WO2019148566A1 - 一种装配式混凝土构件的装配结构 - Google Patents

一种装配式混凝土构件的装配结构 Download PDF

Info

Publication number
WO2019148566A1
WO2019148566A1 PCT/CN2018/077491 CN2018077491W WO2019148566A1 WO 2019148566 A1 WO2019148566 A1 WO 2019148566A1 CN 2018077491 W CN2018077491 W CN 2018077491W WO 2019148566 A1 WO2019148566 A1 WO 2019148566A1
Authority
WO
WIPO (PCT)
Prior art keywords
grouting
section
connection section
steel
concrete member
Prior art date
Application number
PCT/CN2018/077491
Other languages
English (en)
French (fr)
Inventor
郑志涛
刘国福
涂刚要
朱海生
王玉国
Original Assignee
合肥建工集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/067,594 priority Critical patent/US10760264B2/en
Application filed by 合肥建工集团有限公司 filed Critical 合肥建工集团有限公司
Publication of WO2019148566A1 publication Critical patent/WO2019148566A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry
    • E04B1/4114Elements with sockets
    • E04B1/4121Elements with sockets with internal threads or non-adjustable captive nuts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry
    • E04B1/4114Elements with sockets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/162Connectors or means for connecting parts for reinforcements
    • E04C5/163Connectors or means for connecting parts for reinforcements the reinforcements running in one single direction
    • E04C5/165Coaxial connection by means of sleeves
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/04Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
    • E04B1/043Connections specially adapted therefor

Definitions

  • the invention belongs to the field of fabricated building construction, in particular to an assembly structure of a prefabricated concrete component.
  • Assembled concrete structure refers to the concrete structure assembled by prefabricated concrete members through reliable connection. Then the assembled concrete structure is integrated with the on-site post-concrete concrete and cement-based grouting, which is the integral monolithic concrete structure. And the difficulty is the quality problem of the connection of the steel bars, that is, the prior art and the process are difficult to ensure that the steel bars to be connected are coaxially butted.
  • the pre-formed components are usually filled in the semi-grouting or full grouting sleeve by injecting non-shrinkage or micro-expansion cement-based grouting slurry.
  • the connection between the two, but the existing construction process is difficult to ensure that the sleeve is filled with grout, and it is difficult to ensure the filling is dense, and there is no effective technical means for the grouting density test in the specific construction, thus, the prefabricated building
  • the grouting workload is large, the construction is difficult, and the range of reinforcing steel reinforcement area around the connecting node is large.
  • semi-grouting sleeves are commonly used in engineering, and the widely used semi-grouting sleeve is cast iron.
  • One end of the sleeve is directly connected with the steel bar bolt, and the other end is directly connected to the grouting. Therefore, the rib on the steel bar must be peeled off cleanly at the construction site, and one end of the steel bar is cold rolled into a wire, and then screwed to the semi-grouting sleeve.
  • connection method The inadequacies of the connection method are as follows: 1) The on-site machining thread process is complicated, and the quality standard is difficult to control; 2) When the thread connection is made at the construction site, the torque wrench must be used, which is difficult to operate; 3) the steel bar is inserted into the grouting sleeve.
  • the quality control of length and thread connection must comply with the requirements of national standards and regulations, and it is extremely difficult to achieve a high qualification rate.
  • the semi-grouting connection structure mainly increases the rib from the non-grouting connection section and the side wall of the grouting sleeve. To improve the strength of the joint part of the fabricated concrete member, so that the sleeve wall is thicker and self-important.
  • the main form of the assembly of the prefabricated concrete members is the grouting sleeve connection.
  • the core and difficulty are the quality problems of the rebar connection of the prefabricated concrete members.
  • the prior art and the process are difficult to ensure that the steel bars to be connected are coaxial in the grouting sleeve. Docking. According to statistics, in the actual project, the exact connection ratio between the sleeve and the overhanging steel bar is about 20%.
  • the main reasons are as follows: 1) It is difficult to insert the steel bar at the end of the same component into the corresponding sleeve, which makes the component installation difficult;
  • the grouting connecting section steel bar is inserted into the grouting sleeve, it is close to the inner wall of the sleeve. During the subsequent grouting, the slurry can not completely wrap the steel bar of the grouting connection section, so that the joint strength of the sleeve is greatly reduced, and the load of the connecting part of the component is seriously weakened. transfer.
  • the exposed steel bars may be bent due to pouring or other external reasons, and the horizontal position may be offset, resulting in the same vertical position as the grouting sleeve of the next fabricated concrete. Straight in direction. Therefore, before assembly, the steel bars need to be straightened and adjusted horizontally. In the prior art, it is generally manually hammered or twisted and adjusted with a pliers, and the adjustment process is loud and has low precision.
  • the technical problem solved by the invention is to provide an assembly structure of a prefabricated concrete component, which achieves the purpose of quick assembly, high precision and improved seismic performance of the assembled component.
  • An assembly structure of a prefabricated concrete member comprising a semi-grouting sleeve and an alignment device
  • the semi-grouting sleeve comprises a sleeve, a steel pipe transition section, and a self-locking steel skeleton;
  • the sleeve comprises a non-grouting connection section and a grouting connection section; a section of the pipe section of the steel pipe transition section is fixed in the non-grouting connection section, and another section of the pipe body extends outside the non-grouting connection section to form a first steel bar to be connected Press-connected rolling section;
  • the steel skeleton comprises longitudinally oriented steel bars, inclined steel branches and circumferential fixed steel rings; a plurality of longitudinally oriented steel bars and a plurality of circumferential fixed steel rings are fixed to form a cylindrical keel; and the plurality of inclined steel branches are radially radiated along the keel
  • the inclined arrangement is fixed, one end is located in the keel, forming an inner barb, and the plurality of inner barbs are surrounded by a passage for the second to-be-connected steel bar, the diameter of the channel is smaller than the diameter of the second steel bar to be connected, and the other end is at the keel
  • the contour of the outer barb is larger than the diameter of the inner cavity of the grouting connection section;
  • the outer barb is pressed against the inner wall of the grouting connecting section, and the passage is coaxial with the transition section of the steel pipe;
  • the alignment device includes a control mechanism, at least two sets of support mechanisms, and a positioning mechanism;
  • the support mechanism includes a lower support and an upper support;
  • the upper support and the lower support are both electromagnets;
  • the positioning mechanism is included in a first mark and a second mark respectively disposed at respective positions of the upper concrete member and the lower concrete member mounting surface;
  • the lower support is placed at the first mark, and the upper support is placed at the second mark;
  • the upper support And the lower support is opposite to the magnetic pole;
  • the upper support and the lower support are connected in series on the same circuit
  • the control mechanism controls the magnitude of the repulsive force between the upper support and the lower support by controlling the magnitude of the current on the circuit.
  • the non-grouting connecting section is a conical cylindrical structure
  • the grouting connecting section is a cylindrical structure
  • the small diameter end of the non-grouting connecting section is connected with one end of the grouting connecting section, and the joint is rounded and transitioned.
  • a length of the pipe body of the transition section of the steel pipe is screwed and fixed to the non-grouting connection section.
  • a grouting hole is opened at one end of the grouting connection section away from the non-grouting connecting section, and the other end extends a venting hole to the non-grouting connecting section.
  • the inner wall of the grouting connecting section is further provided with a spiral protruding rib; the protruding rib is inclined from the bottom to the top to a side away from the non-grouting connecting section; the protruding rib is away from the non-grouting connecting section
  • the side is a concave curved surface, and the other side is a convex curved surface; the two sides of the convex rib are rounded to the inner wall of the grouting connection section.
  • a plurality of shear-resistant members are fixed on the wall of the grouting connection section; the shear-resistant members are simultaneously fixed and fixed with the internal grouting material and the external concrete of the grouting connection section.
  • the upper support comprises a pallet and a limiting plate; the limiting plate is vertically fixed at an end of the pallet, and has an L-shaped structure with the pallet; the pallet is on a mounting surface of the upper concrete member, The limit plate is on the side of the upper concrete member.
  • the pallet and the lower support are both hollow structures, and a coil and an iron core penetrating in the coil are disposed inside; the inlet plate and the lower support are respectively provided with an inlet port and an outlet port, The input end and the output end of the coil are connected to an external wire through an inlet port and an outlet port, respectively.
  • two adjacent upper supports and/or two adjacent lower supports are connected by a connecting rod; the connecting rod is a telescopic rod.
  • the card slots are disposed on opposite sides of the adjacent two of the limiting plates, and the opposite sides of the adjacent two lower supports are provided with a card slot, and the two ends of the connecting rod are matched with the card slots.
  • Card key is a member of the card slots.
  • the grouting sleeve, the self-locking steel skeleton and the transition section of the steel pipe are separately processed, assembled, and can be mass-produced in the factory, and the quality of each component can be easily controlled to meet the industry standard; the magnetic suspension principle is realized.
  • the steel bars of the concrete members are quickly and accurately aligned, saving time and effort.
  • the magnetic force of the multiple sets of support mechanisms can be realized to ensure the stability of the support.
  • the grouting sleeve is indirectly connected with the first steel bar to be connected, that is, the transition section of the grouting sleeve and the steel pipe is first fixedly connected by screws, and then the first steel bar to be connected is inserted into the grouting sleeve through the transition section of the steel pipe, Rolling method is used to realize the connection between the first steel bar to be connected and the transition section of the steel pipe.
  • the connection between the grouting sleeve and the steel pipe transition section is mechanically operated at the factory, and the quality of the threaded connection is easily controlled.
  • the first steel bar to be connected and the steel pipe are to be connected.
  • the transition section is directly connected by rolling, and it is not necessary to peel off the ribs on the steel bar to clean the thread, the process is simple, and it is easy to control the length of the steel bar inserted into the sleeve;
  • Spiral ribs are arranged on the inner wall of the grouting sleeve, and one side of the spiral ribs is concavely curved, which has a certain guiding property to the grouting material, and the other side has a convex arc-shaped transition, which contributes to grouting. Smoothly propelled forward in the grouting sleeve, there will be no phenomenon of grouting throttling and bubbles caused by the annular ribs in the traditional grouting sleeve, so as to ensure that the grouting material adheres to the inner wall of the grouting sleeve, and the grouting is compact.
  • the spiral raised rib can increase the contact area between the grouting sleeve and the grout, and increase the shear strength of the joint portion of the assembled concrete member;
  • a self-locking steel frame is arranged in the grouting sleeve.
  • the inner barb formed by the inclined steel bar is stuck on the rib of the second steel bar to be connected, and the barb is externally barbed.
  • the spiral bulging rib on the inner wall of the grouting sleeve forms a force and a reaction force in the inclined steel branch to prevent the second steel bar to be connected from being pulled out, and the stability of the prefabricated concrete member can be maintained immediately after the assembled concrete component is hoisted;
  • the invention adds a self-locking steel skeleton at the grouting connection portion, and is sleeved on the second steel bar to be connected, thereby improving the strength of the grouting joint portion of the prefabricated concrete member, thereby reducing the wall thickness of the sleeve and reducing the self-weight of the grouting sleeve;
  • the invention increases the shear resistance of the structure, increases the contact area between the grouting sleeve and the surrounding concrete, and increases the shear strength of the joint portion of the fabricated concrete member.
  • the present invention first installs the self-locking in the production stage.
  • the steel skeleton is reloaded with high-strength bolts, and the high-strength bolts extending into the grouting sleeve can prevent the self-locking steel skeleton from pulling out the grouting sleeve;
  • the adjacent two upper supports, or the spacing between adjacent two lower supports can be locked to avoid relative horizontal displacement.
  • the connecting rod is connected to two adjacent upper supports or two adjacent lower supports through a snap-fit structure, which is convenient for disassembly and assembly.
  • FIG. 1 is a schematic axial cross-sectional structural view showing a connection between a semi-grouting sleeve and a first to-be-connected steel bar and a second to-be-connected steel bar according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic axial sectional view showing a semi-grouting sleeve according to Embodiment 1 of the present invention
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 1;
  • FIG. 4 is a schematic view showing the axial structure of the steel skeleton 4 in the first embodiment
  • Figure 5 is a schematic right side view of Figure 4.
  • Figure 6 is a schematic structural view of a transition section of a steel pipe in Embodiment 1;
  • Figure 7 is an enlarged view of a detail of Figure 1;
  • Figure 8 is a schematic view showing the assembled structure of the fabricated concrete member in the fourth embodiment.
  • Figure 9 is a schematic view showing the grouting structure of the prefabricated concrete member in the fourth embodiment.
  • Figure 10 is a schematic view showing the structure of a spacer in the fourth embodiment.
  • Embodiment 5 of the present invention is a schematic overall structural view of Embodiment 5 of the present invention.
  • FIG. 12 is a schematic diagram of a left and right mirror structure of an upper support according to Embodiment 5 of the present invention.
  • FIG. 13 is a schematic diagram of a left and right mirror structure of a lower support according to Embodiment 5 of the present invention.
  • Figure 14 is a top plan view showing the connection between the lower support or the tray and the connecting rod in the embodiment 5 of the present invention.
  • Figure 15 is a top plan view showing the concrete member of the fifth embodiment of the present invention.
  • Figure 16 is a cross-sectional structural view showing an adjusting device of Embodiment 7 of the present invention.
  • Figure 17 is a top plan view of Figure 16;
  • FIG. 18 is a schematic top plan view of a base according to Embodiment 7 of the present invention.
  • Figure 19 is a top plan view showing a horizontal section of a cap in Embodiment 7 of the present invention.
  • Figure 20 is a schematic view showing the structure of the reinforcing bar after the embodiment 7 of the present invention.
  • an assembly structure of a prefabricated concrete component comprises a sleeve 50 , a steel pipe transition section 70 , and a self-locking steel frame 40 ;
  • the sleeve 50 includes a non-grouting connection section 510 and a grouting connection section 520; the non-grouting connection section 510 is a conical cylindrical structure, the grouting connection section 520 is a cylindrical structure; the small diameter end of the non-grouting connection section 510 and the grouting connection section 520 One end is connected and the joint is rounded.
  • a grouting hole 5210 is formed at one end of the grouting connection section 520 away from the non-grouting connecting section 510, and a venting hole 5110 is extended to the non-grouting connecting section 510 at the other end.
  • the venting opening 5110 may be specifically: in the non-grouting connecting section 510
  • the first cone and the horizontal air hole are opened on the cone, and the air hole communicates with the inner cavity of the grouting connection section 520, thereby ensuring that the slurry can reach the foremost end of the grouting connection section 520 during grouting.
  • the diameter of the vent hole 5110 can be designed to be smaller than the diameter of the grouting hole 5210, so that the grouting amount is larger than the overflow amount, thereby ensuring the grouting and filling in the grouting connecting section 520.
  • the inner wall of the grouting connecting section 520 is further provided with a spiral protruding rib 5220; the protruding rib 5220 is inclined from the bottom to the top to a side away from the non-grouting connecting section 510; the raised rib 5220 is away from the non-grouting connecting section
  • One side of the 510 is a concave curved surface 52210, and the other side is a convex curved surface 52220; both sides of the convex rib 5220 are rounded to the inner wall of the grouting connecting section 520.
  • the angle between the spiral tangential line and the center line of the sleeve 50 is 25-60 ⁇ , and the height of the spiral raised rib 5220 is 4-6 mm.
  • a plurality of mounting holes for fixing the shear-resistant member 20 are formed on the wall of the grouting connecting portion 520, and the shear-resistant member 20 is fixed to the grouting connecting portion 520 through the mounting hole.
  • the mounting holes may be arranged in a plum blossom shape, but are not limited thereto.
  • the shear-resistant member 20 can be in various forms.
  • the shear-resistant member 20 can be a bolt fixed to the grouting connecting portion 520; the nut of the bolt is outside the wall of the grouting connecting portion 520, and is fixed and fixed with the external concrete. It extends through the wall of the cylinder into the cylinder and is condensed and fixed with the grouting material 130 in the cylinder. It may also be a sheet-like structure fixed on the wall of the cylinder.
  • a part of the sheet-like structure is outside the cylinder, and a part is in the cylinder.
  • the anti-shear member 20 is coagulated and fixed with the grouting 130 and the external concrete inside the grouting connection section 520, thereby achieving the purpose of improving the shear resistance of the concrete member after assembly.
  • a section of the pipe of the steel pipe transition section 70 is subjected to external thread processing, and the non-grouting connection section 510 is internally threaded, and the two are fixed by screw connection, and the other section of the steel pipe transition section 70 is extended by a non-grouting connection.
  • a rolling section 710 is formed outside the section 510 and is rolled and connected to the first to-be-connected reinforcing bar.
  • the steel frame 40 includes a longitudinally-oriented steel bar 410, an inclined steel branch 420, and a circumferential fixed steel ring 430.
  • the plurality of longitudinally-oriented steel bars 410 are fixed by a plurality of circumferential fixed steel rings 430 to form a cylindrical keel.
  • a plurality of inclined steel branches 420 are fixedly arranged along the keel of the keel, and one end thereof is located in the keel to form an inner barb 4210, and the plurality of inner barbs 4210 enclose a passage for the second steel to be connected to pass through, the passage diameter is smaller than The diameter of the second steel bar to be connected; the other end is outside the keel to form the outer barb 4220; the outer barb 4220 has a contour diameter larger than the inner diameter of the grouting connection section 520.
  • the outer barbs 4220 abut against the inner wall of the grouting connection section 520 to prevent the steel frame 40 from being pulled out from the grouting connection section 520 by an external force.
  • the passage is coaxial with the steel pipe transition section 70, so that when the second to-be-connected reinforcing bar 120 is inserted, the centering of the first to-be-connected reinforcing bar 110 is easily achieved, and the inner barb 4210 is in contact with the rib on the second to-be-connected reinforcing bar 120. In order to prevent the second to-be-connected reinforcing bar 120 from being pulled out from the steel frame 40 by an external force.
  • the plurality of longitudinally-oriented steel bars 410 are provided in the circumferential direction of the circumferential fixed steel ring 430, and the inclined steel branches 420 are fixed in a plurality of circumferential sections of the keel, and each of the sections is uniformly inclined by 4 to 8 Steel branch 420.
  • the middle position of the inclined steel branch 420 is welded to the keel, half of the branches are inside the keel, and half of the branches are outside the keel.
  • the inclined steel branch 420 is divided into an inner barb 4210 and an outer barb 4220 to make the inner barb 4210 and the outer barb 4220 equivalent in strength.
  • the first to-be-connected reinforcing bar 110 is connected to the rolling section 710 of the steel pipe transition section 70 by rolling, and the steel pipe transition section 70 is connected to the grouting sleeve 50 by threads.
  • a method for processing an assembly structure of a fabricated concrete member comprising the following steps:
  • Step 1 Grouting sleeve 50 processing
  • the grouting sleeve 50 is processed by casting, and is integrally formed; one end is internally threaded, and a plurality of mounting holes are opened on the cylinder for standby;
  • Step 2 Processing of steel pipe transition section 70
  • a plurality of longitudinally oriented reinforcing bars 410 and a plurality of circumferentially fixed steel rings 430 are welded into a cylindrical keel, and then a plurality of inclined steel branches 420 are obliquely welded on a plurality of annular sections of the keel to form inner barbs 4210 and External barbed 4220, spare;
  • the steel pipe transition section 70 is screwed and fixed to the sleeve 50, and then the self-locking steel frame 40 is inserted into the sleeve 50 from one end away from the steel pipe transition section 70; finally, a shear-resistant member is installed in the mounting hole.
  • a method for processing a fabricated concrete member comprising the steps of:
  • Step 1 Laminated skeleton of prefabricated concrete members
  • One end of the first to-be-connected steel bar 110 is bundled and fixed with other steel bars to form a steel frame of the assembled concrete member, and the other end of the first to-be-connected steel bar is inserted into the rolling section 710 of the steel pipe transition section 70, and the steel pipe transition section 70 is realized by a rolling machine. Connecting with the first steel bar 110 to be connected, thereby pre-installing the self-locking semi-grouting sleeve 50 in the steel frame of the assembled concrete member;
  • Step 2 Laying of fabricated concrete members
  • the plastic pipe 80 is connected to the side wall grouting hole 5210 and the vent hole 5110 of the sleeve 50 and led to the outside of the component formwork, and then the concrete distributing machine starts pouring concrete, and after the vibration platform is vibrated and compacted, the assembled concrete component can be completed. Processing
  • Step 3 Demoulding and storing
  • the prefabricated concrete members After the prefabricated concrete members are cured, they can be demolished and stored.
  • Step 1 Installation preparation: Before the erecting of the prefabricated concrete components, the tools and materials required for grouting, the foundation surface cleaning of the joints, the horizontal position and the reserved length of the second steel bars to be connected, and the lifting equipment inspection, if The horizontal position of the second to-be-connected steel bar 120 does not meet the design requirements, and should be adjusted by the pre-fabricated concrete member steel horizontal position adjusting device (see Example 7 for details), and the elevation control value according to the site release line, based on the joint location Adjusting the height of the subsequent assembled concrete members by placing the adjustable spacers 200 on the surface;
  • Step 2 Lifting: Using the prefabricated concrete member steel magnetic suspension connection positioning device (see Example 5 for details), using the prefabricated concrete member steel magnetic suspension connection positioning method (see Example 6 for details), complete the installation and positioning of the upper and lower concrete members. Inserting the lower second to-be-connected reinforcing bars 120 into the grouting sleeve 50 of the concrete member one by one;
  • Step 3 Mounting position correction and fixing: installing the inclined support of the fixed assembly concrete member and correcting the verticality of the assembled concrete member;
  • Step 4 Grouting connection area sealing: Since the adjustable block 200 is placed on the base surface of the joint portion, a grouting connection area is formed between the joint surface base surface and the fabricated concrete member, and the rubber strip 140 and the seat slurry 100 are used. The surrounding area of the grouting joint is sealed, wherein the rubber strip 140 is used as a partition layer, which can be used as a partition layer for the seat slurry 100 and the grouting slurry 130, and on the other hand, it is convenient to control the depth of application of the grouting 100, the grouting connection area and the grouting sleeves.
  • the internal space of the cylinder 50 forms a grouting communication cavity;
  • the adjustable pad comprises a base 2010, a screw hole is formed in the base 2010, a screw 2020 is fixed in the screw hole, and a washer 2030 is fixed on the top of the screw 2020, and the washer is driven by rotating the screw 2020.
  • the 2030 is lifted and lowered, thereby achieving the purpose of height adjustment of the spacer 200.
  • Step 5 Grouting: After the slurry 100 reaches the specified curing time, a grouting hole 5210 is selected on the prefabricated concrete member, and the grouting pump grouts into the sleeve 50, and the grouting 130 overflows from the venting hole 5110. When timely, the vent hole 5110 is blocked by a plug. When the plugging is blocked, the grouting pump keeps the grouting pressure and grouts into the sleeve 50.
  • the grouting material 130 enters the other grouting sleeve 50 through the grouting connection area, when other grouting holes 5210 and When the grouting material 130 overflows in the vent hole 5110, the plugging is performed in time until all the grouting holes 5210 and the venting holes 5110 overflow and the plugging is solid, and then the grouting is stopped, and the grouting pump pulls out the grouting hole 5210. At the same time, it should also be blocked immediately. At this time, the grouting slurry 130 is filled with the grouting communication chamber to complete the grouting operation;
  • Step 6 Maintenance: After the grouting 130 reaches the curing time specified by the design, the installation of the fabricated concrete members can be realized.
  • a prefabricated concrete member steel magnetic suspension connecting and positioning device is used for positioning the upper concrete member 11 and the lower concrete member 21 to make the upper concrete member 11
  • the non-grouting connection steel bars and the grouting connection steel bars in the lower concrete member 21 are coaxial.
  • the positioning device includes a control mechanism 61, at least two sets of support mechanisms 31, and a positioning mechanism 41.
  • the support mechanism 31 includes a lower support 311 and an upper support 321;
  • the upper support 321 includes a support plate 3211 and a limiting plate 3221;
  • the plate 3221 is vertically fixed to the end of the pallet 3211, and has an L-shaped structure with the pallet 3211;
  • the pallet 3211 and the lower bracket 311 are both electromagnets;
  • the positioning mechanism 41 includes the mounting surface of the upper concrete member 11 and the lower concrete member 21.
  • the first mark 411 and the second mark 421 are respectively disposed at corresponding positions; the lower support 311 is placed at the first mark 411, the upper support 321 is placed at the second mark 421; the support plate 3211 and the lower support 311 are the same magnetic pole In contrast, to form a repulsive force, the upper support 321 is suspended.
  • the coils inside the plurality of pallets 3211 and the lower support 311 are connected in series on the same circuit; and the current on the circuit is controlled by the control mechanism 61 to adjust The magnetic force of the support plate 3211 and the lower support 311 is such that the repulsive force between the adjustment plate 3211 and the lower support 311 is achieved.
  • the upper surface of the pallet 3211 is subjected to an anti-slip treatment, and the anti-slip layer is in close contact with the mounting surface of the concrete member 11, that is, the lower surface thereof, and the limiting plate 3221 is located on the side of the upper concrete member 11.
  • the lower support 311 has the same shape as the pallet 3211.
  • the lower surface of the lower support 311 is subjected to anti-slip treatment, and the anti-slip layer is in close contact with the upper surface of the assembly surface of the concrete member 21.
  • the anti-slip layer may be a rubber layer fixed on the upper surface of the pallet 3211 or the lower surface of the lower holder 321, or an anti-slip structure pressed directly on the upper surface of the pallet 3211 and the lower surface of the lower bracket 311.
  • the inside of the support plate 3211 and the lower support 311 is a hollow structure, and a coil and an iron core are inserted in the coil; the support plate 3211 and the lower support 311 are provided with an inlet port 331 and an outlet port 341, and the input end of the coil and The output ends are connected to the wires through the inlet port 331 and the outlet port 341, respectively.
  • all of the pallets 3211 and the lower supports 311 are connected in series on the same circuit.
  • the present embodiment also has two adjacent upper supports 321 and/or two adjacent lower supports 311. They are connected by a connecting rod 51.
  • the specific structure is:
  • the card slot 351 is disposed on the opposite side of the limiting plate 3221 of the two upper brackets 321 .
  • the opposite sides of the adjacent two lower brackets 311 are also provided with a card slot 351 , and both ends of the connecting rod 51 are disposed
  • the card key 511 matching the card slot 351 is locked in the card slot 351 by the card key 511, and the distance between the adjacent two upper holders 321 or the adjacent two lower holders 311 is locked.
  • the present embodiment adopts a telescopic connecting rod 51, and the telescopic rod can be directly purchased from the market, and the card key 511 can be processed at both ends of the telescopic rod.
  • This embodiment also sets the connecting rod 51 as a hollow structure as a wire trough for the wires between the adjacent two upper supports 321 and/or the lower supports 311.
  • control unit 61 controls the magnitude of the circuit current.
  • the control mechanism 61 can be a control handle on which a plurality of current control buttons are disposed, each button corresponding to a different current intensity. Different levels of current control buttons can be set according to different types of precast concrete members to achieve one-button control, fast and accurate.
  • a method for positioning a steel reinforced magnetic suspension connection of a prefabricated concrete component comprising the following steps:
  • Step 1 Marking: at least two first marks 411 are respectively arranged on the mounting surface of the lower concrete member 21, and a second mark 421 corresponding to the number and position of the first marks 411 is disposed on the side wall of the upper concrete member 11;
  • Step 2 Rough centering: First, the upper concrete member 11 is hoisted to the set position, and the upper and lower concrete members are roughly centered, and the lower support 311 and the upper bearing are respectively placed at the first mark 411 and the second mark 421.
  • the support plate 321 and the lower support 311 of the upper support 321 are all electromagnets, and are placed opposite to the magnetic poles, and the inner support 311 and the inner coil of the support plate 3211 are connected in series on the same circuit;
  • the upper support 321 and the adjacent two lower support 311 are connected by a connecting rod 51;
  • Step 3 Accurate centering: The circuit is energized by the control mechanism 61, and according to the model of the upper concrete member 11, the current is adjusted to an appropriate size so that the repulsive force between the pallet 3211 and the lower bracket 311 is equal to that of the upper concrete member 11 Gravity, the sling is in a relaxed state; at the same time, the pallet 3211 is centered on the lower support 311 by the magnetic force, thereby completing the precise alignment of the upper concrete member 11 and the lower concrete member 21;
  • Step 4 Installation: After the concrete member 11 is accurately centered, the current is controlled by the control mechanism 61 to adjust the magnetic force of the pallet 3211 and the lower support 311, so that the magnetic force is gradually reduced and the upper concrete member 11 has a greater gravity than the support member. The repulsive force between the plate 3211 and the lower support 311, the upper concrete member 11 slowly falls to the set position under the action of gravity, during which the sling remains in a relaxed state, and finally the upper concrete member 11 falls on the lower concrete member.
  • the grouting connection steel bar on the lower concrete member 21 is inserted into the sleeve of the upper concrete member, and is coaxially butted with the non-grouting connection steel bar at the other end of the upper concrete member 11;
  • Step 5 The upper support 321 and the lower support 311 of the present invention are taken out, that is, the upper and lower concrete members are installed and positioned.
  • a prefabricated concrete member horizontal position adjusting device comprises a base 12, and the base 12 is a plate-like structure, and a cap 22 is fixed at one end thereof, and the other end is To abut the end 112.
  • the cap 22 is generally a rectangular columnar structure, or a cylindrical structure, and the cap 22 is disposed perpendicular to the base 12.
  • a horizontal through hole and a vertical through hole are formed in the bearing platform 22; a pulling rod 32 is inserted in the horizontal through hole, and a driving rod 42 is fixedly fixed in the vertical through hole, and is generally fixed in the vertical through hole by a bearing.
  • the sleeve 32 is fixed to the end of the tie rod 112 facing the same end with a sleeve 50 for being sleeved outside the reinforcing bar.
  • a rod 312 is disposed on the rod 32 body, and is generally disposed on a side surface of the rod 32.
  • the bottom of the driving rod 42 is provided with a gear 412 meshing with the rack 312; the intersection of the horizontal through hole and the vertical through hole forms a receiving cavity, and the gear 412 is in the receiving cavity and meshes with the rack 312 by rotating the driving rod 42
  • the gear 412 is engaged with the rack 312 to drive the rod 32 forward or backward.
  • an arcing opening 12 for limiting the reinforcing bar 6 is opened at the abutting end 112.
  • the operating handle 42 is fixed to the top of the drive rod 42 in this embodiment.
  • the scale 322 is further disposed on the upper surface of the pull rod 32 in this embodiment.
  • the embodiment also adds a reinforcing rib 512 at the junction of the two.
  • the bottom end of the sleeve 50 in the embodiment has a certain height difference from the upper surface of the base, and a stress concentration section is left for the bending of the steel bar to facilitate the bending operation.
  • the driving rod 42 is first rotated to advance the rod 32 so that the sleeve 50 is farther than the abutting end 112, and then the sleeve 50 is placed on the reinforcing bar 62, and the base 12 is dropped onto the mounting base surface by rotation.
  • the lever 42 is driven to retract the lever 32, and the abutting end 112 abuts against the reinforcing bar 62.
  • the operation handle 42 is continuously rotated to cause the pull rod 32 to continue to retreat. By observing the scale 322, when the pull rod 32 is retracted to the set position, the operation handle 42 can be stopped.
  • the reinforcing bar 62 is bent under the opposite force of the abutting end 112 and the sleeve 50, and the upper portion of the reinforcing bar 62 is bent to a set horizontal position, as shown in FIG. 20, thereby realizing the adjustment of the horizontal position of the reinforcing bar 62. .
  • the opposite force is applied to the steel bar by the tie rod and the base, so that the steel bar is bent and the horizontal position is adjusted.
  • the driving rod is vertically arranged, which is convenient for the operator to rotate the operating handle from above, and the operation is more convenient and labor-saving.
  • a reinforcing rib is added at the joint of the sleeve and the tie rod to improve the joint strength between the two.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

一种装配式混凝土构件的装配结构,包括半灌浆套筒、对齐装置,半灌浆套筒包括套筒(50)、钢管过渡段(70)、自锁式钢骨架(40),套筒(50)包括非灌浆连接段(510)和灌浆连接段(520),钢骨架(40)包括内倒刺(4210)、外倒刺(4220),多根内倒刺(4210)围成的通道直径小于第二待连接钢筋(120)的直径,外倒刺(4220)围成的轮廓直径大于灌浆连接段(520)的内腔直径,对齐装置包括下承托(311)和上承托(321),上承托(321)和下承托(311)均为电磁铁,上承托(321)和下承托(311)同磁极相对且串联在同一电路上。通过磁悬浮原理,实现上混凝土构件(11)、下混凝土构件(21)的钢筋快速精准对中,省时省力。通过串联的电路,可实现多组承托机构磁力相同,保证承托稳定。

Description

一种装配式混凝土构件的装配结构 技术领域
本发明属于装配式建筑施工领域,具体是一种装配式混凝土构件的装配结构。
背景技术
从全球环境看,建筑业建造方式向装配式发展势在必行,装配式混凝土建筑施工技术的不断进步,为提高预制装配式结构性能、实现住宅产业提供了技术基础。装配式混凝土结构是指由预制混凝土构件通过可靠的连接方式装配而成的混凝土结构,然后将装配式混凝土结构与现场后浇混凝土、水泥基灌浆料形成整体即为装配整体式混凝土结构,其核心和难点是钢筋连接的质量问题,即现有技术、工艺难以保证待连接钢筋实现同轴对接,目前常用在半灌浆或全灌浆套筒内灌注无收缩或微膨胀水泥基灌浆料来实现预制构件间的连接,但现有的施工工艺难以保证套筒内充满灌浆料,且难以保证灌浆密实,而且在具体工程施工中也没有行之有效的技术手段进行灌浆密实度检测,因而,装配式建筑在有地震设防要求高的区域发展及使用受到限制,故为了实现装配式建造技术的普遍适用性,需要针对上述问题,有针对性的进行连接结构及施工工艺方面的改进。
因全灌浆套筒几何尺寸大,灌浆工作量大,施工难度大,连接节点周围钢筋加密区范围大,目前,工程中常用半灌浆套筒,其中广泛使用的半灌浆套筒为铸铁件,该套筒一端直接与钢筋螺栓连接,另一端为直接为灌浆连接,故在施工现场必须将钢筋上的肋剥离干净,将钢筋一端进行冷滚成丝,进而与半灌浆套筒螺纹连接,采用该连接方式的不足之处在于:1)现场加工螺纹工序复杂,质量标准较难控制;2)在施工现场进行螺纹连接时,必须使用扭力扳手,操作难度大;3)钢筋插入灌浆套筒内的长度及螺纹连接质量控制须符合国家标准规范要求,极难做到较高的合格率;4)目前所公开的技术中,半灌浆连接结构主要从非灌浆连接段和灌浆套筒侧壁增加肋来提高装配式混凝土构件连接部位强度,从而使套筒壁较厚,自重大。
另外,也有半灌浆套筒采用钢棒机械切削方式加工制成或通过对成品无缝钢管滚压工艺制造,其中钢棒机械切削工艺中切削工作量大,加工制作成本高,且存在上述钢筋连接施工的不足之处,如中国专利文献CN102116075A公开的一种新型水泥灌浆带肋钢筋连接接头,其实质是 一种采用轧制型钢铣削加工而成的半灌浆套筒。
目前,装配式混凝土构件连接采用的主要形式为灌浆套筒连接,其核心和难点是装配式混凝土构件钢筋连接的质量问题,现有技术、工艺难以保证待连接钢筋在灌浆套筒内实现同轴对接。据统计,在实际工程中,套筒与外伸钢筋的精确对接率约20%左右,其原因主要有:1)同一构件端部外伸钢筋难以插入相应套筒内,导致构件安装困难;2)灌浆连接段钢筋插入灌浆套筒时紧贴套筒内壁,在后续灌浆时,浆料不能完全包裹灌浆连接段钢筋,从而使该套筒连接强度大幅度下降,严重消弱构件连接部位的荷载传递。
另外,上一个装配式混凝土结构装配完成后,裸露出来的钢筋因浇筑或其他外在原因,可能会发生弯曲,以及水平位置的偏移,导致与下一个装配式混凝土的灌浆套筒不在同一竖直方向上。所以在装配之前,需要对钢筋进行调直和水平位置的调整。现有技术中,一般采用人工通过扳手敲打或用钳子弯折调整,调整过程噪音大,精度低。
发明内容
本发明解决的技术问题为提供一种装配式混凝土构件的装配结构,实现装配式构件装配快速、精度高、提高抗震性能的目的。
发明通过以下技术方案解决上述技术问题:
一种装配式混凝土构件的装配结构,包括半灌浆套筒、对齐装置;
所述半灌浆套筒包括套筒、钢管过渡段、自锁式钢骨架;
所述套筒包括非灌浆连接段和灌浆连接段;所述钢管过渡段的一段管体固定在非灌浆连接段内,另一段管体伸出非灌浆连接段外形成与第一待连接钢筋滚压连接的滚压段;
所述钢骨架包括纵向导向钢筋、倾斜钢枝、环向固定钢圈;多根纵向导向钢筋与多个环向固定钢圈固定形成圆柱形龙骨;多根所述倾斜钢枝沿龙骨环向放射性倾斜布置固定,其一端处于龙骨内,形成内倒刺,多根内倒刺围成供第二待连接钢筋穿过的通道,所述通道直径小于第二待连接钢筋的直径,另一端处于龙骨外,以形成外倒刺;外倒刺围成的轮廓直径大于灌浆连接段的内腔直径;
所述钢骨架插入灌浆连接段内后,外倒刺抵紧灌浆连接段内壁,通道与钢管过渡段同轴;
所述对齐装置包括控制机构、至少两组承托机构、定位机构;承托机构包括下承托和上 承托;所述上承托和下承托均为电磁铁;所述定位机构包括在上混凝土构件和下混凝土构件装配面的相应位置分别设置的第一标记和第二标记;所述下承托放置在第一标记处,上承托放置在第二标记处;所述上承托和下承托同磁极相对;
所述上承托和下承托串联在同一电路上;
所述控制机构通过控制所述电路上电流大小来控制上承托和下承托间相斥力大小。
优选的,所述非灌浆连接段为圆锥筒形结构,灌浆连接段为圆筒形结构;所述非灌浆连接段的小直径端与灌浆连接段的一端连接,且连接处圆角过渡。
优选的,所述钢管过渡段的一段管体与非灌浆连接段螺纹连接固定。
优选的,在所述灌浆连接段远离非灌浆连接段的一端开设有灌浆孔,另一端向非灌浆连接段延伸出一个排气孔。
优选的,所述灌浆连接段内壁上还设置有螺旋凸起肋;所述凸起肋自底部至顶部向远离非灌浆连接段的一侧倾斜;所述凸起肋远离非灌浆连接段的一侧为凹弧面,另一侧为凸弧面;所述凸起肋的两侧与灌浆连接段内壁圆角过渡。
优选的,在所述灌浆连接段的筒壁上固定有多个抗剪力件;所述抗剪力件同时与灌浆连接段内部灌浆料和外部混凝土凝结固定。
优选的,所述上承托包括托板和限位板;所述限位板垂直固定在托板的端部,与托板呈L形结构;所述托板处于上混凝土构件的装配面,限位板处于上混凝土构件的侧面。
优选的,所述托板和下承托均为中空结构,其内部设置有线圈及穿在线圈内的铁芯;所述托板和下承托上均开设有进线口和出线口,所述线圈的输入端和输出端分别通过进线口和出线口与外部电线连接。
优选的,相邻两个所述上承托和/或相邻两个下承托之间通过连接杆连接;所述连接杆为伸缩杆。
优选的,在相邻两个所述限位板的相对侧设置卡槽,以及,相邻两个下承托的相对侧设置有卡槽,所述连接杆的两端设有与卡槽匹配的卡键。
本发明优点在于:
(1)本发明中灌浆套筒,自锁式钢骨架,钢管过渡段分别加工制作,再组装,可以在工 厂批量生产,且易于控制各部件质量,满足行业标准规定;通过磁悬浮原理,实现上、下混凝土构件的钢筋快速精准对中,省时省力。通过串联的电路,可实现多组承托机构磁力相同,保证承托稳定。
(2)本发明中灌浆套筒与第一待连接钢筋间接连接,即先将灌浆套筒与钢管过渡段通过螺纹固定连接,再将第一待连接钢筋通过钢管过渡段插入灌浆套筒内,采用滚压方式实现第一待连接钢筋与钢管过渡段的连接,在此过程中,灌浆套筒与钢管过渡段的连接在工厂通过机械操作,易于控制螺纹连接质量,第一待连接钢筋与钢管过渡段直接采用滚压方式连接,不需要将钢筋上的肋剥离干净加工螺纹,工序简单,且易于控制钢筋插入套筒内的长度;
(3)在灌浆套筒内壁设置螺旋凸起肋,螺旋凸起肋其中一侧做凹弧形处理,对灌浆料具有一定的导向性,另一侧为凸弧形过渡,有助于灌浆料顺滑的在灌浆套筒内向前推进,不会出现传统灌浆套筒内环形凸起肋造成的灌浆料节流、气泡的现象,进而保证灌浆料与灌浆套筒内壁相贴合,灌浆密实,同时该螺旋凸起肋还能提高灌浆套筒与灌浆料间的接触面积,增加了装配式混凝土构件连接部位抗剪强度;
(4)在灌浆套筒内设置自锁式钢骨架,当第二待连接钢筋插入灌浆套筒时,倾斜钢枝形成的内倒刺卡在第二待连接钢筋的肋上,外倒刺在灌浆套筒内壁螺旋凸起肋上,在倾斜钢枝内形成作用力与反作用力,防止第二待连接钢筋拔出,可以在装配式混凝土构件吊装完毕后即刻保持装配式混凝土构件的稳定性;
(5)本发明在灌浆连接部位增加了自锁式钢骨架,套在第二待连接钢筋上,提高装配式混凝土构件灌浆连接部位强度,从而可降低套筒壁厚,减轻灌浆套筒自重;
(6)在灌浆套筒内设置的自锁式钢骨架同一截面上有4~8个倾斜钢枝,4~8个倾斜钢枝的一端形成圆形截面,可约束第二待连接钢筋在灌浆套筒内的位置,保证第二待连接钢筋与第一待连接钢筋同轴对接;
(7)本发明在结构上增加了抗剪力,增加了灌浆套筒与其周围混凝土的接触面积,增加了装配式混凝土构件连接部位抗剪强度,另外,本发明在生产制作阶段先装自锁式钢骨架再装高强螺栓,伸入到灌浆套筒内的高强螺栓可防止自锁式钢骨架拔出灌浆套筒;
(8)本发明灌浆套筒圆锥筒形结构与圆筒形结构相交面设有一个偏心排气孔,延伸到非 灌浆连接段的侧壁,这种结构可保证在进行装配式混凝土构件竖向钢筋连接时灌浆料充满灌浆套筒。
(9)且通过可伸缩的连接杆,实现相邻两个上承托,或相邻两个下承托之间的间距锁定,避免相对水平位移。通过将连接杆设计成中空结构,可作为电线的走线槽,使施工现场更加整洁,同时保证用电安全。连接杆通过卡接结构与相邻两个上承托或相邻两个下承托连接,便于拆装。
附图说明
图1为本发明实施例1中半灌浆套筒与第一待连接钢筋和第二待连接钢筋的连接轴向剖面结构示意图;
图2为本发明实施例1中半灌浆套筒的轴向剖面结构示意图;
图3为图1的A-A剖结构示意图;
图4为实施例1中钢骨架4的轴向结构示意图;
图5为图4的右视结构示意图;
图6为实施例1中钢管过渡段的结构示意图;
图7为图2中1部细部放大图;
图8为实施例4中装配式混凝土构件装配结构示意图;
图9为实施例4中装配式混凝土构件灌浆结构示意图;
图10为实施例4中垫块的结构示意图。
图11为本发明实施例5整体结构示意图;
图12为本发明实施例5中上承托的左右镜像结构示意图;
图13为本发明实施例5中下承托左右镜像结构示意图;
图14为本发明实施例5中下承托或托班与连接杆之间的连接俯视结构示意图;
图15为本发明实施例5下混凝土构件的俯视结构示意图。
图16为本发明实施例7调节装置的剖面结构示意图;
图17为图16的俯视结构示意图;
图18为本发明实施例7中底座的俯视结构示意图;
图19为本发明实施例7中承台水平剖面俯视结构示意图;
图20为本发明实施例7钢筋调整后的结构示意图。
具体实施方式
为使对本发明的结构特征及所达成的功效有更进一步的了解与认识,用以较佳的实施例及附图配合详细的说明,说明如下:
实施例1
如图1、图2、图3所示,一种装配式混凝土构件的装配结构,包括套筒50、钢管过渡段70、自锁式钢骨架40;
套筒50包括非灌浆连接段510和灌浆连接段520;非灌浆连接段510为圆锥筒形结构,灌浆连接段520为圆筒形结构;非灌浆连接段510的小直径端与灌浆连接段520的一端连接,且连接处圆角过渡。在灌浆连接段520远离非灌浆连接段510的一端开设有灌浆孔5210,另一端向非灌浆连接段510延伸出一排气孔5110,该排气孔5110具体可以为:在非灌浆连接段510的锥体上开设一个先竖直后水平的气孔,该气孔与灌浆连接段520内腔连通,以此保证灌浆时,浆液能抵达灌浆连接段520的最前端。为了确保灌浆充分,本实施例还可以通过将排气孔5110直径设计成小于灌浆孔5210的直径,从而使注浆量大于溢浆量,从而保证灌浆连接段520内灌浆充实。
如图7所示,灌浆连接段520内壁上还设置有螺旋凸起肋5220;凸起肋5220自底部至顶部向远离非灌浆连接段510的一侧倾斜;凸起肋5220远离非灌浆连接段510的一侧为凹弧面52210,另一侧为凸弧面52220;凸起肋5220的两侧与灌浆连接段520内壁圆角过渡。螺旋切线与套筒50中心线夹角为25-60゜,螺旋凸起肋5220高度为4-6mm。
在灌浆连接段520的筒壁上开设有多个用于固定抗剪力件20的安装孔,抗剪力件20通过安装孔固定在灌浆连接段520上。安装孔可呈梅花状布置,但不限于此。抗剪力件20可以为多种形式,如抗剪力件20可以为固定在灌浆连接段520上的螺栓;螺栓的螺帽处于灌浆连接段520的筒壁外,与外部混凝土凝结固定,螺杆穿过筒壁伸至筒内,与筒内灌浆料130凝结固定,也可以为固定在筒壁上的片状结构,片状结构一部分处于筒外,一部分处于筒内。 通过抗剪力件20与灌浆连接段520内部灌浆料130和外部混凝土凝结固定,从而实现提高混凝土构件装配后抗剪力的目的。
如图6所示,钢管过渡段70的一段管体作外螺纹处理,非灌浆连接段510内作内螺纹处理,二者通过螺纹连接固定,钢管过渡段70另一段管体伸出非灌浆连接段510外形成与第一待连接钢筋滚压连接的滚压段710。
如图4、图5所示,钢骨架40包括纵向导向钢筋410、倾斜钢枝420、环向固定钢圈430;多根纵向导向钢筋410被多个环向固定钢圈430固定形成圆柱形龙骨;多根倾斜钢枝420沿龙骨环向放射性倾斜布置固定,其一端处于龙骨内,形成内倒刺4210,多根内倒刺4210围成供第二待连接钢筋穿过的通道,通道直径小于第二待连接钢筋的直径;另一端处于龙骨外,以形成外倒刺4220;外倒刺4220围成的轮廓直径大于灌浆连接段520的内腔直径。当钢骨架40插入灌浆连接段520内后,外倒刺4220抵紧灌浆连接段520内壁,以防止钢骨架40在外力作用下从灌浆连接段520内拔出。通道与钢管过渡段70同轴,以便于第二待连接钢筋120插入时,轻松实现与第一待连接钢筋110对中,且由于内倒刺4210与第二待连接钢筋120上的肋抵接,以防止第二待连接钢筋120在外力作用下从钢骨架40中拔出。
本实施例给出的多根纵向导向钢筋410均布在环向固定钢圈430的圆周方向,且在龙骨的多个环向截面固定倾斜钢枝420,每个截面均布4~8根倾斜钢枝420。但不限于此,可以不规则布置,只要能够实现对中和防拔的功能即可。本实施例中,倾斜钢枝420的中间位置与龙骨焊接,一半枝体在龙骨内,一半枝体在龙骨外。倾斜钢枝420对半分为内倒刺4210和外倒刺4220,以使内倒刺4210和外倒刺4220的强度相当。
如图1、图6所示,本发明中,第一待连接钢筋110通过滚压方式与钢管过渡段70的滚压段710相连接,钢管过渡段70通过螺纹与灌浆套筒50相连接,灌浆套筒50上的高强螺栓及其内部自锁式钢骨架40、灌浆料130、第二待连接钢筋120间的相互作用,使混凝土、灌浆套筒50、灌浆料130、第二待连接钢筋120形成统一整体,可实现第二待连接钢筋120与装配式混凝土构件的连接,能满足“小震不坏,中震可修,大震不倒”的三个地震设防标准,可广泛应用于各类装配式混凝土构件的钢筋连接。
实施例2
一种装配式混凝土构件的装配结构加工方法:包括以下步骤:
步骤1.灌浆套筒50加工
灌浆套筒50采用铸造方式加工,一体成型;一端作内螺纹处理,筒体上开设有多个安装孔,备用;
步骤2.钢管过渡段70加工
选择合适长度和厚度的钢管作为钢管过渡段70;所述钢管过渡段70的一端做外螺纹处理,备用;
步骤3.自锁钢骨架40加工
先将多根纵向导向钢筋410和多根环向固定钢圈430焊接成圆柱形龙骨,然后在龙骨的多个环形截面上放射性的倾斜焊接多根倾斜钢枝420,以形成内倒刺4210和外倒刺4220,备用;
步骤4.装配
先将钢管过渡段70与套筒50进行螺纹连接固定,然后将自锁式钢骨架40自远离钢管过渡段70的一端插入套筒50;最后在安装孔内安装抗剪力件。
实施例3
一种装配式混凝土构件加工方法,包括以下步骤:
步骤1.装配式混凝土构件钢筋骨架绑扎
第一待连接钢筋110一端与其他钢筋绑扎固定,形成装配式混凝土构件钢筋骨架,将第一待连接钢筋的另一端插入钢管过渡段70的滚压段710,通过滚压机械实现钢管过渡段70与第一待连接钢筋110的连接,从而将自锁式半灌浆套筒50预先安装在装配式混凝土构件钢筋骨架中;
步骤2.装配式混凝土构件浇筑
将塑料管80接在套筒50侧壁灌浆孔5210和排气孔5110上并引到构件模板外,然后混凝土布料机开始浇筑混凝土,经过震动平台振捣密实后,即可完成装配式混凝土构件的加工制作;
步骤3.拆模、存放
装配式混凝土构件养护完成后即可拆模、存放。
实施例4
如图8、图9所示,装配式混凝土构件现场安装方法:
步骤1.安装准备:在装配式混凝土构件吊装前,依次做好灌浆所需工具和材料配备、连接部位基础面清理、第二待连接钢筋120水平位置和预留长度及吊装设备检查,如果第二待连接钢筋120水平位置不符合设计要求,应通过预制装配式混凝土构件钢筋水平位置调节装置予以调整(详见实施例7),并根据现场放线做出的标高控制数值,在连接部位基础面上放置可调垫块200进行后续装配式混凝土构件安装时的高度调整;
步骤2.吊装:利用装配式混凝土构件钢筋磁悬浮连接定位装置(详见实施例5),采用装配式混凝土构件钢筋磁悬浮连接定位方法(详见实施例6),完成上、下混凝土构件安装定位作业,使下部第二待连接钢筋120一一对应插入上混凝土构件的灌浆套筒50内;
步骤3.安装位置校正及固定:安装固定装配式混凝土构件的斜支撑,并校正装配式混凝土构件垂直度;
步骤4.灌浆连接区域密封:由于在连接部位基础面放有可调节垫块200,故在连接部位基础面和装配式混凝土构件之间形成灌浆连接区域,采用橡胶条140和座浆料100对灌浆连接区域四周做密封处理,其中橡胶条140做隔层,一方面可作为座浆料100和灌浆料130隔断层,另一方面便于控制座浆料100涂抹深度,灌浆连接区域和各灌浆套筒50内部空间形成灌浆连通腔;
如图10所示,可调节垫块包括底座2010,在底座2010上开设有螺孔,在螺孔内固定有螺杆2020,螺杆2020顶部固定有垫片2030,通过旋动螺杆2020,带动垫片2030升降,从而实现垫块200高度可调的目的。
步骤5.灌浆:待座浆料100达到规定养护时间后,在装配式混凝土构件上选定一个灌浆孔5210,通过灌浆泵向套筒50内压力灌浆,待灌浆料130从排气孔5110溢出时,及时用塞子封堵排气孔5110,封堵时灌浆泵一直保持灌浆压力,向套筒50内灌浆,灌浆料130通过灌浆连接区域进入其他灌浆套筒50内,当其他灌浆孔5210和排气孔5110中有灌浆料130溢出时,及时做好封堵,直至所有灌浆孔5210和排气孔5110中有灌浆料130溢出并封堵牢固后 再停止灌浆,灌浆泵拔出灌浆孔5210时,也应立即封堵,此时灌浆料130充满灌浆连通腔,完成灌浆操作;
步骤6.养护:灌浆料130达到设计规定的养护时间后,即可实现装配式混凝土构件的安装。
实施例5
如图1、图2、图3、图4、图5所示,一种装配式混凝土构件钢筋磁悬浮连接定位装置,用以将上混凝土构件11和下混凝土构件21定位,使上混凝土构件11中的非灌浆连接钢筋和下混凝土构件21中的灌浆连接钢筋同轴。
定位装置包括控制机构61、至少两组承托机构31、定位机构41;承托机构31包括下承托311和上承托321;上承托321包括托板3211和限位板3221;限位板3221垂直固定在托板3211的端部,与托板3211呈L形结构;托板3211和下承托311均为电磁铁;定位机构41包括在上混凝土构件11和下混凝土构件21装配面的相应位置分别设置的第一标记411和第二标记421;下承托311放置在第一标记411处,上承托321放置在第二标记421处;托板3211和下承托311同磁极相对,以形成相斥力,使上承托321悬浮。
为了保证不同组承托机构31之间的磁力相同,本实施例将多个托板3211和下承托311内部的线圈串联在同一电路上;并通过控制机构61控制电路上电流大小,来调整托板3211和下承托311的磁力大小,从而实现调节托板3211和下承托311之间的相斥力大小。
托板3211上表面做防滑处理,防滑层紧贴上混凝土构件11的装配面即其下表面,限位板3221处于上混凝土构件11的侧面。下承托311与托板3211形状面积相同。下承托311下表面做防滑处理,防滑层紧贴下混凝土构件21装配面即其上表面。防滑层可以为在托板3211的上表面、下承托321的下表面固定的橡胶层,也或是在直接在托板3211的上表面、下承托311的下表面压制的防滑构造。托板3211和下承托311内部为中空结构,固定有线圈和穿在线圈内的铁芯;托板3211和下承托311上开设有进线口331和出线口341,线圈的输入端和输出端分别通过进线口331和出线口341与电线连接。为了保障多组承托机构31的磁力相等,所有的托板3211和下承托311都串联在同一电路上。
为了保障相邻两个上承托321以及相邻两个下承托311之间不发生相对位移,本实施例 还在相邻两个上承托321和/或相邻两个下承托311之间通过连接杆51连接。具体结构为:
在相邻两个上承托321的限位板3221的相对侧设置卡槽351,同样,相邻两个下承托311的相对侧也设置有卡槽351,连接杆51的两端设有与卡槽351匹配的卡键511,通过卡键511卡在卡槽351内,将相邻两个上承托321,或是相邻两个下承托311之间的间距锁定。
为了适应不同型号的混凝土构件,本实施例采用可伸缩式的连接杆51,可从市场直接购置伸缩杆,在伸缩杆两端加工卡键511即可。
本实施例还将连接杆51设置为中空结构,作为相邻两个上承托321和/或下承托311之间电线的走线槽。
本实施例通过控制机构61来控制电路电流大小,控制机构61可以为一控制手柄,其上设置有多个电流控制按钮,每个按钮对应不同电流强度。可以根据多种不同型号的预制混凝土构件来设置不同级别的电流控制按钮,实现一键控制,快速精准。
实施例6
一种装配式混凝土构件钢筋磁悬浮连接定位方法,包括以下步骤:
步骤1.做标记:在下混凝土构件21的装配面上分别设置至少两处第一标记411,在上混凝土构件11的侧壁设置与第一标记411数量及位置相对应的第二标记421;
步骤2.粗略对中:先将上混凝土构件11吊装到设定位置,进行上、下混凝土构件粗略对中,同时在第一标记411和第二标记421处分别放置下承托311和上承托321,所述上承托321上的托板3211和下承托311均为电磁铁,且同磁极相对放置,下承托311和托板3211内线圈串联在同一电路上;相邻两个上承托321、相邻两个下承托311之间均通过连接杆51连接;
步骤3.精确对中:通过控制机构61控制电路通电,并根据上混凝土构件11的型号,将电流调整到合适的大小,使托板3211和下承托311间的相斥力等于上混凝土构件11重力,吊索处于松弛状态;于此同时,托板3211在磁力作用下与下承托311对中,进而完成上混凝土构件11与下混凝土构件21精确对中;
步骤4.安装:待上混凝土构件11精确对中稳定后,通过控制机构61控制电流大小来调整托板3211和下承托311的磁力,使磁力匀速缓慢变小,上混凝土构件11重力大于托板3211 和下承托311间的相斥力,上混凝土构件11在重力的作用下,匀速缓慢下落到设定位置,在此过程中吊索保持松弛状态,最终使上混凝土构件11落在下混凝土构件21上的可调垫块200上,此时,下混凝土构件21上的灌浆连接钢筋插入上混凝土构件的套筒内,并与上混凝土构件11套筒另一端的非灌浆连接钢筋同轴对接;
步骤5.拆除:抽出本发明的上承托321和下承托311,即完成上、下混凝土构件安装定位作业。
实施例7
如图16、图17、图18、图19所示,一种预制装配式混凝土构件钢筋水平位置调节装置,包括底座12,底座12为一板状结构,其一端固定有承台22,另一端为抵接端112。承台22一般为矩形柱状结构,或者圆柱体结构,承台22垂直于底座12设置。
承台22上开设有水平通孔和竖直通孔;在水平通孔内穿有拉杆32,在竖直通孔内转动固定有驱动杆42,一般通过轴承固定在竖直通孔内。拉杆32与抵接端112朝向一致的一端固定有用于套设在钢筋外的套筒50。
拉杆32杆体上设置有齿条312,一般设置在拉杆32的侧面。驱动杆42底部设置有与齿条312啮合的齿轮412;水平通孔和竖直通孔交汇处形成一容纳腔,齿轮412处于容纳腔内且与齿条312啮合,通过转动驱动杆42,在齿轮412与齿条312啮合的作用下,带动拉杆32前进或后退。
为了防止抵接端112与钢筋错位,本实施例在抵接端112开设有用于限位钢筋6杆体的弧口12。
为了便于转动驱动杆42,本实施例在驱动杆42顶部固定有操作手柄42。
为了便于控制调整精度,本实施例在拉杆32的上表面还设置有刻度尺322。
为了提高拉杆32与套筒50之间的连接强度,本实施例还在二者的连接处加设加强筋512。
为了便于钢筋62弯折,本实施例中套筒50的底端距底座的上表面具有一定的高度差,为钢筋弯折留有应力集中段,便于完成弯折动作。
具体操作使,先转动驱动杆42,使拉杆32前进,使套筒50远于抵接端112,然后将套 筒50套在钢筋62上,并将底座12下落到安装基础面上,通过转动驱动杆42,使拉杆32后退,使抵接端112与钢筋62抵接。然后继续旋动操作手柄42,使拉杆32继续后退,通过观察刻度尺322,当拉杆32后退到设定位置时,即可停止转动操作手柄42。钢筋62在抵接端112和套筒50的相反作用力下,发生弯折,使钢筋62的上部分弯折到设定的水平位置,如图20所示,从而实现钢筋62水平位置的调整。
通过拉杆与底座对钢筋施加相反的作用力,从而使钢筋发生弯折,实现水平位置的调整。将驱动杆竖直设置,便于操作人员从上方转动操作手柄,操作更加便捷省力。通过在底座的抵接端设置弧口,避免在抵接端与钢筋挤压过程中,发生滑移错位,导致调整失败。
在套筒与拉杆的连接处加设加强筋,以提高二者的连接强度。
通过套筒与底座之间的高度差,为钢筋弯折留有应力集中段,便于完成弯折动作。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (10)

  1. 一种装配式混凝土构件的装配结构,其特征在于:包括半灌浆套筒、对齐装置;
    所述半灌浆套筒包括套筒(50)、钢管过渡段(70)、自锁式钢骨架(40);
    所述套筒(50)包括非灌浆连接段(510)和灌浆连接段(520);所述钢管过渡段(70)的一段管体固定在非灌浆连接段(510)内,另一段管体伸出非灌浆连接段(510)外形成与第一待连接钢筋(110)滚压连接的滚压段(710);
    所述钢骨架包括纵向导向钢筋(410)、倾斜钢枝(420)、环向固定钢圈(430);多根纵向导向钢筋(410)与多个环向固定钢圈(430)固定形成圆柱形龙骨;多根所述倾斜钢枝(420)沿龙骨环向放射性倾斜布置固定,其一端处于龙骨内,形成内倒刺(4210),多根内倒刺(4210)围成供第二待连接钢筋(120)穿过的通道,所述通道直径小于第二待连接钢筋(12)的直径,另一端处于龙骨外,以形成外倒刺(4220);外倒刺(4220)围成的轮廓直径大于灌浆连接段(520)的内腔直径;
    所述钢骨架插入灌浆连接段(520)内后,外倒刺(4220)抵紧灌浆连接段(520)内壁,通道与钢管过渡段(70)同轴;
    所述对齐装置包括控制机构(61)、至少两组承托机构(31)、定位机构(41);承托机构(31)包括下承托(311)和上承托(321);所述上承托(321)和下承托(311)均为电磁铁;所述定位机构(41)包括在上混凝土构件(11)和下混凝土构件(21)装配面的相应位置分别设置的第一标记和第二标记;所述下承托(311)放置在第一标记处,上承托(321)放置在第二标记处;所述上承托(321)和下承托(311)同磁极相对,产生相斥力;
    所述上承托(321)和下承托(311)串联在同一电路上;
    所述控制机构(61)通过控制所述电路上电流大小来控制上承托(321)和下承托(311)间相斥力大小。
  2. 根据权利要求1所述的一种装配式混凝土构件的装配结构,其特征在于:所述非灌浆连接段(510)为圆锥筒形结构,灌浆连接段(520)为圆筒形结构;所述非灌浆连接段(510)的小直径端与灌浆连接段(520)的一端连接,且连接处圆角过渡。
  3. 根据权利要求1或2所述的一种装配式混凝土构件的装配结构,其特征在于:所述钢管过渡段(70)的一段管体与非灌浆连接段(510)螺纹连接固定。
  4. 根据权利要求1或2所述的一种装配式混凝土构件的装配结构,其特征在于:在所述灌浆连接段(52)远离非灌浆连接段(51)的一端开设有灌浆孔(521),在非灌浆连接段(51)上开设有与灌浆连接段(52)内腔连通的排气孔(511)。
  5. 根据权利要求1或2所述的一种装配式混凝土构件的装配结构,其特征在于:所述灌浆连接段(520)内壁上还设置有螺旋凸起肋(5220);所述凸起肋(5220)自底部至顶部向远离非灌浆连接段(510)的一侧倾斜;所述凸起肋(5220)远离非灌浆连接段(510)的一侧为凹弧面(5221),另一侧为凸弧面(5222);所述凸起肋(5220)的两侧与灌浆连接段(520)内壁圆角过渡。
  6. 根据权利要求1或2所述的一种装配式混凝土构件的装配结构,其特征在于:在所述灌浆连接段(520)的筒壁上固定有多个抗剪力件;所述抗剪力件同时与灌浆连接段(520)内部灌浆料(130)和外部混凝土凝结固定。
  7. 根据权利要求1所述的一种装配式混凝土构件的装配结构,其特征在于:所述上承托(321)包括托板(3211)和限位板(3221);所述限位板(3221)垂直固定在托板(3211)的端部,与托板(3211)呈L形结构;所述托板(3211)处于上构件的装配面,限位板(322)处于上构件的侧面。
  8. 根据权利要求7所述的一种装配式混凝土构件的装配结构,其特征在于:所述托板(3211)和下承托(311)均为中空结构,其内部设置有线圈及穿在线圈内的铁芯;所述托板(3211)和下承托(311)上均开设有进线口(331)和出线口(341),所述线圈的输入端和输出端分别通过进线口(331)和出线口(341)与外部电线连接。
  9. 根据权利要求7所述的一种装配式混凝土构件的装配结构,其特征在于:相邻两个所述上承托(321)和/或相邻两个下承托(311)之间通过连接杆(51)连接;所述连接杆为伸缩杆。
  10. 根据权利要求6所述的一种装配式混凝土构件的装配结构,其特征在于:在相邻两个所述限位板(3221)的相对侧设置卡槽(351),以及,相邻两个下承托(311)的相对侧设置有卡槽(351),所述连接杆的两端设有与卡槽(351)匹配的卡键(511)。
PCT/CN2018/077491 2018-01-31 2018-02-28 一种装配式混凝土构件的装配结构 WO2019148566A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/067,594 US10760264B2 (en) 2018-01-31 2018-02-27 Assembling structure of prefabricated concrete component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810097160.0A CN108301568B (zh) 2018-01-31 2018-01-31 一种装配式混凝土构件的装配结构
CN201810097160.0 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019148566A1 true WO2019148566A1 (zh) 2019-08-08

Family

ID=62850883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077491 WO2019148566A1 (zh) 2018-01-31 2018-02-28 一种装配式混凝土构件的装配结构

Country Status (3)

Country Link
US (1) US10760264B2 (zh)
CN (1) CN108301568B (zh)
WO (1) WO2019148566A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113417465A (zh) * 2021-07-30 2021-09-21 中国建筑第二工程局有限公司 一种装配式建筑灌浆套筒灌浆系统
CN113606094A (zh) * 2021-08-17 2021-11-05 上海电气风电集团股份有限公司 塔筒组件及拼接式塔筒
CN113997389A (zh) * 2021-11-16 2022-02-01 苏州华昇建筑科技有限公司 预制构件成型模具及预制构件加工方法
CN117286948A (zh) * 2023-10-11 2023-12-26 深圳市鹏翔建筑科技有限公司 一种基于螺旋筋的混凝土预制构件连接构造及施工方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108716256A (zh) * 2018-07-23 2018-10-30 李藏柱 一种带套筒的空心板及空心板装配体
CN108978882B (zh) * 2018-08-21 2020-02-07 湘潭大学 基于钢纤维磁吸原理的增强钢筋与混凝土间粘结的方法
CN109057166B (zh) * 2018-08-29 2020-11-27 同济大学 一种卡扣式易定位灌浆套筒结构
CN109235781B (zh) * 2018-10-22 2021-03-16 北京工业大学 一种灌浆套筒连接预制构件钢筋自定心构造及作法
CN109235779B (zh) * 2018-10-22 2021-03-16 北京工业大学 一种可实现钢筋自定心的全灌浆套筒构造及作法
CN110158766B (zh) * 2019-04-29 2020-07-17 中厦建设有限公司 一种具有自锁结构的装配式横梁与立柱的连接方法
CN110593119B (zh) * 2019-09-29 2021-02-02 同济大学 一种预制桥梁上下构件拼装定位装置及方法
CN111173145A (zh) * 2019-12-27 2020-05-19 北京峰筑工程技术研究院有限公司 一种局部加强的装配式混凝土结构及其施工方法
CN111335482A (zh) * 2020-04-04 2020-06-26 江西速升智能装备有限公司 一种用于预制混凝土构件的连接组件
CN111335481A (zh) * 2020-04-04 2020-06-26 江西速升智能装备有限公司 一种用于预制混凝土构件的螺杆连接装置
CN111927001A (zh) * 2020-08-05 2020-11-13 上海宝冶建筑工程有限公司 一种出浆口内侧封堵装置及具有该装置的灌浆套筒
CN112282378B (zh) * 2020-10-20 2022-01-18 深圳市华与建设集团有限公司 一种建筑施工钢筋定位结构
CN112211287B (zh) * 2020-10-21 2021-11-26 张坤 一种钢筋混凝土预制构件
CN112267681B (zh) * 2020-11-05 2022-04-22 山东省建筑科学研究院有限公司 一种装配式混凝土灌浆层封堵用成型组件、构件及方法
CN112832465A (zh) * 2020-12-31 2021-05-25 上海建工二建集团有限公司 一种灌浆套筒结构及施工方法
CN112942682B (zh) * 2021-01-27 2022-06-14 上海绿地建设(集团)有限公司 一种多腔钢管混凝土柱
CN113417381B (zh) * 2021-03-04 2023-09-01 山东中信华安建设集团有限公司 一种装配式整体式少筋混凝土剪力墙结构
CN113239546B (zh) * 2021-05-17 2022-08-02 中建八局第四建设有限公司 一种基于ddci体系的装配式机房施工方法
CN113309374B (zh) * 2021-05-25 2023-07-18 中国一冶集团有限公司 一种装配式墙体构件浆料快速回收装置及方法
CN113293882B (zh) * 2021-05-28 2023-11-03 宿迁学院 一种便于对接和灌浆的装配式建筑结构
CN113565266A (zh) * 2021-06-21 2021-10-29 中甄住工建设科技(湖北)有限公司 双排灌浆套筒结构及装配式预制构件
CN114045985A (zh) * 2021-08-20 2022-02-15 北京工业大学 一种可实现套筒钢筋自对中的钢筋构造及作法
CN113775173A (zh) * 2021-09-23 2021-12-10 河南五建建设集团有限公司 一种外层剪力墙层间接茬部加固结构
CN114319727B (zh) * 2022-02-08 2023-01-24 南通四建集团有限公司 一种自锁式钢筋连接灌浆套筒及其施工方法
CN114775912B (zh) * 2022-05-12 2023-07-14 中建三局集团有限公司 一种预制构件钢筋机械套筒灌浆连接结构
US11939768B1 (en) 2022-09-14 2024-03-26 CCCC Construction Group Co., Ltd. Sleeve grouting device and method for prefabricated building
WO2024055434A1 (zh) * 2022-09-14 2024-03-21 中交建筑集团有限公司 一种装配式建筑套筒灌浆装置及方法
CN116971510B (zh) * 2023-09-19 2023-12-15 山西二建集团有限公司 一种装配式墙体、辅助装配件及施工方式

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366672A (en) * 1993-03-18 1994-11-22 Erico International Corporation Method of forming concrete structures with a grout splice sleeve which has a threaded connection to a reinforcing bar
WO2001004435A1 (fr) * 1999-07-09 2001-01-18 Splice Sleeve Japan, Ltd. Barre de liaison de renforcement a remplissage de mortier
CN205935422U (zh) * 2016-08-18 2017-02-08 安徽建筑大学 一种新型可限位钢筋的半灌浆套筒
CN106677433A (zh) * 2016-11-25 2017-05-17 沈阳建筑大学 自紧式的半灌浆套筒连接件
CN107366389A (zh) * 2017-07-05 2017-11-21 武汉理工大学 一种用于预制剪力墙、柱的钢管套筒及其制作方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2297923A (en) * 1939-07-11 1942-10-06 Pierce John B Foundation Method of positioning magnetically responsive sleeves within a mass of moldable material
US4342981A (en) * 1981-01-05 1982-08-03 Emerson Electric Co. Thermally actuatable electrical switch construction, conductive lead therefor and methods of making the same
US5134828A (en) * 1990-12-14 1992-08-04 High Industries, Inc. Connection for joining precast concrete panels
US5261198A (en) * 1991-10-22 1993-11-16 Mcmillan Larry S Modular concrete connector
US5309691A (en) * 1992-02-26 1994-05-10 Tolliver Wilbur E Shear connected structural units
US5682635A (en) * 1992-02-26 1997-11-04 Tolliver; Wilbur E. Bridge and road construction and method of removing worn deck structure
US5606839A (en) * 1992-06-03 1997-03-04 Baumann; Hanns U. Energy dissipating connector
US6151850A (en) * 1999-04-26 2000-11-28 Sorkin; Felix L. Intermediate anchorage system utilizing splice chuck
US6679024B2 (en) * 2002-02-26 2004-01-20 Kjell L. Dahl High strength grouted pipe coupler
US6761002B1 (en) * 2002-12-03 2004-07-13 Felix L. Sorkin Connector assembly for intermediate post-tension anchorage system
US7533505B2 (en) * 2003-01-06 2009-05-19 Henderson Allan P Pile anchor foundation
US7117647B2 (en) * 2003-02-26 2006-10-10 Pointblank Design Inc. System for constructing log structures
ATE528454T1 (de) * 2005-08-20 2011-10-15 First Vandalia Luxembourg Holding S A Verbindungssystem zur mechanischen verbindung von bauelementen
US20150197898A1 (en) * 2014-01-15 2015-07-16 Shaw & Sons, Inc. Concrete dowel system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366672A (en) * 1993-03-18 1994-11-22 Erico International Corporation Method of forming concrete structures with a grout splice sleeve which has a threaded connection to a reinforcing bar
WO2001004435A1 (fr) * 1999-07-09 2001-01-18 Splice Sleeve Japan, Ltd. Barre de liaison de renforcement a remplissage de mortier
CN205935422U (zh) * 2016-08-18 2017-02-08 安徽建筑大学 一种新型可限位钢筋的半灌浆套筒
CN106677433A (zh) * 2016-11-25 2017-05-17 沈阳建筑大学 自紧式的半灌浆套筒连接件
CN107366389A (zh) * 2017-07-05 2017-11-21 武汉理工大学 一种用于预制剪力墙、柱的钢管套筒及其制作方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113417465A (zh) * 2021-07-30 2021-09-21 中国建筑第二工程局有限公司 一种装配式建筑灌浆套筒灌浆系统
CN113606094A (zh) * 2021-08-17 2021-11-05 上海电气风电集团股份有限公司 塔筒组件及拼接式塔筒
CN113997389A (zh) * 2021-11-16 2022-02-01 苏州华昇建筑科技有限公司 预制构件成型模具及预制构件加工方法
CN113997389B (zh) * 2021-11-16 2023-04-25 苏州华昇建筑科技有限公司 预制构件成型模具及预制构件加工方法
CN117286948A (zh) * 2023-10-11 2023-12-26 深圳市鹏翔建筑科技有限公司 一种基于螺旋筋的混凝土预制构件连接构造及施工方法

Also Published As

Publication number Publication date
US10760264B2 (en) 2020-09-01
CN108301568B (zh) 2019-07-26
US20200232207A1 (en) 2020-07-23
CN108301568A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
WO2019148566A1 (zh) 一种装配式混凝土构件的装配结构
WO2018219024A1 (zh) 一种外包钢板的装配式混凝土柱脚节点及其施工方法
CN105220874B (zh) 地下室超高外墙自撑单侧支模体系的施工方法
WO2018219196A1 (zh) 一种装配式柱脚连接节点及其施工方法
CN210482389U (zh) 一种后浇带模板支设结构
CN108755972B (zh) 预制件用垫脚及其使用方法
CN110630011A (zh) 一种用于变形缝处双剪力墙的模板加固体系及其施工方法
CN103556819A (zh) 一种在梁板上预留构造柱孔洞的施工方法
CN109083138B (zh) 一种用于同步注浆预应力管桩的装置
CN109056815B (zh) 综合管廊施工方法
CN215241723U (zh) 一种预制墙板预留孔工装
CN114197526B (zh) 一种逆作法竖向结构支模体系及施工方法
CN110593437B (zh) 装配式剪力墙施工方法
CN108797899B (zh) 房建剪力墙施工轻质钢筋卡具
CN111502038A (zh) 一种装配式pc建筑结构及其施工方法
CN112324055A (zh) 一种预制竖向构件及其套筒灌浆施工方法
CN110565953A (zh) 一种预留管道洞口的施工方法
CN220395241U (zh) 一种灌浆孔预留定位装置
CN206769291U (zh) 一种墙体保温免拆模板连接件
CN110453927A (zh) 一种建筑墙体斜撑与楼板的固定方法
CN217027987U (zh) 一种悬挑式脚手架
CN217602161U (zh) 底部钢筋机械连接的预制柱后浇段临时支撑工具
CN213572376U (zh) 一种预制柱、预制梁搭接节点
CN212428943U (zh) 一种纵向盲管定位夹具
CN217680551U (zh) 一种楼层放线洞封堵支撑装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904451

Country of ref document: EP

Kind code of ref document: A1