WO2019150491A1 - 靴底用部材及び靴 - Google Patents
靴底用部材及び靴 Download PDFInfo
- Publication number
- WO2019150491A1 WO2019150491A1 PCT/JP2018/003229 JP2018003229W WO2019150491A1 WO 2019150491 A1 WO2019150491 A1 WO 2019150491A1 JP 2018003229 W JP2018003229 W JP 2018003229W WO 2019150491 A1 WO2019150491 A1 WO 2019150491A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- shoe sole
- foam particles
- elastic body
- elastic
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/14—Soles; Sole-and-heel integral units characterised by the constructive form
- A43B13/18—Resilient soles
- A43B13/187—Resiliency achieved by the features of the material, e.g. foam, non liquid materials
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/026—Composites, e.g. carbon fibre or aramid fibre; the sole, one or more sole layers or sole part being made of a composite
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/04—Plastics, rubber or vulcanised fibre
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
- C08L23/0815—Copolymers of ethene with aliphatic 1-olefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/22—Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer
Definitions
- the present invention relates to a member for a shoe sole and a shoe, and more specifically, a member for a shoe sole formed partly or entirely by a resin composite containing a plurality of resin foam particles, and a shoe provided with the member for a shoe sole. About.
- the shoe sole member is required to have excellent buffering capacity.
- a foam is used as a material for a shoe sole member that satisfies such requirements.
- Patent Documents 1 to 3 disclose a shoe sole member provided with a foam formed by welding a plurality of foam particles.
- the cushioning property of the member for a shoe sole can be effectively increased by increasing the foaming rate of the foam. Furthermore, shoes having such a foam as a member for soles have a soft and comfortable feeling of foot placement due to the low initial rigidity of the foam having a high foaming rate.
- the shape restoring force of the foam deformed by the load tends to be reduced if a strong load is repeatedly received by use. Therefore, there exists a problem that the buffer property and durability of the member for shoe soles fall easily.
- sports shoes such as basketball shoes and running shoes that are subject to high loads on the soles tend to concentrate the load on specific parts of the soles. Decline is likely to occur.
- Patent Document 4 a member for a shoe sole in which a plurality of foams made of different types of resins are combined is known.
- the cushioning property, shape restoring force, weight, etc. of the shoe sole member can be suitably adjusted.
- an object of the present invention is to provide a shoe sole member having high mechanical strength and a shoe provided with such a shoe sole member.
- the present inventors use a resin composite in which a plurality of resin foam particles made of a resin composition containing an olefin-based or polyurethane-based resin and an elastic body made of a resin composition containing the same resin are integrated. Thus, it has been found that the above problems can be solved.
- the member for a shoe sole according to the present invention is partially or entirely formed of a resin composite in which a plurality of resin foam particles and one or a plurality of non-foamed elastic bodies are integrated.
- Each of the resin composition constituting the elastic body and the resin composition constituting the plurality of resin foam particles contains a polyolefin resin as a main component, or both contain a polyurethane resin as a main component.
- the resin composition that constitutes the one or more elastic bodies and the resin composition that constitutes the plurality of resin foamed particles are all based on a polyolefin resin. Including.
- the resin composition that constitutes the one or more elastic bodies and the resin composition that constitutes the plurality of resin foamed particles are both based on a polyurethane resin. Including.
- the initial elastic modulus at 23 ° C. of the one or more elastic bodies is preferably larger than the initial elastic modulus at 23 ° C. of the plurality of resin foam particles.
- the shoe according to the present invention includes the above-described resin composition.
- FIG. 1 shows a shoe 1 having a shoe sole member according to this embodiment as a midsole.
- the shoe 1 includes an upper material 2 that covers the upper surface of the foot, and members 3 and 4 for the sole that are disposed on the lower side of the upper material 2 to form a shoe sole.
- the shoe 1 includes an outer sole 4 disposed at a position in contact with the ground, and a midsole 3 disposed between the upper material 2 and the outer sole 4 as the sole member.
- the member for shoe sole of this embodiment is formed of a resin composite in which a non-foamed elastic body and a plurality of resin foam particles are integrated.
- a part or all of the member for the shoe sole includes a foam in which a plurality of resin foam particles are integrated, and a non-foamed elastic body dispersed in the foam.
- And is formed of a resin composite.
- the resin composition constituting the elastic body and the resin composition constituting the resin foamed particle both include a polyolefin resin as a main component, or both include a polyurethane resin as a main component. Include as. With such a configuration, the shoe sole member has high mechanical strength such as high tensile strength and high elongation. For this reason, the shoe sole member and the shoe including the shoe sole member have an advantage that the adhesive interface between the elastic body and the resin foam particles is difficult to peel off even when a strong load is applied.
- both the midsole 3 and the outer sole 4 may be formed of the resin composite, and either the midsole 3 or the outer sole 4 is formed of the resin composite. May be. Moreover, a part of the midsole 3 or a part of the outer sole 4 may be formed of the resin composite. Preferably, in the shoe 1 of the present embodiment, at least a part or all of the midsole 3 may be formed of the resin composite.
- the resin composite according to the present embodiment includes a plurality of resin foam particles formed of a resin composition containing a polyolefin resin or a polyurethane resin as a main component.
- the plurality of resin foam particles are integrated to form a foam.
- the resin composition containing a polyolefin resin or a polyurethane resin as a main component generally includes 10% by weight or more of a polyolefin resin or a polyurethane resin with respect to the components constituting the resin composition. It refers to a resin composition.
- the resin foam particles refer to foam particles that are formed of a resin composition and have a plurality of voids inside the resin composition.
- the polyolefin resin may be, for example, low density polyethylene, medium density polyethylene, ethylene- ⁇ olefin copolymer, ethylene-propylene rubber, polypropylene, ethylene-vinyl acetate, ethylene-acrylic acid copolymer, An elastomer having an ethylene crystal phase as a hard segment is preferable. More specifically, the polyolefin resin is an elastomer having an ethylene crystal phase at one or both ends of a polymer chain, or a block copolymer having alternating ethylene crystal phases and ethylene- ⁇ olefin copolymer parts. It is preferable. These polyolefin resins may be used alone or in combination of two or more.
- the polyurethane-based resin may be, for example, a polyurethane-based resin such as a polyether-based polyurethane or a polyester-based polyurethane, and a polyether polyurethane is more preferable. These polyurethane resins may be used alone or in combination of two or more.
- the polyolefin resin or the polyurethane resin may be a thermoplastic resin or a thermosetting resin.
- the polyolefin resin or the polyurethane resin is a thermoplastic resin, there is an advantage that molding is easy.
- the polyolefin resin or the polyurethane resin is a thermosetting resin, it has an advantage of excellent heat resistance, chemical resistance and mechanical strength.
- a resin composition (hereinafter also referred to as a particle resin composition) containing as a main component a polyolefin resin or a polyurethane resin (hereinafter also referred to as a particle main resin) that constitutes the plurality of resin foam particles,
- a particle resin composition containing as a main component a polyolefin resin or a polyurethane resin (hereinafter also referred to as a particle main resin) that constitutes the plurality of resin foam particles,
- Optional components may be included, and chemicals such as pigments, antioxidants, and ultraviolet absorbers may be further included.
- the amount of the particle main resin contained in the resin composition for particles is preferably 25% by weight or more, more preferably 50% by weight or more, more preferably 80% by weight or more based on the entire resin composition constituting the elastic body. Further preferred.
- the initial elastic modulus at 23 ° C. of the resin composition for particles is not particularly limited, but may be preferably 10 MPa or more and 400 MPa or less. When the initial elastic modulus at 23 ° C. of the foamed elastic matrix is less than 10 MPa, the durability and mechanical strength of the shoe sole member may be insufficient.
- the elastic modulus of various materials and members such as the resin composition for elastic bodies is based on JIS K 7244-4: 1999 (same as ISO 6721-4: 1994), and the measurement mode “ The value of the storage elastic modulus at 23 ° C. obtained by measuring at a frequency of 10 Hz in “sine wave strain tensile mode”.
- the storage elastic modulus can be measured by using a dynamic viscoelasticity measuring device “Rheogel-E4000” manufactured by UBM as a measuring device under the following conditions.
- Measurement mode Sine wave strain tension mode Frequency: 10Hz Distance between chucks: 20mm Load: Automatic static load Dynamic strain: 5 ⁇ m Temperature increase rate: 2 ° C / min Specimen: Strip length of 33 ⁇ 3 mm, width of 5 ⁇ 1 mm, thickness of 2 ⁇ 1 mm When comparing the elastic modulus values between different materials or members, the material or member is 29 mm in diameter ⁇ Using a Autograph precision universal testing machine (manufactured by Shimadzu Corporation, product name “AG-50kNIS MS type”), the sample piece produced by cutting into a cylindrical shape having a height of 12 mm was used at 23 ° C. The value of the compressive elastic modulus at 23 ° C. calculated from the compressive stress-strain curve obtained by compressing at a strain rate of 0.1 mm / sec can also be used.
- the plurality of resin foam particles can be produced from the resin composition for particles using a conventionally known method.
- the resin foam particles constituting the resin foam particles may be prepared by using, for example, an impregnation method in which a resin particle not containing a foaming agent is prepared and then impregnated with the foaming agent. It may be produced using an extrusion method in which the resin composition for particles containing is extruded into cooling water and granulated.
- the impregnation method first, the resin composition for particles is molded to produce resin particles. Next, the resin particles, the foaming agent and the aqueous dispersant are introduced into the autoclave, and the resin particles are impregnated with the foaming agent by applying heat and pressure and stirring.
- the foamed resin is obtained by foaming the impregnated foaming agent.
- the resin composition for particles and the foaming agent are added and melt-kneaded in an extruder equipped with a die having a large number of small holes at the tip. After this melt-kneaded product is extruded from the die into a strand, it is immediately introduced into cooling water and cured.
- the resin foam particles are obtained by cutting the cured product thus obtained into a predetermined length.
- the foaming agent used in the above method is not particularly limited, and may be, for example, a chemical foaming agent or a physical foaming agent.
- the chemical foaming agent is a foaming agent that generates gas by chemical reaction or thermal decomposition.
- Examples of such chemical foaming agents include inorganic chemical foaming agents such as sodium bicarbonate and ammonium carbonate, and organic chemical foaming agents such as azodicarbonamide.
- the physical foaming agent is a liquefied gas, a supercritical fluid, or the like, and foams by a pressure drop or heating.
- Examples of such physical foaming agents include aliphatic hydrocarbons such as butane, alicyclic hydrocarbons such as cyclobutane, and inorganic gases such as carbon dioxide, nitrogen, and air.
- the resin foam particles in order to produce the resin foam particles, it is particularly preferable to use an impregnation method using a supercritical fluid in order to foam the resin composition for particles.
- a supercritical fluid in order to foam the resin composition for particles.
- the resin composition for particles can be dissolved in the supercritical fluid at a relatively low temperature, a high temperature for melting the resin composition for particles is not necessary.
- no chemical foaming agent since no chemical foaming agent is used in the method, there is an advantage that generation of harmful gas derived from foaming of the chemical foaming agent is suppressed.
- the density and expansion ratio of the plurality of foamed resin particles is not particularly limited, preferably, the density of the plurality of foamed resin particles, there is 0.05 g / cm 3 or more 0.5 g / cm 3 or less Also good. In that case, the resin composite including the plurality of resin foam particles can exhibit high durability while exhibiting sufficient lightness.
- the shape and size of the plurality of resin foam particles are not particularly limited.
- the shape of the resin foam particles is preferably spherical.
- the volume average particle diameter D50 (median diameter) of the resin foam particles may be preferably in the range of 1 to 20 mm in diameter, and more preferably in the range of 2 to 10 mm in diameter.
- the particle diameter of the resin particle refers to a value obtained by measuring the long diameter of the particle with a microscope.
- the initial elastic modulus of the resin foam particles is not particularly limited, but preferably, the initial elastic modulus at 23 ° C. of the resin foam particles may be 0.2 MPa or more and 20 MPa or less, and 0.3 MPa or more and 10 MPa or less. More preferably. In that case, the initial stiffness and the strain amount of the resin composite can be set to more suitable values for the shoe sole member.
- the initial elastic modulus of the resin foam particles contained in the resin composite is measured by cutting out a foam portion not containing the elastic body from the resin composite to obtain a test piece. This can be done by measuring the elastic modulus by the method described above.
- the initial elastic modulus of the foam can be regarded as the initial elastic modulus of the resin foam particles.
- the resin composite of this embodiment further includes a non-foamed elastic body.
- the elastic body is dispersed in the foam.
- a resin (hereinafter, also referred to as an elastic main component resin) included as a main component in the resin composition constituting the plurality of elastic bodies is a resin similar to the particle main component resin. That is, when the particle main resin is a polyolefin resin, the elastic main resin is also a polyolefin resin, and when the particle main resin is a polyurethane resin, the elastic main resin is also a polyolefin resin. It is a polyurethane resin.
- the elastic main component resin may be selected from the above-described polyolefin-based resins or polyurethane-based resins that can be employed as the particle main component resin. These polyolefin resins or polyurethane resins may be used alone or in combination of two or more.
- the elastic main component resin and the particle main component resin may be different as long as they are similar resins.
- the melting point of the elastic main component resin may be lower than the melting point of the particle main component resin.
- the elastic main component resin may be a copolymer such as an ethylene- ⁇ -olefin copolymer.
- the copolymer may be any of a random copolymer, a block copolymer, and a graft copolymer, but a block copolymer having a crystal phase is preferable.
- Examples of such a block copolymer include an elastomer having an ethylene crystal phase at one or both ends of a polymer chain, and a block copolymer having an ethylene crystal phase and an ethylene- ⁇ -olefin copolymer part alternately. .
- preferred elastic main component resins when the particle main component resin is a polyolefin-based resin include, for example, ethylene- ⁇ olefin copolymer, styrene-ethylene butylene-olefin crystal copolymer (SEBC). ), Olefin crystal-ethylenebutylene-olefin crystal copolymer (CEBC), olefin multi-block copolymer (OBC), and the like.
- the elastic body may further contain a plasticizer.
- the plasticizer is, for example, paraffinic, naphthenic, aromatic, olefinic, and more preferably paraffinic.
- the elastic body may contain any component other than the elastic main component resin, and may further contain chemicals such as a dye, an antioxidant, and an ultraviolet absorber.
- the amount of the elastic main component resin contained in the elastic body is preferably 10% by weight or more, more preferably 20% by weight or more, and further preferably 30% by weight or more with respect to the entire resin composition constituting the elastic body. Preferably, 40% by weight or more is most preferable. Further, the amount of the elastic main component resin contained in the elastic body is preferably 25% by weight or more, and preferably 50% by weight or more with respect to the whole resin composition constituting the elastic body excluding the plasticizer. Is more preferable, and 80% by weight or more is more preferable.
- the initial elastic modulus of the elastic body is preferably such that the initial elastic modulus at 23 ° C. is higher than the initial elastic modulus of the resin foam particles. In that case, even if the amount of the elastic body contained in the resin composite is small, excessive deformation at the time of high load is effective in the member for the shoe sole formed by the resin composite. Can be suppressed.
- the initial elastic modulus at 23 ° C. may be 0.1 MPa or more and 10 MPa or less, more preferably 0.2 MPa or more and 5 MPa or less, and further preferably 3 MPa or less. In that case, the initial stiffness and the strain amount of the resin composite can be set to more suitable values for the shoe sole member. When the initial elastic modulus at 23 ° C. of the elastic body is less than 0.1 MPa, the durability and mechanical strength of the shoe sole member may be insufficient.
- the elastic body is a non-foamed body.
- the said elastic body can be made into a comparatively high density. Therefore, the resin composite can effectively exhibit the characteristic that the strain amount under high load is small.
- a non-foamed elastic body at the time of molding a resin composite, which will be described later, there is no advantage of shrinkage of resin foam particles that may occur when a plurality of materials having different foaming degrees are mixed and hot pressed. Also occurs.
- the resin composite of the present embodiment is obtained by integrating the plurality of resin foam particles and the elastic body. More specifically, in the resin composite, the elastic body is dispersed in a foam in which the plurality of resin foam particles are integrated. As a result, the shoe sole member of the present embodiment is lighter than the conventional shoe sole member, while being able to exhibit a soft foot feeling, excessive deformation suppression, and shock-absorbing properties, and durability. It has the advantage of being excellent.
- the resin composition constituting the elastic body and the resin composition constituting the resin foamed particle both contain a polyolefin-based resin as a main component, or both It contains polyurethane resin as the main component.
- the resin composite has a high adhesive force at the interface between the elastic body and the resin foam particles. Accordingly, the shoe sole member of the present embodiment has high mechanical strength because the adhesive interface between the elastic body and the resin foam particles is difficult to peel off even when subjected to a strong load.
- the resin composite is obtained by mixing the plurality of resin foam particles formed as described above, and then integrating the plurality of resin foam particles mixed with the elastic body.
- the method of integrating the plurality of resin foam particles mixed with the elastic body is, for example, hot pressing the plurality of resin foam particles mixed with the elastic body in a mold using a hot press, or This may be performed by welding the plurality of resin foam particles and the elastic body by a vapor method. By using such a method, it is possible to integrate the plurality of resin foam particles mixed with the elastic body in one step.
- the elastic body may be preferably mixed with the plurality of resin foam particles after being formed into particles using a conventionally known method.
- the shape and size of the elastic body formed into particles are not particularly limited.
- the method of mixing the elastic body with the plurality of resin foam particles is not particularly limited, and the elastic body can be mixed with the plurality of resin foam particles by any method.
- the temperature at the time of the hot pressing is appropriately adjusted according to the type of the particle main component resin contained in the particle resin composition and the type of the elastic main component resin contained in the elastic body.
- the hot press is a temperature at which the resin composition for particles is shapeally and chemically stable, and the elastic body has sufficient fluidity. It is preferably carried out at a temperature having
- the hot pressing can be performed by appropriately pressing in the range of 80 to 160 ° C.
- a liquid for example, water
- the liquid may be hot pressed while being vaporized.
- heat at the time of hot pressing is transmitted to the entire inside of the mold via steam, the entire inside of the mold can be heated relatively uniformly.
- various resins having a wide range of physical properties can be obtained by appropriately adjusting the blending ratio of the elastic body and the resin foam particles contained in the resin composite according to the required initial rigidity and strain amount.
- a complex can be obtained.
- the amount of the elastic body contained in the resin composite may be 5 to 90% (weight ratio) with respect to the entire resin composite. In that case, the resin composite can be moderately reduced in weight, and the elastic recovery of the resin composite can be increased moderately.
- the blending ratio of the plurality of resin foam particles and the elastic resin composition is determined according to the initial rigidity and strain amount required. It is good also as adjusting separately for every area
- the blending ratio of the resin composition for an elastic body in the region of the buttocks and the forefoot may be larger than the blending ratio of the resin composition in the other region.
- the elastic resin composition in the heel of the shoe sole member When the proportion of the elastic resin composition in the heel of the shoe sole member is large, the elastic resin composition can be used even when a relatively large load is applied to the heel during landing in various sports operations. The impact buffering effect due to the characteristics can be effectively exhibited.
- the blending ratio of the elastic resin composition in the forefoot portion of the shoe sole member when the blending ratio of the elastic resin composition in the forefoot portion of the shoe sole member is large, it is possible to smoothly move the weight by suppressing excessive deformation of the shoe sole during the cutting operation.
- the blending ratio of the resin composition for an elastic body may be smaller than the blending ratio of the resin composition in other regions.
- the blending ratio of the elastic body resin composition in the middle foot region may be small, thereby reducing the weight of the shoe sole member.
- a resin composite having different initial stiffness and strain amount for each region can be obtained. Can be formed.
- the resin composite of this embodiment is partly or entirely formed of a resin composite in which a plurality of resin foam particles and a non-foamed elastic body are integrated.
- the amount of strain at the time is relatively large, and the amount of strain at the time of high load is small.
- the initial elastic modulus at 23 ° C. of the resin composite is preferably 10 MPa or less, more preferably 5 MPa or less.
- the initial stiffness and strain amount of the resin composite can be obtained from a compressive stress-strain curve based on a method that can be used in the measurement of the value of the compressive elastic modulus.
- the resin composite of the present embodiment has a smaller compression set than the foam used for the conventional shoe sole member. Therefore, the shoe sole member of the present embodiment formed of the resin composite also has an advantage that it is excellent in elastic recovery.
- the resin composite of this embodiment has a high adhesive force at the interface between the elastic body and the resin foam particles. Therefore, the shoe sole member of this embodiment formed of the resin composite also has an advantage of having high mechanical strength.
- the shoe sole member of the present embodiment and the shoe provided with the shoe sole member can be manufactured in the same manner as a conventionally known shoe manufacturing method.
- the manufacturing method of the member for soles provided with the member for soles of this embodiment includes the following processes.
- a third step of obtaining a complex (D) The 4th process which produces the member for soles in which one part or all was formed with the resin composite obtained at the said 3rd process.
- the plurality of first and second resin particles can be integrated in one step.
- the shape of the shoe sole member may be directly formed by hot pressing using a forming die.
- the fourth step can be omitted.
- the shoe sole member according to the present embodiment is partially or entirely formed of a resin composite in which a plurality of resin foam particles and a non-foam elastic body are integrated, and constitutes the elastic body.
- the resin composition and the resin composition constituting the resin expanded particle both contain a polyolefin resin as a main component, or both include a polyurethane resin as a main component, so that the elastic body and the resin expanded particle Adhesive strength at the interface is high. Therefore, a member for a shoe sole in which a part or all of the resin composite is formed, and a shoe provided with the member for a shoe sole have high mechanical strength.
- the shoe sole member and shoes according to the present invention are not limited to the configuration of the above embodiment. Moreover, the member for shoes sole and shoes which concern on this invention are not limited by an above-described effect.
- the shoe sole member and the shoe according to the present invention can be variously modified without departing from the gist of the present invention.
- the resin composite forming the shoe sole member in the above-described embodiment is one in which the elastic body is dispersed in a foam in which the resin foam particles are integrated.
- a plurality of foamed resin particles may be dispersed in the elastic body.
- Thermoplastic polyurethane 1 (TPU-1) Polyolefin-based resin Polyether block amide (PEBA): “PEBAX5533” manufactured by Arkema, density 1.01 g / cm 3 ⁇ Elastic body material Thermoplastic polyurethane 2 (TPU-2) Styrene-ethylenebutylene-olefin crystal copolymer (SEBC): “DAYNARON 4600P” manufactured by JSR: density 0.91 g / cm 3 Olefin multi-block copolymer (OBC): “INFUSE9007” manufactured by Dow Chemical Company, density 0.87 g / cm 3 Ethylene- ⁇ -olefin copolymer: “Tafmer DF840” manufactured by Mitsui Chemicals, density 0.89 g / cm 3 Styrene-ethylenebutylene-styrene cop
- the initial elastic modulus E 0 of the resin foamed particles was measured using the method described below for each resin foamed particles.
- the produced foamed resin particles are filled into a flat plate-shaped cavity of a mold, and the molded foam particles are integrated by heating the mold with water vapor.
- the resulting resin foam was molded. In this way, a plurality of resin foams having different densities were prepared for each material used for the resin foam particles to be measured.
- the test pieces obtained by cutting the resin foams having different densities into strips having a length of 33 ⁇ 3 mm, a width of 5 ⁇ 1 mm, and a thickness of 2 ⁇ 1 mm are stored at 23 ° C.
- the elastic modulus E ′ [23 ° C.] was measured using a dynamic viscoelasticity measuring device “Rheogel-E4000” manufactured by UBM Co., Ltd. under the following conditions as JIS K 7244-4: 1999 (ISO 6721-4: 1994), and the storage elastic modulus E ′ [23 ° C.] at 23 ° C. was measured.
- each elastic body was melted and solidified and formed into a flat plate shape, and then cut into strips having a length of 33 ⁇ 3 mm, a width of 5 ⁇ 1 mm, and a thickness of 2 ⁇ 1 mm to obtain a test piece.
- the storage elastic modulus E ′ [23 ° C.] at 23 ° C. of these test pieces was measured by using a dynamic viscoelasticity measuring device “Rheogel-E4000” manufactured by UBM Co., Ltd. under the following conditions. JIS K 7244- 4: 1999 (same as ISO 6721-4: 1994) and the initial elastic modulus E 0 of each elastic body.
- the results are shown in Table 2.
- Measurement mode Sine wave strain tension mode Frequency: 10Hz Distance between chucks: 20mm
- Load Automatic static load Dynamic strain: 5 ⁇ m
- Temperature increase rate 2 ° C / min
- Example 1 and Comparative Examples 2 and 3 A predetermined amount of the foamed resin particles 1 to 3 shown in Table 3 below was introduced into the sealed container. Nitrogen was pressed into the sealed container at a pressure of 0.5 MPaG, and then the sealed container was left at room temperature for 6 hours. In this way, the resin foam particles were impregnated with nitrogen. The resin foam particles were taken out from the sealed container and then mixed with a predetermined amount of the particulate elastic body 1 or 7 shown in Table 3 to prepare a mixed particle material. Subsequently, the mixed particle material was filled into a cavity of a mold. The mold was heated with 0.24 MPa water vapor for 35 seconds to integrate the resin foam particles to form a resin composite. In the obtained resin composite, the foam in which the resin foam particles were integrated was a continuous body as a whole, and the elastic bodies were scattered in the foam.
- Production Method B Examples 2 to 6 and Comparative Example 1
- a predetermined amount of the foamed resin particles 2 shown in Table 3 below and a predetermined amount of the particulate elastic bodies 2 to 7 shown in Table 3 at 110 ° C. using a commercially available two-roll kneader.
- the elastic matrix material was melted to form an elastic matrix, and the foamed resin particles were dispersed in the elastic matrix.
- the kneaded product was cooled to room temperature. Subsequently, the kneaded product is filled into a cavity of the mold (at this time, the kneaded product may be cut as necessary so that the kneaded product can be filled into the cavity).
- the resin foam particles After being heated for 2 minutes under pressure by a hot press, the resin foam particles were integrated by cooling with cold water for 10 minutes to form a resin composite.
- the resin foam particles were scattered in an elastic matrix in which the elastic body was a continuous body as a whole. At this time, as a whole, an elastic matrix was interposed between the resin foam particles, and a portion where the resin foam particles were directly welded was hardly seen.
- the resin composite of Example 1 obtained by integrating resin foam particles made of polyurethane resin and an elastic body containing polyurethane resin as a main component, and polyolefin resin
- the resin composites of Examples 2 to 6 obtained by integrating the resin expanded particles and the elastic body containing a polyolefin resin as a main component are higher in tensile strength than the resin composites of Comparative Examples 1 to 3. It can be seen that it has strength.
- the resin composite of Example 1 provided with the form in which the elastic body is scattered in the foam in which the resin foam particles are integrated is compared with the resin composites of Comparative Examples 2 and 3 having the same form. It can be seen that it exhibits a high elongation.
- the resin composites of Examples 2 to 6 having the form in which the foam is dispersed in the elastic matrix are also higher in elongation than the resin composite of Comparative Example 1 having the same form. It can be seen that the rate is shown. Therefore, it can be seen that the resin composites of Examples 1 to 6 have higher mechanical strength than the resin composites of Comparative Examples 1 to 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
Abstract
複数の樹脂発泡粒子と1つ又は複数の非発泡の弾性体とが一体化した樹脂複合体で一部又は全部が形成され、前記1つ又は複数の弾性体を構成する樹脂組成物及び前記複数の樹脂発泡粒子を構成する樹脂組成物が、いずれもポリオレフィン系樹脂を主成分として含む、又は、いずれもポリウレタン系樹脂を主成分として含む、靴底用部材、及び、該靴底用部材を備えた靴を提供する。
Description
本発明は、靴底用部材及び靴に関し、より詳しくは、複数の樹脂発泡粒子を含む樹脂複合体で一部又は全部が形成された靴底用部材、及びその靴底用部材を備えた靴に関する。
靴底用部材は、緩衝能力に優れていることが求められる。一般には、このような要求を満たす靴底用部材の材料として、発泡体が用いられている。例えば、特許文献1~3には、複数の発泡粒子を溶着させて形成された発泡体を備えた靴底用部材が開示されている。
このような発泡体を用いた靴底用部材では、発泡体の発泡率を高くすることにより、靴底用部材の緩衝性を効果的に高めることができる。さらに、高発泡率の発泡体の低い初期剛性によって、そのような発泡体を靴底用部材として備えた靴は、柔らかで快適な足入れ感覚を有している。
しかしながら、このような従来の発泡体が用いられた靴底用部材では、使用により強い負荷を繰り返し受け続けると、負荷により変形した発泡体の形状復元力が低下しやすい。そのため、靴底用部材の緩衝性及び耐久性が低下しやすいという問題がある。特に、バスケットボールシューズやランニングシューズのような、靴底に高い負荷が掛かりやすいタイプのスポーツシューズでは、靴底用部材の特定の箇所に負荷が集中する傾向にあり、そのような箇所において復元力の低下が起こりやすい。
このような問題に対処するため、特許文献4に開示されるように、異なる種類の樹脂からなる複数の発泡体を複合させた靴底用部材が知られている。このように、異なる種類の樹脂からなる複数の発泡体を複合させることにより、靴底用部材の緩衝性や形状復元力、重量等を好適に調節することができる。
しかしながら、このような靴底用部材は、異なる種類の樹脂を複合しているため、該異なる樹脂同士の界面の接着力が比較的弱くなる。そのため、靴底用部材に強い負荷を受けた際、該界面が剥離し易くなり、靴底用部材の強度が低下するという問題がある。
本発明は、上記問題点に鑑み、高い機械的強度を有する靴底用部材、及びそのような靴底用部材を備えた靴を提供することを課題とする。
本発明者らは、オレフィン系又はポリウレタン系樹脂を含む樹脂組成物からなる複数の樹脂発泡粒子と、同系の樹脂を含む樹脂組成物からなる弾性体とを一体化させた樹脂複合体を用いることにより、前記課題を解決し得ることを見出した。
すなわち、本発明に係る靴底用部材は、複数の樹脂発泡粒子と1つ又は複数の非発泡の弾性体とが一体化した樹脂複合体で一部又は全部が形成され、前記1つ又は複数の弾性体を構成する樹脂組成物及び前記複数の樹脂発泡粒子を構成する樹脂組成物が、いずれもポリオレフィン系樹脂を主成分として含む、又は、いずれもポリウレタン系樹脂を主成分として含む。
本発明に係る靴底用部材では、例えば、前記1つ又は複数の弾性体を構成する樹脂組成物及び前記複数の樹脂発泡粒子を構成する樹脂組成物が、いずれもポリオレフィン系樹脂を主成分として含む。
本発明に係る靴底用部材では、例えば、前記1つ又は複数の弾性体を構成する樹脂組成物及び前記複数の樹脂発泡粒子を構成する樹脂組成物が、いずれもポリウレタン系樹脂を主成分として含む。
本発明に係る靴底用部材では、好ましくは、前記1つ又は複数の弾性体の23℃における初期弾性率が、前記複数の樹脂発泡粒子の23℃における初期弾性率よりも大きい。
本発明に係る靴は、上述の樹脂組成物を備えている。
以下、図面を参照しつつ、本発明の靴底用部材及び靴の一実施形態について説明する。ただし、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
図1は、本実施形態の靴底用部材をミッドソールとして備えた靴1を示したものである。
該靴1は、足の上面を覆うアッパー材2と、アッパー材2の下側に配置されて靴底をなす靴底用部材3,4とを有している。
該靴1は、前記靴底用部材として、地面と接する位置に配されたアウターソール4と、アッパー材2とアウターソール4との間に配されたミッドソール3とを有している。
該靴1は、足の上面を覆うアッパー材2と、アッパー材2の下側に配置されて靴底をなす靴底用部材3,4とを有している。
該靴1は、前記靴底用部材として、地面と接する位置に配されたアウターソール4と、アッパー材2とアウターソール4との間に配されたミッドソール3とを有している。
本実施形態の靴底用部材は、非発泡の弾性体と、複数の樹脂発泡粒子とが一体化した樹脂複合体により形成されている。詳細には、該靴底用部材では、該靴底用部材の一部又は全部が、複数の樹脂発泡粒子が一体化した発泡体と、前記発泡体内に分散している非発泡の弾性体と、を含む樹脂複合体により形成されている。
斯かる構成により、該靴底用部材は、通常使用時のひずみ量が比較的大きく、かつ、高負荷時のひずみ量が比較的小さくなる。したがって、該靴底用部材を備えた靴は、過度の変形を抑制しつつ高い緩衝性を発揮することができる。ここで、高負荷時とは、概ね0.6~1.0MPa程度の応力を該靴底用部材が受けている場合をいう。
斯かる構成により、該靴底用部材は、通常使用時のひずみ量が比較的大きく、かつ、高負荷時のひずみ量が比較的小さくなる。したがって、該靴底用部材を備えた靴は、過度の変形を抑制しつつ高い緩衝性を発揮することができる。ここで、高負荷時とは、概ね0.6~1.0MPa程度の応力を該靴底用部材が受けている場合をいう。
また、該靴底用部材では、弾性体を構成する樹脂組成物及び樹脂発泡粒子を構成する樹脂組成物が、いずれもポリオレフィン系樹脂を主成分として含む、又は、いずれもポリウレタン系樹脂を主成分として含む。
斯かる構成により、該靴底用部材は、高い引張強度や高い伸び率等、高い機械的強度を有する。そのため、該靴底用部材及び該靴底用部材を備えた靴は、強い負荷を受けたとしても前記弾性体と前記樹脂発泡粒子との接着界面が剥離し難いという利点を有する。
斯かる構成により、該靴底用部材は、高い引張強度や高い伸び率等、高い機械的強度を有する。そのため、該靴底用部材及び該靴底用部材を備えた靴は、強い負荷を受けたとしても前記弾性体と前記樹脂発泡粒子との接着界面が剥離し難いという利点を有する。
例えば、本実施形態の靴1では、ミッドソール3及びアウターソール4の両方が前記樹脂複合体で形成されていてもよく、ミッドソール3またはアウターソール4のいずれか一方が前記樹脂複合体で形成されていてもよい。また、ミッドソール3の一部またはアウターソール4の一部が前記樹脂複合体で形成されていてもよい。
好ましくは、本実施形態の靴1では、少なくともミッドソール3の一部または全部が、前記樹脂複合体で形成されていてもよい。
好ましくは、本実施形態の靴1では、少なくともミッドソール3の一部または全部が、前記樹脂複合体で形成されていてもよい。
(樹脂発泡粒子)
本実施形態の樹脂複合体は、ポリオレフィン系樹脂又はポリウレタン系樹脂を主成分として含む樹脂組成物により構成される複数の樹脂発泡粒子を含む。該樹脂複合体では、前記複数の樹脂発泡粒子が一体化して、発泡体を構成している。
本明細書において、ポリオレフィン系樹脂又はポリウレタン系樹脂を主成分として含む樹脂組成物とは、概して、該樹脂組成物を構成する成分に対して10重量%以上のポリオレフィン系樹脂又はポリウレタン系樹脂を含む樹脂組成物をいう。
また、本明細書において、樹脂発泡粒子とは、樹脂組成物により構成され、該樹脂組成物の内部に複数の空隙を有する発泡粒子をいう。
本実施形態の樹脂複合体は、ポリオレフィン系樹脂又はポリウレタン系樹脂を主成分として含む樹脂組成物により構成される複数の樹脂発泡粒子を含む。該樹脂複合体では、前記複数の樹脂発泡粒子が一体化して、発泡体を構成している。
本明細書において、ポリオレフィン系樹脂又はポリウレタン系樹脂を主成分として含む樹脂組成物とは、概して、該樹脂組成物を構成する成分に対して10重量%以上のポリオレフィン系樹脂又はポリウレタン系樹脂を含む樹脂組成物をいう。
また、本明細書において、樹脂発泡粒子とは、樹脂組成物により構成され、該樹脂組成物の内部に複数の空隙を有する発泡粒子をいう。
前記ポリオレフィン系樹脂は、例えば、低密度ポリエチレン、中密度ポリエチレン、エチレン-αオレフィン共重合体、エチレン-プロピレンゴム、ポリプロピレン、エチレン-酢酸ビニル、エチレン-アクリル酸共重合体などであってもよく、好ましくは、ハードセグメントとしてエチレン結晶相を備えているエラストマーが好ましい。より詳細には、該ポリオレフィン系樹脂は、ポリマー鎖の片方又は両方の末端にエチレン結晶相を有するエラストマーや、エチレン結晶相とエチレン-αオレフィン共重合部とを交互に有するブロック共重合体であることが好ましい。
これらのポリオレフィン系樹脂は、単独で使用されてもよく、2種以上組み合わせて使用されてもよい。
これらのポリオレフィン系樹脂は、単独で使用されてもよく、2種以上組み合わせて使用されてもよい。
前記ポリウレタン系樹脂は、例えば、ポリエーテル系ポリウレタン、ポリエステル系ポリウレタン等のポリウレタン系樹脂であってもよく、ポリエーテルポリウレタンがより好ましい。
これらのポリウレタン系樹脂は、単独で使用されてもよく、2種以上組み合わせて使用されてもよい。
これらのポリウレタン系樹脂は、単独で使用されてもよく、2種以上組み合わせて使用されてもよい。
また、前記ポリオレフィン系樹脂又は前記ポリウレタン系樹脂は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよい。
前記ポリオレフィン系樹脂又は前記ポリウレタン系樹脂が熱可塑性樹脂である場合には、成形が容易であるという利点を有する。
前記ポリオレフィン系樹脂又は前記ポリウレタン系樹脂が熱硬化性樹脂である場合には、耐熱性、耐薬品性及び機械的強度に優れるという利点を有する。
前記ポリオレフィン系樹脂又は前記ポリウレタン系樹脂が熱可塑性樹脂である場合には、成形が容易であるという利点を有する。
前記ポリオレフィン系樹脂又は前記ポリウレタン系樹脂が熱硬化性樹脂である場合には、耐熱性、耐薬品性及び機械的強度に優れるという利点を有する。
なお、前記複数の樹脂発泡粒子を構成するポリオレフィン系樹脂又はポリウレタン系樹脂(以下、粒子主成分樹脂とも称する)を主成分として含む樹脂組成物(以下、粒子用樹脂組成物とも称する)は、他の任意の成分を含んでいてもよく、色素、酸化防止剤、紫外線吸収剤などの薬品をさらに含んでいてもよい。
前記粒子用樹脂組成物に含まれる粒子主成分樹脂の量は、前記弾性体を構成する樹脂組成物全体に対して25重量%以上が好ましく、50重量%以上がより好ましく、80重量%以上がさらに好ましい。
前記粒子用樹脂組成物の23℃における初期弾性率は、特に限定されないが、好ましくは10MPa以上400MPa以下であってもよい。前記発泡弾性体マトリクスの23℃における初期弾性率が10MPa未満であると、靴底用部材の耐久性や機械的強度が不足することがある。
なお、本明細書において、前記弾性体用樹脂組成物等、種々の材料及び部材の弾性率とは、JIS K 7244-4:1999(ISO 6721-4:1994に同じ)に基づき、測定モード「正弦波歪みの引張モード」にて周波数10Hzで測定して得られる、23℃における貯蔵弾性率の値をいう。例えば、該貯蔵弾性率は、測定装置として(株)ユービーエム製動的粘弾性測定装置「Rheogel-E4000」を下記の条件で用いることにより、測定することができる。
測定モード :正弦波歪みの引張モード
周波数 :10Hz
チャック間距離:20mm
荷重 :自動静荷重
動歪み :5μm
昇温速度 :2℃/min
試験片 :長さ33±3mm、幅5±1mm、厚さ2±1mmの短冊状
また、異なる材料又は部材間において該弾性率の値を比較する際には、該材料又は部材を直径29mm×高さ12mmの円柱形状に裁断して作製されたサンプル片を、オートグラフ精密万能試験機((株)島津製作所製、製品名「AG-50kNIS MS型」)を用いて、23℃下で、ひずみ速度0.1mm/秒にて圧縮することによって得られた圧縮応力-ひずみ曲線より算出される、23℃における圧縮弾性率の値を用いることもできる。
測定モード :正弦波歪みの引張モード
周波数 :10Hz
チャック間距離:20mm
荷重 :自動静荷重
動歪み :5μm
昇温速度 :2℃/min
試験片 :長さ33±3mm、幅5±1mm、厚さ2±1mmの短冊状
また、異なる材料又は部材間において該弾性率の値を比較する際には、該材料又は部材を直径29mm×高さ12mmの円柱形状に裁断して作製されたサンプル片を、オートグラフ精密万能試験機((株)島津製作所製、製品名「AG-50kNIS MS型」)を用いて、23℃下で、ひずみ速度0.1mm/秒にて圧縮することによって得られた圧縮応力-ひずみ曲線より算出される、23℃における圧縮弾性率の値を用いることもできる。
前記複数の樹脂発泡粒子は、従来公知の方法を用いて、前記粒子用樹脂組成物より作製され得る。具体的には、前記樹脂発泡粒子を構成する樹脂発泡粒子は、例えば、発泡剤を含有していない樹脂粒子を作製した後に発泡剤を含浸させる含浸法を用いて作製されてもよく、発泡剤を含んだ前記粒子用樹脂組成物を冷却水中に押し出して造粒する押出法を用いて作製されてもよい。
前記含浸法では、まず、前記粒子用樹脂組成物を成形して樹脂粒子を作製する。次に、前記樹脂粒子、発泡剤及び水系分散剤をオートクレーブ内に導入し、熱及び圧力を加えて撹拌することにより、前記樹脂粒子に発泡剤を含浸させる。この含浸させた発泡剤を発泡させることにより、前記樹脂発泡粒子が得られる。
前記押出法では、例えば、先端に多数の小孔を有するダイが装着された押出機内に、前記粒子用樹脂組成物及び発泡剤を添加して溶融混練する。この溶融混練物を前記ダイからストランド状に押出した後、直ちに冷却水中に導入して硬化させる。このようにして得られた硬化物を所定の長さに切断することにより、前記樹脂発泡粒子が得られる。
前記含浸法では、まず、前記粒子用樹脂組成物を成形して樹脂粒子を作製する。次に、前記樹脂粒子、発泡剤及び水系分散剤をオートクレーブ内に導入し、熱及び圧力を加えて撹拌することにより、前記樹脂粒子に発泡剤を含浸させる。この含浸させた発泡剤を発泡させることにより、前記樹脂発泡粒子が得られる。
前記押出法では、例えば、先端に多数の小孔を有するダイが装着された押出機内に、前記粒子用樹脂組成物及び発泡剤を添加して溶融混練する。この溶融混練物を前記ダイからストランド状に押出した後、直ちに冷却水中に導入して硬化させる。このようにして得られた硬化物を所定の長さに切断することにより、前記樹脂発泡粒子が得られる。
上記の方法において使用される発泡剤は、特に限定されず、例えば、化学発泡剤であってもよく、物理発泡剤であってもよい。
前記化学発泡剤は、化学反応または熱分解により気体を発生する発泡剤である。このような化学発泡剤としては、例えば、重炭酸ナトリウム、炭酸アンモニウムなどの無機系化学発泡剤や、アゾジカルボンアミドなどの有機系化学発泡剤が挙げられる。
前記物理発泡剤は、液化ガスや超臨界流体などであり、圧力低下または加熱により発泡する。このような物理発泡剤としては、例えば、ブタンなどの脂肪族炭化水素類、シクロブタンなどの脂環式炭化水素類、炭酸ガス、窒素、空気などの無機ガスが挙げられる。
前記化学発泡剤は、化学反応または熱分解により気体を発生する発泡剤である。このような化学発泡剤としては、例えば、重炭酸ナトリウム、炭酸アンモニウムなどの無機系化学発泡剤や、アゾジカルボンアミドなどの有機系化学発泡剤が挙げられる。
前記物理発泡剤は、液化ガスや超臨界流体などであり、圧力低下または加熱により発泡する。このような物理発泡剤としては、例えば、ブタンなどの脂肪族炭化水素類、シクロブタンなどの脂環式炭化水素類、炭酸ガス、窒素、空気などの無機ガスが挙げられる。
本実施形態において、前記樹脂発泡粒子を作製するには、前記粒子用樹脂組成物を発泡させるために超臨界流体を用いた含浸法を用いることが特に好ましい。その場合には、前記粒子用樹脂組成物を比較的低い温度にて超臨界流体に溶解させることができるため、前記粒子用樹脂組成物を溶融するための高温が不要となる。また、該方法では化学発泡剤を使用しないため、化学発泡剤の発泡に由来する有害ガスの発生が抑制されるという利点も有する。
なお、前記複数の樹脂発泡粒子の密度及び発泡倍率は、特に限定されないが、好ましくは、前記複数の樹脂発泡粒子の密度が、0.05g/cm3以上0.5g/cm3以下であってもよい。その場合には、前記複数の樹脂発泡粒子を備えた樹脂複合体は、十分な軽量性を示しつつ、高い耐久性を発揮することができる。
前記複数の樹脂発泡粒子の形状や大きさは、特に限定されない。前記樹脂発泡粒子の形状は、好ましくは球状である。その場合、前記樹脂発泡粒子の体積平均粒径D50(メディアン径)は、好ましくは、直径1~20mmの範囲であってもよく、より好ましくは、直径2~10mmの範囲であってもよい。
なお、本明細書では、樹脂粒子の粒径は、マイクロスコープにて粒子の長径を測定した値をいう。
なお、本明細書では、樹脂粒子の粒径は、マイクロスコープにて粒子の長径を測定した値をいう。
前記樹脂発泡粒子の初期弾性率は、特に限定されないが、好ましくは、前記樹脂発泡粒子の23℃における初期弾性率は、0.2MPa以上20MPa以下であってもよく、0.3MPa以上10MPa以下であることがより好ましい。その場合には、前記樹脂複合体の初期剛性及びひずみ量を、靴底用部材としてより好適な値とすることができる。
なお、前記樹脂複合体に含まれる前記樹脂発泡粒子の初期弾性率の測定は、前記樹脂複合体から、前記弾性体が含まれていない発泡体部分を切り出して試験片とし、この試験片の初期弾性率を上述の方法により測定することにより行うことができる。この発泡体の初期弾性率を、前記樹脂発泡粒子の初期弾性率とみなすことができる。
なお、前記樹脂複合体に含まれる前記樹脂発泡粒子の初期弾性率の測定は、前記樹脂複合体から、前記弾性体が含まれていない発泡体部分を切り出して試験片とし、この試験片の初期弾性率を上述の方法により測定することにより行うことができる。この発泡体の初期弾性率を、前記樹脂発泡粒子の初期弾性率とみなすことができる。
(弾性体)
本実施形態の樹脂複合体は、非発泡の弾性体をさらに含む。該樹脂複合体では、前記発泡体内に、前記弾性体が分散している。
該複数の弾性体を構成する樹脂組成物に主成分として含まれる樹脂(以下、弾性体主成分樹脂とも称する)は、前記粒子主成分樹脂と同系の樹脂である。すなわち、粒子主成分樹脂がポリオレフィン系樹脂である場合には、弾性体主成分樹脂もまたポリオレフィン系樹脂であり、粒子主成分樹脂がポリウレタン系樹脂である場合には、弾性体主成分樹脂もまたポリウレタン系樹脂である。
本実施形態の樹脂複合体は、非発泡の弾性体をさらに含む。該樹脂複合体では、前記発泡体内に、前記弾性体が分散している。
該複数の弾性体を構成する樹脂組成物に主成分として含まれる樹脂(以下、弾性体主成分樹脂とも称する)は、前記粒子主成分樹脂と同系の樹脂である。すなわち、粒子主成分樹脂がポリオレフィン系樹脂である場合には、弾性体主成分樹脂もまたポリオレフィン系樹脂であり、粒子主成分樹脂がポリウレタン系樹脂である場合には、弾性体主成分樹脂もまたポリウレタン系樹脂である。
前記弾性体主成分樹脂は、粒子主成分樹脂として採用され得る上述のポリオレフィン系樹脂又はポリウレタン系樹脂から選択されてもよい。
これらのポリオレフィン系樹脂又はポリウレタン系樹脂は、単独で使用されてもよく、2種以上組み合わせて使用されてもよい。
これらのポリオレフィン系樹脂又はポリウレタン系樹脂は、単独で使用されてもよく、2種以上組み合わせて使用されてもよい。
前記弾性体主成分樹脂と前記粒子主成分樹脂とは、それらが同系の樹脂である限り、異なっていてもよい。好ましくは、前記弾性体主成分樹脂の融点が、前記粒子主成分樹脂の融点よりも低くてもよい。
前記弾性体主成分樹脂と前記粒子主成分樹脂との好ましい組み合わせとしては、例えば、以下のものが挙げられる。
前記粒子主成分樹脂がポリオレフィン系樹脂である場合には、前記弾性体主成分樹脂は、エチレン-αオレフィン共重合体等の共重合体であってもよい。該共重合体は、ランダム共重合体、ブロック共重合体又はグラフト共重合体のいずれであってもよいが、結晶相を有するブロック共重合体が好ましい。そのようなブロック共重合体としては、ポリマー鎖の片方又は両方の末端にエチレン結晶相を有するエラストマーや、エチレン結晶相とエチレン-αオレフィン共重合部とを交互に有するブロック共重合体が挙げられる。
具体的には、前記粒子主成分樹脂がポリオレフィン系樹脂である場合における好ましい前記弾性体主成分樹脂としては、例えば、エチレン-αオレフィン共重合体、スチレン-エチレンブチレン-オレフィン結晶共重合体(SEBC)、オレフィン結晶-エチレンブチレン-オレフィン結晶共重合体(CEBC)又はオレフィンマルチブロック共重合体(OBC)等が挙げられる。
前記粒子主成分樹脂がポリオレフィン系樹脂である場合には、前記弾性体主成分樹脂は、エチレン-αオレフィン共重合体等の共重合体であってもよい。該共重合体は、ランダム共重合体、ブロック共重合体又はグラフト共重合体のいずれであってもよいが、結晶相を有するブロック共重合体が好ましい。そのようなブロック共重合体としては、ポリマー鎖の片方又は両方の末端にエチレン結晶相を有するエラストマーや、エチレン結晶相とエチレン-αオレフィン共重合部とを交互に有するブロック共重合体が挙げられる。
具体的には、前記粒子主成分樹脂がポリオレフィン系樹脂である場合における好ましい前記弾性体主成分樹脂としては、例えば、エチレン-αオレフィン共重合体、スチレン-エチレンブチレン-オレフィン結晶共重合体(SEBC)、オレフィン結晶-エチレンブチレン-オレフィン結晶共重合体(CEBC)又はオレフィンマルチブロック共重合体(OBC)等が挙げられる。
前記弾性体は、可塑剤をさらに含んでいてもよい。該可塑剤は、例えば、パラフィン系、ナフテン系、芳香族系、オレフィン系などであり、パラフィン系がより好ましい。
また、前記弾性体は、前記弾性体主成分樹脂以外の任意の成分を含んでいてもよく、色素、酸化防止剤、紫外線吸収剤などの薬品をさらに含んでいてもよい。
前記弾性体に含まれる前記弾性体主成分樹脂の量は、前記弾性体を構成する樹脂組成物全体に対して10重量%以上が好ましく、20重量%以上がより好ましく、30重量%以上がさらに好ましく、40重量%以上が最も好ましい。
また、前記弾性体に含まれる前記弾性体主成分樹脂の量は、前記弾性体を構成する樹脂組成物全体から前記可塑剤を除いたものに対して25重量%以上が好ましく、50重量%以上がより好ましく、80重量%以上がさらに好ましい。
また、前記弾性体に含まれる前記弾性体主成分樹脂の量は、前記弾性体を構成する樹脂組成物全体から前記可塑剤を除いたものに対して25重量%以上が好ましく、50重量%以上がより好ましく、80重量%以上がさらに好ましい。
前記弾性体の初期弾性率は、23℃における初期弾性率が、前記樹脂発泡粒子の初期弾性率よりも高いことが好ましい。その場合には、たとえ前記樹脂複合体に含まれる前記弾性体の量が少量であったとしても、前記樹脂複合体により形成された靴底用部材において、高負荷時における過度な変形を効果的に抑制することができる。
好ましくは、23℃における初期弾性率が、0.1MPa以上10MPa以下であってもよく、0.2MPa以上5MPa以下であることがより好ましく、3MPa以下であることがさらに好ましい。その場合には、前記樹脂複合体の初期剛性及びひずみ量を、靴底用部材としてより好適な値とすることができる。前記弾性体の23℃における初期弾性率が0.1MPa未満であると、靴底用部材の耐久性や機械的強度が不足することがある。
好ましくは、23℃における初期弾性率が、0.1MPa以上10MPa以下であってもよく、0.2MPa以上5MPa以下であることがより好ましく、3MPa以下であることがさらに好ましい。その場合には、前記樹脂複合体の初期剛性及びひずみ量を、靴底用部材としてより好適な値とすることができる。前記弾性体の23℃における初期弾性率が0.1MPa未満であると、靴底用部材の耐久性や機械的強度が不足することがある。
前記弾性体は、前記樹脂発泡粒子とは異なり、非発泡体である。これにより、前記弾性体を比較的高密度とすることができる。そのため、前記樹脂複合体は、高負荷時のひずみ量が小さいという特性を効果的に発揮することができる。
また、非発泡の弾性体を用いることにより、後述する樹脂複合体の成形時において、発泡度の異なる複数の材料を混合して熱プレスした場合に生じ得る樹脂発泡粒子の収縮が起こらないという利点も生じる。
また、非発泡の弾性体を用いることにより、後述する樹脂複合体の成形時において、発泡度の異なる複数の材料を混合して熱プレスした場合に生じ得る樹脂発泡粒子の収縮が起こらないという利点も生じる。
(樹脂複合体)
本実施形態の樹脂複合体は、前記複数の樹脂発泡粒子と、前記弾性体とが一体化されたものである。より詳細には、該樹脂複合体内では、前記複数の樹脂発泡粒子が一体化された発泡体内に、前記弾性体内が分散している。これにより、本実施形態の靴底用部材は、従来の靴底用部材に比べ、軽量でありながら、柔らかな足入れ感覚、過度の変形抑制、緩衝性を発揮することができると共に、耐久性に優れるという利点を有する。
また、本実施形態の樹脂複合体は、前記弾性体を構成する樹脂組成物及び前記樹脂発泡粒子を構成する樹脂組成物が、いずれもポリオレフィン系樹脂を主成分として含んでいる、又は、いずれもポリウレタン系樹脂を主成分として含んでいる。そのため、該樹脂複合体では、前記弾性体と前記樹脂発泡粒子との界面における接着力が高い。したがって、本実施形態の靴底用部材は、強い負荷を受けたとしても前記弾性体と前記樹脂発泡粒子との接着界面が剥離し難いため、高い機械的強度を有する。
本実施形態の樹脂複合体は、前記複数の樹脂発泡粒子と、前記弾性体とが一体化されたものである。より詳細には、該樹脂複合体内では、前記複数の樹脂発泡粒子が一体化された発泡体内に、前記弾性体内が分散している。これにより、本実施形態の靴底用部材は、従来の靴底用部材に比べ、軽量でありながら、柔らかな足入れ感覚、過度の変形抑制、緩衝性を発揮することができると共に、耐久性に優れるという利点を有する。
また、本実施形態の樹脂複合体は、前記弾性体を構成する樹脂組成物及び前記樹脂発泡粒子を構成する樹脂組成物が、いずれもポリオレフィン系樹脂を主成分として含んでいる、又は、いずれもポリウレタン系樹脂を主成分として含んでいる。そのため、該樹脂複合体では、前記弾性体と前記樹脂発泡粒子との界面における接着力が高い。したがって、本実施形態の靴底用部材は、強い負荷を受けたとしても前記弾性体と前記樹脂発泡粒子との接着界面が剥離し難いため、高い機械的強度を有する。
前記樹脂複合体は、上記のようにして形成された複数の樹脂発泡粒子に前記弾性体を混合した後、前記弾性体が混合された前記複数の樹脂発泡粒子を一体化させることにより得られる。
前記弾性体が混合された前記複数の樹脂発泡粒子を一体化させる方法は、例えば、前記弾性体が混合された前記複数の樹脂発泡粒子を熱プレス機により成形型内で熱プレスする、あるいは、蒸気法にて前記複数の樹脂発泡粒子及び前記弾性体を溶着させることにより行われ得る。このような方法を用いることにより、前記弾性体が混合された前記複数の樹脂発泡粒子を一回のステップにて一体化することができる。
前記弾性体が混合された前記複数の樹脂発泡粒子を一体化させる方法は、例えば、前記弾性体が混合された前記複数の樹脂発泡粒子を熱プレス機により成形型内で熱プレスする、あるいは、蒸気法にて前記複数の樹脂発泡粒子及び前記弾性体を溶着させることにより行われ得る。このような方法を用いることにより、前記弾性体が混合された前記複数の樹脂発泡粒子を一回のステップにて一体化することができる。
前記弾性体は、好ましくは、従来公知の方法を用いて粒子状に成形された後に、前記複数の樹脂発泡粒子と混合され得る。粒子状に成形された前記弾性体の形状や大きさは、特に限定されない。
もっとも、前記弾性体を前記複数の樹脂発泡粒子に混合する方法は、特に限定されず、前記弾性体は、任意の方法により前記複数の樹脂発泡粒子に混合され得る。
前記熱プレスの際の温度は、前記粒子用樹脂組成物に含まれる前記粒子主成分樹脂の種類、及び前記弾性体に含まれる前記弾性体主成分樹脂の種類に応じて、適宜調整される。
前記弾性体主成分樹脂が熱可塑性樹脂である場合には、前記熱プレスは、前記粒子用樹脂組成物が形状的かつ化学的に安定である温度であって、前記弾性体が十分な流動性を有する温度において行われるのが好ましい。例えば、前記粒子主成分樹脂及び前記弾性体主成分樹脂が共にポリオレフィン系樹脂からなる場合には、前記熱プレスは、80~160℃の範囲で適宜加圧して行われ得る。
前記弾性体主成分樹脂が熱可塑性樹脂である場合には、前記熱プレスは、前記粒子用樹脂組成物が形状的かつ化学的に安定である温度であって、前記弾性体が十分な流動性を有する温度において行われるのが好ましい。例えば、前記粒子主成分樹脂及び前記弾性体主成分樹脂が共にポリオレフィン系樹脂からなる場合には、前記熱プレスは、80~160℃の範囲で適宜加圧して行われ得る。
好ましくは、前記熱プレスの際に、成形型内に熱プレス時に気化し得る液体(例えば、水)を併せて導入して、該液体を蒸気化させつつ熱プレスしてもよい。その場合には、熱プレスの際の熱が蒸気を介して成形型内全体に伝達されるため、成形型内全体を比較的均一に加熱することができる。
本実施形態では、前記樹脂複合体に含まれる前記弾性体と前記樹脂発泡粒子との配合割合を、求められる初期剛性及びひずみ量に応じて適宜調整することにより、幅広い物性を備えた種々の樹脂複合体を得ることができる。
例えば、前記樹脂複合体に含まれる前記弾性体の量は、前記樹脂複合体全体に対して5~90%(重量比)であってもよい。その場合には、前記樹脂複合体を適度に軽量化することができると共に、前記樹脂複合体の弾性回復性を適度に高くすることができる。
例えば、前記樹脂複合体に含まれる前記弾性体の量は、前記樹脂複合体全体に対して5~90%(重量比)であってもよい。その場合には、前記樹脂複合体を適度に軽量化することができると共に、前記樹脂複合体の弾性回復性を適度に高くすることができる。
また、前記複数の樹脂発泡粒子を前記弾性体内に分散させる前に、求められる初期剛性及びひずみ量に応じて、前記複数の樹脂発泡粒子と前記弾性体用樹脂組成物との配合割合を所定の領域毎に別々に調整しておき、その後に前記複数の樹脂発泡粒子樹脂を分散させて樹脂複合体としてもよい。
例えば、上述したような前記複数の樹脂発泡粒子と前記弾性体用樹脂組成物との混合材料を熱プレスする方法を用いる場合には、靴底用部材において比較的大きな負荷のかかりやすい領域、具体的には踵部、前足部の領域における前記弾性体用樹脂組成物の配合割合を、他の領域における樹脂組成物の配合割合に比べて大きくしてもよい。靴底用部材の踵部における前記弾性体用樹脂組成物の配合割合が大きいと、各種スポーツ動作における着地時に、踵部に比較的大きな負荷がかかった場合にも、前記弾性体用樹脂組成物の特性による衝撃緩衝効果を効果的に発揮することができる。また、靴底用部材の前足部における前記弾性体用樹脂組成物の配合割合が大きいと、カッティング動作時に靴底の過度な変形を抑制することにより、スムーズな体重移動が可能となる。
一方、靴底用部材において比較的大きな負荷のかかりにくい領域では、前記弾性体用樹脂組成物の配合割合を、他の領域における樹脂組成物の配合割合に比べて小さくしてもよい。例えば、中足部には大きな負荷はかかりにくいため、靴底用部材の中足部には一定程度の緩衝性があればよい。そのため、中足部の領域における前記弾性体用樹脂組成物の配合割合は小さくてもよく、それにより、靴底用部材を軽量化することができる。
上記のように、前記複数の樹脂発泡粒子と前記弾性体用樹脂組成物との配合割合を所定の領域毎に別々に調整することにより、初期剛性及びひずみ量が領域毎に異なる樹脂複合体を形成することができる。
例えば、上述したような前記複数の樹脂発泡粒子と前記弾性体用樹脂組成物との混合材料を熱プレスする方法を用いる場合には、靴底用部材において比較的大きな負荷のかかりやすい領域、具体的には踵部、前足部の領域における前記弾性体用樹脂組成物の配合割合を、他の領域における樹脂組成物の配合割合に比べて大きくしてもよい。靴底用部材の踵部における前記弾性体用樹脂組成物の配合割合が大きいと、各種スポーツ動作における着地時に、踵部に比較的大きな負荷がかかった場合にも、前記弾性体用樹脂組成物の特性による衝撃緩衝効果を効果的に発揮することができる。また、靴底用部材の前足部における前記弾性体用樹脂組成物の配合割合が大きいと、カッティング動作時に靴底の過度な変形を抑制することにより、スムーズな体重移動が可能となる。
一方、靴底用部材において比較的大きな負荷のかかりにくい領域では、前記弾性体用樹脂組成物の配合割合を、他の領域における樹脂組成物の配合割合に比べて小さくしてもよい。例えば、中足部には大きな負荷はかかりにくいため、靴底用部材の中足部には一定程度の緩衝性があればよい。そのため、中足部の領域における前記弾性体用樹脂組成物の配合割合は小さくてもよく、それにより、靴底用部材を軽量化することができる。
上記のように、前記複数の樹脂発泡粒子と前記弾性体用樹脂組成物との配合割合を所定の領域毎に別々に調整することにより、初期剛性及びひずみ量が領域毎に異なる樹脂複合体を形成することができる。
本実施形態の前記樹脂複合体は、複数の樹脂発泡粒子と非発泡の弾性体とが一体化した樹脂複合体で一部又は全部が形成されているため、初期剛性が比較的小さく、通常使用時のひずみ量が比較的大きく、かつ、高負荷時のひずみ量が小さい。前記樹脂複合体の23℃における初期弾性率は、好ましくは10MPa以下であり、より好ましくは5MPa以下である。
なお、前記樹脂複合体の初期剛性及びひずみ量は、上述の圧縮弾性率の値の測定において使用可能な方法に基づく圧縮応力-ひずみ曲線より求めることができる。
なお、前記樹脂複合体の初期剛性及びひずみ量は、上述の圧縮弾性率の値の測定において使用可能な方法に基づく圧縮応力-ひずみ曲線より求めることができる。
また、本実施形態の前記樹脂複合体は、従来の靴底用部材に用いられる発泡体に比べて圧縮永久ひずみが小さい。そのため、該樹脂複合体で形成された本実施形態の靴底用部材は、弾性回復性に優れているという利点も有する。
さらに、本実施形態の前記樹脂複合体は、前記弾性体と前記樹脂発泡粒子との界面における接着力が高い。そのため、該樹脂複合体で形成された本実施形態の靴底用部材は、高い機械的強度を有するという利点も有する。
(靴底用部材及び靴)
本実施形態の靴底用部材、及び該靴底用部材を備えた靴は、従来公知の靴の製造方法と同様にして製造することができる。
本実施形態の靴底用部材、及び該靴底用部材を備えた靴は、従来公知の靴の製造方法と同様にして製造することができる。
例えば、本実施形態の靴底用部材を備えた靴底用部材の製造方法は、以下の工程を含む。
(a)前記粒子用樹脂組成物より、上述の含浸法、押出法等により前記複数の樹脂発泡粒子をそれぞれ製造する第1工程、
(b)前記第1工程で得られた前記複数の樹脂発泡粒子に、前記弾性体を混合させる第2工程、
(c)前記第2工程で得られた混合物を成形型内に導入し、熱プレス機により該成形型を熱プレスすることにより、複数の樹脂発泡粒子と前記弾性体とが一体化された樹脂複合体を得る第3工程、及び、
(d)前記第3工程で得られた樹脂複合体で一部又は全部が形成された靴底用部材を作製する第4工程。
このような方法によれば、前記第3工程において、前記複数の第1及び第2の樹脂粒子を一回のステップにて一体化することができる。
(a)前記粒子用樹脂組成物より、上述の含浸法、押出法等により前記複数の樹脂発泡粒子をそれぞれ製造する第1工程、
(b)前記第1工程で得られた前記複数の樹脂発泡粒子に、前記弾性体を混合させる第2工程、
(c)前記第2工程で得られた混合物を成形型内に導入し、熱プレス機により該成形型を熱プレスすることにより、複数の樹脂発泡粒子と前記弾性体とが一体化された樹脂複合体を得る第3工程、及び、
(d)前記第3工程で得られた樹脂複合体で一部又は全部が形成された靴底用部材を作製する第4工程。
このような方法によれば、前記第3工程において、前記複数の第1及び第2の樹脂粒子を一回のステップにて一体化することができる。
なお、前記第3工程では、成形型を用いた熱プレスにより、靴底用部材の形状を直接成形してもよい。その場合、前記樹脂複合体で全部が形成された靴底用部材を直接製造することができるため、前記第4工程を省略できる。
以上のように、本実施形態の靴底用部材は、複数の樹脂発泡粒子と非発泡の弾性体とが一体化した樹脂複合体で一部又は全部が形成されており、前記弾性体を構成する樹脂組成物及び前記樹脂発泡粒子を構成する樹脂組成物が、いずれもポリオレフィン系樹脂を主成分として含む、又は、いずれもポリウレタン系樹脂を主成分として含むため、前記弾性体と前記樹脂発泡粒子との界面における接着力が高い。したがって、該樹脂複合体で一部又は全部が形成された靴底用部材、及び、該靴底用部材を備えた靴は、高い機械的強度を有している。
なお、本発明に係る靴底用部材及び靴は、上記実施形態の構成に限定されるものではない。また、本発明に係る靴底用部材及び靴は、上記した作用効果によって限定されるものでもない。本発明に係る靴底用部材及び靴は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
例えば、上述の実施形態における靴底用部材を形成する樹脂複合体は、前記樹脂発泡粒子が一体化された発泡体内に前記弾性体が分散したものであったが、これとは逆に、前記弾性体内に複数の樹脂発泡粒子が分散したものであってもよい。そのような靴底用部材は、複数の樹脂発泡粒子の間に非発泡の弾性体が分散した樹脂複合体で形成された靴底用部材に比べ、より柔軟な足入れ感を実現し、高負荷時における過度な変形をより抑制することができる。
また、ここではこれ以上の詳細な説明を繰り返して行うことをしないが、上記に直接的に記載がされていない事項であっても、靴底用部材について従来公知の技術事項については、本発明においても適宜採用可能である。
以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。なお、本発明は以下の実施例に限定されない。
後述する実施例1~6及び比較例1~3に使用する樹脂組成物として、以下の粒子状の材料を用いた。
・樹脂発泡粒子用材料
熱可塑性ポリウレタン1(TPU-1)
ポリオレフィン系樹脂
ポリエーテルブロックアミド(PEBA):アルケマ社製「PEBAX5533」、密度1.01g/cm3
・弾性体用材料
熱可塑性ポリウレタン2(TPU-2)
スチレン-エチレンブチレン-オレフィン結晶共重合体(SEBC):JSR社製「DAYNARON4600P」:密度0.91g/cm3
オレフィンマルチブロック共重合体(OBC):ダウケミカル社製「INFUSE9007」、密度0.87g/cm3
エチレン-αオレフィン共重合体:三井化学社製「タフマーDF840」、密度0.89g/cm3
スチレン-エチレンブチレン-スチレン共重合体1(SEBS-1):旭化成社製「タフテックH1221」、密度0.89g/cm3
スチレン-エチレンブチレン-スチレン共重合体2(SEBS-2):種々のSEBS材料を配合して得られた材料、密度0.91g/cm3
・樹脂発泡粒子用材料
熱可塑性ポリウレタン1(TPU-1)
ポリオレフィン系樹脂
ポリエーテルブロックアミド(PEBA):アルケマ社製「PEBAX5533」、密度1.01g/cm3
・弾性体用材料
熱可塑性ポリウレタン2(TPU-2)
スチレン-エチレンブチレン-オレフィン結晶共重合体(SEBC):JSR社製「DAYNARON4600P」:密度0.91g/cm3
オレフィンマルチブロック共重合体(OBC):ダウケミカル社製「INFUSE9007」、密度0.87g/cm3
エチレン-αオレフィン共重合体:三井化学社製「タフマーDF840」、密度0.89g/cm3
スチレン-エチレンブチレン-スチレン共重合体1(SEBS-1):旭化成社製「タフテックH1221」、密度0.89g/cm3
スチレン-エチレンブチレン-スチレン共重合体2(SEBS-2):種々のSEBS材料を配合して得られた材料、密度0.91g/cm3
(樹脂発泡粒子)
上記樹脂発泡粒子用材料としてのTPU、ポリオレフィン系樹脂、PEBAをそれぞれ使用し、従来公知の方法を用いて、以下の表1に示す3種類の樹脂発泡粒子1~3(Foam1~3)をそれぞれ作製した。
これらの樹脂発泡粒子1~3について、各樹脂発泡粒子の重量及び体積から密度(真密度)を算出した。結果を表1に示す。
上記樹脂発泡粒子用材料としてのTPU、ポリオレフィン系樹脂、PEBAをそれぞれ使用し、従来公知の方法を用いて、以下の表1に示す3種類の樹脂発泡粒子1~3(Foam1~3)をそれぞれ作製した。
これらの樹脂発泡粒子1~3について、各樹脂発泡粒子の重量及び体積から密度(真密度)を算出した。結果を表1に示す。
また、各樹脂発泡粒子の初期弾性率E0について、各樹脂発泡粒子ごとに以下に示す方法を用いて測定した。
まず、従来公知の方法を用いて、測定対象の樹脂発泡粒子に使用された材料と同じ種類の材料からなる樹脂発泡粒子の複数のグループであって、それぞれ密度の異なる複数のグループを作製した。
各グループごとに、作製された該樹脂発泡粒子を成形型の平板形状のキャビティ内に充填し、該成形型を水蒸気で加熱することにより該樹脂発泡粒子を一体化させて、該樹脂発泡粒子からなる樹脂発泡体を成形した。このようにして、測定対象の樹脂発泡粒子に使用された材料ごとに、密度の異なる複数の樹脂発泡体を作成した。
次に、前記密度の異なる複数の樹脂発泡体を長さ33±3mm、幅5±1mm、厚さ2±1mmの短冊状にそれぞれ切断して得た試験片について、試験片の23℃における貯蔵弾性率E’[23℃]を、測定装置として(株)ユービーエム製動的粘弾性測定装置「Rheogel-E4000」を下記の条件で用い、JIS K 7244-4:1999(ISO 6721-4:1994に同じ)に従って、23℃における貯蔵弾性率E’[23℃]をそれぞれ測定した。
その後、前記複数の樹脂発泡体につき測定された弾性率と密度との関係を示す近似式を作成し、該近似式に測定対象の樹脂発泡粒子の密度を当てはめることにより、該樹脂発泡粒子の初期弾性率E0を推定した。結果を表1に示す。
まず、従来公知の方法を用いて、測定対象の樹脂発泡粒子に使用された材料と同じ種類の材料からなる樹脂発泡粒子の複数のグループであって、それぞれ密度の異なる複数のグループを作製した。
各グループごとに、作製された該樹脂発泡粒子を成形型の平板形状のキャビティ内に充填し、該成形型を水蒸気で加熱することにより該樹脂発泡粒子を一体化させて、該樹脂発泡粒子からなる樹脂発泡体を成形した。このようにして、測定対象の樹脂発泡粒子に使用された材料ごとに、密度の異なる複数の樹脂発泡体を作成した。
次に、前記密度の異なる複数の樹脂発泡体を長さ33±3mm、幅5±1mm、厚さ2±1mmの短冊状にそれぞれ切断して得た試験片について、試験片の23℃における貯蔵弾性率E’[23℃]を、測定装置として(株)ユービーエム製動的粘弾性測定装置「Rheogel-E4000」を下記の条件で用い、JIS K 7244-4:1999(ISO 6721-4:1994に同じ)に従って、23℃における貯蔵弾性率E’[23℃]をそれぞれ測定した。
その後、前記複数の樹脂発泡体につき測定された弾性率と密度との関係を示す近似式を作成し、該近似式に測定対象の樹脂発泡粒子の密度を当てはめることにより、該樹脂発泡粒子の初期弾性率E0を推定した。結果を表1に示す。
(弾性体)
上記弾性体用材料のうち1種又は2種と、可塑剤としてのパラフィンオイル(密度0.88g/cm3)とを、表2に示す割合で、市販の二軸押出混練機を用いて120~200℃で混合することにより、以下の表2に示すゲル状の弾性体1~7(GEL1~7)をそれぞれ作製した。
これらの弾性体1~7について、各弾性体の重量及び体積から密度を算出した。また、後述する樹脂複合体に対する方法と同様の方法により、各弾性体のアスカーC硬度を測定した。結果を表2に示す。
また、各弾性体の初期弾性率E0を、以下のようにして測定した。まず、各弾性体を溶融固化して平板状に成形した後、長さ33±3mm、幅5±1mm、厚さ2±1mmの短冊状に切断し、試験片を得た。これらの試験片の23℃における貯蔵弾性率E’[23℃]を、測定装置として(株)ユービーエム製動的粘弾性測定装置「Rheogel-E4000」を下記の条件で用い、JIS K 7244-4:1999(ISO 6721-4:1994に同じ)に従い測定し、各弾性体の初期弾性率E0とした。結果を表2に示す。
測定モード :正弦波歪みの引張モード
周波数 :10Hz
チャック間距離:20mm
荷重 :自動静荷重
動歪み :5μm
昇温速度 :2℃/min
上記弾性体用材料のうち1種又は2種と、可塑剤としてのパラフィンオイル(密度0.88g/cm3)とを、表2に示す割合で、市販の二軸押出混練機を用いて120~200℃で混合することにより、以下の表2に示すゲル状の弾性体1~7(GEL1~7)をそれぞれ作製した。
これらの弾性体1~7について、各弾性体の重量及び体積から密度を算出した。また、後述する樹脂複合体に対する方法と同様の方法により、各弾性体のアスカーC硬度を測定した。結果を表2に示す。
また、各弾性体の初期弾性率E0を、以下のようにして測定した。まず、各弾性体を溶融固化して平板状に成形した後、長さ33±3mm、幅5±1mm、厚さ2±1mmの短冊状に切断し、試験片を得た。これらの試験片の23℃における貯蔵弾性率E’[23℃]を、測定装置として(株)ユービーエム製動的粘弾性測定装置「Rheogel-E4000」を下記の条件で用い、JIS K 7244-4:1999(ISO 6721-4:1994に同じ)に従い測定し、各弾性体の初期弾性率E0とした。結果を表2に示す。
測定モード :正弦波歪みの引張モード
周波数 :10Hz
チャック間距離:20mm
荷重 :自動静荷重
動歪み :5μm
昇温速度 :2℃/min
(樹脂複合体の製造)
製法A:実施例1及び比較例2,3
以下の表3に示す所定量の樹脂発泡粒子1~3を、密閉容器内に導入した。この密閉容器内に窒素を0.5MPaGの圧力で圧入した後、該密閉容器内を常温にて6時間に亘って放置した。このようにして、前記樹脂発泡粒子に窒素を含浸させた。
前記樹脂発泡粒子を該密閉容器から取り出した後、表3に示す所定量の粒子状の弾性体1又は7と混合して、混合粒子材料を作製した。続いて、該混合粒子材料を成形型のキャビティ内に充填した。この成形型を0.24MPaの水蒸気で35秒間加熱することにより前記樹脂発泡粒子を一体化させて、樹脂複合体を成形した。
得られた樹脂複合体では、前記樹脂発泡粒子が一体化した発泡体が全体として連続体となっており、該発泡体内に前記弾性体が散在していた。
製法A:実施例1及び比較例2,3
以下の表3に示す所定量の樹脂発泡粒子1~3を、密閉容器内に導入した。この密閉容器内に窒素を0.5MPaGの圧力で圧入した後、該密閉容器内を常温にて6時間に亘って放置した。このようにして、前記樹脂発泡粒子に窒素を含浸させた。
前記樹脂発泡粒子を該密閉容器から取り出した後、表3に示す所定量の粒子状の弾性体1又は7と混合して、混合粒子材料を作製した。続いて、該混合粒子材料を成形型のキャビティ内に充填した。この成形型を0.24MPaの水蒸気で35秒間加熱することにより前記樹脂発泡粒子を一体化させて、樹脂複合体を成形した。
得られた樹脂複合体では、前記樹脂発泡粒子が一体化した発泡体が全体として連続体となっており、該発泡体内に前記弾性体が散在していた。
製法B:実施例2~6及び比較例1
以下の表3に示す所定量の樹脂発泡粒子2と、表3に示す所定量の粒子状の弾性体2~7とを、市販の2本ロール混練機を用いて110℃で混練することによって、弾性体マトリクス材料を溶融させて弾性体マトリクスを形成すると共に、該弾性体マトリクス中に該樹脂発泡粒子を分散させた。その後、該混練物を室温まで冷却させた。
続いて、上記混練物を成形型のキャビティ内に充填し(このとき、該混練物をキャビティ内に充填できるようにするため、必要に応じて該混練物を切断してよい)、この成形型を熱プレス機による加圧下にて2分間加熱した後、冷水により10分間冷却することにより、前記樹脂発泡粒子を一体化させて、樹脂複合体を成形した。
得られた樹脂複合体では、前記弾性体が全体として連続体となった弾性体マトリクス中に、前記樹脂発泡粒子が散在していた。このとき、全体として、各樹脂発泡粒子の間には弾性体マトリクスが介在しており、樹脂発泡粒子同士が直接溶着されている部分はほとんど見られなかった。
以下の表3に示す所定量の樹脂発泡粒子2と、表3に示す所定量の粒子状の弾性体2~7とを、市販の2本ロール混練機を用いて110℃で混練することによって、弾性体マトリクス材料を溶融させて弾性体マトリクスを形成すると共に、該弾性体マトリクス中に該樹脂発泡粒子を分散させた。その後、該混練物を室温まで冷却させた。
続いて、上記混練物を成形型のキャビティ内に充填し(このとき、該混練物をキャビティ内に充填できるようにするため、必要に応じて該混練物を切断してよい)、この成形型を熱プレス機による加圧下にて2分間加熱した後、冷水により10分間冷却することにより、前記樹脂発泡粒子を一体化させて、樹脂複合体を成形した。
得られた樹脂複合体では、前記弾性体が全体として連続体となった弾性体マトリクス中に、前記樹脂発泡粒子が散在していた。このとき、全体として、各樹脂発泡粒子の間には弾性体マトリクスが介在しており、樹脂発泡粒子同士が直接溶着されている部分はほとんど見られなかった。
(靴底用部材の物性試験)
密度の測定
実施例1~6及び比較例1~3の樹脂複合体の密度は、樹脂複合体の重量及び体積から算出した。結果を以下の表3に示す。
密度の測定
実施例1~6及び比較例1~3の樹脂複合体の密度は、樹脂複合体の重量及び体積から算出した。結果を以下の表3に示す。
硬度の測定
実施例1~6及び比較例1~3の樹脂複合体の硬度は、アスカーC型硬度計として高分子計測器(株)社製「C型硬度計」を用いて測定した。結果を以下の表3に示す。
実施例1~6及び比較例1~3の樹脂複合体の硬度は、アスカーC型硬度計として高分子計測器(株)社製「C型硬度計」を用いて測定した。結果を以下の表3に示す。
引張強度及び伸び率の測定
実施例1~6及び比較例1~3の樹脂複合体をそれぞれ裁断して厚み4mmの平板とした後、JIS K 6251に基づくダンベル状2号形の打抜型を用いて該平板をそれぞれ裁断し、それぞれの樹脂複合体についてダンベル状試験片を得た。
これらの試験片に対し、オートグラフ精密万能試験機((株)島津製作所製、製品名「AG-50kNIS MS型」)を用いて、23℃下で、クロスヘッド速度500mm/分にてJIS K 6251に基づく引張試験を行うことにより、各試験片の引張強度及び伸び率を測定した。結果を以下の表3に示す。
実施例1~6及び比較例1~3の樹脂複合体をそれぞれ裁断して厚み4mmの平板とした後、JIS K 6251に基づくダンベル状2号形の打抜型を用いて該平板をそれぞれ裁断し、それぞれの樹脂複合体についてダンベル状試験片を得た。
これらの試験片に対し、オートグラフ精密万能試験機((株)島津製作所製、製品名「AG-50kNIS MS型」)を用いて、23℃下で、クロスヘッド速度500mm/分にてJIS K 6251に基づく引張試験を行うことにより、各試験片の引張強度及び伸び率を測定した。結果を以下の表3に示す。
表3から明らかなように、ポリウレタン系樹脂からなる樹脂発泡粒子とポリウレタン系樹脂を主成分として含む弾性体とを一体化させて得られた実施例1の樹脂複合体、及び、ポリオレフィン系樹脂からなる樹脂発泡粒子とポリオレフィン系樹脂を主成分として含む弾性体とを一体化させて得られた実施例2~6の樹脂複合体は、比較例1~3の樹脂複合体に比べて、高い引張強度を有していることがわかる。
また、樹脂発泡粒子が一体化した発泡体内に弾性体が散在している形態を備えた実施例1の樹脂複合体は、同様の形態を備えた比較例2及び3の樹脂複合体に比べて、高い伸び率を示すことがわかる。同様に、弾性体マトリクス中に発泡体が散在している形態を備えた実施例2~6の樹脂複合体もまた、同様の形態を備えた比較例1の樹脂複合体に比べて、高い伸び率を示すことがわかる。
したがって、実施例1~6の樹脂複合体は、比較例1~3の樹脂複合体に比べて、高い機械的強度を有していることがわかる。
また、樹脂発泡粒子が一体化した発泡体内に弾性体が散在している形態を備えた実施例1の樹脂複合体は、同様の形態を備えた比較例2及び3の樹脂複合体に比べて、高い伸び率を示すことがわかる。同様に、弾性体マトリクス中に発泡体が散在している形態を備えた実施例2~6の樹脂複合体もまた、同様の形態を備えた比較例1の樹脂複合体に比べて、高い伸び率を示すことがわかる。
したがって、実施例1~6の樹脂複合体は、比較例1~3の樹脂複合体に比べて、高い機械的強度を有していることがわかる。
1:靴、3:ミッドソール、4:アウターソール
Claims (5)
- 複数の樹脂発泡粒子と1つ又は複数の非発泡の弾性体とが一体化した樹脂複合体で一部又は全部が形成され、
前記1つ又は複数の弾性体を構成する樹脂組成物及び前記複数の樹脂発泡粒子を構成する樹脂組成物が、いずれもポリオレフィン系樹脂を主成分として含む、又は、いずれもポリウレタン系樹脂を主成分として含む、靴底用部材。 - 前記1つ又は複数の弾性体を構成する樹脂組成物及び前記複数の樹脂発泡粒子を構成する樹脂組成物が、いずれもポリオレフィン系樹脂を主成分として含む、請求項1に記載の靴底用部材。
- 前記1つ又は複数の弾性体を構成する樹脂組成物及び前記複数の樹脂発泡粒子を構成する樹脂組成物が、いずれもポリウレタン系樹脂を主成分として含む、請求項1に記載の靴底用部材。
- 前記1つ又は複数の弾性体の23℃における初期弾性率が、前記複数の樹脂発泡粒子の23℃における初期弾性率よりも大きい、請求項1~3のいずれか1項に記載の靴底用部材。
- 請求項1~4のいずれか1項に記載の靴底用部材を備えた靴。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18903771.6A EP3747297B1 (en) | 2018-01-31 | 2018-01-31 | Shoe sole member and shoes |
PCT/JP2018/003229 WO2019150491A1 (ja) | 2018-01-31 | 2018-01-31 | 靴底用部材及び靴 |
JP2019568478A JP6830166B2 (ja) | 2018-01-31 | 2018-01-31 | 靴底用部材及び靴 |
US16/966,515 US20210045491A1 (en) | 2018-01-31 | 2018-01-31 | Shoe sole member and shoe |
CN201880088225.3A CN111655063B (zh) | 2018-01-31 | 2018-01-31 | 鞋底用构件和鞋 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/003229 WO2019150491A1 (ja) | 2018-01-31 | 2018-01-31 | 靴底用部材及び靴 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019150491A1 true WO2019150491A1 (ja) | 2019-08-08 |
Family
ID=67477976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003229 WO2019150491A1 (ja) | 2018-01-31 | 2018-01-31 | 靴底用部材及び靴 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210045491A1 (ja) |
EP (1) | EP3747297B1 (ja) |
JP (1) | JP6830166B2 (ja) |
CN (1) | CN111655063B (ja) |
WO (1) | WO2019150491A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7128982B1 (ja) * | 2021-01-28 | 2022-08-31 | 株式会社アシックス | 靴 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08238111A (ja) | 1995-03-02 | 1996-09-17 | Moon Star Co | 靴底の製法 |
JP2013220354A (ja) | 2012-04-13 | 2013-10-28 | Adidas Ag | 運動靴用のソール |
JP2014151210A (ja) | 2013-02-13 | 2014-08-25 | Adidas Ag | シューズ用ソール |
JP2014521418A (ja) | 2011-07-28 | 2014-08-28 | プーマ エス イー | 靴のソールまたはソール部分の製造方法 |
JP2015513354A (ja) * | 2012-03-23 | 2015-05-11 | アムフィット、インク.Amfit, Inc. | 履物用ダイナミックサポート |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3425630B2 (ja) * | 1994-07-28 | 2003-07-14 | 株式会社ジェルテック | 緩衝エレメント並びにこれを具えた靴 |
JPH11123104A (ja) * | 1997-10-20 | 1999-05-11 | Discovery:Kk | 弾性と通気性を有する靴底材とその製造方法。 |
US7073277B2 (en) * | 2003-06-26 | 2006-07-11 | Taylor Made Golf Company, Inc. | Shoe having an inner sole incorporating microspheres |
KR200342160Y1 (ko) * | 2003-11-05 | 2004-02-18 | 오은영 | 재생신발창 |
SI2109637T1 (sl) * | 2007-01-16 | 2018-09-28 | Basf Se | Hibridni sistemi iz penjenih termoplastičnih elastomerov in poliuretanov |
US20140259753A1 (en) * | 2013-03-15 | 2014-09-18 | Nike, Inc. | Modified thermoplastic elastomers for increased compatibility with supercritical fluids |
US9498927B2 (en) * | 2013-03-15 | 2016-11-22 | Nike, Inc. | Decorative foam and method |
TW201736423A (zh) * | 2015-09-11 | 2017-10-16 | 三晃股份有限公司 | 發泡熱塑性聚氨基甲酸酯及其微波成型體 |
TWI629155B (zh) * | 2015-10-02 | 2018-07-11 | 馮榮崇 | Insole and method of manufacturing same |
CN106883503B (zh) * | 2017-03-21 | 2020-02-07 | 安踏(中国)有限公司 | 一种橡塑复合发泡材料及其制备方法和应用 |
-
2018
- 2018-01-31 WO PCT/JP2018/003229 patent/WO2019150491A1/ja unknown
- 2018-01-31 JP JP2019568478A patent/JP6830166B2/ja active Active
- 2018-01-31 CN CN201880088225.3A patent/CN111655063B/zh active Active
- 2018-01-31 EP EP18903771.6A patent/EP3747297B1/en active Active
- 2018-01-31 US US16/966,515 patent/US20210045491A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08238111A (ja) | 1995-03-02 | 1996-09-17 | Moon Star Co | 靴底の製法 |
JP2014521418A (ja) | 2011-07-28 | 2014-08-28 | プーマ エス イー | 靴のソールまたはソール部分の製造方法 |
JP2015513354A (ja) * | 2012-03-23 | 2015-05-11 | アムフィット、インク.Amfit, Inc. | 履物用ダイナミックサポート |
JP2013220354A (ja) | 2012-04-13 | 2013-10-28 | Adidas Ag | 運動靴用のソール |
JP2014151210A (ja) | 2013-02-13 | 2014-08-25 | Adidas Ag | シューズ用ソール |
Non-Patent Citations (1)
Title |
---|
See also references of EP3747297A4 |
Also Published As
Publication number | Publication date |
---|---|
US20210045491A1 (en) | 2021-02-18 |
CN111655063A (zh) | 2020-09-11 |
CN111655063B (zh) | 2022-02-25 |
JP6830166B2 (ja) | 2021-02-17 |
JPWO2019150491A1 (ja) | 2020-11-19 |
EP3747297B1 (en) | 2023-07-19 |
EP3747297A4 (en) | 2021-03-31 |
EP3747297A1 (en) | 2020-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111182813B (zh) | 鞋底用构件和鞋 | |
WO2019150492A1 (ja) | 靴底用部材及び靴 | |
EP3384797B1 (en) | Member for shoe soles, and shoe | |
JP6484768B2 (ja) | 靴底用部材及び靴 | |
KR101229688B1 (ko) | 구두창용 부재 | |
EP3530429B1 (en) | Method for manufacturing thermoplastic elastomer foaming particle molded body | |
WO2019150491A1 (ja) | 靴底用部材及び靴 | |
CN111670111B (zh) | 树脂成型体和鞋底用构件的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18903771 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019568478 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018903771 Country of ref document: EP Effective date: 20200831 |