WO2019146611A1 - 感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、半導体デバイス - Google Patents

感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、半導体デバイス Download PDF

Info

Publication number
WO2019146611A1
WO2019146611A1 PCT/JP2019/001958 JP2019001958W WO2019146611A1 WO 2019146611 A1 WO2019146611 A1 WO 2019146611A1 JP 2019001958 W JP2019001958 W JP 2019001958W WO 2019146611 A1 WO2019146611 A1 WO 2019146611A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
formula
photosensitive resin
preferable
Prior art date
Application number
PCT/JP2019/001958
Other languages
English (en)
French (fr)
Inventor
健志 川端
健太 吉田
悠 岩井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020207021473A priority Critical patent/KR102313182B1/ko
Priority to JP2019567095A priority patent/JP7008732B2/ja
Priority to CN201980009370.2A priority patent/CN111630454B/zh
Publication of WO2019146611A1 publication Critical patent/WO2019146611A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • G03F7/0758Macromolecular compounds containing Si-O, Si-C or Si-N bonds with silicon- containing groups in the side chains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a photosensitive resin composition, a resin, a cured film, a laminate, a method for producing a cured film, and a semiconductor device.
  • a polyimide precursor, a polyimide resin obtained by cyclizing and curing a polybenzoxazole precursor and the like, and a polybenzoxazole resin are applied to various uses because they are excellent in heat resistance, insulation and the like (for example, non-patent literature) 1 and 2).
  • the application thereof is not particularly limited, but in the field of semiconductor devices for mounting, the use as a material of an insulating film and its protective film or sealing material can be mentioned. In addition, it is also used as a base film or a cover lay of a flexible substrate.
  • the above polyimide resins and polybenzoxazole resins generally have low solubility in solvents.
  • a method of dissolving in a solvent in the state of a polymer precursor (polyimide precursor or polybenzoxazole precursor) before the cyclization reaction, and applying it to a substrate or the like is often used.
  • a polymer precursor polyimide precursor or polybenzoxazole precursor
  • the polymer precursor can be cyclized by heating to form a cured resin layer (cured film).
  • Patent Document 1 The polymer precursor as described above is described, for example, in Patent Document 1.
  • patent document 1 after making a dicarboxylic acid or a dicarboxylic acid derivative halogenate using a halogenating agent, when making it react with diamine, adjusting a halogenating agent, the water contained in a reaction system, and the quantity of a raw material is disclosed It is done. It is said that this makes it possible to accelerate the cyclization rate of the polymer precursor.
  • the document further discloses that a polymer precursor is provided with a specific acid group.
  • the polymer precursor can be cured by cyclization as described above, but because of its properties, it may undergo cyclization during storage and may lack the stability of the resin. Then, this invention aims at provision of the photosensitive resin composition which is excellent in storage stability, resin, a cured film, a laminated body, the manufacturing method of a cured film, and a semiconductor device.
  • a photosensitive resin composition comprising a polymer precursor selected from a polyimide precursor and a polybenzoxazole precursor, and a photoactive compound, wherein the polymer precursor is a tetracarboxylic acid or tetracarboxylic acid derivative , A dicarboxylic acid, and a sulfonic acid bonded to a side chain of the above polymer precursor composed of a constitutional unit derived from at least one of a dicarboxylic acid derivative and a constitutional unit derived from at least one of a diamine via a linking group
  • the photosensitive resin composition which has at least 1 sort (s) of the group which consists of a group and the sulfonic acid group couple
  • a 1 and A 2 each independently represent an oxygen atom or NH
  • R 111 represents a divalent organic group
  • R 115 represents a tetravalent organic group
  • R 113 and
  • Each R 114 independently represents a hydrogen atom or a monovalent organic group
  • R 121 represents a divalent organic group
  • R 122 represents a tetravalent organic group
  • R 123 and R 124 each independently represent a hydrogen atom or a monovalent organic group.
  • the polymer precursor is represented by Formula (1-1), Formula (1-2), Formula (1-3), Formula (2-1), Formula (2-2), and Formula (2-3)
  • a 1 and A 2 each independently represent an oxygen atom or NH
  • R 111 represents a divalent organic group
  • R 115 represents a tetravalent organic group
  • R 113 and R 114 represent And each independently represents a hydrogen atom or a monovalent organic group
  • X 1 , X 2 and X 3 each independently represent a linking group
  • * represents a bonding position with the main chain of the polyimide precursor
  • ns is Represents an integer of 1 to 4;
  • R 121 represents a divalent organic group
  • R 122 represents a tetravalent
  • ⁇ 5> Any one of ⁇ 1> to ⁇ 4>, wherein the total number of sulfonic acid groups contained in the above polymer precursor is 0.05% or more and 15.0% or less of the total number of all structural units
  • ⁇ 6> The photosensitive resin composition according to any one of ⁇ 1> to ⁇ 5>, further comprising a radically polymerizable compound.
  • ⁇ 7> The photosensitive resin composition according to any one of ⁇ 1> to ⁇ 6>, further comprising a curing accelerator.
  • ⁇ 8> The photosensitive resin composition according to any one of ⁇ 1> to ⁇ 7>, wherein the photoactive compound comprises a photo radical polymerization initiator.
  • ⁇ 9> The photosensitive resin composition according to any one of ⁇ 1> to ⁇ 8>, which is used for development.
  • ⁇ 10> The photosensitive resin composition according to any one of ⁇ 1> to ⁇ 9>, which is used for development using a developer containing an organic solvent.
  • a 1 and A 2 each independently represent an oxygen atom or NH
  • R 111 represents a divalent organic group
  • R 115 represents a tetravalent organic group
  • R 113 and R 114 represent And each independently represents a hydrogen atom or a monovalent organic group
  • X 1 , X 2 and X 3 each independently represent a linking group
  • * represents a bonding position with the main chain of the polyimide precursor
  • ns is Indicates an integer of 1 to 4
  • R 121 represents a divalent organic group
  • R 122 represents a tetravalent organic group
  • R 123 and R 124 each independently represent a hydrogen atom or a monovalent organic group
  • X 4 , X 5 and X 6 each independently represent a linking group
  • * represents a bonding position to the main chain of the polybenzoxazole precursor
  • ns represents an integer of 1 to 4.
  • ⁇ 13> A cured film obtained by curing the photosensitive resin composition according to any one of ⁇ 1> to ⁇ 11>.
  • the laminated body which has a cured film as described in ⁇ 14> ⁇ 13> two or more layers.
  • the laminated body as described in ⁇ 14> which has a metal layer between ⁇ 15> said cured films.
  • ⁇ 16> A method for producing a cured film, comprising using the photosensitive resin composition according to any one of ⁇ 1> to ⁇ 11>.
  • a photosensitive resin composition layer forming step wherein the photosensitive resin composition is applied to a substrate to form a layer, An exposure step of exposing the photosensitive resin composition layer;
  • the manufacturing method of the cured film as described in ⁇ 16> which has the development process process of developing with respect to the exposed photosensitive resin composition layer.
  • the semiconductor device which has a cured film as described in ⁇ 18> ⁇ 13>, or the laminated body as described in ⁇ 14> or ⁇ 15>.
  • the photosensitive resin composition which is excellent in storage stability, resin, a cured film, a laminated body, the manufacturing method of a cured film, and a semiconductor device can be provided. Furthermore, according to the present invention, a novel resin can be provided to enrich the material.
  • exposure includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams, unless otherwise specified.
  • light used for exposure generally, a bright line spectrum of a mercury lamp, far ultraviolet rays represented by an excimer laser, extreme ultraviolet rays (EUV light), actinic rays such as X-rays, electron beams and the like can be mentioned.
  • (meth) acrylate represents both or either of “acrylate” and “methacrylate”
  • (meth) acrylic” is both “acrylic” and “methacrylic” or "(Meth) acryloyl” represents either or both of “acryloyl” and “methacryloyl”.
  • the term "process” is included in the term if the intended function of the process is achieved, even if it can not be clearly distinguished from other processes, not only the independent process. .
  • the solid content is a mass percentage of the other components excluding the solvent with respect to the total mass of the composition.
  • solid content concentration means the density
  • weight average molecular weight (Mw) and number average molecular weight (Mn) are defined as polystyrene equivalent values according to gel permeation chromatography (GPC measurement) unless otherwise stated.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are, for example, HLC-8220 (manufactured by Tosoh Corp.), guard column HZ-L as a column, TSKgel Super HZM-M, TSKgel It can be determined by using Super HZ4000, TSKgel Super HZ3000 and TSKgel Super HZ2000 (manufactured by Tosoh Corp.). Eluents are to be determined using THF (tetrahydrofuran) unless otherwise stated. Moreover, a detection shall use the wavelength 254 nm detector of a UV ray (ultraviolet light), unless it mentions specially.
  • the photosensitive resin composition of the present invention (hereinafter, sometimes simply referred to as “the composition of the present invention” or “the resin composition of the present invention”) is a polymer selected from a polyimide precursor and a polybenzoxazole precursor.
  • the present invention will be described in detail, focusing on the component compositions constituting a preferred embodiment of the present composition.
  • the photosensitive resin composition of the present invention comprises a polymer precursor selected from a polyimide precursor and a polybenzoxazole precursor.
  • the polymer precursor is composed of a structural unit derived from at least one of a tetracarboxylic acid, a tetracarboxylic acid derivative, a dicarboxylic acid, and a dicarboxylic acid derivative, and a structural unit derived from at least one of a diamine.
  • a constituent unit derived from tetracarboxylic acid etc.
  • constituent units of the polymer precursor and a constituent unit derived from diamine means that these constituent units occupy most of the constituent units of the polymer precursor, and the polymer It is not essential that all constituent units of the precursor be composed of these constituent units. For example, if 70 mol% or more, further 80 mol% or more, particularly 90 mol% or more of all the structural units are the above structural units, the above requirements are satisfied.
  • structures derived from tetracarboxylic acids and tetracarboxylic acid derivatives structures composed of R 115 of formula (1) described later and four adjacent carbonyl groups will be described later as structural units derived from dicarboxylic acids and dicarboxylic acid derivatives.
  • the structural unit which consists of R121 of Formula (2), and two adjacent carbonyl groups is mentioned.
  • the structure of the diamine include structural units of two NH groups R 122 and adjacent the formula (2) and structural units described below consists of two NH where R 111 and adjacent the formula (1) described later. That is, in the photosensitive resin composition of the present invention, in one embodiment, at least a part of R 115 , R 122 , R 111 and R 121 has a sulfonic acid group introduced via a linking group. preferable. Examples of the linking group at this time include * 1 -Li-Lt- * 2 of the formula (Ls) described later. Here, * 1 is the main chain structure side and * 2 is the sulfonic acid group side.
  • polymer precursors polyimide precursors are preferred.
  • the above-mentioned polymer precursor has a sulfonic acid group in a specific form at its terminal and / or side chain.
  • the sulfonic acid group is either (i) a sulfonic acid group bonded to the side chain of the polymer precursor via a linking group, or (ii) a sulfonic acid group bonded to the end of the polymer precursor. It is presumed that the following technical significance has been defined in this way. That is, (i) the point at which the sulfonic acid group is bonded to the side chain via the linking group is better in the mobility of the sulfonic acid group than that in which the sulfonic acid group is introduced without the linking group.
  • the “sulfonic acid group” is a narrowly defined sulfonic acid group, ie, a structure in which a —SO 3 H group is bonded to a carbon skeleton, and is different from a sulfamic acid structure or a sulfonic acid monoester structure.
  • the resin has a sulfonic acid group as a strong acid group, it can be expected that the action as a high acid group will be exhibited.
  • the polymer precursor but there may be -SO 3 H group bonded to a non-carbon skeleton, it is preferable no -SO 3 H group bonded to a non-carbon skeleton.
  • fills said conditions may be called "the site
  • a preferred embodiment of the portion containing a sulfonic acid group includes a structure of the following formula (Ls). * 1 -Li-Lt- (SO 3 H) ns formula (Ls) * 1 is a bonding position on the structure (for example, aromatic ring) side of the main chain. Li and Lt are each independently a linking group or a single bond, and at least one is a linking group. Further, between the structure forming the main chain and the site of the formula (Ls), a linking group L to a linking group Lh which will be described in detail later may be interposed, but it is preferable that they are not interposed.
  • Formula (Ls) may be bonded only to one side of one constituent unit and / or to one end, or may be connected to two or more. When two or more are combined, each formula (Ls) may be the same or different. In the present invention, it is preferable that Formula (Ls) is bonded to the side chain of one constitutional unit and / or only one at one end. In particular, when Formula (Ls) is bonded to the side chain, Formula (Ls) is bonded to a structural unit derived from at least one of tetracarboxylic acid, tetracarboxylic acid derivative, dicarboxylic acid, and dicarboxylic acid derivative Is preferred.
  • linking group having a hetero atom examples include an amido group (CONH), an ester group (COO), a urea group (NHCONH), a urethane group (NHCOO), an imide group (CONHCO) and the like. These hydrogen atoms may be substituted by a substituent (for example, a substituent T described later), but are preferably not substituted.
  • substituent T for example, a substituent T described later
  • Li is not limited by the order of description of linking groups, and for example, CONH may be NHCO, COO may be OCO, and NHCOO may be OCONH in a specific linking direction.
  • Lt includes a linking group composed of a carbon atom and a hydrogen atom.
  • Lt is preferably a linking group composed of a carbon atom and a hydrogen atom among linking groups L whose details will be described later.
  • Lt is preferably one having 1 to 22 carbon atoms, more preferably one having 1 to 18 carbon atoms, and still more preferably one having 1 to 10 carbon atoms.
  • Lt is preferably a hydrocarbon group, and is preferably an alkylene group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms) and an alkenylene group (preferably 2 to 12 carbon atoms, 6 is more preferable, 2 to 3 is more preferable, an arylene group (preferably having 6 to 22 carbon atoms, more preferably 6 to 18 and further preferably 6 to 10 carbon atoms), and an aryl alkylene group (preferably having 7 to 23 carbon atoms) , 7 to 19 is more preferable, and 7 to 11 is more preferable.
  • An arylene group is more preferable.
  • the linking group Lt may or may not further be intervened by a linking group Lh having a hetero atom.
  • the linking group Lt does not prevent having a substituent such as a hydroxyl group, a carboxylic acid, an amino group, and a halogen atom within the range where the effects of the present invention are exhibited. Details of Lh will be described later.
  • ns is an integer of 1 to 4, preferably 1 or 2, and more preferably 1.
  • the formula weight of the formula (Ls) is preferably 14 to 300, and more preferably 50 to 200.
  • the polyimide precursor preferably contains a constituent unit represented by the following formula (1).
  • a 1 and A 2 each independently represent an oxygen atom or NH
  • R 111 represents a divalent organic group
  • R 115 represents a tetravalent organic group
  • R 113 and R 114 are each independently And represents a hydrogen atom or a monovalent organic group.
  • a 1 and A 2 are each independently an oxygen atom or NH, preferably an oxygen atom.
  • R 111 represents a divalent organic group.
  • the divalent organic group include a linear or branched aliphatic group, a cyclic aliphatic group, and a group consisting of an aromatic group, a heteroaromatic group, or a combination thereof, and having 2 to 20 carbon atoms
  • an aromatic group having 6 to 20 carbon atoms is more preferred.
  • R 111 is preferably derived from a diamine.
  • a diamine used for manufacture of a polyimide precursor linear or branched aliphatic, cyclic aliphatic or aromatic diamine etc. are mentioned.
  • the diamine may be used alone or in combination of two or more.
  • the diamine is a linear aliphatic group having 2 to 20 carbon atoms, a branched or cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 6 to 20 carbon atoms, or a combination thereof It is preferable to be one containing the following group, and more preferable to be a diamine containing an aromatic group having 6 to 20 carbon atoms. The following is mentioned as an example of an aromatic group.
  • diamine specifically, 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane and 1,6-diaminohexane; 1,2- or 1 2,3-diaminocyclopentane, 1,2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis- (4- Aminocyclohexyl) methane, bis- (3-aminocyclohexyl) methane, 4,4'-diamino-3,3'-dimethylcyclohexylmethane and isophorone diamine; meta and para phenylene diamine, diaminotoluene, 4,4'- and 3 , 3'-Diaminobiphenyl, 4,4'-diaminodiphenyl ether, 3,
  • diamines (DA-1) to (DA-18) shown below are also preferable.
  • the diamine which has an at least 2 or more alkylene glycol unit in a principal chain is also mentioned as a preferable example.
  • Preferred are diamines containing two or more ethylene glycol chains and / or propylene glycol chains together in one molecule, more preferably diamines not containing an aromatic ring.
  • x, y and z are average values.
  • R 111 is preferably represented by —Ar 0 -L 0 -Ar 0 — from the viewpoint of the flexibility of the resulting cured film.
  • Ar 0 is each independently an aromatic hydrocarbon group (preferably having 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, and particularly preferably 6 to 10 carbon atoms), and is preferably a phenylene group.
  • the preferred range is the same as A described above.
  • R 111 is preferably a divalent organic group represented by the following formula (51) or formula (61) from the viewpoint of i-ray transmittance.
  • the divalent organic group represented by the formula (61) is more preferable from the viewpoint of i ray transmittance and availability.
  • R 50 to R 57 each independently represent a hydrogen atom, a fluorine atom or a monovalent organic group, and at least one of R 50 to R 57 represents a fluorine atom, a methyl group, a fluoromethyl group, a difluoromethyl group, or It is a trifluoromethyl group.
  • R 50 to R 57 As the monovalent organic group of R 50 to R 57, a C 1 to C 10 (preferably C 1 to 6) unsubstituted alkyl group, a C 1 to 10 (preferably C 1 to 6) fluorine group And alkylated alkyl groups.
  • R 58 and R 59 each independently represent a fluorine atom, a fluoromethyl group, a difluoromethyl group or a trifluoromethyl group.
  • R 115 in Formula (1) represents a tetravalent organic group.
  • a tetravalent organic group the group containing an aromatic ring is preferable, and the group represented by following formula (5) or Formula (6) is more preferable.
  • R 112 has the same meaning as A, and the preferred range is also the same.
  • the tetravalent organic group which R115 in Formula (1) represents specifically, the tetracarboxylic acid residue etc. which remain after removing an acid dianhydride group from tetracarboxylic acid dianhydride etc. are mentioned.
  • the tetracarboxylic acid dianhydride may be used alone or in combination of two or more.
  • the tetracarboxylic acid dianhydride is preferably a compound represented by the following formula (7).
  • R 115 represents a tetravalent organic group.
  • R 115 has the same meaning as R 115 in formula (1).
  • tetracarboxylic acid dianhydride examples include pyromellitic acid, pyromellitic acid dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic acid dianhydride, 3,3 ′, 4 4,4'-diphenyl sulfide tetracarboxylic acid dianhydride, 3,3 ', 4,4'-diphenyl sulfone tetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 3,3 ', 4,4'-Diphenylmethanetetracarboxylic dianhydride, 2,2', 3,3'-diphenylmethanetetracarboxylic dianhydride, 2,3,3 ', 4'-biphenyltetracarboxylic acid Dianhydride, 2,3,3 ', 4'-benzophenonet
  • DAA-1 to DAA-5 shown below are also mentioned as preferable examples.
  • R 113 and R 114 respectively represent a hydrogen atom or a monovalent organic group. It is preferable that at least one of R 113 and R 114 contains a radically polymerizable group, and it is more preferable that both contain a radically polymerizable group.
  • the radically polymerizable group is a group capable of undergoing a crosslinking reaction by the action of a radical, and a preferred example is a group having an ethylenically unsaturated bond. Examples of the group having an ethylenically unsaturated bond include a vinyl group, an allyl group, a (meth) acryloyl group, and a group represented by the following formula (III).
  • R 200 represents a hydrogen atom or a methyl group, with a methyl group being more preferred.
  • R 201 is an alkylene group having 2 to 12 carbon atoms, —CH 2 CH (OH) CH 2 — or a (poly) oxyalkylene group having 4 to 30 carbon atoms (the alkylene group preferably has 1 to 12 carbon atoms, 6 is more preferable, and 1 to 3 is particularly preferable; the repeating number is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3.
  • the (poly) oxyalkylene group means an oxyalkylene group or a polyoxyalkylene group.
  • R 201 examples include ethylene group, propylene group, trimethylene group, tetramethylene group, 1,2-butanediyl group, 1,3-butanediyl group, pentamethylene group, hexamethylene group, octamethylene group, dodecamethylene group And —CH 2 CH (OH) CH 2 —, and ethylene, propylene, trimethylene and —CH 2 CH (OH) CH 2 — are more preferable.
  • R 200 is a methyl group and R 201 is an ethylene group.
  • aromatic groups and arylalkyl groups include an aromatic group having 6 to 20 carbon atoms having an acid group, and an arylalkyl group having 7 to 25 carbon atoms having an acid group. More specifically, a phenyl group having an acid group and a benzyl group having an acid group can be mentioned.
  • the acid group is preferably a hydroxyl group. That is, R 113 or R 114 is preferably a group having a hydroxyl group.
  • R 113 or R 114 As the monovalent organic group represented by R 113 or R 114, a substituent that improves the solubility of the developer is preferably used. It is more preferable that R 113 or R 114 is a hydrogen atom, 2-hydroxybenzyl, 3-hydroxybenzyl and 4-hydroxybenzyl from the viewpoint of solubility in an aqueous developer.
  • R 113 or R 114 is preferably a monovalent organic group.
  • the monovalent organic group preferably contains a linear or branched alkyl group, a cyclic alkyl group, or an aromatic group, and more preferably an alkyl group substituted with an aromatic group.
  • the carbon number of the alkyl group is preferably 1 to 30 (in the case of cyclic, 3 or more).
  • the alkyl group may be linear, branched or cyclic.
  • a linear or branched alkyl group for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, octadecyl group And isopropyl, isobutyl, sec-butyl, t-butyl, 1-ethylpentyl and 2-ethylhexyl groups.
  • the cyclic alkyl group may be a monocyclic cyclic alkyl group or a polycyclic cyclic alkyl group.
  • Examples of the monocyclic alkyl group include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclooctyl group.
  • As the polycyclic cyclic alkyl group for example, an adamantyl group, norbornyl group, bornyl group, camphenyl group, decahydronaphthyl group, tricyclodecanyl group, tetracyclodecanyl group, camphoroyl group, dicyclohexyl group and pinenyl group Can be mentioned. Among them, a cyclohexyl group is most preferable in terms of coexistence with high sensitivity.
  • the linear alkyl group substituted by the aromatic group mentioned later is preferable.
  • the aromatic group include substituted or unsubstituted benzene ring, naphthalene ring, pentalene ring, indene ring, azulene ring, heptalene ring, indacene ring, perylene ring, pentacene ring, acenaphthene ring, phenanthrene ring, anthracene Ring, naphthacene ring, chrysene ring, triphenylene ring, fluorene ring, biphenyl ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring,
  • a polyimide precursor has a fluorine atom in a structural unit. 10 mass% or more is preferable, and, as for the fluorine atom content in a polyimide precursor, 20 mass% or less is more preferable. There is no particular upper limit, but 50% by mass or less is practical.
  • an aliphatic group having a siloxane structure may be copolymerized with the structural unit represented by the formula (1).
  • the diamine component bis (3-aminopropyl) tetramethyldisiloxane, bis (paraaminophenyl) octamethylpentasiloxane and the like can be mentioned.
  • the structural unit represented by the formula (1) is preferably a structural unit represented by the formula (1-A).
  • a 11 and A 12 each represent an oxygen atom or NH
  • R 111 and R 112 each independently represent a divalent organic group
  • R 113 and R 114 each independently represent a hydrogen atom or a monovalent atom
  • An organic group is represented, and at least one of R 113 and R 114 is a group containing a radical polymerizable group, preferably a radical polymerizable group.
  • a 11 , A 12 , R 111 , R 113 and R 114 each independently have the same meaning as A 1 , A 2 , R 111 , R 113 and R 114 in formula (1), and the preferred ranges are also the same. is there. R 112 has the same meaning as R 112 in Formula (5), and the preferred range is also the same.
  • the structural unit represented by formula (1) may be of one type, or of two or more types. Moreover, the structural isomer of the structural unit represented by Formula (1) may be included.
  • the polyimide precursor may also contain other types of structural units in addition to the structural unit of the above formula (1).
  • the polyimide precursor preferably has a portion (structural unit or terminal structure) represented by any one of Formula (1-1a), Formula (1-2a), and Formula (1-3a).
  • a 1 , A 2 , R 111 , R 113 , R 114 and R 115 are the same as the definition in the formula (1), and preferable ones are also the same.
  • Ls is the above formula (Ls). At this time, Li in formula (Ls) is preferably * 1 -NHCO in formula (1-1a). In the formula (1-2a) and the formula (1-3a), it is preferable that * 1 -COO or * 1 -CONH.
  • the polyimide precursor more preferably has a portion represented by any one of Formula (1-1), Formula (1-2), and Formula (1-3).
  • a 1 , A 2 , R 111 , R 113 , R 114 and R 115 are as defined in the formula (1), and preferred ranges are also the same.
  • X 1 , X 2 and X 3 each independently represent a linking group, * represents a bonding position to the main chain of the polyimide precursor, and ns is as defined in the formula Ls.
  • Each of X 1 , X 2 and X 3 independently represents a linking group having a carbon atom, and X 1 , X 2 and X 3 are preferably bonded to a sulfonic acid group by a carbon atom.
  • X 1 , X 2 and X 3 are preferably a group having the above linking group Lt, or a group obtained by combining the linking group Lt with at least one of an oxygen atom, a carbonyl group and -NR N- . At this time, a sulfonic acid group is bonded on the side of the linking group Lt.
  • R N is preferably a hydrogen atom.
  • X 3 in Formula (1-3) is preferably a linking group Lt.
  • X 1 in formula (1-1) preferably has a carbonyl group to be linked to NH in the main chain in addition to the linking group Lt.
  • X 2 in the formula (1-2) is preferably the same as the linking group Lt and has an oxygen atom or —NR N — linked to a carbonyl group of the main chain.
  • a 1 , A 2 , R 111 and R 113 of the structural units of the main chain to which formulas (1-1), (1-2) and (1-3) are bonded , R 114 , R 115 and A 1 , A 2 , R 111 , R 113 , R 114 and R 115 in the formulas (1-1), (1-2) and (1-3) are the same group Or the form which is the same atom is illustrated.
  • X 1 , X 2 , X 3 and Lt may have a substituent T within the range where the effects of the present invention are exhibited.
  • substituents T may be bonded to each other, or may be bonded to the ring in the formula via or without a linking group L to form a ring. However, it is preferable not to have a substituent.
  • the introduction reagent include sulfobenzoic acid, aminobenzenesulfonic acid, aminoethanesulfonic acid, hydroxyethanesulfonic acid, hydroxypropanesulfonic acid, propanesultone and butanesultone.
  • the method for introducing a site containing a sulfonic acid group is not particularly limited, but it can be obtained by reacting the above-described reagent with a catalyst, if necessary, with a polyimide precursor, or in the synthesis process thereof. The same applies to the polybenzoxazole precursor described later.
  • constituent units of the polyimide precursor may or may not include those in which a sulfonic acid group is directly introduced to the aromatic ring of the main chain.
  • a directly linked sulfonic acid group within the scope of the effects of the present invention, for example, there is such a directly linked sulfonic acid group in a structural unit of 10% or less, further 1% or less. Even if it becomes a polyimide precursor, depending on conditions and applications, it is considered that the effects of the present invention are sufficiently exhibited.
  • the substituent T is a cyclic or linear or branched alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 and particularly preferably 1 to 6), or a cyclic or linear or branched alkenyl group (carbon
  • the number 2 to 24 is preferable, 2 to 12 is more preferable, 2 to 6 is particularly preferable, an alkoxyl group (having 1 to 12 carbon atoms is preferable, 1 to 6 is more preferable, 1 to 3 is more preferable), arylalkyl Group (preferably 7 to 23 carbon atoms, more preferably 7 to 19 carbon atoms, still more preferably 7 to 11 carbon atoms), hydroxyl group, amino group (preferably 0 to 24 carbon atoms, more preferably 0 to 12 carbon atoms, 0 to 6 carbon atoms Particularly preferable), thiol group, carboxyl group, acyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and particularly preferably 2 to 3
  • the alkylene chain of the substituent T may be intervened by a heteroatom.
  • Other substituents may be further substituted on the alkyl group, the alkenyl group, the aryl group and the arylalkyl group of the substituent T.
  • R N is a hydrogen atom or an organic group
  • the organic group is an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms), and an alkenyl group (2 to 12 carbon atoms 2 to 6 are more preferable, and 2 to 3 are more preferable, aryl group (having 6 to 22 carbon atoms, more preferably 6 to 18 and still more preferably 6 to 10), arylalkyl group (7 carbon atoms) To 23 are preferable, 7 to 19 are more preferable, and 7 to 11 are more preferable.
  • This organic group may further have a substituent T.
  • the linking group L is a cyclic or linear or branched alkylene group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms), cyclic or linear or branched alkenylene groups (carbon atoms number 2 to 12 is preferable, 2 to 6 is more preferable, an arylene group (having 6 to 22 carbon atoms is preferable, 6 to 18 is more preferable, 6 to 10 is more preferable), and an aryl alkylene group (having 7 to 23 carbon atoms is preferable) 7 to 19 is more preferable, and 7 to 11 is more preferable.
  • cyclic or linear or branched alkylene group preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms
  • cyclic or linear or branched alkenylene groups carbon atoms number 2 to 12 is preferable, 2 to 6 is more preferable, an arylene group (having
  • Heteroarylene group (having 1 to 12 carbon atoms is preferable, 1 to 6 is more preferable, 1 to 4 is further preferable;
  • Examples of the hetero atom include a nitrogen atom, Such a group is an oxygen atom, a sulfur atom, an oxygen atom, a sulfur atom, a carbonyl group, -NR N- or a combination thereof.
  • the number of atoms constituting the linking group L is preferably 1 to 24, excluding hydrogen atoms, more preferably 1 to 12, and particularly preferably 1 to 6.
  • the number of linking atoms in the linking group is preferably 10 or less, and more preferably 8 or less. The lower limit is 1 or more.
  • linking group Lh containing a hetero atom a linking group composed of an oxygen atom, a sulfur atom, a carbonyl group, a thiocarbonyl group, a sulfonyl group, -NR N- or a combination thereof can be mentioned.
  • the number of atoms constituting the linking group Lh containing a hetero atom is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3.
  • the number of atoms intervening in a specific group of the linking group Lh containing a hetero atom is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3.
  • RN is as defined above.
  • the total number of sulfonic acid groups contained in the polyimide precursor is preferably 0.05% or more, more preferably 0.1% or more, and more preferably 0.2% or more, of the total number of all constituent units. Is more preferably 0.3% or more, still more preferably 0.35% or more, still more preferably 0.4% or more, and still more preferably 50% by mol or more. And 70 mol% or more and 90 mol% or more.
  • the upper limit may be 100% or less, but is preferably 20.0% or less, more preferably 15.0% or less, and still more preferably 10.0% or less. It is further more preferable that it is 0% or less, still more preferably 6.0% or less, and particularly preferably 5.0% or less.
  • the structural units having the above-mentioned sulfonic acid group may occupy all of the structural units constituting the polyimide precursor, but some structural units differ in part May be included. It is preferable that the structural unit which has the site
  • the upper limit may be 100% or less, but is preferably 20.0% or less, more preferably 15.0% or less, and still more preferably 10.0% or less. It is further more preferable that it is 0% or less, still more preferably 6.0% or less, and particularly preferably 5.0% or less.
  • polyimide precursor in the present invention 50 mol% or more, further 70 mol% or more, particularly 90 mol% or more of all the structural units are structural units or sulfonic acid groups represented by the formula (1)
  • the polyimide precursor which is a structural unit which has in a side chain is illustrated.
  • 100 mol% or less is practical.
  • the weight average molecular weight (Mw) of the polyimide precursor is preferably 2,000 to 500,000, more preferably 5,000 to 100,000, and still more preferably 10,000 to 50,000.
  • the number average molecular weight (Mn) is preferably 800 to 250,000, more preferably 2,000 to 50,000, and still more preferably 4,000 to 25,000.
  • the dispersion degree (Mw / Mn) of the molecular weight of the polyimide precursor is preferably 1.5 to 3.5, and more preferably 2 to 3.
  • the polyimide precursor can be obtained by reacting a dicarboxylic acid or a dicarboxylic acid derivative with a diamine.
  • the dicarboxylic acid or dicarboxylic acid derivative may be obtained by halogenation with a halogenating agent and then reaction with diamine.
  • an organic solvent is preferably used in the reaction.
  • the organic solvent may be used alone or in combination of two or more.
  • the organic solvent can be appropriately determined depending on the raw material, and examples thereof include pyridine, diethylene glycol dimethyl ether (diglyme), N-methylpyrrolidone and N-ethylpyrrolidone.
  • the polyimide precursor in the reaction solution can be precipitated in water and dissolved in a solvent in which the polyimide precursor such as tetrahydrofuran is soluble to cause solid precipitation.
  • the polybenzoxazole precursor preferably contains a constitutional unit represented by the following formula (2).
  • R 121 represents a divalent organic group
  • R 122 represents a tetravalent organic group
  • R 123 and R 124 each independently represent a hydrogen atom or a monovalent organic group.
  • R 121 represents a divalent organic group.
  • a divalent organic group an aliphatic group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 and particularly preferably 1 to 6) and an aromatic group (preferably having 6 to 22 carbon atoms, 6 to 14) Is more preferable, and a group containing at least one of 6 to 12 is particularly preferable.
  • an aromatic group which comprises R121 the example of R111 of said Formula (1) is mentioned.
  • R 121 is preferably derived from 4,4′-oxydibenzoyl chloride.
  • R 122 represents a tetravalent organic group.
  • the tetravalent organic group has the same meaning as R 115 in the formula (1), and preferred ranges are also the same.
  • R 122 is preferably derived from 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane.
  • R 123 and R 124 each independently represent a hydrogen atom or a monovalent organic group, and have the same meaning as R 113 and R 114 in the above formula (1), and preferred ranges are also the same.
  • the polybenzoxazole precursor preferably has a moiety represented by the following formulas (2-1a), (2-2a), and (2-3a).
  • R121 , R122 , R123 , R124 is the same as the definition in Formula (2), and its preferable thing is also the same.
  • Ls is a group of the above formula (Ls).
  • Li in the formula (Ls) is preferably * 1-NHCO.
  • * 1-COO or CONH is preferable.
  • Li is preferably * 1-OCO.
  • the other provisions relating to Lt and ns are the same as in the formula (1).
  • * 1 is a bonding position on the side of R121 or R122 .
  • the polybenzoxazole precursor has a site represented by the following formulas (2-1), (2-2) and (2-3).
  • R121 , R122 , R123 and R124 are synonymous with Formula (2).
  • X 4 , X 5 and X 6 each independently represent a linking group, * represents a bonding position to the main chain of the polybenzoxazole precursor, and ns represents an integer of 1 to 4.
  • X 4 , X 5 and X 6 each independently represent a linking group having a carbon atom, and it is preferable that X 4 , X 5 and X 6 be bonded to a sulfonic acid group by a carbon atom.
  • X 4 , X 5 and X 6 are preferably a linking group Lt or a group in which it is combined with at least one of an oxygen atom, a carbonyl group and -NR N- .
  • ns is preferably 1 or 2, and more preferably 1.
  • X 4 , X 5 , X 6 and Lt may have a substituent T within the range where the effects of the present invention are exhibited.
  • the ratio of the number of sites containing sulfonic acid groups in the polybenzoxazole precursor is the same as that defined for the above-mentioned polyimide precursor.
  • the reagent for introducing a site containing a sulfonic acid group into the polybenzoxazole precursor and the method for introducing the same are the same as those described for the polyimide precursor.
  • the polybenzoxazole precursor may contain other types of constitutional units in addition to the constitutional unit of the above-mentioned formula (2). It is preferable that the precursor contains a diamine residue represented by the following formula (SL) as another type of structural unit from the viewpoint of suppressing the occurrence of warpage of the cured film due to ring closure.
  • SL diamine residue represented by the following formula (SL) as another type of structural unit from the viewpoint of suppressing the occurrence of warpage of the cured film due to ring closure.
  • R 1s is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms (preferably having 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms)
  • R 2s Is a hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms)
  • at least one of R 3s , R 4s , R 5s and R 6s is aromatic Group (preferably having 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, and particularly preferably 6 to 10 carbon atoms), with the remainder being a hydrogen atom or 1 to 30 carbon atoms (preferably 1 to 18 carbon atoms).
  • the organic groups preferably have 1 to 12 carbon atoms, particularly preferably 1 to 6 carbon atoms, and may be the same or different.
  • the polymerization of the a structure and the b structure may be block polymerization or random polymerization.
  • the a structure is 5 to 95 mol%
  • the b structure is 95 to 5 mol%
  • a + b is 100 mol%.
  • preferable Z includes those in which R 5s and R 6s in the b structure are a phenyl group.
  • the molecular weight of the structure represented by formula (SL) is preferably 400 to 4,000, and more preferably 500 to 3,000. Molecular weight can be determined by commonly used gel permeation chromatography. By making the said molecular weight into the said range, the elastic modulus after dehydration ring-closing of a polybenzoxazole precursor can be reduced, and the effect which can control curvature, and the effect of improving solubility can be compatible.
  • the precursor contains a diamine residue represented by the formula (SL) as another type of structural unit, it further removes an acid dianhydride group from a tetracarboxylic acid dianhydride, in terms of improving alkali solubility. It is preferable to contain the tetracarboxylic acid residue which remains behind as a structural unit. Examples of such tetracarboxylic acid residues include the examples of R 115 in the formula (1).
  • the weight average molecular weight (Mw) of the polybenzoxazole precursor is preferably 2,000 to 500,000, more preferably 5,000 to 100,000, and still more preferably 10,000 to 50,000. is there.
  • the number average molecular weight (Mn) is preferably 800 to 250,000, more preferably 2,000 to 50,000, and still more preferably 4,000 to 25,000.
  • the dispersion degree (Mw / Mn) of the molecular weight of the polybenzoxazole precursor is preferably 1.5 to 3.5, and more preferably 2 to 3.
  • the content of the polymer precursor in the photosensitive resin composition is preferably 20% by mass or more, more preferably 30% by mass or more, and 40% by mass or more based on the total solid content of the composition. Is more preferably 50% by mass or more, still more preferably 60% by mass or more, and still more preferably 70% by mass or more.
  • the upper limit of the content of the polymer precursor in the photosensitive resin composition is preferably 99.5% by mass or less, and more preferably 99% by mass or less, with respect to the total solid content of the composition. It is more preferably 98% by mass or less, still more preferably 95% by mass or less, and still more preferably 95% by mass or less.
  • the photosensitive resin composition may contain only one type of polymer precursor, or may contain two or more types. When it contains 2 or more types, it is preferable that a total amount becomes said range.
  • the photosensitive resin composition of the present invention preferably contains a solvent.
  • a solvent known solvents can optionally be used.
  • the solvent is preferably an organic solvent. Examples of the organic solvent include compounds such as esters, ethers, ketones, aromatic hydrocarbons, sulfoxides and amides.
  • esters for example, ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone, ⁇ -caprolactone , ⁇ -valerolactone, alkyl alkyl oxyacetate (eg, methyl alkyl oxyacetate, ethyl alkyl oxyacetate, butyl alkyl oxy acetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate etc.) ), 3-alkyloxypropionic acid alkyl esters (eg, methyl 3-alky
  • ethers for example, diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol Monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, etc. are mentioned as a suitable thing.
  • ketones include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone and the like.
  • aromatic hydrocarbons for example, toluene, xylene, anisole, limonene etc. may be mentioned as suitable.
  • a sulfoxide for example, dimethyl sulfoxide is mentioned as a suitable one.
  • suitable amides include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like.
  • the solvent is also preferably in the form of a mixture of two or more from the viewpoint of improving the coated surface properties and the like.
  • the combined use of dimethyl sulfoxide and ⁇ -butyrolactone is particularly preferred.
  • the content of the solvent is preferably such that the total solid content concentration of the photosensitive resin composition of the present invention is 5 to 80% by mass, and is 5 to 75% by mass. It is more preferable that the amount be 10 to 70% by mass, still more preferably 40 to 70% by mass.
  • the solvent content may be adjusted according to the desired thickness of the coating and the method of application.
  • the solvent may contain only one kind, or two or more kinds. When two or more solvents are contained, the total is preferably in the above range.
  • the photosensitive resin composition contains a photoactive compound.
  • photoactive compounds include photopolymerization initiators, photoacid generators and photocuring accelerators.
  • the photosensitive resin composition of the present invention may contain a photopolymerization initiator.
  • the photopolymerization initiator is preferably a photoradical polymerization initiator.
  • a radical photopolymerization initiator which can be used by this invention, It can select suitably from well-known radical photopolymerization initiators.
  • a photoradical polymerization initiator having photosensitivity to light in the ultraviolet region to the visible region is preferred.
  • it may be an activator which produces an active radical by causing an action with a photoexcited sensitizer.
  • the photoradical polymerization initiator preferably contains at least one compound having a molar absorption coefficient of at least about 50 in the range of about 300 to 800 nm (preferably 330 to 500 nm).
  • the molar extinction coefficient of a compound can be measured using a known method. For example, it is preferable to measure at a concentration of 0.01 g / L using an ethyl acetate solvent with a UV-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian).
  • the photosensitive resin composition contains a photo radical polymerization initiator, whereby the photosensitive resin composition of the present invention is applied to a substrate such as a semiconductor wafer to form a photosensitive resin composition layer, and then light is irradiated.
  • a photosensitive resin composition layer contains a photo radical polymerization initiator, whereby the photosensitive resin composition of the present invention is applied to a substrate such as a semiconductor wafer to form a photosensitive resin composition layer, and then light is irradiated.
  • curing occurs due to the generated radicals, and the solubility in the light irradiated part can be reduced. Therefore, for example, by exposing the photosensitive resin composition layer through a photomask having a pattern for masking only the electrode portion, there is an advantage that regions having different solubility can be easily manufactured according to the pattern of the electrode. is there.
  • a well-known compound can be used arbitrarily as a radical photopolymerization initiator.
  • halogenated hydrocarbon derivatives for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group, etc.
  • acyl phosphine compounds such as acyl phosphine oxides, hexaarylbiimidazole, oxime derivatives, etc.
  • ketone compound As a ketone compound, the compound as described in Paragraph 0087 of Unexamined-Japanese-Patent No. 2015-087611 is illustrated, for example, This content is integrated in this specification.
  • Kayacure DETX manufactured by Nippon Kayaku Co., Ltd.
  • Nippon Kayaku Co., Ltd. is also suitably used.
  • a radical photopolymerization initiator a hydroxyacetophenone compound, an aminoacetophenone compound, and an acyl phosphine compound can also be used suitably. More specifically, for example, an aminoacetophenone-based initiator described in JP-A-10-291969 and an acylphosphine oxide-based initiator described in Japanese Patent No. 4225898 can also be used.
  • a hydroxyacetophenone type initiator IRGACURE 184 (IRGACURE is a registered trademark), DAROCUR 1173, IRGACURE 500, IRGACURE-2959, IRGACURE 127 (trade name: all manufactured by BASF Corporation) can be used.
  • aminoacetophenone initiators commercially available products IRGACURE 907, IRGACURE 369, and IRGACURE 379 (trade names: all manufactured by BASF Corporation) can be used.
  • aminoacetophenone initiator a compound described in JP-A-2009-191179 in which the absorption maximum wavelength is matched to a wavelength light source such as 365 nm or 405 nm can also be used.
  • the acylphosphine initiator include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and the like.
  • IRGACURE-819 and IRGACURE-TPO which are commercially available products, can be used.
  • metallocene compounds include IRGACURE-784 (manufactured by BASF).
  • an oxime compound As a photo radical polymerization initiator, More preferably, an oxime compound is mentioned. By using an oxime compound, it is possible to more effectively improve the exposure latitude.
  • the oxime compound is particularly preferable because it has a wide exposure latitude (exposure margin) and also serves as a light curing accelerator.
  • specific examples of the oxime compound compounds described in JP-A-2001-233842, compounds described in JP-A-2000-80068, and compounds described in JP-A-2006-342166 can be used.
  • Preferred oxime compounds include, for example, compounds of the following structures, 3-benzoximinobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxy Iminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutan-2-one And 2-ethoxycarbonyloxyimino-1-phenylpropan-1-one and the like.
  • an oxime compound (oxime-based photopolymerization initiator) as a photoradical polymerization initiator.
  • IRGACURE OXE 01, IRGACURE OXE 02, IRGACURE OXE 03, IRGACURE OXE 04 (above, manufactured by BASF Corporation), Adeka Optomer N-1919 (manufactured by ADEKA Co., Ltd.), light described in JP 2012-14052 A Radical polymerization initiators 2) are also suitably used.
  • TR-PBG-304 made by Changzhou Strong Electronic New Material Co., Ltd.
  • Adeka Akuls NCI-831 and Adeka Ark's NCI-930 made by ADEKA
  • DFI-091 manufactured by Daitoke Mix Co., Ltd.
  • oxime compounds compounds described in JP-A-2010-262028, compounds 24, 36 to 40 described in paragraph 0345 of JP-A-2014-500852, JP-A-2013 And the compound (C-3) described in paragraph 0101 of JP-164471-A, and the like.
  • an oxime compound having a specific substituent described in JP-A-2007-269779 an oxime compound having a thioaryl group shown in JP-A-2009-191061, and the like can be mentioned.
  • the photo radical polymerization initiator is a trihalomethyl triazine compound, a benzyl dimethyl ketal compound, an ⁇ -hydroxy ketone compound, an ⁇ -amino ketone compound, an acyl phosphine compound, a phosphine oxide compound, a metallocene compound, an oxime compound, a triaryl from the viewpoint of exposure sensitivity.
  • Imidazole dimer, onium salt compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complex and salts thereof, halomethyl oxadiazole compounds, 3-aryl substituted coumarin compounds Compounds are preferred.
  • photoradical polymerization initiators are trihalomethyl triazine compounds, ⁇ -amino ketone compounds, acyl phosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triaryl imidazole dimers, onium salt compounds, benzophenone compounds, acetophenone compounds, More preferred is at least one compound selected from the group consisting of trihalomethyl triazine compounds, ⁇ -amino ketone compounds, oxime compounds, triarylimidazole dimers and benzophenone compounds, still more preferably metallocene compounds or oxime compounds, oxime compounds Is even more preferred.
  • photo radical polymerization initiators include N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl such as benzophenone, N, N'-tetramethyl-4,4'-diaminobenzophenone (Michler's ketone), etc.
  • Aromatic ketones such as -2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1, alkylanthraquinones, etc.
  • benzoin ether compounds such as benzoin alkyl ether
  • benzoin compounds such as benzoin and alkylbenzoin
  • benzyl derivatives such as benzyl dimethyl ketal.
  • the compound represented by following formula (I) can also be used.
  • R 100 represents an alkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 20 carbon atoms interrupted by one or more oxygen atoms, an alkoxyl group having 1 to 12 carbon atoms, a phenyl group, An alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 12 carbon atoms, a halogen atom, a cyclopentyl group, a cyclohexyl group, an alkenyl group having 2 to 12 carbon atoms, and 2 to carbon atoms interrupted by one or more oxygen atoms 18 alkyl group and at least one substituted phenyl group of the alkyl group having 1 to 4 carbon atoms or a biphenyl,
  • R I01 is a group represented by formula (II), the same as R I00
  • R 1 02 to R 1 04 are each independently an alkyl having 1 to 12 carbon atoms, an alkoxy having 1 to 12 carbon atoms or a
  • the content thereof is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the photosensitive resin composition of the present invention. More preferably, it is 0.5 to 15% by mass, and more preferably 1.0 to 10% by mass.
  • the photopolymerization initiator may contain only one kind, or two or more kinds. When 2 or more types of photoinitiators are contained, it is preferable that the sum total is the said range.
  • a photoacid generator can be used as the photoactive compound.
  • an acid is applied by irradiation with an actinic ray or radiation used in a photo cationic polymerization photoinitiator, a photo radical polymerization initiator, a dye photo bleaching agent, a photo color changing agent, or a micro resist.
  • Known compounds to be generated and mixtures thereof can be appropriately selected and used.
  • diazonium salts for example, diazonium salts, phosphonium salts, sulfonium salts, iodonium salts, imidosulfonates, oxime sulfonates, diazodisulfones, disulfones, o-nitrobenzyl sulfonates can be mentioned.
  • the photoacid generator When the photoacid generator is contained, its content is preferably 0.1 to 30% by mass, more preferably 0.5 to 15% by mass, based on the total solid content of the photosensitive resin composition of the present invention. More preferably, it is 0.5 to 10% by mass, and more preferably 0.5 to 5% by mass.
  • the photoacid generator may contain only one type, or two or more types. When two or more photoacid generators are contained, the total is preferably in the above range.
  • the photosensitive resin composition used in the present invention may contain a photocuring accelerator.
  • the photo-curing accelerator in the present invention generates a base upon exposure, and does not show activity under ordinary conditions of normal temperature and pressure, but when irradiation and heating of electromagnetic waves are performed as an external stimulus, the base ( It is not particularly limited as long as it generates a basic substance).
  • the base generated by exposure to light serves as a catalyst for curing the polymer precursor by heating, and thus can be suitably used.
  • known photocuring accelerators can be used.
  • such as a transition metal compound complex one having a structure such as an ammonium salt, or one in which an amidine moiety is made latent by forming a salt with a carboxylic acid
  • the base component is neutralized by forming a salt
  • examples thereof include ionic compounds, and non-ionic compounds such as carbamate derivatives, oxime ester derivatives, and acyl compounds in which the base component is made latent by urethane bonds or oxime bonds.
  • the photocuring accelerator according to the present invention for example, a photocuring accelerator having a cinnamic acid amide structure as disclosed in JP-A-2009-80452 and WO2009 / 123122 pamphlet, JP-A-2006- Photocuring accelerators having a carbamate structure as disclosed in Japanese Patent Application Publication Nos. 189591 and 2008-247747; oxime structures as disclosed in Japanese Patent Application Publication Nos. 2007-249013 and 2008-003581; Although the photocuring accelerator etc. which have a carbamoyl oxime structure etc. are mentioned, it is not limited to these, In addition, the structure of a well-known photocuring accelerator can be used.
  • WPBG-266, WPBG-300, WPGB-345, WPGB-140, WPBG-165, WPBG-027, PBG-018, WPGB-015, WPBG-041, WPGB-172, WPGB-174, WPBG-166, WPGB-158, WPGB-025, WPGB-168, WPGB-167 and WPBG-082 can also be used.
  • the content of the photo-curing accelerator in the composition is preferably 0.1 to 50% by mass with respect to the total solid content of the composition.
  • 0.5 mass% or more is more preferable, and 1 mass% or more is further more preferable.
  • the upper limit is more preferably 30% by mass or less, and still more preferably 20% by mass or less.
  • the photocuring accelerator may be used alone or in combination of two or more. When using 2 or more types, it is preferable that a total amount is the said range.
  • the photosensitive resin composition of the present invention may contain a thermal radical polymerization initiator within the scope of the present invention.
  • the thermal radical polymerization initiator is a compound that generates radicals by the energy of heat and initiates or accelerates a polymerization reaction of a polymerizable compound. By adding the thermal radical polymerization initiator, the polymerization reaction of the polymer precursor can be advanced along with the cyclization of the polymer precursor, so that a higher degree of heat resistance can be achieved.
  • Specific examples of the thermal radical polymerization initiator include the compounds described in paragraphs 0074 to 0118 of JP-A-2008-63554.
  • the content thereof is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass with respect to the total solid content of the photosensitive resin composition of the present invention. %, More preferably 5 to 15% by mass.
  • the thermal radical polymerization initiator may contain only one type, or may contain two or more types. When 2 or more types of thermal radical polymerization initiators are contained, it is preferable that the sum total is the said range.
  • the photosensitive resin composition of the present invention preferably contains a radically polymerizable compound.
  • a radically polymerizable compound a compound having a radically polymerizable group can be used.
  • the radically polymerizable group include groups having an ethylenically unsaturated bond such as a vinylphenyl group, a vinyl group, a (meth) acryloyl group and an allyl group.
  • the radically polymerizable group is preferably a (meth) acryloyl group.
  • the number of radically polymerizable groups in the radically polymerizable compound may be one, or two or more, but the radically polymerizable compound preferably has two or more radically polymerizable groups, and preferably three or more. More preferable.
  • the upper limit is preferably 15 or less, more preferably 10 or less, and still more preferably 8 or less.
  • the lower limit of the molecular weight of the radically polymerizable compound is preferably 100 or more.
  • the photosensitive resin composition of the present invention preferably contains at least one bifunctional or higher radically polymerizable compound containing two or more polymerizable groups, from the viewpoint of developability, and a trifunctional or higher radically polymerizable compound. It is more preferable to include at least one kind. Moreover, the mixture of a bifunctional radically polymerizable compound and a trifunctional or more than trifunctional radically polymerizable compound may be sufficient.
  • the number of functional groups of the radically polymerizable compound means the number of radically polymerizable groups in one molecule.
  • the radically polymerizable compound examples include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid etc.), esters thereof and amides, and preferably Esters of unsaturated carboxylic acids and polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and polyhydric amine compounds. Also, addition reaction products of unsaturated carboxylic acid esters or amides having a nucleophilic substituent such as hydroxyl group, amino group, mercapto group etc.
  • unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid etc.
  • esters thereof and amides and preferably Esters of unsaturated carboxylic acids and polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and polyhydric amine compounds.
  • the radically polymerizable compound is also preferably a compound having a boiling point of 100 ° C. or higher under normal pressure.
  • examples thereof include polyethylene glycol di (meth) acrylate, trimethylol ethane tri (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol Penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, hexanediol (meth) acrylate, trimethylolpropane tri (acryloyloxypropyl) ether, tri (acryloyloxyethyl) isocyanurate, glycerin, trimethylolethane and the like A compound obtained by adding ethylene oxide or propylene oxide to a functional alcohol
  • Urethane (meth) acrylates as described in Japanese Patent Application Publication No. 50-6034 and Japanese Patent Application Publication No. 51-37193; Japanese Patent Application Publication No. 48-64183; Japanese Patent Publication No. 49-43191; JP-A-52-30490 mentions polyester acrylates, polyfunctional acrylates and methacrylates such as epoxy acrylates which is a reaction product of an epoxy resin and (meth) acrylic acid, and mixtures thereof it can.
  • compounds described in paragraphs 0254 to 0257 of JP-A-2008-292970 are also suitable.
  • dipentaerythritol triacrylate commercially available as KAYARAD D-330; Nippon Kayaku Co., Ltd.
  • dipentaerythritol tetraacrylate commercially available as KAYARAD D-320; Nippon Kayaku ( A-TMMT: manufactured by Shin-Nakamura Chemical Co., Ltd.
  • dipentaerythritol penta (meth) acrylate commercially available KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.
  • dipentaerythritol hexa (meth) Acrylate commercially available as KAYARAD DPHA; Nippon Kayaku Co., Ltd., A-DPH; Shin-Nakamura Chemical Co., Ltd.
  • these (meth) acryloyl groups via ethylene glycol residue or propylene glycol residue A linked structure is preferred.
  • These oligomer types can also be used.
  • radically polymerizable compounds include, for example, SR-494 which is a tetrafunctional acrylate having 4 ethyleneoxy chains manufactured by Sartomer, SR-209 manufactured by Sartomer which is a difunctional methacrylate having 4 ethyleneoxy chains.
  • DPCA-60 which is a hexafunctional acrylate having 6 pentylene oxy chains manufactured by Nippon Kayaku Co., Ltd.
  • TPA-330 which is a trifunctional acrylate having 3 isobutylene oxy chains
  • urethane oligomer UAS- 10, UAB-140 manufactured by Nippon Paper Industries Co., Ltd.
  • NK ester M-40G NK ester 4G
  • NK ester M-9300 NK ester A-9300, UA-7200
  • JP-B-58-49860, JP-B-56-17654, JP-B-62-39417, JP-B-62-39418 and urethane compounds having an ethylene oxide skeleton as described in JP-B-58-49860 and JP-B-62-39418 are also suitable.
  • radically polymerizable compounds compounds having an amino structure or a sulfide structure in the molecule, which are described in JP-A-63-277653, JP-A-63-260909, JP-A-1-105238, can be used. It can also be used.
  • the radically polymerizable compound may be a radically polymerizable compound having an acid group such as a carboxyl group or a phosphoric acid group.
  • the radically polymerizable compound having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and an unreacted hydroxyl group of the aliphatic polyhydroxy compound is reacted with a nonaromatic carboxylic acid anhydride to produce an acid. Radically polymerizable compounds having a group are more preferred.
  • the aliphatic polyhydroxy compound in which a nonaromatic carboxylic acid anhydride is reacted with an unreacted hydroxyl group of the aliphatic polyhydroxy compound to give an acid group, is pentaerythritol or dipentacene. It is a compound which is erythritol.
  • examples of commercially available products include M-510 and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
  • the preferred acid value of the radically polymerizable compound having an acid group is 0.1 to 40 mg KOH / g, particularly preferably 5 to 30 mg KOH / g. If the acid value of the radically polymerizable compound is in the above range, the production and handling properties are excellent, and furthermore, the developability is excellent. Moreover, the polymerizability is good.
  • a monofunctional radically polymerizable compound can be preferably used as a radically polymerizable compound from the viewpoint of warpage suppression associated with the control of the elastic modulus of the cured film.
  • monofunctional radically polymerizable compounds include n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, carbitol (meth) acrylate and cyclohexyl ( (Meta) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, N-methylol (meth) acrylamide, glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate ) N-vinyl compounds such as acrylic acid derivatives, N-vinyl compounds such as acrylic acid derivative
  • the photosensitive resin composition of the present invention can further contain a polymerizable compound other than the above-described radically polymerizable compound.
  • the polymerizable compound other than the above-described radically polymerizable compound include compounds having a hydroxymethyl group, an alkoxymethyl group or an acyloxymethyl group; epoxy compounds; oxetane compounds; benzoxazine compounds.
  • Compound having a hydroxymethyl group, an alkoxymethyl group or an acyloxymethyl group As the compound having a hydroxymethyl group, an alkoxymethyl group or an acyloxymethyl group, a compound represented by the following formula (AM1), (AM4) or (AM5) is preferable.
  • R 104 represents a t-valent organic group having 1 to 200 carbon atoms
  • R 105 represents a group represented by —OR 106 or —OCO—R 107
  • R 106 represents a hydrogen atom or an organic group having 1 to 10 carbon atoms
  • R 107 represents an organic group having 1 to 10 carbon atoms.
  • R 404 represents a divalent organic group having 1 to 200 carbon atoms
  • R 405 represents a group represented by —OR 406 or —OCO—R 407
  • R 406 represents a hydrogen atom or carbon
  • R 407 represents an organic group having 1 to 10 carbon atoms.
  • R 504 represents a u-valent organic group having 1 to 200 carbon atoms
  • R 505 represents a group represented by -OR 506 or -OCO-R 507.
  • R 506 represents a hydrogen atom or an organic group having 1 to 10 carbon atoms
  • R 507 represents an organic group having 1 to 10 carbon atoms.
  • Specific examples of the compound represented by the formula (AM4) include 46DMOC, 46DMOEP (all trade names, manufactured by Asahi Organic Materials Co., Ltd.), DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML -PC, DML-PTBP, DML-34X, DML-EP, DML-POP, dimethylol BisOC-P, DML-PFP, DML-PSBP, DML-MTrisPC (trade names, manufactured by Honshu Chemical Industry Co., Ltd.), NIKALAC MX-290 (trade name, manufactured by Sanwa Chemical Co., Ltd.), 2,6-dimethoxymethyl-4-t-butylphenol, 2,6-dimethoxymethyl-p-cresol, 2,6-diacetoxymethyl-p-cresol, etc. Be
  • specific examples of the compound represented by the formula (AM5) include TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPA, TMOM-BP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), TM-BIP-A (trade name, manufactured by Asahi Organic Materials Co., Ltd.), NIKALAC MX-280, NIKALAC MX-270, NIKALAC MW-100LM (trade names, manufactured by Sanwa Chemical Co., Ltd.).
  • Epoxy compound compound having an epoxy group
  • the epoxy compound is preferably a compound having two or more epoxy groups in one molecule.
  • the epoxy group crosslinks at a temperature of 200 ° C. or less, and a film contraction does not easily occur because a dehydration reaction derived from the crosslinking does not occur. For this reason, containing an epoxy compound is effective for suppressing the low temperature curing and warpage of the composition.
  • the epoxy compound preferably contains a polyethylene oxide group.
  • the polyethylene oxide group means that the number of structural units of ethylene oxide is 2 or more, and the number of structural units is preferably 2 to 15.
  • epoxy compounds are: bisphenol A type epoxy resin; bisphenol F type epoxy resin; alkylene glycol type epoxy resin such as propylene glycol diglycidyl ether; polyalkylene glycol type epoxy resin such as polypropylene glycol diglycidyl ether; Examples include epoxy group-containing silicones such as (oxypropyl) siloxane and the like, but are not limited thereto.
  • Epiclon (registered trademark) 850-S Epiclon (registered trademark) HP-4032, Epiclon (registered trademark) HP-7200, Epiclon (registered trademark) HP-820, Epiclon (registered trademark) HP-4700, Epiclon (R) EXA-4710, Epiclon (R) HP-4770, Epiclon (R) EXA-859 CRP, Epiclon (R) EXA-1514, Epiclon (R) EXA-4880, Epiclon (R) EXA-4850-150, Epiclon EXA-4850-1000, Epiclon (registered trademark) EXA-4816, Epiclon (registered trademark) EXA-4822 (trade names, manufactured by Dainippon Ink and Chemicals, Inc.), Rica Resin (registered trademark) ) BEO-60E (brand name, New Japan Rika ( )), EP-4003S, EP-4000S (trade names, and the like (Ltd.)
  • the epoxy resin containing a polyethylene oxide group is preferable at the point which is excellent in suppression of curvature, and heat resistance.
  • Epiclon (registered trademark) EXA-4880, Epiclon (registered trademark) EXA-4822, and Rikaresin (registered trademark) BEO-60E are preferable because they contain polyethylene oxide groups.
  • oxetane compounds include compounds having two or more oxetane rings in one molecule, 3-ethyl-3-hydroxymethyl oxetane, 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, Examples thereof include 3-ethyl-3- (2-ethylhexylmethyl) oxetane and 1,4-benzenedicarboxylic acid-bis [(3-ethyl-3-oxetanyl) methyl] ester.
  • Aron oxetane series (for example, OXT-121, OXT-221, OXT-191, OXT-223) manufactured by Toagosei Co., Ltd. can be suitably used, and these can be used alone or Two or more may be mixed.
  • Benzoxazine compound compound having a benzoxazolyl group
  • the benzoxazine compounds are preferable because they do not generate degassing during curing due to the crosslinking reaction derived from the ring opening addition reaction, and further, the thermal shrinkage is reduced and the occurrence of warpage is suppressed.
  • benzoxazine compound examples include B-a type benzoxazine, B-m type benzoxazine (all trade names, manufactured by Shikoku Kasei Kogyo Co., Ltd.), benzoxazine adduct of polyhydroxystyrene resin, phenol novolac type dihydrobenzo An oxazine compound is mentioned. These may be used alone or in combination of two or more.
  • the content is preferably more than 0% by mass and 60% by mass or less with respect to the total solid content of the photosensitive resin composition of the present invention.
  • the lower limit is more preferably 5% by mass or more.
  • the upper limit is more preferably 50% by mass or less and still more preferably 30% by mass or less.
  • a polymeric compound may be used individually by 1 type, you may mix and use 2 or more types. When using 2 or more types together, it is preferable that the total amount becomes said range.
  • the photosensitive resin composition of the present invention preferably further contains a migration inhibitor.
  • a migration inhibitor By including the migration inhibitor, it is possible to effectively suppress migration of metal ions derived from the metal layer (metal wiring) into the photosensitive resin composition layer.
  • the migration inhibitor is not particularly limited, but a heterocyclic ring (a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, an oxazole ring, a thiazole ring, a pyrazole ring, an isoxazole ring, an isothiazole ring, a tetrazole ring, a pyridine ring, Compounds having pyridazine ring, pyrimidine ring, pyrazine ring, piperidine ring, piperazine ring, morpholine ring, 2H-pyran ring and 6H-pyran ring, triazine ring), compounds having thiourea
  • ion trap agents that capture anions such as halogen ions can also be used.
  • Examples of other migration inhibitors include rust inhibitors described in paragraph 0094 of JP-A-2013-15701, compounds described in paragraphs 0073 to 0076 of JP-A-2009-283711, and JP-A-2011-59656.
  • the compounds described in paragraph 0052, the compounds described in paragraphs 0114, 0116 and 0118 of JP 2012-194520 A, and the like can be used.
  • the content of the migration inhibitor is preferably 0.01 to 5.0% by mass with respect to the total solid content of the photosensitive resin composition, and 0
  • the content is more preferably in the range of 0.05 to 2.0% by mass, and still more preferably 0.1 to 1.0% by mass.
  • the migration inhibitor may be used alone or in combination of two or more. When two or more migration inhibitors are used, the total is preferably in the above range.
  • the photosensitive resin composition of the present invention preferably contains a polymerization inhibitor.
  • the polymerization inhibitor include hydroquinone, 4-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, p-tert-butyl catechol, 1,4-benzoquinone, diphenyl-p-benzoquinone, 4,4 ' -Thiobis (3-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-methyl-6-tert-butylphenol), N-nitroso-N-phenylhydroxyamine aluminum salt, phenothiazine, N-nitrosodiphenylamine N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, glycol ether diamine tetraacetic acid, 2,6-di-tert-butyl-4-methylphenol, 5-nitroso
  • the polymerization inhibitor described in paragraph 0060 of JP-A-2015-127817 and the compounds described in paragraphs 0031 to 0046 of International Publication WO 2015/125469 can also be used.
  • the following compounds can be used (Me is a methyl group).
  • the content of the polymerization inhibitor is from 0.01 to 5% by mass based on the total solid content of the photosensitive resin composition of the present invention. Is preferable, 0.02 to 3% by mass is more preferable, and 0.05 to 2.5% by mass is more preferable.
  • the polymerization inhibitor may be used alone or in combination of two or more. When two or more polymerization inhibitors are used, the total is preferably in the above range.
  • the photosensitive resin composition of the present invention preferably contains a metal adhesion improver for improving the adhesion to a metal material used for electrodes, wiring and the like.
  • a metal adhesion improver for improving the adhesion to a metal material used for electrodes, wiring and the like.
  • the metal adhesion improver include silane coupling agents.
  • silane coupling agent examples include compounds described in paragraphs 0062 to 0073 of JP-A 2014-191002, compounds described in paragraphs 0063 to 0071 of International Publication WO 2011/080992 A1, and compounds described in JP-A 2014-191252.
  • Et represents an ethyl group.
  • the content of the metal adhesion modifier is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 15 parts by mass, and still more preferably 0 with respect to 100 parts by mass of the polymer precursor. And in the range of 5 to 5 parts by mass.
  • the metal adhesion improver may be used alone or in combination of two or more. When using 2 or more types, it is preferable that the sum is the said range.
  • the photosensitive resin composition of the present invention may contain a curing accelerator.
  • the curing accelerator may be a thermal curing accelerator or a light curing accelerator.
  • the curing accelerator in the present invention is preferably one which generates a base by heat or exposure (base generator).
  • base generator base generator
  • Thermosetting accelerator >> The heat curing accelerator is preferably a salt of a quaternary ammonium cation and a carboxylate anion.
  • the quaternary ammonium cation is preferably represented by any one of the following formulas (Y1-1) to (Y1-4).
  • R Y1 represents an organic group having n Y value (n Y is an integer of 1 to 12), and is preferably a hydrocarbon group having n Y value.
  • a hydrocarbon group a group having n Y valence containing an alkane (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 and still more preferably 1 to 3), and an n Y valence group containing an alkene (having 2 carbon atoms) To 12 are preferable, 2 to 6 are more preferable, and 2 to 3 are more preferable, and an n Y- valent group containing an aromatic hydrocarbon (preferably having 6 to 22 carbon atoms, and more preferably 6 to 18), and 6 to 10 Is further preferred), or a combination thereof.
  • R Y1 is preferably an aromatic hydrocarbon group.
  • R Y1 may have the aforementioned substituent T within the range not impairing the effects of the present invention.
  • R Y2 to R Y5 each independently represent a hydrogen atom or a hydrocarbon group (preferably having a carbon number of 1 to 36, more preferably 1 to 24, still more preferably 1 to 12), and an alkyl group (having a carbon number of 1 to 12) 36 is preferable, 1 to 24 is more preferable, 1 to 23 is more preferable, alkenyl group (having 2 to 36 carbon atoms is preferable, 2 to 24 is more preferable, and 2 to 23 is more preferable), alkynyl group (carbon number is more preferable) 1 to 36 are preferable, 1 to 24 are more preferable, and 1 to 23 are more preferable, and an aryl group (having 6 to 22 carbon atoms is preferable, 6 to 18 is more preferable, and 6 to 10 is more preferable).
  • the alkyl group, the alkenyl group and the alkynyl group may be cyclic or linear, and in the case of chain, they may be linear or branched.
  • R Y6 is an alkyl group (preferably having a carbon number of 1 to 36, more preferably 2 to 24, still more preferably 4 to 18), and an alkenyl group (having a carbon number of 2 to 36 preferably, 2 to 24 more preferably, 4 to 18 Is more preferable, an alkynyl group (preferably having a carbon number of 2 to 36, more preferably 2 to 24, still more preferably 4 to 18), and an aryl group (preferably having a carbon number of 6 to 22, and more preferably 6 to 18) To 10 are more preferable).
  • the alkyl group, the alkenyl group and the alkynyl group may be cyclic or linear, and in the case of chain, they may be linear or branched.
  • a linking group Lh containing a hetero atom may be present in the middle of the group or in the linkage with the mother nucleus.
  • n Y represents an integer of 1 to 12, an integer of 1 to 6 is more preferable, and an integer of 1 to 3 is still more preferable.
  • n X represents an integer of 1 to 12, preferably an integer of 1 to 6, and more preferably an integer of 1 to 3. Two or more of R Y2 to R Y6 may be combined with each other to form a ring.
  • R Y7 to R Y16 are groups having the same meaning as R N.
  • each of R Y7 and R Y8 is a carboxyalkyl group (preferably having a carbon number of 1 to 12, more preferably 1 to 6, still more preferably 1 to 3; the number of carboxyl groups is preferably 1 to 12) , 1 to 6 is more preferable, and 1 to 3 is further preferable).
  • R Y9 is preferably an aromatic group, and is preferably an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, and still more preferably 6 to 10 carbon atoms).
  • an alkoxycarbonyl group substituted with an aromatic group is preferable (the alkoxyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6, still more preferably 1 to 3), and the aromatic group preferably has 6 to 22 carbon atoms , 6 to 18 are more preferable, and 6 to 14 are further preferable).
  • R Y11 and R Y13 are preferably hydrogen atoms.
  • R Y13 is preferably a hydrogen atom
  • R Y10 , R Y11 , R Y12 and R Y16 are each an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, It is preferable that ⁇ 3 is more preferable.
  • a R Y11 and R Y16, R Y10 and R Y12 are bonded to form a ring bicyclo compound.
  • diazabicyclononene and diazabicycloundecene can be mentioned.
  • the carboxylate anion paired with the quaternary ammonium cation of the above formulas (Y1-1), (Y1-3) and (Y1-4) is represented by the following formula (X1) Is preferred.
  • EWG represents an electron-withdrawing group.
  • the electron-withdrawing group means one having a positive value of Hammett's substituent constant ⁇ m.
  • ⁇ m is a Y. Tono review, Journal of Organic Synthetic Chemistry, Vol. 23, No. 8 (1965) p. 631-642.
  • the electron withdrawing group in this embodiment is not limited to the substituent described in the said literature.
  • Me represents a methyl group
  • Ac represents an acetyl group
  • Ph represents a phenyl group (the same applies hereinafter).
  • EWG is preferably a group represented by the following formulas (EWG-1) to (EWG-6).
  • R x1 to R x3 each independently represent a hydrogen atom or an alkyl group (preferably having a carbon number of 1 to 12, more preferably 1 to 6, and 1 to 3). Further preferred is an alkenyl group (preferably having a carbon number of 2 to 12, more preferably 2 to 6, still more preferably 2 to 3), and an aryl group (preferably having a carbon number of 6 to 22, preferably 6 to 18). 10 is more preferable), a hydroxyl group, or a carboxyl group.
  • Ar represents an aromatic group (preferably having 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, and still more preferably 6 to 10 carbon atoms).
  • R x1 to R x3 are an alkyl group, an alkenyl group or an aryl group, they may form a ring, and when forming a ring, the above linking group L in the middle or a linking group Lh having the above hetero atom May be interposed.
  • the alkyl group, the alkenyl group, the aryl group and Ar may have a substituent T within the range not impairing the effects of the present invention.
  • Ar particularly preferably has a carboxyl group (preferably 1 to 3). * Represents a bonding position.
  • Np represents an integer of 1 to 6, preferably an integer of 1 to 3, and more preferably 1 or 2.
  • the molecular weight of the thermosetting accelerator in the present invention is preferably 100 or more and less than 2000, more preferably 200 to 1000.
  • an acidic compound which generates a base when heated to 40 ° C. or more described in WO2015 / 199219 and pKa1 are examples are ammonium salts having 0-4 anions and an ammonium cation, the contents of which are incorporated herein.
  • the content of the heat curing accelerator in the composition is preferably 0.01 to 50% by mass with respect to the total solid content of the composition.
  • the lower limit is more preferably 0.05% by mass or more and further preferably 0.1% by mass or more. 10 mass% or less is more preferable, and, as for the upper limit, 5 mass% or less is more preferable.
  • the heat curing accelerator may be used alone or in combination of two or more. When using 2 or more types, it is preferable that a total amount is the said range.
  • the composition of this invention can also be set as the structure which does not contain a thermosetting accelerator substantially. Substantially free means less than 0.01% by mass, and more preferably less than 0.005% by mass, with respect to the total solid content of the composition.
  • the photosensitive resin composition of the present invention may contain various additives such as, for example, thermal acid generators, sensitizing dyes, chain transfer agents, surfactants, and higher as needed, as long as the effects of the present invention are not impaired.
  • a fatty acid derivative, an inorganic particle, a curing agent, a curing catalyst, a filler, an antioxidant, an ultraviolet absorber, an aggregation inhibitor, and the like can be blended.
  • the total blending amount is preferably 3% by mass or less of the solid content of the composition.
  • the photosensitive resin composition of the present invention may contain a thermal acid generator.
  • the thermal acid generator generates an acid upon heating, promotes cyclization of the polymer precursor and further improves the mechanical properties of the cured film.
  • Examples of the thermal acid generator include compounds described in paragraph 0059 of JP-A-2013-167742.
  • 0.01 mass part or more is preferable with respect to 100 mass parts of polymer precursors, and, as for content of a thermal acid generator, 0.1 mass part or more is more preferable.
  • the content of the thermal acid generator is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and still more preferably 10 parts by mass or less from the viewpoint of the electrical insulation of the cured film.
  • the thermal acid generator may be used alone or in combination of two or more. When using 2 or more types, it is preferable that a total amount becomes said range.
  • the photosensitive resin composition of the present invention may contain a sensitizing dye.
  • the sensitizing dye absorbs specific actinic radiation to be in an electronically excited state.
  • the sensitizing dye in the electronically excited state is brought into contact with a heat curing accelerator, a thermal radical polymerization initiator, a photo radical polymerization initiator and the like to produce actions such as electron transfer, energy transfer, heat generation and the like.
  • the heat curing accelerator, the thermal radical polymerization initiator, and the photo radical polymerization initiator undergo a chemical change and decompose to form a radical, an acid or a base.
  • the details of the sensitizing dye can be referred to the description of paragraphs 0161 to 0163 of JP-A-2016-027357, the contents of which are incorporated herein.
  • the content of the sensitizing dye is 0.01 to 20% by mass with respect to the total solid content of the photosensitive resin composition of the present invention.
  • the content is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass.
  • the sensitizing dyes may be used alone or in combination of two or more.
  • the photosensitive resin composition of the present invention may contain a chain transfer agent.
  • Chain transfer agents are defined, for example, in Polymer Dictionary Third Edition (edited by the Polymer Society of Japan, 2005), pp. 683-684.
  • As a chain transfer agent for example, a compound group having SH, PH, SiH, and GeH in the molecule is used. These can donate hydrogen to a low activity radical to form a radical or be oxidized and then deprotonated to form a radical.
  • thiol compounds for example, 2-mercaptobenzimidazoles, 2-mercaptobenzthiazoles, 2-mercaptobenzoxazoles, 3-mercaptotriazoles, 5-mercaptotetrazole, etc.
  • 2-mercaptobenzimidazoles, 2-mercaptobenzthiazoles, 2-mercaptobenzoxazoles, 3-mercaptotriazoles, 5-mercaptotetrazole, etc. can be preferably used.
  • the content of the chain transfer agent is 0.01 to 20 parts by mass with respect to 100 parts by mass of the total solid content of the photosensitive resin composition of the present invention
  • the amount is preferably 1 to 10 parts by mass, and more preferably 1 to 5 parts by mass.
  • the chain transfer agent may be used alone or in combination of two or more. When two or more chain transfer agents are used, the total is preferably in the above range.
  • surfactant Each kind of surfactant may be added to the photosensitive resin composition of the present invention from the viewpoint of further improving the coating property.
  • surfactant various types of surfactants such as fluorine-based surfactants, nonionic surfactants, cationic surfactants, anionic surfactants and silicone surfactants can be used. The following surfactants are also preferred.
  • the content of the surfactant is 0.001 to 2.0% by mass with respect to the total solid content of the photosensitive resin composition of the present invention. It is preferably present, and more preferably 0.005 to 1.0% by mass.
  • the surfactant may be used alone or in combination of two or more. When two or more surfactants are used, the total is preferably in the above range.
  • the photosensitive resin composition of the present invention is added with a higher fatty acid derivative such as behenic acid or behenic acid amide in order to prevent polymerization inhibition caused by oxygen, and the surface of the composition in the process of drying after coating It may be unevenly distributed.
  • a higher fatty acid derivative such as behenic acid or behenic acid amide
  • the content of the higher fatty acid derivative is 0.1 to 10% by mass with respect to the total solid content of the photosensitive resin composition of the present invention. Is preferred.
  • the higher fatty acid derivative may be used alone or in combination of two or more. When two or more higher fatty acid derivatives are used, the total is preferably in the above range.
  • the water content of the photosensitive resin composition of the present invention is preferably less than 5% by mass, more preferably less than 1% by mass, and still more preferably less than 0.6% by mass.
  • the metal content of the photosensitive resin composition of the present invention is preferably less than 5 ppm by weight (parts per million), more preferably less than 1 ppm by weight, and still more preferably less than 0.5 ppm by weight.
  • the metal include sodium, potassium, magnesium, calcium, iron, chromium, nickel and the like. When a plurality of metals are included, the total of these metals is preferably in the above range.
  • a raw material having a small metal content is selected as a raw material constituting the photosensitive resin composition of the present invention.
  • the photosensitive resin composition of the present invention preferably has a halogen atom content of less than 500 mass ppm, more preferably less than 300 mass ppm, from the viewpoint of wiring corrosion. Less than ppm is more preferred. Among them, those less than 5 mass ppm are preferable, those less than 1 mass ppm are more preferable, and less than 0.5 mass ppm is more preferable.
  • the halogen atom includes a chlorine atom and a bromine atom. It is preferable that the sum total of a chlorine atom and a bromine atom, or a chloride ion and a bromide ion is respectively in the above range.
  • a conventionally known storage container can be used as a storage container of the photosensitive resin composition of the present invention.
  • the inner wall of the container is made of a multilayer bottle consisting of 6 kinds of resin and 6 layers of resin, and 6 kinds of resin with 7 layers structure It is also preferred to use a bottle which has been As such a container, for example, the container described in JP-A-2015-123351 can be mentioned.
  • the photosensitive resin composition of the present invention can be prepared by mixing the above-mentioned components.
  • the mixing method is not particularly limited, and can be carried out by a conventionally known method.
  • the material of the filter is preferably polytetrafluoroethylene, polyethylene or nylon.
  • the filter may be one previously washed with an organic solvent. In the filter filtration step, a plurality of filters may be connected in series or in parallel.
  • filters with different pore sizes or materials may be used in combination.
  • various materials may be filtered multiple times.
  • circulation filtration may be used.
  • you may pressurize and filter.
  • the pressure applied is preferably 0.05 MPa or more and 0.3 MPa or less.
  • removal of impurities using an adsorbent may be performed.
  • Filter filtration may be combined with impurity removal treatment using an adsorbent.
  • a known adsorbent can be used as the adsorbent. Examples include inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon.
  • the photosensitive resin composition of the present invention withstands storage at relatively high temperature because the polymer precursor has a sulfonic acid group. It is more suitable for storage at -60.degree. C. to 40.degree. C., and more preferably at a storage temperature of -20.degree. C. to 10.degree.
  • the cured film of the present invention is formed by curing the photosensitive resin composition of the present invention.
  • the film thickness of the cured film of the present invention can be, for example, 0.5 ⁇ m or more, and can be 1 ⁇ m or more. Moreover, as an upper limit, it can be 100 micrometers or less, and can also be 30 micrometers or less.
  • the cured film of the present invention may be laminated in two or more layers, and further three to seven layers to form a laminate.
  • the embodiment having a metal layer between the cured films is preferable for the laminate having two or more layers of the cured film of the present invention.
  • Such a metal layer is preferably used as a metal wiring such as a rewiring layer.
  • the insulating film of a semiconductor device As an applicable field
  • forming a pattern by etching a sealing film, a substrate material (a base film or a cover lay of a flexible printed substrate, an interlayer insulating film), or an insulating film for mounting application as described above may be mentioned.
  • the cured film according to the invention can also be used for the production of printing plates, such as offset printing plates or screen printing plates, for use in the etching of molded parts, for the production of protective lacquers and dielectric layers in electronics, in particular in microelectronics.
  • printing plates such as offset printing plates or screen printing plates
  • protective lacquers and dielectric layers in electronics in particular in microelectronics.
  • the method for producing a cured film of the present invention includes using the photosensitive resin composition of the present invention.
  • the method includes a layer forming step of applying the photosensitive resin composition of the present invention to a substrate to form a layer, and a heating step of heating the layer-formed photosensitive resin composition at 50 to 500.degree.
  • the method for producing a cured film further includes, after the layer formation step, an exposure step of exposing the layer, and a development treatment on the exposed photosensitive resin composition layer (resin layer). And a manufacturing method having a development processing step to be performed. After this development, the exposed resin layer can be further cured by heating (preferably heating at 50 to 500 ° C.).
  • desired processing for example, the following lamination
  • the method for producing a laminate of the present invention includes the method for producing a cured film of the present invention.
  • the layer forming step and the heating step of the photosensitive resin composition or the photosensitivity is given again.
  • the layer formation step, the exposure step, and the development treatment step are performed in the order described above.
  • it is preferable to carry out each of the above steps in order two to five times (ie, three to six times in total).
  • a laminate can be obtained.
  • the manufacturing method includes a layer forming step of applying a photosensitive resin composition to a substrate to form a layer.
  • the type of substrate can be appropriately determined depending on the application, but a semiconductor production substrate such as silicon, silicon nitride, polysilicon, silicon oxide, amorphous silicon, quartz, glass, optical film, ceramic material, vapor deposited film, magnetic film No particular limitation is imposed on a reflection film, a metal substrate such as Ni, Cu, Cr, or Fe, paper, an SOG (Spin On Glass), a TFT (thin film transistor) array substrate, an electrode plate of a plasma display panel (PDP), or the like.
  • SOG Spin On Glass
  • TFT thin film transistor
  • a semiconductor production substrate is preferable, and a silicon substrate is more preferable.
  • the resin layer or the metal layer is the substrate.
  • coating is preferable. Specifically, as means for application, dip coating method, air knife coating method, curtain coating method, wire bar coating method, gravure coating method, extrusion coating method, spray coating method, spin coating method, slit coating method, And an inkjet method. From the viewpoint of uniformity of the thickness of the photosensitive resin composition layer, spin coating, slit coating, spray coating, and inkjet are more preferable.
  • a resin layer having a desired thickness can be obtained by adjusting the solid content concentration and application conditions appropriately according to the method.
  • the coating method can be appropriately selected depending on the shape of the substrate, and if it is a circular substrate such as a wafer, spin coating method, spray coating method, ink jet method etc. are preferable, and if it is a rectangular substrate, slit coating method, spray coating method, ink jet The law is preferred.
  • the spin coating method for example, it can be applied at a rotational speed of 500 to 2000 rpm for about 10 seconds to 1 minute.
  • the manufacturing method of this invention may include the process of drying in order to remove a solvent after layer formation process after formation of the photosensitive resin composition layer.
  • the preferred drying temperature is 50 to 150 ° C., more preferably 70 ° C. to 130 ° C., and still more preferably 90 ° C. to 110 ° C.
  • the drying time is, for example, 30 seconds to 20 minutes, preferably 1 to 10 minutes, and more preferably 3 to 7 minutes.
  • the manufacturing method of the present invention may include an exposure step of exposing the photosensitive resin composition layer.
  • the amount of exposure is not particularly limited as long as the photosensitive resin composition can be cured, but for example, irradiation of 100 to 10000 mJ / cm 2 is preferable in terms of exposure energy at a wavelength of 365 nm, and irradiation of 200 to 8000 mJ / cm 2 Is more preferred.
  • the exposure wavelength can be appropriately determined in the range of 190 to 1000 nm, preferably 240 to 550 nm.
  • the exposure wavelength is (1) semiconductor laser (wavelength 830 nm, 532 nm, 488 nm, 405 nm etc.), (2) metal halide lamp, (3) high pressure mercury lamp, g line (wavelength 436 nm), h Line (wavelength 405 nm), i line (365 nm wavelength), broad (3 wavelengths of g, h, i line), (4) excimer laser, KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), F2 excimer Laser (wavelength: 157 nm), (5) extreme ultraviolet light; EUV (wavelength: 13.6 nm), (6) electron beam, etc. may be mentioned.
  • exposure with a high pressure mercury lamp is preferable, and in particular, exposure with i-line is preferable. Thereby, particularly high exposure sensitivity can be obtained.
  • the manufacturing method of the present invention may include a development treatment step of performing development treatment on the exposed photosensitive resin composition layer.
  • the development method is not particularly limited as long as it can form a desired pattern, and, for example, development methods such as paddle, spray, immersion, and ultrasonic waves can be employed.
  • Development is performed using a developer.
  • the developer can be used without particular limitation as long as the unexposed area (non-exposed area) is removed.
  • the developer preferably contains an organic solvent.
  • the developer preferably contains an organic solvent having a ClogP value of ⁇ 1 to 5, and more preferably an organic solvent having a ClogP value of 0 to 3.
  • the ClogP value can be obtained as a calculated value by inputting a structural formula in ChemBioDraw.
  • the organic solvent is, for example, esters such as ethyl acetate, n-butyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone ⁇ -caprolactone, ⁇ -valerolactone, alkyl alkyl oxyacetate (eg methyl alkyl oxyacetate, ethyl alkyl oxy acetate, butyl alkyl oxy acetate (eg methyl methoxy acetate, ethyl methoxy acetate, butyl methoxy acetate, methyl ethoxy acetate, Ethyl ethoxy
  • ketones for example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, N-methyl-2-pyrrolidone and the like, and as aromatic hydrocarbons, for example, toluene, xylene, anisole, limonene and the like
  • dimethyl sulfoxide are preferably mentioned as sulfoxides.
  • cyclopentanone and ⁇ -butyrolactone are particularly preferable, and cyclopentanone is more preferable.
  • the developer preferably has 50% by mass or more of the organic solvent, more preferably 70% by mass or more of the organic solvent, and still more preferably 90% by mass or more of the organic solvent. Further, 100% by mass of the developer may be an organic solvent.
  • the development time is preferably 10 seconds to 5 minutes.
  • the temperature of the developing solution at the time of development is not particularly limited, but it can usually be carried out at 20 to 40.degree.
  • rinsing may be further performed.
  • the rinse is preferably performed with a solvent different from the developer. For example, it can rinse using the solvent contained in the photosensitive resin composition.
  • the rinse time is preferably 5 seconds to 1 minute.
  • the production method of the present invention preferably includes a step of heating after the layer forming step, the drying step, or the developing step.
  • the heating step the cyclization reaction of the polymer precursor proceeds.
  • the composition of the present invention may contain a radically polymerizable compound other than the polymer precursor, curing of the radically polymerizable compound other than the unreacted polymer precursor can be advanced in this step.
  • the heating temperature (maximum heating temperature) of the layer in the heating step is preferably 50 to 500 ° C., more preferably 50 to 450 ° C., still more preferably 140 to 400 ° C., and still more preferably 160 to 350 ° C.
  • the heating is preferably performed at a temperature rising rate of 1 to 12 ° C./min from the temperature at the start of heating to the maximum heating temperature, more preferably 2 to 10 ° C./min, still more preferably 3 to 10 ° C./min.
  • the temperature at the start of heating is preferably 20 ° C. to 150 ° C., more preferably 20 ° C. to 130 ° C., and still more preferably 25 ° C. to 120 ° C.
  • the temperature at the start of heating refers to the temperature at which the process of heating to the maximum heating temperature is started.
  • the temperature is the temperature of the layer after drying, for example, 30 to 200 ° C. than the boiling point of the solvent contained in the photosensitive resin composition. It is preferable to raise the temperature gradually from a low temperature.
  • the heating time (heating time at the maximum heating temperature) is preferably 10 to 360 minutes, more preferably 20 to 300 minutes, and still more preferably 30 to 240 minutes.
  • the heating temperature is preferably 180 ° C. to 320 ° C., and more preferably 180 ° C. to 260 ° C., from the viewpoint of adhesion between the layers of the cured film. The reason is not clear, but at this temperature, it is considered that the ethynyl groups of the polymer precursor between layers proceed with the crosslinking reaction.
  • the heating may be performed stepwise. As an example, the temperature is raised from 25 ° C. to 180 ° C. at 3 ° C./min, held at 180 ° C. for 60 minutes, raised from 180 ° C. to 200 ° C. at 2 ° C./min, held at 200 ° C. for 120 minutes And the like may be performed.
  • the heating temperature as the pretreatment step is preferably 100 to 200 ° C., more preferably 110 to 190 ° C., and still more preferably 120 to 185 ° C.
  • the pretreatment step may be performed for a short time of about 10 seconds to 2 hours, and more preferably 15 seconds to 30 minutes.
  • the pretreatment may be performed in two or more steps, for example, the pretreatment step 1 may be performed in the range of 100 to 150 ° C., and then the pretreatment step 2 may be performed in the range of 150 to 200 ° C. Furthermore, it may be cooled after heating, and in this case, the cooling rate is preferably 1 to 5 ° C./minute.
  • the heating step is preferably performed in an atmosphere with a low oxygen concentration by flowing an inert gas such as nitrogen, helium, argon or the like from the viewpoint of preventing the decomposition of the polymer precursor.
  • the oxygen concentration is preferably 50 ppm (volume ratio) or less, more preferably 20 ppm (volume ratio) or less.
  • the production method of the present invention preferably includes a metal layer forming step of forming a metal layer on the surface of the photosensitive resin composition layer after development processing.
  • a metal layer existing metal species can be used without particular limitation, and copper, aluminum, nickel, vanadium, titanium, chromium, cobalt, gold and tungsten are exemplified, copper and aluminum are more preferable, copper is more preferable. More preferable.
  • the formation method of a metal layer does not have a limitation in particular, The existing method can be applied. For example, the methods described in JP-A-2007-157879, JP-A-2001-521288, JP-A-2004-214501, and JP-A-2004-101850 can be used.
  • the thickness of the metal layer is preferably 0.1 to 50 ⁇ m, and more preferably 1 to 10 ⁇ m at the thickest part.
  • the production method of the present invention preferably further includes a lamination step.
  • the laminating step the layer forming step and the heating step, or the photosensitive resin composition, the layer forming step, the exposure step, and the development on the surface of the cured film (resin layer) or the metal layer again.
  • the laminating step may further include the above-mentioned drying step, heating step and the like.
  • the surface activation treatment step may be further performed after the heating step, after the exposure step, or after the metal layer forming step. Plasma treatment is exemplified as the surface activation treatment.
  • the lamination step is preferably performed 2 to 5 times, and more preferably 3 to 5 times.
  • a configuration having three or more and seven or less resin layers such as resin layer / metal layer / resin layer / metal layer / resin layer / metal layer is preferable, and three or more and five or less layers are more preferable. That is, in the present invention, in particular, after the metal layer is provided, the layer forming step and the heating step of the photosensitive resin composition, or the photosensitive resin composition, is performed to cover the metal layer. It is preferable to perform the formation step, the exposure step, and the development treatment step (additional heating step, if necessary) in the above order. By alternately performing the laminating step of laminating the photosensitive resin composition layer (resin) and the metal layer forming step, the photosensitive resin composition layer (resin layer) and the metal layer can be alternately laminated.
  • the present invention also discloses a semiconductor device having the cured film or laminate of the present invention.
  • a semiconductor device using the photosensitive resin composition of the present invention for forming an interlayer insulating film for rewiring layer the description of paragraphs 0213 to 0218 of JP-A-2016-027357 and the description of FIG. And their contents are incorporated herein.
  • the resulting reaction solution was charged with 6 L of water to precipitate a polyimide precursor, and the water-polyimide precursor mixture was vigorously stirred at a speed of 500 rpm for 60 minutes.
  • the solid of the polyimide precursor was filtered and dried at 45 ° C. under reduced pressure for 2 days.
  • the obtained polyimide precursor had a weight average molecular weight of 19500 and a number average molecular weight of 8100, and the number of sulfonic acid groups was 7.54% of the total number of all structural units.
  • composition example 2 [Synthesis of Polymer Precursor A-2] 14.9 g of pyromellitic dianhydride, 18.2 g of 2-hydroxyethyl methacrylate, 23.9 g of pyridine and 100 mL of diglyme were mixed and stirred at a temperature of 60 ° C. for 4 hours. The reaction mixture was then cooled to -10 ° C and 17.0 g of SOCl 2 was added over 60 minutes, keeping the temperature at -10 ° C.
  • the resulting solution was charged with 6 L of water to precipitate a polyimide precursor, and the water-polyimide precursor mixture was vigorously stirred at a speed of 500 rpm for 60 minutes.
  • the solid of the polyimide precursor was again filtered and dried under vacuum at 45 ° C. for 2 days.
  • the obtained polyimide precursor had a weight average molecular weight of 22,400 and a number average molecular weight of 8,600, and the number of sulfonic acid groups was 0.15% of the total number of all structural units.
  • composition example 3 [Synthesis of Polymer Precursor A-3] 21.2 g of 4,4'-oxydiphthalic dianhydride, 18.2 g of 2-hydroxyethyl methacrylate, 23.9 g of pyridine and 100 mL of diglyme were mixed and stirred at a temperature of 60 ° C. for 4 hours . The reaction mixture was then cooled to -10 ° C and 17.0 g of SOCl 2 was added over 60 minutes, keeping the temperature at -10 ° C.
  • the resulting solution was charged with 6 L of water to precipitate a polyimide precursor, and the water-polyimide precursor mixture was vigorously stirred at a speed of 500 rpm for 60 minutes.
  • the solid of the polyimide precursor was again filtered and dried under vacuum at 45 ° C. for 2 days.
  • the obtained polyimide precursor had a weight average molecular weight of 26,400 and a number average molecular weight of 9,600, and the number of sulfonic acid groups was 1.05% of the total number of all structural units.
  • composition example 4 [Synthesis of Polymer Precursor A-4] 21.2 g of 4,4'-oxydiphthalic dianhydride, 18.2 g of 2-hydroxyethyl methacrylate, 11.0 g of pyridine and 50 mL of tetrahydrofuran were mixed and stirred at a temperature of 60 ° C. for 4 hours . The reaction mixture is then cooled to -10.degree. C., and a solution of 17.2 g of diisopropylcarbodiimide in 40 mL of .gamma.-butyrolactone is added dropwise to the reaction mixture over 60 minutes at -10.degree. C. and the mixture is stirred for 30 minutes. did.
  • the resulting reaction solution was charged with 6 L of water to precipitate a polyimide precursor, and the water-polyimide precursor mixture was vigorously stirred at a speed of 500 rpm for 60 minutes.
  • the solid of the polyimide precursor was filtered and dried at 45 ° C. under reduced pressure for 2 days.
  • the obtained polyimide precursor had a weight average molecular weight of 20,900 and a number average molecular weight of 8,200, and the number of sulfonic acid groups was 0.44% of the total number of all structural units.
  • composition example 5 [Synthesis of Polymer Precursor A-5] 21.2 g of 4,4'-oxydiphthalic dianhydride, 18.2 g of 2-hydroxyethyl methacrylate, 23.9 g of pyridine and 100 mL of diglyme were mixed and stirred at a temperature of 60 ° C. for 4 hours . The reaction mixture was then cooled to -10 ° C and 17.0 g of SOCl 2 was added over 60 minutes, keeping the temperature at -10 ° C.
  • the resulting solution was charged with 6 L of water to precipitate a polyimide precursor, and the water-polyimide precursor mixture was vigorously stirred at a speed of 500 rpm for 60 minutes.
  • the solid of the polyimide precursor was again filtered and dried under vacuum at 45 ° C. for 2 days.
  • the obtained polyimide precursor had a weight average molecular weight of 27100 and a number average molecular weight of 10100, and the number of sulfonic acid groups was 3.21% of the total number of all structural units.
  • Synthesis Example 6 [Synthesis of Polymer Precursor A-6] 21.2 g of 4,4'-oxydiphthalic dianhydride, 18.2 g of 2-hydroxyethyl methacrylate, 23.9 g of pyridine and 100 mL of diglyme were mixed and stirred at a temperature of 60 ° C. for 4 hours . The reaction mixture was then cooled to -10 ° C and 17.0 g of SOCl 2 was added over 60 minutes, keeping the temperature at -10 ° C.
  • the resulting solution was charged with 6 L of water to precipitate a polyimide precursor, and the water-polyimide precursor mixture was vigorously stirred at a speed of 500 rpm for 60 minutes.
  • the solid of the polyimide precursor was again filtered and dried under vacuum at 45 ° C. for 2 days.
  • the obtained polyimide precursor had a weight average molecular weight of 27,500 and a number average molecular weight of 9,900, and the number of sulfonic acid groups was 0.07% of the total number of all structural units.
  • Synthesis Example 7 [Synthesis of Polymer Precursor A-7] 28.0 g of 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane were stirred and dissolved in 200 mL of N-methylpyrrolidone. Subsequently, 25.0 g of 4,4'-oxydibenzoyl chloride is added dropwise over 30 minutes while maintaining the temperature at 0-5 ° C., followed by 3.0 g of 3-hydroxypropanesulfonic acid (about 80% by weight aqueous solution ) was added and stirring was continued for 60 minutes.
  • the obtained polybenzoxazole precursor had a weight average molecular weight of 21800 and a number average molecular weight of 8300, and the number of sulfonic acid groups was 4.20% of the total number of all structural units.
  • Synthesis Example 8 [Synthesis of Polymer Precursor A-8] 28.0 g of 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane were stirred and dissolved in 200 mL of N-methylpyrrolidone. Subsequently, 25.0 g of 4,4'-oxydibenzoyl chloride is added dropwise over 30 minutes while maintaining the temperature at 0-5 ° C, and then 10.0 g of 2-sulfobenzoic anhydride is added for 60 minutes. Stirring continued. 6 L of water was added to the resulting reaction solution to precipitate a polybenzoxazole precursor, and the solid was filtered and dried under reduced pressure at 45 ° C. for 2 days. The obtained polybenzoxazole precursor had a weight average molecular weight of 18,800 and a number average molecular weight of 7,300, and the number of sulfonic acid groups was 12.48% of the total number of all structural units.
  • Synthesis Example 9 [Synthesis of Polymer Precursor A-9] 21.2 g of 4,4'-oxydiphthalic dianhydride, 18.2 g of 2-hydroxyethyl methacrylate, 10.0 g of 4-aminobenzenesulfonic acid, 23.9 g of pyridine and 100 mL of diglyme Mix and stir at a temperature of 60 ° C. for 4 hours. The reaction mixture was then cooled to -10 ° C and 17.0 g of SOCl 2 was added over 60 minutes, keeping the temperature at -10 ° C.
  • the solid of the polyimide precursor was again filtered and dried under vacuum at 45 ° C. for 2 days.
  • the polyimide precursor had a weight average molecular weight of 24,300 and a number average molecular weight of 9,200, and the number of sulfonic acid groups was 17.20% of the total number of all structural units.
  • Synthesis Example 10 [Synthesis of Polymer Precursor A-10] 21.2 g of 4,4'-oxydiphthalic dianhydride, 18.2 g of 2-hydroxyethyl methacrylate, 5.0 g of 4-aminobenzenesulfonic acid, 23.9 g of pyridine and 100 mL of diglyme Mix and stir at a temperature of 60 ° C. for 4 hours. The reaction mixture was then cooled to -10 ° C and 17.0 g of SOCl 2 was added over 60 minutes, keeping the temperature at -10 ° C.
  • the solid of the polyimide precursor was again filtered and dried under vacuum at 45 ° C. for 2 days.
  • the polyimide precursor had a weight average molecular weight of 22,700 and a number average molecular weight of 9,400, and the number of sulfonic acid groups was 3.21% of the total number of all structural units.
  • Synthesis Example 11 [Synthesis of Polymer Precursor A-11] 21.2 g of 4,4'-oxydiphthalic dianhydride, 18.2 g of 2-hydroxyethyl methacrylate, 3.0 g of 4-aminobenzenesulfonic acid, 11.0 g of pyridine and 50 mL of tetrahydrofuran Mix and stir at a temperature of 60 ° C. for 4 hours. The reaction mixture is then cooled to -10.degree. C., and a solution of 17.2 g of diisopropylcarbodiimide in 40 mL of .gamma.-butyrolactone is added dropwise to the reaction mixture over 60 minutes at -10.degree. C.
  • the solid of the polyimide precursor was filtered and dried at 45 ° C. under reduced pressure for 2 days.
  • the polyimide precursor had a weight average molecular weight of 25,100 and a number average molecular weight of 9,800, and the number of sulfonic acid groups was 4.32% of the total number of all structural units.
  • Synthesis Example 12 [Synthesis of Polymer Precursor A-12] 21.2 g of 4,4'-oxydiphthalic dianhydride, 18.2 g of 2-hydroxyethyl methacrylate, 2.0 g of 3-hydroxypropanesulfonic acid (about 80% by weight aqueous solution), 11.0 g of Pyridine and 50 mL of tetrahydrofuran were mixed and stirred at a temperature of 60 ° C. for 4 hours. The reaction mixture is then cooled to -10.degree. C. and a solution of 28.1 g of dicyclohexylcarbodiimide in 40 mL of .gamma.-butyrolactone is added dropwise to the reaction mixture over 60 minutes at -10.degree.
  • the solid of the polyimide precursor was filtered and dried at 45 ° C. under reduced pressure for 2 days.
  • the polyimide precursor had a weight average molecular weight of 18100 and a number average molecular weight of 7100, and the number of sulfonic acid groups was 2.20% of the total number of all structural units.
  • Synthesis Example 13 [Synthesis of Polymer Precursor A-13] 21.2 g of 4,4'-oxydiphthalic dianhydride, 18.2 g of 2-hydroxyethyl methacrylate, 0.2 g of 2-aminoethanesulfonic acid, 11.0 g of pyridine and 50 mL of tetrahydrofuran Mix and stir at a temperature of 60 ° C. for 4 hours. The reaction mixture is then cooled to -10.degree. C. and a solution of 28.1 g of dicyclohexylcarbodiimide in 40 mL of .gamma.-butyrolactone is added dropwise to the reaction mixture over 60 minutes at -10.degree. C.
  • the solid of the polyimide precursor was filtered and dried at 45 ° C. under reduced pressure for 2 days.
  • the polyimide precursor had a weight average molecular weight of 22,400 and a number average molecular weight of 8,900, and the number of sulfonic acid groups was 0.04% of the total number of all structural units.
  • Synthesis Example 14 [Synthesis of Polymer Precursor A-14] 28.0 g of 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane were stirred and dissolved in 200 mL of N-methylpyrrolidone. Subsequently, 25.0 g of 4,4'-oxydibenzoyl chloride is added dropwise over 30 minutes while maintaining the temperature at 0-5 ° C., followed by 5.0 g of 2-sulfoacetic acid and 8.0 g of dicyclohexylcarbodiimide. In addition, stirring was continued for 60 minutes. The precipitate formed in the reaction mixture was removed by filtration to obtain a reaction solution.
  • the polybenzoxazole precursor had a weight average molecular weight of 22,800 and a number average molecular weight of 8,900, and the number of sulfonic acid groups was 6.21% of the total number of all structural units.
  • Synthesis Example 15 [Synthesis of Polymer Precursor A-15] 21.2 g of 4,4'-oxydiphthalic dianhydride, 18.2 g of 2-hydroxyethyl methacrylate, 11.0 g of pyridine and 50 mL of tetrahydrofuran were mixed and stirred at a temperature of 60 ° C. for 4 hours . The reaction mixture is then cooled to -10.degree. C. and a solution of 28.1 g of dicyclohexylcarbodiimide in 40 mL of .gamma.-butyrolactone is added dropwise to the reaction mixture over 60 minutes at -10.degree. C. and the mixture is stirred for 30 minutes. did.
  • Synthesis Example 16 [Synthesis of Polymer Precursor A-16] 28.0 g of 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane were stirred and dissolved in 200 mL of N-methylpyrrolidone. Subsequently, 25.0 g of 4,4′-oxydibenzoyl chloride was added dropwise over 30 minutes while maintaining the temperature at 0-5 ° C., and stirring was continued for 60 minutes. The precipitate formed in the reaction mixture was removed by filtration to obtain a reaction solution. 6 L of water was added to the resulting reaction solution to precipitate a polybenzoxazole precursor, and the solid was filtered and dried under reduced pressure at 45 ° C. for 2 days. The polybenzoxazole precursor had a weight average molecular weight of 21,400 and a number average molecular weight of 8,500, and no sulfonic acid group was present.
  • Synthesis Example 17 [Synthesis of Polymer Precursor A-17] Mix 14.9 g (68.3 mmol) of pyromellitic dianhydride, 18.0 g of 2-hydroxyethyl methacrylate, 23.9 g of pyridine, 0.10 g of water, 250 mL of diglyme, 60 The mixture was stirred at a temperature of ° C. for 4 hours to produce diesters of pyromellitic anhydride and 2-hydroxyethyl methacrylate. As a result of measuring the water content of the obtained reaction liquid, it contained 6.9 mmol. The reaction mixture was then cooled to ⁇ 10 ° C.
  • the solid of the polyimide precursor was filtered and dissolved in 380 g of tetrahydrofuran. The resulting solution was used to precipitate the polyimide precursor in 6 liters of water, and the water-polyimide precursor mixture was stirred at a speed of 5000 rpm for 15 minutes. The solid of the polyimide precursor was again filtered and dried at 45 ° C. for 3 days under reduced pressure.
  • This polyimide precursor had a weight average molecular weight of 26,800, a number average molecular weight of 8,400, and the number of —SO 3 H groups bonded to other than the carbon skeleton was 4.52% of the total number of all constituent units.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polymer precursor are polystyrene equivalent values determined by gel permeation chromatography (GPC), and were measured by the following method.
  • GPC gel permeation chromatography
  • Use HLC-8220 (made by Tosoh Corp.) as a measuring device, guard column HZ-L, TSKgel Super HZM-M, TSKgel Super HZ4000, TSKgel Super HZ3000, TSKgel Super HZ2000 (made by Tosoh Corp.) as columns It was.
  • the eluent was THF (tetrahydrofuran), and the measurement was performed at 40 ° C.
  • the detection used the ultraviolet-ray (UV) 254 nm detector.
  • UV ultraviolet-ray
  • a measurement sample a sample in which the heterocycle-containing polymer precursor was diluted to 0.1% by mass with THF was used.
  • the respective compositions before and after aging were subjected to viscosity measurement at 25 ° C. using RE-85L (manufactured by Toki Sangyo Co., Ltd.) to calculate the rate of change of viscosity ( ⁇ r
  • the photosensitive resin composition was applied by spinning on a 250 ⁇ m thick copper substrate.
  • the copper substrate to which the photosensitive resin composition was applied was dried at 100 ° C. for 5 minutes on a hot plate to form a film with a thickness of 10 ⁇ m on the copper substrate.
  • the temperature was raised at a temperature rising rate of 10 ° C./min under a nitrogen atmosphere, and after reaching 230 ° C., the temperature was maintained for 3 hours.
  • the film on the copper substrate was cut off with a cutter.
  • the copper substrate was visually observed, the area ratio colored in rust was calculated, and copper corrosion was evaluated. The smaller the area ratio, the less copper corrosion means.
  • C more than 10%, 20% or less.
  • D more than 20%.
  • B Radically Polymerizable Compound B-1: NK Ester M-40G (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • B-2 SR-209 (made by Sartmar)
  • B-3 NK Ester A-9300 (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • B-4 A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • B-5 A-DPH (dipentaerythritol hexaacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • C Photoradical polymerization initiator
  • C-1 IRGACURE OXE 01 (manufactured by BASF)
  • C-2 IRGACURE OXE 02 (manufactured by BASF)
  • C-3 IRGACURE OXE 04 (manufactured by BASF)
  • C-4 IRGACURE-784 (manufactured by BASF)
  • C-5 NCI-831 (manufactured by ADEKA Corporation)
  • G Silane coupling agent (metal adhesion improver)
  • G-1 the following compound
  • G-2 the following compound
  • G-3 the following compound
  • Example 100 The photosensitive resin composition of Example 1 was pressure-filtered through a filter having a pore width of 0.8 ⁇ m, and then the photosensitive resin composition was applied on a silicon wafer by a spin coating method.
  • the silicon wafer coated with the photosensitive resin composition layer was dried at 100 ° C. for 5 minutes on a hot plate to form a uniform photosensitive resin composition layer with a thickness of 15 ⁇ m on the silicon wafer.
  • a photosensitive resin composition layer (resin layer) was exposed by exposing the photosensitive resin composition layer on a silicon wafer with an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C). Non development was performed for 60 seconds to form a hole of 10 ⁇ m in diameter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Materials For Photolithography (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択されるポリマー前駆体と、光活性化合物とを含む感光性樹脂組成物であって、ポリマー前駆体が、テトラカルボン酸、テトラカルボン酸誘導体、ジカルボン酸、および、ジカルボン酸誘導体の少なくとも1種に由来する構成単位ならびにジアミンの少なくとも1種に由来する構成単位から構成されるポリマー前駆体の側鎖に連結基を介して結合するスルホン酸基ならびにポリマー前駆体の末端に結合するスルホン酸基からなる群のうち少なくとも1種を有する、感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス。

Description

感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、半導体デバイス
 本発明は、感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、半導体デバイスに関する。
 ポリイミド前駆体、ポリベンゾオキサゾール前駆体などを環化して硬化させたポリイミド樹脂、ポリベンゾオキサゾール樹脂は、耐熱性や絶縁性等に優れるため、様々な用途に適用されている(例えば、非特許文献1、2参照)。その用途は、特に限定されないが、実装用の半導体デバイスの分野では、絶縁膜およびその保護膜や封止材の材料としての利用が挙げられる。また、フレキシブル基板のベースフィルムやカバーレイなどとしても用いられている。
 上記のポリイミド樹脂およびポリベンゾオキサゾール樹脂は、一般に、溶剤への溶解性が低い。そのため、環化反応前のポリマー前駆体(ポリイミド前駆体やポリベンゾオキサゾール前駆体)の状態で溶剤に溶解し、基板などに塗布し適用する方法がよく用いられる。例が挙げられる。その後、加熱してポリマー前駆体を環化して、硬化した樹脂層(硬化膜)を形成することができる。
 上記のようなポリマー前駆体については、例えば、特許文献1に記載されている。特許文献1では、ジカルボン酸またはジカルボン酸誘導体を、ハロゲン化剤を用いてハロゲン化した後、ジアミンと反応させるに当たり、ハロゲン化剤、反応系に含まれる水、原料の量を調整することが開示されている。これにより、ポリマー前駆体の環化速度を速めることができるとされる。同文献にはさらに、ポリマー前駆体に特定の酸基を付与することが開示されている。
国際公開WO2017/104672号パンフレット
サイエンス&テクノロジー株式会社「ポリイミドの高機能化と応用技術」2008年4月 柿本雅明/監修、CMCテクニカルライブラリー「ポリイミド材料の基礎と開発」2011年11月発行
 ポリマー前駆体は上記のように環化により硬化させることができるが、その特性がゆえに、保存時に環化が進み樹脂の安定性を欠くことがある。
 そこで本発明は、保存安定性に優れる感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、および半導体デバイスの提供を目的とする。
 上記課題のもと、本発明者が鋭意検討を行った結果、感光性樹脂組成物を構成するポリマー前駆体に特定の形態でスルホン酸基を導入することにより、上記課題を解決しうることを見出した。具体的には、下記手段<1>により、好ましくは<2>~<18>により上記課題は解決された。
<1> ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択されるポリマー前駆体と、光活性化合物とを含む感光性樹脂組成物であって、上記ポリマー前駆体が、テトラカルボン酸、テトラカルボン酸誘導体、ジカルボン酸、および、ジカルボン酸誘導体の少なくとも1種に由来する構成単位ならびにジアミンの少なくとも1種に由来する構成単位から構成される上記ポリマー前駆体の側鎖に連結基を介して結合するスルホン酸基ならびに上記ポリマー前駆体の末端に結合するスルホン酸基からなる群のうち少なくとも1種を有する、感光性樹脂組成物。
<2> 上記ポリマー前駆体が、下記式(1)で表される構成単位または式(2)で表される構成単位を含む、<1>に記載の感光性樹脂組成物;
Figure JPOXMLDOC01-appb-C000007
 式(1)中、AおよびAは、それぞれ独立に酸素原子またはNHを表し、R111は、2価の有機基を表し、R115は、4価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表す;
Figure JPOXMLDOC01-appb-C000008
 式(2)中、R121は、2価の有機基を表し、R122は、4価の有機基を表し、R123およびR124は、それぞれ独立に、水素原子または1価の有機基を表す。
<3> 上記ポリマー前駆体が、式(1)で表される構成単位を含む、<2>に記載の感光性樹脂組成物。
<4> 上記ポリマー前駆体が式(1-1)、式(1-2)、式(1-3)、式(2-1)、式(2-2)および式(2-3)のいずれかで表される部位を有する、<1>~<3>のいずれか1つに記載の感光性樹脂組成物;
Figure JPOXMLDOC01-appb-C000009
 式中、AおよびAは、それぞれ独立に酸素原子またはNHを表し、R111は、2価の有機基を表し、R115は、4価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表し、X、XおよびXはそれぞれ独立に連結基を表し、*はポリイミド前駆体の主鎖との結合位置を示し、nsは1~4の整数を示し、;
Figure JPOXMLDOC01-appb-C000010
 式中、R121は、2価の有機基を表し、R122は、4価の有機基を表し、R123およびR124は、それぞれ独立に、水素原子または1価の有機基を表し、X、XおよびXはそれぞれ独立に連結基を表し、*はポリベンゾオキサゾール前駆体の主鎖との結合位置を示し、nsは1~4の整数を表す。
<5> 上記ポリマー前駆体に含まれる、スルホン酸基の合計数が、全構成単位の合計数の0.05%以上15.0%以下である、<1>~<4>のいずれか1つに記載の感光性樹脂組成物。
<6> さらに、ラジカル重合性化合物を含む、<1>~<5>のいずれか1つに記載の感光性樹脂組成物。
<7> さらに、硬化促進剤を含む、<1>~<6>のいずれか1つに記載の感光性樹脂組成物。
<8> 上記光活性化合物が、光ラジカル重合開始剤を含む、<1>~<7>のいずれか1つに記載の感光性樹脂組成物。
<9> 現像に用いられる、<1>~<8>のいずれか1つに記載の感光性樹脂組成物。
<10> 有機溶剤を含む現像液を用いて現像する用途に用いられる、<1>~<9>のいずれか1つに記載の感光性樹脂組成物。
<11> 再配線層用層間絶縁膜の形成に用いられる、<1>~<10>のいずれか1つに記載の感光性樹脂組成物。
<12> ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択されるポリマー前駆体からなる樹脂であって、
上記ポリマー前駆体が式(1-1)、式(1-2)、式(1-3)、式(2-1)式(2-2)または式(2-3)のいずれかで表される部位を有する、樹脂;
Figure JPOXMLDOC01-appb-C000011
 式中、AおよびAは、それぞれ独立に酸素原子またはNHを表し、R111は、2価の有機基を表し、R115は、4価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表し、X、XおよびXはそれぞれ独立に連結基を表し、*はポリイミド前駆体の主鎖との結合位置を示し、nsは1~4の整数を示す;
Figure JPOXMLDOC01-appb-C000012
 式中、R121は、2価の有機基を表し、R122は、4価の有機基を表し、R123およびR124は、それぞれ独立に、水素原子または1価の有機基を表し、X、XおよびXはそれぞれ独立に連結基を表し、*はポリベンゾオキサゾール前駆体の主鎖との結合位置を示し、nsは1~4の整数を表す。
<13> <1>~<11>のいずれか1つに記載の感光性樹脂組成物を硬化してなる硬化膜。
<14> <13>に記載の硬化膜を2層以上有する、積層体。
<15> 上記硬化膜の間に、金属層を有する、<14>に記載の積層体。
<16> <1>~<11>のいずれか1つに記載の感光性樹脂組成物を用いることを含む、硬化膜の製造方法。
<17> 上記感光性樹脂組成物を基板に適用して層状にする、感光性樹脂組成物層形成工程と、
 上記感光性樹脂組成物層を露光する露光工程と、
 上記露光された感光性樹脂組成物層に対して、現像処理を行う現像処理工程とを有する、<16>に記載の硬化膜の製造方法。
<18> <13>に記載の硬化膜または<14>もしくは<15>に記載の積層体を有する半導体デバイス。
 本発明により、保存安定性に優れる感光性樹脂組成物、ならびに、樹脂、硬化膜、積層体、硬化膜の製造方法、および半導体デバイスを提供することができる。さらに本発明により、新規な樹脂を提供し材料の豊富化を図ることができる。
 本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本発明における構成要素の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
 本明細書における基(原子団)の表記に於いて、置換および無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も露光に含める。また、露光に用いられる光としては、一般的に、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線または放射線が挙げられる。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」および「メタクリレート」の双方、または、いずれかを表し、「(メタ)アクリル」は、「アクリル」および「メタクリル」の双方、または、いずれかを表し、「(メタ)アクリロイル」は、「アクリロイル」および「メタクリロイル」の双方、または、いずれかを表す。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において、固形分とは、組成物の総質量に対する、溶剤を除く他の成分の質量百分率である。また、固形分濃度は、特に述べない限り25℃における濃度をいう。
 本明細書において、重量平均分子量(Mw)および数平均分子量(Mn)は、特に述べない限り、ゲル浸透クロマトグラフィ(GPC測定)に従い、ポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)および数平均分子量(Mn)は、例えば、HLC-8220(東ソー(株)製)を用い、カラムとしてガードカラムHZ-L、TSKgel Super HZM-M、TSKgel Super HZ4000、TSKgel Super HZ3000およびTSKgel Super HZ2000(東ソー(株)製)を用いることによって求めることができる。溶離液は特に述べない限り、THF(テトラヒドロフラン)を用いて測定したものとする。また、検出は特に述べない限り、UV線(紫外線)の波長254nm検出器を使用したものとする。
 本発明の感光性樹脂組成物(以下、単に、「本発明の組成物」または「本発明の樹脂組成物」ということがある)は、ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択されるポリマー前駆体と、光活性化合物とを含み、ポリマー前駆体が、テトラカルボン酸、テトラカルボン酸誘導体、ジカルボン酸、および、ジカルボン酸誘導体の少なくとも1種に由来する構成単位ならびにジアミンの少なくとも1種に由来する構成単位から構成されるポリマー前駆体の側鎖(主鎖構造の側鎖)に連結基を介して結合するスルホン酸基ならびにポリマー前駆体の末端(主鎖構造の末端)に結合するスルホン酸基からなる群のうち少なくとも1種を有することを特徴とする。以下、本組成物の好ましい実施形態を構成する成分組成を中心に、本発明について詳細に説明する。
<ポリマー前駆体>
 本発明の感光性樹脂組成物は、ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択されるポリマー前駆体を含む。ポリマー前駆体としては、テトラカルボン酸、テトラカルボン酸誘導体、ジカルボン酸、および、ジカルボン酸誘導体の少なくとも1種に由来する構成単位ならびにジアミンの少なくとも1種に由来する構成単位から構成される。ここで、テトラカルボン酸等に由来する構成単位およびジアミンに由来する構成単位から構成されるとは、これらの構成単位がポリマー前駆体の構成単位の大半を占めることを意味するものであり、ポリマー前駆体の全構成単位がこれらの構成単位から構成されることを必須とするものではない。例えば、全構成単位の70モル%以上、さらには80モル%以上、特には90モル%以上が上記構成単位であれば、上記要件を満たす。
 テトラカルボン酸、テトラカルボン酸誘導体由来の構造としては、後述する式(1)のR115および隣接する4つのカルボニル基からなる構造が、ジカルボン酸、ジカルボン酸誘導体由来の構成単位としては、後述する式(2)のR121および隣接する2つのカルボニル基からなる構成単位が挙げられる。ジアミンの構造としては、後述する式(1)のR111および隣接する2つのNHからなる構成単位および後述する式(2)のR122および隣接する2つのNH基からなる構成単位が挙げられる。すなわち、本発明の感光性樹脂組成物においては、一実施形態において、上記R115、R122、R111、R121の少なくとも一部に連結基を介してスルホン酸基が導入されていることが好ましい。このときの連結基としては、後述する式(Ls)の*-Li-Lt-*の例が挙げられる。ここで、*が主鎖構造側、*がスルホン酸基側である。ポリマー前駆体のなかではポリイミド前駆体が好ましい。
 本発明では、上記ポリマー前駆体がその末端および側鎖の少なくともいずれかに特定の形態でスルホン酸基を有している。ここで、スルホン酸基は、(i)ポリマー前駆体の側鎖に連結基を介して結合するスルホン酸基か、あるいは(ii)ポリマー前駆体の末端に結合するスルホン酸基である。このように規定されたのには以下の技術的意義があると推測される。すなわち、(i)スルホン酸基が側鎖に連結基を介して結合した点については、連結基を介さずにスルホン酸基が導入されたものに比較し、スルホン酸基の運動性が良く保存安定性に対する効果が大きいという作用が期待できる。(ii)ポリマー前駆体の末端に結合するスルホン酸基については、同様にスルホン酸基の運動性が良く保存安定性に対する効果が大きいという作用が期待できる。なお、本発明において「スルホン酸基」は狭義のスルホン酸基、すなわち炭素骨格に-SOH基が結合した構造であり、スルファミン酸構造やスルホン酸モノエステル構造とは異なる。樹脂が強酸基としてのスルホン酸基を有することで、高い酸基としての作用が発揮されることを期待できる。なお、上記ポリマー前駆体には、炭素骨格以外に結合した-SOH基があってもよいが、炭素骨格以外に結合した-SOH基が無い方が好ましい。
 なお、以下では上記の条件を満たす部位を「スルホン酸基を含む部位」と称することがある。
 上記スルホン酸基を含む部位の好ましい実施形態としては下記の式(Ls)の構造が挙げられる。
  *-Li-Lt-(SOH)ns     式(Ls)
 *は主鎖をなす構造(例えば芳香環)側の結合位置である。LiおよびLtは、それぞれ独立に連結基または単結合であり、少なくとも一方は連結基である。さらに、主鎖をなす構造と式(Ls)の部位との間には、詳細を後述する連結基Lないし連結基Lhが介在していてもよいが、介在していない方が好ましい。式(Ls)は1つの構成単位の側鎖に、および/または、1つの末端に1つのみ結合していてもよいし、2つ以上結合していてもよい。2つ以上結合している場合、それぞれの式(Ls)は同一であってもよいし、異なっていてもよい。本発明では、式(Ls)は1つの構成単位の側鎖に、および/または、1つの末端に1つのみ結合していることが好ましい。
 特に、式(Ls)が側鎖に結合している場合は、テトラカルボン酸、テトラカルボン酸誘導体、ジカルボン酸、ジカルボン酸誘導体の少なくとも1種に由来する構成単位に、式(Ls)が結合していることが好ましい。
 主鎖の一例として、後述する式(1)における-C(=O)-R115-C(=O)-NH-R111-NH-、または、後述する式(2)における-NH-R122-NH-C(=O)-R121-C(=O)-が挙げられる。より具体的には、R115、R111、R122、R121のいずれかに式(Ls)が結合している態様が例示される。
 Liはヘテロ原子またはヘテロ原子を有する連結基であり、ヘテロ原子を有する連結基であることが好ましい。ヘテロ原子を有する連結基としては、例えばアミド基(CONH)、エステル基(COO)、ウレア基(NHCONH)、ウレタン基(NHCOO)、イミド基(CONHCO)等が挙げられる。これらの水素原子は置換基(例えば、後述する置換基T)で置換されていてもよいが、置換されていないことが好ましい。なお、連結基の表記の順序によりLiが限定されるものではなく、例えば、特定の連結方向に対してCONHはNHCOでもよく、COOはOCOでも、NHCOOはOCONHでも良い。
 Ltとしては炭素原子および水素原子で構成された連結基が挙げられる。Ltは、好ましくは、詳細を後述する連結基Lのうち、炭素原子および水素原子で構成された連結基である。Ltは、炭素数1~22のものが好ましく、1~18のものがより好ましく、1~10のものがさらに好ましい。さらに、Ltは、炭化水素基が好ましく、アルキレン基(炭素数1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい)、アルケニレン基(炭素数2~12が好ましく、2~6がより好ましく、2~3がさらに好ましい)、アリーレン基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)、アリールアルキレン基(炭素数7~23が好ましく、7~19がより好ましく、7~11がさらに好ましい)がより好ましく、アリーレン基がさらに好ましい。
 連結基Ltはさらにヘテロ原子を有する連結基Lhが介在していてもよいし、介在していなくてもよい。また、連結基Ltは本発明の効果を奏する範囲でヒドロキシル基、カルボン酸、アミノ基、ハロゲン原子などの置換基を有することを妨げるものではない。Lhの詳細は後述する。
 nsは1~4の整数であり、1また2が好ましく、1がより好ましい。
 式(Ls)の式量は、14~300であることが好ましく、50~200であることがより好ましい。
<<ポリイミド前駆体>>
 ポリイミド前駆体としては下記式(1)で表される構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000013
 AおよびAは、それぞれ独立に酸素原子またはNHを表し、R111は、2価の有機基を表し、R115は、4価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表す。
 AおよびAは、それぞれ独立に、酸素原子またはNHであり、酸素原子が好ましい。
 R111は、2価の有機基を表す。2価の有機基としては、直鎖または分岐の脂肪族基、環状の脂肪族基、および芳香族基、複素芳香族基、またはこれらの組み合わせからなる基が例示され、炭素数2~20の直鎖の脂肪族基、炭素数3~20の分岐の脂肪族基、炭素数3~20の環状の脂肪族基、炭素数6~20の芳香族基、または、これらの組み合わせからなる基が好ましく、炭素数6~20の芳香族基がより好ましい。
<<<R111>>>
 R111は、ジアミンから誘導されることが好ましい。ポリイミド前駆体の製造に用いられるジアミンとしては、直鎖または分岐の脂肪族、環状の脂肪族または芳香族ジアミンなどが挙げられる。ジアミンは、1種のみ用いてもよいし、2種以上用いてもよい。
 具体的には、ジアミンは、炭素数2~20の直鎖脂肪族基、炭素数3~20の分岐または環状の脂肪族基、炭素数6~20の芳香族基、または、これらの組み合わせからなる基を含むものであることが好ましく、炭素数6~20の芳香族基を含むジアミンであることがより好ましい。芳香族基の例としては、下記が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 式中、Aは、単結合、または、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-C(=O)-、-S-、-S(=O)-、-NHCO-ならびに、これらの組み合わせから選択される基であることが好ましく、単結合、フッ素原子で置換されていてもよい炭素数1~3のアルキレン基、-O-、-C(=O)-、-S-および-SO-から選択される基であることがより好ましく、-CH-、-O-、-S-、-SO-、-C(CF-、および、-C(CH-からなる群から選択される2価の基であることがさらに好ましい。
 ジアミンとしては、具体的には、1,2-ジアミノエタン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタンおよび1,6-ジアミノヘキサン;1,2-または1,3-ジアミノシクロペンタン、1,2-、1,3-または1,4-ジアミノシクロヘキサン、1,2-、1,3-または1,4-ビス(アミノメチル)シクロヘキサン、ビス-(4-アミノシクロヘキシル)メタン、ビス-(3-アミノシクロヘキシル)メタン、4,4’-ジアミノ-3,3’-ジメチルシクロヘキシルメタンおよびイソホロンジアミン;メタおよびパラフェニレンジアミン、ジアミノトルエン、4,4’-および3,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、4,4’-および3,3’-ジアミノジフェニルメタン、4,4’-および3,3’-ジアミノジフェニルスルホン、4,4’-および3,3’-ジアミノジフェニルスルフィド、4,4’-および3,3’-ジアミノベンゾフェノン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)プロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、4,4’-ジアミノパラテルフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(2-アミノフェノキシ)フェニル]スルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、3,3’-ジメチル-4,4’-ジアミノジフェニルスルホン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノオクタフルオロビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)-10-ヒドロアントラセン、3,3’,4,4’-テトラアミノビフェニル、3,3’,4,4’-テトラアミノジフェニルエーテル、1,4-ジアミノアントラキノン、1,5-ジアミノアントラキノン、3,3-ジヒドロキシ-4,4’-ジアミノビフェニル、9,9’-ビス(4-アミノフェニル)フルオレン、4,4’-ジメチル-3,3’-ジアミノジフェニルスルホン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、2-(3’,5’-ジアミノベンゾイルオキシ)エチルメタクリレート、2,4-および2,5-ジアミノクメン、2,5-ジメチル-パラフェニレンジアミン、アセトグアナミン、2,3,5,6-テトラメチル-パラフェニレンジアミン、2,4,6-トリメチル-メタフェニレンジアミン、ビス(3-アミノプロピル)テトラメチルジシロキサン、2,7-ジアミノフルオレン、2,5-ジアミノピリジン、1,2-ビス(4-アミノフェニル)エタン、ジアミノベンズアニリド、ジアミノ安息香酸のエステル、1,5-ジアミノナフタレン、ジアミノベンゾトリフルオライド、1,3-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,4-ビス(4-アミノフェニル)オクタフルオロブタン、1,5-ビス(4-アミノフェニル)デカフルオロペンタン、1,7-ビス(4-アミノフェニル)テトラデカフルオロヘプタン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(2-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ビス(トリフルオロメチル)フェニル]ヘキサフルオロプロパン、パラビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-3-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’-ビス(3-アミノ-5-トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2-ビス[4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’,5,5’-テトラメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、2,2’,5,5’,6,6’-ヘキサフルオロトリジンおよび4,4’-ジアミノクアテルフェニルから選ばれる少なくとも1種のジアミンが挙げられる。
 また、下記に示すジアミン(DA-1)~(DA-18)も好ましい。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 また、少なくとも2つ以上のアルキレングリコール単位を主鎖にもつジアミンも好ましい例として挙げられる。好ましくは、エチレングリコール鎖、プロピレングリコール鎖のいずれか一方または両方を一分子中にあわせて2つ以上含むジアミン、より好ましくは芳香環を含まないジアミンである。具体例としては、ジェファーミン(登録商標)KH-511、ジェファーミン(登録商標)ED-600、ジェファーミン(登録商標)ED-900、ジェファーミン(登録商標)ED-2003、ジェファーミン(登録商標)EDR-148、ジェファーミン(登録商標)EDR-176、D-200、D-400、D-2000、D-4000(以上商品名、HUNTSMAN社製)、1-(2-(2-(2-アミノプロポキシ)エトキシ)プロポキシ)プロパン-2-アミン、1-(1-(1-(2-アミノプロポキシ)プロパン-2-イル)オキシ)プロパン-2-アミンなどが挙げられるが、これらに限定されない。
 ジェファーミン(登録商標)KH-511、ジェファーミン(登録商標)ED-600、ジェファーミン(登録商標)ED-900、ジェファーミン(登録商標)ED-2003、ジェファーミン(登録商標)EDR-148、ジェファーミン(登録商標)EDR-176の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000017
 上記において、x、y、zは平均値である。
 R111は、得られる硬化膜の柔軟性の観点から、-Ar-L-Ar-で表されることが好ましい。但し、Arは、それぞれ独立に、芳香族炭化水素基(炭素数6~22が好ましく、6~18がより好ましく、6~10が特に好ましい)であり、フェニレン基が好ましい。Lは、単結合、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-C(=O)-、-S-、-S(=O)-、-NHCO-ならびに、これらの組み合わせから選択される基を表す。好ましい範囲は、上述のAと同義である。
 R111は、i線透過率の観点から下記式(51)または式(61)で表される2価の有機基であることが好ましい。特に、i線透過率、入手のし易さの観点から式(61)で表される2価の有機基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000018
 R50~R57は、それぞれ独立に水素原子、フッ素原子または1価の有機基であり、R50~R57の少なくとも1つはフッ素原子、メチル基、フルオロメチル基、ジフルオロメチル基、または、トリフルオロメチル基である。
 R50~R57の1価の有機基として、炭素数1~10(好ましくは炭素数1~6)の無置換のアルキル基、炭素数1~10(好ましくは炭素数1~6)のフッ化アルキル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 R58およびR59は、それぞれ独立にフッ素原子、フルオロメチル基、ジフルオロメチル基、または、トリフルオロメチル基である。
 式(51)または(61)の構造を与えるジアミン化合物としては、ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(フルオロ)-4,4’-ジアミノビフェニル、4,4’-ジアミノオクタフルオロビフェニル等が挙げられる。これらの1種を用いるか、2種以上を組み合わせて用いてもよい。
<<<R115>>>
 式(1)におけるR115は、4価の有機基を表す。4価の有機基としては、芳香環を含む基が好ましく、下記式(5)または式(6)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000020
 R112は、Aと同義であり、好ましい範囲も同じである。
 式(1)におけるR115が表す4価の有機基は、具体的には、テトラカルボン酸二無水物から酸二無水物基を除去した後に残存するテトラカルボン酸残基などが挙げられる。テトラカルボン酸二無水物は、1種のみ用いてもよいし、2種以上用いてもよい。テトラカルボン酸二無水物は、下記式(7)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000021
 R115は、4価の有機基を表す。R115は式(1)のR115と同義である。
 テトラカルボン酸二無水物の具体例としては、ピロメリット酸、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルフィドテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルメタンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,7-ナフタレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,3-ジフェニルヘキサフルオロプロパン-3,3,4,4-テトラカルボン酸二無水物、1,4,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、1,2,4,5-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,8,9,10-フェナントレンテトラカルボン酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、ならびに、これらの炭素数1~6のアルキル誘導体および炭素数1~6のアルコキシ誘導体から選ばれる少なくとも1種が例示される。
 また、下記に示すテトラカルボン酸二無水物(DAA-1)~(DAA-5)も好ましい例として挙げられる。
Figure JPOXMLDOC01-appb-C000022
<<<R113およびR114>>>
 式(1)におけるR113およびR114は、それぞれ独立に、水素原子または1価の有機基を表す。R113およびR114の少なくとも一方がラジカル重合性基を含むことが好ましく、両方がラジカル重合性基を含むことがより好ましい。ラジカル重合性基としては、ラジカルの作用により、架橋反応することが可能な基であって、好ましい例として、エチレン性不飽和結合を有する基が挙げられる。
 エチレン性不飽和結合を有する基としては、ビニル基、アリル基、(メタ)アクリロイル基、下記式(III)で表される基などが挙げられる。
Figure JPOXMLDOC01-appb-C000023
 R200は、水素原子またはメチル基を表し、メチル基がより好ましい。
 R201は、炭素数2~12のアルキレン基、-CHCH(OH)CH-または炭素数4~30の(ポリ)オキシアルキレン基(アルキレン基としては炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい;繰り返し数は1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)を表す。なお、(ポリ)オキシアルキレン基とは、オキシアルキレン基またはポリオキシアルキレン基を意味する。
 好適なR201の例は、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、1,2-ブタンジイル基、1,3-ブタンジイル基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、ドデカメチレン基、-CHCH(OH)CH-が挙げられ、エチレン基、プロピレン基、トリメチレン基、-CHCH(OH)CH-がより好ましい。
 特に好ましくは、R200がメチル基で、R201がエチレン基である。
 ポリイミド前駆体の好ましい実施形態として、R113またはR114の1価の有機基として、後述するスルホン酸基以外に、1、2または3つの、好ましくは1つの酸基を有する、脂肪族基、芳香族基およびアリールアルキル基などが挙げられる。具体的には、酸基を有する炭素数6~20の芳香族基、酸基を有する炭素数7~25のアリールアルキル基が挙げられる。より具体的には、酸基を有するフェニル基および酸基を有するベンジル基が挙げられる。酸基は、ヒドロキシル基が好ましい。すなわち、R113またはR114はヒドロキシル基を有する基であることが好ましい。
 R113またはR114が表す1価の有機基としては、現像液の溶解度を向上させる置換基が好ましく用いられる。
 R113またはR114が、水素原子、2-ヒドロキシベンジル、3-ヒドロキシベンジルおよび4-ヒドロキシベンジルであることが、水性現像液に対する溶解性の点からは、より好ましい。
 有機溶剤への溶解度の観点からは、R113またはR114は、1価の有機基であることが好ましい。1価の有機基としては、直鎖または分岐のアルキル基、環状アルキル基、芳香族基を含むことが好ましく、芳香族基で置換されたアルキル基がより好ましい。
 アルキル基の炭素数は1~30が好ましい(環状の場合は3以上)。アルキル基は直鎖、分岐、環状のいずれであってもよい。直鎖または分岐のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、オクタデシル基、イソプロピル基、イソブチル基、sec-ブチル基、t-ブチル基、1-エチルペンチル基、および2-エチルヘキシル基が挙げられる。環状のアルキル基は、単環の環状のアルキル基であってもよく、多環の環状のアルキル基であってもよい。単環の環状のアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基およびシクロオクチル基が挙げられる。多環の環状のアルキル基としては、例えば、アダマンチル基、ノルボルニル基、ボルニル基、カンフェニル基、デカヒドロナフチル基、トリシクロデカニル基、テトラシクロデカニル基、カンホロイル基、ジシクロヘキシル基およびピネニル基が挙げられる。中でも、高感度化との両立の観点から、シクロヘキシル基が最も好ましい。また、芳香族基で置換されたアルキル基としては、後述する芳香族基で置換された直鎖アルキル基が好ましい。
 芳香族基としては、具体的には、置換または無置換のベンゼン環、ナフタレン環、ペンタレン環、インデン環、アズレン環、ヘプタレン環、インダセン環、ペリレン環、ペンタセン環、アセナフテン環、フェナントレン環、アントラセン環、ナフタセン環、クリセン環、トリフェニレン環、フルオレン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環またはフェナジン環である。ベンゼン環が最も好ましい。
 また、ポリイミド前駆体は、構成単位中にフッ素原子を有することも好ましい。ポリイミド前駆体中のフッ素原子含有量は10質量%以上が好ましく、20質量%以下がより好ましい。上限は特にないが50質量%以下が実際的である。
 また、基板との密着性を向上させる目的で、シロキサン構造を有する脂肪族基を式(1)で表される構成単位に共重合してもよい。具体的には、ジアミン成分として、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(パラアミノフェニル)オクタメチルペンタシロキサンなどが挙げられる。
 式(1)で表される構成単位は、式(1-A)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000024
 A11およびA12は、酸素原子またはNHを表し、R111およびR112は、それぞれ独立に、2価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表し、R113およびR114の少なくとも一方は、ラジカル重合性基を含む基であり、ラジカル重合性基であることが好ましい。
 A11、A12、R111、R113およびR114は、それぞれ、独立に、式(1)におけるA、A、R111、R113およびR114と同義であり、好ましい範囲も同様である。
 R112は、式(5)におけるR112と同義であり、好ましい範囲も同様である。
 ポリイミド前駆体において、式(1)で表される構成単位は1種であってもよいが、2種以上であってもよい。また、式(1)で表される構成単位の構造異性体を含んでいてもよい。また、ポリイミド前駆体は、上記の式(1)の構成単位のほかに、他の種類の構成単位も含んでもよい。
 ポリイミド前駆体は、式(1-1a)、式(1-2a)、式(1-3a)のいずれかで表される部位(構成単位または末端構造)を有することが好ましい。
Figure JPOXMLDOC01-appb-C000025
 式中、A、A、R111、R113、R114、R115は、式(1)における定義と同様であり、好ましいものも同じである。*はポリイミド前駆体の主鎖との結合位置を示す。Lsは上記式(Ls)である。このとき、式(Ls)のLiは式(1-1a)においては、*-NHCOであることが好ましい。式(1-2a)、式(1-3a)においては、*-COOまたは*-CONHであることが好ましい。
 ポリイミド前駆体は、式(1-1)、式(1-2)、式(1-3)のいずれかで表される部位を有することがより好ましい。
Figure JPOXMLDOC01-appb-C000026
 式中、A、A、R111、R113、R114、R115は、式(1)における定義と同様であり、好ましい範囲も同じである。X、XおよびXはそれぞれ独立に連結基を表し、*はポリイミド前駆体の主鎖との結合位置を示し、nsは式Lsと同義である。
 X、XおよびXはそれぞれ独立に炭素原子を有する連結基を表し、X、XおよびXは炭素原子でスルホン酸基と結合していることが好ましい。
 X、XおよびXは上記連結基Ltを有する基であることが好ましく、または、連結基Ltと酸素原子、カルボニル基、および-NR-の少なくとも1つを組み合わせた基が好ましい。このとき、連結基Lt側でスルホン酸基が結合している。Rの詳細は後述するが、ここでは、Rは水素原子が好ましい。
 式(1-3)におけるXは、連結基Ltであることが好ましい。一方、式(1-1)におけるXは連結基Ltに加え主鎖のNHと連結するカルボニル基を有していることが好ましい。式(1-2)におけるXも同様で連結基Ltに加え主鎖のカルボニル基と連結する酸素原子または-NR-を有していることが好ましい。
 本発明の一実施形態として、式(1-1)、式(1-2)、式(1-3)が結合している主鎖の構成単位のA、A、R111、R113、R114、R115と、式(1-1)、式(1-2)、式(1-3)におけるA、A、R111、R113、R114、R115とが同じ基または同じ原子である形態が例示される。
 X、X、X、Ltは本発明の効果を奏する範囲で置換基Tを有していてもよい。置換基Tは複数あるとき互いに結合して、あるいは連結基Lを介してまたは介さずに式中の環と結合して環を形成していてもよい。しかしながら、置換基を有していない方が好ましい。
 ポリイミド前駆体の主鎖を構成する芳香環(R115、R111の好ましい構造)にスルホン酸基を含む部位を導入する試薬として、*-Lt-(SOH)nsの構造をもつ化合物を用いることが好ましい。導入試薬を例示すると、スルホ安息香酸、アミノベンゼンスルホン酸、アミノエタンスルホン酸、ヒドロキシエタンスルホン酸、ヒドロキシプロパンスルホン酸、プロパンスルトン、ブタンスルトンが挙げられる。スルホン酸基を含む部位を導入する方法は特に限定されないが、上記の試薬を必要により触媒とともにポリイミド前駆体と、またはその合成過程で反応させることにより得ることができる。これは、後記ポリベンゾオキサゾール前駆体についても同様である。
 本発明においては、ポリイミド前駆体の構成単位において、主鎖の芳香環に直接スルホン酸基が導入されているものが含まれていても、含まれていなくてもよい。本発明の効果を奏する範囲で、そのような直接連結したスルホン酸基があってもよく、例えば、10%以下、さらには1%以下の構成単位でそのような直接連結したスルホン酸基があるポリイミド前駆体となっていたとしても、条件やアプリケーションによっては十分に本発明の効果を奏するものと解される。
 置換基Tとしては、環状または直鎖もしくは分岐のアルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい)、環状または直鎖もしくは分岐のアルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6が特に好ましい)、アルコキシル基(炭素数1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい)、アリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~11がさらに好ましい)、ヒドロキシル基、アミノ基(炭素数0~24が好ましく、0~12がより好ましく、0~6が特に好ましい)、チオール基、カルボキシル基、アシル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が特に好ましい)、アシルオキシ基(炭素数2~12が好ましく、2~6がより好ましく、2~3が特に好ましい)、アリーロイル基(炭素数7~23が好ましく、7~19がより好ましく、7~11が特に好ましい)、アリーロイルオキシ基(炭素数7~23が好ましく、7~19がより好ましく、7~11が特に好ましい)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、オキソ基(=O)、イミノ基(=NR)、アルキリデン基(=C(R)などが挙げられる。置換基Tのアルキレン鎖にはヘテロ原子が介在していてもよい。置換基Tのアルキル基、アルケニル基、アリール基、アリールアルキル基には、さらにその他の置換基が置換していてもよい。
 Rは水素原子または有機基であり、有機基としてはアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3がさらに好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)、アリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~11がさらに好ましい)が好ましい。この有機基はさらに置換基Tを有していてもよい。
 連結基Lは、環状または直鎖もしくは分岐のアルキレン基(炭素数1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい)、環状または直鎖もしくは分岐のアルケニレン基(炭素数2~12が好ましく、2~6がより好ましい)、アリーレン基(炭素数6~22が好ましく、6~18より好ましく、6~10がさらに好ましい)、アリールアルキレン基(炭素数7~23が好ましく、7~19がより好ましく、7~11がさらに好ましい)、ヘテロアリーレン基(炭素数1~12が好ましく、1~6がより好ましく、1~4がさらに好ましい;ヘテロ原子としては例えば窒素原子、酸素原子、硫黄原子が挙げられる)、酸素原子、硫黄原子、カルボニル基、-NR-、またはその組合せにかかる基である。連結基Lを構成する原子の数は水素原子を除いて、1~24であることが好ましく、1~12がより好ましく、1~6が特に好ましい。連結基の連結原子数は10以下であることが好ましく、8以下であることがより好ましい。下限としては、1以上である。上記連結原子数とは所定の構造部間を結ぶ経路に位置し連結に関与する最少の原子数をいう。たとえば、-CH-C(=O)-O-の場合、連結基を構成する原子の数は水素原子を除いて4となるが、連結原子数は3となる。
 ヘテロ原子を含む連結基Lhとしては、酸素原子、硫黄原子、カルボニル基、チオカルボニル基、スルホニル基、-NR-、またはこれらの組み合わせからなる連結基が挙げられる。ヘテロ原子を含む連結基Lhを構成する原子の数は1~12が好ましく、1~6がより好ましく、1~3が特に好ましい。ヘテロ原子を含む連結基Lhの特定の基の中に介在する原子の数は、1~12が好ましく、1~6がより好ましく、1~3が特に好ましい。Rは上記と同義である。
 ポリイミド前駆体に含まれるスルホン酸基の合計数が、全構成単位の合計数の、0.05%以上であることが好ましく、0.1%以上であることがより好ましく、0.2%以上であることがさらに好ましく、0.3%以上であることがより一層好ましく、0.35%以上であることがさらに一層好ましく、0.4%以上であることが特に一層好ましく、50モル%以上、70モル%以上、90モル%以上であってもよい。上限は、100%以下であってもよいが、20.0%以下であることが好ましく、15.0%以下であることがより好ましく、10.0%以下であることがさらに好ましく、8.0%以下であることがより一層好ましく、6.0%以下であることがさらに一層好ましく、5.0%以下であることが特に一層好ましい。このスルホン酸基の割合を上記範囲とすることにより、保存安定性と銅腐食性との両立がより効果的に発揮される。
 ポリイミド前駆体は、上記スルホン酸基(好ましくは式(Ls)の基)を有する構成単位が、ポリイミド前駆体を構成する構成単位中のすべてを占めていてもよいが、一部において異なる構成単位を有してもよい。上記スルホン酸基を含む部位(好ましくは式(Ls)の基)を有する構成単位が全構成単位の0.05%以上であることが好ましく、0.1%以上であることがより好ましく、0.2%以上であることがさらに好ましく、0.3%以上であることがより一層好ましく、0.35%以上であることがさらに一層好ましく、0.4%以上であることが特に一層好ましく、50モル%以上、70モル%以上、90モル%以上であってもよい。上限は、100%以下であってもよいが、20.0%以下であることが好ましく、15.0%以下であることがより好ましく、10.0%以下であることがさらに好ましく、8.0%以下であることがより一層好ましく、6.0%以下であることがさらに一層好ましく、5.0%以下であることが特に一層好ましい。
 以下に、ポリイミド前駆体におけるスルホン酸基を有する構造の例を示す。本発明がこれらに限定されるものではないことは言うまでもない。
<<<ポリイミド前駆体の末端(主鎖末端)にスルホン酸基が結合している態様>>>
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
<<<ポリイミド前駆体の側鎖(主鎖構造の側鎖)にスルホン酸基が結合している態様>>>
Figure JPOXMLDOC01-appb-C000029
 本発明におけるポリイミド前駆体の一実施形態として、全構成単位の50モル%以上、さらには70モル%以上、特には90モル%以上が式(1)で表される構成単位またはスルホン酸基を側鎖に有する構成単位であるポリイミド前駆体が例示される。上限としては100モル%以下が実際的である。
 ポリイミド前駆体の重量平均分子量(Mw)は、好ましくは2,000~500,000であり、より好ましくは5,000~100,000であり、さらに好ましくは10,000~50,000である。また、数平均分子量(Mn)は、好ましくは800~250,000であり、より好ましくは、2,000~50,000であり、さらに好ましくは、4,000~25,000である。
 ポリイミド前駆体の分子量の分散度(Mw/Mn)は、1.5~3.5が好ましく、2~3がより好ましい。
 ポリイミド前駆体は、ジカルボン酸またはジカルボン酸誘導体とジアミンを反応させて得られうる。好ましくは、ジカルボン酸またはジカルボン酸誘導体を、ハロゲン化剤を用いてハロゲン化させた後、ジアミンと反応させて得られうる。
 ポリイミド前駆体の製造方法では、反応に際し、有機溶剤を用いることが好ましい。有機溶剤は1種でもよいし、2種以上でもよい。
 有機溶剤としては、原料に応じて適宜定めることができるが、ピリジン、ジエチレングリコールジメチルエーテル(ジグリム)、N-メチルピロリドンおよびN-エチルピロリドンが例示される。
 ポリイミド前駆体の製造に際し、固体を析出する工程を含んでいることが好ましい。具体的には、反応液中のポリイミド前駆体を、水中に沈殿させ、テトラヒドロフラン等のポリイミド前駆体が可溶な溶剤に溶解させることによって、固体析出することができる。
<<ポリベンゾオキサゾール前駆体>>
 ポリベンゾオキサゾール前駆体は、下記式(2)で表される構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000030
 R121は、2価の有機基を表し、R122は、4価の有機基を表し、R123およびR124は、それぞれ独立に、水素原子または1価の有機基を表す。
 R121は、2価の有機基を表す。2価の有機基としては、脂肪族基(炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい)および芳香族基(炭素数6~22が好ましく、6~14がより好ましく、6~12が特に好ましい)の少なくとも一方を含む基が好ましい。R121を構成する芳香族基としては、上記式(1)のR111の例が挙げられる。上記脂肪族基としては、直鎖の脂肪族基が好ましい。R121は、4,4’-オキシジベンゾイルクロリドに由来することが好ましい。
 R122は、4価の有機基を表す。4価の有機基としては、上記式(1)におけるR115と同義であり、好ましい範囲も同様である。R122は、2,2'-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンに由来することが好ましい。
 R123およびR124は、それぞれ独立に、水素原子または1価の有機基を表し、上記式(1)におけるR113およびR114と同義であり、好ましい範囲も同様である。
 ポリベンゾオキサゾール前駆体は下記式(2-1a)、(2-2a)、(2-3a)で表される部位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000031
 式中、R121、R122、R123、R124は、式(2)における定義と同様であり、好ましいものも同じである。*はポリベンゾオキサゾール前駆体の主鎖との結合位置を示す。Lsは上記式(Ls)の基である。ここで、式(2-1a)のときは、式(Ls)のLiは*1―NHCOであることが好ましい。式(2-2a)のときは、*1―COOやCONHであることが好ましい。式(2-3a)のときLiは、*1―OCOであることが好ましい。式(Ls)において、その他のLtやnsに関する規定は式(1)のときと同義である。なお、ここでは、*1はR121またはR122側の結合位置である。
 ポリベンゾオキサゾール前駆体は下記式(2-1)、(2-2)、(2-3)で表される部位を有することがさらに好ましい。
Figure JPOXMLDOC01-appb-C000032
 式中、R121、R122、R123およびR124は式(2)と同義である。X、XおよびXはそれぞれ独立に連結基を表し、*はポリベンゾオキサゾール前駆体の主鎖との結合位置を示し、nsは1~4の整数を表す。
 X、XおよびXはそれぞれ独立に炭素原子を有する連結基を表し、X、XおよびXは炭素原子でスルホン酸基と結合していることが好ましい。
 X、XおよびXは、連結基Lt、または、これと酸素原子、カルボニル基、および-NR-の少なくとも1つを組み合わせた基が好ましい。nsは1または2が好ましく、1がより好ましい。
 X、X、X、Ltは本発明の効果を奏する範囲で置換基Tを有していてもよい。
 ポリベンゾオキサゾール前駆体中でのスルホン酸基を含む部位の数の比率は上記ポリイミド前駆体で規定したのと同様である。スルホン酸基を含む部位をポリベンゾオキサゾール前駆体に導入する試薬やその導入方法も上記ポリイミド前駆体で述べたものと同様である。
 以下に、ポリベンゾオキサゾール前駆体におけるスルホン酸基を有する構造の例を示す。本発明がこれらに限定されるものではないことは言うまでもない。
<<<ポリベンゾオキサゾール前駆体の末端にスルホン酸基が結合している態様>>>
Figure JPOXMLDOC01-appb-C000033
<<<ポリベンゾオキサゾール前駆体の側鎖にスルホン酸基が結合している態様>>>
Figure JPOXMLDOC01-appb-C000034
 ポリベンゾオキサゾール前駆体は上記の式(2)の構成単位のほかに、他の種類の構成単位も含んでよい。
 閉環に伴う硬化膜の反りの発生を抑制できる点で、前駆体は、下記式(SL)で表されるジアミン残基を他の種類の構成単位として含むことが好ましい。
Figure JPOXMLDOC01-appb-C000035
 Zは、a構造とb構造を有し、R1sは水素原子または炭素数1~10の炭化水素基(好ましくは炭素数1~6、より好ましくは炭素数1~3)であり、R2sは炭素数1~10の炭化水素基(好ましくは炭素数1~6、より好ましくは炭素数1~3)であり、R3s、R4s、R5s、R6sのうち少なくとも1つは芳香族基(好ましくは炭素数6~22、より好ましくは炭素数6~18、特に好ましくは炭素数6~10)で、残りは水素原子または炭素数1~30(好ましくは炭素数1~18、より好ましくは炭素数1~12、特に好ましくは炭素数1~6)の有機基で、それぞれ同一でも異なっていてもよい。a構造およびb構造の重合は、ブロック重合でもランダム重合でもよい。Z部分において、好ましくは、a構造は5~95モル%、b構造は95~5モル%であり、a+bは100モル%である。
 式(SL)において、好ましいZとしては、b構造中のR5sおよびR6sがフェニル基であるものが挙げられる。また、式(SL)で示される構造の分子量は、400~4,000であることが好ましく、500~3,000がより好ましい。分子量は、一般的に用いられるゲル浸透クロマトグラフィによって求めることができる。上記分子量を上記範囲とすることで、ポリベンゾオキサゾール前駆体の脱水閉環後の弾性率を下げ、反りを抑制できる効果と溶解性を向上させる効果を両立することができる。
 前駆体が、他の種類の構成単位として式(SL)で表されるジアミン残基を含む場合、アルカリ可溶性を向上させる点で、さらに、テトラカルボン酸二無水物から酸二無水物基の除去後に残存するテトラカルボン酸残基を構成単位として含むことが好ましい。このようなテトラカルボン酸残基の例としては、式(1)中のR115の例が挙げられる。
 ポリベンゾオキサゾール前駆体の重量平均分子量(Mw)は、好ましくは2,000~500,000であり、より好ましくは5,000~100,000であり、さらに好ましくは10,000~50,000である。また、数平均分子量(Mn)は、好ましくは800~250,000であり、より好ましくは、2,000~50,000であり、さらに好ましくは、4,000~25,000である。
 ポリベンゾオキサゾール前駆体の分子量の分散度(Mw/Mn)は、1.5~3.5が好ましく、2~3がより好ましい。
 感光性樹脂組成物における、ポリマー前駆体の含有量は、組成物の全固形分に対し20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましく、50質量%以上であることが一層好ましく、60質量%以上であることがより一層好ましく、70質量%以上であることがさらに一層好ましい。上限は、感光性樹脂組成物における、ポリマー前駆体の含有量は、組成物の全固形分に対し、99.5質量%以下であることが好ましく、99質量%以下であることがより好ましく、98質量%以下であることがさらに好ましく、95質量%以下であることが一層好ましく、95質量%以下であることがより一層好ましい。
 感光性樹脂組成物は、ポリマー前駆体を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<溶剤>
 本発明の感光性樹脂組成物は、溶剤を含有することが好ましい。溶剤は、公知の溶剤を任意に使用できる。溶剤は有機溶剤が好ましい。有機溶剤としては、エステル類、エーテル類、ケトン類、芳香族炭化水素類、スルホキシド類、アミド類などの化合物が挙げられる。
 エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、アルキルオキシ酢酸アルキル(例えば、アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-アルキルオキシプロピオン酸アルキルエステル類(例えば、3-アルキルオキシプロピオン酸メチル、3-アルキルオキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-アルキルオキシプロピオン酸アルキルエステル類(例えば、2-アルキルオキシプロピオン酸メチル、2-アルキルオキシプロピオン酸エチル、2-アルキルオキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-アルキルオキシ-2-メチルプロピオン酸メチルおよび2-アルキルオキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等が好適なものとして挙げられる。
 エーテル類として、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等が好適なものとして挙げられる。
 ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン等が好適なものとして挙げられる。
 芳香族炭化水素類として、例えば、トルエン、キシレン、アニソール、リモネン等が好適なものとして挙げられる。
 スルホキシド類として、例えば、ジメチルスルホキシドが好適なものとして挙げられる。
 アミド類として、N-メチル-2-ピロリドン、N -エチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等が好適なものとして挙げられる。
 溶剤は、塗布面性状の改良などの観点から、2種以上を混合する形態も好ましい。
 本発明では、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、γ-ブチロラクトン、ジメチルスルホキシド、エチルカルビトールアセテート、ブチルカルビトールアセテート、N-メチル-2-ピロリドン、プロピレングリコールメチルエーテル、およびプロピレングリコールメチルエーテルアセテートから選択される1種の溶剤、または、2種以上で構成される混合溶剤が好ましい。ジメチルスルホキシドとγ-ブチロラクトンとの併用が特に好ましい。
 溶剤の含有量は、塗布性の観点から、本発明の感光性樹脂組成物の全固形分濃度が5~80質量%になる量とすることが好ましく、5~75質量%となる量にすることがより好ましく、10~70質量%となる量にすることがさらに好ましく、40~70質量%となるようにすることが一層好ましい。溶剤含有量は、塗膜の所望の厚さと塗布方法によって調節すればよい。
 溶剤は1種のみ含有していてもよいし、2種以上含有していてもよい。溶剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<光活性化合物>
 本発明において、感光性樹脂組成物は光活性化合物を含む。光活性化合物の例としては光重合開始剤、光酸発生剤および光硬化促進剤が挙げられる。
<<光重合開始剤>>
 本発明の感光性樹脂組成物には、光重合開始剤を含有させてもよい。光重合開始剤は、光ラジカル重合開始剤であることが好ましい。
 本発明で用いることができる光ラジカル重合開始剤としては、特に制限はなく、公知の光ラジカル重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視領域の光線に対して感光性を有する光ラジカル重合開始剤が好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよい。
 光ラジカル重合開始剤は、約300~800nm(好ましくは330~500nm)の範囲内で少なくとも約50のモル吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、紫外可視分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶剤を用い、0.01g/Lの濃度で測定することが好ましい。
 感光性樹脂組成物が光ラジカル重合開始剤を含むことにより、本発明の感光性樹脂組成物を半導体ウェハなどの基板に適用して感光性樹脂組成物層を形成した後、光を照射することで、発生するラジカルに起因する硬化が起こり、光照射部における溶解性を低下させることができる。このため、例えば、電極部のみをマスクするパターンを持つフォトマスクを介して感光性樹脂組成物層を露光することで、電極のパターンにしたがって、溶解性の異なる領域を簡便に作製できるという利点がある。
 光ラジカル重合開始剤としては、公知の化合物を任意に使用できる。例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物、トリハロメチル基を有する化合物など)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、ヒドロキシアセトフェノン、アゾ系化合物、アジド化合物、メタロセン化合物、有機ホウ素化合物、鉄アレーン錯体などが挙げられる。これらの詳細については、特開2016-027357号公報の段落0165~0182の記載を参酌でき、この内容は本明細書に組み込まれる。
 ケトン化合物としては、例えば、特開2015-087611号公報の段落0087に記載の化合物が例示され、この内容は本明細書に組み込まれる。市販品では、カヤキュアーDETX(日本化薬(株)製)も好適に用いられる。
 光ラジカル重合開始剤としては、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、および、アシルホスフィン化合物も好適に用いることができる。より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号に記載のアシルホスフィンオキシド系開始剤も用いることができる。
 ヒドロキシアセトフェノン系開始剤としては、IRGACURE 184(IRGACUREは登録商標)、DAROCUR 1173、IRGACURE 500、IRGACURE-2959、IRGACURE 127(商品名:いずれもBASF社製)を用いることができる。
 アミノアセトフェノン系開始剤としては、市販品であるIRGACURE 907、IRGACURE 369、および、IRGACURE 379(商品名:いずれもBASF社製)を用いることができる。
 アミノアセトフェノン系開始剤として、365nmまたは405nm等の波長光源に吸収極大波長がマッチングされた特開2009-191179号公報に記載の化合物も用いることができる。
 アシルホスフィン系開始剤としては、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイドなどが挙げられる。また、市販品であるIRGACURE-819やIRGACURE-TPO(商品名:いずれもBASF社製)を用いることができる。
 メタロセン化合物としては、IRGACURE-784(BASF社製)などが例示される。
 光ラジカル重合開始剤として、より好ましくはオキシム化合物が挙げられる。オキシム化合物を用いることにより、露光ラチチュードをより効果的に向上させることが可能になる。オキシム化合物は、露光ラチチュード(露光マージン)が広く、かつ、光硬化促進剤としても働くため、特に好ましい。
 オキシム化合物の具体例としては、特開2001-233842号公報に記載の化合物、特開2000-80068号公報に記載の化合物、特開2006-342166号公報に記載の化合物を用いることができる。
 好ましいオキシム化合物としては、例えば、下記の構造の化合物や、3-ベンゾオキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイルオキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、および2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オンなどが挙げられる。本発明の感光性樹脂組成物においては、特に光ラジカル重合開始剤としてオキシム化合物(オキシム系の光重合開始剤)を用いることが好ましい。オキシム系の光重合開始剤は、分子内に >C=N-O-C(=O)- の連結基を有する。
Figure JPOXMLDOC01-appb-C000036
 市販品ではIRGACURE OXE 01、IRGACURE OXE 02、IRGACURE OXE 03、IRGACURE OXE 04(以上、BASF社製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-14052号公報に記載の光ラジカル重合開始剤2)も好適に用いられる。また、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831およびアデカアークルズNCI-930(ADEKA製)も用いることができる。また、DFI-091(ダイトーケミックス株式会社製)を用いることができる。
 さらに、また、フッ素原子を有するオキシム化合物を用いることも可能である。そのようなオキシム化合物の具体例としては、特開2010-262028号公報に記載されている化合物、特表2014-500852号公報の段落0345に記載されている化合物24、36~40、特開2013-164471号公報の段落0101に記載されている化合物(C-3)などが挙げられる。
 最も好ましいオキシム化合物としては、特開2007-269779号公報に示される特定置換基を有するオキシム化合物や、特開2009-191061号公報に示されるチオアリール基を有するオキシム化合物などが挙げられる。
 光ラジカル重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物およびその誘導体、シクロペンタジエン-ベンゼン-鉄錯体およびその塩、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物からなる群より選択される化合物が好ましい。
 さらに好ましい光ラジカル重合開始剤は、トリハロメチルトリアジン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾフェノン化合物、アセトフェノン化合物であり、トリハロメチルトリアジン化合物、α-アミノケトン化合物、オキシム化合物、トリアリールイミダゾールダイマー、ベンゾフェノン化合物からなる群より選ばれる少なくとも1種の化合物が一層好ましく、メタロセン化合物またはオキシム化合物を用いるのがより一層好ましく、オキシム化合物がさらに一層好ましい。
 また、光ラジカル重合開始剤は、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)等のN,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1等の芳香族ケトン、アルキルアントラキノン等の芳香環と縮環したキノン類、ベンゾインアルキルエーテル等のベンゾインエーテル化合物、ベンゾイン、アルキルベンゾイン等のベンゾイン化合物、ベンジルジメチルケタール等のベンジル誘導体などを用いることもできる。また、下記式(I)で表される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000037
 式(I)中、RI00は、炭素数1~20のアルキル基、1個以上の酸素原子によって中断された炭素数2~20のアルキル基、炭素数1~12のアルコキシル基、フェニル基、炭素数1~20のアルキル基、炭素数1~12のアルコキシル基、ハロゲン原子、シクロペンチル基、シクロヘキシル基、炭素数2~12のアルケニル基、1個以上の酸素原子によって中断された炭素数2~18のアルキル基および炭素数1~4のアルキル基の少なくとも1つで置換されたフェニル基、またはビフェニルであり、RI01は、式(II)で表される基であるか、RI00と同じ基であり、RI02~RI04は各々独立に炭素数1~12のアルキル、炭素数1~12のアルコキシまたはハロゲンである。
Figure JPOXMLDOC01-appb-C000038
式中、RI05~RI07は、上記式(I)のRI02~RI04と同じである。
 また、光ラジカル重合開始剤は、国際公開WO2015/125469号の段落0048~0055に記載の化合物を用いることもできる。
 光重合開始剤を含む場合、その含有量は、本発明の感光性樹脂組成物の全固形分に対し0.1~30質量%であることが好ましく、より好ましくは0.1~20質量%であり、さらに好ましくは0.5~15質量%であり、一層好ましくは1.0~10質量%である。光重合開始剤は1種のみ含有していてもよいし、2種以上含有していてもよい。光重合開始剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<<光酸発生剤>>
 本発明においては、光活性化合物として、光酸発生剤を用いることができる。具体例としては、光カチオン重合の光開始剤、光ラジカル重合の開始剤、色素類の光消色剤、光変色剤、あるいはマイクロレジスト等に使用されている活性光線または放射線の照射により酸を発生する公知の化合物およびそれらの混合物を適宜に選択して使用することができる。例えば、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、o-ニトロベンジルスルホネートを挙げることができる。光酸発生剤を含む場合、その含有量は、本発明の感光性樹脂組成物の全固形分に対し0.1~30質量%であることが好ましく、より好ましくは0.5~15質量%であり、さらに好ましくは0.5~10質量%であり、一層好ましくは0.5~5質量%である。光酸発生剤は1種のみ含有していてもよいし、2種以上含有していてもよい。光酸発生剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<<光硬化促進剤>>
 本発明で用いる感光性樹脂組成物は、光硬化促進剤を含んでいてもよい。本発明における光硬化促進剤とは、露光により塩基を発生するものであり、常温常圧の通常の条件下では活性を示さないが、外部刺激として電磁波の照射と加熱が行なわれると、塩基(塩基性物質)を発生するものであれば特に限定されるものではない。露光により発生した塩基はポリマー前駆体を加熱により硬化させる際の触媒として働くため、好適に用いることができる。
 本発明においては、光硬化促進剤として公知のものを用いることができる。例えば遷移金属化合物錯体や、アンモニウム塩などの構造を有するものや、アミジン部分がカルボン酸と塩を形成することで潜在化されたもののように、塩基成分が塩を形成することにより中和されたイオン性の化合物や、カルバメート誘導体、オキシムエステル誘導体、アシル化合物などのウレタン結合やオキシム結合などにより塩基成分が潜在化された非イオン性の化合物を挙げることができる。
 本発明に係る光硬化促進剤としては、例えば、特開2009-80452号公報および国際公開第2009/123122号パンフレットで開示されたような桂皮酸アミド構造を有する光硬化促進剤、特開2006-189591号公報および特開2008-247747号公報で開示されたようなカルバメート構造を有する光硬化促進剤、特開2007-249013号公報および特開2008-003581号公報で開示されたようなオキシム構造、カルバモイルオキシム構造を有する光硬化促進剤等が挙げられるが、これらに限定されず、その他にも公知の光硬化促進剤の構造を用いることができる。
 その他、光硬化促進剤としては、特開2012-93746号公報の段落0185~0188、0199~0200および0202に記載の化合物、特開2013-194205号公報の段落0022~0069に記載の化合物、特開2013-204019号公報の段落0026~0074に記載の化合物、ならびに国際公開WO2010/064631号公報の段落0052に記載の化合物が例として挙げられる。
 光硬化促進剤の市販品としては、WPBG-266、WPBG-300、WPGB-345、WPGB-140、WPBG-165、WPBG-027、PBG-018、WPGB-015、WPBG-041、WPGB-172、WPGB-174、WPBG-166、WPGB-158、WPGB-025、WPGB-168、WPGB-167およびWPBG-082(和光純薬工業(株)製)を用いることもできる。
 光硬化促進剤を用いる場合、組成物における光硬化促進剤の含有量は、組成物の全固形分に対し、0.1~50質量%であることが好ましい。下限は、0.5質量%以上がより好ましく、1質量%以上がさらに好ましい。上限は、30質量%以下がより好ましく、20質量%以下がさらに好ましい。
 光硬化促進剤は、1種または2種以上を用いることができる。2種以上を用いる場合は、合計量が上記範囲であることが好ましい。
<熱ラジカル重合開始剤>
 本発明の感光性樹脂組成物は、本発明の趣旨を逸脱しない範囲で熱ラジカル重合開始剤を含んでいてもよい。
 熱ラジカル重合開始剤は、熱のエネルギーによってラジカルを発生し、重合性を有する化合物の重合反応を開始または促進させる化合物である。熱ラジカル重合開始剤を添加することによって、ポリマー前駆体の環化と共に、ポリマー前駆体の重合反応を進行させることもできるので、より高度な耐熱化が達成できることとなる。
 熱ラジカル重合開始剤として、具体的には、特開2008-63554号公報の段落0074~0118に記載されている化合物が挙げられる。
 熱ラジカル重合開始剤を含む場合、その含有量は、本発明の感光性樹脂組成物の全固形分に対し0.1~30質量%であることが好ましく、より好ましくは0.1~20質量%であり、さらに好ましくは5~15質量%である。熱ラジカル重合開始剤は1種のみ含有していてもよいし、2種以上含有していてもよい。熱ラジカル重合開始剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<重合性化合物>
<<ラジカル重合性化合物>>
 本発明の感光性樹脂組成物はラジカル重合性化合物を含むことが好ましい。
 ラジカル重合性化合物は、ラジカル重合性基を有する化合物を用いることができる。ラジカル重合性基としては、ビニルフェニル基、ビニル基、(メタ)アクリロイル基およびアリル基などのエチレン性不飽和結合を有する基が挙げられる。ラジカル重合性基は、(メタ)アクリロイル基が好ましい。
 ラジカル重合性化合物が有するラジカル重合性基の数は、1個でもよく、2個以上でもよいが、ラジカル重合性化合物はラジカル重合性基を2個以上有することが好ましく、3個以上有することがより好ましい。上限は、15個以下が好ましく、10個以下がより好ましく、8個以下がさらに好ましい。
 ラジカル重合性化合物の分子量は、2000以下が好ましく、1500以下がより好ましく、900以下がさらに好ましい。ラジカル重合性化合物の分子量の下限は、100以上が好ましい。
 本発明の感光性樹脂組成物は、現像性の観点から、重合性基を2個以上含む2官能以上のラジカル重合性化合物を少なくとも1種含むことが好ましく、3官能以上のラジカル重合性化合物を少なくとも1種含むことがより好ましい。また、2官能のラジカル重合性化合物と3官能以上のラジカル重合性化合物との混合物であってもよい。なお、ラジカル重合性化合物の官能基数は、1分子中におけるラジカル重合性基の数を意味する。
 ラジカル重合性化合物の具体例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)やそのエステル類、アミド類が挙げられ、好ましくは、不飽和カルボン酸と多価アルコール化合物とのエステル、および不飽和カルボン酸と多価アミン化合物とのアミド類である。また、ヒドロキシル基やアミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステルあるいはアミド類と、単官能若しくは多官能イソシアネート類あるいはエポキシ類との付加反応物や、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステルあるいはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物、さらに、ハロゲン基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステルあるいはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。具体例としては、特開2016-027357号公報の段落0113~0122の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 また、ラジカル重合性化合物は、常圧下で100℃以上の沸点を持つ化合物も好ましい。その例としては、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、グリセリンやトリメチロールエタン等の多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後、(メタ)アクリレート化した化合物、特公昭48-41708号公報、特公昭50-6034号公報、特開昭51-37193号各公報に記載されているようなウレタン(メタ)アクリレート類、特開昭48-64183号、特公昭49-43191号、特公昭52-30490号各公報に記載されているポリエステルアクリレート類、エポキシ樹脂と(メタ)アクリル酸との反応生成物であるエポキシアクリレート類等の多官能のアクリレートやメタクリレートおよびこれらの混合物を挙げることができる。また、特開2008-292970号公報の段落0254~0257に記載の化合物も好適である。また、多官能カルボン酸にグリシジル(メタ)アクリレート等の環状エーテル基とエチレン性不飽和結合を有する化合物を反応させて得られる多官能(メタ)アクリレートなども挙げることができる。
 また、上述以外の好ましいラジカル重合性化合物として、特開2010-160418号公報、特開2010-129825号公報、特許第4364216号公報等に記載される、フルオレン環を有し、エチレン性不飽和結合を有する基を2個以上有する化合物や、カルド樹脂も使用することが可能である。
 さらに、その他の例としては、特公昭46-43946号公報、特公平1-40337号公報、特公平1-40336号公報に記載の特定の不飽和化合物や、特開平2-25493号公報に記載のビニルホスホン酸系化合物等もあげることができる。また、特開昭61-22048号公報に記載のペルフルオロアルキル基を含む化合物を用いることもできる。さらに日本接着協会誌 vol.20、No.7、300~308ページ(1984年)に光重合性モノマーおよびオリゴマーとして紹介されているものも使用することができる。
 上記のほか、特開2015-034964号公報の段落0048~0051に記載の化合物も好ましく用いることができ、これらの内容は本明細書に組み込まれる。
 また、特開平10-62986号公報において式(1)および式(2)としてその具体例と共に記載の、多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後に(メタ)アクリレート化した化合物も、ラジカル重合性化合物として用いることができる。
 さらに、特開2015-187211号公報の段落0104~0131に記載の化合物も他のラジカル重合性化合物として用いることができ、これらの内容は本明細書に組み込まれる。
 ラジカル重合性化合物としては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬(株)製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬(株)製、A-TMMT:新中村化学工業社製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬(株)製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA;日本化薬(株)製、A-DPH;新中村化学工業社製)、およびこれらの(メタ)アクリロイル基がエチレングリコール残基またはプロピレングリコール残基を介して結合している構造が好ましい。これらのオリゴマータイプも使用できる。
 ラジカル重合性化合物の市販品としては、例えばサートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、エチレンオキシ鎖を4個有する2官能メタクリレートであるサートマー社製のSR-209、231、239、日本化薬(株)製のペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330、ウレタンオリゴマーUAS-10、UAB-140(日本製紙社製)、NKエステルM-40G、NKエステル4G、NKエステルM-9300、NKエステルA-9300、UA-7200(新中村化学工業社製)、DPHA-40H(日本化薬(株)製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600(共栄社化学社製)、ブレンマーPME400(日油(株)製)などが挙げられる。
 ラジカル重合性化合物としては、特公昭48-41708号公報、特開昭51-37193号公報、特公平2-32293号公報、特公平2-16765号公報に記載されているようなウレタンアクリレート類や、特公昭58-49860号公報、特公昭56-17654号公報、特公昭62-39417号公報、特公昭62-39418号公報に記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。さらに、ラジカル重合性化合物として、特開昭63-277653号公報、特開昭63-260909号公報、特開平1-105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する化合物を用いることもできる。
 ラジカル重合性化合物は、カルボキシル基、リン酸基等の酸基を有するラジカル重合性化合物であってもよい。酸基を有するラジカル重合性化合物は、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシル基に非芳香族カルボン酸無水物を反応させて酸基を持たせたラジカル重合性化合物がより好ましい。特に好ましくは、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシル基に非芳香族カルボン酸無水物を反応させて酸基を持たせたラジカル重合性化合物において、脂肪族ポリヒドロキシ化合物がペンタエリスリトールまたはジペンタエリスリトールである化合物である。市販品としては、例えば、東亞合成株式会社製の多塩基酸変性アクリルオリゴマーとして、M-510、M-520などが挙げられる。
 酸基を有するラジカル重合性化合物の好ましい酸価は、0.1~40mgKOH/gであり、特に好ましくは5~30mgKOH/gである。ラジカル重合性化合物の酸価が上記範囲であれば、製造や取扱性に優れ、さらには、現像性に優れる。また、重合性が良好である。
 本発明の感光性樹脂組成物は、硬化膜の弾性率制御に伴う反り抑制の観点から、ラジカル重合性化合物として、単官能ラジカル重合性化合物を好ましく用いることができる。単官能ラジカル重合性化合物としては、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、カルビトール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等の(メタ)アクリル酸誘導体、N-ビニルピロリドン、N-ビニルカプロラクタム等のN-ビニル化合物類、アリルグリシジルエーテル、ジアリルフタレート、トリアリルトリメリテート等のアリル化合物類等が好ましく用いられる。単官能ラジカル重合性化合物としては、露光前の揮発を抑制するため、常圧下で100℃以上の沸点を持つ化合物も好ましい。
<<上述したラジカル重合性化合物以外の重合性化合物>>
 本発明の感光性樹脂組成物は、上述したラジカル重合性化合物以外の重合性化合物をさらに含むことができる。上述したラジカル重合性化合物以外の重合性化合物としては、ヒドロキシメチル基、アルコキシメチル基またはアシルオキシメチル基を有する化合物;エポキシ化合物;オキセタン化合物;ベンゾオキサジン化合物が挙げられる。
(ヒドロキシメチル基、アルコキシメチル基またはアシルオキシメチル基を有する化合物)
 ヒドロキシメチル基、アルコキシメチル基またはアシルオキシメチル基を有する化合物としては、下記式(AM1)、(AM4)または(AM5)で示される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000039
(式中、tは、1~20の整数を示し、R104は炭素数1~200のt価の有機基を示し、R105は、-OR106または、-OCO-R107で示される基を示し、R106は、水素原子または炭素数1~10の有機基を示し、R107は、炭素数1~10の有機基を示す。)
Figure JPOXMLDOC01-appb-C000040
(式中、R404は炭素数1~200の2価の有機基を示し、R405は、-OR406または、-OCO-R407で示される基を示し、R406は、水素原子または炭素数1~10の有機基を示し、R407は、炭素数1~10の有機基を示す。)
Figure JPOXMLDOC01-appb-C000041
(式中uは3~8の整数を示し、R504は炭素数1~200のu価の有機基を示し、R505は、-OR506または、-OCO-R507で示される基を示し、R506は、水素原子または炭素数1~10の有機基を示し、R507は、炭素数1~10の有機基を示す。)
 式(AM4)で示される化合物の具体例としては、46DMOC、46DMOEP(以上、商品名、旭有機材工業(株)製)、DML-MBPC、DML-MBOC、DML-OCHP、DML-PCHP、DML-PC、DML-PTBP、DML-34X、DML-EP、DML-POP、dimethylolBisOC-P、DML-PFP、DML-PSBP、DML-MTrisPC(以上、商品名、本州化学工業(株)製)、NIKALAC MX-290(商品名、(株)三和ケミカル製)、2,6-dimethoxymethyl-4-t-butylphenol、2,6-dimethoxymethyl-p-cresol、2,6-diacetoxymethyl-p-cresolなどが挙げられる。
 また、式(AM5)で示される化合物の具体例としては、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPA、TMOM-BP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、TM-BIP-A(商品名、旭有機材工業(株)製)、NIKALAC MX-280、NIKALAC MX-270、NIKALAC MW-100LM(以上、商品名、(株)三和ケミカル製)が挙げられる。
(エポキシ化合物(エポキシ基を有する化合物))
 エポキシ化合物としては、一分子中にエポキシ基を2以上有する化合物であることが好ましい。エポキシ基は、200℃以下で架橋反応し、かつ、架橋に由来する脱水反応が起こらないため膜収縮が起きにくい。このため、エポキシ化合物を含有することは、組成物の低温硬化および反りの抑制に効果的である。
 エポキシ化合物は、ポリエチレンオキサイド基を含有することが好ましい。これにより、より弾性率が低下し、また反りを抑制することができる。ポリエチレンオキサイド基は、エチレンオキサイドの構成単位数が2以上のものを意味し、構成単位数が2~15であることが好ましい。
 エポキシ化合物の例としては、ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;プロピレングリコールジグリシジルエーテル等のアルキレングリコール型エポキシ樹脂;ポリプロピレングリコールジグリシジルエーテル等のポリアルキレングリコール型エポキシ樹脂;ポリメチル(グリシジロキシプロピル)シロキサン等のエポキシ基含有シリコーンなどを挙げることができるが、これらに限定されない。具体的には、エピクロン(登録商標)850-S、エピクロン(登録商標)HP-4032、エピクロン(登録商標)HP-7200、エピクロン(登録商標)HP-820、エピクロン(登録商標)HP-4700、エピクロン(登録商標)EXA-4710、エピクロン(登録商標)HP-4770、エピクロン(登録商標)EXA-859CRP、エピクロン(登録商標)EXA-1514、エピクロン(登録商標)EXA-4880、エピクロン(登録商標)EXA-4850-150、エピクロンEXA-4850-1000、エピクロン(登録商標)EXA-4816、エピクロン(登録商標)EXA-4822(以上商品名、大日本インキ化学工業(株)製)、リカレジン(登録商標)BEO-60E(商品名、新日本理化(株))、EP-4003S、EP-4000S(以上商品名、(株)ADEKA製)などが挙げられる。この中でも、ポリエチレンオキサイド基を含有するエポキシ樹脂が、反りの抑制および耐熱性に優れる点で好ましい。例えば、エピクロン(登録商標)EXA-4880、エピクロン(登録商標)EXA-4822、リカレジン(登録商標)BEO-60Eは、ポリエチレンオキサイド基を含有するので好ましい。
(オキセタン化合物(オキセタニル基を有する化合物))
 オキセタン化合物としては、一分子中にオキセタン環を2つ以上有する化合物、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、3-エチル-3-(2-エチルヘキシルメチル)オキセタン、1,4-ベンゼンジカルボン酸-ビス[(3-エチル-3-オキセタニル)メチル]エステル等を挙げることができる。具体的な例としては、東亞合成株式会社製のアロンオキセタンシリーズ(例えば、OXT-121、OXT-221、OXT-191、OXT-223)が好適に使用することができ、これらは単独で、あるいは2種以上混合してもよい。
(ベンゾオキサジン化合物(ベンゾオキサゾリル基を有する化合物))
 ベンゾオキサジン化合物は、開環付加反応に由来する架橋反応のため、硬化時に脱ガスが発生せず、さらに熱収縮を小さくして反りの発生が抑えられることから好ましい。
 ベンゾオキサジン化合物の好ましい例としては、B-a型ベンゾオキサジン、B-m型ベンゾオキサジン(以上、商品名、四国化成工業社製)、ポリヒドロキシスチレン樹脂のベンゾオキサジン付加物、フェノールノボラック型ジヒドロベンゾオキサジン化合物が挙げられる。これらは単独で用いるか、あるいは2種以上混合してもよい。
 重合性化合物を含有する場合、その含有量は、本発明の感光性樹脂組成物の全固形分に対して、0質量%超60質量%以下であることが好ましい。下限は5質量%以上がより好ましい。上限は、50質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。
 重合性化合物は1種を単独で用いてもよいが、2種以上を混合して用いてもよい。2種以上を併用する場合にはその合計量が上記の範囲となることが好ましい。
<マイグレーション抑制剤>
 本発明の感光性樹脂組成物は、さらにマイグレーション抑制剤を含むことが好ましい。マイグレーション抑制剤を含むことにより、金属層(金属配線)由来の金属イオンが感光性樹脂組成物層内へ移動することを効果的に抑制可能となる。
 マイグレーション抑制剤としては、特に制限はないが、複素環(ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペリジン環、ピペラジン環、モルホリン環、2H-ピラン環および6H-ピラン環、トリアジン環)を有する化合物、チオ尿素類およびメルカプト基を有する化合物、ヒンダードフェノール系化合物、サリチル酸誘導体系化合物、ヒドラジド誘導体系化合物が挙げられる。特に、1,2,4-トリアゾール、ベンゾトリアゾール等のトリアゾール系化合物、1H-テトラゾール、5-フェニルテトラゾール等のテトラゾール系化合物が好ましく使用できる。
 また、ハロゲンイオンなどの陰イオンを捕捉するイオントラップ剤を使用することもできる。
 その他のマイグレーション抑制剤としては、特開2013-15701号公報の段落0094に記載の防錆剤、特開2009-283711号公報の段落0073~0076に記載の化合物、特開2011-59656号公報の段落0052に記載の化合物、特開2012-194520号公報の段落0114、0116および0118に記載の化合物などを使用することができる。
 マイグレーション抑制剤の具体例としては、下記化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000042
 感光性樹脂組成物がマイグレーション抑制剤を有する場合、マイグレーション抑制剤の含有量は、感光性樹脂組成物の全固形分に対して、0.01~5.0質量%であることが好ましく、0.05~2.0質量%であることがより好ましく、0.1~1.0質量%であることがさらに好ましい。
 マイグレーション抑制剤は1種のみでもよいし、2種以上であってもよい。マイグレーション抑制剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<重合禁止剤>
 本発明の感光性樹脂組成物は、重合禁止剤を含むことが好ましい。
 重合禁止剤としては、例えば、ヒドロキノン、4-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、p-tert-ブチルカテコール、1,4-ベンゾキノン、ジフェニル-p-ベンゾキノン、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、N-ニトロソ-N-フェニルヒドロキシアミンアルミニウム塩、フェノチアジン、N-ニトロソジフェニルアミン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-4-メチルフェノール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルホプロピルアミノ)フェノール、N-ニトロソ-N-(1-ナフチル)ヒドロキシアミンアンモニウム塩、ビス(4-ヒドロキシ-3,5-tert-ブチル)フェニルメタンなどが好適に用いられる。また、特開2015-127817号公報の段落0060に記載の重合禁止剤、および、国際公開WO2015/125469号の段落0031~0046に記載の化合物を用いることもできる。
 また、下記化合物を用いることができる(Meはメチル基である)。
Figure JPOXMLDOC01-appb-C000043
 本発明の感光性樹脂組成物が重合禁止剤を有する場合、重合禁止剤の含有量は、本発明の感光性樹脂組成物の全固形分に対して、0.01~5質量%であることが好ましく、0.02~3質量%であることがより好ましく、0.05~2.5質量%であることがさらに好ましい。
 重合禁止剤は1種のみでもよいし、2種以上であってもよい。重合禁止剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<金属接着性改良剤>
 本発明の感光性樹脂組成物は、電極や配線などに用いられる金属材料との接着性を向上させるための金属接着性改良剤を含んでいることが好ましい。金属接着性改良剤としては、シランカップリング剤などが挙げられる。
 シランカップリング剤の例としては、特開2014-191002号公報の段落0062~0073に記載の化合物、国際公開WO2011/080992A1号の段落0063~0071に記載の化合物、特開2014-191252号公報の段落0060~0061に記載の化合物、特開2014-41264号公報の段落0045~0052に記載の化合物、国際公開WO2014/097594号の段落0055に記載の化合物が挙げられる。また、特開2011-128358号公報の段落0050~0058に記載のように異なる2種以上のシランカップリング剤を用いることも好ましい。また、シランカップリング剤は、下記化合物を用いることも好ましい。以下の式中、Etはエチル基を表す。
Figure JPOXMLDOC01-appb-C000044
 また、金属接着性改良剤は、特開2014-186186号公報の段落0046~0049に記載の化合物、特開2013-072935号公報の段落0032~0043に記載のスルフィド系化合物を用いることもできる。
 金属接着性改良剤の含有量はポリマー前駆体100質量部に対して、好ましくは0.1~30質量部であり、より好ましくは0.5~15質量部の範囲であり、さらに好ましくは0.5~5質量部の範囲である。上記下限値以上とすることで硬化工程後の硬化膜と金属層との接着性が良好となり、上記上限値以下とすることで硬化工程後の硬化膜の耐熱性、機械特性が良好となる。金属接着性改良剤は1種のみでもよいし、2種以上であってもよい。2種以上用いる場合は、その合計が上記範囲であることが好ましい。
<硬化促進剤>
 本発明の感光性樹脂組成物は、硬化促進剤を含んでいてもよい。硬化促進剤は、熱硬化促進剤でも光硬化促進剤でもよい。本発明における硬化促進剤とは、熱や露光等により塩基を発生するもの(塩基発生剤)であるものが好ましい。
<<熱硬化促進剤>>
 熱硬化促進剤は第四級アンモニウムカチオンとカルボン酸アニオンとの塩が好ましい。この第四級アンモニウムカチオンは、下記式(Y1-1)~式(Y1-4)のいずれかで表されることが好ましい。
Figure JPOXMLDOC01-appb-C000045
 RY1は、n価(nは、1~12の整数)の有機基を表し、n価の炭化水素基であることが好ましい。炭化水素基としては、アルカンを含むn価の基(炭素数1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい)、アルケンを含むn価の基(炭素数2~12が好ましく、2~6がより好ましく、2~3がさらに好ましい)、芳香族炭化水素を含むn価の基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)、またはそれらの組み合わせが挙げられる。RY1は中でも芳香族炭化水素基であることが好ましい。RY1は本発明の効果を損ねない範囲で、前述の置換基Tを有していてもよい。
 RY2~RY5は、それぞれ独立に、水素原子または炭化水素基(炭素数1~36が好ましく、1~24がより好ましく、1~12がさらに好ましい)を表し、アルキル基(炭素数1~36が好ましく、1~24がより好ましく、1~23がさらに好ましい)、アルケニル基(炭素数2~36が好ましく、2~24がより好ましく、2~23がさらに好ましい)、アルキニル基(炭素数1~36が好ましく、1~24がより好ましく、1~23がさらに好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)が好ましい。このアルキル基、アルケニル基、アルキニル基は、環状でも鎖状でもよく、鎖状の場合は、直鎖状でも分岐状でもよい。
 RY6はアルキル基(炭素数1~36が好ましく、2~24がより好ましく、4~18がさらに好ましい)、アルケニル基(炭素数2~36が好ましく、2~24がより好ましく、4~18がさらに好ましい)、アルキニル基(炭素数2~36が好ましく、2~24がより好ましく、4~18がさらに好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)である。アルキル基、アルケニル基、アルキニル基は環状でも鎖状でもよく、鎖状の場合は、直鎖状でも分岐状でもよい。アルキル基、アルケニル基、アルキニル基、アリール基には、基の途中に、あるいは母核との連結に、ヘテロ原子を含む連結基Lhが介在していてもよい。
 nは、1~12の整数を表し、1~6の整数がより好ましく、1~3の整数がさらに好ましい。
 nは1~12の整数を表し、1~6の整数が好ましく、1~3の整数がさらに好ましい。
 RY2~RY6はそれぞれその2つ以上が互いに結合して環を形成してもよい。
 RY7~RY16はRと同義の基である。式(Y1-2)において、RY7およびRY8はカルボキシアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい;カルボキシル基の数は1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい)が好ましい。RY9は芳香族基が好ましく、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)が好ましい。あるいは、芳香族基が置換したアルコキシカルボニル基が好ましい(アルコキシル基は炭素数1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい、芳香族基は炭素数6~22が好ましく、6~18がより好ましく、6~14がさらに好ましい)。式(Y1-3)において、RY11およびRY13は水素原子であることが好ましい。RY14およびRY15は2つが組み合わさって、=C(NR の形の置換基になっていてもよい( = は二重結合で窒素原子に結合することを意味する)。式(Y1-4)において、RY13は水素原子であることが好ましく、RY10、RY11、RY12、RY16はアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい)であることが好ましい。このとき、RY11とRY16、RY10とRY12が結合して環を形成しビシクロ化合物となっていることが好ましい。具体的には、ジアザビシクロノネン、ジアザビシクロウンデセンが挙げられる。
 本実施形態において、上記式(Y1-1)、式(Y1-3)および式(Y1-4)の第四級アンモニウムカチオンと対になるカルボン酸アニオンは、下記式(X1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000046
 式(X1)において、EWGは、電子求引性基を表す。
 本実施形態において電子求引性基とは、ハメットの置換基定数σmが正の値を示すものを意味する。ここでσmは、都野雄甫総説、有機合成化学協会誌第23巻第8号(1965)p.631-642に詳しく説明されている。なお、本実施形態における電子求引性基は、上記文献に記載された置換基に限定されるものではない。
 σmが正の値を示す置換基の例としては、CF基(σm=0.43)、CFCO基(σm=0.63)、HC≡C基(σm=0.21)、CH=CH基(σm=0.06)、Ac基(σm=0.38)、MeOCO基(σm=0.37)、MeCOCH=CH基(σm=0.21)、PhCO基(σm=0.34)、HNCOCH基(σm=0.06)などが挙げられる。なお、Meはメチル基を表し、Acはアセチル基を表し、Phはフェニル基を表す(以下、同じ)。
 EWGは、下記式(EWG-1)~(EWG-6)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000047
 式(EWG-1)~(EWG-6)中、Rx1~Rx3は、それぞれ独立に、水素原子、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3がさらに好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)、ヒドロキシル基、またはカルボキシル基を表す。Arは芳香族基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)を表す。Rx1~Rx3がアルキル基、アルケニル基、アリール基のとき、環を形成してもよく、環を形成する際にはその途中に上記連結基L、あるいは、上記ヘテロ原子を有する連結基Lhを介在していてもよい。これらのアルキル基、アルケニル基、アリール基、ならびに、Arは、本発明の効果を損ねない範囲で、置換基Tを有していてもよい。なかでも、Arは特にカルボキシル基(好ましくは1~3個)を有することが好ましい。*は結合位置を表す。
 Npは1~6の整数を表し、1~3の整数が好ましく、1または2がより好ましい。
 本発明における熱硬化促進剤の分子量は、好ましくは、100以上2000未満であり、より好ましくは200~1000である。
 本発明における熱硬化促進剤の具体例としては、実施例で用いるD-1~D-3の他、WO2015/199219号公報に記載の40℃以上に加熱すると塩基を発生する酸性化合物およびpKa1が0~4のアニオンとアンモニウムカチオンを有するアンモニウム塩が例示され、これらの内容は本明細書に組み込まれる。
 熱硬化促進剤を用いる場合、組成物における熱硬化促進剤の含有量は、組成物の全固形分に対し、0.01~50質量%であることが好ましい。下限は、0.05質量%以上がより好ましく、0.1質量%以上がさらに好ましい。上限は、10質量%以下がより好ましく、5質量%以下がさらに好ましい。
 熱硬化促進剤は、1種または2種以上を用いることができる。2種以上を用いる場合は、合計量が上記範囲であることが好ましい。また、本発明の組成物は、熱硬化促進剤を実質的に含まない構成とすることもできる。実質的に含まないとは、組成物の全固形分に対し、0.01質量%未満であることをいい、0.005質量%未満であることがより好ましい。
<その他の添加剤>
 本発明の感光性樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、各種の添加物、例えば、熱酸発生剤、増感色素、連鎖移動剤、界面活性剤、高級脂肪酸誘導体、無機粒子、硬化剤、硬化触媒、充填剤、酸化防止剤、紫外線吸収剤、凝集防止剤等を配合することができる。これらの添加剤を配合する場合、その合計配合量は組成物の固形分の3質量%以下とすることが好ましい。
<<熱酸発生剤>>
 本発明の感光性樹脂組成物は、熱酸発生剤を含んでいてもよい。熱酸発生剤は、加熱により酸を発生し、ポリマー前駆体の環化を促進し硬化膜の機械特性をより向上させる。熱酸発生剤は、特開2013-167742号公報の段落0059に記載の化合物などが挙げられる。
 熱酸発生剤の含有量は、ポリマー前駆体100質量部に対して0.01質量部以上が好ましく、0.1質量部以上がより好ましい。熱酸発生剤を0.01質量部以上含有することで、架橋反応およびポリマー前駆体の環化が促進されるため、硬化膜の機械特性および耐薬品性をより向上させることができる。また、熱酸発生剤の含有量は、硬化膜の電気絶縁性の観点から、20質量部以下が好ましく、15質量部以下がより好ましく、10質量部以下がさらに好ましい。
 熱酸発生剤は、1種のみ用いても、2種以上用いてもよい。2種以上用いる場合は、合計量が上記範囲となることが好ましい。
<<増感色素>>
 本発明の感光性樹脂組成物は、増感色素を含んでいてもよい。増感色素は、特定の活性放射線を吸収して電子励起状態となる。電子励起状態となった増感色素は、熱硬化促進剤、熱ラジカル重合開始剤、光ラジカル重合開始剤などと接触して、電子移動、エネルギー移動、発熱などの作用が生じる。これにより、熱硬化促進剤、熱ラジカル重合開始剤、光ラジカル重合開始剤は化学変化を起こして分解し、ラジカル、酸あるいは塩基を生成する。増感色素の詳細については、特開2016-027357号公報の段落0161~0163の記載を参酌でき、この内容は本明細書に組み込まれる。
 本発明の感光性樹脂組成物が増感色素を含む場合、増感色素の含有量は、本発明の感光性樹脂組成物の全固形分に対し、0.01~20質量%であることが好ましく、0.1~15質量%であることがより好ましく、0.5~10質量%であることがさらに好ましい。増感色素は、1種単独で用いてもよいし、2種以上を併用してもよい。
<<連鎖移動剤>>
 本発明の感光性樹脂組成物は、連鎖移動剤を含有してもよい。連鎖移動剤は、例えば高分子辞典第三版(高分子学会編、2005年)683-684頁に定義されている。連鎖移動剤としては、例えば、分子内にSH、PH、SiH、およびGeHを有する化合物群が用いられる。これらは、低活性のラジカルに水素を供与して、ラジカルを生成するか、もしくは、酸化された後、脱プロトンすることによりラジカルを生成しうる。特に、チオール化合物(例えば、2-メルカプトベンズイミダゾール類、2-メルカプトベンズチアゾール類、2-メルカプトベンズオキサゾール類、3-メルカプトトリアゾール類、5-メルカプトテトラゾール類等)を好ましく用いることができる。
 本発明の感光性樹脂組成物が連鎖移動剤を有する場合、連鎖移動剤の含有量は、本発明の感光性樹脂組成物の全固形分100質量部に対し、0.01~20質量部が好ましく、1~10質量部がより好ましく、1~5質量部がさらに好ましい。連鎖移動剤は1種のみでもよいし、2種以上であってもよい。連鎖移動剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<<界面活性剤>>
 本発明の感光性樹脂組成物には、塗布性をより向上させる観点から、各種類の界面活性剤を添加してもよい。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種類の界面活性剤を使用できる。また、下記界面活性剤も好ましい。
Figure JPOXMLDOC01-appb-C000048
 本発明の感光性樹脂組成物が界面活性剤を有する場合、界面活性剤の含有量は、本発明の感光性樹脂組成物の全固形分に対して、0.001~2.0質量%であることが好ましく、より好ましくは0.005~1.0質量%である。界面活性剤は1種のみでもよいし、2種以上であってもよい。界面活性剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<<高級脂肪酸誘導体>>
 本発明の感光性樹脂組成物は、酸素に起因する重合阻害を防止するために、ベヘン酸やベヘン酸アミドのような高級脂肪酸誘導体を添加して、塗布後の乾燥の過程で組成物の表面に偏在させてもよい。
 本発明の感光性樹脂組成物が高級脂肪酸誘導体を有する場合、高級脂肪酸誘導体の含有量は、本発明の感光性樹脂組成物の全固形分に対して、0.1~10質量%であることが好ましい。高級脂肪酸誘導体は1種のみでもよいし、2種以上であってもよい。高級脂肪酸誘導体が2種以上の場合は、その合計が上記範囲であることが好ましい。
<その他の含有物質についての制限>
 本発明の感光性樹脂組成物の水分含有量は、塗布面性状の観点から、5質量%未満が好ましく、1質量%未満がより好ましく、0.6質量%未満がさらに好ましい。
 本発明の感光性樹脂組成物の金属含有量は、絶縁性の観点から、5質量ppm(parts per million)未満が好ましく、1質量ppm未満がより好ましく、0.5質量ppm未満がさらに好ましい。金属としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、クロム、ニッケルなどが挙げられる。金属を複数含む場合は、これらの金属の合計が上記範囲であることが好ましい。
 また、本発明の感光性樹脂組成物に意図せずに含まれる金属不純物を低減する方法としては、本発明の感光性樹脂組成物を構成する原料として金属含有量が少ない原料を選択する、本発明の感光性樹脂組成物を構成する原料に対してフィルターろ過を行う、装置内をポリテトラフロロエチレン等でライニングしてコンタミネーションを可能な限り抑制した条件下で蒸留を行う等の方法を挙げることができる。
 本発明の感光性樹脂組成物は、半導体材料としての用途を考慮すると、ハロゲン原子の含有量が、配線腐食性の観点から、500質量ppm未満が好ましく、300質量ppm未満がより好ましく、200質量ppm未満がさらに好ましい。中でも、ハロゲンイオンの状態で存在するものは、5質量ppm未満が好ましく、1質量ppm未満がより好ましく、0.5質量ppm未満がさらに好ましい。ハロゲン原子としては、塩素原子および臭素原子が挙げられる。塩素原子および臭素原子、あるいは塩素イオンおよび臭素イオンの合計がそれぞれ上記範囲であることが好ましい。
 本発明の感光性樹脂組成物の収納容器としては従来公知の収納容器を用いることができる。また、収納容器としては、原材料や組成物中への不純物混入を抑制することを目的に、容器内壁を6種6層の樹脂で構成された多層ボトルや、6種の樹脂を7層構造にしたボトルを使用することも好ましい。このような容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。
<組成物の調製>
 本発明の感光性樹脂組成物は、上記各成分を混合して調製することができる。混合方法は特に限定はなく、従来公知の方法で行うことができる。
 また、組成物中のゴミや微粒子等の異物を除去する目的で、フィルターを用いたろ過を行うことが好ましい。フィルター孔径は、1μm以下が好ましく、0.5μm以下がより好ましく、0.1μm以下がさらに好ましい。フィルターの材質は、ポリテトラフロロエチレン、ポリエチレンまたはナイロンが好ましい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルターろ過工程では、複数種のフィルターを直列または並列に接続して用いてもよい。複数種のフィルターを使用する場合は、孔径または材質が異なるフィルターを組み合わせて使用してもよい。また、各種材料を複数回ろ過してもよい。複数回ろ過する場合は、循環ろ過であってもよい。また、加圧してろ過を行ってもよい。加圧してろ過を行う場合、加圧する圧力は0.05MPa以上0.3MPa以下が好ましい。
 フィルターを用いたろ過の他、吸着材を用いた不純物の除去処理を行ってもよい。フィルターろ過と吸着材を用いた不純物除去処理とを組み合わせてもよい。吸着材としては、公知の吸着材を用いることができる。例えば、シリカゲル、ゼオライトなどの無機系吸着材、活性炭などの有機系吸着材が挙げられる。
 本発明の感光性樹脂組成物はポリマー前駆体がスルホン酸基を有することから比較的高温における保管に耐える。-60℃~40℃での保管により適しており、さらに好ましい保管温度-20℃~10℃である。
<硬化膜、積層体、半導体デバイス、およびそれらの製造方法>
 次に、硬化膜、積層体、半導体デバイス、およびそれらの製造方法について説明する。
 本発明の硬化膜は、本発明の感光性樹脂組成物を硬化してなる。本発明の硬化膜の膜厚は、例えば、0.5μm以上とすることができ、1μm以上とすることができる。また、上限値としては、100μm以下とすることができ、30μm以下とすることもできる。
 本発明の硬化膜を2層以上、さらには、3~7層積層して積層体としてもよい。本発明の硬化膜を2層以上有する積層体は、硬化膜の間に金属層を有する態様が好ましい。このような金属層は、再配線層などの金属配線として好ましく用いられる。
 本発明の硬化膜の適用可能な分野としては、半導体デバイスの絶縁膜、再配線層用層間絶縁膜、ストレスバッファ膜などが挙げられる。そのほか、封止フィルム、基板材料(フレキシブルプリント基板のベースフィルムやカバーレイ、層間絶縁膜)、あるいは上記のような実装用途の絶縁膜をエッチングでパターン形成することなどが挙げられる。これらの用途については、例えば、サイエンス&テクノロジー株式会社「ポリイミドの高機能化と応用技術」2008年4月、柿本雅明/監修、CMCテクニカルライブラリー「ポリイミド材料の基礎と開発」2011年11月発行、日本ポリイミド・芳香族系高分子研究会/編「最新ポリイミド 基礎と応用」エヌ・ティー・エス,2010年8月等を参照することができる。
 また、本発明における硬化膜は、オフセット版面またはスクリーン版面などの版面の製造、成形部品のエッチングへの使用、エレクトロニクス、特に、マイクロエレクトロニクスにおける保護ラッカーおよび誘電層の製造などにも用いることもできる。
 本発明の硬化膜の製造方法は、本発明の感光性樹脂組成物を用いることを含む。具体的には、本発明の感光性樹脂組成物を基板に適用して層状にする層形成工程と、層状にした感光性樹脂組成物を50~500℃で加熱する加熱工程とを含む。好ましくは、硬化膜の製造方法は、さらに、上記の層形成工程の後、上記層を露光する露光工程と、上記露光された感光性樹脂組成物層(樹脂層)に対して、現像処理を行う現像処理工程とを有する製造方法が挙げられる。この現像の後、加熱(好ましくは50~500℃で加熱)することで露光された樹脂層をさらに硬化させることができる。なお、上記のとおり、感光性樹脂組成物を用いる場合には、あらかじめ露光により組成物を硬化しておき、その後に必要により所望の加工(例えば下記の積層)を施して、さらに加熱により硬化させることができる。
 本発明の積層体の製造方法は、本発明の硬化膜の製造方法を含む。本発明の積層体の製造方法は、上記の硬化膜の製造方法に従って、硬化膜を形成後、さらに、再度、感光性樹脂組成物の層形成工程および加熱工程、あるいは、感光性を付した場合には、層形成工程、露光工程、および現像処理工程(必要によりさらに加熱工程)を、上記順に行うことが好ましい。特に、上記各工程を順に2~5回(すなわち、合計で3~6回)行うことが好ましい。このように硬化膜を積層することにより、積層体とすることができる。本発明では特に硬化膜を設けた部分の上または硬化膜の間、あるいはその両者に金属層を設けることが好ましい。
 以下これらの詳細を説明する。
<<層形成工程>>
 本発明の好ましい実施形態に係る製造方法は、感光性樹脂組成物を基板に適用して層状にする、層形成工程を含む。
 基板の種類は、用途に応じて適宜定めることができるが、シリコン、窒化シリコン、ポリシリコン、酸化シリコン、アモルファスシリコンなどの半導体作製基板、石英、ガラス、光学フィルム、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基板、紙、SOG(Spin On Glass)、TFT(薄膜トランジスタ)アレイ基板、プラズマディスプレイパネル(PDP)の電極板など特に制約されない。本発明では、特に、半導体作製基板が好ましく、シリコン基板がより好ましい。
 また、樹脂層の表面や金属層の表面に感光性樹脂組成物層を形成する場合は、樹脂層や金属層が基板となる。
 感光性樹脂組成物を基板に適用する手段としては、塗布が好ましい。
 具体的には、適用する手段としては、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スプレーコート法、スピンコート法、スリットコート法、およびインクジェット法などが例示される。感光性樹脂組成物層の厚さの均一性の観点から、より好ましくはスピンコート法、スリットコート法、スプレーコート法、インクジェット法である。方法に応じて適切な固形分濃度や塗布条件を調整することで、所望の厚さの樹脂層を得ることができる。また、基板の形状によっても塗布方法を適宜選択でき、ウェハ等の円形基板であればスピンコート法やスプレーコート法、インクジェット法等が好ましく、矩形基板であればスリットコート法やスプレーコート法、インクジェット法等が好ましい。スピンコート法の場合は、例えば、500~2000rpmの回転数で、10秒~1分程度適用することができる。

<<乾燥工程>>
 本発明の製造方法は、感光性樹脂組成物層を形成後、層形成工程の後に、溶剤を除去するために乾燥する工程を含んでいてもよい。好ましい乾燥温度は50~150℃で、70℃~130℃がより好ましく、90℃~110℃がさらに好ましい。乾燥時間としては、30秒~20分が例示され、1分~10分が好ましく、3分~7分がより好ましい。
<<露光工程>>
 本発明の製造方法は、上記感光性樹脂組成物層を露光する露光工程を含んでもよい。露光量は、感光性樹脂組成物を硬化できる限り特に定めるものではないが、例えば、波長365nmでの露光エネルギー換算で100~10000mJ/cm照射することが好ましく、200~8000mJ/cm照射することがより好ましい。
 露光波長は、190~1000nmの範囲で適宜定めることができ、240~550nmが好ましい。
 露光波長は、光源との関係でいうと、(1)半導体レーザー(波長 830nm、532nm、488nm、405nm etc.)、(2)メタルハライドランプ、(3)高圧水銀灯、g線(波長 436nm)、h線(波長 405nm)、i線(波長 365nm)、ブロード(g,h,i線の3波長)、(4)エキシマレーザー、KrFエキシマレーザー(波長 248nm)、ArFエキシマレーザー(波長 193nm)、F2エキシマレーザー(波長 157nm)、(5)極端紫外線;EUV(波長 13.6nm)、(6)電子線等が挙げられる。本発明の感光性樹脂組成物については、特に高圧水銀灯による露光が好ましく、なかでも、i線による露光が好ましい。これにより、特に高い露光感度が得られうる。
<<現像処理工程>>
 本発明の製造方法は、露光された感光性樹脂組成物層に対して、現像処理を行う現像処理工程を含んでもよい。現像を行うことにより、露光されていない部分(非露光部)が除去される。現像方法は、所望のパターンを形成できれば特に制限は無く、例えば、パドル、スプレー、浸漬、超音波等の現像方法が採用可能である。
 現像は現像液を用いて行う。現像液は、露光されていない部分(非露光部)が除去されるのであれば、特に制限なく使用できる。現像液は、有機溶剤を含むことが好ましい。本発明では、現像液は、ClogP値が-1~5の有機溶剤を含むことが好ましく、ClogP値が0~3の有機溶剤を含むことがより好ましい。ClogP値は、ChemBioDrawにて構造式を入力して計算値として求めることができる。
 有機溶剤は、エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、アルキルオキシ酢酸アルキル(例:アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-アルキルオキシプロピオン酸アルキルエステル類(例:3-アルキルオキシプロピオン酸メチル、3-アルキルオキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-アルキルオキシプロピオン酸アルキルエステル類(例:2-アルキルオキシプロピオン酸メチル、2-アルキルオキシプロピオン酸エチル、2-アルキルオキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-アルキルオキシ-2-メチルプロピオン酸メチルおよび2-アルキルオキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等、ならびに、エーテル類として、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等、ならびに、ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン、N-メチル-2-ピロリドン等、ならびに、芳香族炭化水素類として、例えば、トルエン、キシレン、アニソール、リモネン等、スルホキシド類としてジメチルスルホキシドが好適に挙げられる。
 本発明では、特にシクロペンタノン、γ-ブチロラクトンが好ましく、シクロペンタノンがより好ましい。
 現像液は、50質量%以上が有機溶剤であることが好ましく、70質量%以上が有機溶剤であることがより好ましく、90質量%以上が有機溶剤であることがさらに好ましい。また、現像液は、100質量%が有機溶剤であってもよい。
 現像時間としては、10秒~5分が好ましい。現像時の現像液の温度は、特に定めるものではないが、通常、20~40℃で行うことができる。
 現像液を用いた処理の後、さらに、リンスを行ってもよい。リンスは、現像液とは異なる溶剤で行うことが好ましい。例えば、感光性樹脂組成物に含まれる溶剤を用いてリンスすることができる。リンス時間は、5秒~1分が好ましい。
<<加熱工程>>
 本発明の製造方法は、層形成工程、乾燥工程、または現像工程の後に加熱する工程を含むことが好ましい。加熱工程では、ポリマー前駆体の環化反応が進行する。また、本発明の組成物はポリマー前駆体以外のラジカル重合性化合物を含ませてもよいが、未反応のポリマー前駆体以外のラジカル重合性化合物の硬化などもこの工程で進行させることができる。加熱工程における層の加熱温度(最高加熱温度)としては、50~500℃が好ましく、50~450℃がより好ましく、140~400℃がさらに好ましく、160~350℃が一層好ましい。
 加熱は、加熱開始時の温度から最高加熱温度まで1~12℃/分の昇温速度で行うことが好ましく、2~10℃/分がより好ましく、3~10℃/分がさらに好ましい。昇温速度を1℃/分以上とすることにより、生産性を確保しつつ、アミンの過剰な揮発を防止することができ、昇温速度を12℃/分以下とすることにより、硬化膜の残存応力を緩和することができる。
 加熱開始時の温度は、20℃~150℃が好ましく、20℃~130℃がより好ましく、25℃~120℃がさらに好ましい。加熱開始時の温度は、最高加熱温度まで加熱する工程を開始する際の温度のことをいう。例えば、感光性樹脂組成物を基板の上に適用した後、乾燥させる場合、この乾燥後の層の温度であり、例えば、感光性樹脂組成物に含まれる溶剤の沸点よりも、30~200℃低い温度から徐々に昇温させることが好ましい。
 加熱時間(最高加熱温度での加熱時間)は、10~360分であることが好ましく、20~300分であることがより好ましく、30~240分であることがさらに好ましい。
 特に多層の積層体を形成する場合、硬化膜の層間の密着性の観点から、加熱温度は180℃~320℃で加熱することが好ましく、180℃~260℃で加熱することがより好ましい。その理由は定かではないが、この温度とすることで、層間のポリマー前駆体のエチニル基同士が架橋反応を進行しているためと考えられる。
 加熱は段階的に行ってもよい。例として、25℃から180℃まで3℃/分で昇温し、180℃にて60分保持し、180℃から200℃まで2℃/分で昇温し、200℃にて120分保持する、といった前処理工程を行ってもよい。前処理工程としての加熱温度は100~200℃が好ましく、110~190℃であることがより好ましく、120~185℃であることがさらに好ましい。この前処理工程においては、米国特許9159547号公報に記載のように紫外線を照射しながら処理することも好ましい。このような前処理工程により膜の特性を向上させることが可能である。前処理工程は10秒間~2時間程度の短い時間で行うとよく、15秒~30分間がより好ましい。前処理は2段階以上のステップとしてもよく、例えば100~150℃の範囲で前処理工程1を行い、その後に150~200℃の範囲で前処理工程2を行ってもよい。
 さらに、加熱後冷却してもよく、この場合の冷却速度としては、1~5℃/分であることが好ましい。
 加熱工程は、窒素、ヘリウム、アルゴンなどの不活性ガスを流す等により、低酸素濃度の雰囲気で行うことがポリマー前駆体の分解を防ぐ点で好ましい。酸素濃度は、50ppm(体積比)以下が好ましく、20ppm(体積比)以下がより好ましい。
<<金属層形成工程>>
 本発明の製造方法は、現像処理後の感光性樹脂組成物層の表面に金属層を形成する金属層形成工程を含んでいることが好ましい。
 金属層としては、特に限定なく、既存の金属種を使用することができ、銅、アルミニウム、ニッケル、バナジウム、チタン、クロム、コバルト、金およびタングステンが例示され、銅およびアルミニウムがより好ましく、銅がさらに好ましい。
 金属層の形成方法は、特に限定なく、既存の方法を適用することができる。例えば、特開2007-157879号公報、特表2001-521288号公報、特開2004-214501号公報、特開2004-101850号公報に記載された方法を使用することができる。例えば、フォトリソグラフィ、リフトオフ、電解メッキ、無電解メッキ、エッチング、印刷、およびこれらを組み合わせた方法などが考えられる。より具体的には、スパッタリング、フォトリソグラフィおよびエッチングを組み合わせたパターニング方法、フォトリソグラフィと電解メッキを組み合わせたパターニング方法が挙げられる。
 金属層の厚さとしては、最も厚肉部で、0.1~50μmが好ましく、1~10μmがより好ましい。
<<積層工程>>
 本発明の製造方法は、さらに、積層工程を含むことが好ましい。
 積層工程とは、硬化膜(樹脂層)または金属層の表面に、再度、上記層形成工程および加熱工程、あるいは、感光性樹脂組成物には、上記層形成工程、上記露光工程、および上記現像処理工程を、上記順に行うことを含む一連の工程である。積層工程には、さらに、上記乾燥工程や加熱工程等を含んでいてもよいことは言うまでもない。
 積層工程後、さらに積層工程を行う場合には、上記加熱工程後、上記露光工程後、または、上記金属層形成工程後に、さらに、表面活性化処理工程を行ってもよい。表面活性化処理としては、プラズマ処理が例示される。
 上記積層工程は、2~5回行うことが好ましく、3~5回行うことがより好ましい。
 例えば、樹脂層/金属層/樹脂層/金属層/樹脂層/金属層のような、樹脂層が3層以上7層以下の構成が好ましく、3層以上5層以下がさらに好ましい。
 すなわち、本発明では特に、金属層を設けた後、さらに、上記金属層を覆うように、上記感光性樹脂組成物の層形成工程および加熱工程、あるいは、感光性樹脂組成物には、上記層形成工程、上記露光工程、および、上記現像処理工程(必要によりさらに加熱工程)を、上記順に行うことが好ましい。感光性樹脂組成物層(樹脂)を積層する積層工程と、金属層形成工程を交互に行うことにより、感光性樹脂組成物層(樹脂層)と金属層を交互に積層することができる。
 本発明は、本発明の硬化膜または積層体を有する半導体デバイスも開示する。本発明の感光性樹脂組成物を再配線層用層間絶縁膜の形成に用いた半導体デバイスの具体例としては、特開2016-027357号公報の段落0213~0218の記載および図1の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。「部」、「%」は特に述べない限り、質量基準である。
<ポリマー前駆体組成物(感光性樹脂組成物)の合成>
(合成例1)
[ポリマー前駆体A-1の合成]
 21.2gの4,4’-オキシジフタル酸二無水物と、18.2gの2-ヒドロキシエチルメタクリレートと、11.0gのピリジンと、50mLのテトラヒドロフランを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、40mLのγ-ブチロラクトンに28.1gのジシクロヘキシルカルボジイミドを溶解させた溶液を-10℃で60分かけて反応混合物に滴下して、混合物を30分撹拌した。続いて、100mLのγ-ブチロラクトンに6.9gの1,4-フェニレンジアミンを溶解させた溶液を-10℃で30分かけて反応混合物に滴下して、混合物を1時間撹拌した後、6.0gの4-アミノベンゼンスルホン酸と10mLのエチルアルコールと100mLのγ-ブチロラクトンを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させて、水-ポリイミド前駆体混合物を500rpmの速度で激しく60分間撹拌した。ポリイミド前駆体の固体をろ過し、減圧下45℃で2日間乾燥した。得られたポリイミド前駆体は、重量平均分子量19500、数平均分子量8100であり、スルホン酸基の数は全構成単位の合計数の7.54%であった。
(合成例2)
[ポリマー前駆体A-2の合成]
 14.9gのピロメリット酸二無水物と、18.2gの2-ヒドロキシエチルメタクリレートと、23.9gのピリジンと、100mLのジグリムを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、温度を-10℃に保ちながら17.0gのSOClを60分かけて加えた。50mLのN-メチルピロリドンで希釈した後、100mLのN-メチルピロリドンに20.3gの4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニルと0.2gの2-スルホ安息香酸無水物を溶解させた溶液を-5℃で30分かけて反応混合物に滴下して、混合物を1時間撹拌した後、エチルアルコール20mLを加えた。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させ、固体をろ過してテトラヒドロフラン400mLに溶解させた。得られた溶液に6Lの水を投入してポリイミド前駆体を沈殿させ、水-ポリイミド前駆体混合物を500rpmの速度で激しく60分間撹拌した。ポリイミド前駆体の固体を再びろ過して減圧下で、45℃で2日間乾燥した。得られたポリイミド前駆体は、重量平均分子量22400、数平均分子量8600であり、スルホン酸基の数は全構成単位の合計数の0.15%であった。
(合成例3)
[ポリマー前駆体A-3の合成]
 21.2gの4,4’-オキシジフタル酸二無水物と、18.2gの2-ヒドロキシエチルメタクリレートと、23.9gのピリジンと、100mLのジグリムを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、温度を-10℃に保ちながら17.0gのSOClを60分かけて加えた。50mLのN-メチルピロリドンで希釈した後、100mLのN-メチルピロリドンに12.7gの4,4’-ジアミノジフェニルエーテルを溶解させた溶液を-5℃で30分かけて反応混合物に滴下して、混合物を1時間撹拌した後、0.6gの2-アミノベンゼンスルホン酸とエチルアルコール20mLを加えた。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させ、固体をろ過してテトラヒドロフラン400mLに溶解させた。得られた溶液に6Lの水を投入してポリイミド前駆体を沈殿させ、水-ポリイミド前駆体混合物を500rpmの速度で激しく60分間撹拌した。ポリイミド前駆体の固体を再びろ過して減圧下で、45℃で2日間乾燥した。得られたポリイミド前駆体は、重量平均分子量26400、数平均分子量9600であり、スルホン酸基の数は全構成単位の合計数の1.05%であった。
(合成例4)
[ポリマー前駆体A-4の合成]
 21.2gの4,4’-オキシジフタル酸二無水物と、18.2gの2-ヒドロキシエチルメタクリレートと、11.0gのピリジンと、50mLのテトラヒドロフランを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、40mLのγ-ブチロラクトンに17.2gのジイソプロピルカルボジイミドを溶解させた溶液を-10℃で60分かけて反応混合物に滴下して、混合物を30分撹拌した。続いて、100mLのγ-ブチロラクトンに12.7gの4,4’-ジアミノジフェニルエーテルと1.2gの2-スルホ安息香酸無水物を溶解させた溶液を-10℃で30分かけて反応混合物に滴下して、混合物を1時間撹拌した後、10mLのエチルアルコールと100mLのγ-ブチロラクトンを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させて、水-ポリイミド前駆体混合物を500rpmの速度で激しく60分間撹拌した。ポリイミド前駆体の固体をろ過し、減圧下45℃で2日間乾燥した。得られたポリイミド前駆体は、重量平均分子量20900、数平均分子量8200であり、スルホン酸基の数は全構成単位の合計数の0.44%であった。
(合成例5)
[ポリマー前駆体A-5の合成]
 21.2gの4,4’-オキシジフタル酸二無水物と、18.2gの2-ヒドロキシエチルメタクリレートと、23.9gのピリジンと、100mLのジグリムを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、温度を-10℃に保ちながら17.0gのSOClを60分かけて加えた。50mLのN-メチルピロリドンで希釈した後、100mLのN-メチルピロリドンに20.29gの2,2’-ビス(トリフルオロメチル)ベンジジンを溶解させた溶液を-5℃で30分かけて反応混合物に滴下して、混合物を1時間撹拌した後、1.0gの2-アミノエタンスルホン酸とエチルアルコール20mLを加えた。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させ、固体をろ過してテトラヒドロフラン400mLに溶解させた。得られた溶液に6Lの水を投入してポリイミド前駆体を沈殿させ、水-ポリイミド前駆体混合物を500rpmの速度で激しく60分間撹拌した。ポリイミド前駆体の固体を再びろ過して減圧下で、45℃で2日間乾燥した。得られたポリイミド前駆体は、重量平均分子量27100、数平均分子量10100であり、スルホン酸基の数は全構成単位の合計数の3.21%であった。
(合成例6)
[ポリマー前駆体A-6の合成]
 21.2gの4,4’-オキシジフタル酸二無水物と、18.2gの2-ヒドロキシエチルメタクリレートと、23.9gのピリジンと、100mLのジグリムを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、温度を-10℃に保ちながら17.0gのSOClを60分かけて加えた。50mLのN-メチルピロリドンで希釈した後、100mLのN-メチルピロリドンに20.29gの2,2’-ビス(トリフルオロメチル)ベンジジンを溶解させた溶液を-5℃で30分かけて反応混合物に滴下して、混合物を1時間撹拌した後、0.1gの2-アミノエタンスルホン酸とエチルアルコール20mLを加えた。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させ、固体をろ過してテトラヒドロフラン400mLに溶解させた。得られた溶液に6Lの水を投入してポリイミド前駆体を沈殿させ、水-ポリイミド前駆体混合物を500rpmの速度で激しく60分間撹拌した。ポリイミド前駆体の固体を再びろ過して減圧下で、45℃で2日間乾燥した。得られたポリイミド前駆体は、重量平均分子量27500、数平均分子量9900であり、スルホン酸基の数は全構成単位の合計数の0.07%であった。
(合成例7)
[ポリマー前駆体A-7の合成]
 28.0gの2,2'-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンを200mLのN-メチルピロリドンに撹拌溶解した。続いて、温度を0~5℃に保ちながら、25.0gの4,4’-オキシジベンゾイルクロリドを30分間で滴下した後、3.0gの3-ヒドロキシプロパンスルホン酸(約80質量%水溶液)を加えて60分間撹拌を続けた。得られた反応液に6Lの水を投入してポリベンゾオキサゾール前駆体を沈殿させ、固体をろ過して減圧下で、45℃で2日間乾燥した。得られたポリベンゾオキサゾール前駆体は、重量平均分子量21800、数平均分子量8300であり、スルホン酸基の数は全構成単位の合計数の4.20%であった。
(合成例8)
[ポリマー前駆体A-8の合成]
 28.0gの2,2'-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンを200mLのN-メチルピロリドンに撹拌溶解した。続いて、温度を0~5℃に保ちながら、25.0gの4,4’-オキシジベンゾイルクロリドを30分間で滴下した後、10.0gの2-スルホ安息香酸無水物を加えて60分間撹拌を続けた。得られた反応液に6Lの水を投入してポリベンゾオキサゾール前駆体を沈殿させ、固体をろ過して減圧下で、45℃で2日間乾燥した。得られたポリベンゾオキザゾール前駆体は、重量平均分子量18800、数平均分子量7300であり、スルホン酸基の数は全構成単位の合計数の12.48%であった。
(合成例9)
[ポリマー前駆体A-9の合成]
 21.2gの4,4’-オキシジフタル酸二無水物と、18.2gの2-ヒドロキシエチルメタクリレートと、10.0gの4-アミノベンゼンスルホン酸と、23.9gのピリジンと、100mLのジグリムを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、温度を-10℃に保ちながら17.0gのSOClを60分かけて加えた。50mLのN-メチルピロリドンで希釈した後、100mLのN-メチルピロリドンに20.29gの2,2’-ビス(トリフルオロメチル)ベンジジンを溶解させた溶液を-5℃で30分かけて反応混合物に滴下して、混合物を1時間撹拌した後、エチルアルコール20mLを加えた。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させ、固体をろ過してテトラヒドロフラン400mLに溶解させた。得られた溶液に6Lの水を投入してポリイミド前駆体を沈殿させ、水-ポリイミド前駆体混合物を500rpmの速度で激しく60分間撹拌した。ポリイミド前駆体の固体を再びろ過して減圧下で、45℃で2日間乾燥した。このポリイミド前駆体は、重量平均分子量24300、数平均分子量9200であり、スルホン酸基の数は全構成単位の合計数の17.20%であった。
(合成例10)
[ポリマー前駆体A-10の合成]
 21.2gの4,4’-オキシジフタル酸二無水物と、18.2gの2-ヒドロキシエチルメタクリレートと、5.0gの4-アミノベンゼンスルホン酸と、23.9gのピリジンと、100mLのジグリムを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、温度を-10℃に保ちながら17.0gのSOClを60分かけて加えた。50mLのN-メチルピロリドンで希釈した後、100mLのN-メチルピロリドンに20.29gの2,2’-ビス(トリフルオロメチル)ベンジジンを溶解させた溶液を-5℃で30分かけて反応混合物に滴下して、混合物を1時間撹拌した後、エチルアルコール20mLを加えた。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させ、固体をろ過してテトラヒドロフラン400mLに溶解させた。得られた溶液に6Lの水を投入してポリイミド前駆体を沈殿させ、水-ポリイミド前駆体混合物を500rpmの速度で激しく60分間撹拌した。ポリイミド前駆体の固体を再びろ過して減圧下で、45℃で2日間乾燥した。このポリイミド前駆体は、重量平均分子量22700、数平均分子量9400であり、スルホン酸基の数は全構成単位の合計数の3.21%であった。
(合成例11)
[ポリマー前駆体A-11の合成]
 21.2gの4,4’-オキシジフタル酸二無水物と、18.2gの2-ヒドロキシエチルメタクリレートと、3.0gの4-アミノベンゼンスルホン酸と、11.0gのピリジンと、50mLのテトラヒドロフランを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、40mLのγ-ブチロラクトンに17.2gのジイソプロピルカルボジイミドを溶解させた溶液を-10℃で60分かけて反応混合物に滴下して、混合物を30分撹拌した。続いて、100mLのγ-ブチロラクトンに12.7gの4,4’-ジアミノジフェニルエーテルを溶解させた溶液を-10℃で30分かけて反応混合物に滴下して、混合物を1時間撹拌した後、10mLのエチルアルコールと100mLのγ-ブチロラクトンを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させて、水-ポリイミド前駆体混合物を500rpmの速度で激しく60分間撹拌した。ポリイミド前駆体の固体をろ過し、減圧下45℃で2日間乾燥した。このポリイミド前駆体は、重量平均分子量25100、数平均分子量9800であり、スルホン酸基の数は全構成単位の合計数の4.32%であった。
(合成例12)
[ポリマー前駆体A-12の合成]
 21.2gの4,4’-オキシジフタル酸二無水物と、18.2gの2-ヒドロキシエチルメタクリレートと、2.0gの3-ヒドロキシプロパンスルホン酸(約80質量%水溶液)と、11.0gのピリジンと、50mLのテトラヒドロフランを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、40mLのγ-ブチロラクトンに28.1gのジシクロヘキシルカルボジイミドを溶解させた溶液を-10℃で60分かけて反応混合物に滴下して、混合物を30分撹拌した。続いて、100mLのγ-ブチロラクトンに12.7gの4,4’-ジアミノジフェニルエーテルを溶解させた溶液を-10℃で30分かけて反応混合物に滴下して、混合物を1時間撹拌した後、10mLのエチルアルコールと100mLのγ-ブチロラクトンを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させて、水-ポリイミド前駆体混合物を500rpmの速度で激しく60分間撹拌した。ポリイミド前駆体の固体をろ過し、減圧下45℃で2日間乾燥した。このポリイミド前駆体は、重量平均分子量18100、数平均分子量7100であり、スルホン酸基の数は全構成単位の合計数の2.20%であった。
(合成例13)
[ポリマー前駆体A-13の合成]
 21.2gの4,4’-オキシジフタル酸二無水物と、18.2gの2-ヒドロキシエチルメタクリレートと、0.2gの2-アミノエタンスルホン酸と、11.0gのピリジンと、50mLのテトラヒドロフランを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、40mLのγ-ブチロラクトンに28.1gのジシクロヘキシルカルボジイミドを溶解させた溶液を-10℃で60分かけて反応混合物に滴下して、混合物を30分撹拌した。続いて、100mLのγ-ブチロラクトンに12.7gの4,4’-ジアミノジフェニルエーテルを溶解させた溶液を-10℃で30分かけて反応混合物に滴下して、混合物を1時間撹拌した後、10mLのエチルアルコールと100mLのγ-ブチロラクトンを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させて、水-ポリイミド前駆体混合物を500rpmの速度で激しく60分間撹拌した。ポリイミド前駆体の固体をろ過し、減圧下45℃で2日間乾燥した。このポリイミド前駆体は、重量平均分子量22400、数平均分子量8900であり、スルホン酸基の数は全構成単位の合計数の0.04%であった。
(合成例14)
[ポリマー前駆体A-14の合成]
 28.0gの2,2'-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンを200mLのN-メチルピロリドンに撹拌溶解した。続いて、温度を0~5℃に保ちながら、25.0gの4,4’-オキシジベンゾイルクロリドを30分間で滴下した後、5.0gの2-スルホ酢酸と8.0gのジシクロヘキシルカルボジイミドを加えて60分間撹拌を続けた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に6Lの水を投入してポリベンゾオキサゾール前駆体を沈殿させ、固体をろ過して減圧下で、45℃で2日間乾燥した。このポリベンゾオキサゾール前駆体は、重量平均分子量22800、数平均分子量8900であり、スルホン酸基の数は全構成単位の合計数の6.21%であった。
(合成例15)
[ポリマー前駆体A-15の合成]
 21.2gの4,4’-オキシジフタル酸二無水物と、18.2gの2-ヒドロキシエチルメタクリレートと、11.0gのピリジンと、50mLのテトラヒドロフランを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、40mLのγ-ブチロラクトンに28.1gのジシクロヘキシルカルボジイミドを溶解させた溶液を-10℃で60分かけて反応混合物に滴下して、混合物を30分撹拌した。続いて、100mLのγ-ブチロラクトンに6.9gの1,4-フェニレンジアミンを溶解させた溶液を-10℃で30分かけて反応混合物に滴下して、混合物を1時間撹拌した後、10mLのエチルアルコールと100mLのγ-ブチロラクトンを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させて、水-ポリイミド前駆体混合物を500rpmの速度で激しく60分間撹拌した。ポリイミド前駆体の固体をろ過し、減圧下45℃で2日間乾燥した。このポリイミド前駆体は、重量平均分子量22800、数平均分子量9100であり、スルホン酸基は存在しなかった。
(合成例16)
[ポリマー前駆体A-16の合成]
 28.0gの2,2'-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンを200mLのN-メチルピロリドンに撹拌溶解した。続いて、温度を0~5℃に保ちながら、25.0gの4,4’-オキシジベンゾイルクロリドを30分間で滴下した後、60分間撹拌を続けた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に6Lの水を投入してポリベンゾオキサゾール前駆体を沈殿させ、固体をろ過して減圧下で、45℃で2日間乾燥した。このポリベンゾオキサゾール前駆体は、重量平均分子量21400、数平均分子量8500であり、スルホン酸基は存在しなかった。
(合成例17)
[ポリマー前駆体A-17の合成]
 14.9g(68.3mmol)のピロメリット酸二無水物と、18.0gの2-ヒドロキシエチルメタクリレートと、23.9gのピリジンと、0.10gの水と、250mLのジグリムと混合し、60℃の温度で4時間撹拌して、ピロメリット酸無水物と2-ヒドロキシエチルメタクリレートのジエステルを製造した。その得られた反応液の水分量を測定した結果、6.9mmol含まれていた。次いで、反応混合物を-10℃に冷却し、温度を-10±5℃に保ちながら16.9g(142.1mmol)のSOClを60分かけて加えた。50mLのN-メチルピロリドンで希釈した後、100mLのN-メチルピロリドンに20.1gの4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニルを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を2時間撹拌した。次いで、6リットルの水の中でポリイミド前駆体を沈殿させ、水-ポリイミド前駆体混合物を5000rpmの速度で15分間撹拌した。ポリイミド前駆体の固体を濾過してテトラヒドロフラン380gに溶解させた。得られた溶液を6リットルの水の中でポリイミド前駆体を沈殿させ、水-ポリイミド前駆体混合物を5000rpmの速度で15分間撹拌した。ポリイミド前駆体の固体を再び濾過して減圧下で、45℃で3日間乾燥した。このポリイミド前駆体は、重量平均分子量26,800、数平均分子量8400、炭素骨格以外に結合した-SOH基の数は全構成単位の合計数の4.52%であった。
<重量平均分子量および数平均分子量の測定>
 ポリマー前駆体の重量平均分子量(Mw)および数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)測定によるポリスチレン換算値であり、以下の方法により測定した。
 測定装置としてHLC-8220(東ソー(株)製)を使用、カラムとしてガードカラムHZ-L、TSKgel Super HZM-M、TSKgel Super HZ4000、TSKgel Super HZ3000、TSKgel Super HZ2000(東ソー(株)製)を用いた。また溶離液はTHF(テトラヒドロフラン)を用い、40℃で0.35mL/分の流速にて測定を行った。検出は紫外線(UV)254nm検出器を使用した。また測定サンプルは複素環含有ポリマー前駆体をTHFで0.1質量%に希釈調整したサンプルを使用した。
<実施例および比較例の感光性樹脂組成物の調製>
 下記表1に記載の各成分を混合し、均一な溶液として、細孔の幅が0.8μmのポリテトラフルオロエチレン(PTFE)フィルターを通して圧力0.3MPaにて、加圧ろ過を行なうことで各感光性樹脂組成物を得た。
<保存安定性>
 上記感光性樹脂組成物10gを容器(容器の材質:遮光ガラス、容量:100mL)に密閉し、25℃、相対湿度65%の環境下に1週間静置した。経時前後それぞれの組成物を、RE-85L(東機産業(株)製)を用いて25℃での粘度測定を行い、粘度の変化率を算出した(ηr=|η2-η1|/η1、ηr:粘度の変化率、η1:経時前の粘度、η2:経時後の粘度)。変化率が少ないほど、感光性樹脂組成物の安定性が高く、好ましい結果となる。装置の設定や測定条件など、その他の事項はJIS Z 8803:2011に準拠することとした。
A:0%以上、5%未満
B:5%以上、8%未満
C:8%以上、10%未満
D:10%以上、15%未満
E:15%以上
<銅腐食性>
 上記感光性樹脂組成物を、厚み250μmの銅基板上にスピニングして適用した。感光性樹脂組成物を適用した銅基板をホットプレート上にて、100℃で5分間乾燥し、銅基板上に厚さ10μmの膜を形成した。次いで、窒素雰囲気下で、10℃/分の昇温速度で昇温し、230℃に達した後、3時間保持した。冷却後、銅基板上の膜をカッターで削り取った。銅基板を目視で観察して、錆色に着色した面積比率を算出し、銅腐食性を評価した。面積比率が少ないほど、銅腐食性が少ないことを意味する。
A:5%以下。
B:5%よりも多く、10%以下。
C:10%よりも多く、20%以下。
D:20%よりも多い。
Figure JPOXMLDOC01-appb-T000049
 上記表1に示した結果のとおり、スルホン酸基を含む部位を導入した樹脂はいずれも、保存安定性および銅腐食性において高い性能を示した(実施例1~23)。これに対して、スルホン酸基を含む部位を有しない樹脂を用いた比較例は、保存安定性が特に劣っていた(比較例1、2)。また、-SOH基を有していても、炭素骨格以外に結合した-SOH基しかない場合、保存安定性に劣っていた。実施例においては、なかでも、スルホン酸基を含む部位の導入比率が中程度の実施例6~10(A-3~A-5)、実施例12(A-7)、実施例16~21(A-10~A-12)において、比較的高い性能を示していた。
 上記の結果より、本発明によれば、保存安定性を達成できる。さらには、保存安定性と銅腐食性というトレードオフの効果の両立を達成できることがわかる。また、本発明により、従来のものとは異なる、新規なポリイミド前駆体およびポリベンゾオキサゾール前駆体を提供できることがわかる。
(A)ポリマー前駆体
A-1~A-16:合成例1~16で製造したポリマー前駆体
(B)ラジカル重合性化合物
B-1:NKエステル M-40G(新中村化学工業社製)
B-2:SR-209(サートマー社製)
B-3:NKエステル A-9300(新中村化学工業社製)
B-4:A-TMMT(新中村化学工業社製)
B-5:A-DPH(ジペンタエリスリトールヘキサアクリレート、新中村化学工業社製)
(C)光ラジカル重合開始剤
C-1:IRGACURE OXE 01(BASF社製)
C-2:IRGACURE OXE 02(BASF社製)
C-3:IRGACURE OXE 04(BASF社製)
C-4:IRGACURE-784(BASF社製)
C-5:NCI-831((株)ADEKA社製)
(D)硬化促進剤(塩基発生剤)
D-1:下記化合物
D-2:下記化合物
D-3:下記化合物
Figure JPOXMLDOC01-appb-C000050
(E)重合禁止剤
E-1:1,4-ベンゾキノン
E-2:4-メトキシフェノール
(F)添加剤(マイグレーション抑制剤)
F-1:1,2,4-トリアゾール
F-2:1H-テトラゾール
(G)シランカップリング剤(金属接着性改良剤)
G-1:下記化合物
G-2:下記化合物
G-3:下記化合物
Figure JPOXMLDOC01-appb-C000051
(H)溶剤
H-1:γ-ブチロラクトン
H-2:ジメチルスルホキシド
H-3:N-メチル-2-ピロリドン
H-4:乳酸エチル
 表1における溶剤について、例えば、種類の欄が「H-1/H-2」、質量%の欄が「48+12」となっている場合、H-1を48質量%、H-2を12質量%含んでいることを意味する。
<実施例100>
 実施例1の感光性樹脂組成物を、細孔の幅が0.8μmのフィルターを通して加圧ろ過した後、シリコンウェハ上にスピンコート法により感光性樹脂組成物を塗布した。感光性樹脂組成物層が塗布されたシリコンウェハをホットプレート上で、100℃で5分間乾燥し、シリコンウェハ上に15μmの厚さの均一な感光性樹脂組成物層を形成した。シリコンウェハ上の感光性樹脂組成物層を、ステッパー(Nikon NSR 2005 i9C)を用いて、500mJ/cmの露光エネルギーで露光し、露光した感光性樹脂組成物層(樹脂層)を、シクロペンタノンで60秒間現像して、直径10μmのホールを形成した。次いで、窒素雰囲気下で、10℃/分の昇温速度で昇温し、250℃に達した後、この温度で3時間維持した。室温まで冷却後、上記ホール部分を覆うように、感光性樹脂組成物層の表面の一部に、蒸着法により厚さ2μmの銅薄層(金属層)を形成した。さらに、金属層および感光性樹脂組成物層の表面に、再度、同じ種類の感光性樹脂組成物を用いて、上記と同様に感光性樹脂組成物のろ過から、パターン化した膜の3時間加熱までの手順を再度実施して、樹脂層/金属層/樹脂層からなる積層体を作製した。
 この樹脂層(再配線層用層間絶縁膜)は、絶縁性に優れていた。
 また、この再配線層用層間絶縁膜を使用して半導体デバイスを製造したところ、問題なく動作することを確認した。

Claims (18)

  1.  ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択されるポリマー前駆体と、光活性化合物とを含む感光性樹脂組成物であって、
     前記ポリマー前駆体が、テトラカルボン酸、テトラカルボン酸誘導体、ジカルボン酸、および、ジカルボン酸誘導体の少なくとも1種に由来する構成単位ならびにジアミンの少なくとも1種に由来する構成単位から構成される前記ポリマー前駆体の側鎖に連結基を介して結合するスルホン酸基ならびに前記ポリマー前駆体の末端に結合するスルホン酸基からなる群のうち少なくとも1種を有する、感光性樹脂組成物。
  2.  前記ポリマー前駆体が、下記式(1)で表される構成単位または式(2)で表される構成単位を含む、請求項1に記載の感光性樹脂組成物;
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、AおよびAは、それぞれ独立に酸素原子またはNHを表し、R111は、2価の有機基を表し、R115は、4価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表す;
    Figure JPOXMLDOC01-appb-C000002
     式(2)中、R121は、2価の有機基を表し、R122は、4価の有機基を表し、R123およびR124は、それぞれ独立に、水素原子または1価の有機基を表す。
  3.  前記ポリマー前駆体が、式(1)で表される構成単位を含む、請求項2に記載の感光性樹脂組成物。
  4.  前記ポリマー前駆体が式(1-1)、式(1-2)、式(1-3)、式(2-1)、式(2-2)および式(2-3)のいずれかで表される構造を有する、請求項1~3のいずれか1項に記載の感光性樹脂組成物;
    Figure JPOXMLDOC01-appb-C000003
     式中、AおよびAは、それぞれ独立に酸素原子またはNHを表し、R111は、2価の有機基を表し、R115は、4価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表し、X、XおよびXはそれぞれ独立に連結基を表し、*はポリイミド前駆体の主鎖との結合位置を示し、nsは1~4の整数を示し、;
    Figure JPOXMLDOC01-appb-C000004
     式中、R121は、2価の有機基を表し、R122は、4価の有機基を表し、R123およびR124は、それぞれ独立に、水素原子または1価の有機基を表し、X、XおよびXはそれぞれ独立に連結基を表し、*はポリベンゾオキサゾール前駆体の主鎖との結合位置を示し、nsは1~4の整数を表す。
  5.  前記ポリマー前駆体に含まれる、スルホン酸基の合計数が、全構成単位の合計数の0.05%以上15.0%以下である、請求項1~4のいずれか1項に記載の感光性樹脂組成物。
  6.  さらに、ラジカル重合性化合物を含む、請求項1~5のいずれか1項に記載の感光性樹脂組成物。
  7.  さらに、硬化促進剤を含む、請求項1~6のいずれか1項に記載の感光性樹脂組成物。
  8.  前記光活性化合物が、光ラジカル重合開始剤を含む、請求項1~7のいずれか1項に記載の感光性樹脂組成物。
  9.  現像に用いられる、請求項1~8のいずれか1項に記載の感光性樹脂組成物。
  10.  有機溶剤を含む現像液を用いて現像する用途に用いられる、請求項1~9のいずれか1項に記載の感光性樹脂組成物。
  11.  再配線層用層間絶縁膜の形成に用いられる、請求項1~10のいずれか1項に記載の感光性樹脂組成物。
  12.  ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択されるポリマー前駆体からなる樹脂であって、
    前記ポリマー前駆体が式(1-1)、式(1-2)、式(1-3)、式(2-1)式(2-2)または式(2-3)のいずれかで表される部位を有する、樹脂;
    Figure JPOXMLDOC01-appb-C000005
     式中、AおよびAは、それぞれ独立に酸素原子またはNHを表し、R111は、2価の有機基を表し、R115は、4価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表し、X、XおよびXはそれぞれ独立に連結基を表し、*はポリイミド前駆体の主鎖との結合位置を示し、nsは1~4の整数を示す;
    Figure JPOXMLDOC01-appb-C000006
     式中、R121は、2価の有機基を表し、R122は、4価の有機基を表し、R123およびR124は、それぞれ独立に、水素原子または1価の有機基を表し、X、XおよびXはそれぞれ独立に連結基を表し、*はポリベンゾオキサゾール前駆体の主鎖との結合位置を示し、nsは1~4の整数を表す。
  13.  請求項1~11のいずれか1項に記載の感光性樹脂組成物を硬化してなる硬化膜。
  14.  請求項13に記載の硬化膜を2層以上有する、積層体。
  15.  前記硬化膜の間に、金属層を有する、請求項14に記載の積層体。
  16.  請求項1~11のいずれか1項に記載の感光性樹脂組成物を用いることを含む、硬化膜の製造方法。
  17.  前記感光性樹脂組成物を基板に適用して層状にする、感光性樹脂組成物層形成工程と、
     前記感光性樹脂組成物層を露光する露光工程と、
     前記露光された感光性樹脂組成物層に対して、現像処理を行う現像処理工程とを有する、請求項16に記載の硬化膜の製造方法。
  18.  請求項13に記載の硬化膜または請求項14もしくは15に記載の積層体を有する半導体デバイス。
PCT/JP2019/001958 2018-01-29 2019-01-23 感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、半導体デバイス WO2019146611A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207021473A KR102313182B1 (ko) 2018-01-29 2019-01-23 감광성 수지 조성물, 수지, 경화막, 적층체, 경화막의 제조 방법, 반도체 디바이스
JP2019567095A JP7008732B2 (ja) 2018-01-29 2019-01-23 感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、半導体デバイス
CN201980009370.2A CN111630454B (zh) 2018-01-29 2019-01-23 感光性树脂组合物、树脂、固化膜、层叠体、固化膜的制造方法及半导体器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018012585 2018-01-29
JP2018-012585 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019146611A1 true WO2019146611A1 (ja) 2019-08-01

Family

ID=67395538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001958 WO2019146611A1 (ja) 2018-01-29 2019-01-23 感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、半導体デバイス

Country Status (5)

Country Link
JP (1) JP7008732B2 (ja)
KR (1) KR102313182B1 (ja)
CN (1) CN111630454B (ja)
TW (1) TWI802640B (ja)
WO (1) WO2019146611A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045124A1 (ja) * 2020-08-25 2022-03-03 富士フイルム株式会社 硬化性樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス
WO2023167326A1 (ja) * 2022-03-03 2023-09-07 Ube株式会社 ディスプレイ基板用ポリイミド前駆体、ディスプレイ基板用ポリイミドフィルム、およびディスプレイ基板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6986534B2 (ja) * 2019-09-11 2021-12-22 株式会社タムラ製作所 感光性樹脂組成物、感光性樹脂組成物を有するドライフィルム及び感光性樹脂組成物の光硬化物を有するプリント配線板
TWI765291B (zh) * 2020-07-03 2022-05-21 住華科技股份有限公司 銅腐蝕的檢測方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221794A (ja) * 2000-11-27 2002-08-09 Toray Ind Inc ポジ型感光性樹脂前駆体組成物
JP2005309032A (ja) * 2004-04-21 2005-11-04 Toray Ind Inc ポジ型感光性樹脂組成物
WO2006098291A1 (ja) * 2005-03-15 2006-09-21 Toray Industries, Inc. 感光性樹脂組成物
JP2007183388A (ja) * 2006-01-06 2007-07-19 Toray Ind Inc 感光性樹脂組成物、耐熱性樹脂パターンの製造方法および有機電界発光素子
JP2011180472A (ja) * 2010-03-03 2011-09-15 Toray Ind Inc 感光性樹脂組成物フィルムおよびそれを用いた多層配線基板
JP2012098715A (ja) * 2010-10-06 2012-05-24 Hitachi Displays Ltd 配向膜、配向膜形成用組成物、および液晶表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075525A1 (fr) * 2000-03-30 2001-10-11 Nissan Chemical Industries, Ltd. Composition de resine polyimide photosensible positive
JP4390028B2 (ja) * 2000-10-04 2009-12-24 日産化学工業株式会社 ポジ型感光性ポリイミド樹脂組成物
KR101844738B1 (ko) * 2010-08-05 2018-04-03 닛산 가가쿠 고교 가부시키 가이샤 수지 조성물, 액정 배향재 및 위상차재
TWI430024B (zh) * 2010-08-05 2014-03-11 Asahi Kasei E Materials Corp A photosensitive resin composition, a method for manufacturing a hardened bump pattern, and a semiconductor device
US10324376B2 (en) * 2015-09-30 2019-06-18 Toray Industries, Inc. Negative type colored photosensitive resin composition, cured film, element, and display device
TW201736438A (zh) 2015-12-17 2017-10-16 Fujifilm Corp 含雜環的聚合物前驅體的製造方法及含雜環的聚合物前驅體以及其應用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221794A (ja) * 2000-11-27 2002-08-09 Toray Ind Inc ポジ型感光性樹脂前駆体組成物
JP2005309032A (ja) * 2004-04-21 2005-11-04 Toray Ind Inc ポジ型感光性樹脂組成物
WO2006098291A1 (ja) * 2005-03-15 2006-09-21 Toray Industries, Inc. 感光性樹脂組成物
JP2007183388A (ja) * 2006-01-06 2007-07-19 Toray Ind Inc 感光性樹脂組成物、耐熱性樹脂パターンの製造方法および有機電界発光素子
JP2011180472A (ja) * 2010-03-03 2011-09-15 Toray Ind Inc 感光性樹脂組成物フィルムおよびそれを用いた多層配線基板
JP2012098715A (ja) * 2010-10-06 2012-05-24 Hitachi Displays Ltd 配向膜、配向膜形成用組成物、および液晶表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045124A1 (ja) * 2020-08-25 2022-03-03 富士フイルム株式会社 硬化性樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス
WO2023167326A1 (ja) * 2022-03-03 2023-09-07 Ube株式会社 ディスプレイ基板用ポリイミド前駆体、ディスプレイ基板用ポリイミドフィルム、およびディスプレイ基板

Also Published As

Publication number Publication date
KR20200093077A (ko) 2020-08-04
JP7008732B2 (ja) 2022-01-25
TW201934614A (zh) 2019-09-01
CN111630454B (zh) 2023-07-14
JPWO2019146611A1 (ja) 2021-01-28
KR102313182B1 (ko) 2021-10-15
TWI802640B (zh) 2023-05-21
CN111630454A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
WO2018151195A1 (ja) 感光性樹脂組成物、複素環含有ポリマー前駆体、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
JP7150040B2 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
CN110692018B (zh) 感光性树脂组合物、聚合物前体、固化膜、层叠体、固化膜的制造方法及半导体器件
WO2018225676A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイスおよび化合物
WO2019146611A1 (ja) 感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、半導体デバイス
JPWO2018003725A1 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
JP7333383B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
WO2018003726A1 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
TWI779162B (zh) 感光性樹脂組成物、硬化膜、積層體、硬化膜的製造方法、積層體的製造方法、半導體器件
WO2018123836A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法および半導体デバイス
TWI785264B (zh) 感光性樹脂組成物、硬化膜、積層體、硬化膜的製造方法、半導體元件及熱鹼產生劑
WO2020066975A1 (ja) 樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
WO2020170997A1 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、熱塩基発生剤
WO2019189327A1 (ja) 感光性樹脂組成物、硬化膜、積層体およびこれらの応用
JP7037664B2 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、および熱塩基発生剤
JP7083392B2 (ja) 感光性樹脂組成物、硬化膜、積層体、これらの製造方法、半導体デバイス、これらに用いられる熱塩基発生剤
WO2019189112A1 (ja) 積層体の製造方法および熱硬化性有機膜形成用組成物
WO2019013241A1 (ja) 熱硬化性樹脂組成物、およびその硬化膜、積層体、半導体デバイス、ならびにそれらの製造方法
WO2020066244A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、および熱塩基発生剤
WO2020179671A1 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、熱塩基発生剤
JP2023104958A (ja) ネガ型硬化性組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567095

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207021473

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19744040

Country of ref document: EP

Kind code of ref document: A1