WO2019138485A1 - 衝突可能性判定装置、衝突可能性判定方法、及びコンピュータプログラム - Google Patents
衝突可能性判定装置、衝突可能性判定方法、及びコンピュータプログラム Download PDFInfo
- Publication number
- WO2019138485A1 WO2019138485A1 PCT/JP2018/000422 JP2018000422W WO2019138485A1 WO 2019138485 A1 WO2019138485 A1 WO 2019138485A1 JP 2018000422 W JP2018000422 W JP 2018000422W WO 2019138485 A1 WO2019138485 A1 WO 2019138485A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- predicted traveling
- traveling behavior
- behavior data
- collision
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Definitions
- the present invention relates to a collision possibility determination device, a collision possibility determination method, and a computer program.
- a driving support device shown in Patent Document 1 has already been proposed.
- the driving support device predicts future movement ranges of the host vehicle and the other vehicle, and determines future collision possibility based on the predicted movement ranges. Then, when it is determined that there is a possibility of a collision in the future, the driving support device performs driving support for avoiding a collision.
- the collision possibility determination device is a device that determines the possibility of collision between the own vehicle and another vehicle, and generates first predicted traveling behavior data indicating a future predicted traveling behavior of the own vehicle.
- Generating unit a communication unit for receiving, by inter-vehicle communication, second predicted travel behavior data indicating future predicted travel behavior of another vehicle, the generated first predicted travel behavior data, and the received second It is a collision possibility judging device provided with the judgment part which judges the collision possibility of self-vehicles and other vehicles based on prediction driving behavior data.
- the collision possibility determination method is a method for determining the collision possibility between the host vehicle and another vehicle, and generates first predicted traveling behavior data indicating a future predicted traveling behavior of the host vehicle. Generating step, a communication step of receiving, by inter-vehicle communication, second predicted travel behavior data indicating future predicted travel behavior of another vehicle, the generated first predicted travel behavior data, and the received second And a determination step of determining the possibility of collision between the host vehicle and another vehicle based on the predicted traveling behavior data.
- a computer program is a computer program for causing a computer to execute a process of determining the possibility of collision between the own vehicle and another vehicle, and the computer is used to predict the future predicted traveling behavior of the own vehicle.
- a generation unit generating first predicted traveling behavior data to be shown; a second prediction indicating a future predicted traveling behavior of another vehicle received by the communication unit by the generated first predicted traveling behavior data and the inter-vehicle communication
- It is a computer program for making it function as a judgment part which judges collision possibility of self-vehicles and other vehicles based on traveling behavior data.
- FIG. 1 is an overall configuration diagram of a communication system according to an embodiment of the present invention. It is a block diagram showing composition of an in-vehicle system. It is a block diagram which shows the internal structure of a relay apparatus. It is a block diagram which shows the internal structure of a vehicle-mounted communication apparatus. It is explanatory drawing which shows the content and production method of prediction driving
- the driving support device predicts future movement ranges of the own vehicle and the other vehicle based on the current situation. For this reason, the uncertainty of prediction becomes high, and it can not respond to the future unexpected situation, and there is a possibility that judgment of collision possibility may be mistaken. Therefore, in view of such conventional problems, it is an object of the present invention to provide a collision possibility determination device and the like that can improve the determination accuracy of the collision possibility between the own vehicle and another vehicle.
- the collision possibility determination device is a device that determines the possibility of collision between the host vehicle and another vehicle, and is a first predicted travel behavior that indicates a predicted traveling behavior of the host vehicle in the future.
- a generation unit that generates data
- a communication unit that receives, by inter-vehicle communication, second predicted traveling behavior data indicating a future predicted traveling behavior of another vehicle, the generated first predicted traveling behavior data, and the received
- a determination unit that determines the possibility of collision between the host vehicle and another vehicle based on the second predicted traveling behavior data.
- the collision possibility determination device is configured to use the host vehicle based on the first predicted travel behavior data indicating the future predicted travel behavior of the host vehicle and the second predicted travel behavior data indicating the future predicted travel behavior of the other vehicle. Determine the possibility of collision with other vehicles. Therefore, it is possible to improve the determination accuracy of the collision possibility between the own vehicle and the other vehicle as compared to the case where the collision possibility is determined based only on the current situation as in the related art.
- the communication unit preferably transmits the generated first predicted traveling behavior data to another vehicle by inter-vehicle communication.
- the collision possibility between the own vehicle and the other vehicle can be determined based on the first and second predicted traveling behavior data.
- the determination accuracy of the collision possibility to perform can be improved.
- the generated first predicted traveling behavior data includes a plurality of predicted traveling behavior information indicating the predicted traveling behavior of the host vehicle at predetermined time intervals or at indefinite time intervals, and the communication unit
- the number of pieces of predicted traveling behavior information included in the first predicted traveling behavior data can be reduced, so the amount of communication data of inter-vehicle communication can be reduced.
- the generation unit sequentially generates the first predicted traveling behavior data, and the communication unit generates a temporally subsequent one when there is no change between the first predicted traveling behavior data that are temporally back and forth.
- the first predicted traveling behavior data it is preferable to transmit information indicating that there is no change between the first predicted traveling behavior data that precedes and follows in time. In this case, the number of pieces of first predicted traveling behavior data to be transmitted to other vehicles can be reduced, so the amount of communication data of inter-vehicle communication can be further reduced.
- the generated first predicted traveling behavior data includes a plurality of predicted traveling behavior information indicating the predicted traveling behavior of the host vehicle at indefinite time intervals, and the indefinite time interval is the speed of the host vehicle, It is preferable to be set according to at least one of an inter-vehicle distance between the own vehicle and another vehicle, and a collision time (TTC: Time To Collision) until the own vehicle collides with the other vehicle.
- TTC Time To Collision
- the indeterminate time interval is an appropriate interval according to at least one of the speed of the vehicle, the distance between the vehicle and the other vehicle, and the collision margin time until the vehicle collides with the other vehicle. It can be set. As a result, it is possible to further improve the determination accuracy of the collision possibility between the own vehicle and the other vehicle.
- the determination unit generates a future traveling locus of the vehicle from the first predicted traveling behavior data, and generates a future traveling locus of another vehicle from the second predicted traveling behavior data, and the vehicle It is preferable to determine that there is a possibility of the collision when the traveling locus of the vehicle and the traveling locus of the other vehicle intersect. In this case, if the future travel locus of the own vehicle intersects with the future travel locus of the other vehicle, the determination unit determines that there is a possibility of a collision between the own vehicle and the other vehicle. It can be improved.
- the determination unit determines, from the first predicted traveling behavior data, a plurality of first vehicle areas indicating areas where the host vehicle is located at predetermined time intervals, and the predetermined area is determined from the second predicted traveling behavior data. If a plurality of second vehicle areas indicating areas where other vehicles are located for each time interval are determined, and the first vehicle area and the second vehicle area at the same time or near each other overlap, the collision is possible It may be determined that there is a sex. In this case, the determination unit determines that there is a possibility of a collision between the own vehicle and another vehicle if the first vehicle region and the second vehicle region at the same time or close in time overlap with each other. The accuracy can be further improved.
- At least one of the first and second vehicle areas has a predetermined margin area.
- the determination unit determines the collision possibility between the host vehicle and the other vehicle in consideration of the margin area of at least one of the first and second vehicle areas, thereby determining the first vehicle area or the second vehicle area. Even when an error occurs when obtaining the vehicle area, it is possible to guarantee the determination accuracy of the collision possibility between the own vehicle and the other vehicle.
- the margin area is formed on the traveling side of the vehicle.
- the advancing side of the vehicle in which the margin area is formed is a place where the possibility of collision between the own vehicle and another vehicle is high, it is possible to further guarantee the determination accuracy of the possibility of collision.
- the margin area may be formed on the side where the host vehicle and the other vehicle face each other.
- the side where the own vehicle and the other vehicle on which the margin area is formed is the place where the possibility of the collision between the own vehicle and the other vehicle is high, so that the determination accuracy of the collision possibility is further guaranteed. it can.
- a collision possibility determination method is a collision possibility determination method executed in the above-described collision possibility determination apparatus. Therefore, the collision possibility determination method of the present embodiment has the same function and effect as the above-described collision possibility determination apparatus.
- a computer program according to an embodiment of the present invention is a computer program for causing a computer to function as the above-described collision possibility determination device. Therefore, the computer program of the present embodiment exhibits the same effects as those of the collision possibility determination device described above.
- FIG. 1 is an overall configuration diagram of a communication system according to an embodiment of the present invention. As shown in FIG. 1, the communication system of the present embodiment includes an on-vehicle communication device 19 mounted on each of a plurality of vehicles 1.
- the in-vehicle communication device 19 is a wireless communication device that performs wireless communication (inter-vehicle communication) with another vehicle traveling on the road. Therefore, in the present embodiment, the in-vehicle communication device 19 of the vehicle 1 is also referred to as "inter-vehicle communication device 19", and the communication system is also referred to as "inter-vehicle communication system”. In the present embodiment, the in-vehicle communication device 19 adopts a multi-access method based on a carrier sense multiple access / collision avoidance (CSMA / CA) method.
- CSMA / CA carrier sense multiple access / collision avoidance
- the in-vehicle communication device 19 adopts, for example, a multi-access method that conforms to the "700 MHz band intelligent traffic system standard (ARIB STD-T109)". According to this method, the in-vehicle communication device 19 broadcasts a communication frame for inter-vehicle communication at predetermined time intervals (for example, 0.1 seconds). Therefore, the vehicle 1 executing inter-vehicle communication can detect the vehicle information of the other vehicle around the own vehicle in substantially real time by the communication frame received from the other vehicle included in the transmission / reception range of the wireless signal.
- a communication frame for inter-vehicle communication at predetermined time intervals (for example, 0.1 seconds). Therefore, the vehicle 1 executing inter-vehicle communication can detect the vehicle information of the other vehicle around the own vehicle in substantially real time by the communication frame received from the other vehicle included in the transmission / reception range of the wireless signal.
- the communication system for inter-vehicle communication is not limited to the above standard, and may be a communication technology for mobile phones, such as cellular V2V of 3GPP, applied to wireless communication of the vehicle 1.
- FIG. 2 is a block diagram showing the configuration of the in-vehicle system. As shown in FIG. 2, each vehicle 1 includes an in-vehicle system 10.
- the in-vehicle system 10 includes a relay device 20, a communication network 12, and various on-vehicle devices electronically controlled by an ECU belonging to the communication network 12.
- the communication network 12 includes a plurality of in-vehicle communication lines 13 terminating in the relay device 20, and a plurality of in-vehicle control devices (hereinafter referred to as "ECUs") 16 connected to the in-vehicle communication lines 13.
- the communication network 12 can communicate among the ECUs 16, and is formed of a master / slave communication network (for example, LIN (Local Interconnect Network)) in which the relay device 20 is a terminal node (master device).
- the relay device 20 controls a plurality of communication networks 12.
- the communication network 12 includes communication standards such as CAN (Controller Area Network), CANFD (CAN with Flexible Data Rate), Ethernet (registered trademark), or MOST (Media Oriented Systems Transport: MOST is a registered trademark) as well as LIN. It may be a network to be adopted. Further, the network configuration of the communication network 12 may include the relay device 20 and at least one ECU 16.
- the common code of the communication network is “12”, and the individual codes of the communication network are “12A to 12C”. Further, the common code of the ECU is “16”, and the individual codes of the ECU are “16A1 to 16A4”, “16B1 to 16B3” and “16C1 to 16C2”.
- the communication networks 12A, 12B, 12C share the different control fields of the vehicle 1, respectively.
- a power system ECU whose control target is the drive device of the vehicle 1 is connected.
- a multimedia ECU that controls information equipment of the vehicle 1.
- Connected to the communication network 12C is an ADAS-based ECU whose control target is an advanced driver assistance system (ADAS: Advanced Driver-Assistance Systems) that supports the driving operation of the vehicle 1.
- ADAS Advanced Driver-Assistance Systems
- the communication network 12 is not limited to the above three types, but may be four or more types. Further, the control field corresponding to the communication network 12 varies depending on the design concept of the vehicle manufacturer, and is not limited to the sharing of the control field described above.
- the power ECUs connected to the communication network 12A include, for example, an engine ECU 16A1, an EPS-ECU 16A2, a brake ECU 16A3, and an ABS-ECU 16A4.
- the engine ECU 16A1 is connected to a fuel injection device 31 of the engine, and the fuel injection device 31 is controlled by the engine ECU 16A1.
- An EPS (Electric Power Steering: Electric Power Steering) 32 is connected to the EPS-ECU 16A2, and the EPS 32 is controlled by the EPS-ECU 16A2.
- a brake actuator 33 is connected to the brake ECU 16A3, and the brake actuator 33 is controlled by the brake ECU 16A3.
- An ABS (Antilock Brake System) actuator 34 is connected to the ABS-ECU 16A4, and the ABS actuator 34 is controlled by the ABS-ECU 16A4.
- the multimedia ECU connected to the communication network 12B includes, for example, a navigation ECU 16B1, a meter ECU 16B2, and a HUD-ECU 16B3.
- An HDD (Hard Disk Drive) 41, a display 42, a GPS (Global Positioning System) receiver 43, a vehicle speed sensor 44, a gyro sensor 45, a speaker 46, and an input device 47 are connected to the navigation ECU 16B1.
- the display 42 and the speaker 46 are output devices for presenting various information to the passenger of the vehicle. Specifically, the display 42 displays a map image around the host vehicle, route information to the destination, and the like, and the speaker 46 outputs a voice announcement for guiding the host vehicle to the destination.
- the input device 47 is for the passenger to perform various inputs such as a destination, and is constituted by various input means such as an operation switch, a joystick, or a touch panel provided on the display 42.
- the navigation ECU 16B1 has a time synchronization function of acquiring the current time from the GPS signal periodically acquired by the GPS receiver 43, and a position detection function of calculating an absolute position (latitude, longitude and altitude) of the vehicle from the GPS signal;
- the vehicle speed sensor 44 and the gyro sensor 45 correct the position and orientation of the vehicle to obtain an accurate current position and orientation of the vehicle.
- the navigation ECU 16B1 reads the map information stored in the HDD 41 according to the obtained current position, and generates a map image in which the current position of the vehicle is superimposed on the map information. Then, the navigation ECU 16B1 displays a map image on the display 42, and displays route information and the like from the current position to the destination on the map image.
- a meter actuator 48 is connected to the meter ECU 16B2, and the meter actuator 48 is controlled by the meter ECU 16B2.
- a HUD (Head-Up Display) 49 is connected to the HUD-ECU 16B3, and the HUD 49 is controlled by the HUD-ECU 16B3.
- the ADAS ECU connected to the communication network 12C includes, for example, an ADAS-ECU 16C1 and an environment recognition ECU 16C2.
- a first sensor 51 and a second sensor 52 are connected to the environment recognition ECU 16C2, and the first and second sensors 51 and 52 are controlled by the environment recognition ECU 16C2.
- the first sensor 51 is, for example, an ultrasonic sensor, a video camera or the like arranged at four corners in the front, rear, left, and right of the vehicle 1 (see FIG. 1).
- the first sensor 51 provided on the front side is a sensor mainly for detecting an object present on the front of the vehicle
- the first sensor 51 provided on the rear side is an object mainly present on the rear of the vehicle Is a sensor for detecting
- the second sensor 52 is, for example, an ultrasonic sensor, a video camera, or the like disposed in a ceiling portion of the vehicle 1 (see FIG. 1).
- the second sensor 52 is rotatable at a relatively high speed around the vertical axis, and is a sensor for detecting an object present around the host vehicle.
- the sensing results of the first and second sensors 51 and 52 are stored in a communication packet by the environment recognition ECU 16C2 and transmitted to the ADAS-ECU 16C1.
- the ADAS-ECU 16C1 can execute any one of, for example, levels 1 to 4 based on the sensing results of the first and second sensors 51 and 52.
- the level of automatic driving is defined in SAE (Society of Automotive Engineers) International, J3016 (September 2016).
- the “public-private ITS concept road map 2017” also adopts this definition. In this roadmap, level 3 or higher automatic driving is called “high-level automatic driving", and level 4 and 5 automatic driving is called “fully automatic driving”.
- the "automatic operation” in the present embodiment means an automatic operation at level 2 or higher.
- the ADAS-ECU 16C1 may be capable of performing level 5 automatic driving, but at the time of the present application, the vehicle 1 performing level 5 automatic driving has not been realized yet.
- assisted driving As an example of automatic driving up to levels 1 to 3 (hereinafter, also referred to as “assisted driving”), the possibility of collision is predicted from the distance between the object detected by the first sensor 51 and the host vehicle, The control command is transmitted to the power system ECU or the multimedia system ECU so as to intervene in the deceleration or alert the passenger when it is determined that the vehicle speed is high.
- level 4 and 5 automatic operation As an example of level 4 and 5 automatic operation (hereinafter, also referred to as “autonomous operation"), behavior expected to an object detected by the first and second sensors 51 and 52, deep learning of past behavior, etc. There are some which transmit a control command to a power system ECU or a multimedia system ECU so that the host vehicle is pointed to the target position based on the predicted behavior predicted by the above.
- the ADAS-ECU 16C1 can also switch to a manual operation of the passenger without using the sensing results by the first and second sensors 51 and 52.
- the vehicle 1 of the present embodiment is capable of executing the level 4 autonomous operation mode, and as the downgraded operation mode, the vehicle 1 of the level 1 to 3 assisted operation mode or the manual operation mode (level 0) You can do either.
- the switching of the operation mode is performed by a manual operation input by the passenger or the like.
- the relay device 20 transmits a control packet (hereinafter, also referred to as “control command”) to control the ECU 16.
- the ECU 16 executes predetermined control on the target device in charge according to the content of the command included in the received control packet.
- the relay device 20 When controlling the autonomous operation mode, the relay device 20 sends control commands to the ECUs 16A1 to 16A4 of the communication network 12A based on the sensing results of the first and second sensors 51 and 52 received from the environment recognition ECU 16C2. Send control packet including.
- each of the ECUs 16A1 to 16A4 having received the control packet from the relay device 20 controls the fuel injection device 31, the EPS 32, the brake actuator 33, and the ABS actuator 34 according to the content of the command included in the control packet, thereby autonomous operation. Mode is executed.
- the in-vehicle system 10 further includes an on-vehicle communication device 19 that performs wireless communication with other vehicles.
- the in-vehicle communication device 19 is connected to the relay device 20 via a communication line of a predetermined standard.
- the relay device 20 relays the information received by the in-vehicle communication device 19 from the other vehicle to the ECU 16.
- the relay device 20 relays the information received from the ECU 16 to the in-vehicle communication device 19.
- the in-vehicle communication device 19 wirelessly transmits the relayed information to another vehicle.
- the in-vehicle communication device 19 mounted on the vehicle 1 may be a device owned by a user, such as a mobile phone, a smartphone, a tablet terminal, or a notebook PC (Personal Computer).
- FIG. 3 is a block diagram showing an internal configuration of the relay device 20.
- the relay device 20 of the vehicle 1 includes a control unit 21, a storage unit 22, an in-vehicle communication unit 23, and the like.
- the control unit 21 of the relay device 20 includes a CPU (Central Processing Unit).
- the CPU of the control unit 21 has a function of reading one or a plurality of programs stored in the storage unit 22 or the like to execute various processes.
- the CPU of the control unit 21 can execute a plurality of programs in parallel by switching and executing a plurality of programs in time division, for example.
- the CPU of the control unit 21 includes one or more large scale integrated circuits (LSI).
- LSI large scale integrated circuits
- the plurality of LSIs cooperate to realize the function of the CPU.
- the computer program executed by the CPU of the control unit 21 may be written in advance at the factory, may be provided via a specific tool, or is transferred by downloading from a computer device such as a server computer. It can also be done.
- the storage unit 22 is formed of a non-volatile memory element such as a flash memory or an EEPROM (Electrically Erasable Programmable Read Only Memory).
- the storage unit 22 has a storage area for storing a program executed by the CPU of the control unit 21 and data required for the execution.
- a plurality of in-vehicle communication lines 13 disposed in the vehicle 1 are connected to the in-vehicle communication unit 23.
- the in-vehicle communication unit 23 includes a communication device that communicates with the ECU 16 in accordance with a predetermined communication standard such as LIN.
- the in-vehicle communication unit 23 transmits information given from the CPU of the control unit 21 to a predetermined ECU 16, and the ECU 16 gives information on the transmission source to the CPU of the control unit 21.
- the on-vehicle communication device 19 transmits the information given from the control unit 21 to the other vehicle, and gives the information received from the other vehicle to the control unit 21.
- FIG. 4 is a block diagram showing an internal configuration of the in-vehicle communication device 19.
- the on-vehicle communication device 19 includes a control unit 191, a storage unit 192, a wireless communication unit 193, and the like.
- the control unit 191 of the in-vehicle communication device 19 includes a CPU.
- the CPU of the control unit 191 has a function of reading out one or more programs stored in the storage unit 192 or the like to execute various processes.
- the CPU of the control unit 191 can execute a plurality of programs in parallel by switching and executing a plurality of programs in time division, for example.
- the CPU of the control unit 191 includes one or more large scale integrated circuits (LSI).
- LSI large scale integrated circuits
- the plurality of LSIs cooperate to realize the function of the CPU.
- the computer program executed by the CPU of the control unit 191 can also be transferred by downloading from a computer device such as a server computer.
- the storage unit 192 is formed of a non-volatile memory element such as a flash memory or an EEPROM.
- the storage unit 192 has a storage area for storing a program executed by the CPU of the control unit 191 and data required for the execution.
- An antenna 194 for wireless communication is connected to the wireless communication unit 193.
- the wireless communication unit 193 transmits the information given from the control unit 191 to the other vehicle from the antenna 194 and gives the information received from the other vehicle by the antenna 194 to the control unit 191.
- the CPU of the control unit 191 transmits the information provided from the wireless communication unit 193 to the relay device 20, and provides the wireless communication unit 193 with the information received from the relay device 20.
- FIG. 5 is an explanatory view showing the contents and generation method of “predicted travel behavior data D” transmitted by the on-vehicle communication device 19 to another vehicle through inter-vehicle communication.
- the predicted traveling behavior data D is data indicating the predicted traveling behavior of the vehicle 1 within a future prediction period Tc for a relatively short predetermined time (for example, 10 seconds) from the current time.
- the predicted traveling behavior data D of the present embodiment includes a plurality of predicted traveling behavior information S indicating the predicted traveling behavior of the vehicle 1 at predetermined time intervals (for example, 300 ms interval) within the prediction period Tc.
- the predicted traveling behavior information S includes information such as the time of each fixed time interval within the prediction period Tc, and the absolute position and orientation of the vehicle 1 at that time.
- the time within the prediction period Tc and the absolute position and orientation of the vehicle 1 are calculated as follows. For example, in the road plan view shown in the lower part of FIG. 5, when the vehicle 1 travels in the lane R1 by automatic driving, the ADAS-ECU 16C1 of the vehicle 1 responds to the contents of automatic driving being executed at the present time t0. A travel planned route during the prediction period Tc is calculated, and the calculated travel planned route is transmitted to the in-vehicle communication device 19.
- the in-vehicle communication device 19 performs map matching processing between the received planned traveling route and the map information, and the like, and detects the plurality of discrete positions (absolute positions) of the vehicle 1 during the prediction period Tc and the direction of the vehicle 1 at each discrete position. Calculate Specifically, when the vehicle 1 continues to travel straight in the lane R1 during the prediction period Tc, the on-vehicle communication device 19 is operated on the straight travel planned route (arrow shown by the broken line in FIG. 5) along the lane R1. A plurality of discrete positions (positions indicated by ⁇ in FIG. 5) and directions of the vehicle 1 are calculated at fixed or indeterminate time intervals (or distance intervals).
- the on-vehicle communication device 19 is a curved traveling planned route extending from the lane R1 to the lane R2 (an arrow shown by an alternate long and short dash line in FIG. A plurality of discrete positions (positions indicated by ⁇ marks in FIG. 5) and a direction of the vehicle 1 are calculated at fixed or indefinite time intervals (or distance intervals).
- the vehicle-mounted communication device 19 calculates a plurality of discrete positions of the vehicle 1 at time intervals, it calculates the time corresponding to each discrete position based on the time interval and the time of the current time t0. In addition, when the vehicle-mounted communication device 19 calculates a plurality of discrete positions of the vehicle 1 at a distance interval, the distance from the current position of the vehicle 1 to each discrete position is calculated based on the distance interval, and the calculated distance and the vehicle The time corresponding to each discrete position is calculated based on the planned traveling speed of 1.
- the planned traveling speed of the vehicle 1 can be acquired from the ADAS-ECU 16C1. Note that the time within the prediction period Tc and the absolute position and orientation of the vehicle 1 may be calculated by the ADAS-ECU 16C1 and the calculated time, discrete position and orientation may be transmitted to the in-vehicle communication device 19.
- each predicted traveling behavior information S of the predicted traveling behavior data D in the present embodiment “vehicle ID”, “time”, “absolute position”, “vehicle attribute”, “azimuth” Storage area such as.
- the “time” of each of the predicted traveling behavior information S stores the value of the current time and the value of each time within the prediction period Tc calculated by the above method.
- the value of the current time can be acquired from the navigation ECU 16B1 (see FIG. 2) having the above-described time synchronization function via the relay device 20.
- the "vehicle ID” stores the value of the vehicle ID of the own vehicle. Since the value of the vehicle ID is a fixed value, the same value is stored in the "vehicle ID" of each piece of predicted traveling behavior information S.
- the “absolute position” of each piece of predicted traveling behavior information S stores each value of latitude, longitude and altitude indicating the absolute position of the vehicle corresponding to each time within the prediction period Tc calculated by the above method. In “absolute position" of FIG. 5, only the values of latitude and longitude are shown.
- the vehicle attribute for example, values such as the vehicle width and the vehicle length of the own vehicle, and the identification value of the vehicle application type of the own vehicle (such as a private vehicle or an emergency vehicle) are stored. Since each value of the vehicle width, the vehicle length, and the vehicle application type is a fixed value, the same value is stored in the “vehicle attribute” of each predicted traveling behavior information S. In “vehicle attribute” of FIG. 5, the description of specific numerical values is omitted. In the “azimuth” of each piece of predicted traveling behavior information S, the value of the heading of the vehicle corresponding to each time within the prediction period Tc calculated by the above method is stored. In the “azimuth” of FIG. 5, the description of specific numerical values is omitted.
- the own vehicle and the other vehicles passing around the vehicle transmit and receive predicted traveling behavior data D to each other when the on-vehicle communication devices 19 communicate with each other.
- the host vehicle and other vehicles passing around the vehicle can share the predicted travel behavior data D with each other.
- the predicted driving behavior data D may include other information such as the speed and acceleration of the host vehicle.
- the velocity of the vehicle can be obtained by differentiating the absolute position of the vehicle
- the acceleration of the vehicle can be determined by differentiating the velocity obtained from the absolute position of the vehicle. Therefore, the predicted traveling behavior data D need not necessarily include the speed and acceleration of the host vehicle.
- the in-vehicle communication device 19 functions as a collision possibility determination device that determines the possibility of collision between the host vehicle and another vehicle.
- the control unit 191 of the in-vehicle communication device 19 includes a generation unit 195 and a determination unit 196.
- the generation unit 195 generates predicted traveling behavior data D of the own vehicle (hereinafter, referred to as first predicted traveling behavior data D1).
- the specific generation method of the first predicted traveling behavior data D1 is as described above.
- the generated first predicted traveling behavior data D1 includes a plurality of predicted traveling behavior information S indicating the predicted traveling behavior of the host vehicle at predetermined time intervals within the prediction period Tc.
- the generation unit 195 of the present embodiment generates two types of first predicted traveling behavior data D1.
- the first type of first predicted traveling behavior data D1 (hereinafter, also referred to as first predicted traveling behavior data D11) is, as shown in FIG. 6, the predicted traveling behavior information S for each rough time interval (for example, every 600 msec). It contains.
- the second type of first predicted traveling behavior data D1 (hereinafter referred to as first predicted traveling behavior data D12) is, as shown in FIG. 5, a time interval (for example, an interval of 300 msec) finer than the first predicted traveling behavior data D11
- Each predicted traveling behavior information S is included.
- the generation unit 195 sequentially generates the first predicted traveling behavior data D11 and D12, and passes the generated first predicted traveling behavior data D11 and D12 to the determination unit 196.
- the wireless communication unit (communication unit) 193 of the in-vehicle communication device 19 drives the first predicted traveling behavior data D11 and D12 generated by the generation unit 195 into other vehicles traveling around the host vehicle by inter-vehicle communication.
- the second type of first predicted traveling behavior data D12 is transmitted only when the wireless communication unit 193 receives information requesting transmission of the first predicted traveling behavior data D12 from another vehicle.
- the wireless communication unit 193 temporally Only the preceding predicted traveling behavior information S is included in the first predicted traveling behavior data D11 (D12) and transmitted.
- the wireless communication unit 193 includes both of the predicted traveling behavior information S in the first predicted traveling behavior data D11 (D12) even in the case where there is no change between the predicted traveling behavior information S that is back and forth in time. It may be sent.
- the wireless communication unit 193 transmits the first predicted traveling behavior data D11 (D12), it transmits between the first predicted traveling behavior data D11 (D12) that are temporally before and after, that is, the first predicted traveling behavior data D11 to be transmitted. If there is no change between (D12) and the first predicted traveling behavior data D11 (D12) transmitted immediately before that, it is replaced with the first predicted traveling behavior data D11 (D12) scheduled to be transmitted later in time Then, the information indicating that there is no change between the first predicted traveling behavior data D11 (D12) which is temporally back and forth is transmitted.
- the wireless communication unit 193 transmits the first predicted traveling behavior data D11 (D12) that is later in time even when there is no change in the first predicted traveling behavior data D11 (D12) that is temporally back and forth. It is also good.
- the first predicted traveling behavior data D1 generated by the generation unit 195 has a plurality of predicted traveling behavior information S at predetermined time intervals, but a plurality of predicted traveling behaviors at irregular time intervals. It may have information S.
- the fixed time interval is at least one of the speed of the vehicle, the distance between the vehicle and another vehicle, and the time to collision (TTC) before the vehicle collides with the other vehicle. It can be set according to
- the wireless communication unit 193 receives the predicted traveling behavior data D of another vehicle (hereinafter referred to as second predicted traveling behavior data D2) by inter-vehicle communication.
- the second predicted traveling behavior data D2 includes a plurality of predicted traveling behavior information S indicating the predicted traveling behavior of another vehicle at predetermined time intervals within the prediction period Tc.
- the wireless communication unit 193 of the present embodiment receives two types of second predicted traveling behavior data D2.
- the first type of second predicted travel behavior data D2 (hereinafter referred to as second predicted travel behavior data D21) is predicted travel at rough time intervals (for example, every 600 ms interval). Behavior information S is included.
- the second type of second predicted traveling behavior data D2 (hereinafter referred to as second predicted traveling behavior data D22) is, as shown in FIG. 5, a time interval finer than the second predicted traveling behavior data D21 (for example, an interval of 300 ms)
- Each predicted traveling behavior information S is included.
- the wireless communication unit 193 transmits, to another vehicle, information requesting transmission of the second predicted traveling behavior data D22 before receiving the second type of second predicted traveling behavior data D22. Therefore, the other vehicle does not transmit the second type second predicted traveling behavior data D22 unless the wireless communication unit 193 transmits the information requesting the transmission.
- the wireless communication unit 193 passes the received second predicted traveling behavior data D21 and D22 to the determination unit 196 of the control unit 191.
- the determination unit 196 determines the own vehicle and the other vehicle in the prediction period Tc.
- the possibility of collision (hereinafter referred to simply as the possibility of collision) is determined.
- the determination unit 196 of the present embodiment executes a first determination that determines a rough collision possibility based on the first type of first and second predicted traveling behavior data D11 and D21. Then, when it is determined that there is a collision possibility by the first determination, the determination unit 196 determines the detailed collision possibility based on the second type of first and second predicted traveling behavior data D12 and D22. 2 Execute the judgment.
- FIG. 7 is a road plan view illustrating a situation in which the host vehicle may collide with another vehicle.
- the host vehicle 1A when the host vehicle 1A is traveling in the lane R2 at a speed of 100 km / h, another vehicle 1B traveling in the lane R1 at a speed of 80 km / h in the diagonally forward of the host vehicle 1A.
- the case of changing lanes to lane R2 is shown.
- the processing contents of the first and second determinations performed by the determination unit 196 will be described with respect to the collision possibility due to the lane change shown in FIG. 7.
- the determination unit 196 generates, from the first predicted traveling behavior data D11, a future first traveling locus L1 of the host vehicle 1A in the prediction period Tc, as shown in the upper part of FIG. Specifically, the determination unit 196 performs map matching processing from the “time” and the “absolute position” of each piece of predicted traveling behavior information S included in the first type of first predicted traveling behavior data D11 and the map information. A plurality of coordinate points C1 (longitude and latitude) indicating the absolute position of the vehicle 1A at each time within the prediction period Tc are plotted on the road map.
- the determination unit 196 finds an approximation line (an approximation straight line in the upper example of FIG. 8) passing through the plurality of coordinate points C1 using, for example, polynomial approximation. .
- the calculated approximate line is a future first travel locus L1 of the vehicle 1A in the prediction period Tc.
- the first travel locus L1 shown in the upper part of FIG. 8 passes the absolute position (coordinate point C1) of the vehicle 1A at each time t0, t2 and t4 from the current time t0 to t2 and t4 every 600 ms. Do.
- the determination unit 196 generates a future second travel locus L2 of the other vehicle 1B in the prediction period Tc, as shown in the lower part of FIG. 8, from the first type second predicted travel behavior data D21. Specifically, the determination unit 196 performs map matching processing from each value of “time” and “absolute position” of each predicted traveling behavior information S included in the second predicted traveling behavior data D 21 and map information, A plurality of coordinate points C2 (longitude and latitude) indicating the absolute position of the other vehicle 1B at each time within the prediction period Tc are plotted on the road map.
- the determination unit 196 finds an approximation line (an approximation curve in the lower example of FIG. 8) passing through the plurality of coordinate points C2 using, for example, polynomial approximation. .
- the calculated approximate line is a future second travel locus L2 of the other vehicle 1B in the prediction period Tc.
- the second travel locus L2 shown in the lower part of FIG. 8 passes the absolute position (coordinate point C2) of the other vehicle 1B at each time t0, t2 and t4 from the current time t0 to time t2 and time t4 every 600 ms. Do.
- determination unit 196 arranges a first traveling locus L1 of vehicle 1A and a second traveling locus L2 of other vehicle 1B on one road map, and the traveling loci L1 and L2 are one another. It is determined whether or not it intersects. The determination unit 196 determines that there is a collision possibility if the traveling loci L1 and L2 intersect with each other, and determines that there is no collision possibility if the traveling loci L1 and L2 do not intersect. In the example of FIG. 9, since the traveling trajectories L1 and L2 cross each other, the determination unit 196 determines that there is a collision possibility in the first determination.
- the determination unit 196 indicates an area where the vehicle 1A is located at predetermined time intervals in the prediction period Tc, as shown in the upper part of FIG. 10, from the second type first predicted traveling behavior data D12. A plurality of first vehicle areas Av1 are determined. Specifically, the determination unit 196 determines the “time”, “absolute position”, vehicle width and length of “vehicle attribute”, and map information of each predicted traveling behavior information S included in the first predicted traveling behavior data D12. Then, map matching processing is performed to plot the first vehicle area Av1 in which the vehicle 1A is located at each time within the prediction period Tc on the road map.
- the first vehicle area Av1 at each time is a rectangular area centered on the absolute position (coordinate point C1) corresponding to each time.
- the length in the short direction of the rectangular area is set based on the vehicle width of the vehicle 1A, and the length in the longitudinal direction of the rectangular area is set based on the vehicle length of the vehicle 1A.
- the shape of the first vehicle area Av1 may be a shape other than a rectangle, such as a circle.
- the upper part of FIG. 10 shows the first vehicle area Av1 of the own vehicle 1A at each time t0 to t4 from time t0 to time 300, and each time t2 to t3 every time of 300 ms.
- the first vehicle area Av1 at each of the times t0 to t4 has a predetermined margin area Am1.
- the margin area Am1 of the present embodiment includes a first margin area Am11 and a second margin area Am12.
- the first margin area Am11 is an area formed by adding a predetermined allowance length to the vehicle length of the host vehicle 1A on the traveling side of the host vehicle 1A (right side in the upper stage of FIG. 10).
- the second margin area Am12 is an area formed by adding a predetermined margin length to the vehicle width of the own vehicle 1A on the side facing the other vehicle 1B of the own vehicle 1A (the lower side in the upper stage of FIG. 10). .
- the determination unit 196 determines, as shown in the lower part of FIG. 10, a plurality of second vehicles indicating regions where the other vehicle 1B is located at predetermined time intervals in the prediction period Tc. Find the area Av2. Specifically, the determination unit 196 determines the “time”, “absolute position”, vehicle width and length of “vehicle attribute”, and map information of each piece of predicted traveling behavior information S included in the second predicted traveling behavior data D22. Then, map matching processing is performed to plot the second vehicle area Av2 in which the other vehicle 1B is located at each time within the prediction period Tc on the road map.
- the second vehicle area Av2 at each time is a rectangular area centered on the absolute position (coordinate point C2) corresponding to each time.
- the length in the short direction of the rectangular area is set based on the vehicle width of the other vehicle 1B, and the length in the longitudinal direction of the rectangular area is set based on the vehicle length of the other vehicle 1B.
- region Av2 may be other shapes, such as circular other than a rectangle.
- the lower part of FIG. 10 shows the second vehicle area Av2 of the other vehicle 1B in each time t0 to t4 from the current time t0 to the time t1 every 300 ms, the time t2, the time t3, and the time t4.
- the second vehicle area Av2 at each of the times t0 to t4 has a predetermined margin area Am2.
- the margin area Am2 of the present embodiment includes a first margin area Am21 and a second margin area Am22.
- the first margin area Am21 is an area formed by adding a predetermined margin length to the vehicle length of the other vehicle 1B on the traveling side of the other vehicle 1B (right side in the lower part of FIG. 10).
- the second margin area Am22 is an area formed by adding a predetermined margin length to the vehicle width of the other vehicle 1B on the side (upper side in the lower part of FIG. 10) of the other vehicle 1B facing the own vehicle 1A.
- the margin area Am1 of the vehicle 1A may have only one of the first margin area Am11 and the second margin area Am12.
- the margin area Am2 of the other vehicle 1B may have only one of the first margin area Am21 and the second margin area Am22.
- the first vehicle area Av1 of the own vehicle 1A and the second vehicle area Av2 of the other vehicle 1B respectively have the margin areas Am1 and Am2, but only one of the vehicle areas is a margin It may have a region.
- the determination unit 196 determines, on one road map, a first vehicle area Av1 at each time t0 to t4 of the host vehicle 1A and a second vehicle area at each time t0 to t4 of the other vehicle 1B.
- Av2 is arranged, and it is determined whether or not the first vehicle area Av1 and the second vehicle area Av2 at least partially overlap with each other at the same or similar time.
- that the times are the same or close to each other indicates that the difference between the time of the first vehicle area Av1 and the time of the second vehicle area Av2 is equal to or less than the threshold.
- the threshold value in the present embodiment is set to, for example, 600 ms.
- the determination unit 196 determines that there is a collision possibility, and the first vehicles have the same time or the close time If the area Av1 and the second vehicle area Av2 do not partially overlap, it is determined that there is no collision possibility.
- the determination unit 196 causes a collision in the second determination. Determine that there is a possibility.
- the first and second determinations performed by the determination unit 196 can be applied to the determination of the collision possibility other than the lane change.
- the first and second determinations also apply to the determination of the possibility of collision in other traffic situations, such as the possibility of collision of right-turn vehicles at intersections, the possibility of collision of merging vehicles in merging sections of expressways or general roads, etc. can do.
- the determination unit 196 may execute only one of the first determination and the second determination.
- FIG. 12 is a flowchart showing the processing procedure of the collision possibility determination which is executed by the on-vehicle communication device 19.
- the in-vehicle communication device 19 first performs two types of first predicted travel behavior having a plurality of predicted travel behavior information S indicating the predicted travel behavior of the vehicle at predetermined time intervals within the prediction period Tc. Data D1 is generated. Specifically, the in-vehicle communication device 19 calculates the first predicted traveling behavior data D11 of the first type of the vehicle including the predicted traveling behavior information S at rough time intervals, and the predicted traveling behavior information S at every fine time interval. A second type of first predicted traveling behavior data D12 of the vehicle including the vehicle is generated (step ST1, generation step).
- the in-vehicle communication device 19 transmits the first type of first predicted traveling behavior data D11 to another vehicle traveling in the vicinity of the own vehicle by inter-vehicle communication (step ST2). Then, the in-vehicle communication device 19 receives the first type of second predicted traveling behavior data D21 transmitted by the inter-vehicle communication by another vehicle traveling around the host vehicle (step ST3, communication step).
- the second predicted traveling behavior data D21 is data including predicted traveling behavior information S of another vehicle at rough time intervals within the prediction period Tc as described above.
- the in-vehicle communication device 19 executes the first determination based on the generated first predicted traveling behavior data D11 of the own vehicle and the received second predicted traveling behavior data D21 of the other vehicle (step ST4, Judgment step). In the first determination, the in-vehicle communication device 19 determines a rough collision possibility between the host vehicle and the other vehicle in the prediction period Tc.
- FIG. 13 is a flowchart showing the procedure of the first determination performed by the in-vehicle communication device 19.
- the in-vehicle communication device 19 generates a first traveling locus L1 (see the upper stage in FIG. 8) of the host vehicle in the prediction period Tc from the first predicted traveling behavior data D11.
- the in-vehicle communication device 19 generates a second traveling locus L2 (see the lower part of FIG. 8) of the other vehicle in the prediction period Tc from the second predicted traveling behavior data D21 (step ST21).
- the method of generating the first and second travel loci L1, L2 is as described above.
- the on-vehicle communication device 19 arranges the first traveling locus L1 of the own vehicle and the second traveling locus L2 of the other vehicle on one road map (see FIG. 9), and the traveling loci L1 and L2 are mutually It is determined whether or not it intersects (step ST22).
- the in-vehicle communication device 19 determines that there is a possibility of a collision (step ST23), and ends the process of the first determination.
- the traveling loci L1 and L2 do not cross each other, the on-vehicle communication device 19 determines that there is no possibility of collision (step ST24), and ends the process of the first determination.
- the in-vehicle communication device 19 ends the process.
- the in-vehicle communication device 19 generates two types generated by the other vehicle determined to have the collision possibility.
- Information for requesting transmission of the second predicted travel behavior data D22 for the eyes is transmitted by inter-vehicle communication (step ST6).
- the second predicted traveling behavior data D22 is data including the predicted traveling behavior information S of the other vehicle at fine time intervals in the prediction period Tc as described above.
- the in-vehicle communication device 19 receives the second predicted traveling behavior data D22 from the other vehicle determined to have a possibility of collision in the first determination by inter-vehicle communication (step ST7, communication step).
- the in-vehicle communication device 19 receives the first predicted traveling behavior data D12 of the subject vehicle generated in the first step ST1, and the second predicted traveling behavior received from the other vehicle determined to have a collision possibility in the first determination.
- a second determination is performed based on the data D22 (step ST8, determination step). In the second determination, the in-vehicle communication device 19 determines the detailed collision possibility between the host vehicle and the other vehicle in the prediction period Tc.
- FIG. 14 is a flowchart showing the procedure of the second determination performed by the in-vehicle communication device 19.
- the in-vehicle communication device 19 determines from the first predicted traveling behavior data D12 a plurality of first vehicle areas Av1 (an upper portion in FIG. 10) indicating areas where the host vehicle is located at predetermined time intervals in the prediction period Tc. See). Further, the in-vehicle communication device 19 obtains a plurality of second vehicle areas Av2 (see the lower part of FIG. 10) indicating areas where other vehicles are located at predetermined time intervals in the prediction period Tc from the second predicted traveling behavior data D22 Step ST41). The method of determining the first and second vehicle areas Av1 and Av2 is as described above.
- the on-vehicle communication device 19 arranges the first vehicle area Av1 at each time of the own vehicle and the second vehicle area Av2 at each time of the other vehicle on one road map (see FIG. 11). Then, the in-vehicle communication device 19 determines whether or not the first vehicle area Av1 and the second vehicle area Av2 at least partially overlap with each other at the same or similar time (step ST42).
- the in-vehicle communication device 19 determines that there is a possibility of collision (step ST43), and ends the processing of the second determination. Do. On the other hand, when the first vehicle area Av1 and the second vehicle area Av2 do not overlap with each other at the same or similar time, the on-vehicle communication device 19 determines that there is no collision possibility (step ST44). End the process.
- the in-vehicle communication device 19 performs the first predicted traveling behavior data D1 indicating the future predicted traveling behavior of the host vehicle and the second predicted traveling behavior data indicating the future predicted traveling behavior of the other vehicle. Based on D2, the collision possibility between the own vehicle and the other vehicle is determined. Therefore, it is possible to improve the determination accuracy of the collision possibility between the own vehicle and the other vehicle as compared to the case where the collision possibility is determined based only on the current situation as in the related art.
- the wireless communication unit 193 of the in-vehicle communication device 19 transmits the generated first predicted traveling behavior data D1 to another vehicle by inter-vehicle communication.
- the collision possibility between the own vehicle and the other vehicle can be determined based on the first and second predicted traveling behavior data D1, D2. Therefore, the determination accuracy of the collision possibility performed by another vehicle can be improved.
- the wireless communication unit 193 transmits only the predicted traveling behavior information S that precedes in time in the first predicted traveling behavior data D1. .
- the number of pieces of predicted traveling behavior information S included in the first predicted traveling behavior data D1 can be reduced, so that the amount of communication data of inter-vehicle communication can be reduced.
- the wireless communication unit 193 replaces the first predicted traveling behavior data D1 later in time and moves back and forth in time (1) Transmit information indicating that there is no change in the predicted driving behavior data D1.
- the number of pieces of first predicted traveling behavior data D1 to be transmitted to other vehicles can be reduced, so that the amount of communication data of inter-vehicle communication can be further reduced.
- the indefinite time interval may be the speed of the host vehicle, the own vehicle and the other vehicle
- the determination accuracy of the collision possibility between the own vehicle and the other vehicle is set by setting an appropriate interval according to at least one of the following inter-vehicle distance and the collision margin time until the own vehicle collides with the other vehicle. It can be further improved.
- the determination unit 196 of the in-vehicle communication device 19 determines the host vehicle and the other vehicle.
- the determination accuracy can be further improved because it is determined that there is a collision possibility.
- the second determination if the first vehicle area Av1 and the second vehicle area Av2 at the same time are similar or close to each other in the second determination, there is a possibility of a collision between the own vehicle and the other vehicle Therefore, the determination accuracy can be further improved.
- determination unit 196 determines the possibility of a collision between the own vehicle and another vehicle, taking into consideration margin regions Am1 and Am2 of first and second vehicle regions Av1 and Av2, so that the first vehicle Even when an error occurs when obtaining the area Av1 or the second vehicle area Av2, the determination accuracy of the second determination can be guaranteed.
- the traveling side of the vehicle where the first margin areas Am11 and Am21 of the margin areas Am1 and Am2 are formed is a place where the possibility of collision between the own vehicle and another vehicle is high, the determination accuracy of the collision possibility is further added. Can be guaranteed.
- the side where the own vehicle and the other vehicle on which the second margin areas Am12 and Am22 of the margin areas Am1 and Am2 are formed is the place where the collision possibility is high, the judgment accuracy of the collision possibility is further guaranteed. can do.
- the on-vehicle communication device 19 is a collision possibility determination device that determines the collision possibility between the host vehicle and another vehicle, but the relay device 20 may be a collision possibility determination device.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
Abstract
自車両と他車両との衝突可能性を判定する装置であって、自車両の将来の予測走行挙動を示す第1予測走行挙動データを生成する生成部と、他車両の将来の予測走行挙動を示す第2予測走行挙動データを車車間通信により受信する通信部と、生成された前記第1予測走行挙動データ、及び受信された前記第2予測走行挙動データに基づいて、自車両と他車両との衝突可能性を判定する判定部と、を備える衝突可能性判定装置。
Description
本発明は、衝突可能性判定装置、衝突可能性判定方法、及びコンピュータプログラムに関する。
近年、自動車の自動運転技術の開発が盛んに行われている。自動車の自動運転を実現するためには、自車両の周囲に存在する他車両との衝突を回避することが重要となる。自車両と他車両との衝突を回避する技術として、例えば特許文献1に示す運転支援装置が既に提案されている。
この運転支援装置は、自車両および他車両の将来の移動範囲を予測し、予測した移動範囲に基づいて将来の衝突可能性を判定する。そして、運転支援装置は、将来の衝突可能性があると判定した場合、衝突を回避するための運転支援を実行する。
この運転支援装置は、自車両および他車両の将来の移動範囲を予測し、予測した移動範囲に基づいて将来の衝突可能性を判定する。そして、運転支援装置は、将来の衝突可能性があると判定した場合、衝突を回避するための運転支援を実行する。
本発明の一態様に係る衝突可能性判定装置は、自車両と他車両との衝突可能性を判定する装置であって、自車両の将来の予測走行挙動を示す第1予測走行挙動データを生成する生成部と、他車両の将来の予測走行挙動を示す第2予測走行挙動データを車車間通信により受信する通信部と、生成された前記第1予測走行挙動データ、及び受信された前記第2予測走行挙動データに基づいて、自車両と他車両との衝突可能性を判定する判定部と、を備える衝突可能性判定装置である。
本発明の一態様に係る衝突可能性判定方法は、自車両と他車両との衝突可能性を判定する方法であって、自車両の将来の予測走行挙動を示す第1予測走行挙動データを生成する生成ステップと、他車両の将来の予測走行挙動を示す第2予測走行挙動データを車車間通信により受信する通信ステップと、生成された前記第1予測走行挙動データ、及び受信された前記第2予測走行挙動データに基づいて、自車両と他車両との衝突可能性を判定する判定ステップと、を含む衝突可能性判定方法である。
本発明の一態様に係るコンピュータプログラムは、自車両と他車両との衝突可能性を判定する処理をコンピュータに実行させるためのコンピュータプログラムであって、コンピュータを、自車両の将来の予測走行挙動を示す第1予測走行挙動データを生成する生成部と、生成された前記第1予測走行挙動データ、及び車車間通信により通信部で受信された、他車両の将来の予測走行挙動を示す第2予測走行挙動データに基づいて、自車両と他車両との衝突可能性を判定する判定部として機能させるためのコンピュータプログラムである。
<本開示が解決しようとする課題>
前記運転支援装置では、自車両及び他車両の将来の移動範囲を、現時点の状況に基づいて予測している。このため、予測の不確実性が高くなり、将来の想定外の状況に対応できず、衝突可能性の判定を誤るおそれがある。
そこで、かかる従来の問題点に鑑み、自車両と他車両との衝突可能性の判定精度を向上させることができる衝突可能性判定装置等を提供することを目的とする。
前記運転支援装置では、自車両及び他車両の将来の移動範囲を、現時点の状況に基づいて予測している。このため、予測の不確実性が高くなり、将来の想定外の状況に対応できず、衝突可能性の判定を誤るおそれがある。
そこで、かかる従来の問題点に鑑み、自車両と他車両との衝突可能性の判定精度を向上させることができる衝突可能性判定装置等を提供することを目的とする。
<本開示の効果>
本発明によれば、自車両と他車両との衝突可能性の判定精度を向上させることができる。
本発明によれば、自車両と他車両との衝突可能性の判定精度を向上させることができる。
<本発明の実施形態の説明>
最初に本発明の実施形態の内容を列記して説明する。
(1)本発明の実施形態に係る衝突可能性判定装置は、自車両と他車両との衝突可能性を判定する装置であって、自車両の将来の予測走行挙動を示す第1予測走行挙動データを生成する生成部と、他車両の将来の予測走行挙動を示す第2予測走行挙動データを車車間通信により受信する通信部と、生成された前記第1予測走行挙動データ、及び受信された前記第2予測走行挙動データに基づいて、自車両と他車両との衝突可能性を判定する判定部と、を備える。
最初に本発明の実施形態の内容を列記して説明する。
(1)本発明の実施形態に係る衝突可能性判定装置は、自車両と他車両との衝突可能性を判定する装置であって、自車両の将来の予測走行挙動を示す第1予測走行挙動データを生成する生成部と、他車両の将来の予測走行挙動を示す第2予測走行挙動データを車車間通信により受信する通信部と、生成された前記第1予測走行挙動データ、及び受信された前記第2予測走行挙動データに基づいて、自車両と他車両との衝突可能性を判定する判定部と、を備える。
前記衝突可能性判定装置は、自車両の将来の予測走行挙動を示す第1予測走行挙動データと、他車両の将来の予測走行挙動を示す第2予測走行挙動データとに基づいて、自車両と他車両との衝突可能性を判定する。このため、従来のように現時点の状況のみに基づいて衝突可能性を判定する場合に比べて、自車両と他車両との衝突可能性の判定精度を向上させることができる。
(2)前記通信部は、生成された前記第1予測走行挙動データを車車間通信により他車両に送信するのが好ましい。
この場合、第1予測走行挙動データを受信した他車両においても、第1及び第2予測走行挙動データに基づいて自車両と他車両との衝突可能性を判定することができるため、他車両で行う衝突可能性の判定精度を向上させることができる。
この場合、第1予測走行挙動データを受信した他車両においても、第1及び第2予測走行挙動データに基づいて自車両と他車両との衝突可能性を判定することができるため、他車両で行う衝突可能性の判定精度を向上させることができる。
(3)生成された前記第1予測走行挙動データは、一定時間間隔毎または不定時間間隔毎の自車両の前記予測走行挙動を示す複数の予測走行挙動情報を有し、前記通信部は、時間的に前後する前記予測走行挙動情報の間で変化がない場合、時間的に前の前記予測走行挙動情報のみを前記第1予測走行挙動データに含めて送信するのが好ましい。
この場合、第1予測走行挙動データに含める予測走行挙動情報の個数を減らすことができるので、車車間通信の通信データ量を削減することができる。
この場合、第1予測走行挙動データに含める予測走行挙動情報の個数を減らすことができるので、車車間通信の通信データ量を削減することができる。
(4)前記生成部は、前記第1予測走行挙動データを逐次生成し、前記通信部は、時間的に前後する前記第1予測走行挙動データの間で変化がない場合、時間的に後の前記第1予測走行挙動データに替えて、時間的に前後する前記第1予測走行挙動データの間で変化がないことを示す情報を送信するのが好ましい。
この場合、他車両に送信する第1予測走行挙動データの個数を減らすことができるので、車車間通信の通信データ量をさらに削減することができる。
この場合、他車両に送信する第1予測走行挙動データの個数を減らすことができるので、車車間通信の通信データ量をさらに削減することができる。
(5)生成された前記第1予測走行挙動データは、不定時間間隔毎の自車両の前記予測走行挙動を示す複数の予測走行挙動情報を有し、前記不定時間間隔は、自車両の速度、自車両と他車両との車間距離、及び自車両が他車両に衝突するまでの衝突余裕時間(TTC:Time To Collision)のうちの少なくとも1つに応じて設定されているのが好ましい。
この場合、前記不定時間間隔を、自車両の速度、自車両と他車両との車間距離、自車両が他車両に衝突するまでの衝突余裕時間のうちの少なくとも1つに応じて適切な間隔に設定することができる。これにより、自車両と他車両との衝突可能性の判定精度をさらに向上させることができる。
この場合、前記不定時間間隔を、自車両の速度、自車両と他車両との車間距離、自車両が他車両に衝突するまでの衝突余裕時間のうちの少なくとも1つに応じて適切な間隔に設定することができる。これにより、自車両と他車両との衝突可能性の判定精度をさらに向上させることができる。
(6)前記判定部は、前記第1予測走行挙動データから、自車両の将来の走行軌跡を生成し、前記第2予測走行挙動データから、他車両の将来の走行軌跡を生成し、自車両の前記走行軌跡と他車両の前記走行軌跡とが交わる場合に、前記衝突可能性があると判定するのが好ましい。
この場合、判定部は、自車両の将来の走行軌跡と他車両の将来の走行軌跡とが交われば、自車両と他車両との衝突可能性があると判定するため、その判定精度をさらに向上させることができる。
この場合、判定部は、自車両の将来の走行軌跡と他車両の将来の走行軌跡とが交われば、自車両と他車両との衝突可能性があると判定するため、その判定精度をさらに向上させることができる。
(7)前記判定部は、前記第1予測走行挙動データから、所定時刻間隔毎の自車両が位置する領域を示す複数の第1車両領域を求め、前記第2予測走行挙動データから、前記所定時刻間隔毎の他車両が位置する領域を示す複数の第2車両領域を求め、互いに時刻が同じ又は近い前記第1車両領域と前記第2車両領域とが一部でも重なれば、前記衝突可能性があると判定してもよい。
この場合、判定部は、互いに時刻が同じ又は近い第1車両領域と第2車両領域とが一部でも重なれば、自車両と他車両との衝突可能性があると判定するため、その判定精度をさらに向上させることができる。
この場合、判定部は、互いに時刻が同じ又は近い第1車両領域と第2車両領域とが一部でも重なれば、自車両と他車両との衝突可能性があると判定するため、その判定精度をさらに向上させることができる。
(8)前記第1及び第2車両領域の少なくとも一方の車両領域は、所定のマージン領域を有するのが好ましい。
この場合、判定部は、第1及び第2車両領域の少なくとも一方の車両領域が有するマージン領域を加味して自車両と他車両との衝突可能性を判定するため、第1車両領域又は第2車両領域を求めるときに誤差が生じても、自車両と他車両との衝突可能性の判定精度を保証することができる。
この場合、判定部は、第1及び第2車両領域の少なくとも一方の車両領域が有するマージン領域を加味して自車両と他車両との衝突可能性を判定するため、第1車両領域又は第2車両領域を求めるときに誤差が生じても、自車両と他車両との衝突可能性の判定精度を保証することができる。
(9)前記マージン領域は、車両の進行側に形成されているのが好ましい。
この場合、マージン領域が形成される車両の進行側は、自車両と他車両との衝突可能性が高い所であるため、衝突可能性の判定精度をさらに保証することができる。
この場合、マージン領域が形成される車両の進行側は、自車両と他車両との衝突可能性が高い所であるため、衝突可能性の判定精度をさらに保証することができる。
(10)前記マージン領域は、自車両と他車両とが対向する側に形成されていてもよい。
この場合、マージン領域が形成される自車両と他車両とが対向する側は、自車両と他車両との衝突可能性が高い所であるため、衝突可能性の判定精度をさらに保証することができる。
この場合、マージン領域が形成される自車両と他車両とが対向する側は、自車両と他車両との衝突可能性が高い所であるため、衝突可能性の判定精度をさらに保証することができる。
(11)本発明の実施形態に係る衝突可能性判定方法は、上述の衝突可能性判定装置において実行される衝突可能性判定方法である。従って、本実施形態の衝突可能性判定方法は、上述の衝突可能性判定装置と同様の作用効果を奏する。
(12)本発明の実施形態に係るコンピュータプログラムは、コンピュータを、上述の衝突可能性判定装置として機能させるためのコンピュータプログラムである。従って、本実施形態のコンピュータプログラムは、上述の衝突可能性判定装置と同様の作用効果を奏する。
<本発明の実施形態の詳細>
以下、図面を参照して、本発明の実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
[通信システムの全体構成]
図1は、本発明の実施形態に係る通信システムの全体構成図である。
図1に示すように、本実施形態の通信システムは、複数の車両1にそれぞれ搭載された車載通信機19を備える。
以下、図面を参照して、本発明の実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
[通信システムの全体構成]
図1は、本発明の実施形態に係る通信システムの全体構成図である。
図1に示すように、本実施形態の通信システムは、複数の車両1にそれぞれ搭載された車載通信機19を備える。
車載通信機19は、道路を走行中の他車両との間で無線通信(車車間通信)を行う無線通信機である。従って、本実施形態では、車両1の車載通信機19を「車車間通信装置19」ともいい、通信システムを「車車間通信システム」ともいう。
本実施形態では、車載通信機19は、CSMA/CA(Carrier Sense Multiple Access/ Collision Avoidance)方式によるマルチアクセス方式を採用している。
本実施形態では、車載通信機19は、CSMA/CA(Carrier Sense Multiple Access/ Collision Avoidance)方式によるマルチアクセス方式を採用している。
より具体的には、車載通信機19は、例えば「700MHz帯高度道路交通システム標準規格(ARIB STD-T109)」に倣ったマルチアクセス方式を採用している。
この方式によれば、車載通信機19は、車車間通信の通信フレームを所定時間(例えば0.1秒)ごとにブロードキャスト送信する。従って、車車間通信を実行中の車両1は、無線信号の送受信範囲に含まれる他車両から受信した通信フレームにより、自車両の周囲の他車両の車両情報をほぼリアルタイムで察知することができる。
この方式によれば、車載通信機19は、車車間通信の通信フレームを所定時間(例えば0.1秒)ごとにブロードキャスト送信する。従って、車車間通信を実行中の車両1は、無線信号の送受信範囲に含まれる他車両から受信した通信フレームにより、自車両の周囲の他車両の車両情報をほぼリアルタイムで察知することができる。
車車間通信の通信方式は、上記の標準規格に限定されるものではなく、例えば3GPPのセルラーV2Vなど、携帯電話向けの通信技術を車両1の無線通信に応用したものであってもよい。
[車内システムの構成]
図2は、車内システムの構成を示すブロック図である。
図2に示すように、各車両1は、車内システム10を備える。車内システム10は、中継装置20と、通信ネットワーク12と、通信ネットワーク12に属するECUにより電子制御される各種の車載機器とを含む。
図2は、車内システムの構成を示すブロック図である。
図2に示すように、各車両1は、車内システム10を備える。車内システム10は、中継装置20と、通信ネットワーク12と、通信ネットワーク12に属するECUにより電子制御される各種の車載機器とを含む。
通信ネットワーク12は、中継装置20において終端する複数の車内通信線13と、各車内通信線13に接続された複数の車載制御装置(以下、「ECU」という。)16と、を備える。
通信ネットワーク12は、ECU16相互間の通信が可能であり、中継装置20を終端ノード(親機)とするマスター/スレーブ型の通信ネットワーク(例えば、LIN(Local Interconnect Network))よりなる。中継装置20は、複数の通信ネットワーク12を制御する。
通信ネットワーク12は、ECU16相互間の通信が可能であり、中継装置20を終端ノード(親機)とするマスター/スレーブ型の通信ネットワーク(例えば、LIN(Local Interconnect Network))よりなる。中継装置20は、複数の通信ネットワーク12を制御する。
通信ネットワーク12は、LINだけでなく、CAN(Controller Area Network)、CANFD(CAN with Flexible Data Rate)、Ethernet(登録商標)、又はMOST(Media Oriented Systems Transport:MOSTは登録商標)などの通信規格を採用するネットワークであってもよい。
また、通信ネットワーク12のネットワーク構成としては、中継装置20と少なくとも1つのECU16が含まれておればよい。
また、通信ネットワーク12のネットワーク構成としては、中継装置20と少なくとも1つのECU16が含まれておればよい。
以下において、通信ネットワークの共通符号を「12」とし、通信ネットワークの個別符号を「12A~12C」とする。また、ECUの共通符号を「16」とし、ECUの個別符号を「16A1~16A4」、「16B1~16B3」及び「16C1~16C2」とする。
各通信ネットワーク12A,12B,12Cは、車両1の異なる制御分野をそれぞれ分担している。
例えば、通信ネットワーク12Aには、車両1の駆動機器を制御対象とするパワー系ECUが接続されている。通信ネットワーク12Bには、車両1の情報機器を制御対象とするマルチメディア系ECUが接続されている。通信ネットワーク12Cには、車両1の運転操作を支援する先進運転支援システム(ADAS:Advanced Driver-Assistance Systems)を制御対象とするADAS系ECUが接続されている。
例えば、通信ネットワーク12Aには、車両1の駆動機器を制御対象とするパワー系ECUが接続されている。通信ネットワーク12Bには、車両1の情報機器を制御対象とするマルチメディア系ECUが接続されている。通信ネットワーク12Cには、車両1の運転操作を支援する先進運転支援システム(ADAS:Advanced Driver-Assistance Systems)を制御対象とするADAS系ECUが接続されている。
通信ネットワーク12は、上記の3種類に限らず4種類以上であってもよい。また、通信ネットワーク12に対応付ける制御分野は、車両メーカーの設計思想に応じて様々であり、上記の制御分野の分担に限定されるものではない。
具体的には、通信ネットワーク12Aに接続されているパワー系ECUには、例えば、エンジンECU16A1、EPS-ECU16A2、ブレーキECU16A3、及びABS-ECU16A4などが含まれる。
エンジンECU16A1には、エンジンの燃料噴射装置31が接続されており、燃料噴射装置31は、エンジンECU16A1によって制御される。
エンジンECU16A1には、エンジンの燃料噴射装置31が接続されており、燃料噴射装置31は、エンジンECU16A1によって制御される。
EPS-ECU16A2には、EPS(Electric Power Steering:電動パワーステアリング)32が接続されており、EPS32は、EPS-ECU16A2によって制御される。ブレーキECU16A3には、ブレーキアクチュエータ33が接続されており、ブレーキアクチュエータ33は、ブレーキECU16A3によって制御される。
ABS-ECU16A4には、ABS(Antilock Brake System)アクチュエータ34が接続されており、ABSアクチュエータ34は、ABS-ECU16A4によって制御される。
ABS-ECU16A4には、ABS(Antilock Brake System)アクチュエータ34が接続されており、ABSアクチュエータ34は、ABS-ECU16A4によって制御される。
通信ネットワーク12Bに接続されているマルチメディア系ECUには、例えば、ナビゲーションECU16B1、メータECU16B2、及びHUD-ECU16B3などが含まれる。
ナビゲーションECU16B1には、HDD(Hard Disk Drive)41、ディスプレイ42、GPS(Global Positioning System)受信機43、車速センサ44、ジャイロセンサ45、スピーカ46、及び入力デバイス47が接続されている。
ナビゲーションECU16B1には、HDD(Hard Disk Drive)41、ディスプレイ42、GPS(Global Positioning System)受信機43、車速センサ44、ジャイロセンサ45、スピーカ46、及び入力デバイス47が接続されている。
ディスプレイ42とスピーカ46は、各種情報を自車両の搭乗者に提示するための出力装置である。具体的には、ディスプレイ42は、自車両周辺の地図画像及び目的地までの経路情報などを表示し、スピーカ46は、自車両を目的地に誘導するためのアナウンスを音声出力する。
入力デバイス47は、搭乗者が目的地等の各種入力を行うためのものであり、操作スイッチ、ジョイスティック、或いはディスプレイ42に設けたタッチパネル等の各種入力手段により構成される。
入力デバイス47は、搭乗者が目的地等の各種入力を行うためのものであり、操作スイッチ、ジョイスティック、或いはディスプレイ42に設けたタッチパネル等の各種入力手段により構成される。
ナビゲーションECU16B1は、GPS受信機43が定期的に取得したGPS信号から現時点の時刻を取得する時刻同期機能と、GPS信号から自車両の絶対位置(緯度、経度及び高度)を求める位置検出機能と、車速センサ44及びジャイロセンサ45によって自車両の位置及び方位を補正して自車両の正確な現在位置及び方位を求める補正機能などを有する。
ナビゲーションECU16B1は、求めた現在位置に応じてHDD41に格納された地図情報を読み出し、地図情報に自車両の現在位置を重ねた地図画像を生成する。そして、ナビゲーションECU16B1は、ディスプレイ42に地図画像を表示させ、その地図画像に現在位置から目的地までの経路情報などを表示する。
ナビゲーションECU16B1は、求めた現在位置に応じてHDD41に格納された地図情報を読み出し、地図情報に自車両の現在位置を重ねた地図画像を生成する。そして、ナビゲーションECU16B1は、ディスプレイ42に地図画像を表示させ、その地図画像に現在位置から目的地までの経路情報などを表示する。
メータECU16B2には、メータアクチュエータ48が接続されており、メータアクチュエータ48は、メータECU16B2によって制御される。HUD-ECU16B3には、HUD(Head-Up Display)49が接続されており、HUD49は、HUD-ECU16B3によって制御される。
通信ネットワーク12Cに接続されているADAS系ECUには、例えば、ADAS-ECU16C1、及び環境認識ECU16C2などが含まれる。
環境認識ECU16C2には、第1センサ51及び第2センサ52が接続されており、第1及び第2センサ51,52は、環境認識ECU16C2によって制御される。
環境認識ECU16C2には、第1センサ51及び第2センサ52が接続されており、第1及び第2センサ51,52は、環境認識ECU16C2によって制御される。
第1センサ51は、例えば、車両1の前後左右の四隅に配置された超音波センサやビデオカメラなどよりなる(図1参照)。
前側に設けられた第1センサ51は、主として自車両の前方に存在する物体を検出するためのセンサであり、後側に設けられた第1センサ51は、主として自車両の後方に存在する物体を検出するためのセンサである。
前側に設けられた第1センサ51は、主として自車両の前方に存在する物体を検出するためのセンサであり、後側に設けられた第1センサ51は、主として自車両の後方に存在する物体を検出するためのセンサである。
第2センサ52は、例えば、車両1の天井部分に配置された超音波センサやビデオカメラなどよりなる(図1参照)。第2センサ52は、鉛直軸心回りに比較的高速で回転自在となっており、自車両の周囲に存在する物体を検出するためのセンサである。
第1及び第2センサ51,52のセンシング結果は、環境認識ECU16C2によって通信パケットに格納されてADAS-ECU16C1に送信される。
第1及び第2センサ51,52のセンシング結果は、環境認識ECU16C2によって通信パケットに格納されてADAS-ECU16C1に送信される。
ADAS-ECU16C1は、第1及び第2センサ51,52のセンシング結果に基づいて、例えばレベル1~4までのいずれかの自動運転を実行可能である。自動運転のレベルはSAE(Society of Automotive Engineers)インターナショナルのJ3016(2016年9月)に定義が記載されている。
「官民ITS構想・ロードマップ2017」も当該定義を採用している。このロードマップでは、レベル3以上の自動運転を「高度自動運転」と呼び、レベル4及び5の自動運転を「完全自動運転」と呼ぶ。本実施形態における「自動運転」は、レベル2以上の自動運転を意味する。
「官民ITS構想・ロードマップ2017」も当該定義を採用している。このロードマップでは、レベル3以上の自動運転を「高度自動運転」と呼び、レベル4及び5の自動運転を「完全自動運転」と呼ぶ。本実施形態における「自動運転」は、レベル2以上の自動運転を意味する。
ADAS-ECU16C1は、レベル5の自動運転を実行可能であってもよいが、本出願時点では、レベル5の自動運転を行う車両1は未だ実現されていない。
レベル1~3までの自動運転(以下、「支援運転」ともいう。)の例としては、第1センサ51によって検出した物体と自車両の間の距離から衝突可能性を予測し、衝突可能性が高いと判断した場合に減速介入したり、搭乗者に注意喚起したりするように、パワー系ECUやマルチメディア系ECUに制御指令を送信するものがある。
レベル4及び5の自動運転(以下、「自律運転」ともいう。)の例としては、第1及び第2センサ51,52によって検出した物体に予期される挙動を、過去の挙動の深層学習などにより予測し、予測した挙動に基づいて自車両が目的位置に指向するように、パワー系ECUやマルチメディア系ECUに制御指令を送信するものがある。
ADAS-ECU16C1は、第1及び第2センサ51,52によるセンシング結果を利用せず、搭乗者の手動運転に切り替えることもできる。
このように、本実施形態の車両1は、レベル4の自律運転モードの実行が可能であるとともに、ダウングレードした動作モードとして、レベル1~3の支援運転モード又は手動運転モード(レベル0)のいずれかを実行することができる。動作モードの切り替えは、搭乗者による手動の操作入力などによって行われる。
このように、本実施形態の車両1は、レベル4の自律運転モードの実行が可能であるとともに、ダウングレードした動作モードとして、レベル1~3の支援運転モード又は手動運転モード(レベル0)のいずれかを実行することができる。動作モードの切り替えは、搭乗者による手動の操作入力などによって行われる。
中継装置20は、ECU16を制御するために制御パケット(以下、「制御指令」ともいう。)を送信する。ECU16は、受信した制御パケットに含まれる指令内容に従って、担当する対象機器に対して所定の制御を実行する。
自律運転モードを制御する場合、中継装置20は、環境認識ECU16C2から受信した第1及び第2センサ51,52のセンシング結果に基づいて、通信ネットワーク12Aの各ECU16A1~16A4に対して、制御指令を含む制御パケットを送信する。
そして、中継装置20から制御パケットを受信した各ECU16A1~16A4が、制御パケットに含まれる指令内容に従って、燃料噴射装置31、EPS32、ブレーキアクチュエータ33、及びABSアクチュエータ34をそれぞれ制御することにより、自律運転モードが実行される。
車内システム10は、更に、他車両と無線通信を行う車載通信機19を備える。車載通信機19は、所定規格の通信線を介して中継装置20に接続されている。中継装置20は、他車両から車載通信機19が受信した情報をECU16に中継する。
中継装置20は、ECU16から受信した情報を、車載通信機19に中継する。車載通信機19は、中継された情報を他車両に無線送信する。
車両1に搭載される車載通信機19は、ユーザが所有する携帯電話機、スマートフォン、タブレット型端末、ノートPC(Personal Computer)等の装置であってもよい。
車両1に搭載される車載通信機19は、ユーザが所有する携帯電話機、スマートフォン、タブレット型端末、ノートPC(Personal Computer)等の装置であってもよい。
[中継装置の構成]
図3は、中継装置20の内部構成を示すブロック図である。
図3に示すように、車両1の中継装置20は、制御部21、記憶部22、及び車内通信部23などを備える。
図3は、中継装置20の内部構成を示すブロック図である。
図3に示すように、車両1の中継装置20は、制御部21、記憶部22、及び車内通信部23などを備える。
中継装置20の制御部21は、CPU(Central Processing Unit)を含む。制御部21のCPUは、記憶部22等に記憶された1又は複数のプログラムを読み出して、各種処理を実行するための機能を有している。
制御部21のCPUは、例えば時分割で複数のプログラムを切り替えて実行することにより、複数のプログラムを並列的に実行可能である。
制御部21のCPUは、例えば時分割で複数のプログラムを切り替えて実行することにより、複数のプログラムを並列的に実行可能である。
制御部21のCPUは、1又は複数の大規模集積回路(LSI)を含む。複数のLSIを含むCPUでは、複数のLSIが協働して当該CPUの機能を実現する。
制御部21のCPUが実行するコンピュータプログラムは、予め工場で書き込まれていてもよいし、特定のツールを介して提供されてもよいし、または、サーバコンピュータなどのコンピュータ装置からのダウンロードによって譲渡することもできる。
記憶部22は、フラッシュメモリ若しくはEEPROM(Electrically Erasable Programmable Read Only Memory)などの不揮発性のメモリ素子よりなる。
記憶部22は、制御部21のCPUが実行するプログラム及び実行に必要なデータなどを記憶する記憶領域を有する。
記憶部22は、制御部21のCPUが実行するプログラム及び実行に必要なデータなどを記憶する記憶領域を有する。
車内通信部23には、車両1に配設された複数の車内通信線13が接続されている。車内通信部23は、LINなどの所定の通信規格に則ってECU16と通信する通信装置よりなる。
車内通信部23は、制御部21のCPUから与えられた情報を所定のECU16宛てに送信し、ECU16が送信元の情報を制御部21のCPUに与える。
車載通信機19は、制御部21から与えられた情報を他車両に送信するとともに、他車両から受信した情報を制御部21に与える。
車内通信部23は、制御部21のCPUから与えられた情報を所定のECU16宛てに送信し、ECU16が送信元の情報を制御部21のCPUに与える。
車載通信機19は、制御部21から与えられた情報を他車両に送信するとともに、他車両から受信した情報を制御部21に与える。
[車載通信機の構成]
図4は、車載通信機19の内部構成を示すブロック図である。
図4に示すように、車載通信機19は、制御部191、記憶部192、及び無線通信部193などを備える。
図4は、車載通信機19の内部構成を示すブロック図である。
図4に示すように、車載通信機19は、制御部191、記憶部192、及び無線通信部193などを備える。
車載通信機19の制御部191は、CPUを含む。制御部191のCPUは、記憶部192等に記憶された1又は複数のプログラムを読み出して、各種処理を実行するための機能を有している。
制御部191のCPUは、例えば時分割で複数のプログラムを切り替えて実行することにより、複数のプログラムを並列的に実行可能である。
制御部191のCPUは、例えば時分割で複数のプログラムを切り替えて実行することにより、複数のプログラムを並列的に実行可能である。
制御部191のCPUは、1又は複数の大規模集積回路(LSI)を含む。複数のLSIを含むCPUでは、複数のLSIが協働して当該CPUの機能を実現する。
制御部191のCPUが実行するコンピュータプログラムは、サーバコンピュータなどのコンピュータ装置からのダウンロードによって譲渡することもできる。
記憶部192は、フラッシュメモリ若しくはEEPROMなどの不揮発性のメモリ素子よりなる。
記憶部192は、制御部191のCPUが実行するプログラム及び実行に必要なデータなどを記憶する記憶領域を有する。
記憶部192は、制御部191のCPUが実行するプログラム及び実行に必要なデータなどを記憶する記憶領域を有する。
無線通信部193には、無線通信のためのアンテナ194が接続されている。無線通信部193は、制御部191から与えられた情報をアンテナ194から他車両に送信するとともに、他車両からアンテナ194により受信した情報を制御部191に与える。
制御部191のCPUは、無線通信部193から与えられた情報を中継装置20に送信し、中継装置20から受信した情報を無線通信部193に与える。
制御部191のCPUは、無線通信部193から与えられた情報を中継装置20に送信し、中継装置20から受信した情報を無線通信部193に与える。
[予測走行挙動データの内容及び生成方法]
図5は、車載通信機19が車車間通信により他車両に送信する「予測走行挙動データD」の内容及び生成方法を示す説明図である。予測走行挙動データDは、現時点から比較的短い所定時間(例えば10秒)だけ将来の予測期間Tc内における車両1の予測走行挙動を示すデータである。
図5は、車載通信機19が車車間通信により他車両に送信する「予測走行挙動データD」の内容及び生成方法を示す説明図である。予測走行挙動データDは、現時点から比較的短い所定時間(例えば10秒)だけ将来の予測期間Tc内における車両1の予測走行挙動を示すデータである。
本実施形態の予測走行挙動データDは、予測期間Tc内における一定時間間隔(例えば300m秒間隔)毎の車両1の予測走行挙動を示す複数の予測走行挙動情報Sを有する。予測走行挙動情報Sには、予測期間Tc内における一定時間間隔毎の時刻と、その時刻における車両1の絶対位置及び方位などの情報が含まれる。
予測期間Tc内の時刻と、車両1の絶対位置及び方位は、以下のように算出される。例えば、図5の下段に示す道路平面図において、車両1が車線R1を自動運転で走行している場合、車両1のADAS-ECU16C1は、現時点t0で実行中の自動運転の内容に応じて、予測期間Tc中における走行予定ルートを算出し、算出した走行予定ルートを車載通信機19に送信する。
車載通信機19は、受信した走行予定ルートと地図情報とのマップマッチング処理等を行って、予測期間Tc中における車両1の複数の離散位置(絶対位置)と、各離散位置における車両1の方位を算出する。具体的には、予測期間Tc中において車両1が車線R1を直進し続ける場合、車載通信機19は、車線R1に沿って直線状の走行予定ルート(図5の破線で示す矢印)上において、一定又は不定の時間間隔(又は距離間隔)で、車両1の複数の離散位置(図5の○印で示す位置)及び方位を算出する。
また、予測期間Tc中において車両1が車線R1から車線R2に車線変更する場合、車載通信機19は、車線R1から車線R2へ延びる曲線状の走行予定ルート(図5の1点鎖線で示す矢印)上において、一定又は不定の時間間隔(又は距離間隔)で、車両1の複数の離散位置(図5の△印で示す位置)及び方位を算出する。
車載通信機19は、車両1の複数の離散位置を時間間隔で算出する場合、この時間間隔と現時点t0の時刻に基づいて、各離散位置に対応する時刻を算出する。また、車載通信機19は、車両1の複数の離散位置を距離間隔で算出する場合、この距離間隔に基づいて車両1の現在位置から各離散位置までの距離を算出し、算出した距離と車両1の走行予定速度に基づいて各離散位置に対応する時刻を算出する。車両1の走行予定速度は、ADAS-ECU16C1から取得することができる。
なお、予測期間Tc内の時刻と車両1の絶対位置及び方位は、ADAS-ECU16C1で算出し、算出した時刻、離散位置及び方位を車載通信機19に送信してもよい。
なお、予測期間Tc内の時刻と車両1の絶対位置及び方位は、ADAS-ECU16C1で算出し、算出した時刻、離散位置及び方位を車載通信機19に送信してもよい。
図5の上段に示すように、本実施形態における予測走行挙動データDの各予測走行挙動情報Sには、「車両ID」、「時刻」、「絶対位置」、「車両属性」、「方位」などの格納領域が含まれる。
各予測走行挙動情報Sの「時刻」には、現時点の時刻の値や上記方法で算出された予測期間Tc内の各時刻の値が格納される。現時点の時刻の値は、上記の時刻同期機能を有するナビゲーションECU16B1(図2参照)から中継装置20を介して取得することができる。
各予測走行挙動情報Sの「時刻」には、現時点の時刻の値や上記方法で算出された予測期間Tc内の各時刻の値が格納される。現時点の時刻の値は、上記の時刻同期機能を有するナビゲーションECU16B1(図2参照)から中継装置20を介して取得することができる。
「車両ID」には、自車両の車両IDの値が格納される。車両IDの値は固定値であるため、各予測走行挙動情報Sの「車両ID」には、全て同じ値が格納される。
各予測走行挙動情報Sの「絶対位置」は、上記方法で算出された予測期間Tc内の各時刻に対応する自車両の絶対位置を示す緯度、経度及び高度の各値が格納される。図5の「絶対位置」では、緯度及び経度の値のみを示している。
各予測走行挙動情報Sの「絶対位置」は、上記方法で算出された予測期間Tc内の各時刻に対応する自車両の絶対位置を示す緯度、経度及び高度の各値が格納される。図5の「絶対位置」では、緯度及び経度の値のみを示している。
「車両属性」には、例えば、自車両の車幅および車長などの値、および自車両の車両用途種別(自家用車両又は緊急車両など)の識別値が格納される。車幅、車長、及び車両用途種別の各値は固定値であるため、各予測走行挙動情報Sの「車両属性」には、全て同じ値が格納される。図5の「車両属性」では、具体的な数値の記載を省略している。
各予測走行挙動情報Sの「方位」には、上記方法で算出された予測期間Tc内の各時刻に対応する自車両の方位の値が格納される。図5の「方位」では、具体的な数値の記載を省略している。
各予測走行挙動情報Sの「方位」には、上記方法で算出された予測期間Tc内の各時刻に対応する自車両の方位の値が格納される。図5の「方位」では、具体的な数値の記載を省略している。
自車両及びその周辺を通行する他車両は、車載通信機19同士が車車間通信を行うことで、予測走行挙動データDを互いに送受信する。これにより、自車両、及びその周辺を通行する他車両が、互いに予測走行挙動データDを共有することができる。
予測走行挙動データDには、自車両の速度や加速度などの他の情報を含めてもよい。但し、自車両の速度は、自車両の絶対位置を微分することで求めることができ、自車両の加速度は、自車両の絶対位置から求めた速度を微分することで求めることができる。このため、予測走行挙動データDには、自車両の速度及び加速度は必ずしも含める必要はない。
[衝突可能性判定装置]
本実施形態の車載通信機19は、自車両と他車両との衝突可能性を判定する衝突可能性判定装置として機能する。図4において、車載通信機19の制御部191は、生成部195と、判定部196とを備える。
生成部195は、自車両の予測走行挙動データD(以下、第1予測走行挙動データD1という)を生成する。第1予測走行挙動データD1の具体的な生成方法は、上述の通りである。生成された第1予測走行挙動データD1は、予測期間Tc内における一定時間間隔毎の自車両の予測走行挙動を示す複数の予測走行挙動情報Sを有している。
本実施形態の車載通信機19は、自車両と他車両との衝突可能性を判定する衝突可能性判定装置として機能する。図4において、車載通信機19の制御部191は、生成部195と、判定部196とを備える。
生成部195は、自車両の予測走行挙動データD(以下、第1予測走行挙動データD1という)を生成する。第1予測走行挙動データD1の具体的な生成方法は、上述の通りである。生成された第1予測走行挙動データD1は、予測期間Tc内における一定時間間隔毎の自車両の予測走行挙動を示す複数の予測走行挙動情報Sを有している。
本実施形態の生成部195は、2種類の第1予測走行挙動データD1を生成する。1種類目の第1予測走行挙動データD1(以下、第1予測走行挙動データD11ともいう)は、図6に示すように、粗い時間間隔(例えば600m秒間隔)毎の予測走行挙動情報Sを含んでいる。2種類目の第1予測走行挙動データD1(以下、第1予測走行挙動データD12という)は、図5に示すように、第1予測走行挙動データD11よりも細かい時間間隔(例えば300m秒間隔)毎の予測走行挙動情報Sを含んでいる。
生成部195は、第1予測走行挙動データD11,D12を逐次生成し、生成した第1予測走行挙動データD11,D12を判定部196に渡す。
生成部195は、第1予測走行挙動データD11,D12を逐次生成し、生成した第1予測走行挙動データD11,D12を判定部196に渡す。
図4において、車載通信機19の無線通信部(通信部)193は、生成部195で生成された第1予測走行挙動データD11,D12を、車車間通信により自車両の周辺を走行する他車両に送信する。但し、2種類目の第1予測走行挙動データD12については、他車両から第1予測走行挙動データD12の送信を要求する情報を無線通信部193が受信した場合に限り送信する。
無線通信部193は、第1予測走行挙動データD11(D12)に含まれる複数の予測走行挙動情報Sのうち、時間的に前後する予測走行挙動情報Sの間で変化がない場合、時間的に前の予測走行挙動情報Sのみを第1予測走行挙動データD11(D12)に含めて送信する。
ここで、時間的に前後する予測走行挙動情報Sの間で変化がない場合とは、時間的に前後する予測走行挙動情報Sの格納領域のうち「絶対位置」の値に変化がなく、且つ「方位」の値に変化がない場合を意味する。例えば、予測期間Tc内において自車両が600m秒以上にわたって停車する場合には、時間的に前後する予測走行挙動情報Sの「絶対位置」及び「方位」の各値に変化がないため、時間的に前後する予測走行挙動情報Sの間で変化がない場合となる。
無線通信部193は、時間的に前後する予測走行挙動情報Sの間で変化がない場合であっても、これら両方の予測走行挙動情報Sを第1予測走行挙動データD11(D12)に含めて送信してもよい。
無線通信部193は、第1予測走行挙動データD11(D12)を送信する際、時間的に前後する第1予測走行挙動データD11(D12)の間、つまり送信予定の第1予測走行挙動データD11(D12)と、その直前に送信した第1予測走行挙動データD11(D12)との間で変化がない場合、時間的に後となる送信予定の第1予測走行挙動データD11(D12)に替えて、時間的に前後する第1予測走行挙動データD11(D12)の間に変化がないことを示す情報を送信する。
ここで、時間的に前後する第1予測走行挙動データD11(D12)の間で変化がない場合とは、時間的に前後する第1予測走行挙動データD11(D12)の全ての予測走行挙動情報Sの「絶対位置」の値に変化がなく、且つ「方位」の値に変化がない場合を意味する。例えば、自車両が長時間にわたって停車する場合には、全ての予測走行挙動情報Sの「絶対位置」及び「方位」の各値同士に変化がないため、時間的に前後する第1予測走行挙動データD11(D12)の間で変化がない場合となる。
無線通信部193は、時間的に前後する第1予測走行挙動データD11(D12)で変化がない場合であっても、時間的に後の第1予測走行挙動データD11(D12)を送信してもよい。
本実施形態では、生成部195で生成された第1予測走行挙動データD1は、一定時間間隔毎に複数の予測走行挙動情報Sを有しているが、不定時間間隔毎に複数の予測走行挙動情報Sを有していてもよい。
この場合、不定時間間隔は、自車両の速度、自車両と他車両との車間距離、及び自車両が他車両に衝突するまでの衝突余裕時間(TTC:Time To Collision)のうちの少なくとも1つに応じて設定することができる。
この場合、不定時間間隔は、自車両の速度、自車両と他車両との車間距離、及び自車両が他車両に衝突するまでの衝突余裕時間(TTC:Time To Collision)のうちの少なくとも1つに応じて設定することができる。
無線通信部193は、他車両の予測走行挙動データD(以下、第2予測走行挙動データD2という)を車車間通信により受信する。第2予測走行挙動データD2は、予測期間Tc内における一定時間間隔毎の他車両の予測走行挙動を示す複数の予測走行挙動情報Sを有している。本実施形態の無線通信部193は、2種類の第2予測走行挙動データD2を受信する。
具体的には、1種類目の第2予測走行挙動データD2(以下、第2予測走行挙動データD21という)は、図6に示すように、粗い時間間隔(例えば600m秒間隔)毎の予測走行挙動情報Sを含んでいる。2種類目の第2予測走行挙動データD2(以下、第2予測走行挙動データD22という)は、図5に示すように、第2予測走行挙動データD21よりも細かい時間間隔(例えば300m秒間隔)毎の予測走行挙動情報Sを含んでいる。
無線通信部193は、2種類目の第2予測走行挙動データD22を受信する前に、当該第2予測走行挙動データD22の送信を要求する情報を他車両に送信する。従って、他車両は、無線通信部193が前記送信を要求する情報を送信しない限り、2種類目の第2予測走行挙動データD22を送信することはない。
無線通信部193は、受信した第2予測走行挙動データD21,D22を制御部191の判定部196に渡す。
無線通信部193は、受信した第2予測走行挙動データD21,D22を制御部191の判定部196に渡す。
判定部196は、生成部195で生成された第1予測走行挙動データD1、及び無線通信部193で受信された第2予測走行挙動データD2に基づいて、予測期間Tcにおける自車両と他車両との衝突可能性(以下、単に衝突可能性ともいう)を判定する。
本実施形態の判定部196は、まず、1種類目の第1及び第2予測走行挙動データD11,D21に基づいて、大まかな衝突可能性を判定する第1判定を実行する。そして、判定部196は、第1判定により衝突可能性があると判定した場合、2種類目の第1及び第2予測走行挙動データD12,D22に基づいて、詳細な衝突可能性を判定する第2判定を実行する。
本実施形態の判定部196は、まず、1種類目の第1及び第2予測走行挙動データD11,D21に基づいて、大まかな衝突可能性を判定する第1判定を実行する。そして、判定部196は、第1判定により衝突可能性があると判定した場合、2種類目の第1及び第2予測走行挙動データD12,D22に基づいて、詳細な衝突可能性を判定する第2判定を実行する。
図7は、自車両と他車両とが衝突する可能性がある状況を例示した道路平面図である。図7の例では、自車両1Aが車線R2を100km/hの速度で走行しているときに、自車両1Aの斜め前方において車線R1を80km/hの速度で走行している他車両1Bが車線R2に車線変更する場合を示している。以下、図7に示す車線変更による衝突可能性について、判定部196が実行する第1及び第2判定の処理内容について説明する。
[第1判定の処理内容]
第1判定において、判定部196は、第1予測走行挙動データD11から、図8の上段に示すように、予測期間Tcにおける自車両1Aの将来の第1走行軌跡L1を生成する。
具体的には、判定部196は、1種類目の第1予測走行挙動データD11に含まれる各予測走行挙動情報Sの「時刻」及び「絶対位置」と地図情報から、マップマッチング処理を行って、予測期間Tc内の各時刻における自車両1Aの絶対位置を示す複数の座標点C1(経度及び緯度)を道路地図上にプロットする。
第1判定において、判定部196は、第1予測走行挙動データD11から、図8の上段に示すように、予測期間Tcにおける自車両1Aの将来の第1走行軌跡L1を生成する。
具体的には、判定部196は、1種類目の第1予測走行挙動データD11に含まれる各予測走行挙動情報Sの「時刻」及び「絶対位置」と地図情報から、マップマッチング処理を行って、予測期間Tc内の各時刻における自車両1Aの絶対位置を示す複数の座標点C1(経度及び緯度)を道路地図上にプロットする。
判定部196は、複数の座標点C1を道路地図上にプロットした後、例えば多項式近似などを用いて、複数の座標点C1を通過する近似線(図8の上段の例では近似直線)を求める。この求めた近似線が、予測期間Tcにおける自車両1Aの将来の第1走行軌跡L1となる。
図8の上段に示す第1走行軌跡L1は、現時点の時刻t0から600m秒毎の時刻t2及び時刻t4までの各時刻t0,t2,t4における自車両1Aの絶対位置(座標点C1)を通過する。
図8の上段に示す第1走行軌跡L1は、現時点の時刻t0から600m秒毎の時刻t2及び時刻t4までの各時刻t0,t2,t4における自車両1Aの絶対位置(座標点C1)を通過する。
判定部196は、1種類目の第2予測走行挙動データD21から、図8の下段に示すように、予測期間Tcにおける他車両1Bの将来の第2走行軌跡L2を生成する。
具体的には、判定部196は、第2予測走行挙動データD21に含まれる各予測走行挙動情報Sの「時刻」及び「絶対位置」の各値と地図情報から、マップマッチング処理を行って、予測期間Tc内の各時刻における他車両1Bの絶対位置を示す複数の座標点C2(経度及び緯度)を道路地図上にプロットする。
具体的には、判定部196は、第2予測走行挙動データD21に含まれる各予測走行挙動情報Sの「時刻」及び「絶対位置」の各値と地図情報から、マップマッチング処理を行って、予測期間Tc内の各時刻における他車両1Bの絶対位置を示す複数の座標点C2(経度及び緯度)を道路地図上にプロットする。
判定部196は、複数の座標点C2を道路地図上にプロットした後、例えば多項式近似などを用いて、複数の座標点C2を通過する近似線(図8の下段の例では近似曲線)を求める。この求めた近似線が、予測期間Tcにおける他車両1Bの将来の第2走行軌跡L2となる。
図8の下段に示す第2走行軌跡L2は、現時点の時刻t0から600m秒毎の時刻t2及び時刻t4までの各時刻t0,t2,t4における他車両1Bの絶対位置(座標点C2)を通過する。
図8の下段に示す第2走行軌跡L2は、現時点の時刻t0から600m秒毎の時刻t2及び時刻t4までの各時刻t0,t2,t4における他車両1Bの絶対位置(座標点C2)を通過する。
判定部196は、図9に示すように、1つの道路地図上において、自車両1Aの第1走行軌跡L1と他車両1Bの第2走行軌跡L2とを配置し、走行軌跡L1,L2同士が交わるか否かを判定する。判定部196は、走行軌跡L1,L2同士が交わる場合には、衝突可能性があると判定し、走行軌跡L1,L2同士が交わらない場合には、衝突可能性がないと判定する。図9の例では、走行軌跡L1,L2同士が交わるため、判定部196は、第1判定において衝突可能性があると判定する。
[第2判定の処理内容]
第2判定において、判定部196は、2種類目の第1予測走行挙動データD12から、図10の上段に示すように、予測期間Tcにおける所定時刻間隔毎の自車両1Aが位置する領域を示す複数の第1車両領域Av1を求める。具体的には、判定部196は、第1予測走行挙動データD12に含まれる各予測走行挙動情報Sの「時刻」、「絶対位置」、「車両属性」の車幅と車長、及び地図情報から、マップマッチング処理を行って、予測期間Tc内の各時刻において自車両1Aが位置する第1車両領域Av1を道路地図上にプロットする。
第2判定において、判定部196は、2種類目の第1予測走行挙動データD12から、図10の上段に示すように、予測期間Tcにおける所定時刻間隔毎の自車両1Aが位置する領域を示す複数の第1車両領域Av1を求める。具体的には、判定部196は、第1予測走行挙動データD12に含まれる各予測走行挙動情報Sの「時刻」、「絶対位置」、「車両属性」の車幅と車長、及び地図情報から、マップマッチング処理を行って、予測期間Tc内の各時刻において自車両1Aが位置する第1車両領域Av1を道路地図上にプロットする。
本実施形態では、各時刻における第1車両領域Av1は、各時刻に対応する絶対位置(座標点C1)を中心とした矩形領域とされている。矩形領域の短手方向の長さは自車両1Aの車幅に基づいて設定され、矩形領域の長手方向の長さは自車両1Aの車長に基づいて設定される。なお、第1車両領域Av1の形状は、矩形以外に円形などの他の形状であってもよい。図10の上段では、現時点の時刻t0から300m秒毎の時刻t1、時刻t2、時刻t3、及び時刻t4までの各時刻t0~t4における自車両1Aの第1車両領域Av1を示している。
各時刻t0~t4における第1車両領域Av1は、所定のマージン領域Am1を有している。本実施形態のマージン領域Am1は、第1マージン領域Am11と、第2マージン領域Am12とを有している。
第1マージン領域Am11は、自車両1Aの進行側(図10の上段では右側)において、自車両1Aの車長に所定の余裕長さを加えて形成された領域である。第2マージン領域Am12は、自車両1Aの他車両1Bと対向する側(図10の上段では下側)において、自車両1Aの車幅に所定の余裕長さを加えて形成された領域である。
第1マージン領域Am11は、自車両1Aの進行側(図10の上段では右側)において、自車両1Aの車長に所定の余裕長さを加えて形成された領域である。第2マージン領域Am12は、自車両1Aの他車両1Bと対向する側(図10の上段では下側)において、自車両1Aの車幅に所定の余裕長さを加えて形成された領域である。
判定部196は、2種類目の第2予測走行挙動データD22から、図10の下段に示すように、予測期間Tcにおける所定時刻間隔毎の他車両1Bが位置する領域を示す複数の第2車両領域Av2を求める。具体的には、判定部196は、第2予測走行挙動データD22に含まれる各予測走行挙動情報Sの「時刻」、「絶対位置」、「車両属性」の車幅と車長、及び地図情報から、マップマッチング処理を行って、予測期間Tc内の各時刻において他車両1Bが位置する第2車両領域Av2を道路地図上にプロットする。
本実施形態では、各時刻における第2車両領域Av2は、各時刻に対応する絶対位置(座標点C2)を中心とした矩形領域とされている。矩形領域の短手方向の長さは他車両1Bの車幅に基づいて設定され、矩形領域の長手方向の長さは他車両1Bの車長に基づいて設定される。なお、第2車両領域Av2の形状は、矩形以外に円形などの他の形状であってもよい。
図10の下段では、現時点の時刻t0から300m秒毎の時刻t1、時刻t2、時刻t3、及び時刻t4までの各時刻t0~t4における他車両1Bの第2車両領域Av2を示している。
図10の下段では、現時点の時刻t0から300m秒毎の時刻t1、時刻t2、時刻t3、及び時刻t4までの各時刻t0~t4における他車両1Bの第2車両領域Av2を示している。
各時刻t0~t4における第2車両領域Av2は、所定のマージン領域Am2を有している。本実施形態のマージン領域Am2は、第1マージン領域Am21と、第2マージン領域Am22とを有している。
第1マージン領域Am21は、他車両1Bの進行側(図10の下段では右側)において、他車両1Bの車長に所定の余裕長さを加えて形成された領域である。第2マージン領域Am22は、他車両1Bの自車両1Aと対向する側(図10の下段では上側)において、他車両1Bの車幅に所定の余裕長さを加えて形成された領域である。
第1マージン領域Am21は、他車両1Bの進行側(図10の下段では右側)において、他車両1Bの車長に所定の余裕長さを加えて形成された領域である。第2マージン領域Am22は、他車両1Bの自車両1Aと対向する側(図10の下段では上側)において、他車両1Bの車幅に所定の余裕長さを加えて形成された領域である。
本実施形態では、自車両1Aのマージン領域Am1は、第1マージン領域Am11及び第2マージン領域Am12のうちの一方のマージン領域のみを有していてもよい。同様に、他車両1Bのマージン領域Am2は、第1マージン領域Am21及び第2マージン領域Am22のうちの一方のマージン領域のみを有していてもよい。
また、本実施形態では、自車両1Aの第1車両領域Av1、及び他車両1Bの第2車両領域Av2がそれぞれマージン領域Am1,Am2を有しているが、いずれか一方の車両領域のみがマージン領域を有していてもよい。
また、本実施形態では、自車両1Aの第1車両領域Av1、及び他車両1Bの第2車両領域Av2がそれぞれマージン領域Am1,Am2を有しているが、いずれか一方の車両領域のみがマージン領域を有していてもよい。
判定部196は、図11に示すように、1つの道路地図上において、自車両1Aの各時刻t0~t4の第1車両領域Av1と、他車両1Bの各時刻t0~t4の第2車両領域Av2とを配置し、互いに時刻が同じ又は近い第1車両領域Av1と第2車両領域Av2とが一部でも重なるか否かを判定する。
ここで、互いに時刻が同じ又は近いとは、第1車両領域Av1の時刻と第2車両領域Av2の時刻との差が閾値以下であることを示す。本実施形態における前記閾値は、例えば600m秒に設定されている。
ここで、互いに時刻が同じ又は近いとは、第1車両領域Av1の時刻と第2車両領域Av2の時刻との差が閾値以下であることを示す。本実施形態における前記閾値は、例えば600m秒に設定されている。
判定部196は、互いに時刻が同じ又は近い第1車両領域Av1と第2車両領域Av2とが一部でも重なる場合には、衝突可能性があると判定し、互いに時刻が同じ又は近い第1車両領域Av1と第2車両領域Av2とが一部でも重ならない場合には、衝突可能性がないと判定する。
図11の例では、互いに時刻が近い、時刻t2の第1車両領域Av1の一部と、時刻t3の第2車両領域Av2の一部とが重なるため、判定部196は、第2判定において衝突可能性があると判定する。
図11の例では、互いに時刻が近い、時刻t2の第1車両領域Av1の一部と、時刻t3の第2車両領域Av2の一部とが重なるため、判定部196は、第2判定において衝突可能性があると判定する。
判定部196が実行する第1及び第2判定は、車線変更以外の衝突可能性の判定にも適用することができる。例えば、第1及び第2判定は、交差点での右折車両の衝突可能性、高速道路又は一般道路の合流区間における合流車両の衝突可能性など、他の交通状況における衝突可能性の判定にも適用することができる。
また、判定部196は、第1判定及び第2判定のうちの一方の判定のみを実行するものであってもよい。
また、判定部196は、第1判定及び第2判定のうちの一方の判定のみを実行するものであってもよい。
[衝突可能性判定の処理手順]
図12は、車載通信機19が実行する衝突可能性判定の処理手順を示すフローチャートである。図12に示すように、車載通信機19は、まず、予測期間Tc内における一定時間間隔毎の自車両の予測走行挙動を示す複数の予測走行挙動情報Sを有する2種類の第1予測走行挙動データD1を生成する。具体的には、車載通信機19は、粗い時間間隔毎の予測走行挙動情報Sを含む自車両の1種類目の第1予測走行挙動データD11、及び細かい時間間隔毎の予測走行挙動情報Sを含む自車両の2種類目の第1予測走行挙動データD12を生成する(ステップST1、生成ステップ)。
図12は、車載通信機19が実行する衝突可能性判定の処理手順を示すフローチャートである。図12に示すように、車載通信機19は、まず、予測期間Tc内における一定時間間隔毎の自車両の予測走行挙動を示す複数の予測走行挙動情報Sを有する2種類の第1予測走行挙動データD1を生成する。具体的には、車載通信機19は、粗い時間間隔毎の予測走行挙動情報Sを含む自車両の1種類目の第1予測走行挙動データD11、及び細かい時間間隔毎の予測走行挙動情報Sを含む自車両の2種類目の第1予測走行挙動データD12を生成する(ステップST1、生成ステップ)。
次に、車載通信機19は、1種類目の第1予測走行挙動データD11を、車車間通信により自車両の周辺を走行する他車両に送信する(ステップST2)。そして、車載通信機19は、自車両の周辺を走行する他車両が車車間通信により送信した1種類目の第2予測走行挙動データD21を受信する(ステップST3、通信ステップ)。第2予測走行挙動データD21は、上述のように予測期間Tc内における粗い時間間隔毎の他車両の予測走行挙動情報Sを含むデータである。
次に、車載通信機19は、生成した自車両の第1予測走行挙動データD11と、受信した他車両の第2予測走行挙動データD21とに基づいて、第1判定を実行する(ステップST4、判定ステップ)。第1判定において、車載通信機19は、予測期間Tcにおける自車両と他車両との大まかな衝突可能性を判定する。
図13は、車載通信機19が実行する第1判定の処理手順を示すフローチャートである。図13に示すように、車載通信機19は、第1予測走行挙動データD11から予測期間Tcにおける自車両の第1走行軌跡L1(図8の上段参照)を生成する。また、車載通信機19は、第2予測走行挙動データD21から予測期間Tcにおける他車両の第2走行軌跡L2(図8の下段参照)を生成する(ステップST21)。第1及び第2走行軌跡L1,L2の生成方法は上述の通りである。
次に、車載通信機19は、1つの道路地図上において、自車両の第1走行軌跡L1と他車両の第2走行軌跡L2とを配置し(図9参照)、走行軌跡L1,L2同士が交わるか否かを判定する(ステップST22)。
車載通信機19は、走行軌跡L1,L2同士が交わる場合には、衝突可能性があると判定し(ステップST23)、第1判定の処理を終了する。一方、車載通信機19は、走行軌跡L1,L2同士が交わらない場合には、衝突可能性がないと判定し(ステップST24)、第1判定の処理を終了する。
車載通信機19は、走行軌跡L1,L2同士が交わる場合には、衝突可能性があると判定し(ステップST23)、第1判定の処理を終了する。一方、車載通信機19は、走行軌跡L1,L2同士が交わらない場合には、衝突可能性がないと判定し(ステップST24)、第1判定の処理を終了する。
図12に戻り、車載通信機19は、第1判定において衝突可能性がないと判定された場合(ステップST5で「No」の場合)、処理を終了する。
一方、車載通信機19は、第1判定において衝突可能性があると判定された場合(ステップST5で「Yes」の場合)、当該衝突可能性がある判定された他車両で生成された2種類目の第2予測走行挙動データD22の送信を要求する情報を、車車間通信により送信する(ステップST6)。第2予測走行挙動データD22は、上述のように予測期間Tc内における細かい時間間隔毎の他車両の予測走行挙動情報Sを含むデータである。これにより、車載通信機19は、第1判定で衝突可能性がある判定された他車両から第2予測走行挙動データD22を、車車間通信により受信する(ステップST7、通信ステップ)。
一方、車載通信機19は、第1判定において衝突可能性があると判定された場合(ステップST5で「Yes」の場合)、当該衝突可能性がある判定された他車両で生成された2種類目の第2予測走行挙動データD22の送信を要求する情報を、車車間通信により送信する(ステップST6)。第2予測走行挙動データD22は、上述のように予測期間Tc内における細かい時間間隔毎の他車両の予測走行挙動情報Sを含むデータである。これにより、車載通信機19は、第1判定で衝突可能性がある判定された他車両から第2予測走行挙動データD22を、車車間通信により受信する(ステップST7、通信ステップ)。
次に、車載通信機19は、第1ステップST1で生成した自車両の第1予測走行挙動データD12と、第1判定で衝突可能性がある判定された他車両から受信した第2予測走行挙動データD22とに基づいて、第2判定を実行する(ステップST8、判定ステップ)。第2判定において、車載通信機19は、予測期間Tcにおける自車両と他車両との詳細な衝突可能性を判定する。
図14は、車載通信機19が実行する第2判定の処理手順を示すフローチャートである。図14に示すように、車載通信機19は、第1予測走行挙動データD12から予測期間Tcにおける所定時刻間隔毎の自車両が位置する領域を示す複数の第1車両領域Av1(図10の上段参照)を求める。また、車載通信機19は、第2予測走行挙動データD22から予測期間Tcにおける所定時刻間隔毎の他車両が位置する領域を示す複数の第2車両領域Av2(図10の下段参照)を求める(ステップST41)。第1及び第2車両領域Av1,Av2の求め方は上述の通りである。
次に、車載通信機19は、1つの道路地図上において、自車両の各時刻の第1車両領域Av1と、他車両の各時刻の第2車両領域Av2とを配置する(図11参照)。そして、車載通信機19は、互いに時刻が同じ又は近い第1車両領域Av1と第2車両領域Av2とが一部でも重なるか否かを判定する(ステップST42)。
車載通信機19は、互いに時刻が同じ又は近い第1車両領域Av1と第2車両領域Av2とが重なる場合には、衝突可能性があると判定し(ステップST43)、第2判定の処理を終了する。一方、車載通信機19は、互いに時刻が同じ又は近い第1車両領域Av1と第2車両領域Av2とが重ならない場合には、衝突可能性がないと判定し(ステップST44)、第2判定の処理を終了する。
[効果について]
以上、本実施形態によれば、車載通信機19は、自車両の将来の予測走行挙動を示す第1予測走行挙動データD1と、他車両の将来の予測走行挙動を示す第2予測走行挙動データD2とに基づいて、自車両と他車両との衝突可能性を判定する。このため、従来のように現時点の状況のみに基づいて衝突可能性を判定する場合に比べて、自車両と他車両との衝突可能性の判定精度を向上させることができる。
以上、本実施形態によれば、車載通信機19は、自車両の将来の予測走行挙動を示す第1予測走行挙動データD1と、他車両の将来の予測走行挙動を示す第2予測走行挙動データD2とに基づいて、自車両と他車両との衝突可能性を判定する。このため、従来のように現時点の状況のみに基づいて衝突可能性を判定する場合に比べて、自車両と他車両との衝突可能性の判定精度を向上させることができる。
また、車載通信機19の無線通信部193は、生成された第1予測走行挙動データD1を車車間通信により他車両に送信する。これにより、その第1予測走行挙動データD1を受信した他車両においても、第1及び第2予測走行挙動データD1,D2に基づいて自車両と他車両との衝突可能性を判定することができるため、他車両で行う衝突可能性の判定精度を向上させることができる。
また、無線通信部193は、時間的に前後する予測走行挙動情報Sの間で変化がない場合、時間的に前の予測走行挙動情報Sのみを第1予測走行挙動データD1に含めて送信する。これにより、第1予測走行挙動データD1に含める予測走行挙動情報Sの個数を減らすことができるので、車車間通信の通信データ量を削減することができる。
また、無線通信部193は、時間的に前後する第1予測走行挙動データD1の間で変化がない場合、時間的に後の第1予測走行挙動データD1に替えて、時間的に前後する第1予測走行挙動データD1の間に変化がないことを示す情報を送信する。これにより、他車両に送信する第1予測走行挙動データD1の個数を減らすことができるので、車車間通信の通信データ量をさらに削減することができる。
また、第1予測走行挙動データD1が、予測期間Tc内における不定時間間隔毎の自車両の予測走行挙動情報Sを有する場合、前記不定時間間隔を、自車両の速度、自車両と他車両との車間距離、及び自車両が他車両に衝突するまでの衝突余裕時間のうちの少なくとも1つに応じて適切な間隔に設定することで、自車両と他車両との衝突可能性の判定精度をさらに向上させることができる。
また、車載通信機19の判定部196は、第1判定において、予測期間Tcにおける自車両の第1走行軌跡L1と他車両の第2走行軌跡L2とが交われば、自車両と他車両との衝突可能性があると判定するため、その判定精度をさらに向上させることができる。
また、判定部196は、第2判定において、互いに時刻が同じ又は近い第1車両領域Av1と第2車両領域Av2とが一部でも重なれば、自車両と他車両との衝突可能性があると判定するため、その判定精度をさらに向上させることができる。
また、判定部196は、第2判定において、互いに時刻が同じ又は近い第1車両領域Av1と第2車両領域Av2とが一部でも重なれば、自車両と他車両との衝突可能性があると判定するため、その判定精度をさらに向上させることができる。
また、判定部196は、第2判定において、第1及び第2車両領域Av1,Av2のマージン領域Am1,Am2を加味して自車両と他車両との衝突可能性を判定するため、第1車両領域Av1又は第2車両領域Av2を求めるときに誤差が生じても、第2判定の判定精度を保証することができる。
また、マージン領域Am1,Am2の第1マージン領域Am11,Am21が形成される車両の進行側は、自車両と他車両との衝突可能性が高い所であるため、衝突可能性の判定精度をさらに保証することができる。
また、マージン領域Am1,Am2の第2マージン領域Am12,Am22が形成される自車両と他車両とが対向する側は、衝突可能性が高い所であるため、衝突可能性の判定精度をさらに保証することができる。
また、マージン領域Am1,Am2の第2マージン領域Am12,Am22が形成される自車両と他車両とが対向する側は、衝突可能性が高い所であるため、衝突可能性の判定精度をさらに保証することができる。
[その他]
本実施形態では、車載通信機19を、自車両と他車両との衝突可能性を判定する衝突可能性判定装置としているが、中継装置20を衝突可能性判定装置としてもよい。
本実施形態では、車載通信機19を、自車両と他車両との衝突可能性を判定する衝突可能性判定装置としているが、中継装置20を衝突可能性判定装置としてもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
1 車両
1A 自車両
1B 他車両
10 車内システム
11 上位ネットワーク
12 下位ネットワーク
13 車内通信線
14 マネージャ装置
14A パワー系ECU
14B マルチメディア系ECU
14C ADAS系ECU
15 車内通信線
16 車載制御装置(ECU)
16A1 エンジンECU
16A2 EPS-ECU
16A3 ブレーキECU
16A4 ABS-ECU
16B1 ナビゲーションECU
16B2 メータECU
16B3 HUD-ECU
16C1 ADAS-ECU
16C2 環境認識ECU
19 車載通信機(衝突可能性判定装置)
20 中継装置
21 制御部
22 記憶部
23 車内通信部
31 燃料噴射装置
32 EPS
33 ブレーキアクチュエータ
34 ABSアクチュエータ
41 HDD
42 ディスプレイ
43 GPS受信機
44 車速センサ
45 ジャイロセンサ
46 スピーカ
47 入力デバイス
48 メータアクチュエータ
49 HUD
51 第1センサ
52 第2センサ
191 制御部
192 記憶部
193 無線通信部
194 アンテナ
195 生成部
196 判定部
Am1 マージン領域
Am11 第1マージン領域
Am12 第2マージン領域
Am2 マージン領域
Am21 第1マージン領域
Am22 第2マージン領域
Av1 車両領域
Av2 車両領域
C1 座標点
C2 座標点
D 予測走行挙動データ
D1 第1予測走行挙動データ
D2 第2予測走行挙動データ
L1 第1走行軌跡
L2 第2走行軌跡
R1 車線
R2 車線
S 予測走行挙動情報
Tc 予測期間
1A 自車両
1B 他車両
10 車内システム
11 上位ネットワーク
12 下位ネットワーク
13 車内通信線
14 マネージャ装置
14A パワー系ECU
14B マルチメディア系ECU
14C ADAS系ECU
15 車内通信線
16 車載制御装置(ECU)
16A1 エンジンECU
16A2 EPS-ECU
16A3 ブレーキECU
16A4 ABS-ECU
16B1 ナビゲーションECU
16B2 メータECU
16B3 HUD-ECU
16C1 ADAS-ECU
16C2 環境認識ECU
19 車載通信機(衝突可能性判定装置)
20 中継装置
21 制御部
22 記憶部
23 車内通信部
31 燃料噴射装置
32 EPS
33 ブレーキアクチュエータ
34 ABSアクチュエータ
41 HDD
42 ディスプレイ
43 GPS受信機
44 車速センサ
45 ジャイロセンサ
46 スピーカ
47 入力デバイス
48 メータアクチュエータ
49 HUD
51 第1センサ
52 第2センサ
191 制御部
192 記憶部
193 無線通信部
194 アンテナ
195 生成部
196 判定部
Am1 マージン領域
Am11 第1マージン領域
Am12 第2マージン領域
Am2 マージン領域
Am21 第1マージン領域
Am22 第2マージン領域
Av1 車両領域
Av2 車両領域
C1 座標点
C2 座標点
D 予測走行挙動データ
D1 第1予測走行挙動データ
D2 第2予測走行挙動データ
L1 第1走行軌跡
L2 第2走行軌跡
R1 車線
R2 車線
S 予測走行挙動情報
Tc 予測期間
Claims (12)
- 自車両と他車両との衝突可能性を判定する装置であって、
自車両の将来の予測走行挙動を示す第1予測走行挙動データを生成する生成部と、
他車両の将来の予測走行挙動を示す第2予測走行挙動データを車車間通信により受信する通信部と、
生成された前記第1予測走行挙動データ、及び受信された前記第2予測走行挙動データに基づいて、自車両と他車両との衝突可能性を判定する判定部と、を備える衝突可能性判定装置。 - 前記通信部は、生成された前記第1予測走行挙動データを車車間通信により他車両に送信する、請求項1に記載の衝突可能性判定装置。
- 生成された前記第1予測走行挙動データは、一定時間間隔毎または不定時間間隔毎の自車両の前記予測走行挙動を示す複数の予測走行挙動情報を有し、
前記通信部は、時間的に前後する前記予測走行挙動情報の間で変化がない場合、時間的に前の前記予測走行挙動情報のみを前記第1予測走行挙動データに含めて送信する、請求項2に記載の衝突可能性判定装置。 - 前記生成部は、前記第1予測走行挙動データを逐次生成し、
前記通信部は、時間的に前後する前記第1予測走行挙動データの間で変化がない場合、時間的に後の前記第1予測走行挙動データに替えて、時間的に前後する前記第1予測走行挙動データの間で変化がないことを示す情報を送信する、請求項2又は請求項3に記載の衝突可能性判定装置。 - 生成された前記第1予測走行挙動データは、不定時間間隔毎の自車両の前記予測走行挙動を示す複数の予測走行挙動情報を有し、
前記不定時間間隔は、自車両の速度、自車両と他車両との車間距離、及び自車両が他車両に衝突するまでの衝突余裕時間のうちの少なくとも1つに応じて設定されている、請求項1~請求項4のいずれか1項に記載の衝突可能性判定装置。 - 前記判定部は、
前記第1予測走行挙動データから、自車両の将来の走行軌跡を生成し、
前記第2予測走行挙動データから、前記予測期間における他車両の将来の走行軌跡を生成し、
自車両の前記走行軌跡と他車両の前記走行軌跡とが交わる場合に、前記衝突可能性があると判定する、請求項1~請求項5のいずれか1項に記載の衝突可能性判定装置。 - 前記判定部は、
前記第1予測走行挙動データから、所定時刻間隔毎の自車両が位置する領域を示す複数の第1車両領域を求め、
前記第2予測走行挙動データから、前記所定時刻間隔毎の他車両が位置する領域を示す複数の第2車両領域を求め、
互いに時刻が同じ又は近い前記第1車両領域と前記第2車両領域とが一部でも重なれば、前記衝突可能性があると判定する、請求項1~請求項6のいずれか1項に記載の衝突可能性判定装置。 - 前記第1及び第2車両領域の少なくとも一方の車両領域は、所定のマージン領域を有する、請求項7に記載の衝突可能性判定装置。
- 前記マージン領域は、車両の進行側に形成されている、請求項8に記載の衝突可能性判定装置。
- 前記マージン領域は、自車両と他車両とが対向する側に形成されている、請求項8又は請求項9に記載の衝突可能性判定装置。
- 自車両と他車両との衝突可能性を判定する方法であって、
自車両の将来の予測走行挙動を示す第1予測走行挙動データを生成する生成ステップと、
他車両の将来の予測走行挙動を示す第2予測走行挙動データを車車間通信により受信する通信ステップと、
生成された前記第1予測走行挙動データ、及び受信された前記第2予測走行挙動データに基づいて、自車両と他車両との衝突可能性を判定する判定ステップと、を含む衝突可能性判定方法。 - 自車両と他車両との衝突可能性を判定する処理をコンピュータに実行させるためのコンピュータプログラムであって、
コンピュータを、
自車両の将来の予測走行挙動を示す第1予測走行挙動データを生成する生成部と、
生成された前記第1予測走行挙動データ、及び車車間通信により通信部で受信された、他車両の将来の予測走行挙動を示す第2予測走行挙動データに基づいて、自車両と他車両との衝突可能性を判定する判定部として機能させるためのコンピュータプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/000422 WO2019138485A1 (ja) | 2018-01-11 | 2018-01-11 | 衝突可能性判定装置、衝突可能性判定方法、及びコンピュータプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/000422 WO2019138485A1 (ja) | 2018-01-11 | 2018-01-11 | 衝突可能性判定装置、衝突可能性判定方法、及びコンピュータプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019138485A1 true WO2019138485A1 (ja) | 2019-07-18 |
Family
ID=67218237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/000422 WO2019138485A1 (ja) | 2018-01-11 | 2018-01-11 | 衝突可能性判定装置、衝突可能性判定方法、及びコンピュータプログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019138485A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019215680B3 (de) * | 2019-10-11 | 2021-01-07 | Audi Ag | Verfahren zum Vorhersagen eines Verhaltens eines Zielfahrzeugs |
CN113963537A (zh) * | 2021-10-19 | 2022-01-21 | 东软睿驰汽车技术(上海)有限公司 | 一种针对路口的车辆轨迹预测方法和相关装置 |
JP2022055046A (ja) * | 2020-09-28 | 2022-04-07 | ダイハツ工業株式会社 | 運転支援装置 |
JP2023507671A (ja) * | 2020-02-21 | 2023-02-24 | ブルースペース エイアイ,インコーポレイテッド | 自律ナビゲーションの間の物体回避の方法 |
CN117560638A (zh) * | 2024-01-10 | 2024-02-13 | 山东派蒙机电技术有限公司 | 应用于移动端通信系统的融合通信方法、装置及设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1153681A (ja) * | 1997-07-31 | 1999-02-26 | Aisin Aw Co Ltd | 画像データ送信装置及び画像データ受信装置 |
JP2008117082A (ja) * | 2006-11-01 | 2008-05-22 | Toyota Motor Corp | 走行制御計画評価装置 |
JP2013029992A (ja) * | 2011-07-28 | 2013-02-07 | Denso Corp | 通信装置及び通信方法 |
JP2016035634A (ja) * | 2014-08-01 | 2016-03-17 | 株式会社デンソー | 運転支援装置 |
JP2017084115A (ja) * | 2015-10-28 | 2017-05-18 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、および車両制御プログラム |
WO2017212639A1 (ja) * | 2016-06-10 | 2017-12-14 | パイオニア株式会社 | 情報処理装置、計測装置及び制御方法 |
-
2018
- 2018-01-11 WO PCT/JP2018/000422 patent/WO2019138485A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1153681A (ja) * | 1997-07-31 | 1999-02-26 | Aisin Aw Co Ltd | 画像データ送信装置及び画像データ受信装置 |
JP2008117082A (ja) * | 2006-11-01 | 2008-05-22 | Toyota Motor Corp | 走行制御計画評価装置 |
JP2013029992A (ja) * | 2011-07-28 | 2013-02-07 | Denso Corp | 通信装置及び通信方法 |
JP2016035634A (ja) * | 2014-08-01 | 2016-03-17 | 株式会社デンソー | 運転支援装置 |
JP2017084115A (ja) * | 2015-10-28 | 2017-05-18 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、および車両制御プログラム |
WO2017212639A1 (ja) * | 2016-06-10 | 2017-12-14 | パイオニア株式会社 | 情報処理装置、計測装置及び制御方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019215680B3 (de) * | 2019-10-11 | 2021-01-07 | Audi Ag | Verfahren zum Vorhersagen eines Verhaltens eines Zielfahrzeugs |
WO2021069541A1 (de) | 2019-10-11 | 2021-04-15 | Audi Ag | Verfahren zum vorhersagen eines verhaltens eines zielfahrzeugs |
JP2023507671A (ja) * | 2020-02-21 | 2023-02-24 | ブルースペース エイアイ,インコーポレイテッド | 自律ナビゲーションの間の物体回避の方法 |
JP7336604B2 (ja) | 2020-02-21 | 2023-08-31 | ブルースペース エイアイ,インコーポレイテッド | 自律ナビゲーションの間の物体回避の方法 |
JP2022055046A (ja) * | 2020-09-28 | 2022-04-07 | ダイハツ工業株式会社 | 運転支援装置 |
JP7301483B2 (ja) | 2020-09-28 | 2023-07-03 | ダイハツ工業株式会社 | 運転支援装置 |
CN113963537A (zh) * | 2021-10-19 | 2022-01-21 | 东软睿驰汽车技术(上海)有限公司 | 一种针对路口的车辆轨迹预测方法和相关装置 |
CN117560638A (zh) * | 2024-01-10 | 2024-02-13 | 山东派蒙机电技术有限公司 | 应用于移动端通信系统的融合通信方法、装置及设备 |
CN117560638B (zh) * | 2024-01-10 | 2024-03-22 | 山东派蒙机电技术有限公司 | 应用于移动端通信系统的融合通信方法、装置及设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102211299B1 (ko) | 곡선 투영을 가속화하기 위한 시스템 및 방법 | |
WO2019138485A1 (ja) | 衝突可能性判定装置、衝突可能性判定方法、及びコンピュータプログラム | |
CN110345955B (zh) | 用于自动驾驶的感知与规划协作框架 | |
US10668925B2 (en) | Driver intention-based lane assistant system for autonomous driving vehicles | |
EP3500944B1 (en) | Adas horizon and vision supplemental v2x | |
US10766493B2 (en) | Method and automatic control systems for determining a gap in traffic between two vehicles for a lane change of a vehicle | |
JP2019206327A (ja) | 自動運転車両の軌道の生成方法 | |
US10821976B2 (en) | Navigation system with dynamic speed setting mechanism and method of operation thereof | |
JP2019510674A5 (ja) | ||
CN105799700A (zh) | 避免碰撞控制系统和控制方法 | |
JP2018534692A (ja) | 車両用の運転意図を決定する方法および車両通信システム | |
WO2019098002A1 (ja) | 情報処理装置、情報処理方法、プログラム、及び移動体 | |
CN111615476B (zh) | 用于自动驾驶车辆的基于螺旋曲线的竖直停车规划系统 | |
US10438074B2 (en) | Method and system for controlling door locks of autonomous driving vehicles based on lane information | |
US11685398B2 (en) | Lane based routing system for autonomous driving vehicles | |
US20200391729A1 (en) | Method to monitor control system of autonomous driving vehicle with multiple levels of warning and fail operations | |
WO2019138488A1 (ja) | 予測走行挙動データの調整装置、予測走行挙動データの送信装置、予測走行挙動データの調整方法、予測走行挙動データの送信方法、コンピュータプログラム、及び通信フレームのデータ構造 | |
EP3757711B1 (en) | A vehicle-platoons implementation under autonomous driving system designed for single vehicle | |
CN114834460A (zh) | 具有自主驾驶信息的v2x通信系统 | |
WO2019150458A1 (ja) | 車載装置、生成方法、および、コンピュータプログラム | |
US20210284200A1 (en) | Method for determining capability boundary and associated risk of a safety redundancy autonomous system in real-time | |
WO2019138486A1 (ja) | 車載装置、判定方法、およびコンピュータプログラム | |
JP6784338B2 (ja) | 車載装置、通信経路情報の生成方法、及びコンピュータプログラム | |
US12110010B2 (en) | Driving assistance device | |
WO2019150460A1 (ja) | 車載装置、車車間通信方法、及びコンピュータプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18900532 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18900532 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |