発明は、例えば、区画線の検出(認識)精度の向上を図った路面情報取得方法を提供することを目的としている。
上述した課題を解決するためになされた請求項1記載の路面情報取得方法は、路面に対して送信された電磁波が当該路面により反射された反射波を受信し、前記反射波の強度に基づき、前記路面に形成された区画線の端部を認識することを特徴とする。
請求項10記載の路面情報取得装置は、路面に対して電磁波を送信可能な送信部と、前記送信された電磁波が前記路面により反射された反射波を受信可能な受信部と、前記反射波の強度に基づき、前記路面に形成された区画線の端部を認識する認識部と、を備えることを特徴とする。
請求項11記載の路面情報取得プログラムは、路面に対して送信された電磁波が前記路面により反射されて受信された反射波の強度に基づき、前記路面に形成された区画線の端部を認識する認識部として、コンピュータを機能させることを特徴とする。
請求項12記載の記録媒体は、請求項11に記載の路面情報取得プログラムを記録したことを特徴とする。
請求項13記載の路面情報取得装置は、撮影部によって撮影された路面の画像を取得する取得部と、前記取得した画像の輝度情報に基づいて、前記路面に形成された区画線の端部を認識する認識部と、を備えることを特徴とする。
以下、本発明の一実施形態にかかる路面情報取得方法を説明する。本発明の一実施形態にかかる路面情報取得方法は、路面に対して送信された電磁波が当該路面により反射された反射波を受信し、前記反射波の強度に基づき、前記路面に形成された区画線の端部を認識することを特徴とする。これにより、精度良く区画線の端部を認識することができる。また、当該認識した区画線の端部をランドマークとして用い、現在位置の推定に利用することができるため、移動体の移動方向の位置推定精度の向上をも図ることができる。
また、移動体に配置されたセンサから前記電磁波が送信されるようにしてもよい。移動体にセンサを搭載することにより、容易に広範囲の区画線の端部を認識することができる。
また、前記区画線の長手方向に沿った前記反射波の強度の変化に基づいて前記区画線の端部を認識してもよい。これにより、区画線の端部の認識精度の向上を図ることができる。
また、前記区画線の長手方向に対して垂直方向に並ぶ複数のライン上における、前記反射波の強度の前記長手方向に沿った変化に基づいて、前記区画線の端部を認識してもよい。これにより、より一層、区画線の端部の認識精度の向上を図ることができる。
また、全ての前記ライン上において前記反射波の強度が前記長手方向に沿って変化し、かつ、その変化率が第1閾値以上となる位置を前記区画線の端部として認識してもよい。これにより、かすれなどの不具合が生じて端部が精度よく認識できない箇所を区画線の端部として認識することがない。
また、全ての前記ライン上において前記反射波の強度が前記長手方向に沿って変化し、かつ、その変化率が前記第1閾値未満の位置を前記区画線の端部ではない非端部として認識してもよい。これにより、かすれなどの不具合が生じて端部が精度よく認識できない箇所を区画線の非端部として認識することができる。
また、前記区画線の長手方向に沿って走査される反射エリア内での前記反射波の強度分布に基づいて前記区画線の端部を認識してもよい。これにより、区画線の端部の認識精度の向上を図ることができる。
また、前記反射波の強度分布の分散が第2閾値未満の状態を保ったまま前記反射波の強度が変化する位置を前記区画線の端部として認識してもよい。これにより、かすれなどの不具合が生じて端部が精度よく認識できない箇所を区画線の端部として認識することがない。
また、前記反射波の強度分布の分散が前記第2閾値以上の状態となり前記反射波の強度が変化する位置を前記区画線の非端部として認識してもよい。これにより、かすれなどの不具合が生じて端部が精度よく認識できない箇所を区画線の非端部として認識することができる。
また、本発明の一実施形態にかかる路面情報取得装置は、路面に対して電磁波を送信可能な送信部と、前記送信された電磁波が前記路面により反射された反射波を受信可能な受信部と、前記反射波の強度に基づき、前記路面に形成された区画線の端部を認識する認識部と、を備えることを特徴とする。これにより、精度良く区画線の端部を認識することができる。また、当該認識した区画線の端部をランドマークとして用い、現在位置の推定に利用することができるため、移動体の移動方向の位置推定精度の向上をも図ることができる。
また、上述した路面情報取得方法をコンピュータにより実行させる路面情報取得プログラムとしてもよい。このようにコンピュータにより実行されるプログラムであるので、専用のハードウェア等が不要となり、汎用の情報処理装置にインストールして機能させることができる。
また、上述した路面情報取得プログラムをコンピュータ読み取り可能な記録媒体に格納してもよい。このようにすることにより、当該プログラムを機器に組み込む以外に単体でも流通させることができ、バージョンアップ等も容易に行える。
また、本発明の一実施形態にかかる路面情報取得装置は、撮影部によって撮影された路面の画像を取得する取得部と、前記取得した画像の輝度情報に基づいて、前記路面に形成された区画線の端部を認識する認識部と、を備えることを特徴とする。これにより、精度良く区画線の端部を認識することができる。また、当該認識した区画線の端部をランドマークとして用い、現在位置の推定に利用することができるため、移動体の移動方向の位置推定精度の向上をも図ることができる。
以下、本発明の路面情報取得方法、区画線情報作成方法、現在位置推定方法を実施する運転支援システムについて図1~図6を参照して説明する。
運転支援システム1は、路面情報取得装置としての第1車載機2と、外部装置、区画線情報作成装置としてのサーバ装置3と、第2車載機4と、を備えている。第1車載機2は、路面情報を取得して、サーバ装置3に送信する機器であり、例えば、地図情報を作成することを目的として、計測車両5に搭載されている。なお、計測車両5は、道路上を走行する移動体である。サーバ装置3は、第1車載機2からの路面情報を取得して、地図情報を作成する。サーバ装置3は、例えば、インターネット等のネットワークNを介して第1車載機2と通信可能になっており、当該ネットワークNを利用して、第1車載機2から路面情報を取得する。なお、サーバ装置3の路面情報の取得については、上述の形態に限定されず、例えば、ネットワークNを利用せずに、オペレータ等が手動で第1車載機2からサーバ装置3に路面情報を移動させるようにしてもよい。以降の説明では、第1車載機2及び第2車載機4と、サーバ装置3との情報の授受は、ネットワークNを介して送受信するものとして説明するが、上述の通りいずれについても本形態に限定されるものではなく、情報の授受はオペレータの手動によるものであってもよい。
第2車載機4は、ネットワークNを介してサーバ装置3と通信可能になっている。第2車載機4は、サーバ装置3から地図情報を受信して、運転支援を行う機器であり、例えば、車両6に搭載されている。なお、車両6は、運転支援を受ける移動体である。また、本実施例では、サーバ装置3と通信可能な端末として車両5、6に搭載された第1、第2車載機2、4を例に挙げて説明するが、スマートフォンなど、移動体に配置可能な携帯端末であってもよい。なお、第2車載機4の地図情報の受信については、上述の形態に限定されず、例えば、ネットワークNを利用せずに、オペレータ等が手動でサーバ装置3から第2車載機4に地図情報を移動させるようにしてもよい。
第1車載機2の機能的構成を図2に示す。第1車載機2は、制御部21と、入出力部22と、センサ部23と、を備えている。
制御部21は、第1車載機2のCPU(Central Processing Unit)等のプロセッサが機能し、第1車載機2の全体制御を司る。制御部21は、後述するLiDAR23Bを用いて、区画線の端部などを認識し、路面情報としてサーバ装置3に送信する。制御部21は、路面情報以外の周辺情報を取得して、サーバ装置3に送信してもよい。なお、区画線は、路面に形成された白線、黄線などである。
入出力部22は、第1車載機2のネットワークインタフェース等が機能し、路面情報を送信する。
センサ部23は、GPS(Global Positioning System)受信機23A、LiDAR23B等を含む。なお、本実施例では、センサ部23は、電磁波を送信可能なセンサの一例として、LiDAR23Bを含むものとしている。また、LiDAR23Bは、送信部、受信部とする。GPS受信機23Aは、計測車両5の現在位置情報を検出する。GPS受信機23Aは、公知であるように複数のGPS衛星から発振される電波を定期的に受信して、現在の位置情報及び時刻を求めて制御部21に出力する。
LiDAR23Bは、所定の検知領域において出力方向を変えながらパルス状のレーザを出力し、そのレーザの反射波を受信して点群情報を生成する。LiDAR23Bは、検知領域内に複数パルスのレーザを出力し、この複数パルスのレーザの反射波に基づいて点群情報を生成する。点群情報を構成するそれぞれの情報は、レーザの出力方向と、当該レーザを反射した対象物までの距離と、反射波の強度と、を示す情報である。本実施例では、LiDAR23Bは、レーザを路面に向けて照射し、路面を検知領域としている。このため、点群情報は、対象物としての路面までの距離を示す情報となる。なお、LiDAR23Bは、路面以外にレーザを出射して、路面情報以外の周辺情報を取得するようにしてもよい。
サーバ装置3は、地図情報を提供する事務所などに設置されている。
サーバ装置3の機能的構成を図3に示す。サーバ装置3は、記憶装置としての記憶部31と、制御部32と、入出力部33と、を備えている。
記憶部31は、サーバ装置3のハードディスク等の記憶装置が機能し、地図情報が記憶されている。本実施例では、地図情報には既に、区画線についての情報が含まれているものとする。区画線についての情報は、図4を用いて説明する。図4に示す例では、区画線を示す点情報P1、…、P14から構成される。また、点情報P1、…P14には、それぞれ位置情報(緯度、経度)が付与されている。
制御部32は、サーバ装置3のCPU等のプロセッサが機能し、サーバ装置3の全体制御を司る。制御部32は、第1車載機2から送信される区画線の端部などの路面情報に基づいて、図5に示すように、点情報P1、…、P14のうち、端点であると認識されるもの(図中白丸で示す)に区画線の端部を示す端部情報の付与などを行う。このように地図情報に含まれる区画線についての情報に上述の端部情報が付与されることで、当該地図情報を受信した第2車載機4は、当該区画線についての情報から区画線の端部を認識することが可能となる。
入出力部33は、サーバ装置3のネットワークインタフェース等が機能し、第1車載機2からの路面情報を受信すると共に、第2車載機4へ地図情報を送信する。
第2車載機4の機能的構成を図6に示す。第2車載機4は、センサ部41と、制御部42と、入出力部43と、を備えている。
センサ部41は、GPS受信機41A、LiDAR41B等を含む。GPS受信機41Aは上述した第1車載機2のGPS受信機23Aと、LiDAR41Bは第1車載機2のLiDAR23Bと、同様の機能を有する機器であるため、ここでは詳細な説明を省略する。
制御部42は、第2車載機4のCPU等のプロセッサが機能し、第2車載機4の全体制御を司る。制御部42は、センサ部41から得た情報や、サーバ装置3から得た地図情報を用いて運転支援を行う。ここで、運転支援とは、ハンドル、アクセル、ブレーキなどの制御や運転に関する情報の提示などを意味する。なお、以下では、説明を簡単にするために、走行支援として自動運転制御を行っているとして説明する。制御部42は、自動運転制御を行うために自車両の現在位置を推定する必要がある。本実施例では、制御部42は、LiDAR41Bを用いて認識した区画線の端部を示す情報と、サーバ装置3から得た地図情報に含まれる区画線の端部情報と、に基づいて現在位置を推定している。
入出力部43は、第2車載機4のネットワークインタフェース等が機能し、地図情報を受信する。
次に、本実施例における運転支援システム1の動作について説明する。まず、第1車載機2の制御部21(以下、単に第1車載機2)が実行する路面情報取得処理について図7を参照して以下説明する。第1車載機2が、図7に示すフローチャートをコンピュータプログラムとすることで、路面情報取得方法をコンピュータにより実行させる路面情報取得プログラムとなる。
第1車載機2は、走行中に路面情報取得処理を実行する。路面情報取得処理において、第1車載機2は、LiDAR23Bを制御して、上述した走行中の路面に関する点群情報を取得する(ステップS1)。次に、第1車載機2は、点群情報を基に、区画線セグメントを抽出する。具体的には、取得した点群情報に基づいて点群のオルソ画像を生成する。そして、当該オルソ画像について画像処理を行い、例えば線分(直線)等を検出する。そして、検出した線分(直線)等のグルーピングを行い、一つの区画線の輪郭を形成する区画線セグメントを抽出する(ステップS2)。なお、図8におけるKSが区画線セグメントの一例である。次に、第1車載機2は、図8及び図9に示すように、抽出された区画線セグメントから走行中の路面に形成された区画線の端部、非端部を認識する(ステップS3)。次に、第1車載機2は、当該認識した端部及び非端部間の点列を内挿した後(ステップS4)、ステップS1に戻る。なお、当該認識した端部及び非端部間の点列を内挿することは、端部と端部の間の連続部分に点列を内挿することである。
ステップS3の詳細について、図8及び図9を用いて説明する。図8は、区画線にかすれ等の不具合がない場合を示しており、図9は、区画線にかすれ等の不具合がある場合を示している。ステップS3の一例としては、図8及び図9に示すように、区画線の長手方向に沿った複数のラインL1~L4上のそれぞれにおける、反射波の強度(以下、「反射強度」と言う)の前記長手方向に沿った方向の変化に基づいて区画線の端部、非端部を認識する方法が挙げられる。なお、非端部は、区画線上にかすれなどの不具合があり精度よく端部を検知できない箇所である。言い換えれば、非端部は、区画線の反射強度が長手方向に沿って変化しているが、当該変化が区画線の端部であるためではなく、かすれ等の不具合によるものと認識される個所である。なお、不具合は、かすれ以外に細り、汚れ、線の重なりなども考えられる。
区画線が形成されている路面でのレーザの反射率は高く、区画線が形成されていない路面のレーザの反射率は低い。したがって、LiDAR23Bでは、区画線が形成されている路面からは、区画線が形成されていない路面よりも高い強度で反射波が受信されることとなる。そこで、第1車載機2は、レーザの反射強度から区画線の位置を推定して、区画線上の長手方向に沿ったラインL1~L4を設定する。なお、レーザの反射強度は、LiDAR23Bが受信する反射波の強度である。
また、図8に示すように、かすれなどの不具合がない区画線の端部では、区画線の長手方向に沿ったラインL1~L4上のそれぞれにおいて反射強度が急激に変化する。このため、かすれなどの不具合がない区画線の端部は、車両6に搭載されたLiDAR41Bが区画線の端部を検出する際のばらつきが少なく、ランドマークとして用いることができる。
一方、図9に示すように、かすれがある区画線の端部では、区画線の長手方向に沿ったラインL1~L4上の全て又は一部で反射強度が緩やかに変化する。このため、かすれがある区画線の端部は、車両6に搭載されたLiDAR41Bが区画線の端部を検出する際に検出位置にばらつきが生じやすく、車両6の進行方向(区画線の長手方向)の自己位置推定のランドマークとして用いるのは適切ではない。
そこで、本実施例では、第1車載機2は、反射強度の変化が急激なラインL1~L4上の位置を区画線の端部T1として認識し、反射強度の変化が緩やかなラインL1~L4上の位置を区画線の非端部T2として認識する。また、図9においては、かすれは左右方向に均一に生じている。しかしながら、実際のかすれは、左右方向に均一に生じないこともあり、区画線の上側だけ、下側だけ、中央だけに生じることもある。そこで、本実施例では、第1車載機2は、全てのラインL1~L4において反射強度の変化が急激であれば、その反射強度が変化する位置を区画線の端部T1として認識し、全てのラインのうち1つでも反射強度の変化が緩やかであれば、その反射強度が変化する位置を区画線の非端部T2として認識する。
具体的な処理としては、第1車載機2は、全てのラインL1~L4上の反射強度が区画線上で反射された高い状態(単に、高い状態)から区画線以外の路面で反射された低い状態(単に、低い状態)に変化し、かつ、全てのラインL1~L4上の変化率が第1閾値以上であれば区画線の端部T1として認識する。また、第1車載機2は、全てのラインL1~L4上の反射強度が低い状態から高い状態に変化し、かつ、全てのラインL1~L4上の変化率が第1閾値以上であれば区画線の端部T1として認識する。
また、第1車載機2は、全てのラインL1~L4上の反射強度が高い状態から低い状態に変化し、かつ、全てのラインL1~L4のうち1つでもその変化率が第1閾値未満であれば区画線の非端部T2として認識する。また、第1車載機2は、全てのラインL1~L4のうち1つでも反射強度が低い状態から高い状態に変化し、かつ、その変化率が第1閾値未満であれば区画線の非端部T2として認識する。
また、第1車載機2は、認識した端部T1又は非端部T2について、同じ区画線(破線の場合は同じ連続線)上の端部T1又は非端部T2を関連付ける。詳しくは、第1車載機2は、長手方向に沿って隣り合う2つの端部T1間、2つの非端部T2間又は端部T1-非端部T2間の反射率が高ければ、隣り合う2つの端部T1、2つの非端部T2又は隣り合う端部T1-非端部T2を同じ区画線上にあるものとして、関連付けて記憶する。
また、ステップS3の他の一例としては、図10及び図11に示すように、反射エリアA1~A4で反射された反射波の強度分布に基づいて区画線の端部を認識する方法が挙げられる。第1車載機2は、レーザの反射強度から区画線の位置を推定して、区画線上の長手方向に沿った反射エリアA1~A4を設定する。なお、反射エリアA1~A4は、区画線の長手方向に沿って走査されるエリアである。
図10に示すように、かすれなどの不具合がない区画線の端部周辺の強度分布は、分散が小さい状態を保ったまま反射強度が急激に変化する。即ち、図10に示す例では、区画線上の端部に形成された反射エリアA1における強度分布は、分散が小さく反射強度が大きい。この反射エリアA1と隣接する反射エリアA2、反射エリアA2に隣接する反射エリアA3、反射エリアA3に隣接する反射エリアA4は、区画線が形成されていない路面上で反射される。このため、反射エリアA2~A3の強度分布は、分散が小さい状態を保ったまま反射エリアA1よりも反射強度が急激に小さくなる。
一方、図11に示すように、かすれなどの不具合がある区画線の端部周辺の強度分布は、分散が大きくなって反射強度が徐々に変化する。即ち、図11に示す例では、区画線上の端部に形成された反射エリアA1における強度分布は、分散が小さく反射強度が大きい。この反射エリアA1に隣接する反射エリアA2、反射エリアA2に隣接する反射エリアA3は、区画線上のかすれなどの不具合が生じている部分に形成されている。このため、反射エリアA2、A3における強度分布は、分散が大きく反射強度は反射エリアA1よりも小さくなる。さらに、反射エリアA3と隣接する反射エリアA4は、区画線が形成されていない路面上で反射されるためその強度分布は分散が小さく反射強度は反射エリアA2、A3よりも小さい。
そこで、本実施例では、第1車載機2は、反射エリアA1~A4の強度分布の分散が小さい状態を保ったまま反射強度が変化する位置を区画線の端部T1として認識する。また、第1車載機2は、反射エリアA1~A4の強度分布の分散が小さい状態を保てずに反射強度が変化する位置を区画線の非端部T2として認識する。
具体的な処理としては、第1車載機2は、反射エリアの強度分布の分散が第2閾値未満の状態のまま反射エリアの強度が区画線上で反射された高い状態(以下、単に高い状態)から区画線以外の路面で反射された低い状態(以下、単に低い状態)に変化する位置を区画線の端部T1として認識する。また、第1車載機2は、反射エリアの強度分布の分散が第2閾値未満の状態のまま反射エリアの強度が低い状態から高い状態に変化する位置を区画線の端部T2として認識する。
また、第1車載機2は、反射エリアの強度分布の分散が第2閾値以上になり反射エリアの強度が高い状態から低い状態に変化する位置を区画線の非端部T2として認識する。また、第1車載機2は、反射エリアの強度分布の分散が第2閾値以上になり反射エリアの強度が低い状態から高い状態に変化する位置を区画線の非端部T2として認識する。
第1車載機2は、所定のタイミングで、区画線の端部T1、非端部T2の位置、認識した端部T1、T2に関連付けられた同一の区画線上にある端部T1又は非端部T2についての情報、を含む路面情報をサーバ装置3に送信する。
次に、サーバ装置3の制御部32(以下、単にサーバ装置3)が行う区画線情報作成処理について図5及び図6を参照して説明する。サーバ装置3が、区画線情報作成処理をコンピュータプログラムとすることで、区画線情報作成方法をコンピュータにより実行させる路面情報取得プログラムとなる。
サーバ装置3は、区画線の端部、非端部の位置を含む路面情報を受信すると、図4に示す区画線についての情報に、区画線の端部を示す端部情報と、区画線に含まれ端部でないことを示す非端部情報(不具合あり)、非端部情報(不具合なし)と、のいずれかを付与する。詳しくは、図5に示すように、サーバ装置3は、区画線についての情報として記憶された点P1~P14に、受信した区画線の端部、非端部の位置に対応する点があれば、その点に端部情報、非端部情報(不具合あり)を付与する。図5に示す例では、白丸で示す点P1、P8、P13に端部情報が付与され、斜線で示す点P7に非端部情報(不具合あり)が付与される。なお、上述のように区画線の端部を示す端部情報と、区画線に含まれ端部でないことを示す非端部情報(不具合あり)、非端部情報(不具合なし)と、のいずれかを付与することに代えて、区画が連続して存在していることを示す連続情報を該当する点情報に付与するようにしてもよい。すなわち、端部ではないとされる点情報に連続情報を付与し、端部であるとされる点情報には連続情報を付与しないようにしてもよい。なお、端部ではないとされる点情報は、非端部情報(不具合あり)及び非端部情報(不具合なし)を示す。
また、サーバ装置3は、区画線についての情報として記憶された点P1~P14に、受信した区画線の端部、非端部の位置に対応する点がなければ、区画線についての情報に区画線の端部、非端部の位置に対応する点を加え、さらにその点に端部情報、非端部情報(不具合あり)を付与する。図5に示す例では、白丸で示す端部情報が付与された点P15、P16、P18が加えられ、斜線で示す非端部情報(不具合あり)が付与された点P17が加えられる。
また、サーバ装置3は、同一の区画線上にある端部、非端部間の点に、非端部情報(不具合なし)を付与する。図5に示す例では、黒丸で示す点P2~P6、P9、P11、P14に非端部情報(不具合なし)が付与される。
次に、第2車載機4が行う運転支援処理について図12のフローチャートを参照して説明する。この運転支援処理をサーバ装置3が、実行することにより現在位置推定方法を実施する。まず、第2車載機4は、LiDAR41Bから点群情報を取得する(ステップS10)。次に、第2車載機4は、点群情報から物体検知を行うと共に、LiDAR41Bからの点群情報に基づいて区画線の端部を検知する(ステップS11)。
具体的には、第2車載機4は、点群情報に基づいて所謂オブジェクト認識処理を実行することで、物体を検知し、その種類(建物か歩行者か他車両かなど)を認識する。これにより、車両周辺に物体の種類とその物体までの距離を認識することができる。また、第2車載機4は、第1車載機2と同様の判定方法を用いて、区画線の端部を検知し、端部までの距離を認識する。
次に、第2車載機4は、サーバ装置3と通信して、GPS受信機41Aからの信号により検出された現在位置周辺の地図情報を取得する(ステップS12)。その後、第2車載機4は、認識した物体や区画線の端部をランドマークとして現在位置を推定する(ステップS13)。即ち、ステップS13において、第2車載機4は、地図情報に含まれる地物の位置情報とステップS10で認識した物体の位置との位置関係に基づいて現在位置を推定する。また、地図情報に含まれる区画線についての情報とステップS11で認識した区画線の端部の位置との位置関係を比較して、現在位置を推定する。
その後、第2車載機4は、推定した現在位置に基づいて運転支援を実行して(ステップS14)、再びステップS10に戻る。
上述した実施例によれば、路面に対して送信されたレーザが当該路面により反射された反射波を受信し、反射波の強度に基づき、路面に形成された区画線の端部を認識している。これにより、精度良く区画線の端部を認識することができる。また、当該認識した区画線の端部をランドマークとして用い、現在位置の推定に利用することができるため、車両6の移動方向の位置推定精度の向上をも図ることができる。
また、上述した実施例によれば、計測車両5に配置されたLiDAR23Bからレーザが送信されている。このように、計測車両5にLiDAR23Bを搭載することにより、容易に広範囲の区画線の端部を認識することができる。
また、上述した実施例によれば、区画線の長手方向に沿ったラインL1~L4上における反射強度の変化に基づいて区画線の端部を認識している。これにより、区画線の端部の認識精度の向上を図ることができる。
また、上述した実施例によれば、長手方向に対して垂直方向に並ぶ複数のラインL1~L4上における、反射強度の長手方向に沿った変化に基づいて区画線の端部を認識している。これにより、より一層、区画線の端部の認識精度の向上を図ることができる。
また、上述した実施例によれば、全てのラインL1~L4上で反射波の強度が長手方向に沿って変化し、かつ、その変化率が第1閾値以上となる位置を区画線の端部として認識している。これにより、かすれなどの不具合が生じて端部が精度よく認識できない箇所を区画線の端部として認識することがない。
また、上述した実施例によれば、全てのラインL1~L4上において反射波の強度が長手方向に沿って変化し、かつ、その変化率が第1閾値未満の位置を区画線の端部ではない非端部として認識している。これにより、かすれなどの不具合が生じて端部が精度よく認識できない箇所を区画線の非端部として認識することができる。
また、上述した実施例によれば、区画線の長手方向に沿って走査される反射エリアA1~A4での反射波の強度分布に基づいて区画線の端部を認識している。これにより、区画線の端部の認識精度の向上を図ることができる。
また、上述した実施例によれば、反射波の強度分布の分散が第2閾値未満の状態を保ったまま反射波の強度が変化する位置を区画線の端部として認識している。これにより、かすれなどの不具合が生じて端部が精度よく認識できない箇所を区画線の端部として認識することがない。
また、上述した実施例によれば、反射波の強度分布の分散が第2閾値以上の状態となり反射波の強度が変化する位置を区画線の非端部として認識している。これにより、かすれなどの不具合が生じて端部が精度よく認識できない箇所を区画線の非端部として認識することができる。
また、上述した実施例では、地図情報に含まれる区画線についての情報に、当該区画線の端部を示す端部情報と、当該区画が連続して存在していることを示す連続情報と、の少なくとも一方を付与している。これにより、区画線の端部をランドマークとして用い、現在位置の推定に利用することができるため、車両6の移動方向の位置推定精度の向上を図ることができる。
また、上述した実施例では、地図情報に含まれる区画線についての情報に、当該区画線の端部を示す端部情報と、当該区画線に含まれ前記端部でないことを示す非端部情報と、を付与している。これにより、区画線の端部をランドマークとして用い、現在位置の推定に利用することができるため、車両6の移動方向の位置推定精度の向上を図ることができる。
また、上述した実施例では、地図情報に含まれる区画線についての情報は、区画線上の緯度、経度を示す点情報であり、点情報に端部情報及び非端部情報に付与している。これにより、簡単に端部情報及び非端部情報を付与できる。
また上述した実施例では、非端部情報としては、区画線上の不具合がない部分であることを示す非端部情報(不具合なし)と、区画線上の不具合がある部分であることを示す非端部情報(不具合あり)と、を識別可能に付与している。これにより、区画線上の不具合がある部分を、ランドマークに用いないようにすることができるため、より一層、車両6の移動方向の位置推定精度の向上を図ることができる。
また、上述した実施例では、第2車載機2は、外部装置であるサーバ装置3から区画線の端部を示す端部情報を取得し、車両6に配置されたLiDAR41Bによって認識された、路面上の区画線の端部を示す情報と、取得された端部情報と、に基づいて車両6の現在位置を推定している。これにより、車両6の移動方向の位置推定精度の向上を図ることができる。
なお、上述した実施例では、サーバ装置3の記憶部31にすでに記憶された区画線についての情報を構成する点に、端部情報、非端部情報を付与していたが、これに限ったものではない。サーバ装置3は、第1車載機2から受信した路面情報に基づいて新たに区画線についての情報を作成するようにしてもよい。この場合、サーバ装置3は、例えば、区画線の端部、非端部の位置を含む路面情報を受信すると、図13に示すような区画線についての情報を作成する。
また、サーバ装置3は、第1車載機2から受信した端部の位置を示す点P20、P27、P30、P31、P34、P37に端部情報を付与する。また、サーバ装置3は、第1車載機2から受信した非端部の位置を示す点P26、P33に非端部情報(不具合あり)を付与する。次に、サーバ装置3は、同一の区画線上にある端部、非端部に相当する点P20-P26間、点P27-P30間、点P31-点P33間、点P34-点P37間の区画線上に沿って等間隔に並べた点P21~P25、点P28~P29、点P32、点P35~P36を付与し、その点P21~P25、点P28~P29、点P32、点P35~P36に非端部情報(不具合なし)を付与する。
なお、サーバ装置3は、第1車載機2から受信した端部の位置を示す点P20、P27、P30、P31、P34、P37以外の点に、区画が連続して存在していることを示す連続情報(言い換えれば、端部ではないという情報)を付与するようにしてもよい。
また、上述した図13に示す例では、サーバ装置3は、破線についての情報に、点P28~P29、点P32、点P35~P36を付与し、その点P28~P29、点P32、点P35~P36に非端部情報(不具合なし)を付与していたが、これに限ったものではない。
また、本実施例では、計測専用の計測車両6に第1車載機2を搭載し、運転支援を受ける車両6に第2車載機4を搭載していたがこれに限ったものではない。運転支援を受ける車両6に搭載された車載機4に、第1車載機2、第2車載機4双方の機能を持たせてもよい。
また、上述した実施例では、端部、非端部の認識を第1車載機2が行っていたが、これに限ったものではない。第1車載機2が、点群情報だけをサーバ装置3に送信し、サーバ装置3が端部、非端部の認識を行うようにしてもよい。
また、上述した実施例では、非端部情報として、非端部情報(不具合あり)と、非端部情報(不具合なし)と、を識別可能にしていたが、これに限ったものではない。区画線上の点のうち、端部に相当する点以外に非端部情報を付与して、不具合のある部分と不具合のない部分とを識別しなくてもよい。
また、上述した実施例では、かすれなどの不具合が生じている端部を非端部として認識していたが、これに限ったものではない。かすれなどの不具合が生じていても端部として認識するようにしてもよい。
また、上述した実施例では、サーバ装置3が区画線についての情報に、端部情報、非端部情報を付与しているが、これに限ったものではない。例えば、第1車載機2から送信された路面情報を見て、地図メーカのオペレータが、手動で端部情報、非端部情報の付与を行うようにしてもよい。また、上述の実施例においては、区画線についての情報を含む地図情報は、サーバ3(記憶部31)に記憶・保持されていることとしているが、当該サーバ3と適宜通信して、第1車載機2及び第2車載機4も当該地図情報の少なくとも一部を記憶・保持可能である。また、上述した、端部情報、非端部情報を付与する処理は、計測車両側(第1車載機2)で行うこととしてもよい。すなわち、上述した区画線の端部、非端部の認識処理(図7のステップS3)や、端部情報又は非端部情報を付与する処理を含む地図情報の生成処理は、サーバ装置3で実施することとしてもよいし、計測車両側(第1車載機2)で実施することとしてもよい。
また、上述した実施例では、第1車載機2に搭載されるセンサ部23には一例としてLiDAR23Bが含まれるものとした。これに代えて、又は加えて、第1車載機に搭載されるセンサ部23は、図14に示すように、計測車両5が走行する路面を撮影する撮影部23Cを含むものとしてもよい。この場合、第1車載機2の制御部21は、撮影部23Cによって撮影された路面の画像を撮影部23Cから取得し、当該取得した画像の輝度情報等に基づいて、当該路面に形成された区画線の端部を認識する。撮影部23Cは、例えば、撮影対象となる物体までの距離を検出可能なステレオカメラによって構成されている。
具体的には、第1車載機2(制御部21)は、図7に例示した路面情報取得処理を実行する際に、ステップS1の「点群情報を取得する」ことに代えて、又は加えて、撮影部23Cによって撮影された路面の画像を撮影部23Cから取得する。そして、ステップS3と同様に、当該取得した画像から、走行中の路面に形成された区画線の端部、非端部を認識した後(ステップS3)、ステップS1に戻る。より具体的には、第1車載機(制御部21)はステップS3において、取得した撮影画像をオルソ画像に変換し、当該オルソ画像の輝度情報等を用いて、区画線(白線)の端部、非端部を認識する。また、他の例としては、撮影部23Cを単眼カメラで構成するようにして、当該単眼カメラによって撮影された路面の画像を取得し、当該画像をLiDAR23Bから取得した点群情報と対応させることとしてもよい。この場合、LiDAR23Bから取得した点群情報上で(言い換えれば、3Dの情報のまま)、撮影画像における輝度情報等を用いて、区画線(白線)の端部、非端部を認識することができる。
ここで、撮影された画像における区画線が形成されている路面の部分は輝度が高く、区画線が形成されていない路面の部分は輝度が低い。また、図8に示した、かすれなどの不具合がない区画線の端部では、撮影画像における区画線の長手方向に沿ったラインL1~L4上のそれぞれにおいて輝度強度が急激に変化する。また図9に示した、かすれがある区画線の端部では、撮影画像における区画線の長手方向に沿ったラインL1~L4上のそれぞれで反射強度が緩やかに変化する。
したがって、第1車載機2(制御部21)は、撮影画像上における区画線の長手方向に沿ったラインL1~L4を設定し、これに沿った輝度の変化を検出・認識した結果に基づき、上述した実施例と同様に、区画線(白線)の端部、非端部を認識することができる。言い換えれば、本変形例の撮影画像における区画線の「輝度情報」は、上述した実施例の区画線における「反射強度」と同等に扱うことが可能となる。なお、この場合において、図8~図11の「反射強度」とあるのは撮影画像における「輝度」と適宜読み替えが可能である。
また、第2車載機4に搭載されるセンサ部41には、一例としてLiDAR41Bが含まれるものとしたが、第1車載機2と同様に、これに代えて、又は加えて第2車載機4に搭載されるセンサ部41は車両6が走行する路面を撮影する撮影部41Cを含むものとしてもよい。すなわち、上述した手法によって、第2車載機4が撮影画像から区画線の端部を認識することとし、図12に記載の運転支援処理を実行することとしてもよい。
なお、本発明は上記実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。
2 第1車載機(路面情報取得装置)
3 サーバ装置(外部装置、区画線情報作成装置)
5 車両(移動体)
6 計測車両(移動体)
23B LiDAR(センサ、送信部、受信部)
31 記憶部(記憶装置)
41B LiDAR(センサ)
L1~L4 ライン
A1~A4 反射エリア
3 サーバ装置(外部装置、区画線情報作成装置)
5 車両(移動体)
6 計測車両(移動体)
23B LiDAR(センサ、送信部、受信部)
31 記憶部(記憶装置)
41B LiDAR(センサ)
L1~L4 ライン
A1~A4 反射エリア
Claims (13)
- 路面に対して送信された電磁波が当該路面により反射された反射波を受信し、
前記反射波の強度に基づき、前記路面に形成された区画線の端部を認識することを特徴とする路面情報取得方法。 - 移動体に配置されたセンサから前記電磁波が送信されることを特徴とする請求項1に記載の路面情報取得方法。
- 前記区画線の長手方向に沿った前記反射波の強度の変化に基づいて前記区画線の端部を認識することを特徴とする請求項2に記載の路面情報取得方法。
- 前記区画線の長手方向に対して垂直方向に並ぶ複数のライン上における、前記反射波の強度の前記長手方向に沿った変化に基づいて、前記区画線の端部を認識することを特徴とする請求項3に記載の路面情報取得方法。
- 全ての前記ライン上において前記反射波の強度が前記長手方向に沿って変化し、かつ、その変化率が第1閾値以上となる位置を前記区画線の端部として認識することを特徴とする請求項4に記載の路面情報取得方法。
- 全ての前記ライン上において前記反射波の強度が前記長手方向に沿って変化し、かつ、その変化率が前記第1閾値未満の位置を前記区画線の端部ではない非端部として認識することを特徴とする請求項4に記載の路面情報取得方法。
- 前記区画線の長手方向に沿って走査される反射エリア内での前記反射波の強度分布に基づいて前記区画線の端部を認識することを特徴とする請求項2に記載の路面情報取得方法。
- 前記反射波の強度分布の分散が第2閾値未満の状態を保ったまま前記反射波の強度が変化する位置を前記区画線の端部として認識することを特徴とする請求項7に記載の路面情報取得方法。
- 前記反射波の強度分布の分散が前記第2閾値以上の状態となり前記反射波の強度が変化する位置を前記区画線の非端部として認識することを特徴とする請求項8に記載の路面情報取得方法。
- 路面に対して電磁波を送信可能な送信部と、
前記送信された電磁波が前記路面により反射された反射波を受信可能な受信部と、
前記反射波の強度に基づき、前記路面に形成された区画線の端部を認識する認識部と、を備えることを特徴とする路面情報取得装置。 - 路面に対して送信された電磁波が前記路面により反射されて受信された反射波の強度に基づき、前記路面に形成された区画線の端部を認識する認識部として、コンピュータを機能させることを特徴とする路面情報取得プログラム。
- 請求項11に記載の路面情報取得プログラムを記録したことを特徴とする記録媒体。
- 撮影部によって撮影された路面の画像を取得する取得部と、
前記取得した画像の輝度情報に基づいて、前記路面に形成された区画線の端部を認識する認識部と、を備えることを特徴とする路面情報取得装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018015141 | 2018-01-31 | ||
JP2018-015141 | 2018-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019151109A1 true WO2019151109A1 (ja) | 2019-08-08 |
Family
ID=67478152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/002288 WO2019151109A1 (ja) | 2018-01-31 | 2019-01-24 | 路面情報取得方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019151109A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000079860A (ja) * | 1998-06-26 | 2000-03-21 | Aisin Seiki Co Ltd | 駐車補助装置 |
JP2003331295A (ja) * | 2002-05-14 | 2003-11-21 | Nissan Motor Co Ltd | 道路白線認識装置 |
JP2004246641A (ja) * | 2003-02-14 | 2004-09-02 | Nissan Motor Co Ltd | 道路白線認識装置 |
JP2011210165A (ja) * | 2010-03-30 | 2011-10-20 | Denso Corp | 検知装置 |
JP2015018333A (ja) * | 2013-07-09 | 2015-01-29 | 株式会社日本自動車部品総合研究所 | 信頼度判断装置 |
-
2019
- 2019-01-24 WO PCT/JP2019/002288 patent/WO2019151109A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000079860A (ja) * | 1998-06-26 | 2000-03-21 | Aisin Seiki Co Ltd | 駐車補助装置 |
JP2003331295A (ja) * | 2002-05-14 | 2003-11-21 | Nissan Motor Co Ltd | 道路白線認識装置 |
JP2004246641A (ja) * | 2003-02-14 | 2004-09-02 | Nissan Motor Co Ltd | 道路白線認識装置 |
JP2011210165A (ja) * | 2010-03-30 | 2011-10-20 | Denso Corp | 検知装置 |
JP2015018333A (ja) * | 2013-07-09 | 2015-01-29 | 株式会社日本自動車部品総合研究所 | 信頼度判断装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7297017B2 (ja) | オンボードセンサの外部パラメータを較正する方法及び装置、並びに関連する車両 | |
US11250288B2 (en) | Information processing apparatus and information processing method using correlation between attributes | |
JP5152244B2 (ja) | 追従対象車特定装置 | |
US20190353784A1 (en) | Vehicle navigation based on aligned image and lidar information | |
US10310076B2 (en) | Driving lane detection device and driving lane detection method | |
US11204610B2 (en) | Information processing apparatus, vehicle, and information processing method using correlation between attributes | |
JP2020021326A (ja) | 情報処理方法、情報処理装置およびプログラム | |
KR20200001471A (ko) | 차선 정보 검출 장치, 방법 및 이러한 방법을 수행하도록 프로그램된 컴퓨 프로그램을 저장하는 컴퓨터 판독가능한 기록매체 | |
JP2018180772A (ja) | 物体検出装置 | |
US11292481B2 (en) | Method and apparatus for multi vehicle sensor suite diagnosis | |
US11954918B2 (en) | Object detection device, object detection method, and storage medium | |
CN111353453B (zh) | 用于车辆的障碍物检测方法和装置 | |
US11578991B2 (en) | Method and system for generating and updating digital maps | |
JP2024116258A (ja) | 路面情報取得方法、路面情報取得装置、及び路面情報取得プログラム | |
JP2022068242A (ja) | 路面情報取得方法 | |
JP2024038322A (ja) | 測定装置、測定方法およびプログラム | |
US11620832B2 (en) | Image based locationing | |
JP2023118759A (ja) | 測定装置、測定方法およびプログラム | |
WO2019151109A1 (ja) | 路面情報取得方法 | |
JP2020076580A (ja) | 軸ずれ推定装置 | |
JP6789440B2 (ja) | 物体同定装置 | |
JP2022098635A (ja) | 自車位置信頼度演算装置、自車位置信頼度演算方法、車両制御装置、及び車両制御方法 | |
JP7325296B2 (ja) | 物体認識方法及び物体認識システム | |
JP2024046249A (ja) | 車線内車両位置推定装置 | |
JP2021032660A (ja) | 物体認識装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19748180 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19748180 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |