WO2019143030A1 - 규칙적인 메조다공성의 주골격을 갖는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 제조방법 - Google Patents

규칙적인 메조다공성의 주골격을 갖는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 제조방법 Download PDF

Info

Publication number
WO2019143030A1
WO2019143030A1 PCT/KR2018/015975 KR2018015975W WO2019143030A1 WO 2019143030 A1 WO2019143030 A1 WO 2019143030A1 KR 2018015975 W KR2018015975 W KR 2018015975W WO 2019143030 A1 WO2019143030 A1 WO 2019143030A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
catalyst
iron
fischer
mesoporous
Prior art date
Application number
PCT/KR2018/015975
Other languages
English (en)
French (fr)
Inventor
하경수
안창일
전종현
배종욱
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Publication of WO2019143030A1 publication Critical patent/WO2019143030A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/341Apparatus, reactors with stationary catalyst bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products

Definitions

  • the present invention relates to a cobalt-iron hybrid catalyst for Fischer-Tropsch synthesis reaction, a process for producing the same, and a process for producing a hydrocarbon using the process.
  • the present invention relates to a cobalt-iron hybrid catalyst for Fischer-Tropsch synthesis reaction having a regular mesoporous main framework in which cobalt oxide and iron oxide are uniformly mixed, a hard templating method ) And a process for the production of hydrocarbons using the same.
  • Olefin is a generic term for aliphatic unsaturated hydrocarbons having carbon double bonds and includes ethylene, propylene, and butene, and is a key material in the petrochemical industry that can be used as a raw material for various high-molecular materials, industrial materials, and fine chemicals. Olefins are recognized as a major factor in the overall petrochemical industry, and in response to the decline in olefin economy due to high oil prices, the raw material for olefin synthesis is replaced by more economical alternative oil sources (eg, coal, natural gas, shale gas, Biomass), the need for research and development is increasing.
  • oil sources eg, coal, natural gas, shale gas, Biomass
  • syngas methanol-to-olefin
  • CO + H 2 methanol-to-propylene
  • Fischer-Tropsch synthesis FTS
  • STO syngas-to-olefin
  • the synthetic gas-based olefin conversion technology is divided into a Fischer-Tropsch synthesis route based on iron-based catalysts and a stepwise synthesis route of syngas-methanol-olefins.
  • a Fischer-Tropsch synthesis route based on iron-based catalysts
  • a stepwise synthesis route of syngas-methanol-olefins In addition to light olefins as main products, naphtha and liquefied petroleum gas ; LPG) is obtained as a by-product.
  • the Fischer-Tropsch synthesis reaction is a kind of polymerization reaction in which a synthesis gas is used to polymerize hydrocarbon compounds having a wide carbon number distribution.
  • the reaction proceeds in the presence of iron or cobalt-based catalysts as follows.
  • Reaction 1 and Reaction 2 are reactions in which the synthesis gas is polymerized with hydrocarbons, and in particular, water (reaction formula 1) reacts with carbon monoxide again to form hydrogen gas and carbon dioxide ; WGS) (Scheme 3). Hydrogen produced by this water gas conversion reaction changes the H 2 / CO molar ratio of the synthesis gas. Especially, the change of the H 2 / CO molar ratio affects the activity of the Fischer-Tropsch synthesis reaction.
  • the Fischer-Tropsch synthesis reaction is considered to exhibit the highest activity when the molar ratio of H 2 / CO is 2.0, but since the iron-based catalyst exhibits high activity in the water gas conversion reaction, And exhibits excellent activity even in a wide range of H 2 / CO molar ratio (0.7 to 2.0).
  • iron-based catalysts have a disadvantage in that the operating temperature range (300 ° C or higher) is higher than that of cobalt-based catalysts, the iron is cheaper than cobalt by about 1/200 and ruthenium by about 1 / 50,000.
  • high-boiling hydrocarbons such as liquid phase (gasoline, diesel) and solid phase (paraffin wax) are predominantly produced selectively through the Fischer-Tropsch synthesis reaction at low temperatures (200-250 ° C.)
  • Hydrocracking processes for boiling hydrocarbons are generally required, while iron-based catalysts are produced by Fischer-Tropsch synthesis reactions at high temperatures (above 300 ° C.), mainly C 2 -C 2 , such as ethene, propene, 4 range of light olefins and is advantageous for the selective production of light olefins as compared to a low-temperature Fischer-Tropsch synthesis reaction using a cobalt-based catalyst.
  • These light olefins can be used as raw materials for producing various high value-added petrochemical products.
  • the iron-based Fischer-Tropsch synthesis catalyst is prepared mainly by precipitation or melting. In the case of precipitation, it is produced through precipitation, washing, drying and calcination using an iron precursor and precipitant. In the case of the melting method The iron ores are melted to prepare a catalyst.
  • the catalysts prepared by the precipitation method are generally capable of synthesizing hydrocarbons having a high boiling point. However, in a moving bed type reaction system (for example, a slurry reactor, a bubbling fluidized bed reactor, a circulating fluidized bed reactor) rather than a fixed bed, So that the activity is significantly reduced.
  • the iron-based catalyst for the Fischer-Tropsch synthesis reaction is a non-reducing inorganic material such as alumina (Al 2 O 3 ), silica (SiO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ) It is known that when the oxides are used as a support or structural stabilizer, the activity of the catalyst is enhanced.
  • a solid acid catalyst such as zeolite is used as a support or a shell material of a catalyst in the form of a core-
  • Silica, alumina and zeolite among well-known non-reducible inorganic oxides are used as supports for the iron-based high temperature Fischer-Tropsch synthesis reaction catalysts synthesized by impregnation.
  • a liquid phase reaction system for example, a slurry reactor, a bubbling fluidized bed reactor, a circulating fluidized bed reactor
  • the mass fraction of the non-reducible inorganic oxide having a high specific surface area contained in the catalyst is increased, the dispersibility of iron as the active ingredient is increased, positively affecting the activity of the catalyst.
  • a typical type of iron-based Fischer-Tropsch synthesis reaction catalyst is a highly dispersed iron, which is an active material, on a silica or alumina support.
  • a small amount of catalyst Is added by impregnation.
  • zeolites with unique properties could only be used in limited areas due to the small size of the pores.
  • Regular mesoporous materials which have been developed as an alternative to these zeolites, have been used extensively as supports in the catalyst field, due to their unique regular pore structure, wide specific surface area and high pore volume.
  • the present inventors have made various attempts to utilize a porous material as a support for a heterogeneous catalyst, and have found that the support of supports such as ordered mesoporous carbons (OMC), ordered mesoporous alumina (OMA) Inhibition of sintering of active materials by confinement effect of pore structure by directly inserting active material into pores [Yu, Shiyong, et al. International Journal of Hydrogen Energy 40 (2015) 870-877; Kim, Daegak, et al. Chemical Engineering Journal 316 (2017) 1011-1025; Lim, Jemi, et al. Fuel 169 (2016) 25-32; Kim, Tae-Wan, et al. Fuel 160 (2015) 393-403; Hwang, Jongkook, et al. Journal of Materials Chemistry A 3 (2015) 23725-23731; Ha, Kyoung-Su, et al. Chemical Communications 49 (2013) 5141-5143].
  • OMC ordered mesoporous carbons
  • OMA ordered mesopor
  • mesoporous supports are frequently used due to the effects of reducing the production cost of catalysts, improving thermal and mechanical strength, and interaction between active material and support (Fe, Co - SiO 2 , Al 2 O 3 , TiO 2 ) If the active material can not be highly dispersed on the support, the reaction active site is reduced due to the rapid sintering of the active material that is unevenly distributed on the surface, and the lifetime of the catalyst is drastically reduced.
  • support-based catalysts generally have a limited amount of loading of the active substance on the surface of the support.
  • the optimum loading amount of the active material contained in the reaction catalyst is about 15 to 30% by weight based on the total catalyst weight.
  • the present inventors synthesized a three-dimensional porous metal-based hybrid structure catalyst through a hard templating method using mesoporous silica to maximize the reaction active sites exposed on the surface of the catalyst, while using zirconia (ZrO 2 )
  • the catalysts for the synthesis of porous cobalt-based Fischer-Tropsch synthesis catalysts have been developed which can stably maintain the porous structure even under high-temperature hydrogenation conditions [Ahn, Chang-Il, et al. Applied Catalysis B: Environmental 180 (2016) 139-149; Ahn, Chang-Il, et al. Chemical Communications 52 (2016) 4820-4823; Korean Patent No. 1569638; Korean Patent Application Publication No. 2017-0009776].
  • the present invention is different from the conventional support-based iron-based Fischer-Tropsch synthesis reaction catalyst, which requires various promoters, and has a structure having a regular mesoporous main skeleton and a structural stability, To provide a cobalt-iron hybrid catalyst for synthesis reaction.
  • Another object of the present invention is to provide a method for producing a mesoporous cobalt-iron hybrid catalyst for the above-mentioned Fischer-Tropsch synthesis reaction.
  • a Fischer-Tropsch synthesis reaction characterized by having a regular mesoporous main framework in which cobalt oxide and iron oxide are uniformly mixed, A cobalt-iron hybrid catalyst is provided.
  • the mesoporous main skeleton contains, as a main component, a compound represented by the following formula (1)
  • a and b are molar ratios satisfying 0.1? A? 1.0 and 1.0? B? 4.0.
  • the mesoporous main skeleton is formed using a mesoporous template.
  • the mesoporous template is SBA-15, SBA-16, KIT-6, MCM-41, MCM- -8, AMS-10, FDU-1, FDU-2 and FDU-12.
  • the cobalt-iron hybrid catalyst for Fischer-Tropsch synthesis reaction has a specific surface area of 40 to 100 m 2 / g and an average pore diameter of 4 nm to 15 nm.
  • the cobalt-iron hybrid catalyst for the Fischer-Tropsch synthesis reaction according to the present invention is synthesized or selected so that the product of the desired Fischer-Tropsch synthesis reaction has a pore size that can be selectively formed and discharged.
  • alumina as a structural enhancer is added to the inside or the surface of the pores in the mesoporous main skeleton in which cobalt oxide and iron oxide are uniformly mixed. Is further supported.
  • alumina is supported in an amount of 2 to 12 wt% based on the total weight of the catalyst.
  • the specific surface area after alumina is supported is 40 to 100 m 2 / g and the average diameter of the pores is 5 to 20 nm.
  • Fischer-Tropsch synthesis reaction for a cobalt-iron in the hybrid catalyst the main skeleton of the mesoporous CoFe a O b, Al 2 O 3 -CoFe a O b or a mixture thereof (wherein, a And b is a molar ratio and satisfies 0.1? A? 1.0 and 1.0? B? 4.0).
  • a method for producing a ferroelectric film comprising: (1) preparing a mixed solution in which a cobalt precursor and an iron precursor are uniformly dissolved; (2) pouring the mixed solution of the step (1) into a mesoporous mold and mixing it appropriately, followed by drying and firing to obtain a mesoporous template-cobalt-iron structure; And (3) removing the mesoporous template from the structure obtained in step (2) to form a mesoporous three dimensional main skeleton in which cobalt oxide and iron oxide are uniformly mixed.
  • a process for preparing a mesoporous cobalt-iron hybrid catalyst for reaction is provided.
  • the cobalt precursor is selected from the group consisting of cobalt nitrate (Co (NO 3 ) 2 .6H 2 O), cobalt chloride CoCl 2 .6H 2 O) and cobalt acetate ((CH 3 COO) 2 Co 4H 2 O), and the iron precursor is at least one selected from the group consisting of iron nitrate nona hydrate (Fe (NO 3 ) 3 ⁇ 9H 2 O), iron acetate ((CH 3 COO) 2 Fe), and iron chloride hexahydrate (FeCl 3 .6H 2 O).
  • the solvent of the mixed solution of step (1) is selected from the group consisting of distilled water, methanol, ethanol and ethylene glycol One or more selected.
  • the cobalt precursor and the iron precursor in step (1) have a molar ratio of cobalt to iron of from 1: 1 to 1 : 0.1.
  • the mesoporous template is SBA-15, SBA-16, KIT-6, MCM At least one silica selected from the group consisting of -41, MCM-48, HMS, AMS-8, AMS-10, FDU-1, FDU-2 and FDU-12.
  • the mesoporous template is removed by adding an acidic or basic substance to the structure obtained in step (2).
  • the acidic substance is hydrofluoric acid (HF) and the basic substance is sodium hydroxide (NaOH).
  • the method for preparing a mesoporous cobalt-iron hybrid catalyst for Fischer-Tropsch synthesis reaction comprises the steps of: (4) Further comprising supporting alumina as a structural enhancing agent.
  • the catalyst formed in the step (3) is impregnated with an alumina precursor solution, followed by drying and calcining, .
  • the aluminum precursor is aluminum nitrate nonahydrate (Al (NO 3 ) 3 .9H 2 O), aluminum Acetate (Al (OH) (C 2 H 3 O 2 ) 2 ) and aluminum chloride hexahydrate (AlCl 3 .6H 2 O).
  • alumina is supported in an amount of 2 to 12 wt% based on the total weight of the catalyst.
  • a process for selectively producing heavy olefins and light olefins from synthesis gas using a Fischer-Tropsch synthesis reaction comprising the steps of: (a) Applying a porous cobalt-iron hybrid catalyst to a fixed bed reactor for Fischer-Tropsch synthesis reaction; (b) reducing the catalyst of step (a) under a high-temperature hydrogen atmosphere to activate the catalyst; And (c) performing a Fischer-Tropsch synthesis reaction using an activated catalyst.
  • the mesoporous cobalt-iron hybrid catalyst for the Fischer-Tropsch synthesis reaction of the present invention is fed into a Fischer- When applied to a fixed bed reactor for synthesis reaction, it further comprises a diluent.
  • the diluent is selected from the group consisting of powdered or ball-like ⁇ -alumina ( ⁇ -Al 2 O 3 ) Or zirconia (ZrO 2 ), and the catalyst and the diluent are used in a weight ratio of 1: 0 to 1:10.
  • the Fischer-Tropsch synthesis reaction is carried out at a reaction temperature of 230 to 350 DEG C, a reaction pressure of 10 to 30 bar and a pressure of 2,000 to 64,000 L / kg cat./h. < / RTI >
  • the carbon-carbon content of the C 2 -C 4 light hydrocarbons and the C 5 + heavy oil hydrocarbons in the reaction product is greater than or equal to 20% and greater than or equal to 60 %.
  • the mesoporous cobalt-iron hybrid catalyst for the Fischer-Tropsch synthesis reaction according to the present invention stably maintains high activity by suppressing sintering of the active ingredient even at a high reaction temperature (300 ° C.)
  • the porous structure is stably maintained even under the reaction and reduction conditions, and it is advantageous in discharging reaction products due to smooth mass transfer of reactants and reaction products (hydrocarbons) derived from the stability of the structure.
  • it has activity and stability of high-temperature Fischer-Tropsch synthesis reaction according to reaction conditions and changes in catalyst component composition without addition of cocatalyst, and is advantageous for selective production of mineral oil hydrocarbons.
  • the mesoporous cobalt-iron hybrid catalyst for the Fischer-Tropsch synthesis reaction according to the present invention can be prepared by a conventional non-reducible support-based cobalt-based catalyst for low temperature Fischer-Tropsch synthesis reaction or an iron-based high temperature Fischer-Tropsch synthesis Unlike the reaction catalyst, iron and cobalt as active materials constitute the three-dimensional main skeleton of the catalyst and are themselves active sites, so that the number of active sites is significantly larger than that of a catalyst in which an active material is dispersed on the surface of a conventional support And is advantageous in terms of mass transfer of the reactants or products, and is advantageous in suppressing the deactivation of the catalyst and the reduction in the lifetime due to sintering of the active material.
  • this catalyst which uses only a small amount of the structural enhancer without using a support, unlike the case where the performance of the catalyst is changed by the interaction between the supports in the conventional catalyst using the support, It is possible to minimize the effects of various variables that may affect the performance of the system.
  • FIG. 1 is a graph showing XRD analysis results of crystal structures of Examples 1 and 2 according to an embodiment of the present invention.
  • FIG. 1 is a graph showing XRD analysis results of crystal structures of Examples 1 and 2 according to an embodiment of the present invention.
  • Figure 2 is a graph of the catalyst activity test results for carbon monoxide conversion versus time on stream (TOS) for about 60 hours of the catalysts of Examples 1 and 2 according to one embodiment of the present invention.
  • FIG. 3 is a diagram showing TEM measurement results of the catalyst of Example 1 before and after the reaction according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing TEM measurement results of the catalyst of Example 1 before and after the reaction according to an embodiment of the present invention.
  • a Fischer-Tropsch synthesis reaction characterized by having a regular mesoporous main framework in which cobalt oxide and iron oxide are uniformly mixed, A cobalt-iron hybrid catalyst is provided.
  • the mesoporous main skeleton of the cobalt-iron hybrid catalyst for Fischer-Tropsch synthesis reaction may contain, as a main component, a compound represented by the following chemical formula 1:
  • a and b are molar ratios satisfying 0.1? A? 1.0 and 1.0? B? 4.0.
  • the compound of formula 1 may mean that a part of cobalt is substituted with iron.
  • the iron content in the catalyst is preferably in the range of 0.1 to 1.0 mole based on 1 mole of cobalt metal.
  • the mesoporous main skeleton can be formed by using mesoporous silica as a hard template.
  • the highly ordered regular mesoporous structure of the cobalt-iron hybrid catalyst of the present invention can be prepared using the hard templating method.
  • the inner space of the pores used as the mold material can form the main skeleton of the corresponding catalyst.
  • a transition metal precursor solution dissolved in a solvent inside the pores of the mesoporous silica is infiltrated through capillary phenomenon, and then the solvent is evaporated and heat treated.
  • the silica is then removed by treatment with a base or acid to form a catalyst of regularly ordered structures composed of the active material of the catalyst skeleton.
  • This is a negative replica of the mesoporous silica since it is in the shape mimicking the shape of the pore space of the mesoporous silica.
  • a mesoporous silica having a regularly arranged pore structure of two-dimensional or three-dimensional morphology (e.g., hexagonal, isotropic cubic, etc.) can be used have.
  • SBA-15, SBA-16, KIT-6, MCM-41, MCM-48, HMS, AMS-8, AMS-10 and FDU- 1, FDU-2, and FDU-12 may be used.
  • KIT-6 is more preferable.
  • Such a hard mold material can be directly manufactured or a commercially available product can be purchased and used.
  • the mesoporous silica synthesized to such a molar ratio has a specific surface area in the range of about 500 to 800 m 2 / g and an average diameter of generated pores of about 5 to 8 nm, and has a three-dimensional shape in which pore structures are regularly arranged .
  • the pore size of the mesoporous cobalt-iron hybrid catalyst may be similar to that of the mesoporous silica since the main skeleton of the catalyst prepared using the mesoporous silica as the template material is formed from the pores of the mesoporous silica.
  • the mesoporous cobalt-iron hybrid catalysts derived from high specific surface area mesoporous silica may have a specific surface area of 40 to 100 m 2 / g and an average pore size of 4 to 15 nm.
  • the cobalt-iron hybrid catalyst for the Fischer-Tropsch synthesis reaction according to the present invention can be synthesized or selected so that the product of the desired Fischer-Tropsch synthesis can have a pore size that can selectively be formed and discharged.
  • the pore structure on the surface of the cobalt-iron hybrid catalyst for Fischer-Tropsch synthesis reaction of the present invention which is manufactured using a mesoporous silica template material having a highly aligned regular three-dimensional pore structure, is highly developed . Gaseous, liquid or solid hydrocarbons produced during the Fischer-Tropsch synthesis reaction can be discharged smoothly, and there is little possibility that high boiling hydrocarbons are deposited on the surface of the catalyst.
  • the rate of catalyst deactivation can be mitigated by still retaining a plurality of hydrogenation active sites on the surface of the catalyst.
  • the high pore volume and high surface area three-dimensional structure of these catalysts can greatly contribute to the increase of the conversion rate and the inhibition of inactivation of the reaction.
  • the cobalt-iron hybrid catalyst according to the present invention can be usefully used in a high temperature Fischer-Tropsch synthesis reaction.
  • mesoporous cobalt (ordered mesoporous Co 3 O 4 ) -based catalysts are composed of cobalt oxide only in a three-dimensional skeleton without any additional structural enhancer, so that the structure due to the phase change of metal oxides under hydrogen- Severe deformation or collapse may occur.
  • the cobalt-iron hybrid catalyst for the Fischer-Tropsch synthesis reaction since the main skeleton is substituted with cobalt and iron, some iron oxides not reduced and cobalt-iron (Spinel structure such as CoFe 2 O 4 ) or the like serves as a structure enhancing agent for capturing a three-dimensional framework, so that the porous structure can be kept from collapsing even under prolonged hydrogenation reaction conditions.
  • spinel structure such as CoFe 2 O 4
  • Alumina in a cobalt-iron hybrid catalyst for Fischer-Tropsch synthesis reaction according to the present invention, in a mesoporous main skeleton in which cobalt oxide and iron oxide are uniformly mixed, Alumina may be further supported as a structural enhancing agent.
  • alumina in the cobalt-iron hybrid catalyst for Fischer-Tropsch synthesis reaction according to the present invention, can be supported in an amount of 12 wt% or less, preferably 2 to 12 wt%, based on the total weight of the catalyst .
  • the alumina of the stoichiometric content plays a role of stably maintaining the porous structure even during the phase change of the transition metal under the high temperature hydrogenation reaction, and the catalyst is rapidly deactivated by the sintering of the active material due to the collapse of the porous structure ,
  • the stability of the catalyst can be greatly enhanced. If the alumina is supported in an amount exceeding 12% by weight, it may be deposited on the surface of the porous structure having the active sites of the catalyst surface to lower the activity of the catalyst.
  • alumina When a small amount of alumina as a structural enhancer is impregnated into the mesoporous cobalt-iron hybrid catalyst of the present invention by impregnation, alumina penetrates into the pores formed on the catalyst surface, thereby reducing the specific surface area and pore volume of the catalyst, And the average diameter of the catalyst pores may slightly increase due to the formation of intraparticle pores between some catalysts and alumina.
  • the alumina supported mesoporous cobalt-iron hybrid catalyst may have a specific surface area of 40 to 100 m 2 / g and an average pore diameter of 5 to 20 nm.
  • the specific surface area of the catalyst is less than 40 m < 2 > / g, the active sites exposed on the surface of the catalyst may be reduced and the catalyst activity may be reduced.
  • a mesoporous cobalt-iron hybrid catalyst produced by a hard mold method using mesoporous silica as a hard mold material it can have a specific surface area of about 100 m 2 / g.
  • the activity of the Fischer-Tropsch synthesis reaction and the yield of the product may be greatly influenced by the pore structure and size of the porous catalyst.
  • the pore diameter of the porous catalyst is small, the porosity increases and the surface area increases.
  • the space to grow can be reduced and the diffusion rate of the reactants may be slowed, so that the selectivity to the high-boiling hydrocarbon and the yield may be lowered. Therefore, the size, structure and distribution of the catalyst pores are very important for the selective production of the desired product.
  • the mesoporous main skeleton is CoFe a O b , Al 2 O 3 -CoFe a O b or And mixtures thereof, wherein a and b are mole ratios, 0.1? A? 1.0 and 1.0? B? 4.0.
  • the cobalt-iron hybrid catalyst for Fischer-Tropsch synthesis reaction according to the present invention can be used in the Fischer-Tropsch synthesis reaction in a wide temperature range of 230 to 350 ° C, preferably 250 to 350 ° C.
  • a method for producing a ferroelectric film comprising: (1) preparing a mixed solution in which a cobalt precursor and an iron precursor are uniformly dissolved; (2) pouring the mixed solution of the step (1) into a mesoporous mold and sufficiently mixing it, followed by drying and firing to obtain a mesoporous template-cobalt-iron structure; And (3) removing the mesoporous template from the structure obtained in step (2) to form a mesoporous three dimensional main skeleton in which cobalt oxide and iron oxide are uniformly mixed.
  • a process for preparing a mesoporous cobalt-iron hybrid catalyst for reaction is provided.
  • a nitrate salt, an acetate salt, a chloride salt, a bromide salt or the like can be used, and among these, a nitrate salt is preferable.
  • a cobalt precursor composed of cobalt nitrate (Co (NO 3 ) 2 .6H 2 O), cobalt chloride (CoCl 2 ⁇ 6H 2 O) and cobalt acetate ((CH 3 COO) 2 Co ⁇ 4H 2 O) May be used.
  • the iron precursor a nitrate salt, an acetate salt, a chloride salt, a bromide salt or the like can be used. Of these, a nitrate salt is preferable.
  • the iron precursor is composed of iron nitrate nonahydrate (Fe (NO 3 ) 3 .9H 2 O), iron acetate ((CH 3 COO) 2 Fe) and iron chloride hexahydrate (FeCl 3 .6H 2 O) May be used.
  • the solvent of the mixed solution may be a mixture of one or more solvents selected from distilled water, methanol, ethanol and ethylene glycol.
  • the cobalt precursor and the iron precursor may be mixed such that the molar ratio of cobalt to iron is from 1: 1 to 1: 0.1.
  • the mesoporous template is uniformly mixed with a cobalt-iron precursor aqueous solution to evenly mix the precursor solution so that it penetrates well into the pores of the mesoporous template.
  • the mesoporous template may be heat-treated at a temperature of about 60 to 120 DEG C for at least 1 hour before mixing the precursor solution to remove moisture permeated into the pores of the mesoporous template and further prevent moisture from penetrating.
  • the mixed solution of cobalt-iron precursor is permeated into the pores of the mesoporous template by the capillary phenomenon. Thereafter, the mixture is dried in an oven maintained at a temperature of 100 DEG C or lower for 1 hour or more.
  • the catalyst dried at 80 ° C for about 12 hours at maximum can be heated to 400 to 600 ° C at a rate of 1 ° C / minute in air and then fired at the same temperature for 3 to 5 hours.
  • a mesoporous template-cobalt-iron structure is obtained by mixing a mesoporous template with a mixed solution of a cobalt precursor and an iron precursor to form a gel, and drying and firing the gel in the air.
  • mesoporous silica can be used as the mesoporous template.
  • SBA-15, SBA-16, KIT-6, MCM-41, MCM-48, HMS, AMS-8, AMS-10 and FDU- 1, FDU-2, and FDU-12 may be used.
  • KIT-6 is more preferable.
  • the mesoporous template can be removed by adding an acidic or basic material to the mesoporous template-cobalt-iron structure obtained in step (2).
  • a mesoporous cobalt-iron hybrid catalyst having a three-dimensional structure can be obtained by removing the mesoporous silica used as a template material from the mesoporous template-cobalt-iron structure obtained in the step (2).
  • the silica can be chemically removed by treating with an acidic or basic substance.
  • an acidic substance a hydrofluoric acid (HF) aqueous solution can be used and as the basic substance, sodium hydroxide (NaOH) aqueous solution can be used. It is not.
  • the template material can be removed using sodium hydroxide, which is a strong base, treated with an aqueous sodium hydroxide solution at a concentration of 2 M and then repeatedly washed with organic and inorganic solvents to easily remove the template material can do.
  • sodium hydroxide which is a strong base
  • the catalyst of the present invention prepared by the hard mold technique using mesoporous silica, KIT-6 as a template material, has a highly ordered regular pore structure and mesoporous cobalt - iron hybrid (meso-CoFe a O x) as the catalyst has a specific surface area of about 40 to 100 m2 / g approximately.
  • a method for preparing a mesoporous cobalt-iron hybrid catalyst for a Fischer-Tropsch synthesis reaction of the present invention comprises the steps of: (4) forming a mesoporous three-
  • the method may further include the step of further supporting alumina as a structural enhancing agent on the surface.
  • alumina may be further supported by impregnating the alumina precursor solution with the catalyst formed in step (3), followed by drying and calcining.
  • alumina which acts as a structural enhancer in step (4) above, can be supported evenly on the surface of the catalyst or in the pores using a typical impregnation method.
  • an aqueous solution precursor such as a nitrate salt, a chloride salt or a carboxylic acid salt can be used.
  • the aluminum precursor or the alumina precursor is selected from the group consisting of aluminum nitrate nonahydrate (Al (NO 3 ) 3 .9H 2 O), aluminum acetate (Al (OH) (C 2 H 3 O 2 ) 2 ) and aluminum chloride hexahydrate AlCl 3 .6H 2 O).
  • the alumina used as the structural enhancing agent in the process for preparing the mesoporous cobalt-iron hybrid catalyst for the Fischer-Tropsch synthesis reaction of the present invention may be supported in an amount of 2 to 12 wt% based on the total weight of the catalyst.
  • the content of alumina satisfies the above range, the effect of reducing the activity of the catalyst due to excessive adsorption of the structure promoting agent on the catalyst surface can be suppressed.
  • the aluminum precursor aqueous solution and the catalyst produced in step (3) may be mixed and then slowly dried at 70 to 90 ° C for 6 to 24 hours. At a rate of 1 ° C / To 550 DEG C, and then fired at 550 DEG C for 3 hours or longer.
  • a process for selectively producing heavy olefins and light olefins from synthesis gas using a Fischer-Tropsch synthesis reaction comprising the steps of: (a) Applying a porous cobalt-iron hybrid catalyst to a fixed bed reactor for Fischer-Tropsch synthesis reaction; (b) reducing the catalyst of step (a) under a high-temperature hydrogen atmosphere to activate the catalyst; And (c) performing a Fischer-Tropsch synthesis reaction using an activated catalyst.
  • Gas-to-liquid (GTL) technology a process that converts synthesis gas to high boiling point hydrocarbons by chain-chain reaction of hydrocarbon chains, is based on Fischer-Tropsch synthesis for synthesis gas synthesis and hydrocarbon synthesis.
  • Fischer-Tropsch synthesis mainly liquid or solid linear paraffinic hydrocarbons are produced.
  • high-temperature Fischer-Tropsch synthesis using iron-based catalysts mainly hydrocarbons (C 2 to C 4 ) Is predominantly generated.
  • step (a) it is preferable to apply the mesoporous cobalt-iron hybrid catalyst of the present invention to the fixed bed reactor to perform the Fischer-Tropsch synthesis reaction, but it is not limited to the fixed bed reactor.
  • step (a) when the mesoporous cobalt-iron hybrid catalyst for Fischer-Tropsch synthesis reaction of the present invention is applied to a fixed bed reactor for Fischer-Tropsch synthesis reaction, it may further include a diluent.
  • the diluent partially absorbs the heat of reaction generated in the Fischer-Tropsch synthesis reaction and disperses it out of the reactor, thereby protecting the catalyst from thermal shock and inhibiting generation of hot spots between the reactions It plays a role.
  • the diluent may be powder or ball-like ⁇ -alumina ( ⁇ -Al 2 O 3 ) Or zirconia (ZrO 2 ) may be used.
  • the catalyst and the diluent of the present invention can be used in a weight ratio of 1: 0 to 1:10, depending on the degree of exotherm and the reaction temperature.
  • a pretreatment step of reducing the catalyst at a high temperature is performed in order to convert it into an active component of the hydrogenation reaction.
  • it may be pretreated under a hydrogen atmosphere (H 2 (5%) / N 2 ) diluted with nitrogen for 6 to 24 hours, preferably about 12 hours.
  • a hydrogen atmosphere H 2 (5%) / N 2
  • the mesoporous cobalt-iron hybrid catalyst according to the present invention comprises alumina as a structural enhancing agent, alumina can contribute to more stably maintaining the mesoporous structure of the catalyst in this pretreatment process.
  • the Fischer-Tropsch synthesis reaction is preferably carried out at a reaction temperature of 200 to 350 ⁇ ⁇ , a reaction pressure of 10 to 30 bar, and a feed rate of 2000 to 64000 L / kg cat. / h. < / RTI >
  • the reaction temperature of 230 to 350 ° C
  • the reaction pressure of the reactor pressurized by the synthesis gas flowing into the reactor
  • the Fischer-Tropsch synthesis reaction be carried out at a reaction pressure of from 35 bar to 35 bar, in particular at a reaction pressure of about 20 bar.
  • the carbon-carbon content of the C 2 -C 4 light hydrocarbons and C 5 + heavy olefin hydrocarbons in the reaction product is Can be 20% or more and 60% or more, respectively.
  • Mesoporous silica KIT-6 to be used as a template material for making a mesoporous cobalt-iron hybrid catalyst was prepared according to the following procedure.
  • the copolymeric polymer P123 was used as a structure-inducing agent for forming a mesoporous porous structure of mesoporous silica KIT-6.
  • the copolymeric polymer can form a micelle in an aqueous solution to form a three-dimensional mesoporous silica structure through interaction with silicon ions and self-assembly.
  • reaction solution in which the white silica precipitate was formed was transferred to an autoclave equipped with a Teflon vessel, and the reaction solution was stirred at about 100 to 110 DEG C for one day by vaporization of the solvent in the vessel The hydrothermal synthesis reaction was carried out using the naturally occurring pressure. Thereafter, the reaction solution was filtered to remove the residual solvent by filtration before it was completely cooled, and then dried in a 110 ° C oven for about 1 hour without a separate washing step.
  • KIT-6 mesoporous silica
  • Example 1 Preparation of a mesoporous cobalt-iron hybrid (Al 2 O 3 (5) / meso-CoFeO x ) catalyst
  • Step 1 Preparation of Mesoporous Cobalt-Iron Hybrid (meso-CoFeO x ) Catalyst
  • KIT-6 prepared in Preparation Example 1 was dried in an oven at 110 ° C. for 1 hour or longer to remove residual moisture.
  • 13.9 g of iron nitrate nonahydrate (Fe (NO 3 ) 3 .9H 2 O, 98.5%) and 13.9 g of cobalt nitrate hexahydrate were added to the inside of the pore of KIT-6 to introduce cobalt and iron.
  • 9.5 g of Co (NO 3 ) 2 .6H 2 O, 97.0%) was mixed with about 10 ml of distilled water and completely dissolved.
  • the cobalt-iron precursor solution was then poured into dried KIT-6 powder at one time and then thoroughly mixed for a long time to promote penetration of the precursor solution into the pores.
  • the deep yellow KIT-6 powder in which the precursor solution was well poured into the pores was sufficiently dried within a range of about 10 hours to 24 hours at 80 DEG C which is lower than the evaporation temperature of water to evaporate the solvent water from the cobalt-iron precursor-KIT-6 complex .
  • the dried powder was heated to 400 DEG C at a heating rate of 1 DEG C / minute, and then calcined at the same temperature for 5 hours.
  • a step of removing KIT-6 from the calcined cobalt-iron-KIT-6 complex was performed.
  • Approximately 32.8 g of sodium hydroxide (97.0%) powder was completely dissolved in 400 ml of distilled water to obtain a 2 M aqueous sodium hydroxide solution.
  • 200 ml of the sodium hydroxide aqueous solution was taken out and the calcined cobalt-iron-KIT-6 complex (meso-CoFeO x incorporated in KIT-6) powder, and stirred slowly for about 30 minutes.
  • the catalyst powder was centrifuged at 9000 rpm for about 10 minutes to separate the strong base solvent from the catalyst.
  • the catalyst powder was further washed with the remaining 200 ml of the aqueous 2 M sodium hydroxide solution.
  • the catalyst powder was alternately washed with distilled water and acetone Each time, they were repeatedly washed twice. Since the resulting mesoporous cobalt-iron hybrid catalyst powder is very fine and difficult to filter through the filter paper, all of the above cleaning processes were also repeatedly performed with a centrifuge.
  • the obtained catalyst powder was dried at room temperature for one day or longer and collected to finally prepare a mesoporous cobalt-iron hybrid catalyst.
  • This catalyst was named meso-CoFeO x and its specific surface area and average pore size were confirmed to be 55.3 m2 / g and 7.36 nm, respectively.
  • Step 2 Preparation of Al 2 O 3 (5) / meso-CoFeO x catalyst
  • the mesoporous cobalt-iron hybrid (meso-CoFeO x ) catalyst prepared in Step 1 above was loaded with 5.0% of alumina (Al 2 O 3 ) as a structural enhancer component in terms of catalyst weight.
  • the prepared powder was dried in an oven at 80 ° C. for about 12 hours to distill the distilled water as a solvent.
  • the dried catalyst was heated to 400 DEG C at a rate of 1 DEG C / minute, and then calcined at the same temperature for 3 hours.
  • the final catalyst was named Al 2 O 3 (5) / meso - CoFeO x .
  • the specific surface area and average pore size of the catalyst were 43.8 m2 / g and 8.19 nm, respectively.
  • Example 2 mesoporous cobalt-iron producing a hybrid (Al 2 O 3 (5) / meso-CoFe 0 5 O x.) Catalyst
  • Step 1 Preparation of Mesoporous Cobalt-Iron Hybrid (meso-CoFe 0.5 O x ) Catalyst
  • Example 1 step 1 instead of the addition of iron nitrate nona-hydrate, 13.9 g 7.0 g, except for the addition of Example 1 step 1 and mesoporous cobalt through the same process-iron hybrid catalyst (. Meso-CoFe 0 5 O x) was obtained.
  • the specific surface area and average pore size of the catalyst were 73.1 m2 / g and 12.67 nm, respectively.
  • Step 2 Preparation of Al 2 O 3 (5) / meso-CoFe 0.5 O x catalyst
  • ⁇ -Al 2 O 3 obtained by firing boehmite at 600 ° C. was used as a support.
  • Iron iron nitrate solution, copper nitrate, and potassium carbonate solution were used as iron, copper and potassium precursors, respectively.
  • These materials were mixed in water at a predetermined ratio to prepare a precursor aqueous solution, and then impregnated on the support by impregnation method. Since the precursor aqueous solution is slightly acidic, the pH was adjusted using an aqueous ammonium hydroxide solution.
  • the catalyst powder mixed with the precursor was dried and then heated to 500 ° C. and held for 5 hours to obtain a FeCuK / Al 2 O 3 (20/2/4/100) catalyst [Kang, Suk-Hwan, et al. Applied Catalysis B: Environmental 103 (2011) 169-180].
  • Aluminum isopropoxide (AIP) was dissolved in 2-propanol and stirred. Acetic acid and water were added at a constant rate to adjust the pyrolysis rate to obtain alumina gel. Then, the mixture was aged at 80 ° C for 20 hours and then washed several times with 2-propanol. The prepared powders were heated to 500 ° C. and maintained for 5 hours to obtain ⁇ -Al 2 O 3 [Kim, Seung-Moon, et al. Applied Catalysis A: General 348 (2008) 113-120]. As the cobalt precursor, cobalt nitrate hexahydrate (Co (NO 3 ) 2 .H 2 O) was used.
  • Co (NO 3 ) 2 .H 2 O cobalt nitrate hexahydrate
  • the crystal structure of the catalysts of Examples 1 and 2 according to one embodiment of the present invention was analyzed by X-ray diffraction (XRD) and is shown in FIG. It was confirmed that the catalysts of Examples 1 and 2 contained crystals of iron oxide (Fe 2 O 3 ), crystals of cobalt oxide (Co 3 O 4 ), and crystals of cobalt-iron mixed oxide (CoFe 2 O 4 ).
  • the degree of inactivation was determined using the following equation (1), and olefin selectivity was calculated based on hydrocarbons in the range of C 2 to C 4 .
  • the reaction was carried out for about 60 hours in a continuous reaction, and CO conversion and hydrocarbon selectivity for the reaction product were repeatedly analyzed by gas chromatography at intervals of one hour.
  • the catalysts prepared in Comparative Examples 1 to 3 were subjected to a reduction treatment under a reducing gas of H 2 at 350 to 450 ° C.
  • the reaction conditions and results are shown in Tables 1 and 2, respectively.
  • a cobalt-iron hybrid catalyst of the present invention having a regular mesoporous main skeleton in which cobalt oxide and iron oxide are uniformly mixed, while a small amount of alumina is additionally supported as a structure- Maintained a stable catalytic activity during the 60 hour Fischer-Tropsch synthesis reaction.
  • the mesoporous cobalt-iron hybrid catalyst of the present invention showed similar behavior to the iron-based catalyst at 300 ° C, which is a high reaction temperature, and exhibited excellent performance in conversion and stability.
  • the mesoporous cobalt-iron hybrid catalyst of the present invention (especially a catalyst having a molar ratio of cobalt and iron of about 1: 1) is subjected to a reduction treatment at a temperature (550 ° C) which is much higher than the reduction temperature (400 ° C) Despite this, the stability was so excellent that the strain or distortion of the structure was hardly observed even after the Fischer-Tropsch synthesis reaction.
  • the cobalt-iron hybrid catalyst for the Fischer-Tropsch synthesis reaction of the present invention which has a regular mesoporous main skeleton in which cobalt oxide and iron oxide are uniformly mixed, is a catalyst for the production of light olefins and LPG as main components (light hydrocarbons) - It can be very useful for Tropsch synthesis reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)

Abstract

본 발명은 피셔-트롭쉬(Fischer-Tropsch) 합성 반응용 코발트-철 하이브리드 촉매, 이의 제조방법 및 이를 이용한 탄화수소(hydrocarbon)의 제조방법에 관한 것이다. 구체적으로, 본 발명은 코발트 산화물과 철 산화물이 균일하게 혼재되어 있는 규칙적인 메조다공성의 주골격(main framework)을 갖는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매, 경질 주형 기법(hard templating method)을 이용한 이의 제조방법 및 이를 이용한 탄화수소의 제조방법에 관한 것이다.

Description

규칙적인 메조다공성의 주골격을 갖는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 제조방법
본 발명은 피셔-트롭쉬(Fischer-Tropsch) 합성 반응용 코발트-철 하이브리드 촉매, 이의 제조방법 및 이를 이용한 탄화수소(hydrocarbon)의 제조방법에 관한 것이다. 구체적으로, 본 발명은 코발트 산화물과 철 산화물이 균일하게 혼재되어 있는 규칙적인 메조다공성의 주골격(main framework)을 갖는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매, 경질 주형 기법(hard templating method)을 이용한 이의 제조방법 및 이를 이용한 탄화수소의 제조방법에 관한 것이다.
올레핀은 탄소 이중결합을 가진 지방족 불포화 탄화수소의 총칭으로 에틸렌, 프로필렌, 부텐 등을 포함하며, 다양한 고분자 물질 및 산업소재, 정밀화학 물질의 원료로서 사용될 수 있는 석유화학 산업의 핵심 물질이다. 올레핀은 석유화학 산업의 전체를 가늠하는 주요 인자로 인식되며, 고유가에 의한 올레핀 경제성의 하락에 대응하여 올레핀 합성용 원료 물질을 보다 경제성 있는 석유 대체 탄소자원(예컨대, 석탄, 천연가스, 셰일가스, 바이오 매스)으로 대체하는 연구, 개발의 필요성이 더욱 증대되고 있는 실정이다.
현재까지는 석유 대체 탄소자원으로부터 올레핀으로의 직접적인 전환보다는 합성가스(syngas; CO+H 2)를 거치는 간접 전환에 관한 기술이 주류를 이루고 있으며, 일반적으로 천연가스 등의 석유 대체 자원은 개질(reforming) 등의 전처리 과정을 통해, 그리고 석탄 및 바이오 매스는 가스화를 통해 중간물질인 합성가스로 전환될 수 있다. 이러한 합성가스는 다양한 탄화수소 계열의 액체 연료 및 고 부가가치 화학물질을 제조하기 위한 플랫폼 역할을 할 수 있으며, 합성가스로부터 생산된 메탄올로부터 경질 올레핀(light olefin)을 생산하는 MTO(methanol-to-olefin) 공정과 MTP(methanol-to-propylene) 공정이 잘 알려져 있다.
이러한 메탄올을 이용한 경질 올레핀의 합성 공정 외에, 합성가스로부터 탄화수소 중합반응에 의해 직접 올레핀을 생산할 수 있는 피셔-트롭쉬 합성(Fischer-Tropsch Synthesis; FTS) 기술과 합성가스로부터 올레핀이나 나프타(naphtha)를 직접 생산하는 STO(syngas-to-olefin) 기술도 이미 잘 알려진 올레핀 합성 기술 중의 하나이다.
합성가스 기반의 올레핀 전환 기술은 크게 철 계열 촉매 기반의 피셔-트롭쉬 합성 경로와 합성가스-메탄올-올레핀의 단계적 합성 경로로 나눠지며, 주산물인 경질 올레핀 외에 추가적으로 나프타와 액화석유가스(liquefied petroleum gas; LPG)가 부산물로 얻어지게 된다.
철 계열 촉매 기반의 고온 피셔-트롭쉬 합성법의 수득 탄화수소의 분율을 나타내는 ASF(Anderson-Shulz-Flory) 메커니즘에 의하면, 경질 올레핀의 선택도는 코발트 계열 촉매 기반의 저온 피셔-트롭쉬 합성의 경질 올레핀 선택도에 비해서는 높은 편이나, 여전히 많은 부분의 반응 산물이 고 비점의 탄화수소(C 5+)에 집중되어 있으며, 이러한 반응 경향을 보완하기 위하여 제올라이트와 같은 고체산 촉매를 이용해 촉매에 다기능성을 부여함으로써, 탄화수소 중합과 더불어 탄화수소 크래킹(cracking) 기능을 통해 경질 올레핀의 선택도를 증가시키는 제올라이트 이용 피셔-트롭쉬 합성 공정이 꾸준히 보고되고 있다.
피셔-트롭쉬 합성 반응은 합성가스를 이용하여 넓은 탄소수 분포를 가진 탄화수소 화합물들로 중합하는 일종의 중합반응으로서, 철 혹은 코발트 계열의 촉매의 존재 하에서 아래와 같은 주요 반응으로 진행된다.
[반응식 1]
nCO + (2n+1)H 2 → 2C nH 2n+2 + nH 2O
[반응식 2]
2nCO + (n+1)H 2 → 2C nH 2n+2 + nCO 2
[반응식 3]
CO + H 2O → CO 2 + H 2
위 반응식 가운데, 반응식 1과 반응식 2는 합성가스가 탄화수소로 중합되는 반응이며, 특히 반응 중에 생성된 물(반응식 1)이 다시 일산화탄소와 반응하여 수소와 이산화탄소를 생성하는 수성가스 전환반응(water gas shift; WGS)을 일으킨다(반응식 3). 이러한 수성가스 전환반응을 통해 생성된 수소는 합성가스의 H 2/CO 몰 비를 변화시키며, 특히 이러한 H 2/CO 몰 비의 변화는 피셔-트롭쉬 합성 반응의 활성에 영향을 미치게 된다.
ASF 메커니즘에 의하면, 피셔-트롭쉬 합성 반응은 H 2/CO 몰 비가 2.0일 때 가장 높은 활성을 보이는 것으로 판단되지만, 철 계열 촉매는 수성가스 전환 반응에 높은 활성을 보이기 때문에, 반응 중에 수소가 생성되어 넓은 H 2/CO 몰 비(0.7~2.0) 영역에서도 우수한 활성을 보인다. 또한, 철 계열 촉매는 작동온도 영역(300℃ 이상)이 코발트 계열 촉매에 비해 높다는 단점이 있으나, 철의 가격이 코발트에 비해 약 1/200, 루테늄보다 약 1/50,000 정도로 매우 저렴하여 상업적 이용가치가 매우 높으며, 높은 수성가스 전환반응 활성으로 인해 낮은 H 2/CO 몰 비에서도 적절한 피셔-트롭쉬 합성 반응의 활성을 보이므로, 낮은 몰 비의 합성가스를 생성시키는 다양한 탄소 공급원(석탄, 바이오 매스) 조건에서도 별도의 H 2/CO 몰 비의 조절을 위한 부가적인 공정이 없이 작동 가능하다는 등의 장점이 있다[Khodakov, et al. Chemical Reviews, 107 (2007) 1692-1744].
코발트 계열 촉매의 경우 저온(200-250℃)의 피셔-트롭쉬 합성 반응을 통해서 주로 액상(가솔린, 디젤) 및 고상(파라핀 왁스) 등의 고 비점 탄화수소가 우세하게 선택적으로 생성되며, 생성된 고 비점의 탄화수소에 대한 후처리(hydrocracking) 공정이 일반적으로 필요한 반면에, 철 계열 촉매는 고온(300℃ 이상)의 피셔-트롭쉬 합성 반응을 통해서 주로 에텐, 프로펜, 부텐 등의 C 2-C 4 범위의 경질 올레핀의 생성에 초점을 맞추며, 실질적으로 코발트 계열 촉매를 이용한 저온 피셔-트롭쉬 합성 반응에 비해 경질 올레핀의 선택적 생성에 유리하다. 이러한 경질 올레핀은 다양한 고부가가치 석유화학 제품을 생산하기 위한 원료 물질로 사용될 수 있다.
철 계열 피셔-트롭쉬 합성 반응용 촉매는 주로 침전법이나 용융법에 의해 제조되는데, 침전법의 경우 철 전구체와 침전제를 이용한 침전 생성 및 세척, 건조, 소성 과정을 통해 제조되며, 용융법의 경우 철광석을 용융시켜 촉매를 제조한다. 침전법에 의해 제조된 촉매는 일반적으로 고 비점의 탄화수소 합성이 가능하나, 고정층이 아닌 이동층(moving bed) 형태의 반응 시스템(예컨대, 슬러리 반응기, 기포 유동층 반응기, 순환 유동층 반응기)에서는 촉매가 마모되어 물리적 변형이 일어남으로써 활성이 현저하게 감소된다. 반면에, 철광석 용융 촉매는 기계적 강도가 침전법에 의한 촉매에 비해 우수하나, 침전법에 의해 제조된 촉매에 비해 슬러리 반응 시스템에서의 활성이 절반 정도밖에 되지 않는 것으로 보고되어 있다[Rao, V. U. S., et al. Fuel Processing Technology 30 (1992) 83-107].
한편, 철 계열 피셔-트롭쉬 합성 반응용 촉매의 일산화탄소 흡착 능력의 증가, 환원성 및 분산성의 증가를 통해 고온 피셔-트롭쉬 합성의 활성을 증진시키기 위해, K, Mn, Cr, Ru, Cu, Pd 등의 다양한 조촉매들이 사용된다. 특히 소량의 칼륨(K) 첨가는 고 비점 탄화수소의 생성 증가(생성 탄화수소의 평균 분자량 증가, 탄소사슬 성장 가능성, α 증가) 및 올레핀으로의 선택적 합성 강화, 촉매의 활성 증가, 비활성화 억제, 메탄의 선택도 감소 등의 효과를 발휘한다. 이외에도 소량의 구리(Cu) 첨가는 철 촉매의 환원성을 증진시키는 데 효과가 있다.
또한, 현재까지 알려진 바에 따르면, 철 계열의 피셔-트롭쉬 합성 반응용 촉매는 알루미나(Al 2O 3), 실리카(SiO 2), 타이타니아(TiO 2), 지르코니아(ZrO 2) 등의 비환원성 무기 산화물들이 지지체나 구조 안정제로 사용될 경우 촉매의 활성이 증진되는 것으로 알려져 있다. 나아가, 고온 피셔-트롭쉬 합성 반응용 촉매에 탄화수소 중합기능과 더불어 다 기능성을 부여하기 위해 제올라이트 등의 고체산 촉매를 지지체나 혹은 코어-쉘(core-shell) 형태의 촉매의 쉘(shell) 물질로 사용하여 경질 올레핀의 선택도를 향상시키기 위한 다양한 시도들도 보고되고 있다[Kang, Suk-Hwan, et al. Fuel Processing Technology 91 (2010) 399-403; Xing, Chuang, et al. Catalysis Today 251 (2015) 41-46; Bao, Jun, et al. Applied Catalysis A: General 394 (2011) 195-200].
잘 알려진 비환원성의 무기 산화물 중 실리카, 알루미나 및 제올라이트 등이 침천법에 의해 합성된 철 계열 고온 피셔-트롭쉬 합성 반응용 촉매의 지지체로 사용된다. 특히, 이러한 지지체가 소량 포함될 경우, 이동층을 사용하는 액상 형태의 반응 시스템(예컨대, 슬러리 반응기, 기포 유동층 반응기, 순환 유동층 반응기)에서는 촉매의 마모가 심하기 때문에, 주로 고정층 반응기용 촉매로 활용되며, 촉매에 포함된 높은 비표면적을 가진 비환원성 무기 산화물의 질량 분율이 증가함에 따라 활성 성분인 철의 분산성을 높여 주어 촉매의 활성에 긍정적인 영향을 주게 된다. 또한, 코발트 등의 다양한 성분을 촉매에 포함시켜 경질 올레핀에 대한 선택도를 증가시키는 연구가 꾸준히 시도되고 있다[Mirzaei, Ali Akbar, et al. Applied Catalysis A: General 296 (2005) 222-231]. 그런데, 이런 다양한 형태의 지지체 혹은 바인더, 조촉매가 존재함에도 불구하고, 칼륨, 구리, 망간 등의 특정한 조촉매가 특히 철 계열 피셔-트롭쉬 합성 촉매의 장기 안정성 및 반응 활성 증진에 효과적이라고 알려져 있다.
따라서, 전형적인 형태의 철 계열 피셔-트롭쉬 합성 반응용 촉매는 실리카나 알루미나 지지체 위에 활성 물질인 철을 고도로 분산시킨 형태이며, 촉매의 활성 및 안정성을 증진시키기 위해 소량의 칼륨, 구리 등의 조촉매가 함침으로 첨가된다. 이러한 고 분산성의 피셔-트롭쉬 합성 반응용 촉매를 구현하기 위해서는 넓은 표면적 및 높은 기공 부피를 가진 다공성 지지체의 합성이 필요한데, 이러한 형태의 높은 비표면적을 갖는 지지체를 사용하여 촉매의 비표면적을 증가시키는 연구가 꾸준히 보고되고 있다[Braganca, L. F. F. P. G., et al. Applied Catalysis A: General 423-424 (2012) 146-153].
특유의 미세 기공 구조로 인해 독특한 물성을 지니는 제올라이트는 기공의 작은 크기 때문에 제한된 영역에만 활용될 수 있었다. 이러한 제올라이트의 대안 물질로 개발된 규칙적인 메조다공성 물질(ordered mesoporous materials; OMM)은 특유의 규칙적인 세공 구조, 넓은 비표면적, 높은 기공 부피로 인해 특히 촉매 분야의 지지체로 다양하게 활용되어 왔다. 특히 본 발명자들은 다공성 물질을 불균일계 촉매의 지지체로 활용하는 다양한 연구들을 시도하였는데, 기공 구조를 지닌 메조다공성 탄소(ordered mesoporous carbons; OMC), 메조다공성 알루미나(ordered mesoporous alumina; OMA) 등의 지지체의 기공 안에 활성 물질을 직접 삽입하여 기공 구조에 의한 구속 효과(confinement effect)를 통해 활성 물질의 소결 현상(sintering)을 억제한 연구[Yu, Shiyong, et al. International Journal of Hydrogen Energy 40 (2015) 870-877; Kim, Daegak, et al. Chemical Engineering Journal 316 (2017) 1011-1025; Lim, Jemi, et al. Fuel 169 (2016) 25-32; Kim, Tae-Wan, et al. Fuel 160 (2015) 393-403; Hwang, Jongkook, et al. Journal of Materials Chemistry A 3 (2015) 23725-23731; Ha, Kyoung-Su, et al. Chemical Communications 49 (2013) 5141-5143]를 수행하였다.
이러한 메조다공성 지지체는 촉매의 생산 단가 절감 및 열적, 기계적 강도 향상, 활성 물질-지지체간 상호작용(Fe, Co - SiO 2, Al 2O 3, TiO 2) 등의 효과로 인해 빈번하게 사용되고 있으나, 활성 물질을 지지체에 고도로 분산시키지 못할 경우 표면에 불균일하게 분포된 활성 물질의 급속한 소결로 인해 반응 활성점이 감소하여, 촉매의 수명도 급격히 감소하게 된다. 또한, 이러한 지지체 기반의 촉매는 지지체 표면에 올릴 수 있는 활성물질의 담지량이 일반적으로 제한적이다. 적정량 이상의 활성 물질이 포함될 경우 촉매의 활성 성분 입자 크기가 너무 커져서 지지체의 미세 세공을 막아서 오히려 활성이 떨어지는 것이 보고되어 있으며[대한민국 특허 제1284161호], 이러한 이유로 인해 일반적인 지지체 기반의 피셔-트롭쉬 합성 반응용 촉매에 포함된 활성물질의 적정 담지량은 전체 촉매 중량 기준으로 약 15~30 중량%이다.
이러한 한계를 극복하기 위하여, 활성 물질로 직접 다공성 골격을 합성하여 불균일 촉매 반응에 응용하는 연구도 보고되었다[Jin, Mingshi, et al. Catalysis Today 185 (2012) 183-190]. 이러한 2차원 혹은 3차원의 다공성 구조를 가진 나노 구조체 촉매는 골격 자체가 활성점이기 때문에 일반적인 지지체 기반 촉매에 비해 다수의 활성점을 보유할 수 있어 촉매의 활성이 높게 된다. 또한, 나노 입자 형태의 코발트 계열 피셔-트롭쉬 합성 반응용 촉매에 비해서도 월등히 높은 단위 촉매 활성(turn over frequency; TOF)을 가질 수 있다는 것이 실험적으로 확인되었다[Ahn, Chang-Il, et al. Catalysis Today 265 (2016) 27-35].
그런데, 지지체를 사용하지 않은 다공성 전이금속 기반 촉매를 수소화 반응 등의 촉매로 적용할 경우 수소 전처리 과정 및 수소화 반응 과정에서 금속 산화물로부터 금속으로의 상변화로 인해 다공성 구조체의 변형이 발생한다[Dongyuan Zhao, et al. Ordered mesoporous materials (WILEY-VCH, 2012)].
이에 본 발명자들은 메조다공성 실리카를 이용한 경질 주형 기법(hard templating method)을 통해 3차원의 다공성 금속 기반 하이브리드 구조체 촉매를 합성하여 촉매의 표면에 노출된 반응 활성점을 극대화하는 한편, 지르코니아(ZrO 2) 등의 구조 증진제를 첨가함으로써 고온의 수소화 반응조건에서도 안정적으로 다공성 구조를 유지할 수 있는 코발트 계열의 다공성 피셔-트롭쉬 합성 반응용 촉매를 개발한 바 있다[Ahn, Chang-Il, et al. Applied Catalysis B: Environmental 180 (2016) 139-149; Ahn, Chang-Il, et al. Chemical Communications 52 (2016) 4820-4823; 대한민국 특허 제1569638호; 대한민국 특허출원공개 제2017-0009776호].
본 발명은 다양한 조촉매를 필요로 하는 종래의 지지체 기반 철 계열 피셔-트롭쉬 합성 반응용 촉매와 달리, 규칙적인 메조다공성의 주골격을 가지며 구조적 안정성이 확보된 3차원 구조체 형태의 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매를 제공하고자 한다.
본 발명의 다른 목적은 위에서 언급한 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 위에서 언급한 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매를 이용하여, 합성가스로부터 중질 유분 탄화수소 및 경질 유분 탄화수소를 선택적으로 제조하는 방법을 제공하는 것이다.
본 발명의 일 양태에 따라서, 코발트 산화물과 철 산화물이 균일하게 혼재되어 있는 규칙적인 메조다공성(mesoporous)의 주골격(main framework)을 갖는 것을 특징으로 하는 피셔-트롭쉬(Fischer-Tropsch) 합성 반응용 코발트-철 하이브리드 촉매가 제공된다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매에 있어서, 메조다공성의 주골격이 아래 화학식 1로 표시되는 화합물을 주성분으로 함유한다:
[화학식 1]
CoFe aO b
위 화학식 1에서 a 및 b는 몰 비로서, 0.1 ≤ a ≤ 1.0 및 1.0 ≤ b ≤ 4.0를 만족한다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매에 있어서, 메조다공성의 주골격이 메조다공성 주형(template)을 이용하여 형성된다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매에 있어서, 메조다공성 주형이 SBA-15, SBA-16, KIT-6, MCM-41, MCM-48, HMS, AMS-8, AMS-10, FDU-1, FDU-2 및 FDU-12로 이루어지는 군으로부터 선택된 1종 이상의 실리카이다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매에 있어서, 비표면적이 40 내지 100 ㎡/g이고, 기공의 평균 직경이 4 ㎚ 내지 15 ㎚이다.
본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매는 원하는 피셔-트롭쉬 합성 반응의 생성물이 선택적으로 형성 및 배출될 수 있는 기공의 크기를 갖도록 합성 또는 선택된다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매에 있어서, 코발트 산화물과 철 산화물이 균일하게 혼재되어 있는 메조다공성의 주골격에서 기공 내부 혹은 표면에 구조 증진제로서 알루미나가 추가로 담지되어 있다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매에 있어서, 알루미나가 촉매의 총 중량 대비 2 내지 12 중량%의 양으로 담지 되어 있다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매에 있어서, 알루미나가 담지된 후의 비표면적이 40 내지 100 ㎡/g이고, 기공의 평균 직경이 5 내지 20 ㎚이다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매에 있어서, 메조다공성의 주골격이 CoFe aO b, Al 2O 3-CoFe aO b 또는 이의 혼합물(여기서, a 및 b는 몰 비로서, 0.1 ≤ a ≤ 1.0 및 1.0 ≤ b ≤ 4.0를 만족함)을 포함한다.
본 발명의 다른 양태에 따라서, (1) 코발트 전구체와 철 전구체가 균일하게 용해된 혼합 용액을 제조하는 단계; (2) 메조다공성 주형에 상기 단계 (1)의 혼합 용액을 붓고 적절히 섞은 후 건조 및 소성하여 메조다공성 주형-코발트-철의 구조체를 얻는 단계; 및 (3) 단계 (2)에서 얻은 구조체로부터 메조다공성 주형을 제거하여, 코발트 산화물과 철 산화물이 균일하게 혼재되어 있는 메조다공성의 3차원 주골격을 형성시키는 단계를 포함하는, 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법이 제공된다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법에 있어서, 코발트 전구체가 코발트 나이트레이트(Co(NO 3) 2·6H 2O), 코발트 클로라이드(CoCl 2·6H 2O) 및 코발트 아세테이트((CH 3COO) 2Co·4H 2O)로 이루어진 군으로부터 선택되는 1종 이상이고, 철 전구체가 아이언 나이트레이트 노나하이드레이트(Fe(NO 3) 3·9H 2O), 아이언 아세테이트((CH 3COO) 2Fe) 및 아이언 클로라이드 헥사하이드레이트(FeCl 3·6H 2O)로 이루어진 군으로부터 선택되는 1종 이상이다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법에 있어서, 단계 (1)의 혼합 용액의 용매가 증류수, 메탄올, 에탄올 및 에틸렌글리콜로 이루어지는 군으로부터 선택되는 1종 이상이다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법에 있어서, 단계 (1)에서 코발트 전구체와 철 전구체는 코발트와 철의 몰 비가 1:1 내지 1:0.1이 되도록 혼합된다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법에 있어서, 단계 (2)에서 메조다공성 주형이 SBA-15, SBA-16, KIT-6, MCM-41, MCM-48, HMS, AMS-8, AMS-10, FDU-1, FDU-2 및 FDU-12로 이루어지는 군으로부터 선택된 1종 이상의 실리카이다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법에 있어서, 단계 (2)에서 얻은 구조체에 산성 또는 염기성 물질을 첨가함으로써 메조다공성 주형을 제거한다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법에 있어서, 산성 물질이 불산(HF)이고, 염기성 물질이 수산화나트륨(NaOH)이다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법에 있어서, (4) 단계 (3)에서 형성된 촉매의 메조다공성 3차원 주골격의 기공 내부 혹은 표면에 구조 증진제로서 알루미나를 추가로 담지시키는 단계를 더 포함한다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법에 있어서, 단계 (3)에서 형성된 촉매를 알루미나 전구체 용액에 함침시킨 후, 이를 건조 및 소성함으로써 알루미나를 추가로 담지시킨다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법에 있어서, 알루미늄 전구체가 알루미늄 나이트레이트 노나하이드레이트(Al(NO 3) 3·9H 2O), 알루미늄 아세테이트(Al(OH)(C 2H 3O 2) 2) 및 알루미늄 클로라이드 헥사하이드레이트(AlCl 3·6H 2O)로 이루어진 군으로부터 선택되는 1종 이상이다.
바람직하게는, 본 발명에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법에 있어서, 알루미나가 촉매의 총 중량 대비 2 내지 12 중량%의 양으로 담지된다.
본 발명의 또 다른 양태에 따라서, 피셔-트롭쉬 합성 반응을 이용해 합성가스로부터 중질 유분 탄화수소 및 경질 유분 탄화수소를 선택적으로 제조하는 방법으로서, (a) 본 발명에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매를 피셔-트롭쉬 합성 반응용 고정층 반응기에 적용하는 단계; (b) 단계 (a)의 촉매를 고온의 수소 분위기 하에서 환원시켜 촉매를 활성화시키는 단계; 및 (c) 활성화된 촉매를 이용해 피셔-트롭쉬 합성 반응을 수행하는 단계를 포함하는, 중질 유분 탄화수소 및 경질 유분 탄화수소의 선택적 제조방법이 제공된다.
바람직하게는, 본 발명에 따른 중질 유분 탄화수소 및 경질 유분 탄화수소의 선택적 제조방법에 있어서, 단계 (a)에서, 본 발명의 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매를 피셔-트롭쉬 합성 반응용 고정층 반응기에 적용할 때, 희석제를 더 포함한다.
바람직하게는, 본 발명에 따른 중질 유분 탄화수소 및 경질 유분 탄화수소의 선택적 제조방법에 있어서, 희석제가 파우더 혹은 볼 형태의 α-알루미나(α-Al 2O 3) 혹은 지르코니아(ZrO 2) 중에서 선택되는 1종 이상이며, 촉매와 희석제가 1:0 내지 1:10의 중량비로 사용된다.
바람직하게는, 본 발명에 따른 중질 유분 탄화수소 및 경질 유분 탄화수소의 선택적 제조방법에 있어서, 피셔-트롭쉬 합성 반응이 230 내지 350℃의 반응온도, 10 내지 30 bar의 반응압력 및 2,000 내지 64,000 L/kg cat./h의 공간속도에서 수행된다.
바람직하게는, 본 발명에 따른 중질 유분 탄화수소 및 경질 유분 탄화수소의 선택적 제조방법에 있어서, 반응생성물 중의 C 2-C 4 경질 탄화수소와 C 5+ 중질 유분 탄화수소의 탄소 몰 함량이 각각 20% 이상 및 60% 이상이다.
본 발명에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매는 높은 반응온도(300℃)와 발열 상황에서도 활성 성분의 소결 현상을 억제하여 높은 활성을 안정적으로 유지하며, 수소 기반의 수소화 반응 및 환원 조건에서도 다공성 구조를 안정적으로 유지하고, 구조의 안정성에서 유래된 반응물 및 반응 생성물(탄화수소)의 원활한 물질전달로 인해 반응 생성물의 배출에 유리하다. 또한, 조촉매의 첨가 없이도 반응 조건 및 촉매 성분 조성 변화에 따라 높은 고온 피셔-트롭쉬 합성 반응의 활성 및 안정성을 가지며, 선택적인 경질 유분 탄화수소 생산에 유리하므로, 화학원료 물질로 주로 사용되는 경질 올레핀 및 LPG의 주성분(경질 탄화수소) 제조를 위한 피셔-트롭쉬 합성 반응에 매우 유용하게 사용될 수 있다. 또한, 기존 철 계열 촉매에 비해서도 비슷하거나 더 많은 중질 유분 탄화수소를 생산할 수 있어 수송용 연료의 제조에도 유용하게 활용될 수 있다.
본 발명에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매는 기존의 비환원성 지지체 기반의 코발트 계열 저온 피셔-트롭쉬 합성 반응용 촉매 혹은 침전법을 이용한 철 계열 고온 피셔-트롭쉬 합성 반응용 촉매와 다르게, 활성 물질인 철과 코발트가 촉매의 3차원 주골격을 구성하며 또한 그 자체가 활성점이기 때문에, 기존의 지지체 표면에 활성 물질을 분산시킨 촉매에 비해 활성점의 개수가 현저히 증가되고, 반응물 혹은 생성물의 물질전달 측면에서도 유리하며, 활성 물질의 소결 현상에 의한 촉매의 비활성화 및 수명감소를 억제하는 데 유리하다. 또한, 지지체를 사용하는 기존 촉매에서 지지체 간의 상호작용에 의한 촉매의 성능 변화가 일어나는 것과 달리, 지지체를 사용하지 않고 소량의 구조 증진제만을 사용하는 본 촉매의 경우, 사용된 촉매의 활성 및 안정성에 영향을 미칠 수 있는 다양한 변수에 의한 효과를 최소화 할 수 있다.
도 1은 본 발명의 일 구현예에 따른 실시예 1과 2 촉매의 결정구조를 확인한 XRD 분석결과를 나타내는 도면이다.
도 2는 본 발명의 일 구현예에 따른 실시예 1과 2 촉매의 약 60시간의 반응시간 동안 일산화탄소 전환율 대 Time On Stream(TOS)으로 나타낸 촉매 활성 시험 결과이다.
도 3는 본 발명의 일 구현예에 따른 실시예 1 촉매의 반응 전후 TEM 측정결과를 나타내는 도면이다.
이하에서 본 발명에 대해 상세히 설명한다.
본 발명의 일 양태에 따라서, 코발트 산화물과 철 산화물이 균일하게 혼재되어 있는 규칙적인 메조다공성(mesoporous)의 주골격(main framework)을 갖는 것을 특징으로 하는 피셔-트롭쉬(Fischer-Tropsch) 합성 반응용 코발트-철 하이브리드 촉매가 제공된다.
구체적으로, 본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매의 메조다공성 주골격이 아래 화학식 1로 표시되는 화합물을 주성분으로 함유할 수 있다:
[화학식 1]
CoFe aO b
위 화학식 1에서 a 및 b는 몰 비로서, 0.1 ≤ a ≤ 1.0 및 1.0 ≤ b ≤ 4.0를 만족한다.
위 화학식 1의 화합물은 코발트의 일부가 철로 치환되어 있는 것을 의미할 수 있다. 특히, 촉매 주골격의 메조다공성 구조의 붕괴를 막기 위해, 촉매 내의 철 함량은 코발트 금속 1몰을 기준으로 0.1~1.0 몰의 범위가 바람직하다.
본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매에 있어서, 메조다공성의 주골격이 메조다공성 실리카를 경질 주형(hard template)으로 하여 형성될 수 있다.
구체적으로, 본 발명의 코발트-철 하이브리드 촉매의 고도로 정렬된 규칙적 메조다공성 구조는 경질 주형 기법(hard templating method)을 사용해 제조될 수 있다. 주형 물질로 사용된 세공의 내부 공간이 이에 대응되는 촉매의 주골격을 형성시킬 수 있다. 예를 들어, 메조다공성 실리카의 기공 내부에 용매에 녹인 전이금속 전구체 용액을 모세관 현상을 통해 침투(infiltration)시킨 후, 용매를 증발시키고 열처리한다. 그후, 염기나 산으로 처리하여 실리카를 제거하면, 촉매의 활성 물질이 골격으로 구성된 규칙적으로 정렬된 구조체의 촉매를 형성할 수 있다. 이는 메조다공성 실리카의 기공 공간의 형상을 본뜬 형태이기 때문에 메조다공성 실리카의 네거티브 레플리카(negative replica)라고 할 수 있다.
경질 주형(hard template) 물질로는 2차원 혹은 3차원의 다양한 형태(morphology; 예컨대, 육방정계(hexagonal), 등방정계(cubic) 등)의 규칙적으로 정렬된 기공 구조를 갖는 메조다공성 실리카를 사용할 수 있다. 구체적으로, 규칙적인 기공 구조가 잘 발달된 메조다공성 실리카가 바람직하며, SBA-15, SBA-16, KIT-6, MCM-41, MCM-48, HMS, AMS-8, AMS-10, FDU-1, FDU-2 및 FDU-12로 이루어진 군으로부터 선택되는 1종의 이상의 메조다공성 실리카가 사용될 수 있으나, 이것으로 제한되는 것은 아니다. 이 중에서 KIT-6가 더욱 바람직하다.
이러한 경질 주형 물질은 직접 제조하거나 시판되는 제품을 구매하여 사용할 수 있다. 예를 들어, KIT-6의 경우, 합성에 필요한 시약들을 TEOS/P123/HCl/H 2O/BuOH=1/0.017/1.83/195/1.31의 몰 비로 사용하는 것이 바람직하다. 이러한 몰 비에 맞춰 합성된 메조다공성 실리카의 비표면적의 범위는 약 500~800 ㎡/g이며, 생성된 기공의 평균 직경은 5~8 ㎚ 정도로서, 기공 구조가 규칙적으로 배열된 3차원 형상을 가질 수 있다.
메조다공성 실리카를 주형 물질로 이용하여 제조되는 촉매의 주골격은 메조다공성 실리카의 기공으로부터 형성되기 때문에, 메조다공성 코발트-철 하이브리드 촉매의 기공 크기는 메조다공성 실리카의 골격 직경과 유사할 수 있다. 예컨대, 고 비표면적의 메조다공성 실리카로부터 유래된 메조다공성 코발트-철 하이브리드 촉매의 비표면적은 40 내지 100 ㎡/g이고, 기공의 평균 직경은 4 내지 15 ㎚일 수 있다.
본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매는 원하는 피셔-트롭쉬 합성의 생성물이 선택적으로 형성 및 배출될 수 있는 기공의 크기를 갖도록 합성 또는 선택될 수 있다.
구체적으로, 고도로 정렬된 규칙적인 3차원 기공 구조를 갖는 메조다공성 실리카 주형 물질을 이용하여 제조되는 본 발명의 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매는 표면에 세공 구조가 고도로 발달되어 있기 때문에, 피셔-트롭쉬 합성 반응 중에 생성된 기상, 액상 또는 고상의 탄화수소가 원활하게 배출될 수 있으며, 촉매의 표면에 고 비점 탄화수소가 침적될 가능성이 희박하다.
또한, 일부의 활성점이 탄화수소의 침적에 의해 덮인다고 할지라도, 촉매의 표면에 여전히 다수의 수소화 반응 활성점을 보유하여 촉매 비활성화의 속도가 완화될 수 있다. 이러한 촉매의 높은 기공 부피 및 고 표면적의 3차원 구조는 반응의 전환율 증가 및 비활성화 억제에 크게 기여할 수 있다.
따라서, 철 계열 피셔-트롭쉬 합성 반응용 촉매의 환원성 및 활성 증가, 비활성화 억제, 메탄 선택도 감소, 올레핀 선택도(혹은 경질 유분 탄화수소 선택도) 증가 등의 목적으로 통상 첨가되는 조촉매 없이도, 본 발명에 따른 코발트-철 하이브리드 촉매는 고온 피셔-트롭쉬 합성 반응에 유용하게 사용 가능하다.
일반적으로, 메조다공성 코발트(ordered mesoporous Co 3O 4) 계열 촉매는 3차원 골격에 별도의 구조 증진제 없이 코발트 산화물만으로 이루어져 있어서 수소가 풍부한 환원조건이나 수소화 반응조건에서 금속 산화물의 상변화에 의한 구조의 심한 변형이나 붕괴가 발생할 수 있다.
반면에, 본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매의 경우, 주골격에 코발트와 철이 함께 치환되어 있기 때문에, 환원되지 않은 일부의 철 산화물과 촉매 합성 중에 생성되는 코발트-철의 혼합 산화물(CoFe 2O 4 등의 스피넬 구조) 등이 3차원 골격을 잡아주는 구조 증진제 역할을 함으로써, 장시간의 수소화 반응 조건에서도 다공성 골격이 무너지지 않게 유지될 수 있다.
본 발명의 일 구체예에 따라서, 본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매에 있어서, 코발트 산화물과 철 산화물이 균일하게 혼재되어 있는 메조다공성의 주골격에서 기공 내에 혹은 표면에 구조 증진제로서 알루미나가 추가로 담지될 수 있다.
본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매에 있어서, 알루미나가 촉매의 총 중량에 대하여 12 중량% 이하의 양으로 담지될 수 있으며, 바람직하게는 2 내지 12 중량%로 담지될 수 있다.
위 함량 범위의 알루미나가 담지될 경우, 고온의 수소화 반응 조건에서 전이금속의 상 변화 중에도 다공성 구조를 안정적으로 유지하는 역할을 하며, 다공성 구조체의 붕괴에 따른 활성 물질 소결에 의해 촉매가 급격히 비활성화되는 것을 억제함으로써, 촉매의 안정성이 크게 증진될 수 있다. 만약, 알루미나가 12 중량%를 초과하여 담지되는 경우, 촉매 표면의 활성점으로 이뤄진 다공성 구조체의 표면에 침적되어 촉매의 활성을 저하시킬 수 있다.
본 발명의 메조다공성 코발트-철 하이브리드 촉매에 구조 증진제인 알루미나를 함침을 통해 소량 첨가하면, 알루미나가 촉매 표면에 형성된 기공에 침투함으로써 촉매의 비표면적 및 기공 부피가 감소하게 되지만, 일반적으로 그 정도가 크지 않으며, 일부 촉매와 알루미나 사이에 입자 내 기공(intraparticle pore)이 형성되어 촉매 기공의 평균 직경이 약간 증가할 수 있다. 알루미나가 담지된 메조다공성 코발트-철 하이브리드 촉매의 비표면적은 40 내지 100 ㎡/g이고, 기공의 평균 직경은 5 내지 20 nm일 수 있다. 만약, 촉매의 비표면적이 40 ㎡/g 미만일 경우, 촉매 표면에 노출된 활성점이 감소되어 촉매 활성이 줄어드는 문제가 발생할 수 있다. 한편, 메조다공성 실리카를 경질 주형 물질로서 사용한 경질 주형 기법에 의해 제조되는 메조다공성 코발트-철 하이브리드 촉매의 경우 최대 100 ㎡/g 정도의 비표면적을 가질 수 있다.
다공성 촉매의 기공 구조나 크기에 따라 피셔-트롭쉬 합성 반응의 활성과 생성물의 수율이 크게 영향을 받을 수 있는데, 특히 다공성 촉매의 기공 직경이 작을 경우 기공이 많아지고 표면적은 커지지만, 탄화수소 결합이 성장할 수 있는 공간이 줄어들고 반응물의 확산속도가 느려질 수 있기 때문에, 고 비점 탄화수소로의 선택도 및 수율이 낮아지는 현상이 발생할 수 있다. 따라서, 목표로 하는 생성물의 선택적인 생성을 위해서는 촉매 기공의 크기와 구조 및 분포가 매우 중요하다.
한편, 본 발명의 일 구체예에 따라서 알루미나가 담지된 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매에 있어서, 메조다공성의 주골격이 CoFe aO b, Al 2O 3-CoFe aO b 또는 이의 혼합물(여기서, a 및 b는 몰 비로서, 0.1 ≤ a ≤ 1.0 및 1.0 ≤ b ≤ 4.0를 만족함)을 포함할 수 있다.
본 발명에 따른 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매는 230 내지 350℃의 넓은 온도 범위, 바람직하게는 250 내지 350℃의 온도 범위에서 피셔-트롭쉬 합성 반응에 사용될 수 있다.
본 발명의 다른 양태에 따라서, (1) 코발트 전구체와 철 전구체가 균일하게 용해된 혼합 용액을 제조하는 단계; (2) 메조다공성 주형에 상기 단계 (1)의 혼합 용액을 붓고 충분히 섞은 후 건조 및 소성하여 메조다공성 주형-코발트-철의 구조체를 얻는 단계; 및 (3) 단계 (2)에서 얻은 구조체로부터 메조다공성 주형을 제거하여, 코발트 산화물과 철 산화물이 균일하게 혼재되어 있는 메조다공성의 3차원 주골격을 형성시키는 단계를 포함하는, 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법이 제공된다.
위 단계 (1)에서 사용되는 코발트 전구체로는 나이트레이트 염, 아세테이트 염, 클로라이드 염, 브로마이드 염 등을 사용할 수 있고, 이 중에서 나이트레이트 염이 바람직하다. 구체적으로, 코발트 전구체로서 코발트 나이트레이트(Co(NO 3) 2·6H 2O), 코발트 클로라이드(CoCl 2·6H 2O) 및 코발트 아세테이트((CH 3COO) 2Co·4H 2O)로 이루어진 군으로부터 선택되는 1종 이상이 사용될 수 있다.
철 전구체로는 나이트레이트 염, 아세테이트 염, 클로라이드 염, 브로마이드 염 등을 사용할 수 있고, 이 중에서 나이트레이트 염이 바람직하다. 구체적으로, 철 전구체로서 아이언 나이트레이트 노나하이드레이트(Fe(NO 3) 3·9H 2O), 아이언 아세테이트((CH 3COO) 2Fe) 및 아이언 클로라이드 헥사하이드레이트(FeCl 3·6H 2O)로 이루어진 군으로부터 선택되는 1종 이상이 사용될 수 있다.
위 단계 (1)에서, 혼합 용액의 용매는 증류수, 메탄올, 에탄올 및 에틸렌글리콜 중에서 선택되는 1종 혹은 두 가지 이상 용매의 혼합물일 수 있다.
위 단계 (1)에서, 코발트 전구체와 철 전구체는 코발트와 철의 몰 비가 1:1 내지 1:0.1이 되도록 혼합될 수 있다.
위 단계 (2)에서, 메조다공성 주형에 코발트-철 전구체 수용액을 균일하게 혼합하여 전구체 수용액이 메조다공성 주형의 기공에 잘 스며들도록 고르게 섞어준다. 이때, 메조다공성 주형의 기공에 침투한 수분을 제거하고 추가로 수분이 침투하는 것을 억제하기 위해, 전구체 용액의 혼합 전에 메조다공성 주형을 약 60 내지 120℃ 온도에서 1시간 이상 열처리 할 수 있다.
메조다공성 주형과 전구체 용액의 혼합 시, 메조다공성 주형의 기공 내부로 코발트-철 전구체 혼합 용액이 모세관 현상에 의해 침투하게 된다. 이후, 100℃ 이하의 온도로 유지되는 오븐에서 이 혼합물을 1시간 이상 건조한다. 예컨대, 80℃에서 최대 12시간 정도 건조한 촉매는 공기 중에서 1℃/분의 승온 속도로 400 내지 600℃까지 승온시킨 후, 동일한 온도에서 3 내지 5시간 정도 유지하여 소성할 수 있다.
바람직하게는, 코발트 전구체 및 철 전구체의 혼합 용액에 메조다공성 주형을 혼합하여 겔을 형성시킨 후, 이 겔을 공기 중에서 건조 및 소성하여 메조다공성 주형-코발트-철의 구조체를 얻을 수 있다.
위 단계 (2)에서, 메조다공성 주형으로서는 메조다공성 실리카를 사용할 수 있다. 구체적으로, 규칙적인 기공 구조가 잘 발달된 메조다공성 실리카가 바람직하며, SBA-15, SBA-16, KIT-6, MCM-41, MCM-48, HMS, AMS-8, AMS-10, FDU-1, FDU-2 및 FDU-12로 이루어진 군으로부터 선택되는 1종의 이상의 메조다공성 실리카가 사용될 수 있으나, 이것으로 제한되는 것은 아니다. 이 중에서 KIT-6가 더욱 바람직하다.
위 단계 (3)에서, 단계 (2)에서 얻은 메조다공성 주형-코발트-철의 구조체에 산성 또는 염기성 물질을 첨가함으로써 메조다공성 주형을 제거할 수 있다.
구체적으로, 단계 (2)에서 얻은 메조다공성 주형-코발트-철의 구조체로부터 주형 물질로 사용한 메조다공성 실리카를 제거해야만 3차원 구조의 메조다공성 코발트-철 하이브리드 촉매를 얻을 수 있다. 이때, 실리카는 산성 혹은 염기성 물질로 처리함으로써 화학적으로 제거할 수 있는데, 산성 물질로는 불산(HF) 수용액을 사용할 수 있고, 염기성 물질로는 수산화나트륨(NaOH) 수용액을 사용할 수 있으나, 이들로 제한되는 것은 아니다. 특히, 사용의 편의성 및 안전을 감안하여, 강염기인 수산화 나트륨을 사용해 주형물질을 제거할 수 있고, 2 M 농도의 수산화 나트륨 수용액으로 처리한 후, 유기 및 무기 용매로 반복 세척하여 주형 물질을 쉽게 제거할 수 있다.
본 발명의 일 실시예에 따라서, 메조다공성 실리카인 KIT-6를 주형 물질로 사용하여 경질 주형 기법으로 제조된 본 발명의 촉매는 고도로 정렬된 규칙적인 세공 구조 및 일정한 크기의 기공을 가지는 메조다공성 코발트-철 하이브리드(meso-CoFe aO x) 촉매로서, 약 40 내지 100 ㎡/g 가량의 비표면적을 가진다. 이는 주형 물질로 사용된 KIT-6의 비표면적(약 500 내지 800 ㎡/g)에 비해 크게 감소한 것이지만, 촉매의 주골격 자체가 피셔-트롭쉬 합성의 활성 물질인 철과 코발트로 주로 이루어져 있기 때문에, 넓은 비표면적을 갖는 지지체 기반의 종래 촉매에 비해 표면에 노출된 활성점의 개수가 많으며, 발달된 기공 구조로 인해 반응물 및 반응 생성물의 물질전달이 유리하다.
본 발명의 일 구체예에 따라서, 본 발명의 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법은 (4) 단계 (3)에서 형성된 촉매의 메조다공성 3차원 주골격의 기공 내부 혹은 표면에 구조 증진제로서 알루미나를 추가로 담지시키는 단계를 더 포함할 수 있다.
위 단계 (4)에서, 단계 (3)에서 형성된 촉매를 알루미나 전구체 용액에 함침시킨 후, 이를 건조 및 소성함으로써 알루미나를 추가로 담지시킬 수 있다.
구체적으로, 위 단계 (4)에서 구조 증진제 역할을 하는 알루미나는 전형적인 함침법을 사용하여 촉매 표면이나 기공 내부에 비교적 고르게 담지 시킬 수 있다. 이때, 알루미늄 전구체 또는 알루미나 전구체로는 나이트레이트 염, 클로라이드 염, 카르복실산 염 등의 수용액 전구체를 사용할 수 있다. 구체적으로, 알루미늄 전구체 또는 알루미나 전구체는 알루미늄 나이트레이트 노나하이드레이트(Al(NO 3) 3·9H 2O), 알루미늄 아세테이트(Al(OH)(C 2H 3O 2) 2) 및 알루미늄 클로라이드 헥사하이드레이트(AlCl 3·6H 2O)로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
본 발명의 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법에서 구조 증진제로서 사용되는 알루미나는 촉매의 총 중량 대비 2 내지 12 중량%의 양으로 담지될 수 있다. 알루미나의 함량이 위 범위를 만족할 경우, 구조 증진제가 촉매 표면의 지나치게 흡착되어 촉매의 활성을 저하시키는 효과를 억제할 수 있다.
위 단계 (4)에서, 알루미늄 전구체 수용액과 단계 (3)에서 생성된 촉매를 혼합한 후, 이를 70 내지 90℃에서 6 내지 24시간 동안 천천히 건조할 수 있으며, 1℃/분의 승온 속도로 상온에서 550℃까지 승온시킨 후, 550℃에서 3시간 이상 유지하여 소성할 수 있다.
본 발명의 또 다른 양태에 따라서, 피셔-트롭쉬 합성 반응을 이용해 합성가스로부터 중질 유분 탄화수소 및 경질 유분 탄화수소를 선택적으로 제조하는 방법으로서, (a) 본 발명에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매를 피셔-트롭쉬 합성 반응용 고정층 반응기에 적용하는 단계; (b) 단계 (a)의 촉매를 고온의 수소 분위기 하에서 환원시켜 촉매를 활성화시키는 단계; 및 (c) 활성화된 촉매를 이용해 피셔-트롭쉬 합성 반응을 수행하는 단계를 포함하는 것을 특징으로 하는, 중질 유분 탄화수소 및 경질 유분 탄화수소의 선택적 제조방법이 제공된다.
탄화수소 사슬의 연쇄성장반응에 의해 합성가스를 주로 고 비점 탄화수소로 변환시켜 주는 공정인 GTL(gas-to-liquid) 기술은 합성가스 생성 및 탄화수소 합성을 위한 피셔-트롭쉬 합성이 근간을 이룬다. 코발트 계열 촉매를 이용한 저온 피셔-트롭쉬 합성에서는 주로 액상 혹은 고상의 선형 파라핀계 탄화수소가 생성되며, 철 계열 촉매를 이용한 고온 피셔-트롭쉬 합성에서는 주로 경질 탄화수소(C 2~C 4) 위주의 탄화수소가 우세하게 생성된다. 본 발명에 따른 촉매를 사용하게 되면 높은 온도(300℃)에서도 고활성을 오랜 시간 유지하며, 경질 유분 및 중질 유분 탄화수소를 상대적으로 높은 비율로 제조할 수 있다.
위 단계 (a)에서, 본 발명의 메조다공성 코발트-철 하이브리드 촉매를 고정층 반응기에 적용하여 피셔-트롭쉬 합성 반응을 수행하는 것이 바람직하지만, 고정층 반응기로 제한되는 것은 아니다.
위 단계 (a)에서, 본 발명의 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매를 피셔-트롭쉬 합성 반응용 고정층 반응기에 적용할 경우, 희석제를 더 포함할 수 있다.
이 경우, 희석제는 피셔-트롭쉬 합성 반응에서 생성되는 반응열을 일부 흡수하여 반응기 외부로 분산시키며, 이를 통해 촉매를 열적 충격으로부터 보호함과 동시에 반응 간에 핫 스팟(hot spot)이 생성되는 것을 억제하는 역할을 한다. 희석제로는 파우더 혹은 볼 형태의 α-알루미나(α-Al 2O 3) 혹은 지르코니아(ZrO 2) 중에서 선택되는 1종 이상이 사용될 수 있다. 본 발명의 촉매와 희석제는 발열 정도 및 반응 온도에 따라 1:0 내지 1:10의 중량비로 사용될 수 있다.
위 단계 (b)에서, 수소화 반응의 활성 성분으로 전환하기 위해, 고온에서 촉매를 환원시키는 전처리 과정을 수행한다. 이때, 질소로 희석된 수소 분위기(H 2(5%)/N 2) 하에서 6 내지 24시간, 바람직하게는 약 12시간 동안 전처리할 수 있다. 특히, 약 200 내지 700℃, 바람직하게는 550℃ 정도의 온도에서 수소 또는 합성가스로 전 처리 할 때, 많은 양의 철 산화물이 철 또는 철-카바이드(iron-carbide) 형태로 전환되어 피셔-트롭쉬 합성 반응에 활성을 나타낼 수 있다. 또한, 본 발명에 따른 메조다공성 코발트-철 하이브리드 촉매가 구조 증진제로서 알루미나를 포함하는 경우, 알루미나가 이 전처리 과정에서 촉매의 메조다공성 구조를 더 안정적으로 유지하는 데 기여할 수 있다.
위 단계 (c)에서, 피셔-트롭쉬 합성 반응이 바람직하게는 200 내지 350℃의 반응 온도, 10 내지 30 bar의 반응 압력 및 촉매 단위 질량당 반응가스 유량 기준으로 2000 내지 64000 L/kg cat./h의 공간속도에서 수행될 수 있다.
위 단계 (c)에서, 경질 탄화수소(경질 올레핀) 계열의 탄화수소를 우세하게 제조할 경우, 230 내지 350℃의 반응 온도, 반응기 내부로 흘려주는 합성가스에 의해 가압되는 반응기의 반응 가스 압력 기준으로 15 내지 35 bar의 반응 압력, 구체적으로는 약 20 bar의 반응 압력에서 피셔-트롭쉬 합성 반응이 수행되는 것이 바람직하다.
피셔-트롭쉬 합성을 이용해 합성가스로부터 중질 유분 탄화수소 및 경질 유분 탄화수소를 제조하는 본 발명에 따른 방법에 있어서, 반응생성물 중의 C 2~C 4 경질 탄화수소와 C 5+ 중질 유분 탄화수소의 탄소 몰 함량이 각각 20% 이상 및 60% 이상일 수 있다.
이하, 실시예에 의하여 본 발명을 좀더 상세하게 설명한다. 단, 아래 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
제조예 1: 메조다공성 실리카(OMS) KIT-6의 제조
메조다공성 코발트-철 하이브리드 촉매(meso-CoFe aO b)를 제조하기 위한 주형 물질로 사용될 메조다공성 실리카 KIT-6를 아래 절차에 따라 제조하였다.
메조다공성 실리카 KIT-6 특유의 3차원 메조다공성 구조를 형성시키기 위한 구조 유도제로 공중합 고분자인 P123를 사용하였다. 이 공중합 고분자는 수용액 내부에서 마이셀(micelle)을 형성시켜 실리콘 이온과의 상호작용 및 자기 조립(self-assembly)을 통해 3차원의 메조다공성 실리카 구조체를 형성시킬 수 있다.
P123 약 16.0 g을 150 ㎖의 증류수에 섞고 물에 완전히 분산될 때까지 천천히 교반하였다. P123가 완전히 용해된 후, 37 중량% 염산 수용액 29.9 g을 약 430 ㎖의 증류수에 섞고 교반하여 분산시킨 수용액에 한 번에 부어 혼합한 후 10분 동안 추가로 교반하였다. 이후, 16.0 g의 n-부탄올을 혼합 용액에 추가하고 교반하였다. 35℃의 반응 온도를 유지하면서 1시간 동안 추가로 교반 후, 34.4 g의 테트라에톡시실란(tetraethoxysilane; TEOS)를 교반 중인 반응 용액에 한 번에 투입하였고, 35℃의 온도에서 24시간 동안 약하게 교반하였다.
교반이 완료된 후, 백색의 실리카 침전이 형성된 반응 용액을 테프론 용기가 내장된 오토클레이브(autoclave)로 옮기고, 반응 용액을 교반하지 않으면서 약 100 내지 110℃에서 하루 동안 용기 내부에서 용매의 기화에 의해 자연적으로 발생하는 압력을 이용해 수열 합성 반응을 진행하였다. 이후, 반응 용액이 완전히 냉각되기 전에 여과하여 잔여 용매를 제거한 후, 별도의 세척 과정 없이 110℃ 오븐에서 약 1시간 동안 건조하였다.
이후, 37% 염산 10 부피%로 구성된 330 ㎖의 에탄올 용액을 만든 후, 건조 완료된 실리카 분말을 이 염산-에탄올 용액과 섞고 약 2시간 동안 교반하여 P123를 제거하는 계면활성제 추출(surfactant extraction)을 수행하였다. 이후, 여과 및 증류수 세척 과정을 통해 잔여 불순물을 일부 제거하고, 110℃ 오븐에서 약 1 내지 2시간 동안 건조하였다. 얻어진 백색 실리카 분말을 1℃/분의 승온 속도로 400 내지 550℃까지 승온시킨 후 6시간 동안 유지하여 소성을 수행하였다.
최종적으로 매우 고운 백색 분말의 메조다공성 실리카인 KIT-6를 얻었으며, 제조된 KIT-6의 비표면적은 578 내지 751 ㎡/g으로 확인되었고, 평균 기공 직경은 5.7 내지 5.8 ㎚ 정도였다.
실시예 1: 메조다공성 코발트-철 하이브리드(Al 2O 3(5)/meso-CoFeO x) 촉매의 제조
(1) 단계 1: 메조다공성 코발트-철 하이브리드(meso-CoFeO x) 촉매의 제조
위 제조예 1에서 제조된 KIT-6 10.0 g을 110℃ 오븐에서 1시간 이상 건조하여 잔여 수분을 제거하였다. KIT-6의 기공 내부에 코발트와 철을 넣기 위해 아이언 나이트레이트 노나하이드레이트(iron nitrate nonahydrate, Fe(NO 3) 3·9H 2O, 98.5%) 13.9 g과 코발트 나이트레이트 헥사하이드레이트(cobalt nitrate hexahydrate, Co(NO 3) 2·6H 2O, 97.0%) 9.5 g을 약 10 ㎖의 증류수에 섞고 완전히 용해시켰다. 이후, 건조된 KIT-6 분말에 코발트-철 전구체 용액을 한 번에 부은 후 전구체 용액이 기공 내부로 침투되는 것을 촉진시키기 위해 긴 시간 동안 충분히 섞어주었다. 전구체 용액이 기공 내로 잘 들어간 짙은 황색의 KIT-6 분말은 물의 증발 온도 이하인 80℃에서 약 10시간 내지 24시간 범위 내에서 충분히 건조하여 용매인 물을 코발트-철 전구체-KIT-6 복합체로부터 증발시켰다. 건조가 완료된 분말을 1℃/분의 승온 속도로 400℃까지 승온시킨 후 동일 온도에서 5시간 유지하여 소성하였다.
이어서, 소성이 완료된 코발트-철-KIT-6 복합체로부터 KIT-6를 제거하는 단계(template extraction)를 수행하였다. 약 32.8 g의 수산화나트륨(97.0%) 분말을 400 ㎖의 증류수에 완전히 녹여 2 M 수산화나트륨 수용액을 얻었다. 이 수산화나트륨 수용액 200 ㎖를 덜어서 소성된 코발트-철-KIT-6 복합체(meso-CoFeO x incorporated in KIT-6) 분말을 넣은 후 약 30분 동안 천천히 교반하였다. 이 촉매 분말 용액을 9000 rpm에서 약 10분 동안 원심분리하여 강염기 용매를 촉매와 분리하여 배출하였고, 이후 2 M 수산화나트륨 수용액 중 남은 200 ㎖로 촉매 분말을 추가 세척한 후, 증류수와 아세톤으로 번갈아 가면서 각각 2회씩 반복 세척하였다. 생성된 메조다공성 코발트-철 하이브리드 촉매 분말은 매우 미세하여 여과용지를 통해 걸러 내기 어렵기 때문에, 위의 모든 세척과정 역시 원심분리기로 반복적으로 수행하였다. 얻어진 촉매 분말을 상온에서 하루 이상 건조한 후 수거하여 최종적으로 메조다공성 코발트-철 하이브리드 촉매를 제조하였다. 이 촉매를 meso-CoFeO x로 명명하였고, 이 촉매의 비표면적과 평균 기공 크기가 각각 55.3 ㎡/g와 7.36 ㎚로 확인되었다.
(2) 단계 2: Al 2O 3(5)/meso-CoFeO x 촉매의 제조
위 단계 1에서 제조된 메조다공성 코발트-철 하이브리드(meso-CoFeO x) 촉매에 구조 증진제 성분으로 촉매 중량 대비 5.0%의 알루미나(Al 2O 3)를 담지하였다.
구체적으로, 위 단계 1에서 얻은 메조다공성 코발트-철 하이브리드(meso-CoFeO x) 촉매 3 g을 110℃ 오븐에 넣고 약 1시간 이상 건조하여 촉매에 남아 있는 수분을 최대한 제거하였다. 알루미늄 전구체인 알루미늄 나이트레이트 노나하이드레이트 (Al(NO 3) 3·9H 2O, 98.0%) 1.2 g을 2 ㎖의 증류수에 완전히 용해시킨 후, 건조가 완료된 메조다공성 코발트-철 하이브리드(meso-CoFeO x) 촉매 3.0 g와 고르게 섞어서 알루미늄 전구체 용액이 균일하게 분산된 촉매 분말을 제조하였다. 제조된 분말을 80℃ 오븐에서 약 12시간 동안 건조하여 용매인 증류수를 증발시켰다. 건조가 완료된 촉매를 1℃/분의 승온 속도로 400℃까지 승온시킨 후 동일한 온도에서 3시간 유지하여 소성하였다.
최종적으로 제조된 촉매를 Al 2O 3(5)/meso-CoFeO x로 명명하였고, 이 촉매의 비표면적과 평균 기공 크기가 각각 43.8 ㎡/g와 8.19 ㎚로 확인되었다.
실시예 2: 메조다공성 코발트-철 하이브리드(Al 2O 3(5)/meso-CoFe 0 . 5O x) 촉매의 제조
(1) 단계 1: 메조다공성 코발트-철 하이브리드(meso-CoFe 0.5O x) 촉매의 제조
아이언 나이트레이트 노나하이드레이트를 13.9 g 첨가하는 대신 7.0 g 첨가하는 것을 제외하고는 실시예 1의 단계 1과 동일한 절차를 통하여 메조다공성 코발트-철 하이브리드 촉매(meso-CoFe 0 . 5O x)를 얻었다. 이 촉매의 비표면적과 평균 기공 크기가 각각 73.1 ㎡/g와 12.67 ㎚로 확인되었다.
(2) 단계 2: Al 2O 3(5)/meso-CoFe 0.5O x 촉매의 제조
위 단계 1에서 제조된 meso-CoFe 0 . 5O x 촉매를 사용하는 것을 제외하고는 실시예 1의 단계 2와 동일한 절차를 통하여 Al 2O 3(5)/meso-CoFe 0 . 5O x 촉매를 얻었다. 제조된 촉매의 비표면적과 평균기공크기는 각각 60.3 ㎡/g, 15.0 ㎚로 확인되었다.
비교예 1: FeCuK/Al 2O 3(20/2/4/100) 촉매의 제조
보헤마이트(boehmite)를 600℃에서 소성하여 얻은 γ-Al 2O 3를 지지체로 이용하였다. 철, 구리 및 칼륨 전구체로는 각각 아이언 나이트레이트 수용액(aqueous iron nitrate solution), 코퍼 나이트레이트(copper nitrate), 포타슘 카보네이트 용액(potassium carbonate solution)을 이용하였다. 이 물질들을 정해진 비율로 물에 섞어 전구체 수용액을 제조한 후, 함침법으로 지지체에 담지하였다. 전구체 수용액은 약산성이기 때문에, 암모늄 하이드록사이드 수용액(aqueous ammonium hydroxide solution)을 이용하여 pH를 조절해 주었다. 전구체를 섞어준 촉매 분말을 건조한 후 500℃까지 승온시켜 5시간 동안 유지하며 소성 과정을 수행하여 FeCuK/Al 2O 3(20/2/4/100) 촉매를 얻었다[Kang, Suk-Hwan, et al. Applied Catalysis B: Environmental 103 (2011) 169-180].
비교예 2: 20Fe-100Al 촉매의 제조
아이언 아세틸아세토나이트(Fe(acac) 3), 1-헥사디케인(1-hexadecane), 올레인산(oleic acid), 올레일아민(oleylamine), 페닐 이써(phenyl ether)를 정해진 비율로 섞은 용액을 100℃까지 승온시킨 후 1시간 동안 교반한 다음, 200℃에서 1시간 동안 용매 열합성법으로 제조한 Fe 3O 4 나노 결정을 철 전구체로 이용하였다. 헥산에 녹인 Fe 3O 4 나노 결정과 알루미나 졸을 1-부탄올에 녹여 잘 섞은 후 상온에서 12시간 동안 건조하였다. 건조된 혼합물에 남은 유기용매를 제거하기 위해 180℃까지 승온시킨 후 6시간 동안 유지하여 20Fe-100Al 촉매를 얻었다[Dong, Houhuan, et al. Chem. Commun., 2011, 47, 4019-4021 4019].
비교예 3: 20CoAl 촉매의 제조
알루미늄 이소프로폭사이드(aluminum isopropoxide; AIP)를 2-프로판올에 녹이고 교반한 후 아세트산(acetic acid)과 물을 일정 비율, 속도로 첨가하여 열분해 속도를 조절함으로써 알루미나 겔(alumina gel)을 얻었다. 이후, 80℃에서 20시간 동안 숙성한 후 2-프로판올을 이용하여 수차례 세척하였다. 제조된 분말은 500℃까지 승온시킨 후 5시간 동안 유지하며 소성하여 γ-Al 2O 3을 얻었다[Kim, Seung-Moon, et al. Applied Catalysis A: General 348 (2008) 113-120]. 코발트 전구체로는 코발트 나이트레이트 헥사하이드레이트(Co(NO 3) 2·H 2O)를 이용하였고, 이를 물에 녹인 후 용액 함침법(slurry impregnation)으로 지지체에 담지하였다. 코발트 전구체를 담지한 촉매 분말을 100℃ 오븐에서 12시간 동안 건조하여 수분을 증발시켰다. 건조된 촉매를 수거한 후 500℃까지 승온시키고 3시간 동안 유지하며 소성하여 20CoAl 촉매를 얻었다[Bae, Jong Wook, et al. Catalysis Communications 10 (2009) 1358-1362].
실험예
본 발명의 일 구현예에 따른 실시예 1과 2의 촉매의 결정구조를 X-선 회절법(X-ray diffraction; XRD)으로 분석하여 도 1에 나타내었다. 실시예 1과 2의 촉매는 철산화물(Fe 2O 3)의 결정과 코발트산화물(Co 3O 4)의 결정, 코발트-철 혼합 산화물(CoFe 2O 4)의 결정이 혼재하는 것으로 확인되었다.
또한, 실시예 1과 2 및 비교예 1 내지 3에서 얻어진 촉매의 피셔-트롭쉬 합성 활성을 확인하기 위해, 아래와 같이 CO 전환율 및 탄화수소 선택도 반복 분석을 수행하였다.
활성 테스트 실험은 H 2/CO/N 2 = 62.84/31.56/5.60 부피 분율의 합성가스를 이용하여 진행하였고, 반응은 220과 300℃의 온도, 20 bar의 압력, 2000과 8000 L/kg·cat./h의 공간속도에서 60시간 동안 진행하였으며, 반응 50시간 이후의 평균을 사용하여 촉매의 활성을 나타내었다. 비활성화도는 아래 수학식 1을 이용하여 구하였고, 올레핀 선택도는 C 2~C 4 범위의 탄화수소를 기준으로 계산하였다.
[수학식 1]
비활성화도(%) = [CO 전환율(최고) - CO 전환율(50시간)]/CO 전환율(최고) × 100
실험예 1
실시예 1과 2 및 비교예 1 내지 3에서 제조된 촉매를 이용하여 반응 실험을 수행하였다. 반응기에 촉매를 넣은 뒤 활성화를 위해 550℃, 33 ㎤/분 유량의 H 2(5%)/N 2 환원 가스 하에서 약 12시간 동안 환원 처리하였다. 합성가스 압력 기준으로 20 bar, 2000 또는 8000 L/kg cat./h의 공간속도, 220 또는 300℃의 고정층 반응기에서 합성가스(H 2/CO/N 2 = 62.84/31.56/5.60)를 약 13.333 ㎖/분 유량으로 흘려주면서 반응시켰다(표 1 참조).
반응은 연속 반응으로 약 60시간 동안 수행하였고, 가스 크로마토그래피를 이용해 1시간 간격으로 반응 수득물에 대한 CO 전환율 및 탄화수소 선택도 반복 분석을 실시하였다.
비교예 1 내지 3에서 제조된 촉매는 350 내지 450℃, H 2 환원가스 하에서 환원 처리하였으며, 반응 조건 및 결과를 각각 표 1, 2에 나타내었다.
촉매 환원 온도(℃) 반응 공간 속도(L/kg cat./h) 반응 온도(℃)
실시예 1, 2 550 8000 300
비교예 1 450 2000 300
비교예 2 350 2000 300
비교예 3 400 2000 220
구분 촉매 최고 CO 전환율 비활성화도 탄소선택도C 1/C 2~C 4/C 5+/올레핀선택도 *(탄소 몰%)(평균) 반응온도
실시예 1 Al 2O 3(5)/meso-CoFeO x 89.6 0 11.0/21.1/67.9/16.3 HTFT(300℃)
실시예 2 Al 2O 3(5)/meso-CoFe 0 . 5O x 95.8 0 8.1/28.7/63.2/41.4 HTFT(300℃)
비교예 1 FeCuK/Al 2O 3 (20/2/4/100) 96.1 0 14.1/37.4/48.5/52.6 HTFT(300℃)
비교예 2 20Fe-100Al 56.3 11.2(10 h) 23.1/47.0/29.9/66.1 HTFT(300℃)
비교예 3 20CoAl 70 67.9 12.2/14.1/73.7/34.8 LTFT(220℃)
표 2에 나타낸 바와 같이, 본 발명에 따른 2 내지 12 중량%의 알루미나가 함침된 메조다공성 코발트-철 하이브리드 촉매의 경우, 알루미나를 제외한 별도의 구조 증진제 및 조촉매 없이도 높고 안정적인 CO 수소화 반응 활성, 철 계열 촉매에 비해 더 높은 중질 유분 선택도(60% 이상)를 보였다. 또한, CO 전환율은 90% 이상으로 유지하면서 경질 탄화수소의 탄화수소 선택도를 20% 이상으로 유지할 수 있었다. 한편, 경질 올레핀의 탄화수소 선택도는 16 내지 41%으로 유지되었다.
특히, 도 1로부터 확인되는 바와 같이, 코발트 산화물과 철 산화물이 균일하게 혼재되어 있는 규칙적인 메조다공성의 주골격을 가지면서 소량의 알루미나가 구조 증진제로서 추가로 담지된 본 발명의 코발트-철 하이브리드 촉매는 60시간의 피셔-트롭쉬 합성 반응 동안 안정적인 촉매 활성을 일정하게 유지하였다.
본 발명의 메조다공성 코발트-철 하이브리드 촉매는 높은 반응온도인 300℃에서는 철 계열 촉매와 유사한 거동을 보였으며, 전환율 및 안정성에 있어서 우수한 성능을 보였다.
또한, 본 발명의 일 구현예에 따른 실시예 1 촉매의 반응 전후를 투과전자현미경(transmission electron microscope; TEM)으로 관찰한 결과, 반응 전후의 촉매에서 모두 중형 기공 및 규칙적인 다공성 구조가 존재함을 확인할 수 있었다(도 3 참조).
본 발명의 메조다공성 코발트-철 하이브리드 촉매(특히, 코발트와 철의 몰 비가 1:1 정도인 촉매)는 종래의 코발트 계열 촉매의 환원 온도(400℃)보다 매우 높은 온도(550℃)에서 환원처리 되었음에도 불구하고, 피셔-트롭쉬 합성 반응 후에도 구조의 변형이나 뒤틀림이 거의 관찰되지 않을 정도로 매우 안정성이 뛰어났다. 이는 환원되지 않은 일부의 철 산화물과 촉매 합성 중에 생성된 코발트-철 혼합산화물(CoFe 2O 4 등의 스피넬 구조) 등이 3차원 골격을 잡아주는 구조 증진제 역할을 하며, 이들이 추가로 첨가된 구조증진제인 알루미나와 함께 3차원 다공성 구조체의 안정적인 구조 유지에 기여하고 있기 때문으로 여겨진다.
코발트 산화물과 철 산화물이 균일하게 혼재되어 있는 규칙적인 메조다공성의 주골격을 가지는 본 발명의 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매는 경질 올레핀 및 LPG의 주성분(경질 탄화수소) 제조를 위한 피셔-트롭쉬 합성 반응에 매우 유용하게 사용될 수 있다.

Claims (26)

  1. 코발트 산화물과 철 산화물이 균일하게 혼재되어 있는 규칙적인 메조다공성(mesoporous)의 주골격(main framework)을 갖는 것을 특징으로 하는 피셔-트롭쉬(Fischer-Tropsch) 합성 반응용 코발트-철 하이브리드 촉매.
  2. 제1항에 있어서, 메조다공성의 주골격이 아래 화학식 1로 표시되는 화합물을 주성분으로 함유하는 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매:
    [화학식 1]
    CoFe aO b
    위 화학식에서 a 및 b는 몰 비로서, 0.1 ≤ a ≤ 1.0 및 1.0 ≤ b ≤ 4.0를 만족한다.
  3. 제1항에 있어서, 메조다공성의 주골격이 메조다공성 주형(template)을 이용하여 형성된 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매.
  4. 제3항에 있어서, 메조다공성 주형이 SBA-15, SBA-16, KIT-6, MCM-41, MCM-48, HMS, AMS-8, AMS-10, FDU-1, FDU-2 및 FDU-12로 이루어지는 군으로부터 선택된 1종 이상의 실리카인 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매.
  5. 제1항에 있어서, 비표면적이 40 내지 100 ㎡/g이고, 기공의 평균 직경이 4 ㎚ 내지 15 ㎚인 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매.
  6. 제1항에 있어서, 원하는 피셔-트롭쉬 합성의 생성물이 선택적으로 형성 및 배출될 수 있는 기공의 크기를 갖도록 합성 또는 선택된 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매.
  7. 제1항에 있어서, 코발트 산화물과 철 산화물이 균일하게 혼재되어 있는 메조다공성의 주골격에서 기공 내부 혹은 표면에 구조 증진제로서 알루미나가 추가로 담지되어 있는 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매.
  8. 제7항에 있어서, 알루미나가 촉매의 총 중량 대비 2 내지 12 중량%의 양으로 담지 되어 있는 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매.
  9. 제7항에 있어서, 알루미나가 담지된 후의 비표면적이 40 내지 100 ㎡/g이고, 기공의 평균 직경이 5 내지 20 ㎚인 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매.
  10. 제7항에 있어서, 메조다공성의 주골격이 CoFe aO b, Al 2O 3-CoFe aO b 또는 이의 혼합물(a 및 b는 몰 비로서, 0.1 ≤ a ≤ 1.0 및 1.0 ≤ b ≤ 4.0를 만족함)를 포함하는 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매.
  11. 제1항에 내지 제10항 중 어느 한 항에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법으로서,
    (1) 코발트 전구체와 철 전구체가 균일하게 용해된 혼합 용액을 제조하는 단계;
    (2) 메조다공성 주형에 상기 단계 (1)의 혼합 용액을 붓고 충분히 섞은 후 건조 및 소성하여 메조다공성 주형-코발트-철의 구조체를 얻는 단계; 및
    (3) 단계 (2)에서 얻은 구조체로부터 메조다공성 주형을 제거하여, 코발트 산화물과 철 산화물이 균일하게 혼재되어 있는 메조다공성의 3차원 주골격을 형성시키는 단계를 포함하는 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법.
  12. 제11항에 있어서, 코발트 전구체가 코발트 나이트레이트(Co(NO 3) 2·6H 2O), 코발트 클로라이드(CoCl 2·6H 2O) 및 코발트 아세테이트((CH 3COO) 2Co·4H 2O)로 이루어진 군으로부터 선택되는 1종 이상이고, 철 전구체가 아이언 나이트레이트 노나하이드레이트(Fe(NO 3) 3·9H 2O), 아이언 아세테이트((CH 3COO) 2Fe) 및 아이언 클로라이드 헥사하이드레이트(FeCl 3·6H 2O)로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법.
  13. 제11항에 있어서, 단계 (1)의 혼합 용액의 용매가 증류수, 메탄올, 에탄올 및 에틸렌글리콜로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법.
  14. 제11항에 있어서, 단계 (1)에서 코발트 전구체와 철 전구체는 코발트와 철의 몰 비가 1:1 내지 1:0.1이 되도록 혼합되는 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법.
  15. 제11항에 있어서, 단계 (2)에서 메조다공성 주형이 SBA-15, SBA-16, KIT-6, MCM-41, MCM-48, HMS, AMS-8, AMS-10, FDU-1, FDU-2 및 FDU-12로 이루어지는 군으로부터 선택된 1종 이상의 실리카인 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법.
  16. 제11항에 있어서, 단계 (2)에서 얻은 구조체에 산성 또는 염기성 물질을 첨가하여 메조다공성 주형을 제거하는 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법.
  17. 제16항에 있어서, 산성 물질이 불산(HF)이고, 염기성 물질이 수산화나트륨(NaOH)인 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법.
  18. 제11항에 있어서, (4) 단계 (3)에서 형성된 메조다공성의 3차원 주골격의 기공 내부 혹은 표면에 구조 증진제로서 알루미나를 추가로 담지시키는 단계를 더 포함하는 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법.
  19. 제18항에 있어서, 단계 (3)에서 형성된 메조다공성의 3차원 주골격을 알루미나 전구체 용액에 함침시킨 후, 이를 건조 및 소성함으로써 알루미나를 추가로 담지시키는 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법.
  20. 제18항에 있어서, 알루미늄 전구체가 알루미늄 나이트레이트 노나하이드레이트(Al(NO 3) 3·9H 2O), 알루미늄 아세테이트(Al(OH)(C 2H 3O 2) 2) 및 알루미늄 클로라이드 헥사하이드레이트(AlCl 3·6H 2O)로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법.
  21. 제18항에 있어서, 알루미나가 촉매의 총 중량 대비 2 내지 12 중량%의 양으로 담지되도록 알루미나 전구체의 함량이 선택되는 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매의 제조방법.
  22. 피셔-트롭쉬 합성 반응을 이용해 합성가스로부터 중질 유분 탄화수소 및 경질 유분 탄화수소를 선택적으로 제조하는 방법에 있어서,
    (a) 제1항 내지 제10항 중 어느 한 항에 따른 피셔-트롭쉬 합성 반응용 메조다공성 코발트-철 하이브리드 촉매를 피셔-트롭쉬 합성 반응용 고정층 반응기에 적용하는 단계;
    (b) 단계 (a)의 촉매를 고온의 수소 가스 하에서 환원 처리하여 촉매를 활성화시키는 단계; 및
    (c) 활성화된 촉매를 이용해 피셔-트롭쉬 합성 반응을 수행하는 단계를 포함하는 것을 특징으로 하는, 중질 유분 탄화수소 및 경질 유분 탄화수소의 선택적 제조방법.
  23. 제22항에 있어서, 단계 (a)에서, 촉매를 피셔-트롭쉬 합성 반응용 고정층 반응기에 적용할 때, 희석제를 더 포함하는 것을 특징으로 하는, 중질 유분 탄화수소 및 경질 유분 탄화수소의 선택적 제조방법.
  24. 제22항에 있어서, 희석제가 파우더 혹은 볼 형태의 α-알루미나(α-Al 2O 3) 혹은 지르코니아(ZrO 2) 중에서 선택되는 1종 이상이며, 촉매와 희석제가 1:0 내지 1:10의 중량비로 사용되는 것을 특징으로 하는, 중질 유분 탄화수소 및 경질 유분 탄화수소의 선택적 제조방법.
  25. 제22항에 있어서, 피셔-트롭쉬 합성 반응이 반응온도 230 내지 350℃, 반응압력 10 내지 30 bar 및 공간속도 2,000 내지 64,000 L/kg cat./h의 조건 하에서 수행되는 것을 특징으로 하는, 중질 유분 탄화수소 및 경질 유분 탄화수소의 선택적 제조방법.
  26. 제22항에 있어서, 반응생성물 중의 C 2~C 4 경질 탄화수소와 C 5+ 중질 유분 탄화수소의 탄소 몰 함량이 각각 20% 이상 및 60% 이상인 것을 특징으로 하는, 중질 유분 탄화수소 및 경질 유분 탄화수소의 선택적 제조방법.
PCT/KR2018/015975 2018-01-22 2018-12-17 규칙적인 메조다공성의 주골격을 갖는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 제조방법 WO2019143030A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180007657A KR102114538B1 (ko) 2018-01-22 2018-01-22 규칙적인 메조다공성의 주골격을 갖는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 제조방법
KR10-2018-0007657 2018-01-22

Publications (1)

Publication Number Publication Date
WO2019143030A1 true WO2019143030A1 (ko) 2019-07-25

Family

ID=67301063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015975 WO2019143030A1 (ko) 2018-01-22 2018-12-17 규칙적인 메조다공성의 주골격을 갖는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 제조방법

Country Status (2)

Country Link
KR (1) KR102114538B1 (ko)
WO (1) WO2019143030A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111774038A (zh) * 2020-07-24 2020-10-16 山东建筑大学 一种微孔/介孔/大孔复合孔隙铁钴双金属有机骨架材料的制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114405537B (zh) * 2022-01-25 2023-08-29 上海工程技术大学 一种Cs修饰的铁酸钴分子筛多功能型催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130005848A (ko) * 2011-07-07 2013-01-16 한국에너지기술연구원 철-코발트 복합 촉매 및 그 제조 방법과 이를 촉매로 이용한 피셔-트롭쉬 합성 반응에서의 수성가스전환반응 활성구현과 고선택적 액체 연료 제조방법
KR20150080700A (ko) * 2014-01-02 2015-07-10 한국화학연구원 함산소탄소화합물 제조용 촉매의 제조방법 및 이에 따라 제조되는 촉매를 이용한 함산소탄소화합물의 제조방법
KR20170009776A (ko) * 2015-07-14 2017-01-25 성균관대학교산학협력단 피셔-트롭쉬 합성 반응용 메조 기공 구조의 주골격을 갖는 코발트계 촉매 및 이의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284161B1 (ko) 2011-05-26 2013-07-10 한국화학연구원 피셔-트롭쉬 반응용 촉매의 제조방법
KR101569638B1 (ko) 2014-12-19 2015-11-17 성균관대학교산학협력단 피셔-트롭쉬 합성용 메조다공성 코발트 산화물 촉매 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130005848A (ko) * 2011-07-07 2013-01-16 한국에너지기술연구원 철-코발트 복합 촉매 및 그 제조 방법과 이를 촉매로 이용한 피셔-트롭쉬 합성 반응에서의 수성가스전환반응 활성구현과 고선택적 액체 연료 제조방법
KR20150080700A (ko) * 2014-01-02 2015-07-10 한국화학연구원 함산소탄소화합물 제조용 촉매의 제조방법 및 이에 따라 제조되는 촉매를 이용한 함산소탄소화합물의 제조방법
KR20170009776A (ko) * 2015-07-14 2017-01-25 성균관대학교산학협력단 피셔-트롭쉬 합성 반응용 메조 기공 구조의 주골격을 갖는 코발트계 촉매 및 이의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K OHN, R. ET AL.: "Nanoparticles of 3d transition metal oxides in mesoporous MCM-48 silica host structures: Synthesis and characterization", CATALYSIS TODAY, vol. 68, 2001, pages 227 - 236, XP027361235 *
SUROWIEC, Z ET AL.: "Synthesis and characterization of iron-cobalt nanoparticles embedded in mesoporous silica MCM-4", NUKLEON1KA, vol. 58, no. 1, 2013, pages 87 - 92, XP055627440 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111774038A (zh) * 2020-07-24 2020-10-16 山东建筑大学 一种微孔/介孔/大孔复合孔隙铁钴双金属有机骨架材料的制备方法和应用
CN111774038B (zh) * 2020-07-24 2023-05-23 山东建筑大学 一种微孔/介孔/大孔复合孔隙铁钴双金属有机骨架材料的制备方法和应用

Also Published As

Publication number Publication date
KR20190089330A (ko) 2019-07-31
KR102114538B1 (ko) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2015060472A1 (ko) 선택적 합성오일 생성을 위한 피셔-트롭쉬 반응용 금속 구조체 기반 코발트계 촉매 및 그 제조 방법, 이 금속 구조체 기반 코발트계 촉매를 이용한 선택적 합성 오일 제조 방법
WO2010143783A2 (en) Iron-based catalyst for fischer-tropsch synthesis and preparation method thereof
US7915193B2 (en) Method for activating strengthened iron catalyst for slurry reactors
KR100962181B1 (ko) 피셔-트롭쉬 합성용 철계 촉매 및 이의 제조방법
WO2009136711A2 (ko) 피셔-트롭쉬 합성용 코발트계 촉매 및 이의 제조방법
US11278870B2 (en) Cobalt-containing catalyst composition
KR100885311B1 (ko) 피셔-트롭쉬 합성용 코발트/인-알루미나 촉매와 이의 제조방법
KR101829917B1 (ko) 피셔-트롭쉬 합성 반응용 메조 기공 구조의 주골격을 갖는 코발트계 촉매 및 이의 제조방법
WO2009119977A2 (en) Cobalt/zirconium-phosphorus/silica catalyst for fischer-tropsch synthesis and method of preparing the same
WO2015174785A1 (ko) 가지가 방사형으로 발달된 다공성 철-실리케이트 및 이로부터 제조되는 철-카바이드 /실리카 복합 촉매
WO2011027921A2 (en) Catalyst for direct production of light olefins and preparation method thereof
WO2014092278A1 (en) Process for preparing fisher-tropsch catalyst
WO2019143030A1 (ko) 규칙적인 메조다공성의 주골격을 갖는 피셔-트롭쉬 합성 반응용 코발트-철 하이브리드 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 제조방법
JP2014514130A (ja) 触媒
WO2014129722A1 (ko) 피셔 트롭시 합성용 코발트 촉매, 제조방법 및 이를 이용한 액체 탄화수소 제조방법
WO2016060330A1 (ko) 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매의 제조방법 및 그 촉매와, 이를 이용한 액체 탄화수소의 합성 방법 및 그 액체 탄화 수소
AU2012264468B2 (en) Catalytic process for the conversion of a synthesis gas to hydrocarbons
WO2014119870A1 (ko) CoO상 입자를 포함하는 피셔-트롭시 합성용 촉매 및 이를 이용하여 천연가스로부터 액체 탄화수소를 제조하는 방법
KR100830719B1 (ko) 알루미나-실리카 담체와, 이를 함유한 촉매 및 상기 촉매를이용한 합성가스로부터 액체탄화수소 제조방법
AU2016225128B2 (en) Hydrocarbon synthesis catalyst, its preparation process and its use
KR20100034970A (ko) 피셔―트롭쉬 합성용 슬러리 반응에 의한 액체 탄화수소 화합물의 제조방법
Kong et al. Solution-combustion Synthesized Nano-pellet α-Al 2 O 3 and Catalytic Oxidation of Cyclohexane by Its Supported Cobalt Acetate
KR101569638B1 (ko) 피셔-트롭쉬 합성용 메조다공성 코발트 산화물 촉매 및 이의 제조방법
WO2011027918A1 (ko) 피셔-트롭쉬 합성용 철계 촉매 및 이의 제조방법
KR20180114301A (ko) 피셔-트롭쉬 합성 반응용 촉매, 이의 제조방법 및 상기 촉매를 사용하는 피셔-트롭쉬 합성방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901577

Country of ref document: EP

Kind code of ref document: A1