WO2019148726A1 - 一种电阻式应变传感器 - Google Patents

一种电阻式应变传感器 Download PDF

Info

Publication number
WO2019148726A1
WO2019148726A1 PCT/CN2018/089866 CN2018089866W WO2019148726A1 WO 2019148726 A1 WO2019148726 A1 WO 2019148726A1 CN 2018089866 W CN2018089866 W CN 2018089866W WO 2019148726 A1 WO2019148726 A1 WO 2019148726A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
strain sensor
curved
substrate
resistance
Prior art date
Application number
PCT/CN2018/089866
Other languages
English (en)
French (fr)
Inventor
苏业旺
李爽
Original Assignee
中国科学院力学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院力学研究所 filed Critical 中国科学院力学研究所
Publication of WO2019148726A1 publication Critical patent/WO2019148726A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B1/00Measuring instruments characterised by the selection of material therefor

Definitions

  • the invention belongs to the technical field of strain sensor design, and particularly relates to a resistive strain sensor with a curved resistor structure capable of accurately measuring a large range range.
  • a strain sensor is a sensor used to measure the strain generated by an object's force deformation.
  • Resistance strain gauges are the most commonly used sensing elements. It is a sensing element that converts strain changes on mechanical components into resistance changes.
  • the strain gauge is firmly adhered to the surface of the object to be tested with an adhesive, and as the test piece is deformed by force, the sensitive grid of the strain gauge is also deformed, so that the resistance thereof changes accordingly.
  • the resistance change is proportional to the test piece, so if the resistance change is converted into a voltage or current change through a certain measurement line, and then the display is recorded by the display recording instrument, the object to be tested can be known. The size of the variable.
  • the resistive strain sensor currently used has the widest application of metal resistance, but the strain range measured is relatively small due to the limitation of the metal elongation. For example, Nin can only guarantee that the strain within 2% of the measurement is credible.
  • a resistive strain sensor comprising: a strain resistor and a substrate, the strain resistor being fixed on the substrate, the substrate being made of an insulating material, having a curved structure, a central axis of the strain resistor being located on the substrate One side of the central axis achieves an increase in the range of the resistive strain sensor.
  • the width of the substrate is 2 times or more of the width of the strain resistance.
  • the curved structure is a combined structure of one or more of a circular arc, an elliptical arc, and a sinusoid.
  • the method further includes a connecting section, the curved structure includes one or more, and the plurality of the curved structures are connected to each other through the connecting section, and the first and second ends of the plurality of the curved structures connected to each other are respectively provided There is a pasting end connected to the object to be tested;
  • the average curvature change amount of the connecting section is smaller than the average curvature change amount of the curved structure.
  • the resistance of the strain resistor on the connecting section is smaller than the resistance of the strain resistor on the curved structure.
  • a plurality of the curved structures are juxtaposed, and the ends thereof are commonly connected to one of the pasting ends.
  • a substrate limiting strip is further included, and the curved structure is restricted to be maintained in a preset length state;
  • the structure of the substrate limiting strip is linear, and its length is equal to the spacing between the past ends of the curved structures;
  • the structure of the substrate limiting strip is curved, and the maximum elongation is less than the maximum elongation of the curved structure, which assists in detecting the compressive strain of the member to be tested;
  • the substrate limiting strip is juxtaposed with one or more of the curved structures, the ends of which are commonly connected to one of the pasting ends.
  • the material of the substrate is one of polyimide, phenolic resin, and epoxy resin;
  • the material of the strain resistor is constantan or neo-constantan
  • the material of the strain resistance is one of a nickel-chromium alloy, a nickel-chromium-aluminum alloy, an iron-chromium-aluminum alloy, a platinum, a platinum-tungsten alloy, a semiconductor single crystal silicon, and a graphene.
  • a package film is coated, and the package film is coated on the resistive strain sensor.
  • the material of the encapsulating film is polydimethylsiloxane or Ecoflex series silicone rubber.
  • the resistive strain sensor provided by the invention has a curved structure, and the structure of the strain resistance thereon is also a curved structure.
  • the strain sensor provided by the solution is provided.
  • the range design range can be from a few percent to several thousand, which can effectively solve the problem that the metal foil wire has a small reliable range due to the limitation of the stretch ratio.
  • the central axis of the strain resistor is located on one side of the central axis of the substrate, which can effectively ensure the sensitivity of the strain sensor measurement, thereby ensuring the accuracy of the measurement results.
  • FIG. 1a is a schematic structural view of a resistive strain sensor provided by the present invention.
  • Figure 1b is a partial enlarged view of the upper left corner of Figure 1a;
  • FIG. 2a is a schematic structural view of another resistive strain sensor provided by the present invention.
  • Figure 2b is a partial enlarged view of the upper left corner of Figure 2a;
  • FIG. 3 is a schematic structural view of a resistive strain sensor of still another structure provided by the present invention.
  • FIG. 4 is a schematic structural view of a resistive strain sensor having an arc of more than ⁇ and less than 2 ⁇ in the arc segment of the substrate provided by the present invention
  • Figure 5 is a schematic view showing the structure of the curvature of the arc segments on the substrate being unequal;
  • FIG. 6 is a schematic structural view showing the same opening direction of adjacent arc segments in the substrate
  • FIG. 7 is a schematic structural view of a resistive strain sensor in which a curved section in a substrate is an elliptical arc;
  • Figure 8a is a schematic view showing the structure in which the arc of the arc segment is less than ⁇ ;
  • Figure 8b is a partial enlarged view of the left end of Figure 8a;
  • Figure 9a is a schematic view showing the structure of the strain resistance outside the curvature of the flexible section of the substrate.
  • Figure 9b is a partial enlarged view of the upper left corner of Figure 9a;
  • Figure 10 is a schematic structural view of a resistive strain sensor provided with a linear basement stop band
  • Figure 11 is a schematic view showing the structure of a resistive strain sensor provided with a curved basement stop band
  • FIG. 12 is a schematic structural view of a resistive strain sensor shown in Embodiment 1;
  • Figure 13a is a schematic structural view of the resistive strain sensor shown in Embodiment 2;
  • Figure 13b is a partial enlarged view of the upper left corner of Figure 13a;
  • Figure 13c is a displacement loading curve for testing performance
  • Figure 13d is a resistance-time curve measured in real time by a multimeter during displacement loading
  • Figure 13e is a plot of the curves of the 10 cycles of Figure 13e taken together;
  • Figure 13f is a conversion of Figure 13f into a resistance change rate-strain curve
  • the range described in the following is the strain rate of the strain sensor when the strain resistance reaches its maximum strain that can be used normally.
  • a resistive strain sensor as shown in Figures 1a and 1b, wherein Figure 1b is a partial enlarged view of the upper left corner of Figure 1a, mainly composed of strain resistor 2 and substrate 1, strain resistor 2 is fixed on the substrate 1, the substrate 1 and The test piece is connected or directly pasted on the part to be tested, and the strain resistance 2 and the substrate are deformed together with the test piece, and the resistance value of the strain resistance changes along with the deformation, and the changed resistance is electrically processed by the circuit. The form output is measured, and finally the strain value of the test piece is obtained according to the relationship between the resistance and the strain calibrated on the strain sensor.
  • the base of the strain sensor is made of an insulating material and has a curved structure, and the structure of the curved structure can determine the strain resistance of the structure is also curved, compared to the currently used thin-plate strain sensor. Can effectively increase the range of the strain sensor. It has been found that the effective range of the strain sensor provided by the present invention can range from a few percent to several thousand.
  • the strain resistance located thereon, in which the axis is located on one side of the central axis of the substrate, ensures the sensitivity of the strain sensor measurement.
  • the strain resistance across the central axis of the substrate, during the deformation process, its resistance change is extremely small, difficult to capture, which is not conducive to improving the measurement accuracy of the strain sensor.
  • the strain resistance may be located outside the curvature of the base curve structure or may be located inside the curvature of the curved structure, as shown in Figures 9a and 9b, outside the curvature of the base.
  • the width of the substrate be at least twice the width of the upper strain resistance.
  • the width of the strain resistance is greater than half of the width of the substrate, a portion of the strain resistance will cross the central axis of the substrate. At this time, the resistance of the strain resistance symmetrically located on the portions on both sides of the central axis of the substrate is increased due to partial tensile strain.
  • the width of the substrate is at least twice the width of the upper strain resistance to ensure the accuracy of the strain measurement. In the present solution, it is more preferable that the substrate width is 6 times or more than the upper strain resistance width, which can ensure better sensitivity and excellent measurement accuracy of the strain sensor during the measurement process.
  • the curved structure is a combined structure of one or more of an arc, an elliptical arc, a sinusoidal curve, or a cosine curve, for a regular arc or ellipse Arc or sinusoids are relatively easy to predict the relationship between resistance change and strain.
  • the present scheme is not limited to the several curved structures listed above, and an asymmetric curved structure with relatively irregular changes may also be selected.
  • the curved structure may be regarded as a single arc, an elliptical arc or a sinusoid, or an elongated large-sized curved structure may be set according to the length of the actual test piece,
  • One or more arcs or elliptical arcs or sinusoidal head-to-tail connections form a large-scale curved structure, or may be connected end-to-end by two or more of an arc, an elliptical arc, or a sinusoid to form a large-scale curve.
  • the shape structure satisfies the length requirement of the actual piece to be tested.
  • the long-sized large-sized curved structure may be connected end to end, or a plurality of curved structures may be arranged side by side, and the first and the last ends are connected to the member to be tested through the same pasting end.
  • FIG. 1a and 2a are basically similar in structure, and are curved structures composed of a plurality of semicircular arcs connected end to end. The openings of two adjacent semicircular arcs are opposite, and FIG. 1b and FIG. 2b are respectively FIG. 1a and FIG. A partial enlargement of 2a.
  • Fig. 3 is a curved structure composed of a plurality of 1/2 arc-to-tail joints
  • Fig. 4 is a 3/4 arc connected end to end, and the adjacent arc openings are opposite.
  • Fig. 5 shows a single arc arranged in two columns symmetrically
  • Fig. 6 is a single column curved structure in which a plurality of semicircular arcs are arranged side by side in sequence
  • FIG. 7 is a two-column symmetric structure in which a plurality of elliptical arcs are connected end to end in sequence. The openings of two adjacent elliptical arcs are opposite.
  • 8a, 9a and 3 are similar, a single-column curved structure composed of a plurality of arc segments connected end to end,
  • FIG. 8b is a partial enlarged view of FIG. 8a, and
  • FIG. 9b is a partial enlarged view of FIG. 9a.
  • 1a, 2a, 3, 4, 6, 7, 8a, 9a, 10, 11, and 12 are all elongated long-sized curved structures, and Figure 5 can be considered as Symmetrical structure of two curved structural elements.
  • 6 and 8a are long and large-sized curved structures composed of a plurality of curved structures arranged in a single row, and the curved structures of the strain sensors in the other figures are two columns and columns. Of course, it is also possible to arrange three columns, four columns or more columns in parallel.
  • the above drawings are only partial curved structures provided by the present invention.
  • the ratio of the curve radius of the base to the width of the substrate 1 is larger, and the range of the strain sensor is larger, and the curve radius is set according to the preset range.
  • the radius of the curve in the curved structure may be equal or unequal. When the plurality of curved radii are equal, the pre-calculation is easier. If the radius of multiple curves in the curved structure is not equal, it will be relatively complicated in numerical calculation and will reduce the sensitivity coefficient of the measurement.
  • the resistance value change at the joint is complicated, in order to reduce the resistance value of the strain resistance at the joint to the strain resistance on the curved structure.
  • the influence of the change of the resistance value to avoid excessive reduction of the sensitivity coefficient, and further increase the range of the strain sensor preferably the connection section is provided at the joint, and the average curvature change of the connection section is smaller than the curved structure before and after the strain sensor is stretched.
  • the average amount of curvature change is smaller than the resistance of the strain resistor on the curved structure.
  • the connecting section is a straight section, the structure is simple, and the range is easy to design.
  • the connecting sections in each drawing are linear, and when the resistance of the strain resistance on the connecting section is sufficiently small, the part can be ignored in the actual measurement and calculation process. The effect of the resistance increases the sensitivity factor.
  • the smaller the resistance value on the connecting segment the more advantageous the sensitivity to the strain sensor.
  • the resistance of the strain resistor on the connecting section 4 should be much smaller than the resistance of the strain resistor on the curved section. Since the deformation of the straight section is small, the resistance change is small, and if its resistance is large, the entire sensor is lowered. Sensitivity factor.
  • the width of the strain resistor disposed on the connecting portion 4 is much larger than the width of the strain resistor on the base portion 1 of the curved portion.
  • the strain sensor can achieve the desired sensitivity, and the resistance of the strain resistor on the connecting portion 4 is required to be on the base portion 1 of the curved portion.
  • the resistance values of the strain resistors differ by at least an order of magnitude, and the strain resistance width on the connecting section needs to be set equal to or slightly smaller than the width of the portion of the substrate 1.
  • the substrate limiting strip for limiting the curved structure or the large-sized curved structure to maintain the preset length state is further included.
  • the above-mentioned substrate limiting strip may be arranged side by side with a plurality of curved structures or large-sized curved structures.
  • the basement band has different shape and structure depending on the requirements of use. For example, it can be set to a linear structure, which is only used to limit the strain sensor from being randomly stretched before being used, and to ensure the measurement accuracy of the strain sensor. Alternatively, it may be arranged in a curved shape to simultaneously detect tensile strain and compressive strain of the member to be tested.
  • the structure of the base limiting strip is linear, and its length is equal to the original length of the curved structures on both sides.
  • the substrate limiting strip can prevent the strain sensor from being randomly stretched before use to affect the measurement accuracy, and both ends of the base limiting strip are respectively connected to the pasting end at both ends of the strain sensor.
  • the strain sensor is pasted on the object to be tested in the original state, and then the substrate limit line 5 is cut off before the test is started, and normal measurement can be performed. Or you can completely cut off the base limit line and remove the limit of its corresponding variable sensor.
  • the structure of the basement band is curved.
  • the strain sensor is first stretched to the extent that the curved basement band is straightened, and the base of the strain sensor is also stretched. Then, it is pasted onto the test piece. If the test piece has compressive strain, the strain sensor will also deform, and then the compressive strain of the test piece will be measured.
  • the maximum elongation of the curved basement limiting strip 6 is set according to the range of the member to be tested, and the strain sensor is stretched before being pasted, so that the intermediate curved basement limit strip 6 is extended to the maximum position, and then pasted and pasted. Then, the middle curved base limit band 6 is cut. Since the strain sensor is pre-stretched at the time of pasting, when measuring, the tensile strain of the member to be tested can be measured, and the compressive strain of the member to be tested can be measured, and the measurement accuracy is high.
  • the oblique line filling portion is a curved structure base 1 made of a polymer material
  • the black filling portion is a strain resistance 2
  • the rest of the structure is shown in the figure and the figure. 1a is the same.
  • the three materials are not only insulated but also soft in texture, and have an elastic stretch ratio higher than that of metal and are not easily deteriorated.
  • the material of the strain resistor used therein is preferably constantan or neo-constantan. Since the constant temperature coefficient of resistivity of the constantan and neo-constantan is low, it is not easily affected by temperature, so on the basis of the present scheme, As a material of strain resistance, Kangkang or Xinkang Copper can effectively improve the thermal stability of the strain sensor. Therefore, the resistive strain sensor provided by the embodiment has a large range and has good thermal stability and is not easily affected by the ambient temperature. The measured results show that the use of Constantan or Xinkang copper as the strain resistance material, the external temperature change per degree Celsius only affects the resistance change rate of the strain sensor by one hundred thousandth.
  • the material of the strain resistance may also be one of a conventional nickel-chromium alloy, a nickel-chromium-aluminum alloy, an iron-chromium-aluminum alloy, a platinum, and a platinum-tungsten alloy.
  • semiconductor single crystal silicon or graphene may be used.
  • the high sensitivity coefficient of semiconductor single crystal silicon and graphene helps to improve the measurement accuracy in the measurement process; while platinum and platinum tungsten alloy have high chemical stability, which can improve the service life of strain resistance.
  • a package film for protecting the strain sensor may be disposed outside the strain sensor.
  • the environment in which the strain sensor is used is relatively closed, surface encapsulation may not be required.
  • the environment of the strain sensor is affected by external factors or is large, it needs to be protected by a variable resistor.
  • the outer surface of the strain sensor may be coated with a package film.
  • the strain sensor of the unpackaged elastic film may be directly attached to the object to be tested for testing.
  • the package film is preferably an elastic packaging film.
  • the elastic encapsulating film can be prepared by using ordinary rubber, or polydimethylsiloxane (PDMS) and Ecoflex series silicone rubber, and the two materials have high insulation, high elasticity, high elongation, and low elasticity. The performance of the modulus and the elastic recovery ability are good, and the stability of the strain sensor is not affected. Of course, other silicone or rubber materials can be used depending on the actual measurement needs.
  • the resistive strain sensor provided by the invention can be obtained by first simulating the model structure of the strain sensor using finite element software to obtain the range of the strain sensor; secondly, adjusting the range according to actual measurement requirements.
  • the range is smaller than the preset range, by changing the radius of curvature of the flexible section of the substrate, reducing the line width of the substrate, and increasing the strain resistance of the flexible section near the central axis
  • the range when the range is larger than the preset range, the adjustment may be performed by the opposite method until the strain sensor reaches a preset range; again, using the foil resistance strain gauge manufacturing process, according to the simulation in step two
  • a successful strain sensor model produces a strain relief of the entire substrate and the curved structure, and the contour of the substrate is cut by the laser in accordance with the curved structure.
  • the strain resistance of the predetermined curved structure may be etched using an etching process, or the excess metal foil other than the outline may be stripped using a laser to form a predetermined curved structure. Strain resistance pattern. Finally, solder the leads, encapsulate the protective layer, encapsulate the elastic film, and calibrate the resistance and strain relationship of the sensor.
  • the resistive strain sensor provided by the invention can effectively increase the range of the strain sensor compared with the foil strain sensor currently used conventionally, and the range design range can be from several percent to several thousand, effectively solving the metal foil
  • the line has a problem that the range is small due to the limitation of the stretch rate, and the measurement accuracy is high.
  • the strain sensor is used to perform repeated measurements, and the measurement results can maintain good consistency and have good stability.
  • the substrate 1 is a PI film
  • the strain resistor 2 is a constantan foil wire.
  • Embodiment 1 An embodiment of a resistive strain sensor of the structure shown in FIG.
  • the PI film of the strain sensor has a thickness of 0.26 mm, a PI film width of 0.2 mm at a semicircular arc, an average radius of 1.4 mm, and a straight section length of 6.37 mm.
  • the thickness of the Kang copper foil is 5 ⁇ m
  • the line width of the constant copper foil of the curved section is 0.03 mm
  • the inner edge of the PI curvature is 0.05 mm.
  • the constant length of the copper foil of the connecting section is 0.2 mm.
  • the PI film at both ends of the strain sensor for attaching the test object has a length of 3.1 mm and a width of 2.0 mm.
  • the conservatively predicted confidence range is 50% (calculated as the maximum strain limit of Mangan is 0.3%).
  • Embodiment 2 An embodiment of a resistive strain sensor of the structure shown in Fig. 13a, and Fig. 13b is a partially enlarged view of the upper left corner of Fig. 13a.
  • the PI film of the strain sensor has a thickness of 0.06 mm, a PI film width of 0.18 mm at a semicircular arc, an average radius of 1.28 mm, and a straight section length of 0.32 mm.
  • the constant copper foil thickness is 5 ⁇ m
  • the curved copper foil width of the curved section is 0.03 mm
  • the inner edge of the PI curvature is 0.03 mm.
  • the conical copper foil of the connecting section has a width of 0.12 mm and is centered on the PI film.
  • the length of the PI film for sticking the test object at both ends of the strain sensor is 4.16 mm and the width is 1.7 mm.
  • the resistive strain sensor was finally packaged, and the encapsulating film was made of silicone rubber.
  • the total thickness of the package was 2 mm, the width was about 1 cm, and the length was about 4 cm.
  • the remaining free length of the clamping section was 3 cm during the experimental test.
  • the experimental results show that the initial resistance value is 202.95 ohms, the borne range is 10%, and the accuracy is good, which can work stably and dynamically.
  • Figure 13c is the displacement loading curve of the resistance strain sensor shown in Figure 13a.
  • the displacement is loaded at a constant rate with a period of 20 s and the maximum tensile force is 3 mm, that is, 10% strain, repeated 10 times.
  • Figure 13d is a real-time measured resistance-time curve of the multimeter in the displacement loading shown in Figure 13c.
  • the initial value of the natural state is 202.95 ohms
  • the peak value is stable at 203.81 ⁇ 0.02 ohms
  • the relative change of the natural state and the 10% strain state resistance It is four thousandths.
  • Fig. 13e is a resistance-time curve in which the curves of 10 cycles in Fig. 13d are moved together.
  • the resistive strain sensor provided in this embodiment has good repeatability of multiple experimental results.
  • Fig. 13f is a graph of conversion of Fig. 13e into a resistance change rate-strain curve.
  • the resistance strain sensor of the present invention has a good resistance change during the stretching process and the unloading process without hysteresis.
  • the hysteresis effect here refers to the fact that the strain sensor cannot return to the initial value immediately after the completion of one tensile release, and it takes a certain time to recover.
  • a resistive strain sensor comprising: a strain resistor and a substrate, the strain resistor being fixed on the substrate, the substrate being made of an insulating material, having a curved structure, a central axis of the strain resistor being located on the substrate One side of the central axis achieves an increase in the range of the resistive strain sensor.
  • the resistive strain sensor provided by the invention has a curved structure, and the structure of the strain resistance thereon is also a curved structure.
  • the strain sensor provided by the solution is provided.
  • the range design range can be from a few percent to several thousand, which can effectively solve the problem that the metal foil wire has a small reliable range due to the limitation of the stretch ratio.
  • the central axis of the strain resistor is located on one side of the central axis of the substrate, which can effectively ensure the sensitivity of the strain sensor measurement, thereby ensuring the accuracy of the measurement results.

Abstract

本发明提供了一种能够精确测量较大量程范围的电阻式应变传感器,包括:应变电阻和基底,所述应变电阻固定在所述基底上,所述基底由绝缘材料制成,为曲线形结构,所述应变电阻的中轴线位于所述基底的中轴线的一侧,实现所述电阻式应变传感器的量程的增大。相比常见的金属箔式电阻应变片,本方案所提供的应变传感器的量程设计范围可以从百分之几到百分之几千,可以有效解决金属箔线由于拉伸率的限制而可信量程较小的问题。

Description

一种电阻式应变传感器 技术领域
本发明属于应变传感器设计技术领域,具体涉及一种能够精确测量较大量程范围的具有曲线形电阻结构的电阻式应变传感器。
背景技术
物体的应变是一个非常重要的几何参数,其准确的测量具有十分重要的意义。应变传感器是用于测量物体受力变形所产生的应变的一种传感器。电阻应变片则是其最常采用的传感元件。它是一种能将机械构件上应变的变化转换为电阻变化的传感元件。应变传感器的种类较多,按原理分,有电阻式的、电容式的、压电式的、电感式的和光学式的等等。电阻式应变传感器,其电阻材料又可分为金属、半导体、溶液、导电聚合物、石墨等等。
在测试时,将应变片用粘合剂牢固地粘贴在待测物的表面上,随着试件受力变形,应变片的敏感栅也获得同样的变形,从而使其电阻随之发生变化,而此电阻变化是与试件应变成比例的,因此如果通过一定测量线路将这种电阻变化转换为电压或电流变化,然后再用显示记录仪表将其显示记录下来,就能知道待测物应变量的大小。
目前使用的电阻式应变传感器以金属电阻的应用最为广泛,然而由于金属拉伸率的限制,所测应变范围也比较小。例如康铜,一般只能保证测量2%以内的应变是可信的。
发明内容
本发明的目的是提供一种能够精确测量较大量程范围的具有曲线形电阻结构的电阻式应变传感器。
为了达到上述目的,本发明的具体技术方案如下:
一种电阻式应变传感器,包括:应变电阻和基底,所述应变电阻固定在所述基底上,所述基底由绝缘材料制成,为曲线形结构,所述应变电阻的中轴线位于所述基底的中轴线的一侧,实现所述电阻式应变传感器的量程的增大。
进一步地,所述基底的宽度为所述应变电阻宽度的2倍或2倍以上。
进一步地,所述曲线形结构为圆弧、椭圆弧、正弦曲线中的一种或几种的组合结构。
进一步地,还包括连接段,所述曲线形结构包括一个或多个,多个所述曲线形结构通过所述连接段相互连接,相互连接的多个所述曲线形结构的首尾两端分别设有与待测物相连的粘贴端;
所述应变传感器被拉伸前后,所述连接段的平均曲率变化量小于所述曲线形结构的平均曲率变化量。
进一步地,所述连接段上的应变电阻的阻值小于所述曲线形结构上的应变电阻的阻值。
进一步地,多个所述曲线形结构并列设置,其端部共同连接至一个所述粘贴端。
进一步地,还包括基底限位带,限制所述曲线形结构保持在预设长度状态;
所述基底限位带的结构为直线形,其长度与所述曲线形结构两端的粘贴端之间的间距相等;
或,
所述基底限位带的结构为曲线形,其最大伸长量小于所述曲线形结构的最大伸长量,协助检测待测试件的压应变;
和/或,
所述基底限位带与一个或多个所述曲线形结构并列设置,其端部共同连接至一个所述粘贴端。
进一步地,所述基底的材料为聚酰亚胺、酚醛树脂、环氧树脂中的一种;
所述应变电阻的材料为康铜或新康铜;
或,
所述应变电阻的材料为镍铬合金、镍铬铝合金、铁铬铝合金、铂、铂钨合金、半导体单晶硅、石墨烯中的一种。
进一步地,还包括封装薄膜,所述封装薄膜包覆在所述电阻式应变传感器 上。
进一步地,所述封装薄膜的材料为聚二甲基硅氧烷或Ecoflex系列硅橡胶。
本发明提供的电阻式应变传感器,其基底为曲线形结构,进而限定了其上应变电阻的结构也为曲线形结构,相比常见的金属箔式电阻应变片,本方案所提供的应变传感器的量程设计范围可以从百分之几到百分之几千,可以有效解决金属箔线由于拉伸率的限制而可信量程较小的问题。同时,设置应变电阻的中轴线位于基底中轴线的一侧,能够有效保证应变传感器测量的灵敏性,进而保证测量结果的准确性。
附图说明
图1a是本发明提供的一种电阻式应变传感器的结构示意图;
图1b是图1a左上角的局部放大图;
图2a是本发明提供的另一种电阻式应变传感器的结构示意图;
图2b是图2a左上角的局部放大图;
图3是本发明提供的又一种结构的电阻式应变传感器结构示意图;
图4是本发明提供的基底的弧线段的弧度大于π小于2π的电阻式应变传感器结构示意图;
图5是基底上的弧线段的曲率不等的结构示意图;
图6是基底中相邻弧线段的开口方向相同的结构示意图;
图7是基底中的曲线段为椭圆弧的电阻式应变传感器的结构示意图;
图8a是基底中的弧线段的弧度小于π的结构示意图;
图8b是图8a左端的局部放大图;
图9a是应变电阻位于基底的易弯曲段曲率外侧的结构示意图;
图9b是图9a左上角的局部放大图;
图10是设有直线形基底限位带的电阻式应变传感器的结构示意图;
图11是设有曲线形基底限位带的电阻式应变传感器的结构示意图;
图12是实施例1中所示电阻式应变传感器的结构示意图;
图13a是实施例2中所示电阻式应变传感器的结构示意图;
图13b是图13a左上角的局部放大图;
图13c是测试性能时的位移加载曲线;
图13d是位移加载时万用表实时测得的电阻-时间曲线;
图13e是将图13e中10个周期的曲线移在一起的曲线;
图13f是将图13f转换成电阻变化率-应变曲线;
1.基底,2.应变电阻,3.粘贴端,4.连接段,5.直线形基底限位带,6.曲线形基底限位带。
本发明的较佳实施方式
以下内容中所说的量程即为应变电阻达到其可正常使用的最大应变时应变传感器的拉伸率。
一种电阻式应变传感器,如图1a和1b所示,其中图1b为图1a的左上角局部放大图,主要由应变电阻2和基底1构成,应变电阻2固定在基底1上,基底1与待测试件连接或者直接粘贴在待测试件上,应变电阻2和基底随同待测试件一起产生变形,在变形的同时应变电阻的阻值随之发生变化,变化的电阻经电路处理后以电信号的形式输出,被测得,最终根据应变传感器上标定的电阻与应变之间关系得到待测试件的应变值。
本方案中,应变传感器的基底由绝缘材料制成,为曲线形结构,而曲线形结构的基底能够决定其上的应变电阻的结构也为曲线形,相比目前普遍使用的薄片式应变传感器,能够有效增大应变传感器的量程。实测,本发明提供的应变传感器的有效量程能够从百分之几到百分之几千。而位于其上的应变电阻,其中轴线位于基底中轴线的一侧,能够保证应变传感器测量的灵敏性。而跨过基底中轴线的应变电阻,在形变过程中,其电阻变化极小,不易捕捉,不利于提高应变传感器的测量精度。其中,应变电阻可以位于基底曲线结构的曲率外侧,也可以位于曲线结构的曲率内侧,如图9a和9b所示,位于基底曲率外侧。
本发明的一种实施方式中,为了提高测量精度以及灵敏系数,优选基底的宽度至少为其上应变电阻宽度的2倍。当应变电阻的宽度大于基底宽度的一半时,则应变电阻的一部分区域会越过基底的中轴线,此时,应变电阻对 称位于基底中轴线两侧的部分上的电阻由于部分受拉应变,电阻增加,部分受压应变,电阻减小,其上的部分电阻变化会正负抵消,导致应变电阻的实际有效电阻变化的测量值变小,进而导致外部测量电路测出电阻变化值较小,于是会造成应变结果精度较小,误差较大。因此,根据本方案提供的应变传感器,基底的宽度至少为其上应变电阻宽度的2倍,以保证应变测量的精度。本方案中,更优选基底宽度为其上应变电阻宽度的6倍或6倍以上,这样能够保证应变传感器在测量过程中能够获取的较好的灵敏性以及极佳的测量精度。
本发明的一种实施方式中,为了简化计算过程,优选曲线形结构为圆弧、椭圆弧、正弦曲线或余弦曲线中的一种或几种的组合结构,对于变化较为规律的圆弧、椭圆弧或者正弦曲线,在预测电阻变化值与应变之间的关系过程中相对较为容易。当然,本方案不限于上述列举的几种曲线形结构,也可以选用变化较为不规律的不对称的曲线结构。
本发明的一种实施方式中,其中的曲线形结构可以认为是单独的一个圆弧、椭圆弧或者正弦曲线,也可以根据实际待测试件的长度设置加长型的大尺寸曲线形结构,由两个或两个以上的圆弧或椭圆弧或正弦曲线首尾连接构成大尺寸曲线形结构,或者也可以由圆弧、椭圆弧或者正弦曲线中的两种或者多种分别首尾连接,构成大尺寸曲线形结构,满足实际待测试件的长度需求。当然,多个曲线形结构设置时,可以首尾相连构成加长型的大尺寸曲线形结构,也可以将多个曲线形结构并列设置,其首尾端通过同一个粘贴端共同连接至待测试件。
如图1a和2a结构基本近似,均为多个半圆形弧线首尾连接构成的曲线形结构,相邻两个半圆形弧线的开口相反,图1b和图2b分别为图1a和图2a的局部放大图。图3为多个小于1/2圆弧首尾连接构成的曲线形结构,而图4为3/4圆弧首尾相连,相邻圆弧开口相反。图5为单独一个圆弧设置成两列对称设置,图6为多个半圆弧并列依次首尾连接构成的单列曲线形结构;图7为多个椭圆弧依次首尾连接构成的两列对称结构,相邻两个椭圆弧的开口相反。而图8a、图9a和图3类似,为多个弧线段首尾相连构成的单列曲线形结构,图8b为图8a的局部放大图,图9b为图9a的局部放大图。其中的图1a、2a、图3、图4、图6、图7、图8a、图9a、图10、图11和图12 均为加长型的大尺寸曲线形结构,而图5可以认为是两个曲线形结构单体的对称结构。如图6和图8a为单列设置的多个曲线形结构首尾连接构成的加长型大尺寸曲线形结构,而其余附图中的应变传感器的曲线结构均为两列别列设置的结构。当然,也可以并列设置三列、四列或者更多列结构。上述附图仅为本发明提供的部分曲线结构。
在设置半圆形弧线的半径时,基本依据为基底的曲线半径与基底1的宽度比值越大,则应变传感器的量程越大,根据预设量程设置曲线半径。曲线形结构中的曲线半径可以相等也可以不相等,当设置的多个曲线半径相等时,预先的计算会更容易。如果设置曲线形结构中的多个曲线半径不相等,则在数值计算上会相对比较复杂,且会降低测量的灵敏系数。
本发明的一种实施方式中,由于相邻两个曲线形结构在首尾连接之后,连接处的电阻值变化比较复杂,为了减小连接处应变电阻的电阻值对于曲线形结构上的应变电阻的电阻值变化的影响,以避免灵敏系数过度减小,同时进一步增加应变传感器的量程,优选在连接处设置连接段,在应变传感器被拉伸前后,该连接段的平均曲率变化量小于曲线形结构的平均曲率变化量。优选该连接段上的应变电阻的阻值小于曲线形结构上的应变电阻的阻值。
优选连接段为直线段,其结构简单,量程易于设计。如图1至图3,图8至图12所示,各附图中连接段均为直线形,当连接段上应变电阻的阻值足够小时,在实际测量和计算过程中则可以忽略该部分电阻的影响,提高灵敏系数。当然,当连接段上的电阻值越小则对于本应变传感器的灵敏性越有利。具体设置时,连接段4上应变电阻的阻值应远小于曲线段上应变电阻的阻值,由于直线段的变形较小,电阻变化较小,若它的电阻较大,会降低整个传感器的灵敏系数。所以,设置位于连接段4上的应变电阻的宽度远大于曲线部分基底1上应变电阻的宽度,实测,应变传感器能够达到理想灵敏度,需要连接段4上应变电阻的阻值与曲线部分基底1上应变电阻的阻值相差至少一个数量级,同时需要设置连接段上的应变电阻宽度与该部分基底1的宽度相等或者略小于其宽度。
本发明的一种实施方式中,还包括用于限制曲线形结构或者大尺寸曲线形结构保持在预设长度状态的基底限位带。在具体设置时,可以将上述基底限位带与多个曲线形结构或大尺寸曲线形结构并列设置。该基底限位带根据 使用要求的不同,其形状结构也不同。比如,可以设置成直线形结构,只用于限制应变传感器在被使用前不会被随意拉伸,保证应变传感器的测量精度。或者可以设置成曲线形,进而能够同时检测待测试件的拉应变和压应变。
如图10所示,该基底限位带的结构为直线形,其长度与两侧的曲线形结构的原始长度相等。该基底限位带能够防止应变传感器在使用前被随意拉伸而影响其测量精度,基底限位带的两端分别于应变传感器的两端与粘贴端连接。使用时,应变传感器按照原始状态粘贴在待测试件上,之后,开始测试之前,将基底限位线5剪断,即可进行正常测量。或者可以将基底限位线完全剪掉,解除其对应变传感器的限制。
如图11所示,基底限位带的结构为曲线形,在实际测量时,将应变传感器先拉伸到曲线形基底限位带被拉直的程度,这时应变传感器的基底也被拉伸,之后再粘贴到被测试件上,这时被测试件若有压应变,应变传感器也会跟着变形,进而测得待测试件的压应变。
曲线形基底限位带6的最大伸长量根据待测试件的量程设置,粘贴之前先将应变传感器拉伸,使得中间的曲线形基底限位带6伸长至最大位置,之后进行粘贴,粘贴之后将中间的曲线形基底限位带6剪断即可。由于在粘贴时,应变传感器被预拉伸,所以,测量时,既可以测量待测试件的拉应变,也可以测量待测试件的压应变,且测量精度高。
上述实施方式中,如图1a和1b所示,附图中,斜线填充部分为由聚合物材料制成的曲线形结构的基底1,黑色填充部分为应变电阻2,其余结构附图与图1a相同。其中,对于较佳选择为聚酰亚胺、酚醛树脂、环氧树脂中的一种,该三种材料不仅绝缘而且质地柔软,且弹性拉伸率比金属高且不易老化。
上述实施方式中,其中使用的应变电阻的材料优选为康铜或者新康铜,由于康铜和新康铜的电阻率温度系数低,不易受温度影响,所以,在本方案的基础上,使用康铜或者新康铜作为应变电阻的材料,能够有效提高应变传感器的热稳定性。因此,本实施方式提供的电阻式应变传感器具有较大量程的同时,还具有良好的热稳定性,不易受环境温度影响。实测显示,使用康铜或新康铜作为应变电阻材料,每一摄氏度的外界温度变化,仅影响应变传感器产生十万分之一量级的电阻变化率。
当然,应变电阻的材料还可以选用常规的镍铬合金、镍铬铝合金、铁铬铝合金、铂、铂钨合金中的一种。或者也可以选用半导体单晶硅或石墨烯。而其中的半导体单晶硅和石墨烯的敏感系数高,有助于在测量过程中提高测量精度;而铂和铂钨合金化学稳定性高,能够提高应变电阻的使用寿命。
本发明的一种实施方式中,根据应变传感器的使用环境的不同,还可以在应变传感器外部设置用于保护应变传感器的封装薄膜。当应变传感器的使用环境相对比较封闭时,可以不需要进行表面封装。而当应变传感器的使用环境受到外界因素影响较多或较大时,需要对应变电阻进行保护,此时可以在应变传感器的外表面包覆封装薄膜。当使用的应变传感器需要封装时,可以将应变传感器的两端粘贴在待测试件上进行测试,也可以直接将封装后的应变传感器整体粘贴在待测试件上进行测试。因为封装后应变传感器的曲线形基底及应变电阻不会和被测试件的表面严格固结。若被测物表面较软,则也可以直接将未封装弹性薄膜的应变传感器整体粘贴在待测物上进行测试。为了不影响测量精度,优选该封装薄膜为弹性封装薄膜。该弹性封装薄膜可以使用普通橡胶制备,或者也可以采用聚二甲基硅氧烷(PDMS)和Ecoflex系列硅橡胶,而该两种材料具有高绝缘性、高弹性、高拉伸率、低弹性模量的性能,弹性恢复能力好,不会影响应变传感器的稳定性。当然,根据实际测量需要的不同,也可以使用其它的硅胶或橡胶材料。
本发明提供的电阻式应变传感器可以通过以下方法制得:首先使用有限元软件模拟所述应变传感器的模型结构,得到所述应变传感器的量程;其次,根据实际测量需求,对所述量程进调节,当所述量程比预设量程偏小时,通过改变所述基底的易弯曲段的曲率半径、减小所述基底的线宽、将位于易弯曲段的应变电阻靠近所述中轴线进而增大所述量程;当所述量程比预设量程偏大时,则可通过相反方法进行调节,直至所述应变传感器达到预设量程;再次,利用箔式电阻应变片制作工艺,根据步骤二中模拟成功的应变传感器模型,制作出整张基底以及曲线形结构的应变电阻,再用激光器按所述曲线形结构切割出所述基底的轮廓。制作整张基底以及曲线形结构的应变电阻时,可以使用腐蚀工艺刻蚀出预设的曲线形结构的应变电阻,或者使用激光剥去轮廓之外的多余金属箔形成预设的曲线形结构的应变电阻图案。最后,焊接引线,封装保护层,封装弹性薄膜,标定传感器的电阻和应变关系。
本发明提供的电阻式应变传感器,相比目前常规使用的箔式应变传感器,能够有效提升应变传感器的量程,其量程设计范围可以从百分之几到百分之几千,有效解决了金属箔线由于拉伸率的限制而可信量程较小的问题,同时测量精度高。同时,使用该应变传感器进行多次重复测量,其测量结果均能保持良好的一致性,具有较好的稳定性。
下面通过具体实施例说明本发明中电阻式应变传感器的特点。
以下实施例中,基底1均采用PI薄膜,应变电阻2为康铜箔线。
实施例1:为图12所示结构的电阻式应变传感器的实施例。
该应变传感器的PI薄膜厚0.26mm,半圆形弧线处PI薄膜宽度为0.2mm,平均半径1.4mm,直线段长6.37mm。康铜箔厚5μm,曲线段的康铜箔线宽为0.03mm,距离PI曲率内侧边缘0.05mm。连接段的康铜箔最宽为0.2mm。应变传感器的两端用于粘贴被测物的PI薄膜长度为3.1mm,宽为2.0mm。
保守预测可信量程达到50%(按康铜最大应变限制为0.3%计算)。
实施例2:为图13a所示结构的电阻式应变传感器的实施例,图13b是图13a左上角的局部放大图。
该应变传感器的PI薄膜厚0.06mm,半圆形弧线处PI薄膜宽度为0.18mm,平均半径1.28mm,直线段长0.32mm。康铜箔厚5μm,曲线段的康铜箔线宽为0.03mm,距离PI曲率内侧边缘0.03mm。连接段的康铜箔宽为0.12mm,处于PI薄膜上居中位置。应变传感器的两端用于粘贴被测物的PI薄膜长度为4.16mm,宽为1.7mm。
该电阻式应变传感器最终进行了封装,其封装薄膜为硅橡胶,封装完总厚度2mm,宽约1cm,长约4cm,实验测试时除去夹持段剩下的自由长度为3cm。
实验测得初始电阻值为202.95欧,可信量程达到10%,且精度较好,可以动态稳定工作。
图13c是图13a所示电阻式应变传感器性能测试时的位移加载曲线,位移匀速加载,周期为20s,最大拉伸量为3mm,即10%应变,重复10次。图13d是在图13c所示位移加载时万用表实时测得的电阻-时间曲线,自然状态初始值为202.95欧姆,峰值都稳定在203.81±0.02欧姆,自然状态与10%应变状态电阻的相对变化量为千分之四。
图13e是将图13d中10个周期的曲线移在一起的电阻-时间曲线,从图中可以看出,本实施例提供的电阻式应变传感器,其多次实验结果的重复性较好。图13f是将图13e转换成电阻变化率-应变曲线,从图中可以看出,本发明的电阻式应变传感器在拉伸过程和卸载过程中电阻变化重合得很好,没有迟滞效应。此处的迟滞效应指的是应变传感器在一次拉伸释放完成之后,电阻值不能立即恢复到初始值,需要一定的时间恢复。
工业实用性
一种电阻式应变传感器,包括:应变电阻和基底,所述应变电阻固定在所述基底上,所述基底由绝缘材料制成,为曲线形结构,所述应变电阻的中轴线位于所述基底的中轴线的一侧,实现所述电阻式应变传感器的量程的增大。
本发明提供的电阻式应变传感器,其基底为曲线形结构,进而限定了其上应变电阻的结构也为曲线形结构,相比常见的金属箔式电阻应变片,本方案所提供的应变传感器的量程设计范围可以从百分之几到百分之几千,可以有效解决金属箔线由于拉伸率的限制而可信量程较小的问题。同时,设置应变电阻的中轴线位于基底中轴线的一侧,能够有效保证应变传感器测量的灵敏性,进而保证测量结果的准确性。

Claims (10)

  1. 一种电阻式应变传感器,包括:应变电阻和基底,所述应变电阻固定在所述基底上,其特征在于,
    所述基底由绝缘材料制成,为曲线形结构,所述应变电阻的中轴线位于所述基底的中轴线的一侧,实现所述电阻式应变传感器的量程的增大。
  2. 根据权利要求1所述的电阻式应变传感器,其特征在于,
    所述基底的宽度为所述应变电阻宽度的2倍或2倍以上。
  3. 根据权利要求1所述的电阻式应变传感器,其特征在于,
    所述曲线形结构为圆弧、椭圆弧、正弦曲线中的一种或几种的组合结构。
  4. 根据权利要求1-3任一项所述的电阻式应变传感器,其特征在于,
    还包括连接段,所述曲线形结构包括一个或多个,多个所述曲线形结构通过所述连接段相互连接,相互连接的多个所述曲线形结构的首尾两端分别设有与待测物相连的粘贴端;
    所述应变传感器被拉伸前后,所述连接段的平均曲率变化量小于所述曲线形结构的平均曲率变化量。
  5. 根据权利要求4所述的电阻式应变传感器,其特征在于,
    所述连接段上的应变电阻的阻值小于所述曲线形结构上的应变电阻的阻值。
  6. 根据权利要求4所述的电阻式应变传感器,其特征在于,
    多个所述曲线形结构并列设置,其端部共同连接至一个所述粘贴端。
  7. 根据权利要求4所述的电阻式应变传感器,其特征在于,
    还包括基底限位带,限制所述曲线形结构保持在预设长度状态;
    所述基底限位带的结构为直线形,其长度与所述曲线形结构两端的粘贴端之间的间距相等;
    或,
    所述基底限位带的结构为曲线形,其最大伸长量小于所述曲线形结构的最大伸长量,协助检测待测试件的压应变;
    和/或,
    所述基底限位带与一个或多个所述曲线形结构并列设置,其端部共同连 接至一个所述粘贴端。
  8. 根据权利要求1-7任一项所述的电阻式应变传感器,其特征在于,
    所述基底的材料为聚酰亚胺、酚醛树脂、环氧树脂中的一种;
    所述应变电阻的材料为康铜或新康铜;
    或,
    所述应变电阻的材料为镍铬合金、镍铬铝合金、铁铬铝合金、铂、铂钨合金、半导体单晶硅、石墨烯中的一种。
  9. 根据权利要求1-8任一项所述的电阻式应变传感器,其特征在于,
    还包括封装薄膜,所述封装薄膜包覆在所述电阻式应变传感器上。
  10. 根据权利要求9所述的电阻式应变传感器,其特征在于,
    所述封装薄膜的材料为聚二甲基硅氧烷或Ecoflex系列硅橡胶。
PCT/CN2018/089866 2018-01-30 2018-06-05 一种电阻式应变传感器 WO2019148726A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810088807.3A CN107990822A (zh) 2018-01-30 2018-01-30 一种大量程电阻式应变传感器及其制备方法
CN201810088807.3 2018-01-30
CN201810556672.9A CN108444378B (zh) 2018-01-30 2018-06-01 一种电阻式应变传感器
CN201810556672.9 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019148726A1 true WO2019148726A1 (zh) 2019-08-08

Family

ID=62039929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089866 WO2019148726A1 (zh) 2018-01-30 2018-06-05 一种电阻式应变传感器

Country Status (2)

Country Link
CN (2) CN107990822A (zh)
WO (1) WO2019148726A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107990822A (zh) * 2018-01-30 2018-05-04 中国科学院力学研究所 一种大量程电阻式应变传感器及其制备方法
TWI702888B (zh) * 2018-06-04 2020-08-21 財團法人工業技術研究院 線路板及電子裝置
US10932361B2 (en) 2018-06-04 2021-02-23 Industrial Technology Research Institute Circuit board and electronic device
JP7467828B2 (ja) * 2019-03-22 2024-04-16 ヤマハ株式会社 歪センサユニット及び伸長量測定部材
CN109990696A (zh) * 2019-04-03 2019-07-09 江苏柔世电子科技有限公司 一种电阻式曲率传感器
JP7352877B2 (ja) * 2019-12-16 2023-09-29 ニデックドライブテクノロジー株式会社 トルク検出センサおよび動力伝達装置
JP7302767B2 (ja) * 2019-06-27 2023-07-04 ニデックドライブテクノロジー株式会社 トルク検出センサおよび動力伝達装置
CN110333013B (zh) * 2019-07-15 2021-01-08 承德石油高等专科学校 一种嵌入式应力传感器
CN111521106A (zh) * 2020-03-09 2020-08-11 江苏柔世电子科技有限公司 一种电阻式应变传感器
CN113358016B (zh) * 2021-05-11 2022-11-01 电子科技大学 一种基于压电效应的柔性应变传感器及其制备方法
CN113551791B (zh) * 2021-07-02 2023-05-02 中国科学院力学研究所 一种可快速制备的电阻式应变传感器及其制备方法
CN114689198B (zh) * 2022-03-28 2023-03-14 电子科技大学 一种适用于卷绕式二次电池集流体的温度和应变解耦方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2881967Y (zh) * 2005-12-16 2007-03-21 沈阳汇博思宾尼斯传感技术有限公司 薄膜低功耗强磁体磁阻传感器件
US20130041235A1 (en) * 2009-12-16 2013-02-14 John A. Rogers Flexible and Stretchable Electronic Systems for Epidermal Electronics
US20150059486A1 (en) * 2013-09-05 2015-03-05 Samsung Electronics Co., Ltd. Resistive pressure sensor including piezo-resistive electrode
CN206787742U (zh) * 2017-04-19 2017-12-22 河海大学 用于测量钢桥面板热点应力的新型应变片
CN107990822A (zh) * 2018-01-30 2018-05-04 中国科学院力学研究所 一种大量程电阻式应变传感器及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU800620A1 (ru) * 1979-04-09 1981-01-30 Всесоюзный Заочный Институтпищевой Промышленности Тензопреобразователь
SU1270545A1 (ru) * 1985-03-06 1986-11-15 Специальное конструкторско-технологическое бюро Морского гидрофизического института АН УССР Цифровой тензорезисторный преобразователь
US6184680B1 (en) * 1997-03-28 2001-02-06 Tdk Corporation Magnetic field sensor with components formed on a flexible substrate
CN202442836U (zh) * 2012-02-22 2012-09-19 成都市翻鑫家科技有限公司 一种电阻式汽车防爆胎传感器
CN204286741U (zh) * 2014-12-10 2015-04-22 中国航天空气动力技术研究院 “s”形薄膜的铂电阻热流传感器
JP6522485B2 (ja) * 2015-11-19 2019-05-29 アルプスアルパイン株式会社 磁気センサの製造方法
CN109341515A (zh) * 2016-11-22 2019-02-15 中国科学院力学研究所 一种柔性曲率传感器及其制备方法
CN106959071B (zh) * 2017-01-19 2019-04-26 吉林大学 一种仿生应变感知结构及其形成方法
CN208223387U (zh) * 2018-01-30 2018-12-11 中国科学院力学研究所 一种电阻式应变传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2881967Y (zh) * 2005-12-16 2007-03-21 沈阳汇博思宾尼斯传感技术有限公司 薄膜低功耗强磁体磁阻传感器件
US20130041235A1 (en) * 2009-12-16 2013-02-14 John A. Rogers Flexible and Stretchable Electronic Systems for Epidermal Electronics
US20150059486A1 (en) * 2013-09-05 2015-03-05 Samsung Electronics Co., Ltd. Resistive pressure sensor including piezo-resistive electrode
CN206787742U (zh) * 2017-04-19 2017-12-22 河海大学 用于测量钢桥面板热点应力的新型应变片
CN107990822A (zh) * 2018-01-30 2018-05-04 中国科学院力学研究所 一种大量程电阻式应变传感器及其制备方法

Also Published As

Publication number Publication date
CN108444378A (zh) 2018-08-24
CN107990822A (zh) 2018-05-04
CN108444378B (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
WO2019148726A1 (zh) 一种电阻式应变传感器
CN109883315B (zh) 一种双面电阻式应变传感器及应变测量方法
CN109883316B (zh) 一种电阻式应变传感器及应变测量方法
CN208223387U (zh) 一种电阻式应变传感器
JP2010540009A (ja) 生体の血管内での測定用のセンサ
NL7907294A (nl) Drukmeter met een rekstrookopnemer.
CN113639902B (zh) 一种压力传感器及其制作方法
EP1965187A2 (en) Semiconductive diaphragm-type pressure sensor
CN110736421A (zh) 用于弹性体应变测量的薄膜应变计及制备方法
WO2007002241A2 (en) Strain gage with off axis creep compensation feature
CN108036804B (zh) 一种用于电阻应变片输出调节的装置
CN106441376A (zh) 石墨栅柔性电阻应变片及其制造方法
CN111521106A (zh) 一种电阻式应变传感器
CN113959327B (zh) 一种具有高灵敏度的多层结构应变传感器
CN111272063A (zh) 一种电阻式曲率传感器
JPS5844323A (ja) 圧力センサ
CN111122026A (zh) 一种压力传感器
RU2463687C1 (ru) Наклеиваемый полупроводниковый тензорезистор
JP2022074104A (ja) ひずみゲージおよびその製造方法
CN110095054B (zh) 一种电阻式应变片
RU2391641C1 (ru) Датчик давления тензорезистивного типа с тонкопленочной нано- и микроэлектромеханической системой
CN112816112A (zh) 一种柔性传感器组件
CN220187630U (zh) 一种传感器晶片及包含其的传感器
RU2463686C1 (ru) Наклеиваемый полупроводниковый тензорезистор
KR101964879B1 (ko) 인장력과 압축력의 측정이 가능한 탄소 복합체 센서 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903180

Country of ref document: EP

Kind code of ref document: A1