WO2019147038A1 - Matériau actif d'électrode négative comprenant un revêtement composite lié magnétiquement à une surface de matériau carboné, son procédé de fabrication, et batterie rechargeable au lithium de type non aqueux ayant ledit matériau actif d'électrode négative et son procédé de fabrication - Google Patents

Matériau actif d'électrode négative comprenant un revêtement composite lié magnétiquement à une surface de matériau carboné, son procédé de fabrication, et batterie rechargeable au lithium de type non aqueux ayant ledit matériau actif d'électrode négative et son procédé de fabrication Download PDF

Info

Publication number
WO2019147038A1
WO2019147038A1 PCT/KR2019/001014 KR2019001014W WO2019147038A1 WO 2019147038 A1 WO2019147038 A1 WO 2019147038A1 KR 2019001014 W KR2019001014 W KR 2019001014W WO 2019147038 A1 WO2019147038 A1 WO 2019147038A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
group
electrode active
precursor
Prior art date
Application number
PCT/KR2019/001014
Other languages
English (en)
Korean (ko)
Inventor
이상민
박민식
임하영
박금재
최정희
Original Assignee
한국전기연구원
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원, 경희대학교 산학협력단 filed Critical 한국전기연구원
Publication of WO2019147038A1 publication Critical patent/WO2019147038A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a rapid-charging non-aqueous lithium secondary battery and a method of manufacturing the same, and more particularly, to a rapid-charging non-aqueous lithium secondary battery and a method of manufacturing the same, Battery and a method of manufacturing the same.
  • the lithium secondary battery is a battery in which metal lithium is used as an anode active material and a nonaqueous solvent is used as an electrolyte. Since lithium is a highly ionized metal, development of a battery with high energy density can be achieved because high voltage can be generated. Lithium secondary batteries using lithium metal as a negative electrode active material have been used for a long time as a next-generation battery.
  • the charging / discharging potential of lithium is lower than the stable range of the conventional non-aqueous electrolyte, so that the decomposition reaction of the electrolyte occurs during charging and discharging.
  • a film is formed on the surface of the carbon-based negative electrode active material. That is, before the lithium ions intercalate into the carbon-based material, the electrolyte is decomposed to form a film on the surface of the electrode.
  • this film has a property of passing lithium ions but blocks the movement of electrons
  • SEI Solid Electrolyte Interface or Solid Electrolyte Interphase
  • the present invention provides a composite coating layer of two or more kinds of active materials on the surface of a carbon-based material to reduce the resistance upon insertion of lithium and to suppress the precipitation of lithium metal, And to provide a negative electrode active material which is capable of securing high-rate charging characteristics without deteriorating charging / discharging efficiency and lifetime characteristics when applied to an anode active material of a non-aqueous lithium secondary battery by improving the characteristics of the battery.
  • Another object of the present invention is to provide a nonaqueous lithium secondary battery having the above-mentioned negative electrode active material.
  • Me in Me x1 P y1 and Me x2 A y2 is at least one selected from the group consisting of Mo, Ni, Fe, Co, Ti, V, Cr, Nb and Mn.
  • a negative electrode active material for a non-aqueous lithium secondary battery wherein the negative active material is the same metal element.
  • Me includes Mo
  • Me x1 P y1 includes at least one kind selected from the group consisting of MoP, MoP 2 , Mo 3 P, MoP 4 , Mo 4 P 3 and Mo 8 P 5
  • Me x2 A y2 may include at least one selected from the group consisting of MoO, MoO 2 and MoO 3 , or may contain MoS 2 .
  • the content of MoP x in the coating layer is 1 wt% to 99 wt% or less.
  • the Me is described above, it contains Fe Me x1 P y1 is FeP, Fe 2 P and Fe 3 P and Mo 8 P contains at least one kinds from the group consisting of 5, wherein Me x2 A y2 is FeO, Fe 2 O 3 , or at least one selected from the group consisting of FeS, Fe 3 S and FeS 2 .
  • Me x contains Co
  • Me x 1 P y1 includes at least one of the group consisting of CoP and Co 2 P
  • Me x 2 y 2 is a group consisting of CoO, Co 3 O 4, and CoO 2
  • Me x 1 P y1 is at least one of the compounds consisting of Ti 3 P, Ti 2 P, Ti 7 P, Ti 4 P 3 , TiP, Ti 5 P and Ti 7 P 4 ,
  • Me x 2 A y 2 comprises at least one selected from the group consisting of TiO 2 , Ti 2 O 3 , Ti 3 O 4 , TiO 2 and Ti 3 O 2 , or Ti 8 S 10 , Ti 8 S 9 , At least one selected from the group consisting of Ti 16 S 21 , Ti 2 S, Ti 3 S, Ti 6 S, TiS 3 , TiS 2 and TiS.
  • the coating layer may be uniformly or partially formed on the surface of the carbon-based material.
  • the carbon-based material may include at least one selected from the group consisting of artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbead, petroleum coke, resinous body, carbon fiber and pyrolytic carbon .
  • the carbon-based material preferably has a particle size of 20 ⁇ or less.
  • a nonaqueous lithium secondary battery comprising a negative electrode having the above-described negative electrode active material.
  • a method of manufacturing a carbon-based material And forming a first precursor coating layer containing metal elements Me and O or S on the surface of the carbon-based material; Supplying a P precursor to the first precursor coating layer of the carbon-based material; And reacting the first precursor coating layer with the P precursor to form a compound having the formula Me x1 P y1 wherein x1> 0, y1> 0 and a formula Me x2 A y2 where A is O or S and x2> 0, y2> 0
  • Me in Me x1 P y1 and Me x2 A y2 is selected from the group consisting of Mo, Ni, Fe, Co, Ti, V, Cr, Nb and Mn
  • the negative electrode active material is at least one selected from the same metal element.
  • the P precursor includes at least one liquid source selected from the group consisting of sodium hypophosphite (NaH 2 PO 2 ), phosphoric acid (H 3 PO 4 ) and phosphorous trichloride (PCl 3 ) At least one vapor source selected from the group consisting of NaH 2 PO 2 ), phosphorous, red (P), phosphorous, black (P) and triphenyl phosphine (C 18 H 15 P).
  • NaH 2 PO 2 sodium hypophosphite
  • H 3 PO 4 phosphoric acid
  • PCl 3 phosphorous trichloride
  • the coating layer forming step may include a step of heat-treating the first precursor coating layer and the P precursor to react with each other.
  • the P precursor does not include the metal element Me
  • the first precursor coating layer and the P precursor may react to form a formula Me x1 P y1 (where x1> 0, y1> 0).
  • the heat treatment step may be performed for 1 to 10 hours in an inert gas atmosphere at 500 to 1000 ° C.
  • the MeO x or MeS x composite coating layer containing the MeP x phase on the surface of the carbon-based material used as the negative electrode active material of the non-aqueous lithium secondary battery, Lt; / RTI >
  • the resistance generated on the surface of the negative electrode active material through the surface coating layer is reduced, and when applied to the negative electrode active material of the non-aqueous lithium secondary battery, the high-rate charging characteristics can be improved without deteriorating the life characteristics.
  • FIG. 1 is a block diagram showing a printing molybdenum (MoPx) the manufacture of MoOx functional non-aqueous lithium secondary battery negative electrode active material coating layer is formed, including, such as MoP and MoP 2 in accordance with one embodiment of the present invention.
  • MoPx printing molybdenum
  • FIG. 2 is a photograph showing SEM analysis results of a negative electrode active material prepared according to an embodiment of the present invention.
  • FIG. 4 is a photograph of a result of a TEM analysis of an anode active material according to Example 1 of the present invention.
  • Example 5 is a photograph of an EDS analysis result of a negative electrode active material according to Example 1 of the present invention.
  • FIG. 6 is a graph showing half-cycle charge / discharge characteristics of a nonaqueous lithium secondary battery using negative active materials according to Examples and Comparative Examples of the present invention.
  • FIG. 7 is a graph comparing charge-discharge characteristics of a non-aqueous lithium secondary battery using a negative active material according to an embodiment of the present invention and a comparative example.
  • FIG. 8 is a graph showing lifetime characteristics of a non-aqueous lithium secondary battery using a negative electrode active material according to Examples and Comparative Examples of the present invention.
  • FIG. 9 is a graph showing charge / discharge efficiency characteristics of a non-aqueous lithium secondary battery using a negative electrode active material according to Examples and Comparative Examples of the present invention.
  • the non-aqueous lithium secondary battery negative electrode active material according to the invention the carbon-based material is formed on the carbon-based material surface formula Me x1 P y1 (where, x1> 0, y1> 0 , less than MeP x) and formula Me x2 A y2 , where A is O or S, x2 > 0, y2 > 0, MeA x ).
  • Me may preferably include at least one element selected from the group consisting of Mo, Ni, Fe, Co, Ti, V, Cr, Nb and Mn as transition metal elements. Or less in the case of oxide MeO x, sulfide, in some cases the formula MeA x is in the present specification is represented by an x MeS.
  • the MeP x compound and the MeA x compound form composites and are not present as a mixture.
  • the compounds are physically and chemically self-bonded and no binder is required for bonding.
  • the MeP x compound and the MeA x compound may form a solid solution.
  • the metal element (Me) of each compound is the same metal element.
  • the metal element may be derived from a starting material or a precursor.
  • the Me-P compound may be a binary compound such as M1-P (M1 is a transition metal) or a three-component compound such as M1-M2-P (M1 and M2 are transition metals) Lt; / RTI > Further, the Me-P compound may include two phases having different valencies.
  • the Mo-P compound may be one in which two or more phases selected from the compounds consisting of MoP, MoP 2 , Mo 3 P, MoP 4 , Mo 4 P 3 and Mo 8 P 5 coexist.
  • the MeA x compound is an oxide or a sulfide of the same metal as the MeP compound.
  • the MeA x compound may be a two-component compound, or a compound containing a three-component compound or a component system.
  • the MeA x compound may also include two phases with different valencies.
  • the phosphide constituting the composite coating layer may include at least one selected from the group consisting of MoP, MoP 2 , Mo 3 P, MoP 4 , Mo 4 P 3 and Mo 8 P 5 .
  • the phosphite comprises MoP or MoP 2 .
  • the oxide included in the composite coating layer may be MoO 2 , MoO, or MoO 3 .
  • the oxide comprises MoO 2.
  • the phosphide of the composite coating layer contains two kinds of MoP x composed of MoP and MoP 2 Lt; / RTI > At this time, the MoP x phase composed of MoP and MoP 2 is chemically or physically bonded to the surface of the carbon-based material together with the MoA x phase to exist as a compound.
  • the present invention can form a composite of phosphides, oxides and sulfides, which are also listed as Ni, Fe, Co, V, Cr, Mn and Nb, and a description thereof will be omitted.
  • the composite coating layer can uniformly coat the surface of the carbon-based material.
  • the coating layer may partially coat a part of the surface of the carbon-based material.
  • the content of molybdenum phosphate such as MoP and MoP 2 in the composite coating layer is preferably 5 wt% or more, more preferably 50 wt% or more.
  • At least one of the materials made of crystalline or amorphous carbon such as artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbead, petroleum coke, resinous body, carbon fiber and pyrolysis carbon is used .
  • the carbon-based material preferably has a particle size of 20 ⁇ or less.
  • FIG. 1 is a diagram schematically illustrating a process of manufacturing a negative electrode active material for a non-aqueous lithium secondary battery in which a functional coating layer containing molybdenum powder particles such as MoP and MoP 2 is formed according to an embodiment of the present invention.
  • a precursor including phosphorus (P) for forming a carbon-based material, a MeA x precursor and a metal phosphide (MeP x ) is prepared.
  • MeA x precursor in the present invention oxides or phosphides listed in Table 1 can be used.
  • MoO 3 which is a molybdenum oxide
  • NiS 2 which is a nickel sulfide
  • the present invention is not limited thereto, and various precursors such as (NH 4 ) 6 Mo 7 O 2 4 .4H 2 O can be used.
  • Me contained in the MeA x precursor may act as a metal source of the phosphide. That is, the MeA x precursor reacts with the P precursor to form a MeP x compound.
  • P precursor in the present invention various types of precursors including phosphorus (P) may be used.
  • sodium hypophosphite (NaH 2 PO 2 ), phosphoric acid (H 3 PO 4 ) or phosphorous trichloride (PCl 3 ) may be used as the liquid source.
  • Sodium hypophosphite (NaH 2 PO 2 ), phosphorous, red (P), phosphorous, black (P) or triphenyl phosphine (C 18 H 15 P) may be used as the vapor source. These sources may be used singly or in combination.
  • the carbon-based material preferably has an average particle size (particle size) of 20 mu m or less.
  • Various materials can be used as the carbon-based material, but it is preferable to use a black magnetic material when considering formation of a composite coating layer containing molybdenum phosphide such as MoP and MoP 2 .
  • a MoO 3 precursor solution containing Mo is dissolved in an H 2 O 2 solvent (S 110) to prepare a MoO 3 precursor solution (S 120).
  • the precursor solution can be prepared by dissolving the MoO 3 and H 2 O 2 solutions at a volume ratio of 1:30.
  • a precursor solution of a MoCl 5 precursor and a HCl solvent, a (NH 4 ) 6 Mo 7 O 24 4 H 2 O precursor and a precursor solution of a H 2 O solvent are other examples that may be considered in the present invention.
  • the molybdenum content in the precursor solution is preferably 1 to 15 wt% in terms of Mo in the whole solution
  • the coating solution prepared in the carbon-based material is coated and the coated carbon-based material is dried (S130).
  • the drying can be carried out at a temperature of room temperature to 100 ° C, for example, drying can be carried out at 100 ° C for 2 hours.
  • the dried carbon-based material is supplied with a precursor containing P.
  • precursor sources can be supplied by mixing the dried carbon-based material with NaH 2 PO 2 .
  • a complex coating layer of MeA x and MeP x is formed on the surface of the carbon-based material through heat treatment (S140).
  • the MoP x and MoO x coating layers can be performed in an inert gas atmosphere at 500 to 1000 ° C for 1 to 10 hours, for example, at 600 ° C in a nitrogen gas atmosphere for 2 hours.
  • Me contained in the MeA x precursor in the present invention serves as a source of the MeP x compound.
  • MoO 3 precursor When a MoO 3 precursor is used, MoO 3 is thermodynamically unstable at the heat treatment temperature and transitions to MoO 2 , which is more stable. In this process, a compound such as MoP or MoP 2 reacts with a P source to form a reaction product .
  • the negative electrode active material according to the present invention can form a composite coating layer containing MoP x and MoA x phases such as MoP and MoP 2 on the surface of the carbon-based material, It is possible to induce more stable movement of lithium ions.
  • a negative electrode active material and a nonaqueous lithium secondary battery using the negative active material were prepared.
  • artificial graphite having an average particle size of 17 mu m was used as the carbon-based material.
  • artificial graphite having no coating layer formed of the negative electrode active material was used.
  • the production of the non-aqueous lithium secondary battery according to the embodiment and the comparative example proceeds substantially the same.
  • a method for manufacturing the non-aqueous lithium secondary battery according to the embodiment will be mainly described.
  • a coating solution was prepared by dissolving MoO 3 as a MoO x precursor in an H 2 O 2 solution at a weight ratio of 2 wt% and 5 wt% .
  • the coating solution was uniformly coated on the surface of artificial graphite, stirred until the solvent evaporated, and sufficiently dried at 100 ° C.
  • the dried carbon-based material was then mixed with NaH 2 PO 2 and heat treated at 600 ° C.
  • Example 2 As shown in Table 2, in Comparative Example 1, artificial graphite in which a coating layer having a particle size of 20 mu m or less among the carbon-based materials was not formed was used.
  • the surface of artificial graphite was coated with 2 wt% of MoO 3 precursor, and in Example 2, the surface of artificial graphite was coated with about 5 wt% of MoO 3 precursor.
  • FIG. 2 is a scanning electron micrograph of an anode active material according to an embodiment of the present invention
  • FIG. 3 is an XRD pattern of a negative electrode active material of Examples and Comparative Examples.
  • a coating layer containing a MoPx compound as a phosphite is formed on the artificial graphite surface, unlike the comparative example.
  • a coating layer can be obtained with a MoP x compound containing MoP and MoP 2 and a complex with MoO x compound.
  • Transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS) analysis. 4 and 5 are TEM (transmission electron microscope) photographs and EDS analysis photographs showing the negative electrode active material according to Example 1 of the present invention.
  • the MoO x coating layer containing MoP and MoP 2 particles in the coating layer is an artificial graphite It can be confirmed that it is formed on the surface. This is because MoP and MoP 2 Is a physical or chemical bond with MoO x .
  • a nonaqueous lithium secondary battery was prepared using the negative electrode active material prepared according to the above Examples and Comparative Examples.
  • a slurry was prepared by using NMP (N-methyl-2-pyrrolidone) as a solvent with 96 wt% of an anode active material and 4 wt% of binder polyvinylidene fluoride (PVDF).
  • NMP N-methyl-2-pyrrolidone
  • PVDF binder polyvinylidene fluoride
  • the slurry was coated on a copper foil and dried to prepare an electrode. At this time, the loading level of the electrode is 5 mg / cm 2 and the compound density is 1.5 g / cc.
  • the electrochemical characteristics of the electrolyte were evaluated using a 1M LiPF 6 in EC / EMC.
  • Fig. 6 is a graph showing charging characteristics of nonaqueous lithium secondary batteries using the negative electrode active material according to Examples and Comparative Examples of the present invention.
  • FIG. 6B is an enlarged view of the initial section of FIG. 6A.
  • a MoO x coating layer containing MoP x composed of MoP and MoP 2 on the surface of artificial graphite it is possible to effectively reduce the resistance when inserting lithium ions on the artificial graphite surface and induce more stable lithium ion migration during high- And the charging characteristics are improved.
  • the comparison of Example 1 and Example 2 revealed that as the amount of MoO x coating layer comprising MoP x composed of MoP and MoP 2 was increased, the reversible capacity was reduced as the content of graphite decreased.
  • FIG. 7 shows the results of Comparative Example 1
  • FIG. 8 shows the results of Comparative Example 1
  • Example 1 and Example 2 were fabricated as corresponding cathodes, After charging and discharging three times at a constant current of 0.2 C (70 mA / g) in the Li / Li + potential region and charging at a constant current of 6 C (2100 mA / g), discharge at a constant current of 1 C (350 mA /
  • FIG. 8 is a graph comparing full cell lifetime characteristics of a non-aqueous lithium secondary battery using an anode active material according to an embodiment of the present invention and a comparative example.
  • Example 1 and Example 2 exhibit a relatively excellent capacity retention rate at a high rate charge / discharge cycle, and exhibit improved characteristics in charge / discharge efficiency results shown in FIG. This means that the high-rate charging characteristics of Examples 1 and 2 in which a MoO x coating layer containing MoP x composed of MoP and MoP 2 were introduced are improved.
  • the present invention is applicable to a lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne un matériau actif d'électrode négative, une batterie rechargeable au lithium de type non aqueux comprenant celui-ci, et son procédé de fabrication Plus particulièrement, l'invention concerne un matériau actif d'électrode négative pour une batterie rechargeable au lithium de type non aqueux, comprenant : un matériau à base de carbone ; et une couche de revêtement formée sur la surface du matériau à base de carbone et comprenant un composite de composés représenté par la formule Mex1Py1 (où x1>0, y1>0) et la formule Mex2Ay2 (où A est de l'O ou du S, x2>0, y2>0), où le Me de Mex1Py1 et de Mex2Ay2 est au moins un même élément métallique choisi dans le groupe constitué de : Mo, Ni, Fe, Co, Ti, V, Cr, Nb et Mn.
PCT/KR2019/001014 2018-01-25 2019-01-24 Matériau actif d'électrode négative comprenant un revêtement composite lié magnétiquement à une surface de matériau carboné, son procédé de fabrication, et batterie rechargeable au lithium de type non aqueux ayant ledit matériau actif d'électrode négative et son procédé de fabrication WO2019147038A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180009252A KR102590573B1 (ko) 2018-01-25 2018-01-25 탄소재 표면에 자기 결합된 복합체 코팅을 포함하는 음극 활물질, 그의 제조 방법 및 이러한 음극 활물질을 구비한 비수계 리튬이차전지 및 그의 제조 방법
KR10-2018-0009252 2018-01-25

Publications (1)

Publication Number Publication Date
WO2019147038A1 true WO2019147038A1 (fr) 2019-08-01

Family

ID=67396150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001014 WO2019147038A1 (fr) 2018-01-25 2019-01-24 Matériau actif d'électrode négative comprenant un revêtement composite lié magnétiquement à une surface de matériau carboné, son procédé de fabrication, et batterie rechargeable au lithium de type non aqueux ayant ledit matériau actif d'électrode négative et son procédé de fabrication

Country Status (2)

Country Link
KR (1) KR102590573B1 (fr)
WO (1) WO2019147038A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627031A (zh) * 2019-09-25 2019-12-31 常熟理工学院 一种钼掺杂磷化钴碳珊瑚片复合材料的制备方法
CN110880588A (zh) * 2019-11-25 2020-03-13 浙江理工大学 一种钛钴复合材料及其制备方法和应用
CN111063873A (zh) * 2019-12-11 2020-04-24 肇庆市华师大光电产业研究院 一种硫化钴-氧化钴复合钠离子电池负极材料的制备方法
CN111211302A (zh) * 2020-01-10 2020-05-29 桑顿新能源科技有限公司 锂离子电池正极材料及其制备方法、锂离子电池正极、锂离子电池和用电设备
CN112614984A (zh) * 2020-12-25 2021-04-06 湖州凯金新能源科技有限公司 一种锂电池用低磁性物质的石墨负极材料,及其制备方法
CN114057402A (zh) * 2021-11-15 2022-02-18 海南大学 一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用
CN114941157A (zh) * 2022-05-30 2022-08-26 安徽工业大学 一种电催化剂材料及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111005023B (zh) * 2019-12-31 2021-11-30 中核北方核燃料元件有限公司 一种磷化三钼涂层的制备方法
CN115315831A (zh) * 2020-03-13 2022-11-08 株式会社Lg新能源 负极活性材料、其制备方法和包含其的锂二次电池
CN111892095A (zh) * 2020-07-22 2020-11-06 大连理工大学 一种MoS2基多元过渡金属硫化物复合材料的制备方法
CN112582616B (zh) * 2020-12-11 2022-03-15 电子科技大学 一种FeSz-FexOy核壳结构复合材料及其制备方法和应用
CN112786900B (zh) * 2021-02-03 2022-01-28 江西理工大学 锌-空气电池用嵌有Fe2P纳米晶的富氮磷碳球及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130273425A1 (en) * 2010-08-16 2013-10-17 Massachusetts Institute Of Technology Mixed phosphate-diphosphate electrode materials and methods of manufacturing same
KR20150057238A (ko) * 2013-11-19 2015-05-28 한국전기연구원 리튬 이온전지용 MoP/MoP2 음극 활물질 및 그 제조 방법
KR20150103841A (ko) * 2014-03-04 2015-09-14 전자부품연구원 음극 활물질, 그를 갖는 비수계 리튬이차전지 및 그의 제조 방법
KR20160059100A (ko) * 2014-11-17 2016-05-26 한국전기연구원 Fe-Mo-P 복합체 음극 활물질, 그를 포함하는 음극 및 그 제조 방법
KR20160059096A (ko) * 2014-11-17 2016-05-26 한국전기연구원 MoP 코팅을 갖는 리튬 이온전지용 Si계 음극 활물질,그를 포함하는 음극 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130273425A1 (en) * 2010-08-16 2013-10-17 Massachusetts Institute Of Technology Mixed phosphate-diphosphate electrode materials and methods of manufacturing same
KR20150057238A (ko) * 2013-11-19 2015-05-28 한국전기연구원 리튬 이온전지용 MoP/MoP2 음극 활물질 및 그 제조 방법
KR20150103841A (ko) * 2014-03-04 2015-09-14 전자부품연구원 음극 활물질, 그를 갖는 비수계 리튬이차전지 및 그의 제조 방법
KR20160059100A (ko) * 2014-11-17 2016-05-26 한국전기연구원 Fe-Mo-P 복합체 음극 활물질, 그를 포함하는 음극 및 그 제조 방법
KR20160059096A (ko) * 2014-11-17 2016-05-26 한국전기연구원 MoP 코팅을 갖는 리튬 이온전지용 Si계 음극 활물질,그를 포함하는 음극 및 그 제조 방법

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627031A (zh) * 2019-09-25 2019-12-31 常熟理工学院 一种钼掺杂磷化钴碳珊瑚片复合材料的制备方法
CN110880588A (zh) * 2019-11-25 2020-03-13 浙江理工大学 一种钛钴复合材料及其制备方法和应用
CN110880588B (zh) * 2019-11-25 2021-03-05 浙江理工大学 一种钛钴复合材料及其制备方法和应用
CN111063873A (zh) * 2019-12-11 2020-04-24 肇庆市华师大光电产业研究院 一种硫化钴-氧化钴复合钠离子电池负极材料的制备方法
CN111063873B (zh) * 2019-12-11 2022-06-03 肇庆市华师大光电产业研究院 一种硫化钴-氧化钴复合钠离子电池负极材料的制备方法
CN111211302A (zh) * 2020-01-10 2020-05-29 桑顿新能源科技有限公司 锂离子电池正极材料及其制备方法、锂离子电池正极、锂离子电池和用电设备
CN112614984A (zh) * 2020-12-25 2021-04-06 湖州凯金新能源科技有限公司 一种锂电池用低磁性物质的石墨负极材料,及其制备方法
CN112614984B (zh) * 2020-12-25 2022-11-11 湖州凯金新能源科技有限公司 一种锂电池用低磁性物质的石墨负极材料,及其制备方法
CN114057402A (zh) * 2021-11-15 2022-02-18 海南大学 一种活性物质玻璃粉末的制备方法、钒钼玻璃材料及其应用
CN114941157A (zh) * 2022-05-30 2022-08-26 安徽工业大学 一种电催化剂材料及其制备方法
CN114941157B (zh) * 2022-05-30 2023-11-28 安徽工业大学 一种电催化剂材料及其制备方法

Also Published As

Publication number Publication date
KR102590573B1 (ko) 2023-10-18
KR20190090496A (ko) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2019147038A1 (fr) Matériau actif d'électrode négative comprenant un revêtement composite lié magnétiquement à une surface de matériau carboné, son procédé de fabrication, et batterie rechargeable au lithium de type non aqueux ayant ledit matériau actif d'électrode négative et son procédé de fabrication
WO2020231169A1 (fr) Matériau actif d'anode comprenant un revêtement de phosphure métallique sur la surface d'un matériau carboné, sa méthode de préparation, batterie secondaire au lithium non aqueuse comprenant un matériau actif d'anode, et sa méthode de fabrication
WO2019098660A2 (fr) Matériau actif d'anode, son procédé de préparation, et batterie secondaire au lithium non aqueux comprenant ledit matériau actif d'anode, et son procédé de préparation
WO2015133692A1 (fr) Matériau actif de cathode, batterie secondaire au lithium le comprenant et son procédé de préparation
WO2010047525A2 (fr) Phosphate de fer- lithium de structure olivine et procédé d'analyse de celui-ci
WO2010047552A2 (fr) Matériau actif pour électrode positive ayant une efficacité d'électrode et des caractéristiques de densité d'énergie améliorées
WO2014109582A1 (fr) Procédé permettant de préparer une nanopoudre de phosphate de fer lithié revêtu de carbone
WO2014109579A1 (fr) Procédé pour préparer une nanopoudre de phosphate de lithium-fer
WO2019078690A2 (fr) Matériau actif négatif, électrode négative renfermant un matériau actif négatif, et batterie secondaire comprenant une électrode négative
WO2014098419A1 (fr) Matière de cathode pour batterie rechargeable au lithium, son procédé de fabrication et batterie rechargeable au lithium la comprenant
WO2019078544A1 (fr) Électrode négative pour batterie secondaire au lithium et batterie secondaire au lithium la comprenant
WO2019124980A1 (fr) Matériau actif d'électrode négative pour batterie secondaire au lithium, son procédé de fabrication, et batterie secondaire au lithium fabriquée à l'aide de celui-ci
WO2011129636A2 (fr) Procédé pour synthétiser des matériaux de nanoélectrode par utilisation d'un procédé de combustion ultrarapide, et matériaux de nanoélectrode synthétisés par le procédé
WO2019112325A1 (fr) Matériau actif d'électrode négative pour batterie secondaire à électrolyte non aqueux et procédé de production correspondant
WO2015005551A1 (fr) Procédé pour préparer une nanopoudre de phosphate de métal lithium revêtu de carbone
WO2016175426A1 (fr) Procédé de traitement de surface pour le dioxyde de cobalt et de lithium et batterie rechargeable au lithium comprenant ce dernier
WO2011162529A2 (fr) Matériau actif d'électrode négative présentant une sécurité améliorée, ainsi qu'accumulateur secondaire le comprenant
WO2015174652A1 (fr) Matière active d'électrode positive pour batterie au lithium-ion, contenant du phosphate de zirconium-vanadium-lithium, et batterie au lithium-ion comprenant celle-ci
WO2012141503A2 (fr) Matière active d'électrode positive, son procédé de préparation et électrode positive et batterie au lithium l'utilisant
WO2022124762A1 (fr) Matériau d'électrode positive de batterie secondaire au lithium, son procédé de fabrication et batterie secondaire au lithium comprenant ce matériau
WO2018194345A1 (fr) Anode pour batterie secondaire au lithium, batterie secondaire au lithium la comprenant et son procédé de fabrication
WO2014046405A2 (fr) Matériau actif d'anode, pile rechargeable non aqueuse au lithium le comprenant, et procédé de préparation associé
WO2021246830A1 (fr) Procédé d'activation de propriété électrochimique de matériau actif de cathode pour batterie rechargeable au lithium, et matériau actif de cathode pour batterie rechargeable au lithium
WO2021182926A1 (fr) Matériau actif négatif, son procédé de fabrication, et batterie secondaire au lithium ayant un matériau actif négatif
WO2018203731A1 (fr) Matériau actif d'électrode négative, électrode négative comprenant un matériau actif d'électrode négative, batterie secondaire comprenant une électrode négative, et procédé de préparation de matériau actif d'électrode négative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743146

Country of ref document: EP

Kind code of ref document: A1