WO2019142626A1 - テトラフルオロメタンの製造方法 - Google Patents

テトラフルオロメタンの製造方法 Download PDF

Info

Publication number
WO2019142626A1
WO2019142626A1 PCT/JP2018/047653 JP2018047653W WO2019142626A1 WO 2019142626 A1 WO2019142626 A1 WO 2019142626A1 JP 2018047653 W JP2018047653 W JP 2018047653W WO 2019142626 A1 WO2019142626 A1 WO 2019142626A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
fluorine gas
gas
tetrafluoromethane
fluorinated hydrocarbon
Prior art date
Application number
PCT/JP2018/047653
Other languages
English (en)
French (fr)
Inventor
陽介 福地
智和 菅原
慎也 小黒
小林 浩
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201880085962.8A priority Critical patent/CN111566077B/zh
Priority to US16/962,549 priority patent/US11034636B2/en
Priority to EP18901391.5A priority patent/EP3741736B1/en
Priority to JP2019566389A priority patent/JP7243003B2/ja
Priority to KR1020207019111A priority patent/KR102487699B1/ko
Publication of WO2019142626A1 publication Critical patent/WO2019142626A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/361Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/361Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms
    • C07C17/367Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms by depolymerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine

Definitions

  • the present invention relates to a process for the production of tetrafluoromethane.
  • a method of reacting fluorine gas with solid carbon As a production method of tetrafluoromethane, a method of reacting fluorine gas with solid carbon, a method of reacting fluorine gas with gaseous hydrocarbon, and a mixture of a carbon material with a metal, metal fluoride or molten alumina and fluorine Methods of reacting with gas (see Patent Documents 1 and 2), and the like are known.
  • the method of reacting fluorine gas with solid carbon is a combustion reaction accompanied by a flame, and a very large reaction heat is generated, so the material itself of the fluorine gas injection port or the reaction vessel reacts with the fluorine gas to cause erosion. There was a risk of If the reaction is performed so as not to generate a flame, the reaction heat may be insufficient and the yield of tetrafluoromethane may be low.
  • the method of reacting fluorine gas with gaseous hydrocarbon is also a combustion reaction involving a flame, and a very large reaction heat is generated, so the material itself of the fluorine gas injection port or the reaction vessel reacts with the fluorine gas And there was a risk of erosion.
  • a means is taken to dilute the fluorine gas with an inert gas such as nitrogen gas to reduce the heat of reaction, but separate and refine the obtained tetrafluoroethane and the inert gas. Since the process is required, there is a problem that the manufacturing cost is increased.
  • a method of mixing a metal, metal fluoride, or molten alumina with a carbon material and then reacting it with fluorine gas is a method of moderating the reaction between the carbon material and the fluorine gas so as to break the carbon-carbon bond. It was not suitable for the synthesis of tetrafluoromethane because it was not suitable reaction conditions.
  • An object of the present invention is to provide a method for producing tetrafluoromethane which is less likely to damage a reactor and can stably produce tetrafluoromethane safely and inexpensively.
  • one aspect of the present invention is as follows [1] to [3].
  • a fluorine gas into the raw material liquid represented by the following integer, and containing a fluorinated hydrocarbon having no carbon-carbon unsaturated bond, and introducing a reaction inducer in a gaseous state
  • the reaction inducer induces a reaction of forming tetrafluoromethane from the fluorinated hydrocarbon and the fluorine gas by reacting with the fluorine gas, and a hydrocarbon which is a gas at normal temperature and pressure.
  • a method for producing tetrafluoromethane which is at least one selected from hydrogen gas.
  • the fluorinated hydrocarbon is at least one fluorine-containing substance selected from perfluorocarbons, fluorohydrocarbons, chlorofluorocarbons, chlorofluorohydrocarbons, chlorotrifluoroethylene polymers, and perfluoropolyethers [3] The manufacturing method of the tetrafluoromethane as described in 1] or [2].
  • the reactor is not easily damaged, and tetrafluoromethane can be produced safely and inexpensively and stably.
  • the present embodiment shows an example of the present invention, and the present invention is not limited to the present embodiment.
  • various changes or improvements can be added to this embodiment, and a form added with such changes or improvements can be included in the present invention.
  • the reaction heat is removed from the reaction site as a path through the gas in the atmosphere heated by the reaction heat
  • a path through which heat is discharged to the outside There is a path through which heat is discharged to the outside, and a path through which heat is discharged to the outside through a reaction apparatus (for example, a fluorine gas blowing port or a reaction vessel) heated by the reaction heat.
  • a reaction apparatus for example, a fluorine gas blowing port or a reaction vessel
  • the reaction site temperature is lowered by carrying out a reaction of producing tetrafluoromethane from fluorinated hydrocarbon and fluorine gas in the liquid phase, and further, from fluorinated hydrocarbon and fluorine gas, tetra
  • a reaction inducer to induce a reaction to form fluoromethane
  • occurrence of carbon-carbon bond cleavage reaction of fluorinated hydrocarbon occurs only in a low temperature liquid phase, which does not occur unless the temperature is very high. I found that I could do it.
  • the mechanism can be considered as follows. When fluorine gas and a gaseous reaction inducer are blown into the liquid fluorinated hydrocarbon from the blowout port, bubbles containing the fluorine gas and the reaction inducer are formed in the periphery of the fluorine gas blowout port. A reaction between the fluorine gas and the reaction initiator occurs in the bubble, and the reaction heat of the reaction raises the temperature of the bubble. Reaction inducers are used only at the beginning of the reaction to raise the temperature of the bubbles.
  • the method for producing tetrafluoromethane according to the present embodiment is a fluorinated hydrocarbon represented by the chemical formula C p H q Cl r F s and having no carbon-carbon unsaturated bond (herein, simply referred to as “fluorinated hydrocarbon”.
  • fluorinated hydrocarbon represented by the chemical formula C p H q Cl r F s and having no carbon-carbon unsaturated bond
  • Introducing a fluorine gas into a raw material liquid containing “hydrocarbon” also referred to as “hydrocarbon”
  • This reaction inducer induces a reaction to generate tetrafluoromethane from fluorinated hydrocarbon and fluorine gas by reacting with fluorine gas, and from hydrocarbon and hydrogen gas which are gases at normal temperature and pressure. It is at least one type selected.
  • p in the chemical formula is an integer of 3 to 18, q is an integer of 0 to 3, r is an integer of 0 to 9, and s is an integer of 5 to 30.
  • a reactor using an expensive material (for example, nickel alloy, Hastelloy (registered trademark), Monel (registered trademark)) having corrosion resistance to fluorine gas, and reaction is performed with a general steel such as stainless steel.
  • the reactor is inexpensive because the device can be manufactured.
  • the obtained tetrafluoromethane is useful, for example, as an etchant for a substrate and a cleaning agent for a chamber in a semiconductor manufacturing process.
  • Fluorinated Hydrocarbon is a saturated hydrocarbon represented by a chemical formula C p H q Cl r F s and having no carbon-carbon unsaturated bond.
  • the fluorinated hydrocarbon may be any of linear hydrocarbons, branched hydrocarbons and cyclic hydrocarbons, and may be a compound containing no hydrogen atom or chlorine atom.
  • fluorinated hydrocarbon examples include at least one fluorine-containing substance selected from perfluorocarbons, fluorohydrocarbons, chlorofluorocarbons, chlorofluorohydrocarbons, chlorotrifluoroethylene polymers, and perfluoropolyethers.
  • chlorotrifluoroethylene polymers include Diflon oil (registered trademark), and specific examples of perfluoropolyethers include fomblin oil (registered trademark).
  • Diflon oil is polychlorotrifluoroethylene having a molecular weight of about 1000 or less and having fluidity (pouring point: 5 to 15 ° C.) at normal temperature.
  • the fluorinated hydrocarbon may be any of gas, liquid and solid at normal temperature and pressure, but is preferably liquid. In the present invention, normal temperature means 25 ° C., and normal pressure means 101.325 kPa (1 atm).
  • the fluorinated hydrocarbon When the fluorinated hydrocarbon is a liquid, the fluorinated hydrocarbon may be used as the raw material liquid, or it may be mixed with a solvent to use a mixture of the fluorinated hydrocarbon and the solvent as the raw material liquid.
  • the fluorinated hydrocarbon is a gas or a solid, it is necessary to use a solvent for the reaction, and it is necessary to mix the fluorinated hydrocarbon with this solvent to prepare a raw material liquid.
  • the solid fluorinated hydrocarbon may be dissolved in the raw material liquid, or may be dispersed in the form of powder. Alternatively, bulk fluorinated hydrocarbons may be disposed in the feed liquid.
  • the gaseous fluorinated hydrocarbon may be dissolved in the raw material liquid or may be dispersed in the form of foam. That is, in the method for producing tetrafluoromethane according to the present embodiment, the synthesis reaction of tetrafluoromethane may be performed without a solvent or may be performed in a solvent.
  • the above-mentioned fluorinated hydrocarbon is an organic compound which hardly reacts with fluorine gas even when 100% by volume of fluorine gas is blown at 40 ° C. and 101.325 kPa.
  • the reaction equation between fluorinated hydrocarbon and fluorine gas is described as follows.
  • q and r in the chemical formula C p H q Cl r F s have small values in order to effectively utilize the supplied fluorine gas for the formation of tetrafluoromethane. .
  • p is an integer of 3 or more and 18 or less, preferably an integer of 3 or more and 10 or less, more preferably an integer of 3 or more and 5 or less, and the smaller one is necessary to obtain 1 mole of tetrafluoromethane. It is economical because the amount of fluorine gas can be small.
  • q in the chemical formula C p H q Cl r F s is 3 or less, the hydrogen atom reacts with fluorine gas to reduce the ratio of by-production of hydrogen fluoride, thereby obtaining 1 mole of tetrafluoromethane. It is economical because only a small amount of fluorine gas is required.
  • q is an integer of 0 or more and 3 or less, preferably an integer of 0 or more and 2 or less, more preferably 0 or 1.
  • r in the chemical formula C p H q Cl r F s is 0 or more and 9 or less, the fluorinated hydrocarbon often does not become solid at normal temperature and pressure (in many cases, it becomes gas or liquid), solid There is no need to heat in order to make it a liquid, which is economical.
  • the reaction rate of chlorine atoms and fluorine gas reduces the rate of by-production of fluorine chloride, the amount of fluorine gas required to obtain one mole of tetrafluoromethane can be reduced, which is economical.
  • r is an integer of 0 to 9, but is preferably an integer of 0 to 4. More preferably, the fluorinated hydrocarbon is a perfluorocarbon in which q and r are both 0.
  • reaction inducer is a compound that easily reacts with fluorine gas. Then, the reaction inducer induces a reaction of forming tetrafluoromethane from fluorinated hydrocarbon and fluorine gas by reacting with fluorine gas, and hydrocarbon and hydrogen gas which are gases at normal temperature and pressure. Or at least one selected from although the reaction inducer is introduced into the raw material liquid in a gaseous state, it may be dissolved in the raw material liquid or may be dispersed in a foamy state.
  • reaction inducer examples include saturated hydrocarbons having 1 to 10 carbon atoms, which are gases such as methane, ethane and ethylene at normal temperature and pressure, and hydrogen gas.
  • gases such as methane, ethane and ethylene at normal temperature and pressure
  • hydrogen gas is more preferable because the use of hydrocarbon increases the rate at which fluorine gas reacts with the reaction inducer and reduces the economic efficiency.
  • tetrafluoromethane may be produced
  • the introduction amount of the reaction inducer is not particularly limited as long as it can induce a reaction to generate tetrafluoromethane from fluorinated hydrocarbon and fluorine gas, but 15 volumes of the introduction amount of fluorine gas It is preferable to set it as% or less.
  • the reaction inducer is able to induce a reaction to form tetrafluoromethane from fluorinated hydrocarbon and fluorine gas
  • the reaction between fluorinated hydrocarbon and fluorine gas is then carried out even if the introduction of reaction inducer is stopped. continue. Therefore, after inducing the reaction to generate tetrafluoromethane from fluorinated hydrocarbon and fluorine gas by the reaction inducing agent, the introduction of the reaction inducing agent to the raw material liquid may be stopped.
  • the blowout port for introducing the gaseous reaction inducer into the raw material liquid be disposed in the vicinity of the blowout port for introducing fluorine gas into the raw material liquid.
  • the aspect of the piping which introduces fluorine gas and the reaction inducer into the raw material liquid in the reaction container is not particularly limited, for example, the pipe which introduces the gas into the raw material liquid is a double pipe, fluorine gas and reaction induction One of the agents may be introduced from the inner tube and the other from the outer tube.
  • a pipe for introducing a fluorine gas into the raw material liquid and a pipe for introducing a reaction inducing agent into the raw material liquid may be installed in the reaction vessel, and both injection ports of these pipes may be adjacent to each other.
  • the reaction apparatus shown in FIG. 1 includes a metal reaction vessel 11 in which a reaction for producing tetrafluoromethane is performed, and a fluorinated carbon represented by the chemical formula C p H q Cl r F s and having no carbon-carbon unsaturated bond.
  • Piping for reaction inducing agent having at the tip thereof a blowing port 27a for introducing in gaseous form at least one reaction inducing agent selected from hydrocarbon and hydrogen gas which are gases at normal temperature and pressure into the raw material liquid 1 in the reaction vessel 11 27 and an exhaust pipe 25 for discharging the gas phase part in the reaction vessel 11 to the outside.
  • hydrocarbon and hydrogen gas which are gases at normal temperature and pressure into the raw material liquid 1 in the reaction vessel 11 27
  • an exhaust pipe 25 for discharging the gas phase part in the reaction vessel 11 to the outside.
  • lifted for example.
  • the reaction apparatus shown in FIG. 1 is provided with a circulation facility for extracting a part of the raw material liquid 1 in the reaction vessel 11 during reaction to the outside of the reaction vessel 11 and returning it into the reaction vessel 11. More specifically, both ends of the annular circulation pipe 28 are connected to the reaction vessel 11, and the raw material liquid 1 is fed by the liquid circulation pump 15 installed on the circulation pipe 28 and removed from the reaction vessel 11. The raw material liquid 1 can be returned to the inside of the reaction vessel 11 via the circulation pipe 28.
  • a heat exchanger 19 is installed in the middle of the circulation pipe 28 and on the downstream side of the liquid circulation pump 15 so that the extracted raw material liquid 1 can be cooled.
  • the raw material liquid 1 cooled by the heat exchanger 19 is returned into the reaction vessel 11. That is, the reaction apparatus shown in FIG. 1 can perform a reaction while performing an operation of extracting and cooling a part of the raw material liquid 1 in the reaction vessel 11 and returning the cooled raw material liquid 1 to the reaction vessel 11 It has become.
  • the product gas containing tetrafluoromethane generated by the reaction can be taken out of the reaction vessel 11 through the exhaust pipe 25.
  • a heat exchanger 17 is installed downstream of the exhaust pipe 25 so that the generated gas discharged from the reaction container 11 can be cooled. Even if the raw material fluorinated hydrocarbon is vaporized and contained in the product gas by cooling the product gas with the heat exchanger 17, the fluorinated hydrocarbon is liquefied and returned to the reaction vessel 11. It can be done. Therefore, it can prevent that an unreacted fluorinated hydrocarbon leaves the reaction container 11 outside, and is lost.
  • the shape of the blowing port 23a of the fluorine gas pipe 23 is not particularly limited, but the circular through hole formed in the fluorine gas pipe 23 can be used as the blowing port 23a, and the diameter of the through hole For example, it can be 0.5 mm or more and 5 mm or less.
  • the number of the blowing ports 23a provided in the fluorine gas pipe 23 may be one or plural.
  • a temperature measurement device such as a thermocouple may be attached near the blowout port 23a to measure the temperature near the blowout port 23a. The same applies to the blowing port 27 a of the reaction inducing agent pipe 27.
  • the above-mentioned high temperature reaction area is formed in the vicinity of the fluorine gas blowing port 23a, and this high temperature reaction area is a member of the reaction apparatus, for example, a tank wall of the reaction vessel 11, a thermocouple, a stirring blade, a baffle plate, etc. It is preferable to avoid contact. Since the temperature of the portion where the high temperature reaction region contacts is high, corrosion of the reactor components may proceed.
  • the temperature and pressure are converted to 0 ° C, 0 MPaG, and the blow linear velocity of fluorine gas is LV (m / s), the length of the high temperature reaction zone to be generated (fluorine gas
  • ln in the formula is a natural logarithm
  • a is a constant, and a value of 1.2 or more and 1.4 or less can be used as a. Since the length of the high temperature reaction zone assumed can be calculated from this equation, the high temperature reaction zone can be designed so as not to contact the members of the reactor.
  • the direction in which the long axis of the high temperature reaction zone (axis along the ejection direction of the fluorine gas) is directed is not particularly limited, but 0 ° vertically downward so that the high temperature reaction zone is maintained as stably as possible. Assuming that the upper side in the vertical direction is 180 °, it is preferable to eject the fluorine gas from the blowing port 23a at an angle of 90 ° (horizontal direction) to 180 °.
  • the reaction apparatus is provided with a temperature measuring device (not shown) for measuring the temperature of the raw material liquid 1 and a circulation facility having the heat exchanger 19. Therefore, the reaction is performed while controlling the temperature of the raw material liquid 1 by cooling the raw material liquid 1 It can be performed. Therefore, it is possible to suppress abnormal temperature rise of the reaction site and damage to the reactor.
  • the temperature of the raw material liquid 1 can be, for example, 0 ° C. or more and 200 ° C. or less.
  • the reaction pressure can be, for example, 0.01 MPaA (absolute pressure) or more and 1.0 MPaA (absolute pressure) or less, and preferably normal pressure or more and 0.9 MPaG or less.
  • the reactor may be equipped with a device for measuring the liquid level of the raw material liquid 1.
  • a device for measuring the liquid level of the raw material liquid 1 For example, an apparatus for measuring the liquid level from the pressure difference between the liquid phase and the gas phase in the reaction vessel 11 or an apparatus for measuring the liquid level by float can be used.
  • the liquid level of the raw material liquid 1 decreases with the progress of the synthesis reaction of tetrafluoromethane, if the liquid level can be measured, the supply of the raw material liquid 1 into the reaction vessel 11 is continuously or intermittently performed. As it can be performed while monitoring the liquid level, continuous synthesis of tetrafluoromethane is possible.
  • the concentration of fluorine gas used in the reaction is not particularly limited, and may be 100% fluorine gas, but may be fluorine gas diluted with an inert gas such as nitrogen gas or argon.
  • Example 1 The tetrafluoromethane was synthesized using a reactor substantially similar to the reactor of FIG. 1 except that the heat exchanger 19, the circulation pipe 28 and the liquid circulation pump 15 were not provided.
  • a 1 L capacity reaction container made of SUS 600 mL (1030 g) of perfluoro-n-octane having a boiling point of 103 ° C. at normal pressure was placed as a raw material liquid.
  • Fluorine gas was introduced into the raw material solution from a 1 mm-diameter injection port provided at the end of the fluorine gas pipe. Simultaneously with the introduction of the fluorine gas, hydrogen gas was introduced into the raw material liquid from a 1 mm-diameter injection port provided at one end of the reaction inducing agent pipe.
  • the blowout port of the reaction inducing agent pipe is disposed in the vicinity of the blowout port of the fluorine gas pipe (at a position at a distance of 2 mm).
  • the flow rate of the fluorine gas was 400 mL / min at a temperature and pressure converted as 0 ° C. and 0 MPaG, and the injection linear velocity was 2.1 m / s.
  • the blowing flow rate of hydrogen gas was 20 mL / min at a temperature and pressure converted into values of 0 ° C. and 0 MPaG, and the blowing linear velocity was 0.1 m / s.
  • the amount of hydrogen gas introduced at this time is 5% by volume with respect to the amount of fluorine gas introduced.
  • the value of a in the formula (1) is 1.27, it can be expected that a high-temperature reaction area of 1.8 mm in length will be formed in each of the blow ports, so a high-temperature reaction area is formed. In the range, no reactor components other than one thermocouple were placed.
  • the produced gas was collected and analyzed. As a result, 95% by volume of the produced gas was tetrafluoromethane and 5% by volume was hexafluoroethane. Since 95 mole% of the reacted perfluoro-n-octane was converted to tetrafluoromethane, the yield of tetrafluoromethane was 95%. Unreacted fluorine gas was not detected from the product gas. After completion of the reaction, the blowout port of the fluorine gas pipe was confirmed. As a result, no corrosion or the like occurred at all, and the same shape as the shape before the reaction was maintained. In addition, no corrosion or the like occurred in the thermocouple for measuring the temperature of the raw material liquid or the inlet of the fluorine gas and the reaction container.
  • Comparative Example 1 The reaction was performed in the same manner as in Example 1 except that the reaction inducer (hydrogen gas) was not introduced.
  • the introduction of fluorine gas was continued for 5 hours, but there was no change in the temperature of the fluorine gas injection port, and the entire amount of introduced fluorine gas was discharged from the exhaust pipe for discharging the gas phase portion in the reaction vessel to the outside It was discharged unreacted. Then, tetrafluoromethane was not detected in the discharged fluorine gas, and the yield of tetrafluoromethane was 0%.
  • Example 2 The tetrafluoromethane was synthesized using a reactor substantially similar to the reactor of FIG. 1 except that the heat exchanger 19, the circulation pipe 28 and the liquid circulation pump 15 were not provided.
  • a 1 L volume reaction container made of SUS 600 mL (1000 g) of a chlorofluorobutane mixture having the following composition was placed as a raw material liquid.
  • the chlorofluorobutane mixture is a mixture of 20% by mass of trichloroheptafluorobutane, 5% by mass of dichlorooctafluorobutane, 70% by mass of pentachloropentafluorobutane, and 5% by mass of tetrachloropentafluorobutane.
  • the chlorofluorobutane mixture is a by-product generated when tetrachlorohexafluorobutane is synthesized by the reaction of tetrachlorobutane with fluorine gas.
  • Fluorine gas was introduced into the raw material solution from a 1 mm-diameter injection port provided at the end of the fluorine gas pipe. Simultaneously with the introduction of the fluorine gas, hydrogen gas was introduced into the raw material liquid from a 1 mm-diameter injection port provided at one end of the reaction inducing agent pipe.
  • the blowout port of the reaction inducing agent pipe is disposed in the vicinity of the blowout port of the fluorine gas pipe (at a position at a distance of 2 mm).
  • the flow rate of the fluorine gas was set to 600 mL / min at a temperature and pressure converted as 0 ° C. and 0 MPaG, and the injection linear velocity was 3.2 m / s.
  • the flow rate of hydrogen gas injected was 60 mL / min at a temperature and pressure converted as 0 ° C. and 0 MPaG, and the injection linear velocity was 0.32 m / s.
  • the amount of hydrogen gas introduced at this time is 10% by volume with respect to the amount of fluorine gas introduced.
  • the produced gas was collected and analyzed. It was found that 80% by volume of the produced gas was tetrafluoromethane and 20% by volume was chlorotrifluoromethane. Unreacted fluorine gas was not detected from the product gas, but chlorine fluoride and hydrogen fluoride were detected. After completion of the reaction, the blowout port of the fluorine gas pipe was confirmed. As a result, no corrosion or the like occurred at all, and the same shape as the shape before the reaction was maintained. In addition, no corrosion or the like occurred in the thermocouple for measuring the temperature of the raw material liquid or the inlet of the fluorine gas and the reaction container.
  • Comparative Example 2 The reaction was performed in the same manner as in Example 2 except that the reaction inducer (hydrogen gas) was not introduced.
  • the introduction of fluorine gas was continued for 5 hours, but there was no change in the temperature of the fluorine gas injection port, and the entire amount of introduced fluorine gas was discharged from the exhaust pipe for discharging the gas phase portion in the reaction vessel to the outside It was discharged unreacted. Then, tetrafluoromethane was not detected in the discharged fluorine gas, and the yield of tetrafluoromethane was 0%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

反応装置が損傷しにくく、テトラフルオロメタンを安全且つ安価に安定して製造することができるテトラフルオロメタンの製造方法を提供する。化学式CpqClrs(化学式中のpは3以上18以下の整数、qは0以上3以下の整数、rは0以上9以下の整数、sは5以上30以下の整数である)で表され且つ炭素-炭素不飽和結合を有しないフッ素化炭化水素を含有する原料液(1)に、フッ素ガスを導入するとともに、反応誘発剤を気体状で導入して、テトラフルオロメタンを製造する。反応誘発剤は、フッ素ガスと反応することにより、フッ素化炭化水素とフッ素ガスからテトラフルオロメタンを生成する反応を誘発するものであり、且つ常温常圧で気体である炭化水素及び水素ガスから選ばれる少なくとも一種である。

Description

テトラフルオロメタンの製造方法
 本発明はテトラフルオロメタンの製造方法に関する。
 テトラフルオロメタンの製造方法としては、固体の炭素にフッ素ガスを反応させる方法、気体の炭化水素にフッ素ガスを反応させる方法、炭素材料に金属、金属フッ化物、又は溶融アルミナを混合した上でフッ素ガスと反応させる方法(特許文献1、2を参照)などが知られている。
 固体の炭素にフッ素ガスを反応させる方法は、火炎を伴う燃焼反応であり、非常に大きな反応熱が発生するため、フッ素ガスの吹込み口や反応容器の材質自体がフッ素ガスと反応して浸食されるおそれがあった。火炎が発生しないように反応させると、反応熱が不十分となりテトラフルオロメタンの収率が低くなる場合があった。
 また、気体の炭化水素にフッ素ガスを反応させる方法も、火炎を伴う燃焼反応であり、非常に大きな反応熱が発生するため、フッ素ガスの吹込み口や反応容器の材質自体がフッ素ガスと反応して浸食されるおそれがあった。火炎が発生しないように反応させるために、フッ素ガスを窒素ガス等の不活性ガスによって希釈して反応熱を小さくする手段がとられるが、得られるテトラフルオロエタンと不活性ガスとを分離精製する工程が必要になるため、製造コストが上昇するという問題があった。
 炭素材料に金属、金属フッ化物、又は溶融アルミナを混合した上でフッ素ガスと反応させる方法は、炭素材料とフッ素ガスとの反応を穏やかにする方法であり、炭素-炭素間結合を切断するような反応条件ではないため、テトラフルオロメタンの合成には適していなかった。
日本国特許公開公報 平成6年第298681号 日本国特許公開公報 平成11年第180706号
 このように、従来のテトラフルオロメタンの製造方法では、反応装置が損傷するほどの激しい反応が行われ、穏やかな条件下で反応を行うと反応装置の損傷は抑えられるもののテトラフルオロメタンが主生成物になりにくかった。
 本発明は、反応装置が損傷しにくく、テトラフルオロメタンを安全且つ安価に安定して製造することができるテトラフルオロメタンの製造方法を提供することを課題とする。
 前記課題を解決するため、本発明の一態様は以下の[1]~[3]の通りである。
[1] 化学式CpqClrs(前記化学式中のpは3以上18以下の整数、qは0以上3以下の整数、rは0以上9以下の整数、sは5以上30以下の整数である)で表され且つ炭素-炭素不飽和結合を有しないフッ素化炭化水素を含有する原料液に、フッ素ガスを導入するとともに、反応誘発剤を気体状で導入することを含み、
 前記反応誘発剤は、前記フッ素ガスと反応することにより、前記フッ素化炭化水素と前記フッ素ガスからテトラフルオロメタンを生成する反応を誘発するものであり、且つ常温常圧で気体である炭化水素及び水素ガスから選ばれる少なくとも一種であるテトラフルオロメタンの製造方法。
[2] 前記反応誘発剤が水素ガスである[1]に記載のテトラフルオロメタンの製造方法。
[3] 前記フッ素化炭化水素が、パーフルオロカーボン、フルオロハイドロカーボン、クロロフルオロカーボン、クロロフルオロハイドロカーボン、クロロトリフルオロエチレン重合物、及びパーフルオロポリエーテルから選ばれる少なくとも1種のフッ素含有物質である[1]又は[2]に記載のテトラフルオロメタンの製造方法。
 本発明によれば、反応装置が損傷しにくく、テトラフルオロメタンを安全且つ安価に安定して製造することができる。
本発明に係るテトラフルオロメタンの製造方法の一実施形態を説明する図であって、テトラフルオロメタンの反応装置の構成を説明する模式図である。
 本発明の一実施形態について以下に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 活性炭とフッ素ガスを反応させてテトラフルオロメタンを製造する従来のテトラフルオロメタンの製造方法において、反応熱が反応場から除去される経路としては、反応熱により加熱された雰囲気中の気体を介して外部に熱が排出される経路と、反応熱により加熱された反応装置(例えば、フッ素ガスの吹込み口や反応容器)を介して外部に熱が排出される経路とがある。しかしながら、気体の熱容量は小さいため気体を介して排出される熱量は少なく、ほとんどの反応熱は反応装置の加熱に使われることとなる。その結果、反応装置が高温となって、反応装置とフッ素ガスの反応が起こり、反応装置が浸食されて損傷することとなる。
 本発明者らが鋭意検討した結果、フッ素化炭化水素とフッ素ガスからテトラフルオロメタンを生成する反応を液相中で行うことによって反応場の温度を下げ、さらにフッ素化炭化水素とフッ素ガスからテトラフルオロメタンを生成する反応を誘発する反応誘発剤を、反応場に共存させることによって、非常に高温でなければ生じないフッ素化炭化水素の炭素-炭素結合の開裂反応を低温の液相中で発生させることができることを見出した。
 すなわち、本発明者らは、液体のフッ素化炭化水素にフッ素ガスを吹き込んでもフッ素化炭化水素とフッ素ガスとの反応は生じにくいが、反応誘発剤を共存させると、反応誘発剤とフッ素ガスとの反応に誘発されてフッ素化炭化水素とフッ素ガスとの反応が低温下で生じ、テトラフルオロメタンが生成することを見出した。
 そのメカニズムは次のように考えることができる。液体のフッ素化炭化水素に吹込み口からフッ素ガスと気体状の反応誘発剤が吹き込まれると、フッ素ガスの吹込み口の周辺にはフッ素ガスと反応誘発剤を含有する気泡が形成され、この気泡内でフッ素ガスと反応誘発剤との反応が起こり、この反応の反応熱により気泡の温度が上昇する。反応誘発剤は、気泡の温度を上昇させるために、反応の初期のみに使用される。
 フッ素ガスの吹込み口から気泡が離れる前に、温度が上昇した気泡と周囲の液相との気液界面で気泡中のフッ素ガスと液相中のフッ素化炭化水素との反応が起こる。この反応の反応熱により気泡の周囲のフッ素化炭化水素が気化して、気泡内のフッ素ガスと反応する。これにより、液相の温度よりも概ね20℃以上温度の高い領域が、フッ素ガスの吹込み口の周辺に形成される(以下、「高温反応領域」と記す)。フッ素ガスが供給され続けることで、この高温反応領域内でフッ素化炭化水素とフッ素ガスとの反応が継続するが、その反応熱が周囲の液相(すなわちフッ素化炭化水素)を蒸発させ続けるため、液相の温度上昇は抑制されると考えられる。
 本実施形態に係るテトラフルオロメタンの製造方法は、化学式CpqClrsで表され且つ炭素-炭素不飽和結合を有しないフッ素化炭化水素(本明細書においては、単に「フッ素化炭化水素」と記すこともある)を含有する原料液に、フッ素ガスを導入するとともに、反応誘発剤を気体状で導入することを含む。この反応誘発剤は、フッ素ガスと反応することにより、フッ素化炭化水素とフッ素ガスからテトラフルオロメタンを生成する反応を誘発するものであり、且つ常温常圧で気体である炭化水素及び水素ガスから選ばれる少なくとも一種である。ここで、上記化学式中のpは3以上18以下の整数、qは0以上3以下の整数、rは0以上9以下の整数、sは5以上30以下の整数である。
 フッ素化炭化水素がフッ素ガスと反応しにくい場合であっても、上記メカニズムにより反応誘発剤とフッ素ガスとの反応に誘発されてフッ素化炭化水素とフッ素ガスとの反応が低温でも生じるため、反応場の異常な温度上昇やフッ素ガスによる反応装置の損傷が生じにくいことに加えて、テトラフルオロメタンを高い収率で安全且つ安価に安定して製造することができる。
 また、フッ素ガスに対して耐食性を有する高価な素材(例えばニッケル合金、ハステロイ(登録商標)、モネル(登録商標))で反応装置を製造する必要が無く、ステンレス鋼等の一般的な鋼で反応装置を製造することができるので、反応装置が安価である。
 得られたテトラフルオロメタンは、例えば、半導体製造工程において基板のエッチング剤、チャンバーのクリーニング剤として有用である。
 以下に、本実施形態に係るテトラフルオロメタンの製造方法について、さらに詳細に説明する。
(1)フッ素化炭化水素
 フッ素化炭化水素は、化学式CpqClrsで表され且つ炭素-炭素不飽和結合を有しない飽和炭化水素である。このフッ素化炭化水素は、直鎖状炭化水素、分岐鎖状炭化水素、環状炭化水素のいずれでもよく、また水素原子や塩素原子を含まない化合物でもよい。フッ素化炭化水素の例としては、パーフルオロカーボン、フルオロハイドロカーボン、クロロフルオロカーボン、クロロフルオロハイドロカーボン、クロロトリフルオロエチレン重合物、及びパーフルオロポリエーテルから選ばれる少なくとも1種のフッ素含有物質があげられる。
 クロロトリフルオロエチレン重合物の具体例としてはダイフロンオイル(登録商標)があげられ、パーフルオロポリエーテルの具体例としてはフォンブリンオイル(登録商標)があげられる。ダイフロンオイルは、常温で流動性(流動点5~15℃)を有する分子量が約1000以下のポリクロロトリフルオロエチレンである。
 フッ素化炭化水素は、常温常圧で気体、液体、固体のいずれであってもよいが、液体であることが好ましい。なお、本発明においては、常温とは25℃を意味し、常圧とは101.325kPa(1気圧)を意味する。
 フッ素化炭化水素が液体である場合には、フッ素化炭化水素を原料液としてもよいし、溶剤と混合してフッ素化炭化水素と溶剤の混合物を原料液としてもよい。フッ素化炭化水素が気体又は固体である場合には、反応に溶剤を用いる必要があり、この溶剤にフッ素化炭化水素を混合して原料液とする必要がある。この場合、固体状のフッ素化炭化水素は、原料液に溶解していてもよいし、粉状で分散していてもよい。あるいは、塊状のフッ素化炭化水素が原料液中に配されていてもよい。気体状のフッ素化炭化水素は、原料液に溶解していてもよいし、泡状で分散していてもよい。すなわち、本実施形態に係るテトラフルオロメタンの製造方法においては、テトラフルオロメタンの合成反応は無溶媒で行ってもよいし、溶媒中で行ってもよい。
 上記のフッ素化炭化水素は、100容量%のフッ素ガスを40℃、101.325kPaで吹き込んでも、フッ素ガスと反応しにくい有機化合物である。フッ素化炭化水素とフッ素ガスとの反応式は、以下のように記載される。
   CpqClrs+(4p+q+r-s)/2F2 → pCF4+rClF+qHF
 この反応式から考えて、供給するフッ素ガスをテトラフルオロメタンの生成に有効に活用するためには、化学式CpqClrs中のq及びrが小さな値であることが好ましいと言える。
 化学式CpqClrs中のpが3以上であれば、フッ素化炭化水素が常温常圧で気体とはならない場合が多いため(液体又は固体となる場合が多い)、気体を液体とするために冷却したり高圧にしたりする必要がなく、経済的である。一方、pが18以下であれば、フッ素化炭化水素が常温常圧で固体とはならない場合が多いため(気体又は液体となる場合が多い)、固体を液体とするために加温する必要がなく、経済的である。pは3以上18以下の整数であるが、好ましくは3以上10以下の整数、より好ましくは3以上5以下の整数であり、できるだけ小さい方が、1モルのテトラフルオロメタンを得るために必要なフッ素ガスの量が少なくて済むため経済的である。
 化学式CpqClrs中のqが3以下であれば、水素原子とフッ素ガスが反応してフッ化水素が副生する割合が減少するので、1モルのテトラフルオロメタンを得るために必要なフッ素ガスの量が少なくて済むため経済的である。qは0以上3以下の整数であるが、好ましくは0以上2以下の整数、より好ましくは0又は1である。さらに、テトラフルオロメタンの反応選択率を高くするためには、フッ素化炭化水素を、qが0であるパーフルオロカーボン又はクロロフルオロカーボンとすることがより好ましい。
 化学式CpqClrs中のrが0以上9以下であれば、フッ素化炭化水素が常温常圧で固体とはならない場合が多いため(気体又は液体となる場合が多い)、固体を液体とするために加温する必要がなく、経済的である。また、塩素原子とフッ素ガスが反応して塩化フッ素が副生する割合が減少するため、1モルのテトラフルオロメタンを得るために必要なフッ素ガスの量が少なくて済むため経済的である。rは0以上9以下の整数であるが、好ましくは0以上4以下の整数である。さらに、フッ素化炭化水素を、qとrが共に0であるパーフルオロカーボンとすることがより好ましい。
(2)反応誘発剤
 反応誘発剤は、フッ素ガスと反応しやすい化合物である。そして、反応誘発剤は、フッ素ガスと反応することにより、フッ素化炭化水素とフッ素ガスからテトラフルオロメタンを生成する反応を誘発するものであり、且つ常温常圧で気体である炭化水素及び水素ガスから選ばれる少なくとも一種である。なお、反応誘発剤は、気体状で原料液に導入されるが、原料液に溶解するものでもよいし、泡状で分散するものでもよい。
 反応誘発剤の例としては、メタン、エタン、エチレン等の常温常圧で気体である炭素数1以上10以下の飽和炭化水素や水素ガスがあげられる。ただし、炭化水素を用いるとフッ素ガスが反応誘発剤と反応する割合が増加し経済性が低下するため、水素ガスがより好ましい。なお、反応誘発剤とフッ素ガスとの反応によりテトラフルオロメタンが生成する場合もあり得る。
 反応誘発剤の導入量は、フッ素化炭化水素とフッ素ガスからテトラフルオロメタンを生成する反応を誘発することができる量であれば特に限定されるものではないが、フッ素ガスの導入量の15容量%以下とすることが好ましい。フッ素化炭化水素とフッ素ガスからテトラフルオロメタンを生成する反応を反応誘発剤によって一旦誘発することができれば、その後に反応誘発剤の導入を停止してもフッ素化炭化水素とフッ素ガスとの反応は継続する。よって、フッ素化炭化水素とフッ素ガスからテトラフルオロメタンを生成する反応を反応誘発剤によって誘発した後には、原料液への反応誘発剤の導入を停止してもよい。
 気体状の反応誘発剤を原料液に導入する吹込み口は、フッ素ガスを原料液に導入する吹込み口の近傍に配することが好ましい。フッ素ガスと反応誘発剤を反応容器内の原料液に導入する配管の態様は特に限定されるものではないが、例えば、原料液に気体を導入する配管を二重管とし、フッ素ガス及び反応誘発剤の一方を内管から導入し、他方を外管から導入してもよい。あるいは、原料液にフッ素ガスを導入する配管と原料液に反応誘発剤を導入する配管とを反応容器に設置し、これら配管の両吹込み口を隣接させてもよい。
(3)反応装置
 本実施形態に係るテトラフルオロメタンの製造方法を実施してテトラフルオロメタンを製造する反応装置の一例について、図1を参照しながら説明する。
 図1の反応装置は、テトラフルオロメタンを生成する反応が行われる金属製の反応容器11と、化学式CpqClrsで表され且つ炭素-炭素不飽和結合を有しないフッ素化炭化水素を含有する原料液1を反応容器11に導入する原料液仕込み用配管21と、反応容器11内の原料液1にフッ素ガスを導入する吹込み口23aを先端に有するフッ素ガス用配管23と、反応容器11内の原料液1に常温常圧で気体である炭化水素及び水素ガスから選ばれる少なくとも一種の反応誘発剤を気体状で導入する吹込み口27aを先端に有する反応誘発剤用配管27と、反応容器11内の気相部分を外部に排出する排気用配管25と、を備えている。なお、反応容器11を形成する金属としては、例えばステンレス鋼があげられる。
 さらに、図1に示す反応装置は、反応中の反応容器11内の原料液1の一部を反応容器11の外部に抜き取り、反応容器11内に戻す循環設備を備えている。詳述すると、反応容器11には環状の循環用配管28の両端が接続されており、循環用配管28に設置された液循環ポンプ15により原料液1を送液し、反応容器11から抜き取った原料液1を循環用配管28を介して反応容器11内に戻すことができるようになっている。
 循環用配管28の途中で且つ液循環ポンプ15の下流側には熱交換器19が設置されており、抜き取った原料液1の冷却が可能となっている。熱交換器19で冷却された原料液1は、反応容器11内に戻される。すなわち、図1に示す反応装置は、反応容器11内の原料液1の一部を抜き取り冷却し、冷却された原料液1を反応容器11に戻す操作を行いながら、反応を行うことができるようになっている。
 反応により生成したテトラフルオロメタンを含有する生成ガスは、排気用配管25を介して反応容器11の外部に取り出せるようになっている。排気用配管25の下流側には熱交換器17が設置されており、反応容器11内から排出された生成ガスを冷却できるようになっている。熱交換器17で生成ガスを冷却することにより、原料であるフッ素化炭化水素が気化して生成ガス中に含まれていたとしても、フッ素化炭化水素を液化させて反応容器11に戻すことができるようになっている。よって、未反応のフッ素化炭化水素が反応容器11から外部に出て損失することを防止することができる。
 フッ素ガス用配管23の吹込み口23aの形状は特に限定されるものではないが、フッ素ガス用配管23に形成された円形の貫通孔を吹込み口23aとすることができ、貫通孔の直径は例えば0.5mm以上5mm以下とすることができる。フッ素ガス用配管23に設けられた吹込み口23aの数は1個でもよいし複数個でもよい。また、吹込み口23aの近傍に熱電対等の温度測定装置を取り付けて、吹込み口23aの近傍の温度を測定してもよい。反応誘発剤用配管27の吹込み口27aについても同様である。
 フッ素ガスの吹込み口23aの近傍に前述の高温反応領域が形成されるが、この高温反応領域が反応装置の部材、例えば、反応容器11の槽壁、熱電対、撹拌翼、邪魔板などに接触しないようにすることが好ましい。高温反応領域が接触する部位の温度は高くなるため、反応装置の部材の腐食が進行するおそれがある。
 吹込み口23aの直径をD(mm)、温度及び圧力を0℃、0MPaGとして換算したフッ素ガスの吹込み線速度をLV(m/s)、発生する高温反応領域の長さ(フッ素ガスの噴出方向の長さ)をL(mm)とすると、ln(LV)=aln(L/D)なる式(以降、式(1)と称することがある。)で高温反応領域の範囲を表すことができる。ただし、式中のlnは自然対数、aは定数であり、aとして1.2以上1.4以下の値を使用できる。この式から、想定される高温反応領域の長さを算出することができるので、高温反応領域が反応装置の部材に接触しないように設計することができる。
 高温反応領域の長軸(フッ素ガスの噴出方向に沿う軸)が向く方向は特に限定されるものではないが、高温反応領域ができるだけ安定的に維持されるように、鉛直方向下方を0°、鉛直方向上方を180°とすると、90°(水平方向)以上180°以下の角度で吹込み口23aからフッ素ガスを噴出することが好ましい。
 反応装置は、原料液1の温度を測定する図示しない温度測定装置と、熱交換器19を有する循環設備を備えているので、原料液1を冷却して原料液1の温度を制御しながら反応を行うことができる。よって、反応場の異常な温度上昇や反応装置の損傷を抑制することが可能である。原料液1の温度は、例えば0℃以上200℃以下とすることができる。また、反応圧力は、例えば0.01MPaA(絶対圧)以上1.0MPaA(絶対圧)以下とすることができ、常圧以上0.9MPaG以下とすることが好ましい。
 反応装置は、原料液1の液面レベルを測定する装置を備えていてもよい。例えば、反応容器11内の液相と気相の圧力差から液面レベルを測定する装置や、フロートによって液面レベルを測定する装置が使用できる。
 テトラフルオロメタンの合成反応の進行に伴い原料液1の液面レベルが低下するが、液面レベルを測定することができれば、原料液1の反応容器11内への供給を連続的又は断続的に液面レベルを監視しながら行うことができるので、テトラフルオロメタンの連続した合成が可能となる。
 反応に使用されるフッ素ガスの濃度は特に限定されるものではなく、100%のフッ素ガスでもよいが、窒素ガス、アルゴンなどの不活性ガスで希釈されたフッ素ガスを用いてもよい。気体状の反応誘発剤についても同様であり、その濃度は特に限定されるものではなく、100%でもよいが、窒素ガス、アルゴンなどの不活性ガスで希釈された気体状の反応誘発剤を用いてもよい。
 また、吹き込んだフッ素ガスと原料液1を均一に反応させるために、原料液1を撹拌するための撹拌翼を備える攪拌機を反応容器11に設置してもよい。
 以下に実施例及び比較例を示して、本発明をより具体的に説明する。
〔実施例1〕
 熱交換器19と循環用配管28と液循環ポンプ15を備えていない点以外は図1の反応装置とほぼ同様の反応装置を用いて、テトラフルオロメタンの合成を行った。容量1LのSUS製の反応容器に、原料液として常圧での沸点が103℃のパーフルオロ-n-オクタン600mL(1030g)を入れた。
 フッ素ガス用配管の先端に1個設けられた直径1mmの吹込み口から、原料液にフッ素ガスを導入した。フッ素ガスの導入と同時に、反応誘発剤用配管の先端に1個設けられた直径1mmの吹込み口から、原料液に水素ガスを導入した。反応誘発剤用配管の吹込み口は、フッ素ガス用配管の吹込み口の近傍(2mmの隔たりのある位置)に配してある。フッ素ガスの吹込み流量は、温度及び圧力を0℃、0MPaGとして換算した数値で、400mL/minとし、吹込み線速度は2.1m/sとした。また、水素ガスの吹込み流量は、温度及び圧力を0℃、0MPaGとして換算した数値で、20mL/minとし、吹込み線速度は0.1m/sとした。このときの水素ガスの導入量は、フッ素ガスの導入量に対して5容量%となる。
 また、前記式(1)のaの値を1.27とした場合、各吹込み口には、長さ1.8mmの高温反応領域が形成されると予想できるので、高温反応領域が形成される範囲には1個の熱電対以外の反応装置の部材が配置されないようにした。
 フッ素ガス及び水素ガスの導入を開始すると、フッ素ガスの吹込み口の温度が200℃まで上昇したので、水素ガスの導入を停止した。反応容器を外部から冷却しながら反応を継続し、原料液の温度を25℃に、反応圧力を常圧に維持しながら反応を行った。その結果、水素ガスの導入を停止した後もフッ素ガスの吹込み口の温度が200℃に維持されたまま、反応が行われた。
 生成ガスを採取して分析を行ったところ、生成ガスの95体積%がテトラフルオロメタンで、5体積%がヘキサフルオロエタンであった。反応したパーフルオロ-n-オクタンのうち95モル%がテトラフルオロメタンに転化したので、テトラフルオロメタンの収率は95%であった。未反応のフッ素ガスは、生成ガスから検出されなかった。
 反応終了後に、フッ素ガス用配管の吹込み口を確認したところ、腐食等は全く発生しておらず、反応前の形状と同じ形状を保っていた。また、原料液やフッ素ガスの吹込み口の温度を測定する熱電対と、反応容器にも、腐食等は発生していなかった。
〔比較例1〕
 反応誘発剤(水素ガス)の導入を行わない点を除いては、実施例1と同様にして反応を行った。フッ素ガスの導入を5時間続けたが、フッ素ガスの吹込み口の温度には変化は生じず、導入したフッ素ガスの全量が、反応容器内の気相部分を外部に排出する排気用配管から未反応で排出された。そして、排出されたフッ素ガス中にテトラフルオロメタンは検出されず、テトラフルオロメタンの収率は0%であった。
〔実施例2〕
 熱交換器19と循環用配管28と液循環ポンプ15を備えていない点以外は図1の反応装置とほぼ同様の反応装置を用いて、テトラフルオロメタンの合成を行った。容量1LのSUS製の反応容器に、原料液として下記の組成のクロロフルオロブタン混合物600mL(1000g)を入れた。すなわち、クロロフルオロブタン混合物は、トリクロロへプタフルオロブタン20質量%と、ジクロロオクタフルオロブタン5質量%と、ペンタクロロペンタフルオロブタン70質量%と、テトラクロロペンタフルオロブタン5質量%との混合物である。なお、このクロロフルオロブタン混合物は、テトラクロロブタンとフッ素ガスとの反応でテトラクロロヘキサフルオロブタンを合成するときに生成する副生物である。
 フッ素ガス用配管の先端に1個設けられた直径1mmの吹込み口から、原料液にフッ素ガスを導入した。フッ素ガスの導入と同時に、反応誘発剤用配管の先端に1個設けられた直径1mmの吹込み口から、原料液に水素ガスを導入した。反応誘発剤用配管の吹込み口は、フッ素ガス用配管の吹込み口の近傍(2mmの隔たりのある位置)に配してある。フッ素ガスの吹込み流量は、温度及び圧力を0℃、0MPaGとして換算した数値で、600mL/minとし、吹込み線速度は3.2m/sとした。また、水素ガスの吹込み流量は、温度及び圧力を0℃、0MPaGとして換算した数値で、60mL/minとし、吹込み線速度は0.32m/sとした。このときの水素ガスの導入量は、フッ素ガスの導入量に対して10容量%となる。
 フッ素ガス及び水素ガスの導入を開始すると、フッ素ガスの吹込み口の温度が300℃まで上昇したので、水素ガスの導入を停止した。反応容器を外部から冷却しながら反応を継続し、原料液の温度を60℃に、反応圧力を常圧に維持しながら反応を行った。その結果、水素ガスの導入を停止した後もフッ素ガスの吹込み口の温度が300℃に維持されたまま、反応が行われた。
 生成ガスを採取して分析を行ったところ、生成ガスの80体積%がテトラフルオロメタンで、20体積%がクロロトリフルオロメタンであった。未反応のフッ素ガスは生成ガスから検出されなかったが、フッ化塩素とフッ化水素は検出された。
 反応終了後に、フッ素ガス用配管の吹込み口を確認したところ、腐食等は全く発生しておらず、反応前の形状と同じ形状を保っていた。また、原料液やフッ素ガスの吹込み口の温度を測定する熱電対と、反応容器にも、腐食等は発生していなかった。
〔比較例2〕
 反応誘発剤(水素ガス)の導入を行わない点を除いては、実施例2と同様にして反応を行った。フッ素ガスの導入を5時間続けたが、フッ素ガスの吹込み口の温度には変化は生じず、導入したフッ素ガスの全量が、反応容器内の気相部分を外部に排出する排気用配管から未反応で排出された。そして、排出されたフッ素ガス中にテトラフルオロメタンは検出されず、テトラフルオロメタンの収率は0%であった。
    1    原料液
   11    反応容器
   23    フッ素ガス用配管
   23a   吹込み口
   27    反応誘発剤用配管
   27a   吹込み口

Claims (3)

  1.  化学式CpqClrs(前記化学式中のpは3以上18以下の整数、qは0以上3以下の整数、rは0以上9以下の整数、sは5以上30以下の整数である)で表され且つ炭素-炭素不飽和結合を有しないフッ素化炭化水素を含有する原料液に、フッ素ガスを導入するとともに、反応誘発剤を気体状で導入することを含み、
     前記反応誘発剤は、前記フッ素ガスと反応することにより、前記フッ素化炭化水素と前記フッ素ガスからテトラフルオロメタンを生成する反応を誘発するものであり、且つ常温常圧で気体である炭化水素及び水素ガスから選ばれる少なくとも一種であるテトラフルオロメタンの製造方法。
  2.  前記反応誘発剤が水素ガスである請求項1に記載のテトラフルオロメタンの製造方法。
  3.  前記フッ素化炭化水素が、パーフルオロカーボン、フルオロハイドロカーボン、クロロフルオロカーボン、クロロフルオロハイドロカーボン、クロロトリフルオロエチレン重合物、及びパーフルオロポリエーテルから選ばれる少なくとも1種のフッ素含有物質である請求項1又は請求項2に記載のテトラフルオロメタンの製造方法。
PCT/JP2018/047653 2018-01-17 2018-12-25 テトラフルオロメタンの製造方法 WO2019142626A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880085962.8A CN111566077B (zh) 2018-01-17 2018-12-25 四氟甲烷的制造方法
US16/962,549 US11034636B2 (en) 2018-01-17 2018-12-25 Method for producing tetrafluoromethane
EP18901391.5A EP3741736B1 (en) 2018-01-17 2018-12-25 Method for producing tetrafluoromethane
JP2019566389A JP7243003B2 (ja) 2018-01-17 2018-12-25 テトラフルオロメタンの製造方法
KR1020207019111A KR102487699B1 (ko) 2018-01-17 2018-12-25 테트라플루오로메탄의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-005823 2018-01-17
JP2018005823 2018-01-17

Publications (1)

Publication Number Publication Date
WO2019142626A1 true WO2019142626A1 (ja) 2019-07-25

Family

ID=67301718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047653 WO2019142626A1 (ja) 2018-01-17 2018-12-25 テトラフルオロメタンの製造方法

Country Status (7)

Country Link
US (1) US11034636B2 (ja)
EP (1) EP3741736B1 (ja)
JP (1) JP7243003B2 (ja)
KR (1) KR102487699B1 (ja)
CN (1) CN111566077B (ja)
TW (1) TWI710545B (ja)
WO (1) WO2019142626A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119802A (en) * 1977-03-23 1978-10-19 Hoechst Ag Process for preparing octafluoropropane
JPS5913739A (ja) * 1982-07-13 1984-01-24 Asahi Glass Co Ltd テトラフルオロメタンの製造方法
JPH01180838A (ja) * 1988-01-08 1989-07-18 Kanto Denka Kogyo Co Ltd トリフルオロメチル基を有する炭化水素化合物のフッ素化方法
JPH01180839A (ja) * 1988-01-08 1989-07-18 Kanto Denka Kogyo Co Ltd ポリ四フッ化エチレンのフッ素化分解法
JPH06298681A (ja) 1993-04-20 1994-10-25 Kanto Denka Kogyo Co Ltd フッ化炭素の製造法
JPH11180706A (ja) 1997-12-24 1999-07-06 Kanto Denka Kogyo Co Ltd フッ化炭素の製造法
JP2002069014A (ja) * 2000-08-30 2002-03-08 Showa Denko Kk オクタフルオロプロパンの製造方法及びその用途

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US180706A (en) 1876-08-08 Improvement in mechanisms for operating sliding doors
US4128589A (en) * 1977-06-22 1978-12-05 Hughes Aircraft Company Generation of CF4 from Teflon for reactive atmosphere processing and growth of metal fluorides
JPS58162536A (ja) * 1982-03-23 1983-09-27 Kanto Denka Kogyo Kk 四フツ化炭素の製造方法
US5611896A (en) * 1993-10-14 1997-03-18 Atomic Energy Corporation Of S. Africa Limited Production of fluorocarbon compounds
JPH09183743A (ja) * 1995-12-29 1997-07-15 Daikin Ind Ltd 低級パーフルオロアルカンの製造方法
JP3159043B2 (ja) 1996-03-08 2001-04-23 昭和電工株式会社 テトラフルオロメタンの製造方法
JP3067633B2 (ja) 1996-03-26 2000-07-17 昭和電工株式会社 パーフルオロカーボンの製造方法
US5675046A (en) * 1996-04-10 1997-10-07 Showa Denko K.K. Process for producing perfluorocarbon
DE19733470C1 (de) 1997-08-02 1998-12-10 Daimler Benz Ag Vorzugsweise U-förmiger Profilträger, insbesondere Rahmenlängsträger, für einen Tragrahmen eines Nutzfahrzeuges und Verfahren zu seiner Herstellung
CN1314639C (zh) * 2000-08-30 2007-05-09 昭和电工株式会社 八氟丙烷的制备和用途
CN1301947C (zh) * 2001-02-23 2007-02-28 昭和电工株式会社 全氟化碳的生产方法及其用途
CN101723797A (zh) 2008-10-16 2010-06-09 浙江师范大学 一种气相催化生产四氟甲烷的方法
TWI485154B (zh) 2013-05-09 2015-05-21 Univ Nat Cheng Kung 具鈣鈦礦結構吸光材料之有機混成太陽能電池及其製造方法
JP6640446B2 (ja) * 2014-10-23 2020-02-05 ダイキン工業株式会社 フッ化メタンの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119802A (en) * 1977-03-23 1978-10-19 Hoechst Ag Process for preparing octafluoropropane
JPS5913739A (ja) * 1982-07-13 1984-01-24 Asahi Glass Co Ltd テトラフルオロメタンの製造方法
JPH01180838A (ja) * 1988-01-08 1989-07-18 Kanto Denka Kogyo Co Ltd トリフルオロメチル基を有する炭化水素化合物のフッ素化方法
JPH01180839A (ja) * 1988-01-08 1989-07-18 Kanto Denka Kogyo Co Ltd ポリ四フッ化エチレンのフッ素化分解法
JPH06298681A (ja) 1993-04-20 1994-10-25 Kanto Denka Kogyo Co Ltd フッ化炭素の製造法
JPH11180706A (ja) 1997-12-24 1999-07-06 Kanto Denka Kogyo Co Ltd フッ化炭素の製造法
JP2002069014A (ja) * 2000-08-30 2002-03-08 Showa Denko Kk オクタフルオロプロパンの製造方法及びその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3741736A4

Also Published As

Publication number Publication date
TWI710545B (zh) 2020-11-21
EP3741736A1 (en) 2020-11-25
EP3741736B1 (en) 2023-08-02
TW201938518A (zh) 2019-10-01
EP3741736A4 (en) 2021-03-03
US11034636B2 (en) 2021-06-15
CN111566077B (zh) 2023-03-24
JP7243003B2 (ja) 2023-03-22
KR20200093025A (ko) 2020-08-04
CN111566077A (zh) 2020-08-21
KR102487699B1 (ko) 2023-01-12
US20200407295A1 (en) 2020-12-31
JPWO2019142626A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
JP6364029B2 (ja) 1,1,2,3−テトラクロロプロペンの製造方法
TWI700266B (zh) 四氟甲烷之製造方法
WO2019142626A1 (ja) テトラフルオロメタンの製造方法
JP7198780B2 (ja) テトラフルオロメタンの製造方法
US7371899B2 (en) Method for producing carbonyl fluoride
US20210017105A1 (en) Method and apparatus for producing 1,2,3,4-tetrachlorobutane
JP2006335665A (ja) 1,2−ジクロロエタンの製造方法
JP2012144473A (ja) gem−ジフルオロアルカンの製造方法
JP2017510613A (ja) α−ヨードパーフルオロアルカンおよびα,ω−ジヨードパーフルオロアルカンを製造する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566389

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207019111

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018901391

Country of ref document: EP

Effective date: 20200817