WO2019146581A1 - 情報処理装置及び情報処理方法 - Google Patents
情報処理装置及び情報処理方法 Download PDFInfo
- Publication number
- WO2019146581A1 WO2019146581A1 PCT/JP2019/001814 JP2019001814W WO2019146581A1 WO 2019146581 A1 WO2019146581 A1 WO 2019146581A1 JP 2019001814 W JP2019001814 W JP 2019001814W WO 2019146581 A1 WO2019146581 A1 WO 2019146581A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flight
- history
- drone
- difference
- plan
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims description 18
- 238000003672 processing method Methods 0.000 title description 3
- 238000012937 correction Methods 0.000 claims description 36
- 238000007689 inspection Methods 0.000 abstract description 159
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical group C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 abstract description 11
- 238000012986 modification Methods 0.000 description 28
- 230000004048 modification Effects 0.000 description 28
- 230000006870 function Effects 0.000 description 21
- 238000000034 method Methods 0.000 description 19
- 230000002123 temporal effect Effects 0.000 description 18
- 238000007726 management method Methods 0.000 description 17
- 238000004891 communication Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 238000005259 measurement Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0004—Transmission of traffic-related information to or from an aircraft
- G08G5/0013—Transmission of traffic-related information to or from an aircraft with a ground station
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/08—Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
- G07C5/0808—Diagnosing performance data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D45/00—Aircraft indicators or protectors not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D47/00—Equipment not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/006—Indicating maintenance
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/008—Registering or indicating the working of vehicles communicating information to a remotely located station
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/08—Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0017—Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
- G08G5/0026—Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/003—Flight plan management
- G08G5/0034—Assembly of a flight plan
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/003—Flight plan management
- G08G5/0039—Modification of a flight plan
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0047—Navigation or guidance aids for a single aircraft
- G08G5/0069—Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0073—Surveillance aids
- G08G5/0082—Surveillance aids for monitoring traffic from a ground station
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0073—Surveillance aids
- G08G5/0091—Surveillance aids for monitoring atmospheric conditions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/04—Anti-collision systems
- G08G5/045—Navigation or guidance aids, e.g. determination of anti-collision manoeuvers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F5/00—Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
- B64F5/60—Testing or inspecting aircraft components or systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/60—UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons
Definitions
- the present invention relates to technology for managing a flying object.
- Patent Document 1 discloses a technique for inspecting a flight state based on information such as an engine speed, a fuel remaining amount and a voltage collected from an unmanned air vehicle, and issuing a warning if the safety standard is not satisfied. There is.
- an object of the present invention is to support determination of when to inspect an aircraft.
- the present invention is based on an acquisition unit for acquiring a flight plan and a flight history of an aircraft flying according to the flight plan, and based on the acquired flight plan and the difference of the flight history.
- an information processing apparatus including: a determination unit that determines a time to be inspected for a flight object for which a flight history has been acquired.
- the flight plan and the flight history are represented by a plurality of items, the difference is represented for each of the items, and the determination unit determines that the configuration of the flying object is based on a difference of predetermined items. A determination may be made as to when to inspect the composition corresponding to the item.
- the determination unit When the determination unit has a function of avoiding a collision with an obstacle, based on the difference between the flight plan and the difference of the flight history, the determination unit subtracts a portion generated by avoiding the collision. The determination may be made.
- the determination unit may perform the determination based on a difference obtained by subtracting a portion generated in the period from the difference between the flight plan and the flight history, when the aircraft flies in a specific weather period. .
- the determination unit may perform the determination by correcting the difference between the flight plan and the flight history to be smaller as the degree of difficulty of the flight plan is higher.
- the determination unit increases the difference between the flight plan and the flight history as the elapsed time is longer, when a flight plan for reducing the degree of difficulty is acquired according to the elapsed time from the start of use of the aircraft.
- the determination may be made after correction.
- the determination unit When the flight plan is acquired in which the determination unit reduces the difficulty according to the elapsed time from the start of use of the component of the aircraft, the elapsed time is longer and the importance of the configuration is higher.
- the determination may be made by correcting the difference between the flight plan and the flight history.
- the aircraft is classified into a group having common flight performance, the acquisition unit acquires an unplanned flight history in a flight not conforming to the flight plan, and the determination unit acquires the unplanned flight history.
- the determination may be made based on the difference between the flight body and the flight history of the same group of flight bodies.
- a flight plan and a flight history of the flight body obtained according to the flight plan are obtained, and the flight history is obtained based on the acquired flight plan and the difference of the flight history.
- Diagram showing the overall configuration of a drone management system according to an embodiment Diagram showing the hardware configuration of the server device Diagram showing the hardware configuration of the drone Diagram showing the functional configuration realized by the drone management system Diagram showing an example of inspection time table A diagram showing an example of the displayed notification information Diagram showing an example of operation procedure of each device in judgment and notification processing Diagram showing the functional configuration realized by the modification Diagram showing an example of a correction table Diagram showing the functional configuration realized by the modification Diagram showing an example of the difficulty level table A figure showing an example of a correction table of a modification A figure showing an example of another correction table of a modification Diagram showing the functional configuration realized by the modification Diagram showing an example of inspection time table of modification
- SYMBOLS 1 ... drone management system, 10 ... server apparatus, 20 ... drone, 101 ... flight information acquisition part, 102 ... flight plan acquisition part, 103 ... flight history acquisition part, 104 ... inspection time determination part, 105 ... inspection time notification part, 106: Weather information acquisition unit 107: Flight plan creation unit 108: Flight instruction unit 201: Flight control unit 202: Flight unit 203: Sensor measurement unit 204: Flight history notification unit 205: Lamp control unit
- FIG. 1 shows an entire configuration of a drone management system 1 according to an embodiment.
- the drone management system 1 is a system for managing a drone.
- a drone is a device capable of autonomously and unmanned flight according to a flight plan, and is an example of the "air vehicle" of the present invention.
- the drone flies for flight purposes such as, for example, photographing of a landscape, surveying, monitoring or transportation.
- the drone management system 1 includes a network 2, a server device 10, and a drone 20.
- the network 2 is a communication system including a mobile communication network, the Internet, etc., and relays exchange of data between devices accessing the own system.
- the server apparatus 10 accesses the network 2 by wired communication (may be wireless communication), and the drone 20 accesses by wireless communication.
- the drone 20 is a rotorcraft-type aircraft that includes one or more rotors and rotates the rotors to fly.
- the drone 20 has functions necessary for achieving the flight purpose (for example, shooting, surveying, shooting for monitoring purposes, and a function for holding and transporting a transported object).
- the server device 10 is an information processing device that executes various processes for managing the drone 20.
- the drone 20 is composed of a number of parts such as a frame, a motor, a rotor (also called a propeller or a blade), and a battery. These parts are worn out or broken while flying, so the degree of wear and damage must be checked and replaced or repaired if necessary. However, if the opportunity to make the drone 20 fly is increased, it will be time-consuming to carry out the inspection every time. Therefore, the server device 10 performs processing of determining the time of performing this inspection, and supports reducing the time and effort of the inspection.
- FIG. 2 shows the hardware configuration of the server device 10.
- the server device 10 is a computer including the processor 11, the memory 12, the storage 13, the communication device 14, the input device 15, the output device 16, and the bus 17.
- the term "device” can be read as a circuit, a device, a unit, or the like.
- one or more devices may be included, or some devices may not be included.
- the processor 11 operates an operating system, for example, to control the entire computer.
- the processor 11 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. Further, the processor 11 reads a program (program code), a software module, data, and the like from the storage 13 and / or the communication device 14 to the memory 12 and executes various processes in accordance with these.
- CPU central processing unit
- the number of processors 11 that execute various processes may be one, or two or more, and two or more processors 11 may execute various processes simultaneously or sequentially. Also, the processor 11 may be implemented by one or more chips.
- the program may be transmitted from the network via a telecommunication link.
- the memory 12 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done.
- the memory 12 may be called a register, a cache, a main memory (main storage device) or the like.
- the memory 12 can store the above-described program (program code), software module, data, and the like.
- the storage 13 is a computer readable recording medium, and for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magnetooptical disk (for example, a compact disk, a digital versatile disk, Blu-ray disc
- the disk may be configured of at least one of a ray (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like.
- the storage 13 may be called an auxiliary storage device.
- the above-mentioned storage medium may be, for example, a database including the memory 12 and / or the storage 13, a server or any other suitable medium.
- the communication device 14 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
- the input device 15 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
- the output device 16 is an output device (for example, a display, a speaker, etc.) that performs output to the outside.
- the input device 15 and the output device 16 may be integrated (for example, a touch screen).
- each device such as the processor 11 and the memory 12 is mutually accessible via a bus 17 for communicating information.
- the bus 17 may be configured as a single bus or may be configured as different buses among the devices.
- FIG. 3 shows the hardware configuration of the drone 20.
- the drone 20 includes devices such as a processor 21, a memory 22, a storage 23, a communication device 24, a flight device 25, a sensor device 26, a battery 27, a lamp 28, a bus 29, and a frame 30. It is a computer. Note that the term “device” can be read as a circuit, a device, a unit, or the like. In addition, one or more devices may be included, or some devices may not be included.
- the processor 21, the memory 22, the storage 23, the communication device 24, and the bus 29 are hardware of the same type as the device of the same name shown in FIG. 2 (the performance, specifications, etc. are not necessarily the same).
- the communication device 24 can also perform wireless communication between the drone.
- the flight device 25 is a device that includes a motor 251, a rotor 252, and the like to fly its own aircraft.
- the flying device 25 can move its own aircraft in any direction in the air or can make its own aircraft stationary (hover).
- the sensor device 26 is a device having a sensor group that acquires information necessary for flight control.
- the sensor device 26 is a position sensor that measures the position (latitude and longitude) of its own aircraft, and the direction in which the own aircraft is facing (the front direction of the own aircraft is determined for the drone, and the front direction is facing (IMU (Inertial), a direction sensor for measuring the direction, an altitude sensor for measuring the altitude of the aircraft, a velocity sensor for measuring the velocity of the aircraft, and an angular velocity sensor for three axes and an acceleration for three directions. And Measurement Unit).
- IMU Inertial
- the battery 27 is a device that stores power and supplies power to each part of the drone 20.
- the lamp 28 is a light emitting component such as a light emitting diode (LED), and lights up or flashes.
- the lamp 28 is used to indicate that it is time to test its own machine by lighting up or flashing (details will be described later).
- the frame 30 is a housing in which each part of the drone 20 is housed or attached.
- the server device 10 and the drone 20 are, for example, a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 11 may be implemented in at least one of these hardware.
- DSP digital signal processor
- ASIC application specific integrated circuit
- PLD programmable logic device
- FPGA field programmable gate array
- the server apparatus 10 and the drone 20 included in the drone management system 1 store programs provided by the present system, and the processor of each apparatus executes the program to control each unit to execute the following function groups.
- FIG. 4 shows a functional configuration realized by the drone management system 1.
- the server device 10 includes a flight information acquisition unit 101, an inspection time determination unit 104, and an inspection time notification unit 105.
- the flight information acquisition unit 101 includes a flight plan acquisition unit 102 and a flight history acquisition unit 103.
- the drone 20 includes a flight control unit 201, a flight unit 202, a sensor measurement unit 203, a flight history notification unit 204, and a lamp control unit 205.
- the flight control unit 201 controls the flight of its own aircraft.
- the flight control unit 201 controls the flight of the aircraft according to the flight path and flight period indicated by the flight plan described later, based on the flight instruction received from the system of the management operator who manages the operation of the drone 20, for example.
- the flying unit 202 is a function of causing the aircraft to fly, and in the present embodiment, causes the aircraft 251 to fly by operating the motor 251, the rotor 252, and the like provided in the flight device 25.
- the sensor measurement unit 203 performs measurement by each sensor (a position sensor, a direction sensor, an altitude sensor, a velocity sensor, an inertial measurement sensor) included in the sensor device 26, and detects the position, orientation, altitude, velocity, angular velocity, and acceleration of the own machine. The measurement is repeated at predetermined time intervals.
- the sensor measurement unit 203 supplies sensor information indicating the measured position, direction, altitude, velocity, angular velocity, and acceleration to the flight control unit 201 and the flight history notification unit 204.
- the flight control unit 201 controls the flight unit 202 based on the supplied sensor information to fly its own aircraft along the flight path indicated by the flight plan.
- the flight history notification unit 204 notifies the server device 10 of its flight history based on the supplied sensor information.
- the flight history is information indicating the flight path through which the drone 20 passes during flight, the time when each position on the flight path has passed (passing time), and the flight speed at those positions. is there.
- the flight path and flight speed among these are indicated by the position, altitude, and speed indicated by the sensor information.
- the flight history notification unit 204 generates, as flight history information, information obtained by adding the current time to the sensor information as the passing time each time the sensor information is supplied.
- the flight history notification unit 204 transmits the generated flight history information to the server device 10 in association with information (for example, drone ID (Identification)) for identifying the own aircraft.
- the flight history acquisition unit 103 of the server device 10 receives the transmitted flight history information, and acquires the flight history of the drone 20 indicated by the flight history information.
- the flight history acquisition unit 103 supplies the acquired flight history to the inspection time determination unit 104.
- the flight history acquisition unit 103 also supplies the flight plan acquisition unit 102 with the drone ID associated with the acquired flight history.
- the flight plan acquisition unit 102 acquires a flight plan for the drone 20 indicated by the supplied drone ID (flight plan for causing the drone 20 to fly). If the flight plan is a flight for transportation, information indicating, for example, a flight path from the departure point to the destination and a period during which the flight path should be flighted (period from the departure time to the delivery time of the delivery object) It is.
- the flight plan is information indicating, for example, the flight path and flight period in the round-trip flight to the survey area or the monitoring area, and the flight path and flight period in each area.
- the flight plan acquisition unit 102 requests, for example, the flight plan of the drone 20 indicated by the drone ID supplied to the above-described system of the management enterprise (the enterprise who manages the operation of the drone 20). Get the coming flight plan.
- the flight plan acquisition unit 102 supplies the acquired flight plan to the inspection time determination unit 104.
- the flight plan acquired as described above is a flight plan of the drone 20 which has been flying according to the acquired flight history.
- the acquired flight history is the flight history of the drone 20 flying according to the acquired flight plan.
- the flight information acquisition unit 101 acquires the flight plan and the flight history of the drone 20 that has been flying according to the flight plan.
- the flight information acquisition unit 101 is an example of the “acquisition unit” in the present invention.
- the order of obtaining the flight plan and flight history may be reversed.
- the flight plan acquisition unit 102 acquires a flight plan associated with the drone ID of the drone 20, and supplies the drone ID to the flight history acquisition unit 103.
- the flight history acquisition unit 103 requests a flight history from the drone 20 indicated by the supplied drone ID, receives flight history information transmitted by the response, and acquires a flight history.
- the flight plan acquisition unit 102 and the flight history acquisition unit 103 may individually acquire each other. Even in this case, the flight plan and flight history associated with the same drone ID represent the flight plan and the flight history of the drone 20 flying according to the flight plan.
- the flight information acquisition unit 101 supplies the flight plan and flight history acquired as described above to the inspection time determination unit 104.
- the inspection time determination unit 104 determines, based on the difference between the flight plan and the flight history acquired by the flight information acquisition unit 101, the time (inspection period) in which the drone 20 whose flight history is acquired should be inspected.
- the inspection time determination unit 104 is an example of the “determination unit” in the present invention. There are two major differences in flight plan and flight history. The first is a temporal difference, and the second is a spatial difference.
- the temporal difference is, for example, the difference between the estimated arrival time to the destination specified in the flight plan and the actual arrival time indicated by the flight history.
- the difference between the expected arrival time and the actual arrival time indicated by the flight history may be used.
- two or more passing places may be defined.
- the spatial difference is, for example, the distance between the flight path and the path actually traveled when one linear path arranged in space as the flight path is defined in the flight plan. Since this distance constantly increases and decreases during flight, for example, its average value or total value is used as a spatial difference.
- the inspection time determination unit 104 calculates a total value of temporal differences at the destination and the transit point as a temporal difference, and determines between the flight route determined in the flight plan and the route actually traveled. The average value of the distances is calculated as a spatial difference.
- the examination time determination unit 104 stores a first examination time table in which temporal differences are associated with examination times, and a second examination time table in which spatial differences and examination times are associated.
- the inspection time is determined using these tables.
- FIG. 5 shows an example of the inspection time table.
- the range of temporal differences such as "less than Th11,”"more than Th11 and less than Th12,”"Th12 or more and less than Th13,""Th13 or more” and (the difference between “less than Th11” is smallest and The difference between “Th13 and above” becomes larger and becomes “not needed for a while”, “after flight time T12 elapses”, “after flight time T11 elapses” (T11 ⁇ T12), “present” And a first inspection time table associated with each other. "After the flight time T11" is a time when it comes earlier than "after the flight time T12".
- the difference between “less than Th21”, “more than Th21 and less than Th22”, “Th22 or more and less than Th23”, and “Th23 or more” (“less than Th21”) is smallest and gradually increases to “Th23 or more”
- the range of the temporal difference that the difference becomes the largest) the time when the inspection is "unnecessary for a while", “after the elapse of the flight time T22", “after the elapse of the flight time T21” (T21 ⁇ T22), and "present” And a second inspection time table in which the "After the flight time T21" is a time when it comes earlier than "after the flight time T22".
- the examination time determination unit 104 associates the time of the examination associated with the first examination time table with the temporal difference calculated as described above, and the spatial difference similarly calculated with the second examination time table. It reads out from each table and the time of the inspection.
- the inspection time determination unit 104 determines, as the time to be inspected (inspection time), the drone 20 for which the flight history has been acquired, of the read out inspection times that come earlier.
- the inspection time determination unit 104 determines that "after the flight time T22 has elapsed” is the inspection time. Further, for example, when the inspection time determination unit 104 associates “after flight time T11” with the temporal difference and “after flight time T21” with the spatial difference. It is determined that the inspection time is after the elapse of the shorter one of the flight times T11 and T21.
- the inspection time determination unit 104 naturally determines that “current” is the inspection time. As described above, as the temporal difference and the spatial difference increase, as described above, the inspection time determination unit 104 determines, as the inspection time, the time at which the current time is used as the starting point. The inspection time determination unit 104 supplies the result (inspection time) thus determined to the inspection time notification unit 105.
- the examination time notification unit 105 notifies the examination time determined by the examination time determination unit 104. For example, when the address (e-mail address etc.) of the above-mentioned management enterprise is registered as a notification destination, the inspection time notification unit 105 reports information for notifying the inspection time indicated by the supplied determination result (e.g. Generate a mail etc.) and send it to the destination.
- the management company confirms the content of the notification by displaying the transmitted notification information on the terminal.
- FIG. 6 shows an example of the displayed notification information.
- an e-mail with a subject of "notice of drone inspection time” is displayed on the screen of the e-mail application.
- “Drone ID: I will inform you when the drone of ID 001 is to be inspected,” and so on, that “now” is the inspection time, and for identifying the drone 20 to be inspected.
- Notification information indicating information (drone ID) is displayed.
- the inspection time notification unit 105 notifies the determination result via the drone 20.
- the inspection time notification unit 105 generates instruction data instructing to turn on (or blink) the lamp and transmits it to the drone 20.
- the lamp control unit 205 of the drone 20 controls the lamp 28 shown in FIG.
- the lamp control unit 205 When receiving the transmitted instruction data, the lamp control unit 205 turns on or blinks the lamp 28 as indicated by the instruction data. It is assumed that the administrator who manages the drone 20 is informed in advance that lighting or blinking of the lamp 28 is a signal indicating that the inspection time has come. In addition to this, for example, a character string such as “inspection required” may be provided around the lamp 28 to notify that the inspection time has come.
- the maintenance person inspects the drone 20 when notified that the inspection time has come. Specifically, the motor 251 is checked for damage, the rotational noise is checked, the rotor 252 is checked for damage, the frame 30 is checked for damage, the electrical system is corroded or the water leak is checked and Perform IMU calibration (work to correct IMU deviation).
- Each device included in the drone management system 1 performs a determination / notification process of determining and notifying the inspection time of the drone 20 based on the above configuration.
- FIG. 7 shows an example of the operation procedure of each device in the determination / notification process. This operation procedure is started when the flight start time of the drone 20 comes. First, the drone 20 (the flight control unit 201 and the flight unit 202) starts flight according to the flight plan (step S11).
- the drone 20 (sensor measurement unit 203) starts measurement by each sensor provided in the sensor device 26 (step S12). Subsequently, the drone 20 (the flight history notification unit 204) starts generation of flight history information including the measurement result in step S12 and transmission to the server device 10 (step S13).
- the server device 10 (flight history acquisition unit 103) starts acquisition of the flight history of the drone 20 by receiving the transmitted flight history information (step S14). The operations from step S12 to step S14 are repeated during the flight of the drone 20.
- the server device 10 (flight plan acquisition unit 102) acquires a flight plan for the drone 20 whose flight history has been acquired (step S15). Thereafter, the drone 20 (the flight control unit 201 and the flight unit 202) ends the flight according to the flight plan (step S21). Next, the drone 20 (the flight history notification unit 204) transmits the last flight history information to the server device 10 (step S22).
- the server device 10 calculates the difference between the flight plan acquired in step S15 and the flight history acquired in step S14 (step S23). Based on the calculated difference, the inspection time is determined for the drone 20 whose flight history has been acquired (step S24). Next, the server device 10 (inspection time notification unit 105) reports the inspection timing determined in step S24 (step S25). In step S25, for example, notification by the notification information shown in FIG. 6 is performed.
- the server apparatus 10 determines whether or not the inspection timing is determined to be present at step S24 (step S31), and if the inspection timing not present is determined, End the operation procedure.
- the server device 10 inspection time notification unit 105) generates instruction data for instructing lighting of the lamp (step S32), and transmits the generated instruction data to the drone 20 (Step S33).
- the drone 20 lights the lamp 28 (a lamp for notifying that the inspection time has come) as indicated by the transmitted instruction data (step S34).
- the inspection time is determined based on the difference between them. More specifically, as the difference between them increases, it is determined as the inspection time the time to come earlier.
- the inspection is performed as soon as the performance of the drone 20 is degraded, so that the difference between the flight plan and the flight history can be less likely to be larger than when the above determination is not performed. Also, it is possible to reduce the possibility of falling due to the decrease in performance. As described above, according to this embodiment, it is possible to support the determination of the time when the drone 20 should be inspected.
- the inspection time determination unit 104 determines the inspection time for the entire drone 20 in the embodiment, but the present invention is not limited to this.
- the drone 20 includes a plurality of components such as a processor 21, a memory 22, a storage 23, a motor 251, a rotor 252, a sensor device 26, a battery 27, and a frame 30 (parts constituting the drone 20. Also referred to as a main body, parts and parts, etc. ).
- the inspection time determination unit 104 may determine the inspection time for each of these components.
- the flight plan and the flight history are, as described in the embodiment, a flight plan (a period during which the drone 20 should fly and a period when the drone 20 should fly) which is a temporal plan and a history, a spatial plan and It is represented by a plurality of items such as a flight path (path in space where the drone 20 should fly and path actually traveled) which is a history. And, the difference between the flight plan and the flight history is expressed for each of these items, and in the example of FIG. 5, for example, it is expressed by a temporal difference and a spatial difference.
- the inspection time determination unit 104 determines the inspection time for the component corresponding to the item among the components of the drone 20 based on the difference of the predetermined item. For example, to fly in time for the flight period, it must fly at a sufficiently fast flight speed. And in order to do so, the performance of the motor 251, the rotor 252, the battery 27, and the frame 30 must be sufficiently exhibited without deterioration, or the sensor device 26 must be able to measure an accurate value. You must. Thus, these components correspond to the term flight period, which is a temporal plan and history.
- the inspection time determination unit 104 determines the inspection time of the motor 251, the rotor 252, the sensor device 26, the battery 27, and the frame 30 as components corresponding to the difference.
- the examination time determination unit 104 performs this determination, for example, using an examination time table in which a temporal difference as shown in FIG. 5A is associated with the examination time.
- the threshold shown in FIG. 5 (a) may be used, or a different threshold may be used. Also, different thresholds may be used for each component.
- the inspection time determination unit 104 determines the inspection time of the processor 21, the memory 22, the storage 23, and the sensor device 26 as components corresponding to the difference.
- the examination time determination unit 104 performs this determination, for example, using an examination time table in which the spatial difference as shown in FIG. 5B is associated with the examination time.
- the threshold shown in FIG. 5 (b) may be used, or a different threshold may be used. Also, different thresholds may be used for each component.
- the items representing the flight plan and flight history are not limited to the above.
- flight speed mainly corresponding to motor 251, rotor 252 and sensor device 26
- flight altitude mainly corresponding to processor 21, memory 22, storage 23, sensor device 26
- flight plans and flight history may be used in terms of landing position and time.
- the inspection time determination unit 104 calculates the distance between the landing position and the destination, the estimated arrival time, and the landing time as the difference between the flight plan and the flight history.
- the inspection time determination unit 104 determines, for example, the inspection time of the battery 27 as a component corresponding to these items. When the difference is equal to or greater than the threshold, the inspection time determination unit 104 determines that the current inspection time is the present time, assuming that the emergency landing is performed with the battery running out. In any case, since the component whose performance is shown to be degraded is narrowed down by calculating the difference for each item, the number of inspection targets is reduced compared to the case where the overall performance of the drone 20 is shown to be dropped. The burden can be reduced.
- the drone 20 may be provided with an avoidance function that autonomously avoids obstacles such as other drone 20, other flying objects (such as birds), trees and buildings. . In that case, even if the performance of the drone 20 is not degraded, the difference between the flight plan and the flight history may be large.
- the inspection time determination unit 104 may determine the inspection time based on the enlargement of the difference due to the avoidance.
- the sensor device 26 of the drone 20 of this modification includes a sensor for detecting an obstacle, such as an image sensor, an infrared sensor, or a sensor that senses an object by a millimeter wave.
- a sensor for detecting an obstacle such as an image sensor, an infrared sensor, or a sensor that senses an object by a millimeter wave.
- the drone 20 detects an obstacle using known techniques based on the measurement results of these sensors, the drone performs a flight deviated from the flight plan to avoid the detected obstacle. Specifically, for example, the drone 20 departs from the flight path and flies in a detour path, or pauses until an obstacle is not detected.
- the flight history notification unit 204 of the drone 20 of the present modification transmits flight history information indicating the start time and the end time of the avoidance flight.
- the flight history acquisition unit 103 receives the flight history information to acquire a flight history indicating a period in which the evasion flight has been performed.
- the inspection time determination unit 104 calculates the difference for the part of the flight history excluding the period in which the avoidance flight is performed.
- the examination time determination unit 104 determines the examination time based on the difference calculated in this manner, for example, as in the embodiment.
- the inspection timing determination unit 104 of the present modified example is a portion generated by avoiding the collision from the difference between the flight plan and the flight history.
- the inspection time is determined based on the difference obtained by subtracting (the difference of the flight history of the period in which the avoidance flight was performed).
- the determination of the inspection time here may be performed for the drone 20 or may be performed for the components of the drone 20.
- the drone 20 has an avoidance function, the more the evasive flight occurs, the larger the temporal difference and the spatial difference. Therefore, if the evasive flight is not taken into consideration, the drone 20's performance is not degraded unless it is considered. It will be determined that the inspection time will come early. In this modification, by performing the determination as described above, the difference between the flight plan and flight history due to the drone 20 evasion flight, that is, the difference generated regardless of the presence or absence of the performance deterioration of the drone 20 or its components It is possible to determine the inspection time without the need.
- the inspection time determination unit 104 may determine the inspection time based on the expansion of the difference due to the weather.
- FIG. 8 shows a functional configuration realized in the present modification.
- the server apparatus 10a provided with the weather information acquisition part 106 is represented.
- the inspection time determination unit 104 of this modification requests the weather information acquisition unit 106 to provide weather information indicating the weather of the area including the flight path indicated by the acquired flight plan.
- the weather information acquisition unit 106 acquires the requested weather information, that is, weather information indicating the weather of the area where the drone 20 is to fly.
- the weather information acquisition unit 106 acquires, for example, weather information of a region including a flight route indicated by a flight plan, using a service that provides weather information (such as weather forecast or current weather information) via the Internet or the like.
- the weather information acquisition unit 106 acquires weather information indicating, for example, wind speed, precipitation, or snowfall per hour (for example, 1 hour from 13:00 to 14:00), and the acquired weather information is inspected at the inspection time.
- the information is supplied to the determination unit 104.
- the inspection time determination unit 104 determines the inspection time based on the difference between the flight plan and the flight history minus the portion generated in that period.
- the specific weather is, for example, weather with a wind speed above the threshold, weather with a precipitation above the threshold, weather with a snowfall above the threshold, etc., and the flight period delay or flight even if the drone 20 performance has not deteriorated. It is the weather that causes the deviation of the route.
- the inspection time determination unit 104 calculates the difference for the flight history of that time Then, the difference is calculated for the flight history of other times. Thereby, the difference which subtracted the part which arose in the period of specific weather is calculated.
- the examination time determination unit 104 determines the examination time based on the difference calculated in this manner, for example, as in the embodiment.
- the specific weather may include, for example, weather whose temperature is lower than the threshold, as mentioned above (as the temperature may be low, the consumption of the battery may be faster and the difference with the flight plan may be larger. ).
- the wind speed, rainfall amount, snowfall amount, air temperature are represented by points that increase as the flight period delay or flight path deviation occurs, and when the total of points is equal to or greater than the threshold value, You may judge that there is.
- the determination of the inspection time in the present modification may be performed for the drone 20 or may be performed for the components of the drone 20. In any case, it is possible to determine the inspection time without being affected by the difference caused by the specific weather regardless of the performance deterioration of the drone 20 or its components.
- the inspection time determination unit 104 may determine the inspection time based on the degree of difficulty of the flight plan.
- the inspection time determination unit 104 corrects the difference between the flight plan and the flight history to be smaller as the degree of difficulty of the flight plan is higher, and determines the inspection time.
- the inspection time determination unit 104 performs the determination using, for example, a correction table in which the flying speed when flying in accordance with the flight plan and the degree of difficulty are associated with the correction value.
- a correction table in which the flying speed when flying in accordance with the flight plan and the degree of difficulty are associated with the correction value.
- the degree of difficulty is not essential in the correction table, an example including the degree of difficulty will be described in order to make the explanation easy to understand.
- FIG. 9 shows an example of the correction table.
- the correction values “Lv 3” and “0.8” of the highest difficulty are associated with the flight speed “80% or more of the maximum speed”.
- “Lv 2” and “0.9” are associated with “80% less than 50% of the maximum speed”
- “1.0” are associated with each other.
- the inspection time determination unit 104 calculates an average flight speed from the flight distance and the flight period if the flight speed is not directly indicated. Use (in this case the flight plan indicates flight speed indirectly).
- the inspection time determination unit 104 may store, for example, the maximum speed of the drone 20 in advance, or may acquire the maximum speed information of the drone 20 together with the flight plan or the flight history.
- the inspection time determination unit 104 calculates the ratio of the flight speed indicated by the flight plan to the maximum speed, and reads the degree of difficulty and the correction value associated with the calculated ratio in the correction table. The inspection time determination unit 104 calculates a value obtained by multiplying the difference calculated using the flight plan by the read correction value. The inspection time determination unit 104 determines the inspection time, for example, in the same manner as in the embodiment, based on the difference thus corrected.
- how to express the difficulty of a flight plan is not restricted to the said method.
- the degree of difficulty may be higher as the direction change in the flight path is more, or the degree of difficulty may be higher as the weight of the carried object is closer to the maximum load weight when the drone 20 carries the carried object.
- the flight path and flight period may overlap and the airspace may be congested with a higher degree of difficulty.
- the flight path is represented by a flighted airspace (space capable of flight)
- the smaller the flighted airspace may be the higher the degree of difficulty.
- radio interference or interference is likely to occur in the flight path (near radio base stations, high-voltage transmission lines, radio shielding by buildings etc. and radio reflections (multipaths) are more likely to occur).
- the degree may be higher, or the degree of difficulty may be higher as the number of places with steady wind (such as a building style) is larger.
- the determination of the inspection time in the present modification may be performed for the drone 20 or may be performed for the components of the drone 20. In any case, since the degree of difficulty of the flight plan is high, the inspection time can be determined without being affected by the difference generated regardless of the presence or absence of the performance deterioration of the drone 20 or its components.
- FIG. 10 shows a functional configuration realized in the present modification.
- the server apparatus 10b provided with the flight plan preparation part 107 is represented.
- request data indicating a request for creation of a flight plan is transmitted from the system of the business operator who operates with the drone 20 to the server device 10b.
- the request data is, for example, data indicating the requirements such as departure point, transit point, destination, estimated departure time, estimated arrival time, drone ID and available flight speed in the case of flight for transport If there is, it is data indicating requirements such as the range of the survey area and the surveyable period.
- the flight plan creation unit 107 creates the above-described flight plan (information indicating flight path and flight period) so as to satisfy the requirements indicated by the received request data.
- the flight plan creation unit 107 transmits the created flight plan to the operator's system and supplies the flight plan acquisition unit 102.
- the flight plan acquisition unit 102 acquires the flight plan supplied in this way.
- the flight plan creation unit 107 creates a flight plan with different degrees of difficulty according to the requirements of the request. For example, if the flight plan creation unit 107 is a request for a requirement that can not afford until the scheduled arrival time, it creates a flight plan with a high degree of difficulty (the flight speed is close to the maximum speed). If it is a request, create a flight plan with a low degree of difficulty.
- the flight plan creation unit 107 may create a flight plan with a difficulty level according to the elapsed time since the drone 20 was started to be used, that is, the elapsed time from the start of use of the drone 20.
- the elapsed time from the start of use is represented, for example, by the total of flight times (the total of time excluding the time when not flying).
- the flight plan creation unit 107 creates a flight plan whose degree of difficulty is lowered as the elapsed time from the start of use of the drone 20 increases. In that case, the system of the business transmits request data indicating an elapsed time from the start of use of the drone 20.
- the flight plan creation unit 107 creates a flight plan using the difficulty level table in which the elapsed time from the start of use and the degree of difficulty are associated.
- FIG. 11 shows an example of the difficulty level table.
- the difficulty levels of “Lv3”, “Lv2”, and “Lv1” are associated with the elapsed times from “start less than T11”, “T11 or more and less than T12”, and “T12 or more”, respectively.
- the flight plan creation unit 107 creates a flight plan of the difficulty level associated with the difficulty level table with the elapsed time from the start of use indicated by the request data. By adjusting the degree of difficulty in this manner, it is possible to make the flight plan easy to be protected even if the elapsed time (flight time) becomes longer and the performance is degraded as compared with the case where the degree of difficulty is not adjusted.
- the elapsed time from the start of use of the drone 20 is not limited to the total of the flight times, and may be expressed by an elapsed time including the time when the flight is not flying.
- the battery will deteriorate with time even if it is not flying, so as the elapsed time including the time not flying increases, it becomes difficult to fly as planned.
- it may not be possible to create a flight plan of that difficulty level if it is not possible to meet the scheduled arrival time if created with difficulty level Lv1, etc.), in that case the flight plan creation unit 107 You may give priority to create a flight plan.
- the inspection time determination unit 104 may determine the inspection time on the basis of the fact that the flight plan for reducing the degree of difficulty is acquired according to the elapsed time since the start of use of the drone 20 as described above.
- the inspection time determination unit 104 makes a correction to increase the difference between the flight plan and the flight history as the elapsed time from the start of use of the drone 20 increases, and determines the inspection time.
- the inspection time determination unit 104 performs this determination using a correction table in which an elapsed time from the start of use and a correction value are associated.
- FIG. 12 shows an example of the correction table of this modification.
- the correction values of "1.0", “1.1”, and "1.2" correspond to the elapsed time from the start of use of "less than T21", “T21 or more and less than T22", and "T22 or more". It is attached.
- the flight history notification unit 204 of the drone 20 transmits flight history information indicating an elapsed time since the start of use.
- the flight history acquisition unit 103 acquires the elapsed time indicated by the flight history information as the elapsed time from the start of use of the drone 20.
- the inspection time determination unit 104 reads out the correction value associated with the acquired elapsed time in the correction table.
- the inspection time determination unit 104 calculates the difference between the flight plan and the flight history, and corrects the value by multiplying the value by the read correction value.
- the inspection time determination unit 104 calculates a value obtained by multiplying the calculated difference by 1.2 as a corrected difference, as in the embodiment. Determine the inspection time. As a result, even when a flight plan is acquired that lowers the degree of difficulty according to the elapsed time from the start of use of the drone 20 as described above, the inspection time is more appropriate than when the above correction is not performed. It can be determined as
- the drone 20 includes a plurality of components such as the processor 21, the motor 251, the rotor 252, the sensor device 26, the battery 27, and the frame 30. Since these components are replaced at different timings and become new, the degree to which the performance is reduced differs among the components. Therefore, the flight plan creation unit 107 may create a flight plan that reduces the degree of difficulty according to the elapsed time from the start of using the components of the drone 20.
- the flight plan creation unit 107 calculates an average time of elapsed time from the start of use of each component, and uses the calculated average time as an elapsed time from the start of use as in the example of FIG. Determine the difficulty of In this case, the inspection time determination unit 104 performs correction so as to increase the difference between the flight plan and the flight history as the elapsed time from the start of use thus calculated is longer and the importance of those components is higher. Determine the time.
- the inspection time determination unit 104 performs this determination using a correction table in which components and correction values are associated with each other.
- FIG. 13 shows an example of another correction table of this modification.
- correction values of “1.0”, “1.2”, and “1.4” are associated with components “frame”, “battery, sensor device”, and “motor, rotor, processor”. ing.
- battery, sensor device is more important than “frame”
- motor, rotor, processor is more important than it.
- the flight history notification unit 204 of the drone 20 notifies the elapsed time thereof by transmitting flight history information indicating the respective components and the elapsed time from the start of use of the components. .
- the drone 20 determines which component the elapsed time from the start of use is notified.
- the flight history acquisition unit 103 acquires an elapsed time from the start of use of each component indicated by the transmitted flight history information.
- the inspection time determination unit 104 calculates an average value of the acquired elapsed times, and reads the correction value associated with the calculated average value in the correction table shown in FIG. 12 as a correction value regarding flight time.
- the inspection time determination unit 104 reads out the correction value associated with each component indicated by the transmitted flight history information in the correction table shown in FIG. 13, and the average value of the read correction values relates to the component. Calculated as a correction value.
- the inspection time determination unit 104 calculates the difference between the flight plan and the flight history, and corrects the value by multiplying both the correction value for the flight time and the correction value for the component.
- the inspection time determination unit 104 determines the inspection time, for example, as in the embodiment, based on the difference thus corrected.
- the difference is corrected to a larger value as the component used to calculate the average value of the elapsed time from the start of use is more important. Therefore, as the important component is determined to be the inspection time earlier, it is possible to prevent the occurrence of a situation in which replacement is delayed and causes a failure.
- FIG. 14 shows a functional configuration realized in the present modification.
- indication part 108 is represented in FIG.
- the flight plan creation unit 107 supplies the created flight plan to the flight instruction unit 108
- the flight history acquisition unit 103 supplies the acquired flight history to the flight instruction unit 108.
- the flight instruction unit 108 instructs the drone 20 performing autonomous flight according to the flight plan to fly that does not conform to the flight plan.
- the flight instruction unit 108 compares the flight plan and the flight history, for example, and determines that the drone 20 can not fly according to the flight plan if the follow-up rate to the flight plan is less than the threshold. When the situation is determined, the flight instruction unit 108 instructs flight with a flight path and flight speed different from the flight plan.
- the flight instructing unit 108 instructs the flight in the flight path that the destination can reach at a shorter distance without passing the transit point indicated in the flight plan, or from the estimated arrival time indicated in the flight plan It will be instructed to fly at a slower arrival time but with a reduced flight speed.
- the flight instructing unit 108 instructs the flight in the flight path that the destination can reach at a shorter distance without passing the transit point indicated in the flight plan, or from the estimated arrival time indicated in the flight plan It will be instructed to fly at a slower arrival time but with a reduced flight speed.
- the drone 20 will fly (non-planned flight) which does not conform to the flight plan.
- the inspection time determination unit 104 may determine the inspection time based on another difference in addition to or instead of the difference between the flight plan and the flight history. In this modification, it is assumed that flight plans and flight histories are acquired for a plurality of drone 20 classified into a group having common flight performance.
- Flight performance is represented by information such as, for example, maximum speed, maximum acceleration, maximum load weight, battery capacity, and sensor accuracy.
- the server device 10c stores a list of drone to which each group having common flight performance belongs. This list is, for example, a list of the drone 20 belonging to the same product, the same product series, or a product group having a common performance.
- the flight history acquisition unit 103 of this modification does not follow the flight plan according to the instruction of the above-described flight instruction unit 108 (for example, To obtain the flight history (unplanned flight history) for the flight you
- the flight history acquisition unit 103 associates the acquired flight history in the plan and the unplanned flight history with the drone ID and accumulates them.
- the inspection time determination unit 104 calculates the difference between the flight history in the plan and the flight plan in the same manner as each of the above examples.
- the inspection time determination unit 104 calculates the difference between the unplanned flight history of the drone 20 and the flight history of the drone 20 in the same group as that of the drone 20.
- the inspection time determination unit 104 reads the drone ID of the drone 20 of the same group as the drone 20 from the list.
- the inspection time determination unit 104 requests the flight history acquisition unit 103 to transmit the flight history (the flight history in the plan and the flight history not planned) stored in association with the read drone ID, and is supplied in response thereto. Get flight history.
- the inspection time determination unit 104 calculates, for example, the maximum flight speed, the maximum acceleration, the maximum increase speed, and the like of each drone 20 as a value (flight performance value) indicating a specific flight performance from the acquired flight history.
- the inspection time determination unit 104 also calculates the same flight performance value for the unplanned flight history of the drone 20 to be determined, and calculates the difference from the flight performance value of the drone 20 of the same group.
- the inspection time determination unit 104 calculates the difference between the flight history in the plan and the flight plan.
- the inspection time determination unit 104 determines the inspection time based on the calculated flight history in the plan and the difference in the unplanned flight history.
- the inspection time determination unit 104 uses, for example, an inspection time table for an unplanned flight history.
- FIG. 15 shows an example of the inspection time table of this modification.
- a range of unplanned flight history differences such as "less than Th31,” “more than Th31 and less than Th32,” and “Th32 or more”, and “not needed for a while,” “after the elapse of flight time T3,” and "present”
- An inspection time table in which the time of inspection is associated is shown.
- the inspection time determination unit 104 reads out the timing of the inspection that is associated in the inspection time table with the difference from the flight performance value calculated as described above.
- the inspection time determination unit 104 also reads out the inspection time for the flight history in the plan as in the example of FIG. 5, and determines as the inspection time the one of the read out inspection times that comes earlier. As described above, the inspection time determination unit 104 determines the inspection time based on the difference between the drone 20 and the flight history of the drone 20 in the same group as the drone 20 for which the unplanned flight history has been acquired. .
- the difference between the flight history and the flight plan does not indicate the degree of performance degradation of the drone 20 because the flight plan is not followed.
- the drone that performed the unplanned flight is compared to the case where the difference is not used by using the difference that represents the degree of the performance decrease of the drone 20 calculated from the unplanned flight history in this manner. More appropriate examination time can be determined for 20.
- a rotorcraft type flying body is used as a flying body performing autonomous flight, but the invention is not limited thereto.
- it may be an airplane type aircraft or a helicopter type aircraft.
- the function of autonomous flight is also not essential, and if it is possible to fly the assigned flight area in the assigned flight permission period, for example, a radio control type operated by the operator remotely (radio controlled type)
- the following aircraft may be used.
- the device for implementing each function shown in FIG. 4 and the like may be different from those in the drawings.
- the drone may have all or some of the functions of the server device, and the drone may obtain its own flight plan and flight history to determine the inspection time.
- the drone is an example of the "information processing apparatus" of the present invention.
- another function may perform the operation performed by each function, or a new function may perform the operation.
- the inspection time determination unit 104 may perform an operation (informing operation of inspection time) performed by the inspection time notification unit 105.
- a function of generating notification data by separating an operation performed by the inspection time notification unit 105 and a function of transmitting may be newly provided.
- two or more devices may realize each function of the server device.
- the operator's system may realize the flight plan creation unit 107 and the flight instruction unit 108 shown in FIG.
- the drone management system may have any number of devices as long as these functions are realized as the whole drone management system.
- the present invention relates to an information processing apparatus such as the server apparatus described above, a flying object such as a drone (a drone may also serve as an information processing apparatus), and the apparatus and flight thereof. It can also be regarded as an information processing system such as a drone management system with a body. Further, the present invention can be understood as an information processing method for realizing processing executed by each device, and also as a program for causing a computer that controls each device to function.
- This program may be provided in the form of a recording medium such as an optical disc storing the program, or may be downloaded to a computer via a network such as the Internet, provided in a form such as installing it and making it available. It may be done.
- the input and output information and the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Information to be input or output may be overwritten, updated or added. The output information etc. may be deleted. The input information or the like may be transmitted to another device.
- Software Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be an instruction, instruction set, code, code segment, program code, program Should be interpreted broadly to mean: subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
- software, instructions, etc. may be sent and received via a transmission medium.
- software may use a wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission medium.
- wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave
- notification of predetermined information is not limited to what is explicitly performed, but is performed by implicit (for example, not notifying of the predetermined information) It is also good.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Transportation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Networks & Wireless Communication (AREA)
- Atmospheric Sciences (AREA)
- Traffic Control Systems (AREA)
Abstract
飛行制御部201及び飛行部202は、飛行計画に従う飛行を開始する。飛行履歴取得部103は、ドローン20の飛行履歴を取得する。飛行計画取得部102は、飛行履歴が取得されたドローン20を対象とした飛行計画を取得する。検査時期判定部104は、取得された飛行計画及び飛行履歴の差分を算出し、算出した差分に基づいて、その飛行履歴が取得されたドローン20の検査時期を判定する。検査時期報知部105は、判定された検査時期を報知する。
Description
本発明は、飛行体を管理する技術に関する。
飛行体を管理する技術が知られている。特許文献1には、無人飛行体から収集されたエンジン回転数、燃料残量及び電圧等の情報に基づいて飛行状態を検査して、安全基準を満たしていなければ警告を発する技術が開示されている。
特許文献1の技術では、飛行体の飛行中に安全な飛行のための判断が行われている。一方、ドローンのような飛行体の飛行を継続していると、本体及び部品等が劣化していくので、安全な飛行のためには適切な時期に検査をして交換又は修理等を行わなければならない。
そこで、本発明は、飛行体を検査すべき時期の判断を支援することを目的とする。
そこで、本発明は、飛行体を検査すべき時期の判断を支援することを目的とする。
上記目的を達成するために、本発明は、飛行計画及び当該飛行計画に従い飛行した飛行体の飛行履歴を取得する取得部と、取得された前記飛行計画及び前記飛行履歴の差分に基づいて、当該飛行履歴が取得された飛行体について検査すべき時期の判定を行う判定部とを備える情報処理装置を提供する。
前記飛行計画及び前記飛行履歴は複数の項目で表されており、前記差分は前記項目ごとに表され、前記判定部は、所定の項目の差分に基づいて、前記飛行体の構成物のうち当該項目に対応する構成物について検査すべき時期の判定を行ってもよい。
前記判定部は、前記飛行体が障害物との衝突を回避する機能を有する場合に、前記飛行計画及び前記飛行履歴の差分から当該衝突を回避することで生じた部分を減じた差分に基づいて前記判定を行ってもよい。
前記判定部は、前記飛行体が特定の天気の期間に飛行した場合に、前記飛行計画及び前記飛行履歴の差分から当該期間に生じた部分を減じた差分に基づいて前記判定を行ってもよい。
前記判定部は、前記飛行計画及び前記飛行履歴の差分を当該飛行計画の難易度が高いほど小さく補正して前記判定を行ってもよい。
前記判定部は、前記飛行体の使用開始からの経過時間に応じて難易度を低くする飛行計画が取得された場合に、当該経過時間が長いほど当該飛行計画及び前記飛行履歴の差分を大きくする補正をして前記判定を行ってもよい。
前記判定部は、前記飛行体の構成物の使用開始からの経過時間に応じて難易度を低くする飛行計画が取得された場合に、当該経過時間が長く且つ当該構成物の重要度が高いほど当該飛行計画及び前記飛行履歴の差分を大きくする補正をして前記判定を行ってもよい。
前記飛行体は、飛行性能が共通するグループに分類され、前記取得部は、飛行計画に従わない飛行における計画外の飛行履歴を取得し、前記判定部は、前記計画外の飛行履歴が取得された飛行体については当該飛行体と同じグループの飛行体の飛行履歴との差分にも基づいて前記判定を行ってもよい。
また、本発明は、飛行計画及び当該飛行計画に従い飛行した飛行体の飛行履歴を取得するステップと、取得された前記飛行計画及び前記飛行履歴の差分に基づいて、当該飛行履歴が取得された飛行体について検査すべき時期の判定を行うステップとを有する情報処理方法を提供する。
本発明によれば、飛行体を検査すべき時期の判断を支援することができる。
1…ドローン管理システム、10…サーバ装置、20…ドローン、101…飛行情報取得部、102…飛行計画取得部、103…飛行履歴取得部、104…検査時期判定部、105…検査時期報知部、106…天気情報取得部、107…飛行計画作成部、108…飛行指示部、201…飛行制御部、202…飛行部、203…センサ測定部、204…飛行履歴通知部、205…ランプ制御部。
[1]実施例
図1は実施例に係るドローン管理システム1の全体構成を表す。ドローン管理システム1は、ドローンを管理するシステムである。ドローンとは、飛行計画に従って自律的に且つ無人で飛行することが可能な装置であり、本発明の「飛行体」の一例である。ドローンは、例えば風景の撮影、測量、監視又は搬送等の飛行目的で飛行する。
図1は実施例に係るドローン管理システム1の全体構成を表す。ドローン管理システム1は、ドローンを管理するシステムである。ドローンとは、飛行計画に従って自律的に且つ無人で飛行することが可能な装置であり、本発明の「飛行体」の一例である。ドローンは、例えば風景の撮影、測量、監視又は搬送等の飛行目的で飛行する。
ドローン管理システム1は、ネットワーク2と、サーバ装置10と、ドローン20とを備える。ネットワーク2は、移動体通信網及びインターネット等を含む通信システムであり、自システムにアクセスする装置同士のデータのやり取りを中継する。ネットワーク2には、サーバ装置10が有線通信で(無線通信でもよい)アクセスしており、ドローン20が無線通信でアクセスしている。
ドローン20は、本実施例では、1以上の回転翼を備え、それらの回転翼を回転させて飛行する回転翼機型の飛行体である。ドローン20は、飛行目的を達成するために必要な機能(例えば撮影、測量、監視目的なら撮影機能、搬送目的なら搬送物を保持して搬送する機能)を備えている。サーバ装置10は、ドローン20を管理するための各種の処理を実行する情報処理装置である。
ドローン20は、フレーム、モータ、ローター(プロペラ、ブレードとも呼ばれる)及びバッテリー等の多数の部品で構成されている。これらの部品は、飛行を続けているうちに消耗したり破損したりするので、消耗度及び破損度を検査して必要なら交換又は修理をしなければならない。ただし、ドローン20を飛行させる機会が多くなると、毎回検査をしていては手間が大きくなる。そこで、サーバ装置10は、この検査を行う時期を判定する処理を行い、検査の手間を少なくすることを支援する。
図2はサーバ装置10のハードウェア構成を表す。サーバ装置10は、プロセッサ11と、メモリ12と、ストレージ13と、通信装置14と、入力装置15と、出力装置16と、バス17という各装置を備えるコンピュータである。なお、ここでいう「装置」という文言は、回路、デバイス及びユニット等に読み替えることができる。また、各装置は、1つ又は複数含まれていてもよいし、一部の装置が含まれていなくてもよい。
プロセッサ11は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ11は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。また、プロセッサ11は、プログラム(プログラムコード)、ソフトウェアモジュール及びデータ等を、ストレージ13及び/又は通信装置14からメモリ12に読み出し、これらに従って各種の処理を実行する。
各種処理を実行するプロセッサ11は1つでもよいし、2以上であってもよく、2以上のプロセッサ11は、同時又は逐次に各種処理を実行してもよい。また、プロセッサ11は、1以上のチップで実装されてもよい。プログラムは、電気通信回線を介してネットワークから送信されてもよい。
メモリ12は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)及びRAM(Random Access Memory)等の少なくとも1つで構成されてもよい。メモリ12は、レジスタ、キャッシュ及びメインメモリ(主記憶装置)等と呼ばれてもよい。メモリ12は、前述したプログラム(プログラムコード)、ソフトウェアモジュール及びデータ等を保存することができる。
ストレージ13は、コンピュータが読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。
ストレージ13は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ12及び/又はストレージ13を含むデータベース、サーバその他の適切な媒体であってもよい。通信装置14は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
入力装置15は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置16は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカなど)である。なお、入力装置15及び出力装置16は、一体となった構成(例えば、タッチスクリーン)であってもよい。また、プロセッサ11及びメモリ12等の各装置は、情報を通信するためのバス17を介して互いにアクセス可能となっている。バス17は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
図3はドローン20のハードウェア構成を表す。ドローン20は、プロセッサ21と、メモリ22と、ストレージ23と、通信装置24と、飛行装置25と、センサ装置26と、バッテリー27と、ランプ28と、バス29と、フレーム30という各装置を備えるコンピュータである。なお、ここでいう「装置」という文言は、回路、デバイス及びユニット等に読み替えることができる。また、各装置は、1つ又は複数含まれていてもよいし、一部の装置が含まれていなくてもよい。
プロセッサ21、メモリ22、ストレージ23、通信装置24及びバス29は、図2に表す同名の装置と同種のハードウェア(性能及び仕様等は同じとは限らない)である。通信装置24は、ネットワーク2との無線通信に加え、ドローン同士の無線通信を行うこともできる。飛行装置25は、モータ251及びローター252等を備え、自機を飛行させる装置である。飛行装置25は、空中において、あらゆる方向に自機を移動させたり、自機を静止(ホバリング)させたりすることができる。
センサ装置26は、飛行制御に必要な情報を取得するセンサ群を有する装置である。センサ装置26は、自機の位置(緯度及び経度)を測定する位置センサと、自機が向いている方向(ドローンには自機の正面方向が定められており、その正面方向が向いている方向)を測定する方向センサと、自機の高度を測定する高度センサと、自機の速度を測定する速度センサと、3軸の角速度及び3方向の加速度を測定する慣性計測センサ(IMU(Inertial Measurement Unit))とを備える。
バッテリー27は、電力を蓄積し、ドローン20の各部に電力を供給する装置である。ランプ28は、LED(Light Emitting Diode)等の発光部品であり、点灯したり点滅したりする。ランプ28は、点灯又は点滅することで自機が検査すべき時期になったことを伝えるために用いられる(詳しくは後述する)。フレーム30は、ドローン20の各部が収納され又は取り付けられる筐体である。
なお、サーバ装置10及びドローン20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、及び、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ11は、これらのハードウェアの少なくとも1つで実装されてもよい。
ドローン管理システム1が備えるサーバ装置10及びドローン20には、本システムで提供されるプログラムが記憶されており、各装置のプロセッサがプログラムを実行して各部を制御することで以下に述べる機能群が実現される。
図4はドローン管理システム1が実現する機能構成を表す。サーバ装置10は、飛行情報取得部101と、検査時期判定部104と、検査時期報知部105とを備える。飛行情報取得部101は、飛行計画取得部102と、飛行履歴取得部103とを備える。
図4はドローン管理システム1が実現する機能構成を表す。サーバ装置10は、飛行情報取得部101と、検査時期判定部104と、検査時期報知部105とを備える。飛行情報取得部101は、飛行計画取得部102と、飛行履歴取得部103とを備える。
ドローン20は、飛行制御部201と、飛行部202と、センサ測定部203と、飛行履歴通知部204と、ランプ制御部205とを備える。飛行制御部201は、自機の飛行を制御する。飛行制御部201は、例えばドローン20の運航を管理する管理事業者のシステムから受け取る飛行の指示に基づいて、後述する飛行計画が示す飛行経路及び飛行期間に従った自機の飛行を制御する。
飛行部202は、自機を飛行させる機能であり、本実施例では、飛行装置25が備えるモータ251及びローター252等を動作させることで自機を飛行させる。センサ測定部203は、センサ装置26が備える各センサ(位置センサ、方向センサ、高度センサ、速度センサ、慣性計測センサ)による測定を行い、自機の位置、方向、高度、速度、角速度、加速度を所定の時間間隔で繰り返し測定する。
センサ測定部203は、測定した位置、方向、高度、速度、角速度、加速度を示すセンサ情報を飛行制御部201及び飛行履歴通知部204に供給する。飛行制御部201は、供給されたセンサ情報に基づいて飛行部202を制御し、飛行計画が示す飛行経路に沿って自機を飛行させる。飛行履歴通知部204は、供給されたセンサ情報に基づいて、自機の飛行履歴をサーバ装置10に通知する。
飛行履歴とは、本実施例では、ドローン20が飛行中に通過した飛行経路と、その飛行経路上の各位置を通過した時刻(通過時刻)と、それらの位置における飛行速度とを示す情報である。このうちの飛行経路及び飛行速度は、センサ情報が示す位置、高度、速度によって示される。飛行履歴通知部204は、センサ情報が供給される度に現在時刻を通過時刻としてセンサ情報に付加した情報を飛行履歴情報として生成する。
飛行履歴通知部204は、生成した飛行履歴情報を、自機を識別する情報(例えばドローンID(Identification))に対応付けてサーバ装置10に送信する。サーバ装置10の飛行履歴取得部103は、送信されてきた飛行履歴情報を受け取ることで、その飛行履歴情報が示すドローン20の飛行履歴を取得する。飛行履歴取得部103は、取得した飛行履歴を検査時期判定部104に供給する。
また、飛行履歴取得部103は、取得した飛行履歴に対応付けられたドローンIDを飛行計画取得部102に供給する。飛行計画取得部102は、供給されたドローンIDが示すドローン20を対象とした飛行計画(ドローン20を飛行させるための飛行計画)を取得する。飛行計画は、搬送目的の飛行であれば、例えば出発地から目的地まで向かう飛行経路と、その飛行経路を飛行すべき期間(出発時刻から搬送物の引き渡し予定時刻までの期間)とを示す情報である。
また、飛行計画は、測量目的又は監視目的の飛行であれば、例えば測量エリア又は監視エリアまでの往復飛行における飛行経路及び飛行期間と、各エリアにおける飛行経路及び飛行期間とを示す情報である。飛行計画取得部102は、例えば前述した管理事業者(ドローン20の運航を管理する事業者)のシステムに対して供給されたドローンIDが示すドローン20の飛行計画を要求し、その応答で送信されてくる飛行計画を取得する。飛行計画取得部102は、取得した飛行計画を検査時期判定部104に供給する。
上記のとおり取得された飛行計画は、取得された飛行履歴のとおりに飛行したドローン20の飛行計画である。言い換えると、取得された飛行履歴は、取得された飛行計画に従い飛行したドローン20の飛行履歴である。このように、飛行情報取得部101は、飛行計画及びその飛行計画に従い飛行したドローン20の飛行履歴を取得する。飛行情報取得部101は本発明の「取得部」の一例である。
なお、飛行計画及び飛行履歴の取得順序は反対でもよい。その場合、まず、飛行計画取得部102がドローン20のドローンIDに対応付けられた飛行計画を取得し、そのドローンIDを飛行履歴取得部103に供給する。飛行履歴取得部103は、供給されたドローンIDが示すドローン20に対して飛行履歴を要求し、その応答で送信されてくる飛行履歴情報を受け取って飛行履歴を取得する。
また、飛行計画取得部102及び飛行履歴取得部103はそれぞれ個別に取得を行ってもよい。その場合でも、同じドローンIDに対応付けられた飛行計画及び飛行履歴が、飛行計画及びその飛行計画に従い飛行したドローン20の飛行履歴を表すからである。飛行情報取得部101は、以上のとおり取得した飛行計画及び飛行履歴を検査時期判定部104に供給する。
検査時期判定部104は、飛行情報取得部101により取得された飛行計画及び飛行履歴の差分に基づいて、その飛行履歴が取得されたドローン20について検査すべき時期(検査時期)の判定を行う。検査時期判定部104は本発明の「判定部」の一例である。飛行計画及び飛行履歴の差分には、大きく分けて2通りある。1つ目は時間的な差分であり、2つ目は空間的な差分である。
時間的な差分とは、例えば飛行計画で定められている目的地への到着予定時刻と飛行履歴が示す実際の到着時刻との差分である。なお、目的地に限らず、例えば経由地及びその通過予定時刻が飛行計画で定められていれば、その到着予定時刻と飛行履歴が示す実際の到着時刻との差分が用いられてもよい。また、経由地は、複数定められていてもよい。
空間的な差分とは、例えば飛行経路として空間に配置された1本の線状の経路が飛行計画で定められている場合に、その飛行経路と実際に飛行した経路との距離である。この距離は飛行中に絶えず増減するので、例えばその平均値又は合計値が空間的な差分として用いられる。本実施例では、検査時期判定部104は、目的地及び経由地における時間的な差分の合計値を時間的な差分として算出し、飛行計画で定められた飛行経路と実際に飛行した経路との距離の平均値を空間的な差分として算出する。
検査時期判定部104は、時間的な差分及び検査の時期を対応付けた第1検査時期テーブルと、空間的な差分及び検査の時期を対応付けた第2検査時期テーブルとを記憶しておき、それらのテーブルを用いて検査時期の判定を行う。
図5は検査時期テーブルの一例を表す。図5(a)では、「Th11未満」、「Th11以上Th12未満」、「Th12以上Th13未満」、「Th13以上」という時間的な差分の範囲と(「Th11未満」の差分が最も小さく、次第に大きくなって「Th13以上」の差分が最も大きくなる)、「しばらく不要」、「飛行時間T12の経過後」、「飛行時間T11の経過後」(T11<T12)、「現在」という検査の時期とを対応付けた第1検査時期テーブルが表されている。「飛行時間T11の経過後」は「飛行時間T12の経過後」よりも早く訪れる時期である。
図5は検査時期テーブルの一例を表す。図5(a)では、「Th11未満」、「Th11以上Th12未満」、「Th12以上Th13未満」、「Th13以上」という時間的な差分の範囲と(「Th11未満」の差分が最も小さく、次第に大きくなって「Th13以上」の差分が最も大きくなる)、「しばらく不要」、「飛行時間T12の経過後」、「飛行時間T11の経過後」(T11<T12)、「現在」という検査の時期とを対応付けた第1検査時期テーブルが表されている。「飛行時間T11の経過後」は「飛行時間T12の経過後」よりも早く訪れる時期である。
図5(b)では、「Th21未満」、「Th21以上Th22未満」、「Th22以上Th23未満」、「Th23以上」(「Th21未満」の差分が最も小さく、次第に大きくなって「Th23以上」の差分が最も大きくなる)という時間的な差分の範囲と、「しばらく不要」、「飛行時間T22の経過後」、「飛行時間T21の経過後」(T21<T22)、「現在」という検査の時期とを対応付けた第2検査時期テーブルが表されている。「飛行時間T21の経過後」は「飛行時間T22の経過後」よりも早く訪れる時期である。
検査時期判定部104は、上記のとおり算出した時間的な差分に第1検査時期テーブルで対応付けられている検査の時期と、同じく算出した空間的な差分に第2検査時期テーブルで対応付けられている検査の時期とを各テーブルから読み出す。検査時期判定部104は、読み出した検査の時期のうちより早く訪れる方の時期を飛行履歴が取得されたドローン20を検査すべき時期(検査時期)として判定する。
検査時期判定部104は、例えば時間的な差分には「しばらく不要」が対応付けられていたが空間的な差分には「飛行時間T22の経過後」が対応付けられていた場合には、「飛行時間T22の経過後」が検査時期であると判定する。また、検査時期判定部104は、例えば時間的な差分には「飛行時間T11の経過後」が対応付けられ、空間的な差分には「飛行時間T21の経過後」が対応付けられていた場合、飛行時間T11及びT21のうち短い方の時間の経過後が検査時期であると判定する。
また、検査時期判定部104は、どちらか一方の差分でも「現在」が対応付けられていれば、当然「現在」が検査時期であると判定する。検査時期判定部104は、以上のとおり、時間的な差分及び空間的な差分が大きくなるほど、現在を起点とした場合により早く訪れる時期を検査時期として判定する。検査時期判定部104は、こうして判定した結果(検査時期)を検査時期報知部105に供給する。
検査時期報知部105は、検査時期判定部104により判定された検査時期を報知する。検査時期報知部105は、例えば上記の管理事業者の宛先(電子メールアドレス等)が報知先として登録されている場合に、供給された判定結果が示す検査時期を報知するための報知情報(電子メール等)を生成してその宛先に送信する。管理事業者は、送信されてきた報知情報を端末に表示させることで、報知の内容を確認する。
図6は表示された報知情報の一例を表す。図6の例では、電子メールアプリの画面に、「ドローン検査時期のお知らせ」という件名の電子メールが表示されている。この例では、「ドローンID:ID001のドローンが検査すべき時期になったのでお知らせします。」というように、「現在」が検査時期であることと、検査対象のドローン20を特定するための情報(ドローンID)とを示す報知情報が表示されている。
検査時期報知部105は、また、「現在」が検査時期であると判定された場合には、ドローン20を介してその判定結果を報知する。検査時期報知部105は、「現在」が検査時期であると判定された場合に、ランプを点灯させる(又は点滅させる)ことを指示する指示データを生成してドローン20に送信する。ドローン20のランプ制御部205は、図3に表すランプ28を制御する。
ランプ制御部205は、送信されてきた指示データを受け取ると、その指示データが示すとおりにランプ28を点灯又は点滅させる。ランプ28の点灯又は点滅は検査時期が来たことを示す合図であることは、予めドローン20を管理する管理事業者に伝えられているものとする。なお、それ以外にも、例えばランプ28の周辺に「要検査」といった文字列を設けることで検査時期が来たことを報知してもよい。
管理事業者にはドローン20のメンテナンス担当者がいるものとする。このメンテナンス担当者は、検査時期が来たことが報知されると、ドローン20を検査する。具体的には、モータ251への破損の有無の点検、回転音の点検、ローター252の破損の有無の点検、フレーム30の破損の有無の点検、電気系統の腐食又は水漏れの有無の点検及びIMU校正(IMUのずれを修正する作業)等を行う。
ドローン管理システム1が備える各装置は、上記の構成に基づいて、ドローン20の検査時期を判定して報知する判定・報知処理を行う。
図7は判定・報知処理における各装置の動作手順の一例を表す。この動作手順は、ドローン20の飛行開始時刻になることを契機に開始される。まず、ドローン20(飛行制御部201及び飛行部202)は、飛行計画に従う飛行を開始する(ステップS11)。
図7は判定・報知処理における各装置の動作手順の一例を表す。この動作手順は、ドローン20の飛行開始時刻になることを契機に開始される。まず、ドローン20(飛行制御部201及び飛行部202)は、飛行計画に従う飛行を開始する(ステップS11)。
次に、ドローン20(センサ測定部203)は、センサ装置26が備える各センサによる測定を開始する(ステップS12)。続いて、ドローン20(飛行履歴通知部204)は、ステップS12での測定結果を含む飛行履歴情報の生成及びサーバ装置10への送信を開始する(ステップS13)。サーバ装置10(飛行履歴取得部103)は、送信されてきた飛行履歴情報を受け取ることによるドローン20の飛行履歴の取得を開始する(ステップS14)。ステップS12からS14までの動作はドローン20の飛行中に繰り返し行われる。
サーバ装置10(飛行計画取得部102)は、飛行履歴が取得されたドローン20を対象とした飛行計画を取得する(ステップS15)。その後、ドローン20(飛行制御部201及び飛行部202)は、飛行計画に従う飛行を終了する(ステップS21)。次に、ドローン20(飛行履歴通知部204)は、最後の飛行履歴情報をサーバ装置10に送信する(ステップS22)。
最後の飛行履歴情報が送信されてくると、サーバ装置10(検査時期判定部104)は、ステップS15で取得された飛行計画とステップS14で取得された飛行履歴との差分を算出し(ステップS23)、算出した差分に基づいて、その飛行履歴が取得されたドローン20について検査時期の判定を行う(ステップS24)。次に、サーバ装置10(検査時期報知部105)は、ステップS24で判定された検査時期を報知する(ステップS25)。ステップS25では例えば図6に表す報知情報による報知が行われる。
続いて、サーバ装置10(検査時期報知部105)は、ステップS24において検査時期が現在だと判定されたか否かを判断し(ステップS31)、現在ではない検査時期が判定された場合にはこの動作手順を終了する。サーバ装置10(検査時期報知部105)は、検査時期が現在だと判定された場合には、ランプの点灯を指示する指示データを生成し(ステップS32)、生成した指示データをドローン20に送信する(ステップS33)。ドローン20(ランプ制御部205)は、送信されてきた指示データが示すとおりにランプ28(検査時期が来たことを報知するためのランプ)を点灯させる(ステップS34)。
ドローン20の各部品の消耗又は破損等により性能の低下が進むと、飛行計画どおりの飛行ができなくなっていくので、ドローン20の飛行計画及び飛行履歴の差分が大きくなりやすい。本実施例では、上記のとおりそれらの差分に基づいて検査時期が判定される。より詳細には、それらの差分が大きくなるほどより早く訪れる時期を検査時期として判定する。
これにより、ドローン20の性能の低下が進んでいるほど早く検査が行われるので、上記判定が行われない場合に比べて、飛行計画と飛行履歴との差分が大きくなりにくいようにすることができ、また、性能の低下により落下する可能性を少なくすることができる。このように、本実施例によれば、ドローン20を検査すべき時期の判断を支援することができる。
[2]変形例
上述した実施例は本発明の実施の一例に過ぎず、以下のように変形させてもよい。
上述した実施例は本発明の実施の一例に過ぎず、以下のように変形させてもよい。
[2-1]構成物毎の判定
検査時期判定部104は、実施例では、ドローン20の全体について検査時期を判定したが、これに限らない。ドローン20は、プロセッサ21、メモリ22、ストレージ23、モータ251、ローター252、センサ装置26、バッテリー27及びフレーム30等の複数の構成物(ドローン20を構成する物。本体、部品及びパーツ等とも呼ばれる)を備えている。検査時期判定部104は、これらの構成物毎に検査時期を判定してもよい。
検査時期判定部104は、実施例では、ドローン20の全体について検査時期を判定したが、これに限らない。ドローン20は、プロセッサ21、メモリ22、ストレージ23、モータ251、ローター252、センサ装置26、バッテリー27及びフレーム30等の複数の構成物(ドローン20を構成する物。本体、部品及びパーツ等とも呼ばれる)を備えている。検査時期判定部104は、これらの構成物毎に検査時期を判定してもよい。
飛行計画及び飛行履歴は、実施例で述べたように、時間的な計画及び履歴である飛行期間(飛行経路をドローン20が飛行すべき期間及び実際に飛行した期間)と、空間的な計画及び履歴である飛行経路(ドローン20が飛行すべき空間上の経路及び実際に飛行した経路)という複数の項目で表されている。そして、飛行計画及び飛行履歴の差分は、それらの項目ごとに表されており、例えば図5の例では、時間的な差分と空間的な差分とで表されている。
本変形例では、検査時期判定部104は、所定の項目の差分に基づいて、ドローン20の構成物のうちその項目に対応する構成物について検査時期の判定を行う。例えば飛行期間に間に合うように飛行を行うためには十分に速い飛行速度で飛行しなければならない。そして、そのためには、モータ251、ローター252、バッテリー27、フレーム30の性能が劣化せずに十分に発揮される状態でなければならないし、センサ装置26が正確な値を測定可能な状態でなければならない。従って、これらの構成物は、時間的な計画及び履歴である飛行期間という項目に対応する。
そこで、検査時期判定部104は、算出した時間的な差分に基づいて、その差分に対応する構成物としてモータ251、ローター252、センサ装置26、バッテリー27、フレーム30の検査時期の判定を行う。検査時期判定部104は、この判定を、例えば図5(a)に表すような時間的な差分と検査の時期とを対応付けた検査時期テーブルを用いて行う。この場合、図5(a)に表す閾値が用いられてもよいし、それとは異なる閾値が用いられてもよい。また、構成物ごとに異なる閾値が用いられてもよい。
また、飛行経路に沿った飛行を行うためには、センサ装置26が測定する値が正確でなければならないし、プロセッサ21、メモリ22、ストレージ23が協働して行う飛行制御の処理が迅速でなければならない。従って、これらの構成物は、空間的な計画及び履歴である飛行経路という項目に対応する。そこで、検査時期判定部104は、算出した空間的な差分に基づいて、その差分に対応する構成物としてプロセッサ21、メモリ22、ストレージ23、センサ装置26の検査時期の判定を行う。
検査時期判定部104は、この判定を、例えば図5(b)に表すような空間的な差分と検査の時期とを対応付けた検査時期テーブルを用いて行う。この場合、図5(b)に表す閾値が用いられてもよいし、それとは異なる閾値が用いられてもよい。また、構成物ごとに異なる閾値が用いられてもよい。なお、飛行計画及び飛行履歴を表す項目は上記のものに限らない。
例えば飛行速度(主にモータ251、ローター252、センサ装置26が対応)又は飛行高度(主にプロセッサ21、メモリ22、ストレージ23、センサ装置26が対応)等の項目が用いられてもよい。また、着陸の位置及び時刻という項目の飛行計画及び飛行履歴が用いられてもよい。この場合、検査時期判定部104は、着陸位置及び目的地の距離と到着予定時刻及び着陸時刻とを、飛行計画及び飛行履歴の差分として算出する。
検査時期判定部104は、これらの項目に対応する構成物として例えばバッテリー27の検査時期を判定する。検査時期判定部104は、上記差分が閾値以上である場合、バッテリー切れで緊急着陸をしたものとして、現在が検査時期であると判定する。いずれの場合も、項目ごとに差分を算出することで性能の低下が示される構成物が絞り込まれるので、ドローン20全体の性能の低下が示される場合に比べて、検査対象を減らして検査作業の負担を少なくすることができる。
[2-2]衝突回避機能
ドローン20には、他のドローン20、その他の飛行体(鳥など)、木及び建物等の障害物を自律的に回避する回避機能が備えられている場合がある。その場合、ドローン20の性能が低下していなくても飛行計画及び飛行履歴の差分が大きくなることがある。検査時期判定部104は、この回避による差分の拡大を踏まえて検査時期を判定してもよい。
ドローン20には、他のドローン20、その他の飛行体(鳥など)、木及び建物等の障害物を自律的に回避する回避機能が備えられている場合がある。その場合、ドローン20の性能が低下していなくても飛行計画及び飛行履歴の差分が大きくなることがある。検査時期判定部104は、この回避による差分の拡大を踏まえて検査時期を判定してもよい。
本変形例のドローン20のセンサ装置26は、イメージセンサ、赤外線センサ又はミリ波により物体を感知するセンサ等の、障害物を検知するためのセンサを備える。ドローン20は、これらのセンサの測定結果に基づいて、周知の技術を用いて障害物を検知すると、検知した障害物を回避するために飛行計画から逸脱した飛行を行う。具体的には、ドローン20は、例えば飛行経路を外れて迂回する経路で飛行したり、障害物が検知されなくなるまで一時停止したりする。
本変形例のドローン20の飛行履歴通知部204は、例えば、障害物を回避する飛行を行った場合に、その回避飛行の開始時刻及び終了時刻を示す飛行履歴情報を送信する。飛行履歴取得部103は、この飛行履歴情報を受け取ることで、回避飛行を行った期間を示す飛行履歴を取得する。検査時期判定部104は、例えば時間的な差分及び空間的な差分を算出する際に、飛行履歴のうち回避飛行を行った期間を除いた部分について差分を算出する。
検査時期判定部104は、こうして算出した差分に基づいて、例えば実施例と同様に検査時期を判定する。以上のとおり、本変形例の検査時期判定部104は、ドローン20が障害物との衝突を回避する機能を有する場合に、飛行計画及び飛行履歴の差分からその衝突を回避することで生じた部分(回避飛行を行った期間の飛行履歴の差分)を減じた差分に基づいて検査時期の判定を行う。ここでいう検査時期の判定は、ドローン20について行われてもよいし、ドローン20の構成物について行われてもよい。
ドローン20が回避機能を有する場合、回避飛行が多く発生するほど、時間的な差分も空間的な差分も大きくなるので、回避飛行を考慮しなければ、ドローン20の性能が低下していなくても検査時期が早く訪れると判定されることになる。本変形例では、上記のとおり判定を行うことで、ドローン20の回避飛行による飛行計画及び飛行履歴の差分、すなわちドローン20又はその構成物の性能低下の有無に関係なく発生した差分の影響を受けることなく検査時期の判定を行うことができる。
[2-3]天気の影響
天気によっては、ドローン20の性能が低下していなくても飛行計画及び飛行履歴の差分が大きくなることがある。検査時期判定部104は、この天気による差分の拡大を踏まえて検査時期を判定してもよい。
天気によっては、ドローン20の性能が低下していなくても飛行計画及び飛行履歴の差分が大きくなることがある。検査時期判定部104は、この天気による差分の拡大を踏まえて検査時期を判定してもよい。
図8は本変形例で実現される機能構成を表す。図8では、図4に表す各部に加えて天気情報取得部106を備えるサーバ装置10aが表されている。本変形例の検査時期判定部104は、取得された飛行計画が示す飛行経路を含む地域の天気を示す天気情報を天気情報取得部106に要求する。天気情報取得部106は、要求された天気情報、すなわちドローン20が飛行する予定の地域の天気を示す天気情報を取得する。
天気情報取得部106は、例えばインターネット等で天気情報(天気予報又は現在の天気情報等)を提供するサービスを利用して、飛行計画が示す飛行経路を含む地域の天気情報を取得する。天気情報取得部106は、例えば、時間毎(例えば13:00から14:00までを1時間とする)の風速、降水量又は降雪量を示す天気情報を取得し、取得した天気情報を検査時期判定部104に供給する。
検査時期判定部104は、ドローン20が特定の天気の期間に飛行した場合に、飛行計画及び飛行履歴の差分からその期間に生じた部分を減じた差分に基づいて検査時期を判定する。特定の天気とは、例えば風速が閾値以上の天気、降水量が閾値以上の天気又は降雪量が閾値以上の天気等であり、ドローン20の性能が低下していなくても飛行期間の遅れ又は飛行経路のずれを生じさせる天気である。
検査時期判定部104は、供給された天気情報が示す風速、降水量又は降雪量がそれらの閾値以上である時間が天気情報により示される場合には、その時間の飛行履歴については差分を算出せず、それ以外の時間の飛行履歴について差分を算出する。これにより、特定の天気の期間に生じた部分を減じた差分が算出される。検査時期判定部104は、こうして算出した差分に基づいて、例えば実施例と同様に検査時期を判定する。
なお、特定の天気には、上記意外にも、例えば気温が閾値以下の天気が含まれていてもよい(気温が低いとバッテリーの消耗が早くなり飛行計画との差分が大きくなることがあるため)。また、例えば風速、降雨量、降雪量、気温を、飛行期間の遅れ又は飛行経路のずれを生じさせる値であるほど大きくなるポイントで表し、ポイントの合計が閾値以上である場合に特定の天気であると判断してもよい。
また、本変形例における検査時期の判定は、ドローン20について行われてもよいし、ドローン20の構成物について行われてもよい。いずれの場合も、特定の天気によりドローン20又はその構成物の性能低下の有無に関係なく発生した差分の影響を受けることなく検査時期の判定を行うことができる。
[2-4]飛行計画の難易度
飛行計画の難易度が高いと、ドローン20の性能が低下していなくても飛行計画及び飛行履歴の差分が大きくなることがある。飛行計画の難易度は、例えば、目的地に到着するために出さなければならない飛行速度が最高速度に近いほど高くなる。検査時期判定部104は、この飛行計画の難易度を踏まえて検査時期を判定してもよい。
飛行計画の難易度が高いと、ドローン20の性能が低下していなくても飛行計画及び飛行履歴の差分が大きくなることがある。飛行計画の難易度は、例えば、目的地に到着するために出さなければならない飛行速度が最高速度に近いほど高くなる。検査時期判定部104は、この飛行計画の難易度を踏まえて検査時期を判定してもよい。
具体的には、検査時期判定部104は、飛行計画及び飛行履歴の差分をその飛行計画の難易度が高いほど小さく補正して検査時期を判定する。検査時期判定部104は、例えば、飛行計画に従い飛行するときの飛行速度と難易度と補正値とを対応付けた補正テーブルを用いて判定を行う。なお、補正テーブルに難易度は必須ではないが、説明を分かりやすくするため難易度を含めた例で説明する。
図9は補正テーブルの一例を表す。図9では、「最高速度の80%以上」という飛行速度に最も高い難易度の「Lv3」と「0.8」という補正値が対応付けられている。同様に、「最高速度の80%未満50%以上」には「Lv2」と「0.9」が対応付けられ、「最高速度の50%未満」には難易度が最も低い難易度の「Lv1」と「1.0」が対応付けられている。
検査時期判定部104は、取得された飛行計画に飛行速度が直接示されていればそれを用いて、飛行速度が直接示されていなければ飛行距離及び飛行期間から平均の飛行速度を算出して用いる(この場合飛行計画は飛行速度を間接的に示している)。検査時期判定部104は、例えば予めドローン20の最高速度を記憶しておいてもよいし、飛行計画又は飛行履歴と共にドローン20の最高速度情報を取得してもよい。
検査時期判定部104は、飛行計画が示す飛行速度の最高速度に対する割合を算出し、算出した割合に補正テーブルで対応付けられている難易度と補正値を読み出す。検査時期判定部104は、その飛行計画を用いて算出した差分に読み出した補正値を乗じた値を算出する。検査時期判定部104は、そうして補正した差分に基づいて、例えば実施例と同様に検査時期を判定する。
なお、飛行計画の難易度の表し方は上記方法に限らない。例えば飛行経路における方向転換が多いほど難易度が高いものとしてもよいし、ドローン20が搬送物を搬送する場合に、搬送物の重量が最大積載重量に近いほど難易度が高いものとしてもよい。また、複数の飛行計画が取得されている場合に、飛行経路及び飛行期間が重複していて空域が混雑しているほど難易度が高いものとしてもよい。
また、飛行経路が飛行空域(飛行可能な空間)で表されている場合に、その飛行空域が狭いほど難易度が高いものとしてもよい。また、飛行経路に電波障害又は混信が生じやすい空域(無線基地局近辺、高圧送電線近辺、ビル等による電波遮蔽及び電波反射(マルチパス)等が生じやすい空域)が多く含まれているほど難易度が高いものとしてもよいし、定常的に風が強い場所(ビル風など)が多く含まれているほど難易度が高いものとしてもよい。
また、本変形例における検査時期の判定は、ドローン20について行われてもよいし、ドローン20の構成物について行われてもよい。いずれの場合も、飛行計画の難易度が高いためにドローン20又はその構成物の性能低下の有無に関係なく発生した差分の影響を受けることなく検査時期の判定を行うことができる。
[2-5]飛行計画の作成
サーバ装置が飛行計画を作成してもよい。
図10は本変形例で実現される機能構成を表す。図10では、図4に表す各部に加えて飛行計画作成部107を備えるサーバ装置10bが表されている。本変形例では、例えばドローン20で事業を行う事業者のシステムから飛行計画の作成依頼を示す依頼データがサーバ装置10bに送信されてくる。
サーバ装置が飛行計画を作成してもよい。
図10は本変形例で実現される機能構成を表す。図10では、図4に表す各部に加えて飛行計画作成部107を備えるサーバ装置10bが表されている。本変形例では、例えばドローン20で事業を行う事業者のシステムから飛行計画の作成依頼を示す依頼データがサーバ装置10bに送信されてくる。
依頼データとは、例えば搬送目的の飛行であれば出発地、経由地、目的地、出発予定時刻、到着予定時刻、ドローンID及び飛行可能速度等の要件を示すデータであり、測量目的の飛行であれば測量エリアの範囲及び測量可能期間等の要件を示すデータである。飛行計画作成部107は、受け取った依頼データが示す要件を満たすように、上述した飛行計画(飛行経路と飛行期間を示す情報)を作成する。
飛行計画作成部107は、作成した飛行計画を事業者のシステムに送信すると共に、飛行計画取得部102に供給する。飛行計画取得部102は、こうして供給された飛行計画を取得する。飛行計画作成部107は、依頼の要件に応じて上述した難易度が異なる飛行計画を作成する。飛行計画作成部107は、例えば到着予定時刻まで余裕がない要件の依頼であれば、難易度が高い(飛行速度が最高速度に近い)飛行計画を作成し、到着予定時刻まで余裕がある要件の依頼であれば、難易度が低い飛行計画を作成する。
また、飛行計画作成部107は、ドローン20が使用を開始されてからの経過時間、すなわちドローン20の使用開始からの経過時間に応じた難易度の飛行計画を作成してもよい。使用開始からの経過時間とは、例えば、飛行時間の累計(飛行していない時間を除いた時間の累計)によって表される。飛行時間の累計が増えるほど、ドローン20の性能が低下していくので、飛行計画どおりの飛行が難しくなっていく。そこで、飛行計画作成部107は、ドローン20の使用開始からの経過時間が増えるほど、難易度を低くした飛行計画を作成する。その場合、事業者のシステムは、ドローン20の使用開始からの経過時間を示す依頼データを送信する。
飛行計画作成部107は、使用開始からの経過時間と難易度とを対応付けた難易度テーブルを用いて飛行計画を作成する。
図11は難易度テーブルの一例を表す。図11では、「T11未満」、「T11以上T12未満」、「T12以上」という使用開始からの経過時間にそれぞれ「Lv3」、「Lv2」、「Lv1」という難易度が対応付けられている。
図11は難易度テーブルの一例を表す。図11では、「T11未満」、「T11以上T12未満」、「T12以上」という使用開始からの経過時間にそれぞれ「Lv3」、「Lv2」、「Lv1」という難易度が対応付けられている。
飛行計画作成部107は、依頼データが示す使用開始からの経過時間に難易度テーブルで対応付けられた難易度の飛行計画を作成する。このように難易度を調整することで、難易度を調整しない場合に比べて、経過時間(飛行時間)が長くなり性能が低下してきても飛行計画が守られやすいようにすることができる。なお、ドローン20の使用開始からの経過時間は、飛行時間の累計に限らず、飛行していない時間も含めた経過時間で表されてもよい。
例えばバッテリーは飛行をしていなくても時間の経過と共に劣化するので、飛行していない時間も含めた経過時間が増えるほど飛行計画どおりの飛行が難しくなっていく。また、要件によってはその難易度の飛行計画を作成することができない場合がある(難易度Lv1で作成すると到着予定時刻に間に合わない場合など)が、その場合は、飛行計画作成部107は、要件を優先して飛行計画を作成してもよい。
[2-6]難易度の調整
上述した使用開始からの経過時間に応じた飛行計画の難易度の調整が行われると、ドローン20の性能が低下してきても飛行計画及び飛行履歴の差分が生じにくくなる。検査時期判定部104は、このようにドローン20の使用開始からの経過時間に応じて難易度を低くする飛行計画が取得された場合に、そのことを踏まえて検査時期を判定してもよい。
上述した使用開始からの経過時間に応じた飛行計画の難易度の調整が行われると、ドローン20の性能が低下してきても飛行計画及び飛行履歴の差分が生じにくくなる。検査時期判定部104は、このようにドローン20の使用開始からの経過時間に応じて難易度を低くする飛行計画が取得された場合に、そのことを踏まえて検査時期を判定してもよい。
具体的には、検査時期判定部104は、ドローン20の使用開始からの経過時間が長いほどその飛行計画及び飛行履歴の差分を大きくする補正をして検査時期を判定する。検査時期判定部104は、使用開始からの経過時間と補正値とを対応付けた補正テーブルを用いてこの判定を行う。
図12は本変形例の補正テーブルの一例を表す。図12では、「T21未満」、「T21以上T22未満」、「T22以上」という使用開始からの経過時間に「1.0」、「1.1」、「1.2」という補正値が対応付けられている。
図12は本変形例の補正テーブルの一例を表す。図12では、「T21未満」、「T21以上T22未満」、「T22以上」という使用開始からの経過時間に「1.0」、「1.1」、「1.2」という補正値が対応付けられている。
本変形例では、ドローン20の飛行履歴通知部204が、使用開始からの経過時間を示す飛行履歴情報を送信する。飛行履歴取得部103は、この飛行履歴情報が示す経過時間をドローン20の使用開始からの経過時間として取得する。検査時期判定部104は、取得された経過時間に補正テーブルで対応付けられている補正値を読み出す。検査時期判定部104は、飛行計画及び飛行履歴の差分を算出し、その値に読み出した補正値を乗じて補正する。
検査時期判定部104は、例えばT22以上の使用開始からの経過時間が取得された場合には、算出した差分に1.2を乗じた値を補正後の差分として算出し、実施例と同様に検査時期を判定する。これにより、前述したようにドローン20の使用開始からの経過時間に応じて難易度を低くする飛行計画が取得された場合でも、上記補正を行わない場合に比べて、より適切な時期を検査時期として判定することができる。
なお、ドローン20は、上述したとおり、プロセッサ21、モータ251、ローター252、センサ装置26、バッテリー27及びフレーム30等の複数の構成物を備えている。これらの構成物は、それぞれ異なるタイミングで交換されて新品になるため、性能が低下する度合いが構成物ごとに異なっている。そこで、飛行計画作成部107は、ドローン20の構成物の使用開始からの経過時間に応じて難易度を低くする飛行計画を作成してもよい。
飛行計画作成部107は、例えば、各構成物の使用開始からの経過時間の平均時間を算出し、算出した平均時間を使用開始からの経過時間として用いて、図11の例のように飛行計画の難易度を決定する。その場合、検査時期判定部104は、そうして算出される使用開始からの経過時間が長く且つそれらの構成物の重要度が高いほど飛行計画及び飛行履歴の差分を大きくする補正をして検査時期の判定を行う。
検査時期判定部104は、構成物と補正値とを対応付けた補正テーブルを用いてこの判定を行う。
図13は本変形例の別の補正テーブルの一例を表す。図13では、「フレーム」、「バッテリー、センサ装置」、「モータ、ローター、プロセッサ」という構成物に「1.0」、「1.2」、「1.4」という補正値が対応付けられている。この例では、「フレーム」よりも「バッテリー、センサ装置」の重要度が高く、それよりも「モータ、ローター、プロセッサ」の重要度が高いことが表されている。
図13は本変形例の別の補正テーブルの一例を表す。図13では、「フレーム」、「バッテリー、センサ装置」、「モータ、ローター、プロセッサ」という構成物に「1.0」、「1.2」、「1.4」という補正値が対応付けられている。この例では、「フレーム」よりも「バッテリー、センサ装置」の重要度が高く、それよりも「モータ、ローター、プロセッサ」の重要度が高いことが表されている。
本変形例では、ドローン20の飛行履歴通知部204が、各構成物と、それらの構成物の使用開始からの経過時間とを示す飛行履歴情報を送信することで、それらの経過時間を通知する。ここで、飛行履歴と通知してくるドローン20は複数台あり、どの構成物について使用開始からの経過時間を通知するかは、ドローン20によって異なっているものとする。
飛行履歴取得部103は、送信されてきた飛行履歴情報が示す各構成物の使用開始からの経過時間を取得する。検査時期判定部104は、取得された経過時間の平均値を算出し、算出した平均値に図12に表す補正テーブルで対応付けられている補正値を飛行時間に関する補正値として読み出す。また、検査時期判定部104は、送信されてきた飛行履歴情報が示す各構成物に図13に表す補正テーブルで対応付けられている補正値を読み出し、読み出した補正値の平均値を構成物に関する補正値として算出する。
検査時期判定部104は、飛行計画及び飛行履歴の差分を算出し、その値に飛行時間に関する補正値及び構成物に関する補正値を共に乗じて補正する。検査時期判定部104は、こうして補正した差分に基づいて、例えば実施例と同様に検査時期を判定する。本変形例では、使用開始からの経過時間の平均値を算出するのに用いられた構成物が重要であるほど、差分が大きな値に補正されることになる。そのため、重要な構成物ほど、より早い時期が検査時期と判定されることになるので、交換が遅れて不具合の原因になるという事態が起こりにくいようにすることができる。
[2-7]飛行指示
サーバ装置は、ドローン20の飛行を指示してもよい。
図14は本変形例で実現される機能構成を表す。図14では、図10に表す各部に加えて飛行指示部108を備えるサーバ装置10cが表されている。本変形例では、飛行計画作成部107が、作成した飛行計画を飛行指示部108に供給し、飛行履歴取得部103が、取得した飛行履歴を飛行指示部108に供給する。
サーバ装置は、ドローン20の飛行を指示してもよい。
図14は本変形例で実現される機能構成を表す。図14では、図10に表す各部に加えて飛行指示部108を備えるサーバ装置10cが表されている。本変形例では、飛行計画作成部107が、作成した飛行計画を飛行指示部108に供給し、飛行履歴取得部103が、取得した飛行履歴を飛行指示部108に供給する。
飛行指示部108は、飛行計画に従い自律飛行を行っているドローン20に対して、飛行計画に従わない飛行を指示する。飛行指示部108は、例えば、飛行計画と飛行履歴を比較して、飛行計画に対する追従率が閾値未満である場合に、ドローン20が飛行計画に従って飛行することができない状況であると判断する。飛行指示部108は、その状況を判断した場合に、飛行計画とは異なる飛行経路及び飛行速度等での飛行を指示する。
飛行指示部108は、例えば、飛行計画に示されていた経由地を通過しないで目的地により短い距離で到達する飛行経路での飛行を指示したり、飛行計画に示されていた到着予定時刻より遅い到着時刻になるが飛行速度を落として飛行するよう指示したりする。このように、不測の事態(故障等)が発生した場合に、飛行計画に無理に従わずに今の状況に合った飛行をさせることで、飛行計画どおりの飛行を継続しようとするよりも墜落等の危険を少なくすることができる。
[2-8]計画外飛行
図14の例では、ドローン20が飛行計画に従わない飛行(計画外飛行)を行うことになる。その場合に、検査時期判定部104は、飛行計画及び飛行履歴の差分に加え又は代えて、他の差分に基づいて検査時期を判定してもよい。本変形例では、飛行性能が共通するグループに分類される複数のドローン20について飛行計画及び飛行履歴が取得されるものとする。
図14の例では、ドローン20が飛行計画に従わない飛行(計画外飛行)を行うことになる。その場合に、検査時期判定部104は、飛行計画及び飛行履歴の差分に加え又は代えて、他の差分に基づいて検査時期を判定してもよい。本変形例では、飛行性能が共通するグループに分類される複数のドローン20について飛行計画及び飛行履歴が取得されるものとする。
飛行性能は、例えば、最高速度、最高加速度、最大積載重量、バッテリー容量及びセンサの精度等の情報によって表される。サーバ装置10cは、飛行性能が共通する各グループの属するドローンのリストを記憶しておく。このリストは、例えば、同一製品、同一製品シリーズ又は性能が共通する製品群に属するドローン20のリストである。本変形例の飛行履歴取得部103は、飛行計画に従った飛行の飛行履歴(計画内の飛行履歴)に加えて、計画外飛行(例えば上記の飛行指示部108の指示により飛行計画に従わずに行った飛行)における飛行履歴(計画外の飛行履歴)を取得する。
飛行履歴取得部103は、取得した計画内の飛行履歴及び計画外の飛行履歴をドローンIDに対応付けて蓄積しておく。検査時期判定部104は、計画内の飛行履歴については、上記の各例と同様に飛行計画との差分を算出する。検査時期判定部104は、ドローン20の計画外の飛行履歴については、そのドローン20と同じグループのドローン20の飛行履歴との差分を算出する。
検査時期判定部104は、判定対象のドローン20の計画外の飛行履歴が取得された場合、上記リストからそのドローン20と同じグループのドローン20のドローンIDを読み出す。検査時期判定部104は、読み出したドローンIDに対応付けて蓄積されている飛行履歴(計画内の飛行履歴及び計画外の飛行履歴)を飛行履歴取得部103に要求し、その応答で供給された飛行履歴を取得する。
検査時期判定部104は、取得した飛行履歴から、特定の飛行性能を示す値(飛行性能値)として、例えば各ドローン20の最高飛行速度、最高加速度及び最高上昇速度等を算出する。検査時期判定部104は、判定対象のドローン20の計画外の飛行履歴についても同じ飛行性能値を算出し、同じグループのドローン20の飛行性能値との差分を算出する。
検査時期判定部104は、計画内の飛行履歴については飛行計画との差分を算出する。検査時期判定部104は、そうしてそれぞれ算出した計画内の飛行履歴及び計画外の飛行履歴における差分に基づいて検査時期を判定する。検査時期判定部104は、例えば、計画外の飛行履歴用の検査時期テーブルを用いる。
図15は本変形例の検査時期テーブルの一例を表す。図15では、「Th31未満」、「Th31以上Th32未満」、「Th32以上」という計画外の飛行履歴の差分の範囲と、「しばらく不要」、「飛行時間T3の経過後」、「現在」という検査の時期とを対応付けた検査時期テーブルが表されている。検査時期判定部104は、上記のとおり算出した飛行性能値との差分に検査時期テーブルで対応付けられている検査の時期を読み出す。
検査時期判定部104は、計画内の飛行履歴についても図5の例と同様に検査の時期を読み出し、読み出した検査の時期のうちより早く訪れる方の時期を検査時期として判定する。以上のとおり、検査時期判定部104は、計画外の飛行履歴が取得されたドローン20については、そのドローン20と同じグループのドローン20の飛行履歴との差分にも基づいて検査時期の判定を行う。
計画外飛行を行った場合、飛行計画に従っていないから飛行履歴と飛行計画との差分がドローン20の性能の低下の度合いを表さない。一方、飛行性能が共通するドローン20同士の飛行履歴の差分であれば、飛行計画に従っていなくても、ドローン20の性能の低下の度合いを表すことになる。本変形例では、このように計画外の飛行履歴から算出されるドローン20の性能の低下の度合いを表す差分を用いることで、この差分を用いない場合に比べて、計画外飛行を行ったドローン20についてより適切な検査時期を判定することができる。
[2-9]飛行体
実施例では、自律飛行を行う飛行体として回転翼機型の飛行体が用いられたが、これに限らない。例えば飛行機型の飛行体であってもよいし、ヘリコプター型の飛行体であってもよい。また、自律飛行の機能も必須ではなく、割り当てられた飛行空域を割り当てられた飛行許可期間に飛行することができるのであれば、例えば遠隔から操縦者によって操作されるラジオコントロール型(無線操縦型)の飛行体が用いられてもよい。
実施例では、自律飛行を行う飛行体として回転翼機型の飛行体が用いられたが、これに限らない。例えば飛行機型の飛行体であってもよいし、ヘリコプター型の飛行体であってもよい。また、自律飛行の機能も必須ではなく、割り当てられた飛行空域を割り当てられた飛行許可期間に飛行することができるのであれば、例えば遠隔から操縦者によって操作されるラジオコントロール型(無線操縦型)の飛行体が用いられてもよい。
[2-10]各部を実現する装置
図4等に表す各機能を実現する装置がそれらの図とは異なっていてもよい。例えばサーバ装置が備える全ての機能又は一部の機能をドローンが備えていてもよく、例えばドローンが自ら飛行計画及び飛行履歴を取得して検査時期を判定してもよい。その場合はドローンが本発明の「情報処理装置」の一例となる。また、各機能が行う動作を他の機能が行ってもよいし、新たな機能に行わせてもよい。例えば検査時期報知部105が行う動作(検査時期の報知動作)を検査時期判定部104が行ってもよい。
図4等に表す各機能を実現する装置がそれらの図とは異なっていてもよい。例えばサーバ装置が備える全ての機能又は一部の機能をドローンが備えていてもよく、例えばドローンが自ら飛行計画及び飛行履歴を取得して検査時期を判定してもよい。その場合はドローンが本発明の「情報処理装置」の一例となる。また、各機能が行う動作を他の機能が行ってもよいし、新たな機能に行わせてもよい。例えば検査時期報知部105が行う動作(検査時期の報知動作)を検査時期判定部104が行ってもよい。
また、例えば検査時期報知部105が行う動作を分離して報知データを生成する機能と送信する機能を新たに設けてもよい。また、サーバ装置が備える各機能を2以上の装置がそれぞれ実現してもよい。例えば図14に表す飛行計画作成部107及び飛行指示部108を、事業者のシステムが実現してもよい。要するに、ドローン管理システム全体としてこれらの機能が実現されていれば、ドローン管理システムが何台の装置を備えていてもよい。
[2-11]発明のカテゴリ
本発明は、上述したサーバ装置のような情報処理装置と、ドローンのような飛行体(ドローンは情報処理装置を兼ねる場合もある)の他、それらの装置及び飛行体を備えるドローン管理システムのような情報処理システムとしても捉えられる。また、本発明は、各装置が実施する処理を実現するための情報処理方法としても捉えられるし、各装置を制御するコンピュータを機能させるためのプログラムとしても捉えられる。このプログラムは、それを記憶させた光ディスク等の記録媒体の形態で提供されてもよいし、インターネット等のネットワークを介してコンピュータにダウンロードさせ、それをインストールして利用可能にするなどの形態で提供されてもよい。
本発明は、上述したサーバ装置のような情報処理装置と、ドローンのような飛行体(ドローンは情報処理装置を兼ねる場合もある)の他、それらの装置及び飛行体を備えるドローン管理システムのような情報処理システムとしても捉えられる。また、本発明は、各装置が実施する処理を実現するための情報処理方法としても捉えられるし、各装置を制御するコンピュータを機能させるためのプログラムとしても捉えられる。このプログラムは、それを記憶させた光ディスク等の記録媒体の形態で提供されてもよいし、インターネット等のネットワークを介してコンピュータにダウンロードさせ、それをインストールして利用可能にするなどの形態で提供されてもよい。
[2-12]処理手順等
本明細書で説明した各実施例の処理手順、シーケンス、フローチャートなどは、矛盾がない限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書で説明した各実施例の処理手順、シーケンス、フローチャートなどは、矛盾がない限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
[2-13]入出力された情報等の扱い
入出力された情報等は特定の場所(例えばメモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
入出力された情報等は特定の場所(例えばメモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
[2-14]ソフトウェア
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
[2-15]情報、信号
本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
[2-16]システム、ネットワーク
本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
[2-17]「に基づいて」の意味
本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
[2-18]「及び」、「又は」
本明細書において、「A及びB」でも「A又はB」でも実施可能な構成については、一方の表現で記載された構成を、他方の表現で記載された構成として用いてもよい。例えば「A及びB」と記載されている場合、他の記載との不整合が生じず実施可能であれば、「A又はB」として用いてもよい。
本明細書において、「A及びB」でも「A又はB」でも実施可能な構成については、一方の表現で記載された構成を、他方の表現で記載された構成として用いてもよい。例えば「A及びB」と記載されている場合、他の記載との不整合が生じず実施可能であれば、「A又はB」として用いてもよい。
[2-19]態様のバリエーション等
本明細書で説明した各実施例は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
本明細書で説明した各実施例は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施例に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
Claims (9)
- 飛行計画及び当該飛行計画に従い飛行した飛行体の飛行履歴を取得する取得部と、
取得された前記飛行計画及び前記飛行履歴の差分に基づいて、当該飛行履歴が取得された飛行体について検査すべき時期の判定を行う判定部と
を備える情報処理装置。 - 前記飛行計画及び前記飛行履歴は複数の項目で表されており、
前記差分は前記項目ごとに表され、
前記判定部は、所定の項目の差分に基づいて、前記飛行体の構成物のうち当該項目に対応する構成物について検査すべき時期の判定を行う
請求項1に記載の情報処理装置。 - 前記判定部は、前記飛行体が障害物との衝突を回避する機能を有する場合に、前記飛行計画及び前記飛行履歴の差分から当該衝突を回避することで生じた部分を減じた差分に基づいて前記判定を行う
請求項1又は2に記載の情報処理装置。 - 前記判定部は、前記飛行体が特定の天気の期間に飛行した場合に、前記飛行計画及び前記飛行履歴の差分から当該期間に生じた部分を減じた差分に基づいて前記判定を行う
請求項1から3のいずれか1項に記載の情報処理装置。 - 前記判定部は、前記飛行計画及び前記飛行履歴の差分を当該飛行計画の難易度が高いほど小さく補正して前記判定を行う
請求項1から4のいずれか1項に記載の情報処理装置。 - 前記判定部は、前記飛行体の使用開始からの経過時間に応じて難易度を低くする飛行計画が取得された場合に、当該経過時間が長いほど当該飛行計画及び前記飛行履歴の差分を大きくする補正をして前記判定を行う
請求項1から5のいずれか1項に記載の情報処理装置。 - 前記判定部は、前記飛行体の構成物の使用開始からの経過時間に応じて難易度を低くする飛行計画が取得された場合に、当該経過時間が長く且つ当該構成物の重要度が高いほど当該飛行計画及び前記飛行履歴の差分を大きくする補正をして前記判定を行う
請求項1から6のいずれか1項に記載の情報処理装置。 - 前記飛行体は、飛行性能が共通するグループに分類され、
前記取得部は、飛行計画に従わない飛行における計画外の飛行履歴を取得し、
前記判定部は、前記計画外の飛行履歴が取得された飛行体については当該飛行体と同じグループの飛行体の飛行履歴との差分にも基づいて前記判定を行う
請求項1から7のいずれか1項に記載の情報処理装置。 - 飛行計画及び当該飛行計画に従い飛行した飛行体の飛行履歴を取得するステップと、
取得された前記飛行計画及び前記飛行履歴の差分に基づいて、当該飛行履歴が取得された飛行体について検査すべき時期の判定を行うステップと
を有する情報処理方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/955,233 US11645879B2 (en) | 2018-01-23 | 2019-01-22 | Information-processing device and information-processing method for determining an inspection timing for an aerial vehicle |
JP2019567083A JP6971331B2 (ja) | 2018-01-23 | 2019-01-22 | 情報処理装置及び情報処理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-009015 | 2018-01-23 | ||
JP2018009015 | 2018-01-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019146581A1 true WO2019146581A1 (ja) | 2019-08-01 |
Family
ID=67394729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/001814 WO2019146581A1 (ja) | 2018-01-23 | 2019-01-22 | 情報処理装置及び情報処理方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11645879B2 (ja) |
JP (1) | JP6971331B2 (ja) |
WO (1) | WO2019146581A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7535150B1 (ja) | 2023-03-29 | 2024-08-15 | Kddi株式会社 | 情報処理装置、情報処理方法及びプログラム |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017116860A1 (en) | 2015-12-31 | 2017-07-06 | Unmanned Innovation, Inc. | Unmanned aerial vehicle rooftop inspection system |
WO2019168079A1 (ja) * | 2018-02-28 | 2019-09-06 | 株式会社ナイルワークス | 安全性を向上した農業用ドローン |
US11814158B1 (en) | 2022-04-28 | 2023-11-14 | Beta Air, Llc | Systems and methods for determining areas of discrepancy in flight for an electric aircraft |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004526258A (ja) * | 2001-04-09 | 2004-08-26 | ベアーズワース、ルイス、ジョン、コールマン | 空港への航空機到着を最適化するスケジュールに基づく管理システム |
US9310222B1 (en) * | 2014-06-16 | 2016-04-12 | Sean Patrick Suiter | Flight assistant with automatic configuration and landing site selection method and apparatus |
US20170323403A1 (en) * | 2016-05-06 | 2017-11-09 | General Electric Company | Constrained cash computing system to optimally schedule aircraft repair capacity with closed loop dynamic physical state and asset utilization attainment control |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7881833B2 (en) * | 2004-03-12 | 2011-02-01 | Brian E. Turung | Airplane emergency navigational system |
US7259693B2 (en) * | 2004-04-14 | 2007-08-21 | Miller Russell E | Air vessel tracking system and method |
JP2006082775A (ja) | 2004-09-17 | 2006-03-30 | Hiroboo Kk | 無人飛行体制御システム及び方法 |
US10564650B2 (en) * | 2017-07-27 | 2020-02-18 | Intel Corporation | Trajectory tracking controllers for rotorcraft unmanned aerial vehicles (UAVS) |
-
2019
- 2019-01-22 US US16/955,233 patent/US11645879B2/en active Active
- 2019-01-22 WO PCT/JP2019/001814 patent/WO2019146581A1/ja active Application Filing
- 2019-01-22 JP JP2019567083A patent/JP6971331B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004526258A (ja) * | 2001-04-09 | 2004-08-26 | ベアーズワース、ルイス、ジョン、コールマン | 空港への航空機到着を最適化するスケジュールに基づく管理システム |
US9310222B1 (en) * | 2014-06-16 | 2016-04-12 | Sean Patrick Suiter | Flight assistant with automatic configuration and landing site selection method and apparatus |
US20170323403A1 (en) * | 2016-05-06 | 2017-11-09 | General Electric Company | Constrained cash computing system to optimally schedule aircraft repair capacity with closed loop dynamic physical state and asset utilization attainment control |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7535150B1 (ja) | 2023-03-29 | 2024-08-15 | Kddi株式会社 | 情報処理装置、情報処理方法及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
JP6971331B2 (ja) | 2021-11-24 |
US20200327747A1 (en) | 2020-10-15 |
JPWO2019146581A1 (ja) | 2020-12-17 |
US11645879B2 (en) | 2023-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019146581A1 (ja) | 情報処理装置及び情報処理方法 | |
US11634225B2 (en) | Information-processing device and information-processing method | |
US20200365039A1 (en) | Information processing apparatus | |
US20080035784A1 (en) | Aircraft wake vortex predictor and visualizer | |
US20140277853A1 (en) | System and method for determining aircraft operational parameters and enhancing aircraft operation | |
JPWO2019146580A1 (ja) | 情報処理装置及び情報処理方法 | |
US20140229097A1 (en) | Environmental Waypoint Insertion | |
US20220307838A1 (en) | System and method for generating an aircraft flight trajectory | |
US12057020B2 (en) | Systems and methods for predicting flight data | |
JP7071544B2 (ja) | 情報処理装置 | |
JP7186280B2 (ja) | 情報処理装置及びプログラム | |
US11847577B2 (en) | Auxiliary power unit usage prediction | |
JP7164633B2 (ja) | 情報処理装置 | |
JP7171364B2 (ja) | 情報処理装置 | |
US10339816B2 (en) | Automatic aircraft monitoring and operator preferred rerouting system and method | |
CN109492912A (zh) | 一种飞行风险提示方法、用户终端及服务器 | |
WO2020153170A1 (ja) | 情報処理装置 | |
CN107544536B (zh) | 用于基于性能的到达以及排序和间距的方法和系统 | |
WO2021092627A1 (en) | Aerial ride quality improvement system using feedback | |
WO2020189607A1 (ja) | 情報処理装置 | |
CN116562447A (zh) | 针对航班过站的告警方法、系统、设备及存储介质 | |
JP7106424B2 (ja) | 情報処理装置 | |
US20210375142A1 (en) | Cloud service integration with onboard vehicle system | |
WO2020189608A1 (ja) | 情報処理装置 | |
US10755490B2 (en) | Data broker engine for managing data exchanges between on-board and off-board systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19743282 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019567083 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19743282 Country of ref document: EP Kind code of ref document: A1 |