WO2019150454A1 - 車線変更の支援装置、決定方法、およびコンピュータプログラム - Google Patents

車線変更の支援装置、決定方法、およびコンピュータプログラム Download PDF

Info

Publication number
WO2019150454A1
WO2019150454A1 PCT/JP2018/003067 JP2018003067W WO2019150454A1 WO 2019150454 A1 WO2019150454 A1 WO 2019150454A1 JP 2018003067 W JP2018003067 W JP 2018003067W WO 2019150454 A1 WO2019150454 A1 WO 2019150454A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
vehicles
lane
index
relative acceleration
Prior art date
Application number
PCT/JP2018/003067
Other languages
English (en)
French (fr)
Inventor
中野 貴之
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2018/003067 priority Critical patent/WO2019150454A1/ja
Publication of WO2019150454A1 publication Critical patent/WO2019150454A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions

Definitions

  • the present invention relates to a lane change support device, a determination method, and a computer program.
  • the lane change assisting device includes a plurality of second vehicles traveling in the second lane when the first vehicle traveling in the first vehicle changes lanes to the second vehicle.
  • a lane change assisting device for determining a succeeding vehicle to follow the first vehicle after the lane change, wherein the current position and current vehicle speed of the first vehicle, the current position of each of the plurality of second vehicles, and Based on the acquired current position and the current vehicle speed of the first vehicle and the second vehicle acquired, the first vehicle is substantially constant with the second vehicle in front of the second vehicle based on the acquired current vehicle speed.
  • a determination unit for calculating a relative acceleration with respect to the second vehicle and a determination of determining a succeeding vehicle from the plurality of second vehicles based on the relative acceleration calculated for each of the plurality of second vehicles. Part.
  • the determination method when the first vehicle traveling on the first vehicle changes lanes to the second vehicle, includes a plurality of second vehicles traveling on the second lane. To determine the succeeding vehicle that follows the first vehicle after the lane change, and obtains the current position and current vehicle speed of the first vehicle and the current position and current vehicle speed of each of the plurality of second vehicles. Based on the step, the acquired current positions of the first vehicle and the second vehicle, and the current vehicle speed, the first vehicle is required to be substantially constant speed with the second vehicle in front of the second vehicle, Calculating a relative acceleration with respect to the second vehicle, and determining a succeeding vehicle from among the plurality of second vehicles based on the relative acceleration calculated for each of the plurality of second vehicles.
  • the computer program when the first vehicle traveling on the first vehicle changes lanes to the second vehicle, the computer program is configured to store the second vehicle in a plurality of second vehicles traveling on the second lane.
  • a computer program for causing a computer to function as a lane change support device for determining a succeeding vehicle to follow the first vehicle after the lane change, wherein the computer includes the current position and the current vehicle speed of the first vehicle; Based on the acquired current position and current vehicle speed of the first vehicle and the second vehicle, the first vehicle is located in front of the second vehicle based on the acquired current position and current vehicle speed of each of the plurality of second vehicles.
  • the calculation unit for calculating the relative acceleration with respect to the second vehicle, which is necessary to be substantially the same speed as the second vehicle, Determination unit for determining a following vehicle from two vehicles, to function as a.
  • FIG. 1 is an overall configuration diagram of a communication system according to an embodiment.
  • FIG. 2 is a block diagram showing the configuration of the in-vehicle system.
  • FIG. 3 is a block diagram illustrating an internal configuration of the relay apparatus.
  • FIG. 4 is a block diagram showing the internal configuration of the in-vehicle communication device.
  • FIG. 5 is an explanatory diagram showing the content and generation method of “predicted travel behavior data”.
  • FIG. 6 is an explanatory diagram of an outline of processing in the in-vehicle communication device.
  • FIG. 7 is a sequence diagram showing the flow of support processing.
  • FIG. 8 is a diagram illustrating an example of a positional relationship between the vehicles illustrated in FIG. FIG.
  • FIG. 9 is a diagram showing a calculation result of the relative position between the joining vehicle and the joined vehicle when the positions of the vehicles are in the positional relationship of FIG.
  • FIG. 10 is a diagram illustrating a calculation result of the relative speed between the joining vehicle and the joined vehicle when the vehicle speed of each vehicle is the vehicle speed illustrated in FIG. 6.
  • FIG. 11 is a diagram schematically showing the relationship between the relative speed and the elapsed time.
  • FIG. 12 is a diagram illustrating a calculation result of relative acceleration between the joining vehicle and the joining vehicle when the calculation result of the relative position is FIG. 9 and the calculation result of the relative speed is FIG.
  • FIG. 13 is a diagram showing a state of lane change of the joining vehicle when the subsequent vehicle is determined as shown in FIG.
  • Patent Documents 1 and 2 change the lane of the target vehicle. It may not be possible to support properly.
  • An object of an aspect of the present disclosure is to provide a lane change support device, a determination method, and a computer program that can appropriately support a lane change of a vehicle between vehicles that perform wireless communication (inter-vehicle communication) with another vehicle. Is to provide.
  • lane change (merging) from a low-speed lane to a high-speed lane is properly supported between vehicles that perform wireless communication (vehicle-to-vehicle communication) with other vehicles.
  • the target vehicle can increase the success rate of smooth lane change in cooperation with surrounding vehicles.
  • the lane change assist device included in the present embodiment includes a plurality of vehicles that are traveling in the second lane when the first vehicle traveling in the first vehicle changes lanes to the second vehicle.
  • a relative acceleration with respect to the second vehicle necessary for achieving a constant speed and a relative acceleration calculated for each of the plurality of second vehicles based on a plurality of second vehicles.
  • a determination unit for determining By determining the subsequent vehicle from among the plurality of second vehicles based on the relative acceleration of the first vehicle with respect to each of the plurality of second vehicles, it is possible to determine a subsequent vehicle that does not change significantly in relative acceleration. Accordingly, it is possible to support the realization of the lane change of the first vehicle without greatly changing the traveling conditions of the first vehicle and the entire second vehicle.
  • n converging vehicles Ai (i 1 to n: n is a natural number) arranged in the first lane from the downstream side to the upstream side in the vehicle traveling direction.
  • Relative acceleration with respect to the merged vehicle Bj required for each merged vehicle Ai to become substantially constant speed with the merged vehicle Bj immediately before each merged vehicle Bj is calculated for each combination of indexes i and j.
  • the determination unit can determine the following vehicle by the following method.
  • the determination unit combines one relative acceleration selected from the relative acceleration group for each index i from the relative acceleration calculated for each combination of indexes i and j, and calculates an absolute value of the combination.
  • the correspondence relationship between the index i and the index j that minimizes the sum is extracted, and the merged vehicle Bj of the index j that has a correspondence relationship with the index i of the merged vehicle Ai is determined as the subsequent vehicle of the merged vehicle Ai.
  • the determination unit combines one relative acceleration selected from the relative acceleration group for each index i from the relative acceleration calculated for each combination of indexes i and j, and calculates an absolute value of the combination.
  • the correspondence relationship between the index i and the index j that minimizes the variation is extracted, and the joined vehicle Bj of the index j that has a correspondence relationship with the index i of the joining vehicle Ai is determined as the succeeding vehicle of the joining vehicle Ai.
  • a determination part extracts a correspondence according to the following 1st constraint conditions.
  • First constraint The value of index j selected from the relative acceleration group of index i is equal to or less than the value of index j selected from the relative acceleration group of index (i + 1).
  • the joined vehicle Bj of the succeeding vehicle candidate of the joining vehicle Ai is the vehicle traveling direction from the joined vehicle of the succeeding vehicle candidate of the joining vehicle Ai + 1 immediately after the joining vehicle Ai.
  • the vehicle is traveling upstream (front).
  • a determination part extracts a correspondence according to the following 2nd constraint conditions.
  • Second constraint condition The number of joining vehicles Ai preceding the joining vehicle Bj is equal to or less than a predetermined value. Thereby, the bias
  • a determination part determines a subsequent vehicle from the 2nd vehicles whose relative acceleration is smaller than a threshold value among several 2nd vehicles. Accordingly, the number of second vehicles that are candidates for the following vehicle can be reduced based on the comparison between the relative acceleration and the threshold value. As a result, the processing of the determination unit can be facilitated.
  • the lane change assisting device further includes a notifying unit that generates and transmits an inter-vehicle communication frame including data for notifying the first vehicle of the determined subsequent vehicle.
  • the first vehicle can specify the notified second vehicle as a subsequent vehicle.
  • the vehicle is accelerated at a predetermined point ahead of the second vehicle identified as the following vehicle until the vehicle speed of the second vehicle reaches a speed within a predetermined range. It is possible to perform a lane change operation using the second vehicle as the succeeding vehicle, such as changing the lane at the position. Thereby, possibility that the lane change (merging) of the 1st vehicle will succeed becomes high.
  • the determination method included in the present embodiment is the lane change assisting device according to any one of (1) to (8), wherein the first vehicle that is traveling the first vehicle is the second This is a method of determining a succeeding vehicle that follows the first vehicle after the lane change from a plurality of second vehicles traveling in the second lane when the lane is changed to this vehicle. Such a determination method has the same effect as the lane change assisting device of the above (1) to (8).
  • a computer program included in the present embodiment causes a computer to function as the lane change assisting device according to any one of (1) to (8).
  • Such a computer program has the same effects as the lane change assisting device of the above (1) to (8).
  • FIG. 1 is an overall configuration diagram of a communication system according to an embodiment.
  • the communication system of the present embodiment includes an in-vehicle communication device (in-vehicle device) 19 mounted on each of a plurality of vehicles 1.
  • in-vehicle device in-vehicle device
  • the in-vehicle communication device 19 is a wireless communication device that performs wireless communication (vehicle-to-vehicle communication) with another vehicle 1 traveling on the road. Therefore, in the present embodiment, the in-vehicle communication device 19 of the vehicle 1 is also referred to as “vehicle-to-vehicle communication device 19”, and the communication system is also referred to as “vehicle-to-vehicle communication system”. In the present embodiment, the in-vehicle communication device 19 employs a multi-access method based on a CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance) method.
  • CSMA / CA Carrier Sense Multiple Access / Collision Avoidance
  • the in-vehicle communication device 19 adopts, for example, a multi-access method following the “700 MHz band highway traffic system standard (ARIB STD-T109)”. According to this method, the in-vehicle communication device 19 broadcasts a communication frame for inter-vehicle communication every predetermined time (for example, 0.1 second). Therefore, the vehicle 1 that is performing the inter-vehicle communication can detect the vehicle information of the other vehicles around the own vehicle almost in real time by using the communication frame received from the other vehicle included in the radio signal transmission / reception range.
  • a multi-access method following the “700 MHz band highway traffic system standard (ARIB STD-T109)”.
  • the in-vehicle communication device 19 broadcasts a communication frame for inter-vehicle communication every predetermined time (for example, 0.1 second). Therefore, the vehicle 1 that is performing the inter-vehicle communication can detect the vehicle information of the other vehicles around the own vehicle almost in real time by using the communication frame received from the other vehicle included in the radio signal transmission
  • the communication method of the inter-vehicle communication is not limited to the above-mentioned standard, and may be one in which communication technology for mobile phones such as 3GPP cellular V2V is applied to the wireless communication of the vehicle 1.
  • FIG. 2 is a block diagram showing the configuration of the in-vehicle system.
  • each vehicle 1 includes an in-vehicle system 10.
  • the in-vehicle system 10 includes a relay device 20, a communication network 12, and various in-vehicle devices that are electronically controlled by an ECU belonging to the communication network 12.
  • the communication network 12 includes a plurality of in-vehicle communication lines 13 terminating in the relay device 20 and a plurality of in-vehicle control devices (hereinafter referred to as “ECUs”) 16 connected to the in-vehicle communication lines 13.
  • the communication network 12 is capable of communication between the ECUs 16 and includes a master / slave type communication network (for example, LIN (Local Interconnect Network)) having the relay device 20 as a terminal node (master unit).
  • the relay device 20 controls a plurality of communication networks 12.
  • the communication network 12 uses not only LIN but also communication standards such as CAN (Controller Area Network), CANFD (CAN with Flexible Data Rate), Ethernet (registered trademark), or MOST (Media Oriented Systems Transport: MOST is a registered trademark). It may be a network to be adopted. Further, the network configuration of the communication network 12 may include the relay device 20 and at least one ECU 16.
  • CAN Controller Area Network
  • CANFD CAN with Flexible Data Rate
  • Ethernet registered trademark
  • MOST Media Oriented Systems Transport: MOST is a registered trademark
  • MOST Media Oriented Systems Transport
  • the common code of the communication network is “12”, and the individual codes of the communication network are “12A to 12C”. Further, the common code of the ECU is “16”, and the individual codes of the ECU are “16A1 to 16A4”, “16B1 to 16B3”, and “16C1 to 16C2”.
  • Each communication network 12A, 12B, 12C shares a different control field of the vehicle 1, respectively.
  • a power system ECU that controls a drive device of the vehicle 1 is connected to the communication network 12A.
  • the communication network 12B is connected to a multimedia ECU that controls the information device of the vehicle 1.
  • Connected to the communication network 12C is an ADAS ECU that controls an Advanced Driver-Assistance System (ADAS) that supports the driving operation of the vehicle 1.
  • ADAS Advanced Driver-Assistance System
  • the communication network 12 is not limited to the above three types, and may be four or more types. Further, the control field associated with the communication network 12 varies depending on the design philosophy of the vehicle manufacturer, and is not limited to the above-mentioned sharing of the control field.
  • the ADAS-ECU 16C1 can switch to the passenger's manual operation without using the sensing results of the first and second sensors 51 and 52.
  • the vehicle 1 can execute the autonomous driving mode of level 4 and can use the level 1 to 3 support operation mode or the manual operation mode (level 0) as the downgraded operation mode. Either can be performed.
  • the operation mode is switched by manual operation input by the passenger.
  • the relay device 20 transmits a control packet (hereinafter also referred to as “control command”) to control the ECU 16.
  • control command a control packet
  • ECU16 performs predetermined control with respect to the object apparatus in charge according to the instruction
  • the relay device 20 When controlling the autonomous operation mode, the relay device 20 issues a control command to the ECUs 16A1 to 16A4 of the communication network 12A based on the sensing results of the first and second sensors 51 and 52 received from the environment recognition ECU 16C2. Send the control packet that contains it.
  • the in-vehicle system 10 further includes an in-vehicle communication device 19 that performs wireless communication with the other vehicle 1.
  • the in-vehicle communication device 19 is connected to the relay device 20 via a communication line of a predetermined standard.
  • the relay device 20 relays information received by the in-vehicle communication device 19 from the other vehicle 1 to the ECU 16.
  • the relay device 20 relays the information received from the ECU 16 to the in-vehicle communication device 19.
  • the in-vehicle communication device 19 wirelessly transmits the relayed information to the other vehicle 1.
  • the vehicle-mounted communication device 19 mounted on the vehicle 1 may be a device such as a mobile phone, a smartphone, a tablet terminal, or a notebook computer (Personal Computer) owned by the user.
  • FIG. 3 is a block diagram showing an internal configuration of the relay device 20.
  • the relay device 20 of the vehicle 1 includes a control unit 21, a storage unit 22, an in-vehicle communication unit 23, and the like.
  • the control unit 21 of the relay device 20 includes a CPU (Central Processing Unit).
  • the CPU of the control unit 21 has a function for reading out one or a plurality of programs stored in the storage unit 22 and executing various processes.
  • the CPU of the control unit 21 can execute a plurality of programs in parallel, for example, by switching and executing a plurality of programs in a time division manner.
  • the CPU of the control unit 21 includes one or a plurality of large scale integrated circuits (LSIs).
  • LSIs large scale integrated circuits
  • the plurality of LSIs cooperate to realize the function of the CPU.
  • the computer program executed by the CPU of the control unit 21 may be written in advance in a factory, may be provided through a specific tool, or transferred by downloading from a computer device such as a server computer. You can also.
  • the storage unit 22 includes a nonvolatile memory element such as a flash memory or an EEPROM (Electrically Erasable Programmable Read Only Memory).
  • the storage unit 22 has a storage area for storing a program executed by the CPU of the control unit 21 and data necessary for the execution.
  • a plurality of in-vehicle communication lines 13 provided in the vehicle 1 are connected to the in-vehicle communication unit 23.
  • the in-vehicle communication unit 23 includes a communication device that communicates with the ECU 16 in accordance with a predetermined communication standard such as LIN.
  • the in-vehicle communication unit 23 transmits information given from the CPU of the control unit 21 to a predetermined ECU 16, and the ECU 16 gives information of the transmission source to the CPU of the control unit 21.
  • the in-vehicle communication device 19 transmits the information given from the control unit 21 to the other vehicle 1 and gives the information received from the other vehicle 1 to the control unit 21.
  • the in-vehicle communication device 19 is illustrated as an in-vehicle device that performs inter-vehicle communication with the other vehicle 1, but when the relay device 20 has a wireless communication function, the relay device 20 itself is the other vehicle. It is good also as an in-vehicle device which performs communication between 1 and vehicles.
  • FIG. 4 is a block diagram showing an internal configuration of the in-vehicle communication device 19.
  • the in-vehicle communication device 19 includes a control unit 191, a storage unit 192, a wireless communication unit 193, and the like.
  • the control unit 191 of the in-vehicle communication device 19 includes a CPU.
  • the CPU of the control unit 191 has a function for reading out one or a plurality of programs stored in the storage unit 192 and executing various processes.
  • the CPU of the control unit 191 can execute a plurality of programs in parallel, for example, by switching and executing a plurality of programs in a time division manner.
  • the CPU of the control unit 191 includes one or a plurality of large scale integrated circuits (LSIs).
  • LSIs large scale integrated circuits
  • the plurality of LSIs cooperate to realize the function of the CPU.
  • the computer program executed by the CPU of the control unit 191 may be written in advance at the factory, may be provided via a specific tool, or transferred by downloading from a computer device such as a server computer. You can also.
  • the storage unit 192 includes a nonvolatile memory element such as a flash memory or an EEPROM.
  • the storage unit 192 has a storage area for storing programs executed by the CPU of the control unit 191 and data necessary for execution.
  • An antenna 194 for wireless communication is connected to the wireless communication unit 193.
  • the wireless communication unit 193 transmits the information given from the control unit 191 to the other vehicle 1 from the antenna 194 and gives the information received from the other vehicle 1 by the antenna 194 to the control unit 191.
  • the CPU of the control unit 191 transmits the information given from the wireless communication unit 193 to the relay device 20 and gives the information received from the relay device 20 to the wireless communication unit 193.
  • FIG. 5 is an explanatory diagram showing the content and generation method of “predicted travel behavior data” that the in-vehicle communication device 19 transmits to the other vehicle 1 through inter-vehicle communication.
  • the predicted traveling behavior data D includes information such as a time within a future predicted period Tc for a relatively short predetermined time (for example, 10 seconds) from the current time, and the absolute position and direction of the vehicle 1 at that time.
  • the in-vehicle communication device 19 performs a map matching process between the received planned travel route and map information, and the like, and a plurality of discrete positions (absolute positions) of the vehicle 1 during the prediction period Tc and the direction of the vehicle 1 at each discrete position. Is calculated. Specifically, when the vehicle 1 continues to travel straight in the lane R1 during the prediction period Tc, the in-vehicle communication device 19 moves along the lane R1 on a straight travel schedule route (an arrow indicated by a broken line in FIG. 5), A plurality of discrete positions (positions indicated by circles in FIG. 5) and directions of the vehicle 1 are calculated at fixed or indefinite time intervals (or distance intervals).
  • the in-vehicle communication device 19 has a curved traveling schedule route extending from the lane R1 to the lane R2 (an arrow indicated by a one-dot chain line in FIG. 5). ) In the above, a plurality of discrete positions (positions indicated by ⁇ in FIG. 5) and azimuths of the vehicle 1 are calculated at constant or indefinite time intervals (or distance intervals).
  • the in-vehicle communication device 19 calculates a time corresponding to each discrete position based on the time interval and the time at the current time t0. Further, when the in-vehicle communication device 19 calculates a plurality of discrete positions of the vehicle 1 at distance intervals, the vehicle-mounted communication device 19 calculates the distance from the current position of the vehicle 1 to each discrete position based on the distance intervals, and calculates the calculated distance and the vehicle. The time corresponding to each discrete position is calculated based on the estimated traveling speed of 1.
  • the estimated traveling speed of the vehicle 1 can be acquired from the ADAS-ECU 16C1.
  • the time within the prediction period Tc and the absolute position and direction of the vehicle 1 may be calculated by the ADAS-ECU 16C1, and the calculated time, discrete position, and direction may be transmitted to the in-vehicle communication device 19.
  • the “vehicle attribute” stores, for example, values such as the vehicle width and length of the own vehicle, and an identification value of the vehicle application type (such as a private vehicle or emergency vehicle) of the own vehicle. Since the values of the vehicle width, the vehicle length, and the vehicle use type are fixed values, the same value is stored in the “vehicle attribute” corresponding to each time. In “Vehicle attributes” in FIG. 5, specific numerical values are omitted. In “azimuth”, the value of the direction of the host vehicle corresponding to each time within the prediction period Tc calculated by the above method is stored. In “azimuth” in FIG. 5, description of specific numerical values is omitted.
  • the other vehicle 1 passing through the host vehicle and its surroundings transmits / receives the predicted traveling behavior data D to / from each other when the in-vehicle communication devices 19 perform inter-vehicle communication.
  • the host vehicle and the other vehicle 1 that passes around the vehicle can share the predicted traveling behavior data D with each other.
  • the time of a fixed time interval is stored in the “time” of the predicted traveling behavior data D, but the time of an indefinite time interval may be stored.
  • the indefinite time interval depends on each value such as the speed of the host vehicle, the distance between the host vehicle and the other vehicle, and the collision allowance time (TTC: Time To Collision) until the host vehicle collides with the other vehicle. It can be set appropriately.
  • the predicted traveling behavior data D may include other information such as the speed and acceleration of the host vehicle.
  • the speed of the own vehicle can be obtained by differentiating the absolute position of the own vehicle
  • the acceleration of the own vehicle can be obtained by differentiating the speed obtained from the absolute position of the own vehicle. For this reason, it is not always necessary to include the speed and acceleration of the host vehicle in the predicted traveling behavior data D.
  • FIG. 6 is an explanatory diagram of an outline of processing in the in-vehicle communication device 19.
  • FIG. 6 shows that vehicles A1, A2, A3, A4, and A5 traveling on a lane R3 (first lane) that is a side road (merging lane) are lanes R1 and R2 that are main roads of an expressway. The case where the lane is changed to the lane R1 (second lane) adjacent to the lane R3 is shown.
  • the vehicles A1, A2, A3, A4, A5 are arranged in this order from the downstream side to the upstream side in the vehicle traveling direction of the lane R3.
  • the processing in the in-vehicle communication device 19 is executed when the lane is changed from the merging lane to the main lane shown in FIG. 6, that is, when a vehicle traveling on the merging lane joins a vehicle traveling on the main lane.
  • vehicles B1, B2, B3, B4, and B5 are arranged in this order from the downstream side to the upstream side in the vehicle traveling direction.
  • the dotted lines in FIG. 6 indicate the current planned travel routes for the vehicles A1, A2, A3, A4, and A5.
  • one or more vehicles that exist on the side road (lane R3) and merge with the vehicle that is traveling on the main line (lane R1) are merged vehicles
  • a plurality of vehicles (B1, B2, B3, B4, B5) on the main line (lane R1) and joined from the side road (lane R3) are also referred to as merged vehicles.
  • one of the merging vehicle or the merging vehicle serves as a leader vehicle, and executes support processing for supporting the lane change (merging) of the merging vehicle.
  • the leader vehicle is not limited to a specific vehicle.
  • the vehicle A1 that is the leading vehicle in the lane R3 is the leader vehicle.
  • the vehicle A1 is described as executing the support process.
  • the leader vehicle is not limited to the leading vehicle (vehicle A1) on the lane R3, but is a merging vehicle at another position (for example, the last vehicle A5). It may be.
  • the leader vehicle may be one of the merged vehicles.
  • the in-vehicle communication device 19 of the vehicle A1 is a case where the traveling schedule route of the host vehicle has a lane change, and when it detects that the condition to become a leader vehicle (leader condition) is satisfied, it assists in front of a predetermined point of the lane change point. Start processing.
  • the leader condition in this example is that the host vehicle is the head of a vehicle (merging vehicle) scheduled to change lanes from the first lane (lane R3) to the second lane (lane R1). is there. In other words, there is no vehicle scheduled to change to the second lane (lane R1) ahead of the traveling direction of the same first lane (lane R3) as the host vehicle. That is, the fact that the host vehicle is at the top includes that the vehicle (junction vehicle) scheduled to change to the second lane (lane R1) is only one host vehicle.
  • the specific method for determining whether or not the leader condition is satisfied is not limited to a specific method.
  • the determination is made based on predicted traveling behavior data (FIG. 5) received from another vehicle by inter-vehicle communication.
  • the determination may be made based on whether or not blinking of the weinkers of the front and rear vehicles is detected from an image acquired by the first sensor 51 or the second sensor 52 such as a camera.
  • the support process includes a process of determining a succeeding vehicle from among the merged vehicles with respect to the vehicle (merging vehicle) whose lane is to be changed.
  • the succeeding vehicle refers to a joined vehicle in which the joined vehicle after the lane change is followed without another joined vehicle.
  • FIG. 7 is a flowchart showing the flow of support processing.
  • the processing in FIG. 7 is repeatedly executed by the control unit 191 of the in-vehicle communication device 19 of each vehicle at a predetermined timing while the host vehicle is traveling.
  • the support process is a process of determining whether or not the host vehicle is a leader vehicle (step S100), and a process of acquiring vehicle information that is executed when the host vehicle is determined to be a leader vehicle (step S101). ), A process of calculating information necessary for support, determining a succeeding vehicle based on the calculation result (steps S103 to S111), and a process of notifying the determined succeeding vehicle to the joining vehicle (step S113). .
  • control unit 191 of the in-vehicle communication device 19 of the vehicle A1 causes the CPU to execute one or a plurality of programs stored in the storage unit 192, thereby obtaining an acquisition unit 195, a calculation unit 196, And it functions as a notification part 197 (FIG. 4).
  • the control unit 191 of the in-vehicle communication device 19 of the vehicle A ⁇ b> 1 determines whether the own vehicle is based on predicted traveling behavior data (FIG. 5) obtained by inter-vehicle communication from another vehicle. It is determined whether or not the above leader condition is satisfied. If the leader condition is not satisfied (NO in step S100), the series of processing ends without performing the subsequent support processing.
  • the control unit 191 acquires vehicle information including the current position and current vehicle speed of the merged vehicle and the merged vehicle existing in the vicinity (step S101).
  • the vehicle information acquisition method here is not limited to a specific method.
  • the control unit 191 acquires vehicle information of another vehicle by the first sensor 51 or the second sensor 52 such as an ultrasonic sensor or a camera.
  • vehicle information of other vehicles may be acquired from predicted traveling behavior data (FIG. 5) obtained by inter-vehicle communication with other vehicles.
  • vehicle information of other vehicles may be acquired from a roadside device by wireless communication.
  • the vehicle information of the host vehicle may be acquired from ECUs such as the EPS-ECU 16A2 and the navigation ECU 16B1.
  • step S101 the control unit 191 of the in-vehicle communication device 19 of the vehicle A1 displays the current vehicle speeds VA1 (50 [km / h]) and VA2 (respectively) of the vehicles A1, A2, A3, A4, and A5 shown in FIG.
  • PB1, PB2, PB3, PB4, and PB5 are represented by coordinates.
  • the control unit 191 of the in-vehicle communication device 19 of the vehicle A1 uses the current position (FIG. 8) of each vehicle acquired in step S101, and the current interval (relative position) S [ m] is calculated (step S103).
  • the relative position S with each of the merging vehicles is calculated for each merging vehicle.
  • FIG. 9 is a diagram showing a calculation result of the relative position S between the joining vehicle and the joined vehicle when the current position of each vehicle in FIG. 6 is the position shown in FIG.
  • the first row in FIG. 9 represents each vehicle that joins, and the first column represents each vehicle that joins.
  • each column indicates the relative position S of the merged vehicle indicated in the intersecting row with respect to the merged vehicle indicated in the intersecting column.
  • the relative position S that is not calculated in FIG. 9 is an interval between a merging vehicle (also referred to as a non-corresponding vehicle) that is traveling ahead of the merging vehicle and that is not a candidate for the following vehicle. It is. Thereafter, the vehicle information of the non-corresponding vehicle is not used for calculation for determining the subsequent vehicle.
  • F1
  • the index i 1 to 5
  • the variables X1, X2, X3, X4, and X5 are generated from the two-dimensional array yij in FIG.
  • the evaluation function F1 of the equation (4) is specifically the following equation (5).
  • F1
  • An element yij of the variable Xi is an average acceleration ⁇ of the joining vehicle Ai with respect to the joined vehicle Bj.
  • the index j 1 to 5
  • the variables X1, X2, X3, X4, and X5 after the filtering process in step S109 are composed of the following elements, respectively.
  • step S111 the control unit 191 extracts a combination (a correspondence relationship between the index i and the index j) of the merged vehicle Ai and the merged vehicle Bj that minimizes the value of the evaluation function F1 in accordance with the following first constraint condition.
  • First constraint The value of index j selected as a value to be assigned to the evaluation function F1 from among the elements of the variable Xi is the value of index j selected as the value to be assigned to the evaluation function F1 from the elements of the variable Xi + 1 It is as follows.
  • the first constraint condition described above is that the joined vehicle Bj, which is a subsequent vehicle candidate of the joining vehicle Ai, travels upstream (forward) in the vehicle traveling direction from the joined vehicle candidate of the succeeding vehicle candidate of the joining vehicle Ai + 1 immediately after the joining vehicle Ai. It means that the vehicle is. As a result, the possibility of a collision or contact can be suppressed without crossing the travel route when a plurality of merging vehicles change lanes.
  • step S111 the control unit 191 extracts a combination of the merged vehicle Ai and the merged vehicle Bj that minimizes the value of the evaluation function F1 in accordance with the following second constraint condition.
  • Second restriction condition The number of merging vehicles Ai that precede the merging vehicle Bj is equal to or less than a predetermined value (for example, 2).
  • the second restriction condition described above means that more than a predetermined number of merged vehicles do not enter the lane change immediately before one merged vehicle Bj. Thereby, the bias
  • the evaluation function used when determining the following vehicle in step S111 is not limited to the evaluation function F1 shown in the above equation (4).
  • Another example of the evaluation function may be an evaluation function F2 representing variation in the relative acceleration ⁇ .
  • the evaluation function representing the variation of the relative acceleration ⁇ is, for example, standard deviation, and is represented by the following formula (6), where AV () is an average value.
  • F2 ⁇ (( ⁇ (

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

第1の車線を走行中の第1車両が第2の車線に車線変更する場合に、前記第2の車線を走行中の複数の第2車両の中から、車線変更後の前記第1車両に後続させる後続車両を決定する、車線変更の支援装置であって、前記第1車両の現在位置および現在車速と、前記複数の第2車両それぞれの現在位置および現在車速と、を取得する取得部と、取得した前記第1車両および前記第2車両の現在位置および現在車速に基づいて、前記第1車両が前記第2車両の前方において当該第2車両と実質的に等速になるのに必要な、当該第2車両に対する相対加速度を算出する算出部と、前記複数の第2車両ごとに算出した相対加速度に基づいて、前記複整の第2車両の中から前記後続車両を決定する決定部と、を有する、車線変更の支援装置。

Description

車線変更の支援装置、決定方法、およびコンピュータプログラム
 この発明は車線変更の支援装置、決定方法、およびコンピュータプログラムに関する。
 車両の車線変更を支援する技術が、たとえば特開2017-19358号公報、および特開2009-78735号公報によって開示されている。これら文献では、カメラやレーダ等のセンサを利用して対象車両の周辺車両を検知し、周辺車両との位置関係に基づいて対象車両の車線変更を支援している。
特開2017-19358号公報 特開2009-78735号公報
 ある実施の形態に従うと、車線変更の支援装置は、第1の車両を走行中の第1車両が第2の車両に車線変更する場合に、第2の車線を走行中の複数の第2車両の中から、車線変更後の第1車両に後続させる後続車両を決定する、車線変更の支援装置であって、第1車両の現在位置および現在車速と、複数の第2車両それぞれの現在位置および現在車速と、を取得する取得部と、取得した第1車両および第2車両の現在位置および現在車速に基づいて、第1車両が第2車両の前方において当該第2車両と実質的に等速になるのに必要な、当該第2車両に対する相対加速度を算出する算出部と、複数の第2車両ごとに算出した相対加速度に基づいて、複数の第2車両の中から後続車両を決定する決定部と、を有する。
 他の実施の形態に従うと、決定方法は、第1の車両を走行中の第1車両が第2の車両に車線変更する場合に、第2の車線を走行中の複数の第2車両の中から、車線変更後の第1車両に後続させる後続車両を決定する方法であって、第1車両の現在位置および現在車速と、複数の第2車両それぞれの現在位置および現在車速と、を取得するステップと、取得した第1車両および第2車両の現在位置および現在車速に基づいて、第1車両が第2車両の前方において当該第2車両と実質的に等速になるのに必要な、当該第2車両に対する相対加速度を算出するステップと、複数の第2車両ごとに算出した相対加速度に基づいて、複数の第2車両の中から後続車両を決定するステップと、を備える。
 他の実施の形態に従うと、コンピュータプログラムは、第1の車両を走行中の第1車両が第2の車両に車線変更する場合に、第2の車線を走行中の複数の第2車両の中から、車線変更後の第1車両に後続させる後続車両を決定する、車線変更の支援装置としてコンピュータを機能させるためのコンピュータプログラムであって、コンピュータを、第1車両の現在位置および現在車速と、複数の第2車両それぞれの現在位置および現在車速と、を取得する取得部と、取得した第1車両および第2車両の現在位置および現在車速に基づいて、第1車両が第2車両の前方において当該第2車両と実質的に等速になるのに必要な、当該第2車両に対する相対加速度を算出する算出部と、複数の第2車両ごとに算出した相対加速度に基づいて、複数の第2車両の中から後続車両を決定する決定部、として機能させる。
図1は、実施の形態にかかる通信システムの全体構成図である。 図2は、車内システムの構成を示すブロック図である。 図3は、中継装置の内部構成を示すブロック図である。 図4は、車載通信機の内部構成を示すブロック図である。 図5は、「予測走行挙動データ」の内容及び生成方法を示す説明図である。 図6は、車載通信機における処理の概要の説明図である。 図7は、支援処理の流れを表したシーケンス図である。 図8は、図6の各車両の位置関係の一例を表した図である。 図9は、各車両の位置が図8の位置関係である場合の、合流車両と被合流車両との相対位置の算出結果を表した図である。 図10は、各車両の車速が図6に示される車速である場合の、合流車両と被合流車両との相対速度の算出結果を表した図である。 図11は、相対速度と経過時間との関係を模式的に表した図である。 図12は、相対位置の算出結果が図9、および、相対速度の算出結果が図10である場合の、合流車両と被合流車両との相対加速度の算出結果を表した図である。 図13は、後続車両が図12に示されるように決定された場合の、合流車両の車線変更の様子を表した図である。
<本開示が解決しようとする課題>
 対象車両が本線に車線変更(合流)しようとしているときに、本線を走行中の周辺車両が予測不能な走行挙動を行った場合には、特許文献1,2の技術では対象車両の車線変更を適切に支援できない場合がある。
 また、本線を走行中の車両が複数台あった場合、1台の対象車両の車線変更を支援することによって、多くの車両の走行に影響を及ぼす場合もある。
 本開示のある局面における目的は、他車両との間で無線通信(車車間通信)を行う車両間での車両の車線変更を適切に支援できる車線変更の支援装置、決定方法、およびコンピュータプログラムを提供することである。
<本開示の効果>
 この開示によると、他車両との間で無線通信(車車間通信)を行う車両間での車両の、低速走行用の車線から高速走行用の車線への車線変更(合流)が適切に支援され、当該対象車両は、周囲の車両と協調したスムーズな車線変更の成功率を高めることができる。
<実施の形態の説明>
 本実施の形態には、少なくとも以下のものが含まれる。すなわち、
 (1)本実施の形態に含まれる車線変更の支援装置は、第1の車両を走行中の第1車両が第2の車両に車線変更する場合に、第2の車線を走行中の複数の第2車両の中から、車線変更後の第1車両に後続させる後続車両を決定する、車線変更の支援装置であって、第1車両の現在位置および現在車速と、複数の第2車両それぞれの現在位置および現在車速と、を取得する取得部と、取得した第1車両および第2車両の現在位置および現在車速に基づいて、第1車両が第2車両の前方において当該第2車両と実質的に等速になるのに必要な、当該第2車両に対する相対加速度を算出する算出部と、複数の第2車両ごとに算出した相対加速度に基づいて、複数の第2車両の中から後続車両を決定する決定部と、を有する。
 第1車両の複数の第2車両それぞれに対する相対加速度に基づいて複数の第2車両の中から後続車両が決定されることによって、相対加速度が大きく変化しないような後続車両を決定することができる。これによって、第1車両および第2車両全体の走行状況を大きく変化させることなく、第1車両の車線変更の実現を支援することができる。
 (2)好ましくは、車両進行方向の下流側から上流側に並ぶn台の第1車両である合流車両Ai(i=1~n:nは自然数)が第1の車線に存在し、車両進行方向の下流側から上流側に並ぶm台の第2車両である被合流車両Bj(j=1~m:mは2以上の自然数)が第2の車線に存在する場合に、算出部は、各合流車両Aiが各被合流車両Bjの直前において当該被合流車両Bjと実質的に等速になるのに必要な、当該被合流車両Bjに対する相対加速度を、インデックスiおよびjの組合せごとに算出する。
 上記相対加速度がインデックスiおよびjの組合せごとに算出されることで、決定部は、下の方法で後続車両を決定することができる。
 (3)好ましくは、決定部は、インデックスiおよびjの組合せごとに算出された相対加速度からインデックスiごとの相対加速度群より選択された1つの相対加速度を組合せ、当該組合せのうちの絶対値の総和が最小となるインデックスiとインデックスjとの対応関係を抽出し、合流車両Aiのインデックスiと対応関係にあるインデックスjの被合流車両Bjを、当該合流車両Aiの後続車両と決定する。
 上記方法で各第1車両の後続車両が決定されることによって、第1車両の車線変更の際に第1車両および第2車両全体としての速度変化を抑えることができる後続車両を決定することができる。
 (4)好ましくは、決定部は、インデックスiおよびjの組合せごとに算出された相対加速度からインデックスiごとの相対加速度群より選択された1つの相対加速度を組合せ、当該組合せのうちの絶対値のばらつきが最小となるインデックスiとインデックスjとの対応関係を抽出し、合流車両Aiのインデックスiと対応関係にあるインデックスjの被合流車両Bjを、当該合流車両Aiの後続車両と決定する。
 上記方法で各第1車両の後続車両が決定されることによって、第1車両の車線変更の際に第1車両および第2車両全体としての速度変化を抑えることができる後続車両を決定することができる。
 (5)好ましくは、決定部は、下記の第1の制約条件に従って対応関係を抽出する。
  第1の制約条件:インデックスiの相対加速度群から選択するインデックスjの値は、インデックス(i+1)の相対加速度群から選択するインデックスjの値以下である。
 上記の第1の制約条件に従って対応関係を抽出することで、合流車両Aiの後続車両候補の被合流車両Bjは、合流車両Ai直後の合流車両Ai+1の後続車両候補の被合流車両より車両進行方向の上流(前方)を走行している車両となる。これにより、複数台の合流車両が車線変更する際に走行ルートが交差することなく、衝突や接触の可能性を抑えることができる。
 (6)好ましくは、決定部は、下記の第2の制約条件に従って対応関係を抽出する。
  第2の制約条件:1台の被合流車両Bjに先行させる合流車両Aiの台数は所定値以下である。
 これにより、複数の第2車両間で後続車両となる負担の偏りを抑えることができる。
 (7)好ましくは、決定部は、複数の第2車両のうちの、相対加速度が閾値よりも小さい第2車両の中から後続車両を決定する。
 これにより、相対加速度と閾値との比較に基づいて、後続車両の候補となる第2車両の数を減らすことができる。その結果、決定部の処理を容易にすることができる。
 (8)好ましくは、車線変更の支援装置は、決定された後続車両を第1車両に通知するデータを含む車車間通信フレームを生成し、送信する通知部をさらに有する。
 これにより、第1車両は、通知された第2車両を後続車両と特定することができる。そして、第1車両では、予め規定されたプログラムの実行に従って、後続車両と特定された第2車両の前方の所定地点において当該第2車両の車速から所定範囲内の速度となるまで加速し、その位置において車線変更する、などの、第2車両を後続車両とした車線変更の動作を行うことができる。これにより、第1車両の車線変更(合流)が成功する可能性が高くなる。
 (9)本実施の形態に含まれる決定方法は、(1)~(8)のいずれか1項に記載の車線変更の支援装置において、第1の車両を走行中の第1車両が第2の車両に車線変更する場合に、第2の車線を走行中の複数の第2車両の中から、車線変更後の第1車両に後続させる後続車両を決定する方法である。
 かかる決定方法は、上記(1)~(8)の車線変更の支援装置と同様の効果を奏する。
 (10)本実施の形態に含まれるコンピュータプログラムは、コンピュータを、(1)~(8)のいずれか1つに記載の車線変更の支援装置として機能させる。
 かかるコンピュータプログラムは、上記(1)~(8)の車線変更の支援装置と同様の効果を奏する。
<実施形態の詳細>
 以下、図面を参照して、実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
 <第1の実施の形態>
 [通信システムの全体構成]
 図1は、実施形態に係る通信システムの全体構成図である。
 図1に示すように、本実施形態の通信システムは、複数の車両1にそれぞれ搭載された車載通信機(車載装置)19を備える。
 車載通信機19は、道路を通行中の他車両1との間で無線通信(車車間通信)を行う無線通信機である。従って、本実施形態では、車両1の車載通信機19を「車車間通信装置19」ともいい、通信システムを「車車間通信システム」ともいう。
 本実施形態では、車載通信機19は、CSMA/CA(Carrier Sense Multiple Access/ Collision Avoidance)方式によるマルチアクセス方式を採用している。
 より具体的には、車載通信機19は、例えば「700MHz帯高度道路交通システム標準規格(ARIB STD-T109)」に倣ったマルチアクセス方式を採用している。
 この方式によれば、車載通信機19は、車車間通信の通信フレームを所定時間(例えば0.1秒)ごとにブロードキャスト送信する。従って、車車間通信を実行中の車両1は、無線信号の送受信範囲に含まれる他車両から受信した通信フレームにより、自車両の周囲の他車両の車両情報をほぼリアルタイムで察知することができる。
 車車間通信の通信方式は、上記の標準規格に限定されるものではなく、例えば3GPPのセルラーV2Vなど、携帯電話向けの通信技術を車両1の無線通信に応用したものであってもよい。
 [車内システムの構成]
 図2は、車内システムの構成を示すブロック図である。
 図2に示すように、各車両1は、車内システム10を備える。車内システム10は、中継装置20と、通信ネットワーク12と、通信ネットワーク12に属するECUにより電子制御される各種の車載機器とを含む。
 通信ネットワーク12は、中継装置20において終端する複数の車内通信線13と、各車内通信線13に接続された複数の車載制御装置(以下、「ECU」という。)16と、を備える。
 通信ネットワーク12は、ECU16相互間の通信が可能であり、中継装置20を終端ノード(親機)とするマスター/スレーブ型の通信ネットワーク(例えば、LIN(Local Interconnect Network))よりなる。中継装置20は、複数の通信ネットワーク12を制御する。
 通信ネットワーク12は、LINだけでなく、CAN(Controller Area Network)、CANFD(CAN with Flexible Data Rate)、Ethernet(登録商標)、又はMOST(Media Oriented Systems Transport:MOSTは登録商標)などの通信規格を採用するネットワークであってもよい。
 また、通信ネットワーク12のネットワーク構成としては、中継装置20と少なくとも1つのECU16とが含まれておればよい。
 以下において、通信ネットワークの共通符号を「12」とし、通信ネットワークの個別符号を「12A~12C」とする。また、ECUの共通符号を「16」とし、ECUの個別符号を「16A1~16A4」、「16B1~16B3」及び「16C1~16C2」とする。
 各通信ネットワーク12A,12B,12Cは、車両1の異なる制御分野をそれぞれ分担している。
 例えば、通信ネットワーク12Aには、車両1の駆動機器を制御対象とするパワー系ECUが接続されている。通信ネットワーク12Bには、車両1の情報機器を制御対象とするマルチメディア系ECUが接続されている。通信ネットワーク12Cには、車両1の運転操作を支援する先進運転支援システム(ADAS:Advanced Driver-Assistance Systems)を制御対象とするADAS系ECUが接続されている。
 通信ネットワーク12は、上記の3種類に限らず4種類以上であってもよい。また、通信ネットワーク12に対応付ける制御分野は、車両メーカーの設計思想に応じて様々であり、上記の制御分野の分担に限定されるものではない。
 具体的には、通信ネットワーク12Aに接続されているパワー系ECUには、例えば、エンジンECU16A1、EPS-ECU16A2、ブレーキECU16A3、及びABS-ECU16A4などが含まれる。
 エンジンECU16A1には、エンジンの燃料噴射装置31が接続されており、燃料噴射装置31は、エンジンECU16A1によって制御される。
 EPS-ECU16A2には、EPS(Electric Power Steering:電動パワーステアリング)32が接続されており、EPS32は、EPS-ECU16A2によって制御される。ブレーキECU16A3には、ブレーキアクチュエータ33が接続されており、ブレーキアクチュエータ33は、ブレーキECU16A3によって制御される。
 ABS-ECU16A4には、ABS(Antilock Brake System)アクチュエータ34が接続されており、ABSアクチュエータ34は、ABS-ECU16A4によって制御される。
 通信ネットワーク12Bに接続されているマルチメディア系ECUには、例えば、ナビゲーションECU16B1、メータECU16B2、及びHUD-ECU16B3などが含まれる。
 ナビゲーションECU16B1には、SSD(Solid State Drive)41、ディスプレイ42、GPS(Global Positioning System)受信機43、車速センサ44、ジャイロセンサ45、スピーカ46、及び入力デバイス47が接続されている。
 ディスプレイ42とスピーカ46は、各種情報を自車両の搭乗者に提示するための出力装置である。具体的には、ディスプレイ42は、自車両周辺の地図画像及び目的地までの経路情報などを表示し、スピーカ46は、自車両を目的地に誘導するためのアナウンスを音声出力する。
 入力デバイス47は、搭乗者が目的地等の各種入力を行うためのものであり、操作スイッチ、ジョイスティック、或いはディスプレイ42に設けたタッチパネル等の各種入力手段により構成される。
 ナビゲーションECU16B1は、GPS受信機43が定期的に取得したGPS信号から現時点の時刻を取得する時刻同期機能と、GPS信号から自車両の絶対位置(緯度、経度及び高度)を求める位置検出機能と、車速センサ44及びジャイロセンサ45によって自車両の位置及び方位を補間して自車両の正確な現在位置及び方位を求める補間機能などを有する。
 ナビゲーションECU16B1は、求めた現在位置に応じてHDD41に格納された地図情報を読み出し、地図情報に自車両の現在位置を重ねた地図画像を生成する。そして、ナビゲーションECU16B1は、ディスプレイ42に地図画像を表示させ、その地図画像に現在位置から目的地までの経路情報などを表示する。
 HUD-ECU16B3には、HUD(Head-Up Display)49が接続されており、HUD49は、HUD-ECU16B3によって制御される。
 通信ネットワーク12Cに接続されているADAS系ECUには、例えば、ADAS-ECU16C1、及び環境認識ECU16C2などが含まれる。
 環境認識ECU16C2には、第1センサ51及び第2センサ52が接続されており、第1及び第2センサ51,52は、環境認識ECU16C2によって制御される。
 第1センサ51は、例えば、車両1の前後左右の四隅に配置された超音波センサやビデオカメラなどよりなる(図1参照)。
 前側に設けられた第1センサ51は、主として自車両の前方に存在する物体を検出するためのセンサであり、後側に設けられた第1センサ51は、主として自車両の後方に存在する物体を検出するためのセンサである。
 第2センサ52は、例えば、車両1の天井部分に配置された超音波センサやビデオカメラなどよりなる(図1参照)。第2センサ52は、鉛直軸心回りに比較的高速で回転自在となっており、自車両の周囲に存在する物体を検出するためのセンサである。
 第1及び第2センサ51,52のセンシング結果は、環境認識ECU16C2によって通信パケットに格納されてADAS-ECU16C1に送信される。
 ADAS-ECU16C1は、第1及び第2センサ51,52のセンシング結果に基づいて、例えばレベル1~4までのいずれかの自動運転を実行可能である。自動運転のレベルはSAE(Society of Automotive Engineers)インターナショナルのJ3016(2016年9月)に定義が記載されている。
 「官民ITS構想・ロードマップ2017」も当該定義を採用している。このロードマップでは、レベル3以上の自動運転を「高度自動運転」と呼び、レベル4及び5の自動運転を「完全自動運転」と呼ぶ。本実施形態における「自動運転」は、レベル2以上の自動運転を意味する。
 ADAS-ECU16C1は、レベル5の自動運転を実行可能であってもよいが、本出願時点では、レベル5の自動運転を行う車両1は未だ実現されていない。
 レベル1~3までの自動運転(以下、「支援運転」ともいう。)の例としては、第1センサ51によって検出した物体と自車両の間の距離から衝突可能性を予測し、衝突可能性が高いと判断した場合に減速介入したり、搭乗者に注意喚起したりするように、パワー系ECUやマルチメディア系ECUに制御指令を送信するものがある。
 レベル4及び5の自動運転(以下、「自律運転」ともいう。)の例としては、第1及び第2センサ51,52によって検出した物体に予期される挙動を、過去の挙動の深層学習などにより予測し、予測した挙動に基づいて自車両が目的位置に指向するように、パワー系ECUやマルチメディア系ECUに制御指令を送信するものがある。
 ADAS-ECU16C1は、第1及び第2センサ51,52によるセンシング結果を利用せず、搭乗者の手動運転に切り替えることもできる。
 このように、本実施形態の車両1は、レベル4の自律運転モードの実行が可能であるとともに、ダウングレードした動作モードとして、レベル1~3の支援運転モード又は手動運転モード(レベル0)のいずれかを実行することができる。動作モードの切り替えは、搭乗者による手動の操作入力などによって行われる。
 中継装置20は、ECU16を制御するために制御パケット(以下、「制御指令」ともいう。)を送信する。ECU16は、受信した制御パケットに含まれる指令内容に従って、担当する対象機器に対して所定の制御を実行する。
 自律運転モードを制御する場合、中継装置20は、環境認識ECU16C2から受信した第1及び第2センサ51,52のセンシング結果に基づいて、通信ネットワーク12Aの各ECU16A1~16A4に対して、制御指令を含む制御パケットを送信する。
 そして、中継装置20から制御パケットを受信した各ECU16A1~16A4が、制御パケットに含まれる指令内容に従って、燃料噴射装置31、EPS32、ブレーキアクチュエータ33、及びABSアクチュエータ34をそれぞれ制御することにより、自律運転モードが実行される。
 車内システム10は、更に、他車両1と無線通信を行う車載通信機19を備える。車載通信機19は、所定規格の通信線を介して中継装置20に接続されている。中継装置20は、他車両1から車載通信機19が受信した情報をECU16に中継する。
 中継装置20は、ECU16から受信した情報を、車載通信機19に中継する。車載通信機19は、中継された情報を他車両1に無線送信する。
 車両1に搭載される車載通信機19は、ユーザが所有する携帯電話機、スマートフォン、タブレット型端末、ノートPC(Personal Computer)等の装置であってもよい。
 [中継装置の構成]
 図3は、中継装置20の内部構成を示すブロック図である。
 図3に示すように、車両1の中継装置20は、制御部21、記憶部22、及び車内通信部23などを備える。
 中継装置20の制御部21は、CPU(Central Processing Unit)を含む。制御部21のCPUは、記憶部22等に記憶された1又は複数のプログラムを読み出して、各種処理を実行するための機能を有している。
 制御部21のCPUは、例えば時分割で複数のプログラムを切り替えて実行することにより、複数のプログラムを並列的に実行可能である。
 制御部21のCPUは、1又は複数の大規模集積回路(LSI)を含む。複数のLSIを含むCPUでは、複数のLSIが協働して当該CPUの機能を実現する。
 制御部21のCPUが実行するコンピュータプログラムは、予め工場で書き込まれていてもよいし、特定のツールを介して提供されてもよいし、または、サーバコンピュータなどのコンピュータ装置からのダウンロードによって譲渡することもできる。
 記憶部22は、フラッシュメモリ若しくはEEPROM(Electrically Erasable Programmable Read Only Memory)などの不揮発性のメモリ素子よりなる。
 記憶部22は、制御部21のCPUが実行するプログラム及び実行に必要なデータなどを記憶する記憶領域を有する。
 車内通信部23には、車両1に配設された複数の車内通信線13が接続されている。車内通信部23は、LINなどの所定の通信規格に則ってECU16と通信する通信装置よりなる。
 車内通信部23は、制御部21のCPUから与えられた情報を所定のECU16宛てに送信し、ECU16が送信元の情報を制御部21のCPUに与える。
 車載通信機19は、制御部21から与えられた情報を他車両1に送信するとともに、他車両1から受信した情報を制御部21に与える。
 図3の例では、車載通信機19が他車両1と車車間通信を行う車載装置として例示しているが、中継装置20が無線通信の機能を有する場合には、中継装置20自身が他車両1と車車間通信を行う車載装置としてもよい。
 [車載通信機の構成]
 図4は、車載通信機19の内部構成を示すブロック図である。
 図4に示すように、車載通信機19は、制御部191、記憶部192、及び無線通信部193などを備える。
 車載通信機19の制御部191は、CPUを含む。制御部191のCPUは、記憶部192等に記憶された1又は複数のプログラムを読み出して、各種処理を実行するための機能を有している。
 制御部191のCPUは、例えば時分割で複数のプログラムを切り替えて実行することにより、複数のプログラムを並列的に実行可能である。
 制御部191のCPUは、1又は複数の大規模集積回路(LSI)を含む。複数のLSIを含むCPUでは、複数のLSIが協働して当該CPUの機能を実現する。
 制御部191のCPUが実行するコンピュータプログラムは、予め工場で書き込まれていてもよいし、特定のツールを介して提供されてもよいし、または、サーバコンピュータなどのコンピュータ装置からのダウンロードによって譲渡することもできる。
 記憶部192は、フラッシュメモリ若しくはEEPROMなどの不揮発性のメモリ素子よりなる。
 記憶部192は、制御部191のCPUが実行するプログラム及び実行に必要なデータなどを記憶する記憶領域を有する。
 無線通信部193には、無線通信のためのアンテナ194が接続されている。無線通信部193は、制御部191から与えられた情報をアンテナ194から他車両1に送信するとともに、他車両1からアンテナ194により受信した情報を制御部191に与える。
 制御部191のCPUは、無線通信部193から与えられた情報を中継装置20に送信し、中継装置20から受信した情報を無線通信部193に与える。
 [予測走行挙動データの内容及び生成方法]
 図5は、車載通信機19が車車間通信により他車両1に送信する「予測走行挙動データ」の内容及び生成方法を示す説明図である。予測走行挙動データDには、現時点から比較的短い所定時間(例えば10秒)だけ未来の予測期間Tc内の時刻と、その時刻における車両1の絶対位置及び方位などの情報が含まれる。
 予測期間Tc内の時刻と、車両1の絶対位置及び方位は、以下のように算出される。例えば、図5の下段に示す道路平面図において、車両1が車線R1を自動運転で走行している場合、車両1のADAS-ECU16C1は、現時点t0で実行中の自動運転の内容に応じて、予測期間Tc中における走行予定ルートを算出し、算出した走行予定ルートを車載通信機19に送信する。
 車載通信機19は、受信した走行予定ルートと地図情報とのマップマッチング処理等を行って、予測期間Tc中における車両1の複数の離散位置(絶対位置)と、各離散位置における車両1の方位を算出する。具体的には、予測期間Tc中において車両1が車線R1を直進し続ける場合、車載通信機19は、車線R1に沿って直線状の走行予定ルート(図5の破線で示す矢印)上において、一定又は不定の時間間隔(又は距離間隔)で、車両1の複数の離散位置(図5の○印で示す位置)及び方位を算出する。
 また、予測期間Tc中において車両1が車線R1から車線R2に車線変更する場合、車載通信機19は、車線R1から車線R2へ延びる曲線状の走行予定ルート(図5の1点鎖線で示す矢印)上において、一定又は不定の時間間隔(又は距離間隔)で、車両1の複数の離散位置(図5の△印で示す位置)及び方位を算出する。
 車載通信機19は、車両1の複数の離散位置を時間間隔で算出する場合、この時間間隔と現時点t0の時刻に基づいて、各離散位置に対応する時刻を算出する。また、車載通信機19は、車両1の複数の離散位置を距離間隔で算出する場合、この距離間隔に基づいて車両1の現在位置から各離散位置までの距離を算出し、算出した距離と車両1の走行予定速度に基づいて各離散位置に対応する時刻を算出する。車両1の走行予定速度は、ADAS-ECU16C1から取得することができる。
 なお、予測期間Tc内の時刻と車両1の絶対位置及び方位は、ADAS-ECU16C1で算出し、算出した時刻、離散位置及び方位を車載通信機19に送信してもよい。
 図5の上段に示すように、本実施形態の予測走行挙動データDには、「車両ID」、「時刻」、「絶対位置」、「車両属性」、「方位」などの格納領域が含まれる。
 「時刻」には、現時点の時刻の値、及び上記方法で算出された予測期間Tc内の各時刻の値が格納される。現時点の時刻の値は、上記の時刻同期機能を有するナビゲーションECU16B1(図2参照)から中継装置20を介して取得することができる。
 「車両ID」には、自車両の車両IDの値が格納される。車両IDの値は固定値であるため、各時刻に対応する「車両ID」には、全て同じ値が格納される。
 「絶対位置」は、上記方法で算出された予測期間Tc内の各時刻に対応する自車両の絶対位置を示す緯度、経度及び高度の各値が格納される。図5の「絶対位置」では、緯度及び経度の値のみを示している。
 「車両属性」には、例えば、自車両の車幅および車長などの値、および自車両の車両用途種別(自家用車両又は緊急車両など)の識別値が格納される。車幅、車長、及び車両用途種別の各値は固定値であるため、各時刻に対応する「車両属性」には、全て同じ値が格納される。図5の「車両属性」では、具体的な数値の記載を省略している。
 「方位」には、上記方法で算出された予測期間Tc内の各時刻に対応する自車両の方位の値が格納される。図5の「方位」では、具体的な数値の記載を省略している。
 自車両及びその周辺を通行する他車両1は、車載通信機19同士が車車間通信を行うことで、予測走行挙動データDを互いに送受信する。これにより、自車両、及びその周辺を通行する他車両1が、互いに予測走行挙動データDを共有することができる。
 なお、図5の例では、予測走行挙動データDの「時刻」に、一定時間間隔の時刻が格納されているが、不定時間間隔の時刻が格納されていてもよい。この場合、不定時間間隔は、自車両の速度、自車両と他車両との車間距離、自車両が他車両に衝突するまでの衝突余裕時間(TTC:Time To Collision)などの各値に応じて適宜設定することができる。
 また、予測走行挙動データDには、自車両の速度や加速度などの他の情報を含めてもよい。但し、自車両の速度は、自車両の絶対位置を微分することで求めることができ、自車両の加速度は、自車両の絶対位置から求めた速度を微分することで求めることができる。このため、予測走行挙動データDには、自車両の速度及び加速度は必ずしも含める必要はない。
 [処理概要]
 図6は、車載通信機19における処理の概要の説明図である。図6は、側道(合流車線)である車線R3(第1の車線)を走行している車両A1,A2,A3,A4,A5が、高速道路の本線である車線R1,R2のうちの、車線R3に隣接する車線R1(第2の車線)に車線変更する場合を示している。車両A1,A2,A3,A4,A5は、車線R3の車両進行方向の下流側から上流側にこの順に並んでいる。車載通信機19における処理は、一例として、図6に示された、合流車線から本線に車線変更する場合、つまり、合流車線を走行中の車両が本線を走行中の車両と合流する場合に実行されるものとする。車線R1には、車両進行方向の下流側から上流側に車両B1,B2,B3,B4,B5がこの順に並んで存在している。図6の点線は、車両A1,A2,A3,A4,A5それぞれの、現在の走行予定ルートを示している。
 なお、以降の説明において、側道(車線R3)に存在し、本線(車線R1)を走行中の車両に合流する1台以上の車両(A1,A2,A3,A4,A5)を合流車両、本線(車線R1)に存在し、側道(車線R3)から合流される側の複数台の車両(B1,B2,B3,B4,B5)を被合流車両とも称する。
 本実施の形態においては、合流車両または被合流車両のうちの1台がリーダー車両となって、合流車両の車線変更(合流)を支援する支援処理を実行する。リーダー車両は特定の車両に限定されない。一例として、図6の例の場合、車線R3の先頭車両である車両A1がリーダー車両となる。以降の説明では、車両A1が支援処理を実行するものとして説明するが、リーダー車両が車線R3の先頭車両(車両A1)に限定されず、他の位置(たとえば最後尾の車両A5等)合流車両であってもよい。または、リーダー車両は、被合流車両のうちの1台であってもよい。
 車両A1の車載通信機19は、自車両の走行予定ルートが車線変更を有する場合であって、リーダー車両となる条件(リーダー条件)を満たすことを検出すると、車線変更地点の所定地点手前において支援処理を開始する。この例でのリーダー条件は、自車両が、第1の車線(車線R3)から第2の車線(車線R1)への車線変更を予定している車両(合流車両)の先頭であること、である。言い換えると、自車両と同じ第1の車線(車線R3)の走行方向の前方に、第2の車線(車線R1)への車線変更を予定している車両が存在しないこと、である。つまり、自車両が先頭であることは、第2の車線(車線R1)への車線変更を予定している車両(合流車両)が自車両1台のみであることを含む。
 リーダー条件を満たすか否かの具体的な判定方法は特定の方法に限定されない。一例として、他車両から車車間通信によって受信した予測走行挙動データ(図5)に基づいて判定する。他の例として、カメラなどである第1センサ51または第2センサ52によって取得された画像より、前後の車両のウェインカーの点滅を検出するか否かに基づいて判定してもよい。
 支援処理は、車線変更する車両(合流車両)に対して、被合流車両の中から後続車両を決定する処理を含む。後続車両とは、車線変更後の合流車両に、他の被合流車両を間に存在させることなく後続させる被合流車両を指す。
 図7は、支援処理の流れを表したフローチャートである。図7の処理は、各車両の車載通信機19の制御部191が、自車両の走行中の所定のタイミングで繰り返し実行する。図7を参照して、支援処理は、自車両がリーダー車両であるか否かを判定する処理(ステップS100)、リーダー車両と判定された場合に実行する、車両情報を取得する処理(ステップS101)、支援に必要な情報を算出し、算出結果に基づいて後続車両を決定する処理(ステップS103~S111)、および、決定された後続車両を合流車両に通知する処理(ステップS113)、を含む。
 かかる支援処理を実行するために、車両A1の車載通信機19の制御部191は、CPUが記憶部192に記憶された1又は複数のプログラムを実行することによって、取得部195、算出部196、および、通知部197として機能する(図4)。
 詳しくは、図7を参照して、車両A1の車載通信機19の制御部191は、他車両からの車車間通信によって得られた予測走行挙動データ(図5)などに基づいて、自車両が上記のリーダー条件を満たすか否かを判定する。リーダー条件を満たさない場合には(ステップS100でNO)、以降の支援処理を行うことなく一連の処理を終了する。
 自車両がリーダー条件を満たす場合(ステップS101でYES)、制御部191は、合流車両、および、周辺に存在する被合流車両の現在位置および現在車速を含む車両情報を取得する(ステップS101)。ここでの車両情報の取得方法は特定の方法に限定されない。一例として、制御部191は、超音波センサやカメラなどである第1センサ51または第2センサ52によって他車両の車両情報を取得する。他の例として、他の車両との車車間通信によって得られた予測走行挙動データ(図5)から他車両の車両情報を取得してもよい。また、他の例として、路側機から無線通信によって他車両の車両情報を取得してもよい。なお、自車両の車両情報は、EPS-ECU16A2、ナビゲーションECU16B1、などのECUから取得してもよい。
 ステップS101で車両A1の車載通信機19の制御部191は、図6に示された、車両A1,A2,A3,A4,A5それぞれの現在の車速VA1(50[km/h]),VA2(45[km/h]),VA3(45[km/h]),VA4(40[km/h]),VA5(40[km/h])、および、車両B1,B2,B3,B4,B5それぞれの現在の車速VB1(80[km/h]),VB2(90[km/h]),VB3(75[km/h]),VB4(80[km/h]),VB5(85[km/h])と、図8に示された各車両の現在位置と、を取得したものとする。
 図8は、車両A1,A2,A3,A4,A5および車両B1,B2,B3,B4,B5の位置関係を表した図であって、各車両の現在位置PA1,PA2,PA3,PA4,PA5およびPB1,PB2,PB3,PB4,PB5を座標で表している。
 次に、車両A1の車載通信機19の制御部191は、ステップS101で取得された各車両の現在位置(図8)を用いて、被合流車両それぞれとの現時点における間隔(相対位置)S[m]を算出する(ステップS103)。図6の例のように、合流車両が自車両以外にも複数台存在する場合、合流車両ごとに被合流車両それぞれとの相対位置Sを算出する。図9は、図6の各車両の現在位置が図8に示される位置である場合の合流車両と被合流車両との相対位置Sの算出結果を表した図である。図9の第1行は合流車両各車両を表し、第1列は被合流車両各車両を表している。各欄の値は、交差する行に示される合流車両の、交差する列に示される被合流車両に対する相対位置Sを示している。以降の算出結果も同様である。なお、図9において算出されていない(空欄の)相対位置Sは、合流車両よりも前方を走行している、後続車両の候補とならない被合流車両(非該当車両とも称する)との間の間隔である。以降、非該当車両の車両情報は、後続車両を決定するための算出に用いられない。
 また、車両A1の車載通信機19の制御部191は、ステップS101で取得された各車両の車速(図6)を用いて、合流車両と被合流車両それぞれとの間の現在の車速の差異(相対速度)RV[km/h]を算出する(ステップS105)。図6の例のように、合流車両が自車両以外にも複数台存在する場合、合流車両ごとに被合流車両それぞれとの間の相対速度RVを算出する。図10は、各車両の車速が図6に示される車速である場合の相対速度RVの算出結果を表した図である。
 次に、車両A1の車載通信機19の制御部191は、下の1),2)を前提として、合流車両の被合流車両それぞれに対する平均相対加速度(以下、相対加速度)αを算出する(ステップS107)。図6の例のように、合流車両が自車両以外にも複数台存在する場合、合流車両ごとに被合流車両それぞれに対する相対加速度αを算出する。
  1)合流車両は被合流車両の直前の所定地点において被合流車両と実質的に等速となるまで加速する
  2)合流車両は等加速度で加速する
 なお、前提1)の被合流車両の前方の所定地点は、一例として、被合流車両の前方5mであるものとする。また、被合流車両と実質的に等速となる車速は、一例として、被合流車両の車速と等しい、または、被合流車両の車速から所定範囲内の車速とする。
 上の2)を前提とすると、相対加速度αと相対速度RVとは、経過時間t[s]を用いて下の式(1)を満たす。
   相対加速度α×経過時間t=相対速度RV  …(1)
 式(1)より、相対速度RVと経過時間tとは図11に示す関係となる。図11は、相対速度RVと経過時間tとの関係を表した概略図である。
 相対速度RVと経過時間tとの関係を示す直線と各軸とで構成される領域(図11のハッチング部分)の面積は、合流車両に対する被合流車両の(相対位置S-5)に相当する。図11の関係および上の前提1)より、相対位置S、相対速度RV、および経過時間tは、下の式(2)を満たす。
   (相対位置S-5)=相対速度RV×経過時間t/2  …(2)
 式(2)より、相対加速度αは下の式(3)で求められる。
   相対加速度α=(相対速度RV)2/(2×(相対位置S-5))  …(3)
 ステップS107で車載通信機19の制御部191は、上の式(3)にステップS103で算出された相対位置S、および、ステップS105で算出された相対速度RVを代入することによって相対加速度αを算出する。
 図12は、ステップS103の相対位置Sの算出結果が図9、および、ステップS105の相対速度RVの算出結果が図10である場合の、合流車両と被合流車両との相対加速度αの算出結果を表した図である。図12は、車両進行方向の下流側から上流側に並ぶn台の合流車両Ai(i=1~n:nは自然数)、および、車両進行方向の下流側から上流側に並ぶm台の被合流車両Bj(j=1~m:mは2以上の自然数)について、各合流車両Aiが各被合流車両Bjの直前において当該被合流車両Bjと実質的に等速になるのに必要な、当該被合流車両Bjに対する相対加速度αを要素とする二次元配列yijである。
 好ましくは、車両A1の車載通信機19の制御部191は、算出された相対加速度αに対して予め記憶しているフィルタ(相対加速度の閾値Th)を用いたフィルタリング処理を施す(ステップS109)。閾値Thは、たとえば、1.0[m/s2]である。図12の相対加速度αの算出結果に対して閾値Thを用いてフィルタリング処理を施すと、後続車両の決定の対象となる被合流車両は、図12で相対加速度αにハッチングが付された車両に限定される。これにより、続く決定処理が容易になる。
 次に、車両A1の車載通信機19の制御部191は、合流車両ごとに、ステップS107で算出された相対加速度αに基づいて、被合流車両の中から後続車両を決定する(ステップS111)。図6の例のように、合流車両が自車両以外にも複数台存在する場合、合流車両ごとに後続車両を決定する。ステップS109でフィルタリング処理を行った場合、ステップS111で制御部191は、決定の対象とされた被合流車両の中から後続車両を決定する。
 ステップS111で制御部191は、局所探索法のいずれかの手法を利用して、複数の合流車両それぞれについて後続車両を決定する。制御部191は、図12に示される二次元配列yijから合流車両Aiのインデックスiごとの一次元配列よりなる、相対加速度αを要素とする変数Xiを生成する。二次元配列yijは、インデックスiおよびjの組合せごとに算出された相対加速度αの一例である。インデックスiごとの一次元配列よりなる変数Xiは、インデックスiごとの相対加速度群より選択された1つの相対加速度の組合せの一例である。制御部191は、変数Xiの絶対値の総和である、以下の式(4)で表される評価関数F1を算出する。
   F1=Σ|Xi|  …(4)
 図6の例の場合、インデックスi=1~5であって、図12の二次元配列yijから変数X1,X2,X3,X4,X5が生成される。これより式(4)の評価関数F1は具体的に下の式(5)となる。
   F1=|X1|+|X2|+|X3|+|X4|+|X5|  …(5)
 変数Xiの要素yijは、合流車両Aiの被合流車両Bjに対する平均加速度αである。図6の例の場合、インデックスj=1~5であって、ステップS109でのフィルタリング処理後の変数X1,X2,X3,X4,X5は、それぞれ、下の要素からなる。
  X1={y12,y13,y14,y15}
  X2={y23,y24,y25}
  X3={y33,y34,y35}
  X4={y44,y45}
  X5={y54,y55}
 図12より、変数X1,X2,X3,X4,X5の要素は具体的には下のようになる。
  X1={-0.94,-0.19,-0.19,-0.19}
  X2={-0.36,-0.30,-0.29}
  X3={-0.53,-0.38,-0.33}
  X4={-0.65,-0.50}
  X5={-0.94,-0.62}
 ステップS111で制御部191は、下記の第1の制約条件に従って評価関数F1の値が最小となる合流車両Aiと被合流車両Bjとの組合せ(インデックスiとインデックスjとの対応関係)を抽出する。
  第1の制約条件:変数Xiの要素の中から評価関数F1に代入する値として選択するインデックスjの値は、変数Xi+1の要素の中から評価関数F1に代入する値として選択するインデックスjの値以下である。
 上記の第1の制約条件は、合流車両Aiの後続車両候補の被合流車両Bjは、合流車両Ai直後の合流車両Ai+1の後続車両候補の被合流車両より車両進行方向の上流(前方)を走行している車両であることを意味している。これにより、複数台の合流車両が車線変更する際に走行ルートが交差することなく、衝突や接触の可能性を抑えることができる。
 また、ステップS111で制御部191は、下記の第2の制約条件に従って評価関数F1の値が最小となる合流車両Aiと被合流車両Bjとの組合せを抽出する。
  第2の制約条件:1台の被合流車両Bjに先行させる合流車両Aiの台数は所定値(たとえば2)以下である。
 上記の第2の制約条件は、1台の被合流車両Bjの直前に、所定台数よりも多くの合流車両が車線変更によって入らないことを意味している。これにより、複数の被合流車両間で後続車両となる負担の偏りを抑えることができる。
 なお、第1の制約条件と第2の制約条件とは、ステップS111の決定時にいずれか一方のみ用いられてもよいし、両方用いられてもよい。
 制御部191は、算出した評価関数F1の値が最小となる合流車両Aiと被合流車両Bjとの組合せを抽出し、抽出した被合流車両Bjを当該合流車両Aiの後続車両と決定する。図12の例では、制御部191は、合流車両A1に対して被合流車両B3、合流車両A2に対して被合流車両B4、合流車両A3に対して被合流車両B4、合流車両A4に対して被合流車両B5、および、合流車両A5に対して被合流車両B5を、それぞれ、後続車両と決定する。
 ステップS111で後続車両を決定すると、車両A1の車載通信機19の制御部191は、決定された後続車両Bjを合流車両Aiに通知する(ステップS113)。好ましくは、ステップS113で、合流車両Aiへの後続の指示を決定された後続車両Bjに送信(通知)する。ステップS113での通知方法は特定の方法に限定されない。一例として、制御部191は、通知内容(指示内容)を示すデータを図5の予測走行挙動データDともに通信フレームに含み、車車間通信によって出力してもよい。
 好ましくは、制御部191は、図6の例のように、合流車両が自車両以外にも複数台存在する場合、すべての合流車両が車線変更が完了したか否かを判定する。この判定方法は特定の方法に限定されない。たとえば、超音波センサやカメラなどである第1センサ51または第2センサ52によって各合流車両の車両情報を取得し、当該車両情報に含まれる現在位置に基づいて判定してもよい。または、他の車両との車車間通信によって得られた予測走行挙動データ(図5)から判定してもよい。すべての合流車両の車線変更が完了すると(ステップS115でYES)、制御部191は一連の支援処理を終了する。
 車線変更を完了していない合流車両が存在する場合(ステップS115でNO)、制御部191は、上記のステップS101~S113を、予め規定された所定周期(たとえば0.5秒)で繰り返す。所定周期は、たとえば、0.5秒である。車両の速度や位置関係は刻々と変化するため、すべの合流車両の車線変更の完了まで上記処理を所定周期で繰り返すことによって、リアルタイムで適切な後続車両が決定される。
<実施の形態の効果>
 本実施形態にかかる通信システムでは、第1の車線(側道)を走行中の車両が第2の車線(本線)に車線変更する際に、当該合流車両に後続させる後続車両が決定される。つまり、当該合流車両の合流位置が決定される。決定された後続車両が合流車両に通知されることによって、合流車両は、予め規定されたプログラムを実行し、通知された後続車両の先方まで加速して車線変更する、などの、合流のための走行制御を行うことができる。これにより、合流車両の車線変更が成功する可能性が高まる。
 後続車両は、合流車両が被合流車両の前方において当該被合流車両と実質的に等速になるのに必要な、当該被合流車両に対する相対加速度αに基づいて決定される。車線変更後の合流車両に、相対加速度αに基づいて決定された被合流車両を後続させることによって、当該合流車両の車線変更による合流車両全体の速度変化を抑えることができる。つまり、合流による車両群全体の走行状態の変化を抑えることができる。
 図13は、各合流車両A1~A5それぞれに対して決定された後続車両が図12の太枠で示された被合流車両である場合の、車線変更の様子を表した図である。図13を参照して、上記の例では車両B3が合流車両A1の後続車両に決定される。これにより、車両B3の前方に車両A1が車線変更することになる。また、上記の例では車両B4が合流車両A2およびA3の後続車両に決定される。これにより、車両B4の先方に合流車両A2およびA3が車線変更することになる。また、上記の例では車両B5が合流車両A4およびA5の後続車両に決定される。これにより、車両B5の前方に合流車両A4およびA5が車線変更することになる。上記の処理で後続車両が決定されることによって、図13に示されたように、複数の合流車両A1~A5は走行ルートを交差させることなく車線変更ができるとともに、1台の被合流車両に対して前方に割り込む合流車両の台数を規定台数(この例では2台)以下とすることができる。これにより、車両群全体の走行状態を大きく乱すことなく車線変更が実現されるとともに、複数の被合流車両間で後続車両となる負担の偏りを抑えることができる。
 また、後続車両に決定された被合流車両に後続が指示されることによって、当該被被合流車両は、予め規定されたプログラムを実行し、現在の走行状態(車速、車線等)を維持する、車速を遅くする、などの、合流車両の車線変更を支援する走行制御を行うことができる。これにより、合流車両の車線変更が成功する可能性が高まる。つまり、合流車両の車線変更が効果的に支援される。
 さらに、すべての合流車両の合流完了まで上記の処理が所定周期で繰り返されることで、変化する現在位置や車速に応じて適切な後続車両が決定される。そのため、すべての合流車両の車線変更が成功する可能性が高まる。
 <第2の実施の形態>
 ステップS111で後続車両を決定する際に用いる評価関数は、上記の式(4)に示された評価関数F1に限定されない。評価関数の他の例として、相対加速度αのばらつきを表わす評価関数F2であってもよい。相対加速度αのばらつきを表わす評価関数は、たとえば標準偏差であって、AV( )を平均値とすると、下の式(6)で表わされる。
   F2=√((Σ(|Xi|-AV(|Xi|))2)/n)  …(6)
 この場合も、ステップS111で制御部191は、上記の第1の制約条件および/または第2の制約条件に従って評価関数F2の値が最小となる合流車両Aiと被合流車両Bjとの組合せ(インデックスiとインデックスjとの対応関係)を抽出する。そして、制御部191は、評価関数F2の値が最小となる合流車両Aiと被合流車両Bjとの組合せを抽出し、抽出した被合流車両Bjを当該合流車両Aiの後続車両と決定する。
 <第3の実施の形態>
 支援装置として機能するリーダー車両が支援する第1の車線から第2の車線への合流車両の車線変更は、側道から本線への車線変更に限定されず、速度差のある車線間の車線変更であればどのような車線変更であってもよい。たとえば、第1の車線を車線R1、第2の車線を車線R2、またはその逆として、本線同士である車線R1と車線R2との間の車線変更であってもよい。本線同士の車線変更も、ここでは合流と称する。
 さらには、上記の例に示されたように、第1の車線が車速の遅い車線(合流車線)、第2の車線が車速の速い車線(本線)に限定されず、逆であってもよい。この場合、上記の処理において、加速度を負の加速度(減速度)とすればよい。つまり、上記の演算は正負を逆として行われる。
 <第4の実施の形態>
 支援処理(図7)は、車載通信機19の制御部191のみによって実行されるものに限定されず、他の車載装置と協働して実現されてもよい。たとえば、少なくとも一部の処理を中継装置20の制御部21が行ってもよい。すなわち、中継装置20の制御部21が、取得部195、算出部196、および、通知部197の少なくとも1つとして機能し、車載通信機19と中継装置20とが協働して支援装置として機能してもよい。また、車載通信機19の制御部191と中継装置20の制御部21とが算出部196の機能の一部を分担してもよい。
 また、他の例として、車載通信機19の制御部191は、いずれかのECU16と協働して図7の処理を行ってもよい。たとえば、車載通信機19の制御部191はADAS-ECU16C1または環境認識ECU16C2に各車の走行予定ルートを示す情報を入力し、ADAS-ECU16C1または環境認識ECU16C2が対象車両を抽出する抽出処理を実行してその結果を車載通信機19に入力してもよい。また、ADAS-ECU16C1が算出処理を実行し、対象車両群の車両ごとの走行挙動に基づいた利得(スコア)BEを車載通信機19に入力してもよい。
 開示された特徴は、1つ以上のモジュールによって実現される。たとえば、当該特徴は、回路素子その他のハードウェアモジュールによって、当該特徴を実現する処理を規定したソフトウェアモジュールによって、または、ハードウェアモジュールとソフトウェアモジュールとの組み合わせによって実現され得る。
 上述の動作をコンピュータに実行させるための、1つ以上のソフトウェアモジュールの組み合わせであるプログラムとして提供することもできる。このようなプログラムは、コンピュータに付属するフレキシブルディスク、CD-ROM(Compact Disk-ROM)、ROM、RAMおよびメモリカードなどのコンピュータ読取り可能な記録媒体にて記録させて、プログラム製品として提供することもできる。あるいは、コンピュータに内蔵するハードディスクなどの記録媒体にて記録させて、プログラムを提供することもできる。また、ネットワークを介したダウンロードによって、プログラムを提供することもできる。
 なお、本開示にかかるプログラムは、コンピュータのオペレーティングシステム(OS)の一部として提供されるプログラムモジュールのうち、必要なモジュールを所定の配列で所定のタイミングで呼出して処理を実行させるものであってもよい。その場合、プログラム自体には上記モジュールが含まれずOSと協働して処理が実行される。このようなモジュールを含まないプログラムも、本開示にかかるプログラムに含まれ得る。
 また、本開示にかかるプログラムは他のプログラムの一部に組込まれて提供されるものであってもよい。その場合にも、プログラム自体には上記他のプログラムに含まれるモジュールが含まれず、他のプログラムと協働して処理が実行される。このような他のプログラムに組込まれたプログラムも、本開示にかかるプログラムに含まれ得る。提供されるプログラム製品は、ハードディスクなどのプログラム格納部にインストールされて実行される。なお、プログラム製品は、プログラム自体と、プログラムが記録された記録媒体とを含む。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
  1 車両
  10 車内システム
  12 通信ネットワーク
  12A 通信ネットワーク
  12B 通信ネットワーク
  12C 通信ネットワーク
  13 通信線
  16 車載制御装置(ECU)
  16A1 エンジンECU
  16A2 EPS-ECU
  16A3 ブレーキECU
  16A4 ABS-ECU
  16B1 ナビゲーションECU
  16B2 メータECU
  16B3 HUD-ECU
  16C1 ADAS-ECU
  16C2 環境認識ECU
  19 車載通信機(車線変更の支援装置)
  20 中継装置(車線変更の支援装置)
  21 制御部
  22 記憶部
  23 車内通信部
  31 噴射装置
  32 EPS(パワーステアリング)
  33 ブレーキアクチュエータ
  34 ABSアクチュエータ
  41 HDD
  42 ディスプレイ
  43 GPS受信機
  44 車速センサ
  45 ジャイロセンサ
  46 スピーカ
  47 入力デバイス
  49 HUD
  51 第1センサ
  52 第2センサ
  191 制御部
  192 記憶部
  193 無線通信部
  194 アンテナ
  195 取得部
  196 算出部(決定部)
  197 通知部
  A1~A5 車両(第1車両)
  B1 車両(第2車両)
  B2 車両(第2車両)
  B3 車両(第2車両、車両A1の後続車両)
  B4 車両(第2車両、車両A2,A3の後続車両)
  B5 車両(第2車両、車両A4,A5の後続車両)
  PA1~PA5,PB1~PB5 現在位置
  RV 相対速度
  R1 車線(第2の車線)
  R2 車線
  R3 車線(第1の車線)
  S 相対位置
  t 経過時間
  Tc 予測期間
  Th 閾値
  VA1~VA5,VB1~VB5 現在の車速
  X1,X2,X3,X4,X5 変数
  α 相対加速度

Claims (10)

  1.  第1の車両を走行中の第1車両が第2の車両に車線変更する場合に、前記第2の車線を走行中の複数の第2車両の中から、車線変更後の前記第1車両に後続させる後続車両を決定する、車線変更の支援装置であって、
     前記第1車両の現在位置および現在車速と、前記複数の第2車両それぞれの現在位置および現在車速と、を取得する取得部と、
     取得した前記第1車両および前記第2車両の現在位置および現在車速に基づいて、前記第1車両が前記第2車両の前方において当該第2車両と実質的に等速になるのに必要な、当該第2車両に対する相対加速度を算出する算出部と、
     前記複数の第2車両ごとに算出した相対加速度に基づいて、前記複数の第2車両の中から前記後続車両を決定する決定部と、を有する、車線変更の支援装置。
  2.  車両進行方向の下流側から上流側に並ぶn台の前記第1車両である合流車両Ai(i=1~n:nは自然数)が前記第1の車線に存在し、
     車両進行方向の下流側から上流側に並ぶm台の前記第2車両である被合流車両Bj(j=1~m:mは2以上の自然数)が前記第2の車線に存在する場合に、
     前記算出部は、
     各合流車両Aiが各被合流車両Bjの直前において当該被合流車両Bjと実質的に等速になるのに必要な、当該被合流車両Bjに対する相対加速度を、インデックスiおよびjの組合せごとに算出する、請求項1に記載の車線変更の支援装置。
  3.  前記決定部は、
     インデックスiおよびjの組合せごとに算出された前記相対加速度からインデックスiごとの相対加速度群より選択された1つの相対加速度を組合せ、当該組合せのうちの絶対値の総和が最小となるインデックスiとインデックスjとの対応関係を抽出し、
     合流車両Aiのインデックスiと前記対応関係にあるインデックスjの被合流車両Bjを、当該合流車両Aiの後続車両と決定する、請求項2に記載の車線変更の支援装置。
  4.  前記決定部は、
     インデックスiおよびjの組合せごとに算出された前記相対加速度からインデックスiごとの相対加速度群より選択された1つの相対加速度を組合せ、当該組合せのうちの絶対値のばらつきが最小となるインデックスiとインデックスjとの対応関係を抽出し、
     合流車両Aiのインデックスiと前記対応関係にあるインデックスjの被合流車両Bjを、当該合流車両Aiの後続車両と決定する、請求項2に記載の車線変更の支援装置。
  5.  前記決定部は、
     下記の第1の制約条件に従って前記対応関係を抽出する、請求項3または請求項4に記載の車線変更の支援装置。
      第1の制約条件:インデックスiの相対加速度群から選択するインデックスjの値は、インデックス(i+1)の相対加速度群から選択するインデックスjの値以下である。
  6.  前記決定部は、
     下記の第2の制約条件に従って前記対応関係を抽出する、請求項3~請求項5のいずれか1項に記載の車線変更の支援装置。
      第2の制約条件:1台の被合流車両Bjに先行させる合流車両Aiの台数は所定値以下である。
  7.  前記決定部は、前記複数の第2車両のうちの、前記相対加速度が閾値よりも小さい第2車両の中から前記後続車両を決定する、請求項1~請求項6のいずれか1項に記載の車線変更の支援装置。
  8.  決定された前記後続車両を前記第1車両に通知するデータを含む車車間通信フレームを生成し、送信する通知部をさらに有する、請求項1~請求項7のいずれか1項に記載の車線変更の支援装置。
  9.  第1の車両を走行中の第1車両が第2の車両に車線変更する場合に、前記第2の車線を走行中の複数の第2車両の中から、車線変更後の前記第1車両に後続させる後続車両を決定する方法であって、
     前記第1車両の現在位置および現在車速と、前記複数の第2車両それぞれの現在位置および現在車速と、を取得するステップと、
     取得した前記第1車両および前記第2車両の現在位置および現在車速に基づいて、前記第1車両が前記第2車両の前方において当該第2車両と実質的に等速になるのに必要な、当該第2車両に対する相対加速度を算出するステップと、
     前記複数の第2車両ごとに算出した相対加速度に基づいて、前記複数の第2車両の中から前記後続車両を決定するステップと、を備える、決定方法。
  10.  第1の車両を走行中の第1車両が第2の車両に車線変更する場合に、前記第2の車線を走行中の複数の第2車両の中から、車線変更後の前記第1車両に後続させる後続車両を決定する、車線変更の支援装置としてコンピュータを機能させるためのコンピュータプログラムであって、
     前記コンピュータを、
     前記第1車両の現在位置および現在車速と、前記複数の第2車両それぞれの現在位置および現在車速と、を取得する取得部と、
     取得した前記第1車両および前記第2車両の現在位置および現在車速に基づいて、前記第1車両が前記第2車両の前方において当該第2車両と実質的に等速になるのに必要な、当該第2車両に対する相対加速度を算出する算出部と、
     前記複数の第2車両ごとに算出した相対加速度に基づいて、前記複数の第2車両の中から前記後続車両を決定する決定部、として機能させる、コンピュータプログラム。
PCT/JP2018/003067 2018-01-31 2018-01-31 車線変更の支援装置、決定方法、およびコンピュータプログラム WO2019150454A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003067 WO2019150454A1 (ja) 2018-01-31 2018-01-31 車線変更の支援装置、決定方法、およびコンピュータプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003067 WO2019150454A1 (ja) 2018-01-31 2018-01-31 車線変更の支援装置、決定方法、およびコンピュータプログラム

Publications (1)

Publication Number Publication Date
WO2019150454A1 true WO2019150454A1 (ja) 2019-08-08

Family

ID=67479699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003067 WO2019150454A1 (ja) 2018-01-31 2018-01-31 車線変更の支援装置、決定方法、およびコンピュータプログラム

Country Status (1)

Country Link
WO (1) WO2019150454A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095246A (ja) * 1996-09-13 1998-04-14 Robert Bosch Gmbh 車両の速度を制御するための方法及び装置
JPH11345393A (ja) * 1998-06-03 1999-12-14 Pub Works Res Inst Ministry Of Constr 車の自動合流制御方法及び装置
JP2014019387A (ja) * 2012-07-23 2014-02-03 Nissan Motor Co Ltd 走行制御装置及び走行制御方法
US20170253241A1 (en) * 2016-03-01 2017-09-07 Ford Global Technologies, Llc Autonomous vehicle operation based on interactive model predictive control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095246A (ja) * 1996-09-13 1998-04-14 Robert Bosch Gmbh 車両の速度を制御するための方法及び装置
JPH11345393A (ja) * 1998-06-03 1999-12-14 Pub Works Res Inst Ministry Of Constr 車の自動合流制御方法及び装置
JP2014019387A (ja) * 2012-07-23 2014-02-03 Nissan Motor Co Ltd 走行制御装置及び走行制御方法
US20170253241A1 (en) * 2016-03-01 2017-09-07 Ford Global Technologies, Llc Autonomous vehicle operation based on interactive model predictive control

Similar Documents

Publication Publication Date Title
EP3342666B1 (en) Method and system for operating autonomous driving vehicles using graph-based lane change guide
CN110546461B (zh) 驾驶控制方法以及驾驶控制装置
US10982961B2 (en) Vehicle control system and vehicle control device
US10597031B2 (en) Drive assist apparatus
CN109070886B (zh) 自动驾驶支援装置以及存储介质
US11170651B2 (en) Vehicle control device, vehicle control method, and storage medium
CN112470198B (zh) 队列行驶系统
JP4743496B2 (ja) ナビゲーション装置及びナビゲーション方法
JP6819788B2 (ja) 走行支援方法及び走行支援装置
KR20180092314A (ko) 모션 계획에 기초한 자율 주행 차량의 운행 방법 및 시스템
KR20200024934A (ko) 차선 정보 관리 방법, 주행 제어 방법 및 차선 정보 관리 장치
WO2019138485A1 (ja) 衝突可能性判定装置、衝突可能性判定方法、及びコンピュータプログラム
EP3627110B1 (en) Method for planning trajectory of vehicle
US20160123747A1 (en) Drive assist system, method, and program
CN111731294A (zh) 行驶控制装置、行驶控制方法以及存储程序的存储介质
CN111731295A (zh) 行驶控制装置、行驶控制方法以及存储程序的存储介质
JP2017211955A (ja) 走行支援装置
JP2019095210A (ja) 車両制御装置、車両制御方法、およびプログラム
KR20200010392A (ko) 방향 지시기 제어 방법 및 방향 지시기 제어 장치
CN111103876A (zh) 自动驾驶车辆的基于雷达通信的扩展感知
US20200118433A1 (en) Drive assistance system
EP4137377A1 (en) Vehicle motion control device and vehicle motion control method
CN112428996A (zh) 队列行驶系统和队列行驶方法
JP6784338B2 (ja) 車載装置、通信経路情報の生成方法、及びコンピュータプログラム
WO2019150458A1 (ja) 車載装置、生成方法、および、コンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP