WO2019148528A1 - 浮筒式隧洞穿梭平台及监测装置和异物监测的方法 - Google Patents

浮筒式隧洞穿梭平台及监测装置和异物监测的方法 Download PDF

Info

Publication number
WO2019148528A1
WO2019148528A1 PCT/CN2018/075776 CN2018075776W WO2019148528A1 WO 2019148528 A1 WO2019148528 A1 WO 2019148528A1 CN 2018075776 W CN2018075776 W CN 2018075776W WO 2019148528 A1 WO2019148528 A1 WO 2019148528A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
tunnel
winch
monitoring
platform
Prior art date
Application number
PCT/CN2018/075776
Other languages
English (en)
French (fr)
Inventor
巴金玉
王国河
陈少南
张美玲
邓志燕
余冰
王华刚
赵阿朋
李兵
吴玉
陈智
吴凤岐
赵宏辑
殷勇
李科
李海阳
Original Assignee
岭东核电有限公司
中广核研究院有限公司
台山核电合营有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岭东核电有限公司, 中广核研究院有限公司, 台山核电合营有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 岭东核电有限公司
Priority to EP18903385.5A priority Critical patent/EP3748124B1/en
Publication of WO2019148528A1 publication Critical patent/WO2019148528A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/017Inspection or maintenance of pipe-lines or tubes in nuclear installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2101/00Uses or applications of pigs or moles
    • F16L2101/30Inspecting, measuring or testing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present application belongs to the field of underwater walking, and particularly relates to a platform and a monitoring device capable of reciprocating shuttle in a tunnel.
  • the water intake tunnel needs to meet the continuous large-flow water delivery.
  • the existing underwater monitoring equipment can not realize the whole monitoring of the tunnel, and because of the high water flow velocity The monitoring posture is unstable.
  • the purpose of the present application is to provide a pontoon tunneling shuttle platform capable of maintaining a stable attitude and reciprocating shuttle in a tunnel.
  • the monitoring mechanism is built in the carrying platform of the pontoon tunneling platform, the bearing platform of the pontoon tunneling platform is The reciprocating shuttle in the tunnel enables the monitoring mechanism to monitor the working conditions in the tunnel in real time, especially the foreign objects in the tunnel, and the shuttle is stable and reliable.
  • Another object of the present application is to provide a tunnel monitoring device capable of maintaining a stable attitude in a tunnel and capable of reciprocating shuttle to monitor foreign matter in the tunnel.
  • Another object of the present application is to provide a method for real-time monitoring of foreign matter in a tunnel in real time.
  • the present application provides a pontoon tunnel shuttle platform adapted to shuttle within a tunnel between two shield wells, the pontoon tunnel shuttle platform including a control device, a first winch, a second winch, and a cable a wire and a load-bearing platform that can be suspended in water, wherein the first winch and the second winch are electrically connected to the control device; one end of the cable is wound on the first winch, the cable The other end is wound on the second winch; the cable is sealed and fixedly connected to the carrying platform, and the carrying platform is electrically connected to the control device by the cable; the control The device controls the loading and unloading of the cable by the first winch and the second winch, and controls the floating platform to reciprocate in the tunnel synchronously with the cable.
  • the present application provides a pontoon tunnel shuttle platform.
  • the load platform of the pontoon tunnel shuttle platform of the present application can maintain a stable posture in a water-filled tunnel under the traction and guidance of the cable. It shuttles through the entire tunnel, and the load-bearing platform uses its own buoyancy and the suspension state in the tunnel under the traction and restraint of the cable, effectively avoiding the danger of collision of the tunnel and ensuring the safe shuttle of the load-bearing platform.
  • the loading platform can be equipped with various monitoring mechanisms for monitoring the working conditions in the tunnel, so that the monitoring mechanisms can stably shuttle in the tunnel synchronously with the carrying platform, thereby monitoring the entire tunnel in real time. Working conditions, especially for monitoring the situation of foreign objects in the tunnel, to ensure the safe and stable operation of various facilities connected to the tunnel.
  • the pontoon tunnel shuttle platform further includes a cable support guide, the cable slidingly passing through the cable support guide.
  • the cable support guide is in a detachable tower crane structure.
  • the cable support guiding device includes a positioning portion and a hanging portion, and the cable slides through the hanging portion, and the positioning portion is connected with the hanging portion to form a bent structure.
  • the suspension portion is provided with a guide wheel for supporting and guiding the cable, and the guide wheel is provided with a limiting guide groove through which the cable slides.
  • the guiding wheel is pivotally connected to the hanging portion.
  • the guide wheel protrudes from one side of the hanging portion. .
  • the suspension portion is also pivotally connected with a support wheel, and the support wheel and the guide wheel are located on opposite sides of the suspension portion.
  • a guiding wheel for supporting and guiding the cable is pivotally connected to the positioning portion, and the guiding wheel is provided with a limiting guide groove through which the cable slides.
  • the positioning portion is connected to the hanging portion in a "7" shape.
  • the cable includes a first cable and a second cable, one end of the first cable is wound on the first winch, and the other end of the first cable is opposite to the carrying platform One end of the carrying platform is in sealing connection with one end of the second cable, and the other end of the second cable is wound on the second winch;
  • the first cable and the second cable are electrically connected to the control device; the control device controls the retraction of the first cable and the second cable by controlling the first winch and the second winch And controlling the carrying platform to suspend and shuttle in the tunnel in a suspended state.
  • each of the first winch and the second winch is provided with a tension sensor electrically connected to the control device, and the control device controls the first winch and the first by an output signal of the tension sensor
  • the two winches cooperate with each other to maintain the tension and constant tension of the first cable and the second cable to pull the bearing platform to float in the tunnel in a suspended manner.
  • the cable is a buoyant armored cable.
  • the cable can be suspended in water.
  • the inside of the cable is also provided with a fiber structure for transmitting signals.
  • the present application also provides a tunnel monitoring device adapted to shuttle in a tunnel between two shield wells to monitor foreign matter, the tunnel monitoring device comprising a floating tunnel shuttle platform and a monitoring mechanism for monitoring foreign objects in the tunnel.
  • the pontoon tunnel shuttle platform is as described above, the monitoring mechanism is disposed in the carrying platform of the pontoon tunnel shuttle platform and electrically connected to the cable, and the monitoring mechanism is connected to the cable by the cable
  • the control device is electrically connected.
  • the carrying platform includes a casing, and the casing has a hollow structure, and a circuit board electrically connected to the cable is disposed in the hollow structure.
  • a mounting rod is mounted in the housing.
  • a cable connection port for cable connection is provided at both ends of the housing.
  • the housing has a symmetrical cohesion structure.
  • the cross section of the housing has a central symmetrical structure.
  • the housing has a uniform outwardly convex tail.
  • the cable is located on the axis of the housing.
  • the monitoring mechanism is located within the housing.
  • the monitoring mechanism includes a power module, a control module electrically connected to the power module, a monitoring module for monitoring foreign objects in the tunnel, and a storage module for storing information monitored by the monitoring module.
  • a sensing module for sensing the attitude of the housing, the power module, the control module, the storage module and the sensing module are mounted on the mounting rod, and the monitoring module is mounted at a head position of the housing.
  • control module communicates with the control device through the cable and receives signals of the control device to control operation of the monitoring module, the storage module, and the sensing module, the control module being installed at a center offset from the mounting rod The location.
  • the power module is mounted at a center position of the mounting bar.
  • the head of the housing has a transparent structure, and the transparent structure faces the monitoring module, and the monitoring module monitors foreign objects in the tunnel by the transparent structure.
  • the monitoring mechanism further includes a weight for adjusting the balance of the housing, the weight being mounted at both ends of the mounting bar.
  • the present application also provides a method for monitoring foreign matter in a tunnel by using the above-mentioned tunnel monitoring device, comprising the following steps: (1) installing the first winch and the second winch on the shore of two shield wells; 2) the carrying platform is sealed and fixedly connected to the cable; (3) one end of the cable to which the carrying platform is fixed is wound on the first winch, and the other end of the cable is sequentially Passing through the shield well under the first winch, the tunnel and the shield well under the second winch, and winding on the second winch; (4) controlling the cable and making the cable The line is tightly located in the tunnel, and the carrying platform is suspended in the tunnel by the traction and restraint of the cable; (5) controlling the carrying platform with the built-in monitoring mechanism to synchronize with the cable The shuttle reciprocates in the tunnel, and the monitoring mechanism monitors the foreign matter in the tunnel in real time.
  • the step (4) of the method for monitoring foreign matter further includes the following steps: (41) controlling, by the control device, the retracting of the cable by the first winch and the second winch, so that the bearer The platform is located in the tunnel; (42) controlling, by the control device, the retracting and releasing the cable by the first winch and the second winch, so that the cable with the supporting platform is tightly located In the tunnel, the carrying platform is suspended in the tunnel by the traction and restraint of the cable.
  • step (2) of the method for monitoring foreign matter described above further includes the step of: incorporating the monitoring mechanism into the carrying platform.
  • FIG. 1 is a schematic structural view of a tunnel monitoring device of the present application.
  • FIG. 2 is a schematic view of a cable support guide of the present application.
  • FIG 3 is a schematic structural view of a housing of a carrier platform of the present application.
  • FIG. 4 is a schematic structural view of a carrying platform with a monitoring mechanism built in the present application.
  • FIG. 5 is a flow chart of a method of foreign matter monitoring of the present application.
  • the present application discloses a tunnel monitoring device 100 suitable for reciprocating shuttles in a tunnel 20 between two shield wells 10 to monitor foreign objects.
  • the tunnel monitoring device 100 includes a pontoon tunneling platform. 30 and a monitoring mechanism 40 for monitoring foreign objects in the tunnel 20, the monitoring mechanism 40 being built into the carrying platform 305 of the pontoon tunneling platform 30, the carrying platform 305 of the pontoon tunneling platform 30 being pulled and pulled by the cable 304 Guided to maintain a smooth attitude in the water-filled tunnel 20 for reciprocating shuttles throughout the tunnel 20, and the load-bearing platform 305 is suspended in the water by its own gravity, and is tunneled under the traction and restraint of the cable 304.
  • the tunnel monitoring device 100 of the present application is particularly suitable for monitoring the working conditions in the tunnel 20 in the nuclear power plant, especially the foreign matter in the tunnel 20 of the nuclear power plant; the following is a combination of FIGS.
  • the tunnel monitoring device 100 and the pontoon tunnel shuttle platform 30 are further described in detail:
  • the pontoon tunnel shuttle platform 30 of the present application includes a control device 301, a first winch 302, a second winch 303, a cable 304, and a load bearing platform 305 that can be suspended in water.
  • the control device 301 is installed on the shore of the shield well 10, and is electrically connected to the first winch 302, the second winch 303, and the cable 304.
  • the load platform 305 is electrically connected to the control device 301 by the cable 304.
  • the first winch 302 and the second winch 303 are correspondingly disposed on the shore of the two shield wells 10, that is, a winch is respectively disposed on the two shield wells 10; the cable 304 is fixedly connected with the two ends of the carrying platform 305 in a sealed manner, thereby The carrying platform 305 is electrically connected to the control device 301 by a cable 304.
  • One end of the cable 304 is wound on the first winch 302, and the other end of the cable 304 is wound on the second winch 303, more specifically, the cable 304.
  • One end of the cable is wound on the first winch 302, and the other end of the cable 304 passes through the shield well 10 under the first winch 302, the tunnel 20, and the shield well 10 under the second winch 303, and then wound around the second winch 303.
  • one end of the cable 304 is wound on the first winch 302, and the other end of the cable 304 penetrates the shield well 10 under the first winch 302 and passes through the tunnel 20 into the shield well below the second winch 303.
  • the final control device 301 controls the retraction of the first winch 302 and the second winch 303 such that the cable 304 is in a tight state within the tunnel 20, and the load bearing platform 305 remains relatively stable in suspension by the tight cable 304.
  • the first winch 302 and the second winch 303 are controlled by the control device 301 to retract the cable 304 so that the cable 304 in a tight state pulls the load bearing platform 305 back and forth in the tunnel 20 synchronously
  • the carrying platform 305 of the pontoon tunneling platform 30 of the present application can maintain a stable posture in the water-filled tunnel 20 to reciprocate and shuttle through the entire tunnel 20 under the traction and guiding of the cable 304.
  • the load bearing platform 305 is always in a relatively stable suspension state in the tunnel 20 by using its own buoyancy and under the traction and restraint of the cable 304, effectively avoiding the danger of collision in the tunnel 20, and ensuring the bearing platform 305.
  • the safe shuttle while the load bearing platform 305 can carry various monitoring mechanisms for monitoring the working conditions in the tunnel 20, so that the monitoring mechanisms can be synchronized with the carrying platform 305.
  • the suspension is stably suspended in the tunnel 20, thereby monitoring the working conditions in the tunnel 20 in real time, especially for monitoring the foreign matter in the tunnel 20, and ensuring the safe and stable operation of various facilities connected to the tunnel 20.
  • the pontoon tunnel shuttle platform 30 of the present application is particularly suitable for shuttles within a tunnel 20 in a nuclear power plant.
  • the cable 304 is a buoyant armored cable, and the entire cable 304 is similar in density to the water in the tunnel 20, and the cable 304 can be suspended in water to make the cable
  • the water placed in the tunnel 20 is suspended in a state of being able to maintain a nearly straight state within the tunnel 20 without significant sagging or floating.
  • the interior of the cable 304 has an optical fiber structure such that the cable 304 can be used to transmit signals.
  • the cable 304 can be divided into two cables, that is, the cable 304 includes a first cable 304a and a second cable 304b, and one end of the first cable 304a is wound around the first winch 302.
  • the other end of the first cable 304a is sealed with one end of the carrying platform 305
  • the other end of the carrying platform 305 is sealed with one end of the second cable 304b
  • the other end of the second cable 304b is wound around the second.
  • the carrying platform 305 is suspended in the tunnel 20 by the tight first cable 304a and the second cable 304b.
  • the carrying platform 305 is controlled by the first cable 304a and the second cable 304b.
  • the device 301 is electrically connected; a tension sensor (not shown) electrically connected to the control device 301 is disposed on the first winch 302 and the second winch 303, and the control device 301 is outputted by the tension sensor. Controlling the first winch 302 and the second winch 303 to cooperate with each other to retract the first cable 304a and the second cable 304b, so that the first cable 304a and the second cable 304b can be tightened in the tunnel 20. And a constant tension control and traction bearing platform 305 reciprocating through the tunnel 20 .
  • the pontoon tunnel shuttle platform 30 further includes a cable support guide 306.
  • the cable support guide 306 is disposed in the two shield wells 10 in a detachable tower crane structure, and the cable support guide 306
  • the cable 304 can be slid through the cable support guide 306.
  • the cable support guiding device 306 includes a positioning portion 306a and a hanging portion 306b, wherein the positioning portion 306a is laterally mounted on the shield well 10, and the hanging portion 306b is hung in the shield well 10, the positioning portion 306a and the hanging portion
  • the 306b has a "7"-shaped bent structure. When the installation is performed, the positioning portion 306a is consolidated with the civil construction facility.
  • the removal and removal may be selected according to the actual situation, and the suspension portion 306b and the positioning portion 306a are spliced and operated. After the completion, the removal or retention can also be selected.
  • This design facilitates the replacement of the old cable support guide 306 and facilitates storage.
  • the cable is installed.
  • 304 slides through the suspension portion 306b of the cable support guide 306.
  • the hanging portion 306b is provided with a guiding wheel 3061 for supporting and guiding the cable 304.
  • the guiding 3061 wheel is pivotally connected to the hanging portion 306b.
  • the guiding wheel 3061 is protruded from one side of the hanging portion 306b, and the guiding wheel 3061 is provided.
  • the cable 304 is a limit guide (not shown) that slides through, and the limit guide can limit the position of the cable 304 to prevent the cable 304 from moving in the first winch 302 and the second winch 303.
  • the entire pontoon tunneling platform 30 can be moved more smoothly within the tunnel 20, specifically, the guide wheel on the suspension portion 306b in the shield well 10 under the first winch 302. 3061 is disposed away from the shield well 10 located under the second winch 303.
  • the guide wheel 3061 on the suspension portion 306b in the shield well 10 below the second winch 303 faces away from the shield well located under the first winch 302. 10 direction setting (the specific position is shown in Figure 2).
  • the hanging portion 306b is also pivotally connected with a supporting wheel 3062.
  • the supporting wheel 3062 and the guiding wheel 3061 are located on opposite sides of the hanging portion 306b (as shown in FIG. 2), and the hanging portion 306b
  • the support wheel 3062 can provide a sliding support to avoid creating a drive suspension for the suspension portion 306b as the cable 304 moves.
  • the force of 306b moving toward the well wall 10a causes the suspension portion 306b to directly contact the well wall 10a to cause friction to cause damage.
  • a guiding wheel 3063 for supporting and guiding the cable 304 is pivotally connected to the positioning portion 306a, and the guiding wheel 3063 is also provided with a limit for the cable 304 to slide through.
  • a guiding slot (not shown), the limiting guiding slot limits the position of the cable 304 when moving, preventing a large deviation of the position of the cable 304 during the movement, and ensuring the pontoon tunneling platform 30 Smooth operation; it is worth noting that the guide wheel 3061 and the guide wheel 3063 of the present application are identical in structure, material and size for ease of manufacture and installation.
  • the monitoring mechanism 40 is disposed in the carrying platform 305 and electrically connected to the cable 304 .
  • the monitoring mechanism 40 can be electrically connected to the control device 301 by the cable 304 .
  • the carrying platform 305 includes a housing 305a, the monitoring mechanism 40 is located in the housing 305a, the housing 305a has a symmetrical cohesive structure and the interior has a hollow structure, and the cross-section of the housing 305a has a central symmetrical structure, and the housing 305a
  • the cross section may be a circular or elliptical center symmetrical structure.
  • the hollow structure is provided with a circuit board (not shown) electrically connected to the cable 304.
  • the housing 305a is internally mounted with a mounting rod 3051, and the mounting rod 3051 is installed for the components and internal equipment of the monitoring mechanism 40, and the outer end of the housing 305a has a cable connection port 3052 connected by a cable 304 at both ends, and the cable 304 is located at the axial line of the housing 305a.
  • the tail portion of the housing 305a is uniformly outwardly convexly provided with a tail flap 3053. When the housing 305a shuttles through the water in the tunnel 20, the tail flap 3053 can better control the stability and stability of the movement of the housing 305a.
  • the monitoring mechanism 40 includes a power module 401 and a control module 402 electrically connected to the power module 401 , a monitoring module 403 for monitoring foreign objects in the tunnel 20 , and a monitoring module 403 for monitoring
  • the information storage module 404 and the sensing module 405 for sensing the posture of the housing 305a, the power module 401, the control module 402, the storage module 404 and the sensing module 405 are mounted on the mounting bar 3051, and the monitoring module 403 is mounted on the head of the housing 305a.
  • the head of the housing 305a has a transparent structure 3054.
  • the transparent structure 3054 is opposite to the monitoring module 403.
  • the monitoring module 403 can monitor the foreign matter in the tunnel 20 through the transparent structure 3054.
  • control module 402 can receive signals transmitted by the control device 301 on the shore of the shield well 10 via the cable 304 to control the operation of the monitoring module 403, the storage module 404, and the sensing module 405, while the control module 402
  • the information received by the monitoring module 403, the storage module 404, and the sensing module 405 is also fed back to the onshore control device 301 via the cable 304.
  • the monitoring mechanism 40 further includes a weight 406 for adjusting the balance of the housing 305a.
  • the control module 402 is mounted at a position offset from the center of the mounting bar 3051, specifically The control module 402 is installed near the tail 3053 to move the center of the entire monitoring mechanism 40 downward, which can effectively prevent the monitoring mechanism 40 from rolling around its central axis, and the quality of the power module 401 compared to other modules.
  • the power module 401 is mounted at the center of the mounting bar 3051, and the storage module 404 is mounted on the mounting bar 3051, located on the side close to the head of the monitoring mechanism 40.
  • the weights 406 are respectively installed at the two ends of the mounting bar 3051.
  • the above is only a preferred solution in this embodiment.
  • the operator can install other related test modules according to actual test requirements and according to the power module 401.
  • the specific operation mode of the tunnel monitoring device 100 is as follows: First, the monitoring module 403 is installed in the housing 305a of the carrying platform 305, specifically installed at a position corresponding to the transparent structure 3054 of the head of the housing 305a, and then at the center of the mounting rod 3051.
  • the power module 401 is installed at a position, the storage module 404 is installed on one side of the power module 401, the module 402 and the sensing module 405 are controlled on the other side of the power module 401, and a suitable weight 406 is installed on both ends of the mounting rod 3051.
  • the housing 305a is closed and the housing 305a is in a cohesive manner, and one end of the first cable 304a is fixedly connected to the cable connection port 3052 of the housing 305a, and one end of the second cable 304b is connected to the housing 305a.
  • the cable connection port 3052 is in a sealed connection, and then the other end of the first cable 304a is wound around the first winch 302, and the other end of the first cable 304a to which the housing 305a is fixed is sequentially passed through the first winch 302.
  • the shield well 10, the tunnel 20, and then the second cable 304b connected to the other end of the casing 305a passes through the tunnel 20 and the shield well 10 under the second winch 303 and is wound around the second winch 303, through control Device 301 to first winch 302
  • the first cable 304a and the second cable 304b maintain a constant tension and tension state.
  • the traction housing 305a reciprocates in the tunnel 20, and the tunnel is monitored by the monitoring mechanism 40 during the shuttle. The foreign matter is monitored within 20 to determine whether there is foreign matter in the tunnel 20. When the foreign matter is found, the distance of the cable 304 is used to determine the specific location of the foreign matter in the tunnel 20 and timely processed.
  • the method for monitoring foreign objects in the tunnel 20 by using the tunnel monitoring device 100 first installs the first winch 302 and the second winch 303 on the two shield wells 10 to seal the bearing platform 305 .
  • the tunnel 10 and the shield well 10 under the second winch 303 are wound on the second winch 303, and the cable 304 can be tightly placed in the tunnel 20 by controlling the retraction of the first winch 302 and the second winch 303.
  • the loading platform 305 is suspended in the tunnel 20 by the pulling of the cable 304 and can be carried by the first winch 302 and the second winch 303 to cause the cable 304 to drive the carrying platform 305 with the monitoring mechanism 40 along with the cable 304.
  • the shuttle is reciprocated in the tunnel 20 to monitor the foreign matter in the tunnel 20 in real time.
  • the method for monitoring foreign matter includes the following steps:
  • the load bearing platform 305 having the built-in monitoring mechanism 40 is controlled to reciprocate in the tunnel 20 in synchronization with the cable 304, and the monitoring mechanism 40 monitors the foreign matter in the tunnel 20 in real time.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the present application also provides a control device 301 that enables the retraction of the first winch 302 and the second winch 303 to be more precise and enables the cable 304 is placed tightly in the tunnel 20, and the load bearing platform 305 is suspended in the tunnel 20 by the traction and restraint of the cable 304. Specifically, the cable 304 is controlled and the cable 304 is tightly placed in the tunnel 20.
  • the step of suspending the load platform 305 in the tunnel 20 by the traction and restraint of the cable 304 further includes: controlling, by the control device 301, the first winch 302 and the second winch 303 to retract the cable 304, so as to carry the platform The 305 is located in the tunnel 20; the control device 301 controls the first winch 302 and the second winch 303 to retract the cable 304, so that the cable 304 to which the carrying platform 305 is fixed is tightly located in the tunnel 20, and the carrying platform 305 Suspended in the tunnel 20 by the traction and restraint of the cable 304; the method for monitoring the complete foreign object includes the following steps:
  • the control device 301 controls the first winch 302 and the second winch 303 to retract the cable 304, so that the cable 304 to which the carrying platform 305 is fixed is tightly located in the tunnel 20, and the carrying platform 305 is connected by the cable.
  • the traction and restraint of the line 304 is suspended in the tunnel 20;
  • the load bearing platform 305 having the built-in monitoring mechanism 40 is controlled to reciprocate in the tunnel 20 in synchronization with the cable 304, and the monitoring mechanism 40 monitors the foreign matter in the tunnel 20 in real time.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the method further includes: the monitoring mechanism 40 is built in the carrying platform 305; and the method for monitoring the foreign matter of the complete body includes the following steps:
  • the load bearing platform 305 having the built-in monitoring mechanism 40 is controlled to reciprocate in the tunnel 20 in synchronization with the cable 304, and the monitoring mechanism 40 monitors the foreign matter in the tunnel 20 in real time.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the control device 301 controls the first winch 302 and the second winch 303 to retract the cable 304, so that the cable 304 to which the carrying platform 305 is fixed is tightly located in the tunnel 20, and the carrying platform 305 is connected by the cable.
  • the traction and restraint of the line 304 is suspended in the tunnel 20;
  • the load bearing platform 305 having the built-in monitoring mechanism 40 is controlled to reciprocate in the tunnel 20 in synchronization with the cable 304, and the monitoring mechanism 40 monitors the foreign matter in the tunnel 20 in real time.
  • the method for monitoring foreign matter of the present application includes the steps of: mounting the first winch 302 and the second winch 303 on the shore of the two shield wells 10; the load bearing platform 305 is sealed and fixed to the cable 304.
  • One end of the cable 304 to which the load bearing platform 305 is fixed is wound on the first winch 302, and the other end of the cable 304 is sequentially passed through the shield well 10, the tunnel 20 and the second winch 303 under the first winch 302.
  • the lower shield well 10 is wound on the second winch 303; the cable 304 is controlled and the cable 304 is tightly placed in the tunnel 20.
  • the load platform 305 is suspended in the tunnel 20 by the traction and restraint of the cable 304.
  • the control platform 40 that controls the built-in monitoring mechanism 40 reciprocates in the tunnel 20 synchronously with the cable 304, and the monitoring mechanism 40 monitors the foreign matter in the tunnel 20 in real time. Therefore, the present application first installs the first winch 302 and the second winch 303 on the shore of the two shield wells 10, and securely connects the load bearing platform 305 with the built-in monitoring mechanism 40 to the cable 304, and then the cable 304. One end is wound on the first winch 302, and then passes through the shield well 10 under the first winch 302, the tunnel 20, and the shield well 10 under the second winch 303, and then wound on the second winch 303, so that the control can be controlled.
  • a winch 302 and a second winch 303 retract the cable 304, so that the cable 304 maintains a tight traction in the tunnel 20 and constrains the carrying platform 305 to shuttle back and forth within the tunnel 20, and the monitoring mechanism built in the carrying platform 305 40.
  • the cable 304 is tightly shaped within the tunnel 20 to enable the load bearing platform 305 to maintain a relatively stable posture to move within the tunnel 20, and to pass the cable through the first winch 302 and the second winch 303.
  • the retracting and retracting of the line 304 enables the monitoring mechanism 40 to monitor the foreign matter condition of the entire tunnel 20.
  • the method of foreign matter monitoring of the present application is particularly suitable for monitoring foreign matter in the tunnel 20 in a nuclear power plant.
  • the loading platform 305 of the pontoon tunneling platform 30 of the present application can maintain a stable posture in the water-filled tunnel 20 to reciprocate and shuttle through the entire tunnel under the traction and guiding of the cable 304. 20, and the load bearing platform 305 is always in a suspended state in the tunnel 20 under the traction and restraint of the cable 304, effectively avoiding the danger of collision in the tunnel 20, ensuring the safe shuttle of the load bearing platform 305, while borrowing
  • the monitoring platform 305 can be equipped with various monitoring mechanisms for monitoring the working conditions in the tunnel 20, so that the monitoring mechanisms can be stably suspended in the tunnel 20 along with the carrying platform 305, thereby real-time full-time monitoring.
  • the working conditions in the tunnel 20 are especially used for monitoring the foreign matter in the tunnel 20 to ensure safe and stable operation of various facilities connected to the tunnel 20; in addition, the tunnel monitoring device 100 of the present application can be located in the tunnel 20 as described above.
  • the reciprocating shuttle carrying platform 305 has a built-in monitoring mechanism 40 for monitoring foreign objects in the tunnel 20 so that the monitoring mechanism 40 can be carried in the tunnel 20 with the carrying platform 305. Simultaneously reciprocating shuttle, so as to monitor the foreign matter in the tunnel 20 in real time, and the operation is stable and reliable; at the same time, the method for monitoring the foreign matter in the tunnel 20 by the tunnel monitoring device 100 can be more accurate and reliable in the tunnel 20 The foreign body is monitored in real time.
  • the pontoon tunneling platform 30 of the present application and the platform 305 in the tunnel monitoring device 100 can reciprocate in any water-filled tunnel 20, and its application is not limited to the tunnel 20 in the nuclear power plant mentioned above. It can also be applied to various types of culverts, waterways and other water tunnels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Sewage (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

一种浮筒式隧洞穿梭平台(30),包括控制装置(301)、第一绞车(302)、第二绞车(303)、缆线(304)以及承载平台(305);第一绞车(302)和第二绞车(303)对应设置于两盾构井(10)上且均与控制装置(301)电性连接,缆线(304)的一端缠绕于第一绞车(302)上,缆线(304)的另一端依次穿过第一绞车(302)下的盾构井(10)、隧洞(20)及第二绞车(303)下的盾构井(10)后缠绕于第二绞车(303)上,缆线(304)呈紧绷的位于隧洞(20)中且呈密封与承载平台(305)固定连接,承载平台(305)藉由紧绷的缆线(304)与控制装置(301)电性连接且悬空于隧洞(20)中,控制装置(301)藉由控制第一绞车(302)和第二绞车(303)对缆线(304)的收放使承载平台(305)随缆线(304)在隧洞(20)内往复穿梭,能在隧洞(20)内保持稳定姿态往复穿梭的承载平台(305)、隧洞监测装置(100)以及异物监测的方法可供监测机构安装并全程监测隧洞(20)内异物情况。

Description

浮筒式隧洞穿梭平台及监测装置和异物监测的方法 技术领域
本申请属于水下行走领域,尤其涉及一种能在隧洞内进行往复穿梭的平台及监测装置。
背景技术
取水隧洞需要满足持续性大流量输水,在作业的过程中可能会有海生物附着内壁、泥沙沉积、存在异物等现象,这些现象会导致隧洞输水能力降低并且可能会对相关的设备造成损伤,因此需要设置水下监测设备监测隧洞内的情况,但由于取水隧洞距离长、直径大、水流速度高等特点,现有的水下监测设备无法实现隧洞的全程监测,并且因为水流速度高导致监测姿态不稳定。
故,急需一种能够在有水的隧洞内保持平稳姿态穿梭整个隧洞的浮筒式隧洞穿梭平台。
申请内容
本申请的目的在于提供一个能够在隧洞内保持稳定姿态往复穿梭的浮筒式隧洞穿梭平台,当在浮筒式隧洞穿梭平台的承载平台内置监测机构时,藉由该浮筒式隧洞穿梭平台的承载平台在隧洞内的往复穿梭,使其搭载的监测机构能实时的监测隧洞内的工况,尤其是隧洞内的异物情况,并且穿梭平稳可靠。
本申请的另一目的在于提供一个能够在隧洞内保持稳定姿态并能往复穿梭以监测隧洞内异物情况的隧洞监测装置。
本申请的另一目的在于提供一个全程实时监测隧洞内异物的方法。
为了实现上述目的,本申请提供一种浮筒式隧洞穿梭平台,适于在两盾构井之间的隧洞内穿梭,所述浮筒式隧洞穿梭平台包括控制装置、第一绞车、第二绞车、缆线及可悬浮于水的承载平台,所述第一绞车和所述第二绞车均与所述控制装置电性连接;所述缆线的一端缠绕于所述第一绞车上,所述缆线的另一端 缠绕于所述第二绞车上;所述缆线呈密封且固定的与所述承载平台连接,所述承载平台藉由所述缆线与所述控制装置电性连接;所述控制装置藉由控制所述第一绞车和第二绞车对所述缆线的收放,而控制所述承载平台呈悬浮状的随所述缆线同步的于所述隧洞内往复穿梭。
与现有技术相比,本申请提供一种浮筒式隧洞穿梭平台,本申请的浮筒式隧洞穿梭平台的承载平台在缆线的牵引和导向下能够在有水的隧洞内保持平稳的姿态进行往复穿梭于整个隧洞中,并且该承载平台利用自身的浮力以及在缆线的牵引和约束下于隧洞内始终处于悬浮状态,有效的避免了隧洞发生碰撞的危险,确保了承载平台的安全穿梭,同时藉由该承载平台可搭载各种用于监测隧洞内工况的监测机构,从而使得这些监测机构能随承载平台同步于隧洞内稳定的进行呈悬浮状的穿梭,从而实时的全程监测隧洞内的工况,尤其用于监测隧洞内异物的情况,确保与隧洞连通的各类设施的安全稳定的运行。
具体地,所述浮筒式隧洞穿梭平台还包括缆线支撑导向装置,所述缆线呈滑动的穿过所述缆线支撑导向装置。
具体地,所述缆线支撑导向装置呈可拆卸的塔吊结构。
具体地,所述缆线支撑导向装置包括定位部和悬挂部,所述缆线呈滑动的穿过所述悬挂部,所述定位部与所述悬挂部连接形成弯折结构。
具体地,所述悬挂部上设置有用于支撑和导向所述缆线的导向轮,所述导向轮设有供所述缆线呈滑动穿过的限位导槽。
具体地,所述导向轮枢接于所述悬挂部上。
具体地,所述导向轮凸设于所述悬挂部的一侧。。
具体地,所述悬挂部上还枢接有支撑轮,所述支撑轮与所述导向轮位于所述悬挂部的相对两侧上。
具体地,所述定位部上枢接有用于支撑和导向所述缆线的导向轮,所述导向轮设有供所述缆线呈滑动穿过的限位导槽。具体地,所述定位部与所述悬挂部连接呈“7”字型。
具体地,所述缆线包括第一缆线和第二缆线,所述第一缆线的一端缠绕于 所述第一绞车上,所述第一缆线的另一端与所述承载平台的一端呈密封连接,所述承载平台的另一端与所述第二缆线的一端呈密封连接,所述第二缆线的另一端缠绕于所述第二绞车上;所述承载平台藉由所述第一缆线与所述第二缆线与控制装置电性连接;所述控制装置藉由控制所述第一绞车和第二绞车对所述第一缆线和第二缆线的收放,而控制所述承载平台呈悬浮状的于所述隧洞内往复穿梭。具体地,所述第一绞车和第二绞车上均设有与所述控制装置电性连接的张力传感器,所述控制装置藉由所述张力传感器的输出信号而控制所述第一绞车和第二绞车相互配合,使所述第一缆线和第二缆线保持绷紧状和恒定的拉力以牵引所述承载平台呈悬浮状的于所述隧洞内往复穿梭。
具体地,所述缆线为浮力铠装电缆。
具体地,所述缆线可悬浮于水。
具体地,所述缆线的内部还布置有用于传输信号的光纤结构。本申请还提供一种隧洞监测装置,适于在两盾构井之间的隧洞内穿梭以监测异物,所述隧洞监测装置包括浮筒式隧洞穿梭平台及用于监测隧洞内异物的监测机构,所述浮筒式隧洞穿梭平台如上所述,所述监测机构设置于所述浮筒式隧洞穿梭平台的承载平台内并与所述缆线电性连接,所述监测机构藉由所述缆线与所述控制装置电性连接。
具体地,所述承载平台包括壳体,所述壳体呈中空结构,所述中空结构内设有与所述缆线电性连接的电路板。
具体地,所述壳体内安装有一安装杆。
具体地,所述壳体的头尾两端设有供缆线连接的缆线连接口。
具体地,所述壳体呈对称的抱合结构。
具体地,所述壳体的横截面呈中心对称结构。
具体地,所述壳体上呈均匀的向外凸设有尾翼。
具体地,所述缆线位于所述壳体的轴心线上。
具体地,所述监测机构位于所述壳体内。具体地,所述监测机构包括电源模块以及与所述电源模块电性连接的控制模块、用于监测所述隧洞内异物的监 测模块、用于存储所述监测模块所监测到的信息的存储模块和用于感知所述壳体姿态的感知模块,所述电源模块、控制模块、存储模块和感知模块安装在所述安装杆上,所述监测模块安装在所述壳体的头部位置。
具体地,所述控制模块通过所述缆线与所述控制装置通信并接收所述控制装置的信号以控制监测模块、存储模块以及感知模块工作,所述控制模块安装在偏离所述安装杆中心的位置上。
具体地,所述电源模块安装在所述安装杆的中心位置上。
具体地,所述壳体的头部具有透明结构,所述透明结构正对所述监测模块,所述监测模块藉由所述透明结构监测隧洞内的异物。具体地,所述监测机构还包括用于调节所述壳体的平衡性的配重块,所述配重块安装在所述安装杆的两端。
本申请还提供一种利用上述隧洞监测装置对隧洞内异物进行异物监测的方法,包括以下步骤:(1)将所述第一绞车和所述第二绞车安装在两盾构井的岸上;(2)所述承载平台呈密封的与所述缆线固定连接;(3)将固定有承载平台的所述缆线的一端缠绕于所述第一绞车上,将所述缆线的另一端依次穿过所述第一绞车下的盾构井、所述隧洞及所述第二绞车下的盾构井后缠绕于所述第二绞车上;(4)控制所述缆线并使所述缆线呈紧绷的位于所述隧洞中,所述承载平台藉由所述缆线的牵引及约束而悬浮于所述隧洞中;(5)控制内置有监测机构的承载平台随所述缆线同步的于所述隧洞内往复穿梭,所述监测机构实时监测所述隧洞内异物情况。
具体地,上述异物监测的方法的步骤(4)进一步包括如下步骤:(41)通过所述控制装置控制所述第一绞车及所述第二绞车对所缆线的收放,使所述承载平台位于所述隧洞中;(42)通过所述控制装置控制所述第一绞车及所述第二绞车对所述缆线的收放,使固定有承载平台的缆线呈紧绷的位于所述隧洞中,所述承载平台藉由所述缆线的牵引及约束而悬浮于所述隧洞中。
具体地,上述异物监测的方法的步骤(2)之前进一步包括如下步骤:将所述监测机构内置于所述承载平台内。
附图说明
图1是本申请的隧洞监测装置的结构示意图。
图2是本申请的缆线支撑导向装置示意图。
图3是本申请的承载平台的壳体结构示意图。
图4是本申请的内置有监测机构的承载平台的结构示意图。
图5是本申请的异物监测的方法的流程图。
具体实施方式
为了对本申请的技术特征、目的和效果有更加清晰的理解,先对照附图详细说明本申请的具体实施方式。
请参考图1,本申请公开了一种隧洞监测装置100,适用于在两盾构井10之间的隧洞20内往复穿梭以监测异物,具体地,该隧洞监测装置100包括浮筒式隧洞穿梭平台30和用于监测隧洞20内异物的监测机构40,该监测机构40内置于浮筒式隧洞穿梭平台30的承载平台305内,该浮筒式隧洞穿梭平台30的承载平台305在缆线304的牵引和导向下能够在有水的隧洞20内保持平稳的姿态进行往复穿梭于整个隧洞20中,并且该承载平台305利用自身的重力在水中呈悬浮状,并在缆线304的牵引和约束下于隧洞20内始终处于相对稳定的悬浮状态,同时用于监测机构40搭载于承载平台305内,从而使得监测机构40能随承载平台305同步于隧洞20内稳定的进行呈悬浮状的穿梭,从而实时的全程监测隧洞20内的异物工况;当然需要监测隧洞20内其它工况时,将其用于监测其它工况的设备内置于承载平台305内即可;值得注意的是,本申请的隧洞监测装置100尤其适用于监测核电站中的隧洞20内工况,尤其是核电站的隧洞20内的异物;以下结合图1-图4对本申请的隧洞监测装置100及浮筒式隧洞穿梭平台30作进一步详细的说明:
请参考图1,具体地,本申请的浮筒式隧洞穿梭平台30包括控制装置301、第一绞车302、第二绞车303、缆线304以及可悬浮于水的承载平台305。具体地,控制装置301安装在盾构井10的岸上,与第一绞车302、第二绞车303及缆线304电性连接,承载平台305又藉由缆线304与控制装置301电性连接; 第一绞车302和第二绞车303对应设置于两盾构井10的岸上,即两盾构井10上分别设置一个绞车;缆线304呈密封状与承载平台305的两端固定连接,从而使承载平台305藉由缆线304与控制装置301电性连接,缆线304的一端缠绕在第一绞车302上,缆线304的另一端缠绕在第二绞车303上,更具体地,缆线304的一端缠绕于第一绞车302上,缆线304的另一端依次穿过第一绞车302下的盾构井10、隧洞20以及第二绞车303下的盾构井10后缠绕在第二绞车303上,即,缆线304的一端缠绕于第一绞车302上,缆线304的另一端穿入第一绞车302下的盾构井10并穿过隧洞20进入第二绞车303下的盾构井10,最后从第二绞车303下的盾构井10穿出并缠绕在第二绞车303上;最终控制装置301控制第一绞车302和第二绞车303的收放使得缆线304呈紧绷状态位于隧洞20内,承载平台305藉由紧绷的缆线304而保持相对稳定的呈悬浮状的位于隧洞20内,并且通过控制装置301控制第一绞车302和第二绞车303对缆线304进行收放使得呈紧绷状态的缆线304牵引承载平台305同步的在隧洞20内往复穿梭(即来回穿梭);由上可知,本申请的浮筒式隧洞穿梭平台30的承载平台305在缆线304的牵引和导向下能够在有水的隧洞20内保持平稳的姿态进行往复穿梭于整个隧洞20中,并且该承载平台305利用自身浮力和在缆线304的牵引和约束下于隧洞20内始终处于相对稳定的悬浮状态,有效的避免了在隧洞20内发生碰撞的危险,确保了承载平台305的安全穿梭,同时藉由该承载平台305可搭载各种用于监测隧洞20内工况的监测机构,从而使得这些监测机构能随承载平台305同步于隧洞20内稳定的进行呈悬浮状的穿梭,从而实时的全程监测隧洞20内的工况,尤其用于监测隧洞20内异物的情况,确保与隧洞20连通的各类设施的安全稳定的运行;值得注意的是,本申请的浮筒式隧洞穿梭平台30尤其适用于在核电站中的隧洞20内进行穿梭。
请参考图1,较佳地,在本实施例中,缆线304为浮力铠装电缆,整根缆线304与隧洞20内的水的密度相近,缆线304可悬浮于水,使得缆线304置于隧洞20内的水中呈悬浮状,能够在隧洞20内保持接近直线的状态而不会产 生明显的下垂或者上浮,缆线304的内部具有光纤结构使得缆线304可用于传输信号。
请参考图1,更具体地,可以将缆线304分成两根缆线,即缆线304包括第一缆线304a和第二缆线304b,第一缆线304a的一端缠绕于第一绞车302上,第一缆线304a的另一端与承载平台305的一端呈密封连接,承载平台305的另一端与第二缆线304b的一端呈密封连接,第二缆线304b的另一端缠绕于第二绞车303上;承载平台305藉由紧绷的第一缆线304a和第二缆线304b而呈悬空的位于隧洞20中,承载平台305藉由第一缆线304a与第二缆线304b与控制装置301电性连接;在第一绞车302和第二绞车303上均设有与控制装置301电性连接的张力传感器(图中未示),控制装置301藉由所述张力传感器的输出信号而控制控制第一绞车302和第二绞车303相互配合对第一缆线304a和第二缆线304b的收放,使第一缆线304a和第二缆线304b能够在隧洞20内保持绷紧状和恒定的拉力控制并牵引承载平台305于隧洞20内往复穿梭。请参考图1及图2,浮筒式隧洞穿梭平台30还包括缆线支撑导向装置306,缆线支撑导向装置306呈可拆卸的塔吊结构设置于两盾构井10中,缆线支撑导向装置306可使缆线304呈滑动的穿过缆线支撑导向装置306。具体地,缆线支撑导向装置306包括定位部306a和悬挂部306b,其中定位部306a呈横向的安装在盾构井10上,悬挂部306b垂挂于盾构井10内,定位部306a与悬挂部306b呈“7”字型的弯折结构,安装时,定位部306a与土建设施固结,作业完毕后可根据实际情况选择拆除移走或原地保留,悬挂部306b与定位部306a拼接,作业完毕后同样可以选择拆除移走或保留,这种设计有利于更换老旧的缆线支撑导向装置306且便于存放,缆线支撑导向装置306的定位部306a和悬挂部306b安装完毕后,缆线304呈滑动的穿过缆线支撑导向装置306的悬挂部306b。具体地,悬挂部306b上设置有用于支撑和导向缆线304的导向轮3061,导向3061轮枢接在悬挂部306b上,导向轮3061凸设于悬挂部306b的一侧,导向轮3061设有供缆线304呈滑动穿过的限位导槽(图中未示),所述限位导槽可以限制缆线304的位置,避免在第一绞车302和第二绞车303控制缆线 304运动时缆线304出现晃动或脱离轨道,可以使整个浮筒式隧洞穿梭平台30在隧洞20内运动更加平稳,具体地,位于第一绞车302下的盾构井10内的悬挂部306b上的导向轮3061朝远离位于第二绞车303下的盾构井10方向设置,位于第二绞车303下的盾构井10内的悬挂部306b上的导向轮3061朝远离位于第一绞车302下的盾构井10方向设置(具体位置如图2所示)。
继续参考图1及图2,较佳地,悬挂部306b还枢接有支撑轮3062,支撑轮3062与导向轮3061位于悬挂部306b的两相对侧上(如图2所示),悬挂部306b藉由支撑轮3062与盾构井10的井壁10a的接触而垂挂于盾构井10内,支撑轮3062能够提供一个滑动支撑,避免在缆线304运动时对悬挂部306b产生一个驱使悬挂部306b朝井壁10a运动的力,使悬挂部306b直接与井壁10a接触而产生摩擦导致损坏。
继续参考图1及图2,较佳地,在定位部306a上枢接有用于支撑和导向缆线304的导向轮3063,导向轮3063上同样设有供缆线304呈滑动穿过的限位导槽(图中未示),所述限位导槽对缆线304运动时的位置进行限位,防止缆线304在运动时的位置产生较大的偏差,保证浮筒式隧洞穿梭平台30的平稳运作;值得注意的是,为了便于制造和安装,本申请的导向轮3061和导向轮3063结构、材质及尺寸完全相同。
请参考图1、图3及图4,具体地,监测机构40设置在承载平台305内并与缆线304电性连接,监测机构40可藉由缆线304与控制装置301实现电性连接。具体地,承载平台305包括壳体305a,监测机构40位于壳体305a内,壳体305a呈对称的抱合结构且内部呈中空结构,且壳体305a的横截面呈中心对称结构,壳体305a的横截面可为圆形或椭圆形等中心对称结构,所述中空结构内设有与缆线304电性连接的电路板(图中未示),壳体305a内部安装有安装杆3051,安装杆3051供监测机构40的元器件和内部设备安装,壳体305a的外部的头尾两端有缆线304连接的缆线连接口3052,缆线304位于壳体305a的轴心线的位置上,壳体305a的尾部呈均匀向外的凸设有尾翼3053,壳体305a在隧洞20内水中穿梭时,藉由该尾翼3053能更好的控制壳体305a 移动的平稳性和稳定性。
请参考图4,具体地,监测机构40包括电源模块401以及与电源模块401电性连接的控制模块402、用于监测隧洞20内异物的监测模块403、用于存储监测模块403所监测到的信息的存储模块404和用于感知壳体305a姿态的感知模块405,电源模块401、控制模块402、存储模块404和感知模块405安装在安装杆3051上,监测模块403安装在壳体305a的头部位置,壳体305a的头部具有透明结构3054,透明结构3054正对监测模块403,监测模块403可通过透明结构3054监测到隧洞20内的异物情况。
继续参考图4,更具体地,控制模块402可通过缆线304接收盾构井10岸上的控制装置301所传递的信号以控制监测模块403、存储模块404以及感知模块405工作,同时控制模块402也通过缆线304将监测模块403、存储模块404以及感知模块405所接收到的信息反馈至岸上的控制装置301中。
继续参考图4,更具体地,监测机构40还包括用于调节壳体305a平衡性的配重块406,在本实施例中,控制模块402安装在偏离安装杆3051中心的位置上,具体地,控制模块402安装于靠近尾翼3053的位置处,使整个监测机构40的中心下移,能有效防止监测机构40绕自身的中心轴线翻滚,而由于电源模块401的相比于其他模块来说质量较大,为了保持整个监测机构40的平衡性,将电源模块401安装在安装杆3051的中心位置上,而存储模块404安装在安装杆3051上,位于靠近监测机构40的头部的一侧的位置上,配重块406分别安装在安装杆3051的两端,上述仅为本实施例中一个较优选的方案,当然,操作人员可根据实际测试需要安装其他相关的测试模块以及根据电源模块401、存储模块404等模块的质量调节电源模块401、控制模块402、存储模块404、感知模块405和配重块406的安装位置,或增加或减少配重块406的数量等。隧洞监测装置100的具体操作方式如下:先将监测模块403安装在承载平台305的壳体305a内,具体安装在壳体305a头部的透明结构3054所对应的位置,再在安装杆3051的中心位置安装电源模块401,在电源模块401的一侧安装存储模块404,在电源模块401的另一侧控制模块402以及感知模块405, 再在安装杆3051的两端安装合适的配重块406,闭合壳体305a,使壳体305a呈抱合状,再将第一缆线304a的一端与壳体305a的缆线连接口3052呈密封的固定连接,第二缆线304b的一端与壳体305a的缆线连接口3052呈密封的连接,接着将第一缆线304a的另一端缠绕在第一绞车302上,固定有壳体305a的第一缆线304a的另一端依次穿过第一绞车302对应的盾构井10、隧洞20,再将壳体305a另一端上连接的第二缆线304b穿过隧洞20以及第二绞车303下的盾构井10并缠绕在第二绞车303上,通过控制装置301对第一绞车302和第二绞车303的收放时得第一缆线304a和第二缆线304b保持恒定的拉力和紧绷状态牵引壳体305a在隧洞20内往复穿梭,在穿梭的过程中通过监测机构40对隧洞20内进行异物情况的监测,判断隧洞20内是否存在异物,当发现异物时,利用缆线304的距离判断隧洞20内异物存在的具体位置并及时进行处理。
请参考图5,本申请的利用隧洞监测装置100对隧洞20内异物进行异物监测的方法,先将第一绞车302和第二绞车303安装在两盾构井10上,将承载平台305呈密封的与缆线304固定连接,再将已经与承载平台305连接的缆线304的一端缠绕在第一绞车302上,使缆线304的另一端依次穿过第一绞车302下的盾构井10、隧洞20及第二绞车303下的盾构井10后缠绕在第二绞车303上,可以通过控制第一绞车302和第二绞车303的收放使缆线304呈紧绷状位于隧洞20内藉由缆线304的牵引使承载平台305呈悬浮在隧洞20内并且通过第一绞车302和第二绞车303的收放可以使缆线304带动内置有监测机构40的承载平台305随缆线304同步于隧洞20内往复穿梭以实时监测隧洞20内的异物情况。
下面结合图1-图5对对本申请利用隧洞监测装置100对隧洞20内异物进行异物监测的方法做进一步详细描述:
结合图1-图5所示,实施例一:异物监测的方法,包括如下步骤:
(S11)将第一绞车302和第二绞车303安装在两盾构井10的岸上;
(S12)承载平台305呈密封的与缆线304固定连接;
(S13)将固定有承载平台305的缆线304的一端缠绕于第一绞车302上,将缆线304的另一端依次穿过第一绞车302下的盾构井10、隧洞20及第二绞车303下的盾构井10后缠绕于第二绞车303上;
(S14)控制缆线304并使缆线304呈紧绷的位于隧洞20中,承载平台305藉由缆线304的牵引及约束而悬浮于隧洞20中;
(S15)控制内置有监测机构40的承载平台305随缆线304同步的于隧洞20内往复穿梭,监测机构40实时监测隧洞20内异物情况。
实施例二:
为了使第一绞车302和第二绞车303有更加精确的控制,本申请还提供一个控制装置301,控制装置301可使第一绞车302和第二绞车303的收放更加精确并能使缆线304呈紧绷状置于隧洞20内,藉由缆线304的牵引及约束使承载平台305悬浮于隧洞20中,具体地,控制缆线304并使缆线304呈紧绷的位于隧洞20中,承载平台305藉由缆线304的牵引及约束而悬浮于隧洞20中的步骤,进一步包括:通过控制装置301控制第一绞车302及第二绞车303对缆线304的收放,使承载平台305位于隧洞20中;通过控制装置301控制第一绞车302及第二绞车303对缆线304的收放,使固定有承载平台305的缆线304呈紧绷的位于隧洞20中,承载平台305藉由缆线304的牵引及约束而悬浮于隧洞20中;其完整的异物监测的方法,包括如下步骤:
(S21)将第一绞车302和第二绞车303安装在两盾构井10的岸上;
(S22)承载平台305呈密封的与缆线304固定连接;
(S23)将固定有承载平台305的缆线304的一端缠绕于第一绞车302上,将缆线304的另一端依次穿过第一绞车302下的盾构井10、隧洞20及第二绞车303下的盾构井10后缠绕于第二绞车303上;
(S24)通过控制装置301控制第一绞车302及第二绞车303对缆线304的收放,使承载平台305位于隧洞20中;
(S25)通过控制装置301控制第一绞车302及第二绞车303对缆线304的收放,使固定有承载平台305的缆线304呈紧绷的位于隧洞20中,承载平 台305藉由缆线304的牵引及约束而悬浮于隧洞20中;
(S26)控制内置有监测机构40的承载平台305随缆线304同步的于隧洞20内往复穿梭,监测机构40实时监测隧洞20内异物情况。
实施例三:
在承载平台305呈密封的与缆线304固定连接的步骤之前,具体还包括:将监测机构40内置于承载平台305内;其完整的异物监测的方法,包括如下步骤:
(S31)将第一绞车302和第二绞车303安装在两盾构井10的岸上;
(S32)将监测机构40内置于承载平台305内;
(S33)承载平台305呈密封的与缆线304固定连接;
(S34)将固定有承载平台305的缆线304的一端缠绕于第一绞车302上,将缆线304的另一端依次穿过第一绞车302下的盾构井10、隧洞20及第二绞车303下的盾构井10后缠绕于第二绞车303上;
(S35)控制缆线304并使缆线304呈紧绷的位于隧洞20中,承载平台305藉由缆线304的牵引及约束而悬浮于隧洞20中;
(S36)控制内置有监测机构40的承载平台305随缆线304同步的于隧洞20内往复穿梭,监测机构40实时监测隧洞20内异物情况。
实施例四:
结合上述实施例,本申请的异物监测的方法的完整步骤如下:
(S41)将第一绞车302和第二绞车303安装在两盾构井10的岸上;
(S42)将监测机构40内置于承载平台305内;
(S43)承载平台305呈密封的与缆线304固定连接;
(S44)将固定有承载平台305的缆线304的一端缠绕于第一绞车302上,将缆线304的另一端依次穿过第一绞车302下的盾构井10、隧洞20及第二绞车303下的盾构井10后缠绕于第二绞车303上;
(S45)通过控制装置301控制第一绞车302及第二绞车303对缆线304的收放,使承载平台305位于隧洞20中;
(S46)通过控制装置301控制第一绞车302及第二绞车303对缆线304的收放,使固定有承载平台305的缆线304呈紧绷的位于隧洞20中,承载平台305藉由缆线304的牵引及约束而悬浮于隧洞20中;
(S47)控制内置有监测机构40的承载平台305随缆线304同步的于隧洞20内往复穿梭,监测机构40实时监测隧洞20内异物情况。
结合图1至图4,由于本申请的异物监测的方法包括以下步骤:将第一绞车302和第二绞车303安装在两盾构井10的岸上;承载平台305呈密封的与缆线304固定连接;将固定有承载平台305的缆线304的一端缠绕于第一绞车302上,将缆线304的另一端依次穿过第一绞车302下的盾构井10、隧洞20及第二绞车303下的盾构井10后缠绕于第二绞车303上;控制缆线304并使缆线304呈紧绷的位于隧洞20中,承载平台305藉由缆线304的牵引及约束而悬浮于隧洞20中;控制内置有监测机构40的承载平台305随缆线304同步的于隧洞20内往复穿梭,监测机构40实时监测隧洞20内异物情况。因此,本申请先将第一绞车302和第二绞车303安装在两盾构井10的岸上,将内置有监测机构40的承载平台305呈密封的与缆线304固定连接,再将缆线304的一端缠绕在第一绞车302上,再依次通过第一绞车302下的盾构井10、隧洞20以及第二绞车303下的盾构井10后缠绕在第二绞车303上,使得可以控制第一绞车302和第二绞车303对缆线304进行收放,使缆线304在隧洞20内保持紧绷状牵引并约束承载平台305在隧洞20内往复穿梭,并通过承载平台305内置的监测机构40监测隧洞20内的异物情况,缆线304在隧洞20内呈紧绷状可使承载平台305能够保持相对稳定的姿态在隧洞20内运动,并且通过第一绞车302和第二绞车303对缆线304进行收放能够实现监测机构40在可以对隧洞20的全程进行异物情况监测。
值得注意的是,本申请的异物监测的方法尤其适用于监测核电站中的隧洞20内的异物。
结合图1-图5所示,由于本申请的浮筒式隧洞穿梭平台30的承载平台305在缆线304的牵引和导向下能够在有水的隧洞20内保持平稳的姿态进行往复 穿梭于整个隧洞20中,并且该承载平台305在缆线304的牵引和约束下于隧洞20内始终处于悬浮状态,有效的避免了在隧洞20内发生碰撞的危险,确保了承载平台305的安全穿梭,同时藉由该承载平台305可搭载各种用于监测隧洞20内工况的监测机构,从而使得这些监测机构能随承载平台305同步于隧洞20内稳定的进行呈悬浮状的穿梭,从而实时的全程监测隧洞20内的工况,尤其用于监测隧洞20内异物的情况,确保与隧洞20连通的各类设施的安全稳定的运行;另,本申请的隧洞监测装置100由于在上述可在隧洞20内往复穿梭的承载平台305内置有用于监测隧洞20内异物的监测机构40,从而使得就该监测机构40能随承载平台305于隧洞20内同步的进行往复穿梭,从而全程实时监测隧洞20内异物的情况,且运行平稳、可靠;同时本申请利用该隧洞监测装置100对隧洞20内异物进行监测的方法能更加精准和可靠的隧洞20内异物进行全程实时的监测。
值得注意的是,本申请的浮筒式隧洞穿梭平台30以及隧洞监测装置100中的承载平台305能在任何有水的隧洞20中进行往复穿梭,其应用不仅限于上述提及的核电站中的隧洞20,其也可应用于各类涵洞、水道等有水隧洞中。
以上所述仅为本申请所优选的实施例,不能以此来限定本申请的权利范围。在本申请的构思范围内,可以合理地做出相应的变化。因此,本申请的保护范围应以权利要求书为准。

Claims (32)

  1. 一种浮筒式隧洞穿梭平台,适于在两盾构井之间的隧洞内穿梭,其特征在于,所述浮筒式隧洞穿梭平台包括:
    控制装置;
    第一绞车和第二绞车,所述第一绞车和所述第二绞车均与所述控制装置电性连接;
    缆线,所述缆线的一端缠绕于所述第一绞车上,所述缆线的另一端缠绕于所述第二绞车上;
    可悬浮于水的承载平台,缆线呈密封且固定的与所述承载平台连接,所述承载平台藉由所述缆线与所述控制装置电性连接;
    所述控制装置藉由控制所述第一绞车和第二绞车对所述缆线的收放,而控制所述承载平台呈悬浮状的随所述缆线同步的于所述隧洞内往复穿梭。
  2. 如权利要求1所述的浮筒式隧洞穿梭平台,其特征在于,还包括缆线支撑导向装置,所述缆线呈滑动的穿过所述缆线支撑导向装置。
  3. 如权利要求2所述的浮筒式隧洞穿梭平台,其特征在于,所述缆线支撑导向装置呈可拆卸的塔吊结构。
  4. 如权利要求2所述的浮筒式隧洞穿梭平台,其特征在于,所述缆线支撑导向装置包括定位部和悬挂部,所述缆线呈滑动的穿过所述悬挂部,所述定位部与所述悬挂部连接形成弯折结构。
  5. 如权利要求4所述的浮筒式隧洞穿梭平台,其特征在于,所述悬挂部上设置有用于支撑和导向所述缆线的导向轮,所述导向轮设有供所述缆线呈滑动穿过的限位导槽。
  6. 如权利要求5所述的浮筒式隧洞穿梭平台,其特征在于,所述导向轮枢接于所述悬挂部上。
  7. 如权利要求6所述的浮筒式隧洞穿梭平台,其特征在于,所述导向轮凸设于所述悬挂部的一侧。
  8. 如权利要求5所述的浮筒式隧洞穿梭平台,其特征在于,所述悬挂部上还枢接有支撑轮,所述支撑轮与所述导向轮位于所述悬挂部的相对两侧上。
  9. 如权利要求4所述的浮筒式隧洞穿梭平台,其特征在于,所述定位部上枢接有用于支撑和导向所述缆线的导向轮,所述导向轮设有供所述缆线呈滑动穿过的限位导槽。
  10. 如权利要求4所述的浮筒式隧洞穿梭平台,其特征在于,所述定位部与所述悬挂部连接呈“7”字型。
  11. 如权利要求1所述的浮筒式隧洞穿梭平台,其特征在于,所述缆线包括第一缆线和第二缆线,所述第一缆线的一端缠绕于所述第一绞车上,所述第一缆线的另一端与所述承载平台的一端呈密封连接,所述承载平台的另一端与所述第二缆线的一端呈密封连接,所述第二缆线的另一端缠绕于所述第二绞车上;所述承载平台藉由所述第一缆线与所述第二缆线与控制装置电性连接;所述控制装置藉由控制所述第一绞车和第二绞车对所述第一缆线和第二缆线的收放,而控制所述承载平台呈悬浮状的于所述隧洞内往复穿梭。
  12. 如权利要求11所述的浮筒式隧洞穿梭平台,其特征在于,所述第一绞车和所述第二绞车上均设有与所述控制装置电性连接的张力传感器,所述控制装置藉由所述张力传感器的输出信号而控制所述第一绞车和第二绞车相互配合,使所述第一缆线和所述第二缆线保持绷紧状和恒定的拉力以牵引所述承载平台呈悬浮状的于所述隧洞内往复穿梭。
  13. 如权利要求1所述的浮筒式隧洞穿梭平台,其特征在于,所述缆线为浮力铠装电缆。
  14. 如权利要求13所述的浮筒式隧洞穿梭平台,其特征在于,所述缆线可悬浮于水。
  15. 如权利要求13所述的浮筒式隧洞穿梭平台,其特征在于,所述缆线的内部还布置有用于传输信号的光纤结构。
  16. 一种隧洞监测装置,适于在两盾构井之间的隧洞内穿梭以监测异物,其特征在于,所述隧洞监测装置包括浮筒式隧洞穿梭平台及用于监测隧洞内异物的监测机构,所述浮筒式隧洞穿梭平台如权利要求1-15任一项所述,所述监测机构设置于所述浮筒式隧洞穿梭平台的承载平台内并与所述缆线电性连接,所述监测机构藉由所述缆线与所述控制装置电性连接。
  17. 如权利要求16所述的隧洞监测装置,其特征在于,所述承载平台包括壳体,所述壳体呈中空结构,所述中空结构内设有与所述缆线电性连接的电路板。
  18. 如权利要求17所述的隧洞监测装置,其特征在于,所述壳体内安装有一安装杆。
  19. 如权利要求17所述的隧洞监测装置,其特征在于,所述壳体的头尾两端设有供缆线连接的缆线连接口。
  20. 如权利要求17所述的隧洞监测装置,其特征在于,所述壳体呈对称的抱合结构。
  21. 如权利要求17所述的隧洞监测装置,其特征在于,所述壳体的横截面呈中心对称结构。
  22. 如权利要求17所述的隧洞监测装置,其特征在于,所述壳体上呈均匀的向外凸设有尾翼。
  23. 如权利要求17所述的隧洞监测装置,其特征在于,所述缆线位于所述壳体的轴心线上。
  24. 如权利要求17所述的隧洞监测装置,其特征在于,所述监测机构位于所述壳体内。
  25. 如权利要求18所述的隧洞监测装置,其特征在于,所述监测机构包括电源模块以及与所述电源模块电性连接的控制模块、用于监测所述隧洞内异物的监测模块、用于存储所述监测模块所监测到的信息的存储模块和用于感知所述壳体姿态的感知模块,所述电源模块、控制模块、存储模块和感知模块安装在所述安装杆上,所述监测模块安装在所述壳体的头部位置。
  26. 如权利要求25所述的隧洞监测装置,其特征在于,所述控制模块通过所述缆线与所述控制装置通信并接收所述控制装置的信号以控制监测模块、存储模块以及感知模块工作,所述控制模块安装在偏离所述安装杆中心的位置上。
  27. 如权利要求25所述的隧洞监测装置,其特征在于,所述电源模块安装在所述安装杆的中心位置上。
  28. 如权利要求25所述的隧洞监测装置,其特征在于,所述壳体的头部具有透明结构,所述透明结构正对所述监测模块,所述监测模块藉由所述透明结构监测隧洞内的异物。
  29. 如权利要求18所述的隧洞监测装置,其特征在于,所述监测机构还包括用于调节所述壳体的平衡性的配重块,所述配重块安装在所述安装杆的两端。
  30. 一种利用如权利要求16-29任一项所述的隧洞监测装置对隧洞内异物进行异物监测的方法,其特征在于,包括以下步骤:
    (1)将所述第一绞车和所述第二绞车安装在两盾构井的岸上;
    (2)将所述承载平台呈密封的与所述缆线固定连接;
    (3)将固定有承载平台的所述缆线的一端缠绕于所述第一绞车上,将所述缆线的另一端依次穿过所述第一绞车下的盾构井、所述隧洞及所述第二绞车下的盾构井后缠绕于所述第二绞车上;
    (4)控制所述缆线并使所述缆线呈紧绷的位于所述隧洞中,所述承载平台藉由所述缆线的牵引及约束而悬浮于所述隧洞中;
    (5)控制内置有监测机构的承载平台随所述缆线同步的于所述隧洞内往复 穿梭,所述监测机构实时监测所述隧洞内异物情况。
  31. 如权利要求30所述的异物监测的方法,其特征在于,所述步骤(4)进一步包括如下步骤:
    (41)通过所述控制装置控制所述第一绞车及所述第二绞车对所述缆线的收放,使所述承载平台位于所述隧洞中;
    (42)通过所述控制装置控制所述第一绞车及所述第二绞车对所缆线的收放,使固定有承载平台的缆线呈紧绷的位于所述隧洞中,所述承载平台藉由所述缆线的牵引及约束而悬浮于所述隧洞中。
  32. 如权利要求30所述的异物监测的方法,其特征在于,所述步骤(2)之前进一步包括如下步骤:将所述监测机构内置于所述承载平台内。
PCT/CN2018/075776 2018-01-30 2018-02-08 浮筒式隧洞穿梭平台及监测装置和异物监测的方法 WO2019148528A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18903385.5A EP3748124B1 (en) 2018-01-30 2018-02-08 Pontoon type tunnel shuttle platform, monitoring device and foreign matter monitoring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810092225.2A CN110094235A (zh) 2018-01-30 2018-01-30 浮筒式隧洞穿梭平台及监测装置和异物监测的方法
CN201810092225.2 2018-01-30

Publications (1)

Publication Number Publication Date
WO2019148528A1 true WO2019148528A1 (zh) 2019-08-08

Family

ID=67442345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075776 WO2019148528A1 (zh) 2018-01-30 2018-02-08 浮筒式隧洞穿梭平台及监测装置和异物监测的方法

Country Status (3)

Country Link
EP (1) EP3748124B1 (zh)
CN (1) CN110094235A (zh)
WO (1) WO2019148528A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824932A (zh) * 2021-09-18 2021-12-21 大连海事大学 一种缆绳实时状态监测系统及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9401948A (nl) * 1994-11-22 1996-07-01 Nista Amsterdam B V Uit tunnelsecties samengestelde tunnel alsmede werkwijze voor het plaatsen van een uit tunnelsecties samengestelde tunnel.
CN102139750A (zh) * 2011-04-08 2011-08-03 中国船舶重工集团公司第七○二研究所 水下吊物装置
CN103738474A (zh) * 2013-12-26 2014-04-23 南通航运职业技术学院 船舶钻井平台
CN203998704U (zh) * 2014-08-21 2014-12-10 晋江市先锋机械制造有限公司 双向行走索道起重机
CN104261286A (zh) * 2014-10-22 2015-01-07 大连船舶重工集团有限公司 一种深海两浮式平台之间的物料转运系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2742879B1 (fr) * 1995-12-22 1998-03-13 Gaz De France Installation de surveillance sismique d'une zone souterraine renfermant un fluide
DE19818498A1 (de) * 1998-04-24 1999-10-28 Preussag Wasser Und Rohrtechni Verfahren und Vorrichtung zur Inspektion von Behälterinnenräumen
JP3420734B2 (ja) * 1999-03-12 2003-06-30 東京都下水道サービス株式会社 管渠内面画像の処理方法
AU767416B2 (en) * 1999-07-12 2003-11-06 Brian Eugene Whelan Load limiting device
US20040130332A1 (en) * 2002-11-27 2004-07-08 Harris Robert Jackson Sliding pipe plug
JP4209276B2 (ja) * 2003-07-18 2009-01-14 株式会社日立製作所 管渠内壁面検査システム
KR20060064123A (ko) * 2004-12-08 2006-06-13 오성종합기술(주) 윈치 제어 장치
KR100618621B1 (ko) * 2005-08-31 2006-09-06 지에스건설 주식회사 하수관로 보수용 케이블 가이드 장치
DE202006016642U1 (de) * 2006-10-31 2007-06-06 Hedemann, Werner Schwimmbares Kamerasystem zur Kanalzustandserfassung von stark wasserführenden Abwasserkanälen
CN102966178B (zh) * 2012-11-15 2015-01-21 北京百氏源环保技术有限公司 多功能地下管道清淤动力绞车
CN104787273A (zh) * 2015-05-12 2015-07-22 徐鹏飞 海底驻泊式深水油气管线巡检系统
CN205693316U (zh) * 2016-06-12 2016-11-16 中广核研究院有限公司 新型收放缆装置
CN205712454U (zh) * 2016-06-26 2016-11-23 保定金迪科学仪器有限公司 一种牵引式排水管道电视检测装置
CN106625700B (zh) * 2016-12-01 2023-11-14 台山核电合营有限公司 一种大型取水隧洞爬行监测机器人
CN207934936U (zh) * 2018-01-30 2018-10-02 中广核研究院有限公司 浮筒式隧洞穿梭平台及监测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9401948A (nl) * 1994-11-22 1996-07-01 Nista Amsterdam B V Uit tunnelsecties samengestelde tunnel alsmede werkwijze voor het plaatsen van een uit tunnelsecties samengestelde tunnel.
CN102139750A (zh) * 2011-04-08 2011-08-03 中国船舶重工集团公司第七○二研究所 水下吊物装置
CN103738474A (zh) * 2013-12-26 2014-04-23 南通航运职业技术学院 船舶钻井平台
CN203998704U (zh) * 2014-08-21 2014-12-10 晋江市先锋机械制造有限公司 双向行走索道起重机
CN104261286A (zh) * 2014-10-22 2015-01-07 大连船舶重工集团有限公司 一种深海两浮式平台之间的物料转运系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3748124A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824932A (zh) * 2021-09-18 2021-12-21 大连海事大学 一种缆绳实时状态监测系统及其使用方法
CN113824932B (zh) * 2021-09-18 2022-11-11 大连海事大学 一种缆绳实时状态监测系统及其使用方法

Also Published As

Publication number Publication date
EP3748124A4 (en) 2021-11-17
EP3748124B1 (en) 2024-03-27
CN110094235A (zh) 2019-08-06
EP3748124A1 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
EP3748123B1 (en) Tunnel wall-adhering shuttle platform and tunnel monitoring apparatus
ITMI950579A1 (it) Metodo per la connessione di condotte sottomarine particolarmente adatto per alte profondita' e grossi diametri
BRPI0716661B1 (pt) Aparelho e método para prover compensação de levantamento para uma carga suspensa de uma extremidade de um cabo em um ambiente marinho, com a outra extremidade do cabo.
CN205345279U (zh) 一种海上平台登乘装置
GB1478165A (en) Method and apparatus for connecting an offshore wellhead to a gathering platform
WO2019148528A1 (zh) 浮筒式隧洞穿梭平台及监测装置和异物监测的方法
CN103249640A (zh) 锚定数据通信系统
CN112595294A (zh) 一种筒内轨道式水体剖面观测浮标及方法
EP2636887A1 (en) Hydroelectric generating apparatus
CN207934933U (zh) 隧洞贴壁穿梭平台及隧洞监测装置
CN111874722B (zh) 一种用于线列阵的海底多缆布放绞车
US3983708A (en) Methods and apparatus for placing underwater guide lines
CN107364793B (zh) 一种双牵引式吊装系统
CN207934936U (zh) 浮筒式隧洞穿梭平台及监测装置
AU2009201417A1 (en) Concrete Shaft Lining Rig
CN109019383B (zh) 一种全海深延长下放设备及其方法
CN215974442U (zh) 水工涵洞检测车用绞盘的往复缠线机构
CN206203837U (zh) 平衡固定装置及水电站斜井移动式台车的卷扬牵引装置
CN115122301A (zh) 一种挂载式巡检机器人
CN114408682A (zh) 一种水下电场探测用电缆布放绞车装置
NL1037953C2 (en) Heave compensated chute.
CN107795751B (zh) 一种形态检测器回收舱
CN210118125U (zh) 连采机拖缆装置
CN215854460U (zh) 用于水工涵洞检测车的双绞盘牵引机构
CN219384609U (zh) 一种深海勘探船用的勘探器收放结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018903385

Country of ref document: EP

Effective date: 20200831