WO2019142563A1 - 電子制御装置 - Google Patents

電子制御装置 Download PDF

Info

Publication number
WO2019142563A1
WO2019142563A1 PCT/JP2018/046037 JP2018046037W WO2019142563A1 WO 2019142563 A1 WO2019142563 A1 WO 2019142563A1 JP 2018046037 W JP2018046037 W JP 2018046037W WO 2019142563 A1 WO2019142563 A1 WO 2019142563A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic control
sensor
processing unit
control unit
unit
Prior art date
Application number
PCT/JP2018/046037
Other languages
English (en)
French (fr)
Inventor
辰也 堀口
坂本 英之
広津 鉄平
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112018005858.1T priority Critical patent/DE112018005858T5/de
Priority to US16/963,314 priority patent/US11511763B2/en
Publication of WO2019142563A1 publication Critical patent/WO2019142563A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0027Planning or execution of driving tasks using trajectory prediction for other traffic participants
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • B60W2050/021Means for detecting failure or malfunction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • B60W2050/0215Sensor drifts or sensor failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • B60W2050/065Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot by reducing the computational load on the digital processor of the control computer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • B60W2420/408
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present invention relates to an electronic control unit, and more particularly to an electronic control unit suitable for an automatic driving system and the like.
  • Patent Document 1 discloses a vehicle as an example of a vehicle travel control device that can suppress the operation of the vehicle speed adjustment device based on an abnormal target control amount by causing an abnormality in the main traveling state detection means.
  • the travel control device is provided with a drive system rotation sensor that detects the traveling state of the vehicle, and the engine ECU is a drive system rotation sensor when performing automatic travel control by the automatic travel control ECU.
  • the engine ECU performs normal control of the engine without performing automatic travel control, so that the engine ECU detects the detection result of the drive system rotation sensor.
  • a technique is disclosed for detecting an abnormality that has occurred in a wheel speed sensor by setting an abnormality determination condition based thereon.
  • the automatic driving ECU ECU: Electronic Control Unit
  • ECU Electronic Control Unit
  • the driver is required to continue the operation for a certain period of time before taking over the operation or to stop the operation safely.
  • Examples of such a fault include, for example, an abnormality that occurs during calculation on an arithmetic processing unit (hereinafter referred to as a microcomputer) that performs calculations for automatic driving control, and an abnormality that occurs to a sensor.
  • a microcomputer arithmetic processing unit
  • Patent Document 1 discloses an example of an apparatus for detecting and correcting a sensor value deviation for detecting a vehicle state amount using a different type of sensor, and indicates an abnormality detection method by evaluating the validity of a sensor output value. It is done.
  • Patent Document 1 can detect a failure or abnormality occurring in one sensor using another sensor, a means for detecting an abnormality occurring in a verification sensor is shown. Not.
  • An object of the present invention is to provide a low heat generation electronic control device by simplifying the configuration and reducing the load of verification operation without multiplexing of sensors and operations.
  • the present invention includes a plurality of means for solving the above problems, and an example thereof is a sensor fusion processing unit that integrates a plurality of pieces of sensor information input from a plurality of sensors, and the sensor fusion processing unit An action prediction processing unit for obtaining a future value obtained by predicting the future behavior of the object based on the integrated combined information, the future value predicted by the action prediction processing unit, and the sensor fusion process at the predicted time And a comparison unit that compares the output information of each sensor of the unit.
  • abnormality detection occurring in arithmetic processing in the sensor and the ECU can be realized with low arithmetic load without using multiplexing and additional sensors.
  • FIGS. 1 to 7 An embodiment of an electronic control unit according to the present invention will be described with reference to FIGS. In FIGS. 1 to 7, the electronic control unit will be described by way of an example applied to an automatic driving system for supporting automatic driving and automatic driving of a vehicle.
  • FIG. 1 shows the overall configuration of an automatic driving system according to this embodiment.
  • a group of external information observation devices consisting of a first sensor 11 and a second sensor 12 capable of acquiring vehicle peripheral information individually for each sensor, using a millimeter wave radar and a camera as an example.
  • Calculation processing related to automatic driving is performed using the microcomputer 21 in the automatic driving ECU 2 based on the external world information given by 1, the map information 13 and the information from the vehicle position sensor 14, and the brake control device 31 and the engine control device Control command values are transmitted to various lower ECU groups 3 including the steering control device 33 and the like.
  • the data input from the external information observation device group 1 to the automatic driving ECU 2 may be raw data directly output from a sensor or data preprocessed by an ECU dedicated to each sensor.
  • the first sensor 11 and the second sensor 12 used include at least one of a radar and a camera, but may be various other known radar sensors and imaging devices. Moreover, the number is not limited to two, and may be three or more.
  • FIG. 2 shows a configuration unique to the present invention.
  • a sensor fusion processing unit 4 As shown in FIG. 2, in the electronic control unit of this embodiment, a sensor fusion processing unit 4, an action prediction processing unit 5, a vehicle trajectory plan processing unit 6, and a prediction storage unit 101 are included in the microcomputer 21 shown in FIG.
  • a first comparison unit 102, a second comparison unit 103, and an abnormal point determination unit 104 are provided, and the storage device 10 and the display device 15 are provided outside the microcomputer 21.
  • the sensor fusion processing unit 4 receives an input of the sensor detection value from each of the first sensor 11 and the second sensor 12, and executes integration processing to synchronize time of a plurality of sensor information.
  • the vehicle surroundings map (connection information, output information) 7 at time T created as a result of the time synchronization processing is output to the behavior prediction processing unit 5, and the first sensor correction data and the second sensor correction data at time T are output. It is output to the first comparison unit 102.
  • the host vehicle peripheral map (connection information, output information) 9 at time T + 1 seconds is output to the behavior prediction processing unit 5, and the first sensor correction data 42 and the second sensor correction data 43 at time T + 1 are output. It is output to the first comparison unit 102.
  • the behavior prediction processing unit 5 obtains a surrounding object prediction map (future value) 8 in which the behavior of the object at time T + 1 is predicted based on the vehicle peripheral map 7 at time T input from the sensor fusion processing unit 4 .
  • the peripheral object prediction map 8 thus obtained is output to the vehicle trajectory plan processing unit 6 and the prediction storage unit 101.
  • the vehicle trajectory plan processing unit 6 generates a vehicle trajectory based on the surrounding object prediction map 8 at time T + 1 input from the behavior prediction processing unit 5.
  • the generated vehicle trajectory information is output to the lower ECU group 3.
  • the prediction storage unit 101 temporarily stores the peripheral object prediction map 8 input from the behavior prediction processing unit 5 and stores the peripheral objects temporarily stored in the first comparison unit 102 and the second comparison unit 103 at appropriate timings.
  • the prediction map 8 is output.
  • the first comparison unit 102 is input from the sensor fusion processing unit 4 at the predicted time T + 1 second, and the peripheral object prediction map 8 at the time T + 1 second, which is calculated at the time T predicted by the behavior prediction processing unit 5
  • the first sensor correction data 42 and the second sensor correction data 43 at time T + 1 second are compared.
  • the first comparison unit output (output information) 105 which is the comparison result, is output to the abnormal point determination unit 104.
  • the first comparison unit 102 compares the input peripheral object prediction map 8 with the output information of the first sensor 11 and the second sensor 12 of the sensor fusion processing unit 4 at the predicted time, and the peripheral object It is determined whether the reliability of the predicted map 8, that is, whether the accuracy is sufficiently secured and calculated. For example, when the comparison result shows that the operation processing accuracy of the peripheral object prediction map 8 by the behavior prediction processing unit 5 is lowered when the difference is equal to or more than a predetermined reference value, an abnormality is output as the first comparison unit output 105 .
  • the second comparison unit 103 compares the peripheral object prediction map 8 at time T + 1, which is calculated at the input time T, with the host vehicle peripheral map 9 at predicted time T + 1.
  • the second comparison unit output (output information) 106 which is the comparison result, is output to the abnormal point determination unit 104.
  • the first comparison unit 102 and the second comparison unit 103 when an abnormality is detected over a plurality of times (for example, the same object or location is continuously detected five times or more), in an abnormal state in which the reliability is lowered. It can be determined that there is.
  • the abnormal point determination unit 104 determines the second comparison of the first comparison unit output 105 of the first comparison unit 102 and the second comparison unit 103 based on the input first comparison unit output 105 and the second comparison unit output 106. Based on the part output 106, the abnormality determination result 107, which is information on which of the first sensor 11, the second sensor 12, the sensor fusion processing unit 4, the first comparison unit 102, and the second comparison unit 103, the abnormality has occurred Ask.
  • the abnormal point determination unit 104 If the determined abnormality determination result 107 indicates that there is an abnormality, the abnormal point determination unit 104 outputs a signal indicating that there is an abnormality to the various lower ECU groups 3 and causes the abnormality handling process to be executed. In addition, in order to notify the passenger of the automobile of the decrease in reliability, the display device 15 outputs a display signal for displaying a message of the decrease in reliability of the electronic control unit. At the same time, the determination record of the specified time before and after the reliability decrease detection and the information of the time are output to the storage device 10.
  • the lower ECU group 3 executes various abnormality handling processes in response to the input of the signal of the abnormality.
  • abnormality handling process when the vehicle on which the electronic control device is mounted is in fully automatic operation, various controls such as reducing the speed to stop safely and stopping outside the road are executed. In addition, when the driver is on board and it is possible to continue driving by the driver, a warning is issued to the driver and various controls for switching from automatic driving to manual driving by the driver are executed.
  • the abnormality handling process is not limited to the control described above, and various controls can be executed.
  • the storage device 10 When the storage device 10 receives the input of the abnormality determination result 107 with abnormality from the abnormal part determination unit 104, the storage device 10 stores the determination record of the prescribed time before and after the reliability decrease detection time and the information of the time.
  • FIG. 3 shows a processing flow of the main function processing of the automatic operation performed by the microcomputer 21.
  • a sensor fusion process for integrating various external information provided from the external information observation device group 1 by the sensor fusion processing unit 4, step S 4 Behavior prediction processing for predicting the behavior of a surrounding object by the behavior prediction processing unit 5 using the vehicle peripheral map obtained as a result of the sensor fusion process (step S5), and the behavior of the surrounding object obtained as a result of the behavior prediction processing in step S5 Based on the prediction, each operation of the vehicle trajectory planning process (step S6) of generating the vehicle trajectory by the vehicle trajectory planning processing unit 6 is executed.
  • step S4 to step S6 is continued until the end of the operation of the automatic driving ECU 2 (No in step S7), and ends at the end of the operation (Yes in step S7).
  • FIG. 4 shows an outline of internal processing of the sensor fusion processing unit 4.
  • the sensor data provided to the automatic driving ECU 2 from the first sensor 11 and the second sensor 12 are not synchronized in time. For this reason, in the sensor fusion processing unit 4, it is necessary to perform time synchronization processing by the time synchronization processing unit 41 after the sensor data to which the time stamp is attached is first received.
  • the vehicle peripheral object position is mapped by quoting a map around the vehicle from the map information 13 using the sensor values from the vehicle position sensor 14 in addition to the position coordinates of the peripheral objects.
  • the first sensor correction data 42 and the second sensor correction data 43 can be obtained by interpolation processing such as interpolation of input values of each sensor before and after time synchronization processing.
  • the interpolation method may be according to various known methods.
  • the position and size of the objects around the vehicle detected by the first sensor 11 and the second sensor 12 are integrated with the above-described sensor fusion processing unit 4 in FIG. The example which plotted the object is shown.
  • action prediction processing is performed on the microcomputer 21 on the basis of the vehicle periphery map 7 generated by the sensor fusion processing unit 4.
  • the behavior prediction processing unit 5 predicts behavior of various peripheral objects mapped on the host vehicle peripheral map 7.
  • a prediction method for example, there is a method of extrapolating and obtaining a future position based on the current position and velocity of each peripheral object, but various other known methods can be used.
  • the behavior prediction processing unit 5 obtains a surrounding object prediction map 8 indicating future predictions of objects around the vehicle as shown in FIG. 6, and the predicted positions of the other vehicle prediction position 82, the bicycle prediction position 83, and the walking prediction position 84 It is mapped as a peripheral object prediction map 8.
  • predicted positions of the objects by the action prediction processing unit 5 are indicated by dotted lines, and other vehicle positions 72, bicycle positions 73 and pedestrian positions 74 which are results of the sensor fusion processing unit 4 are indicated by solid lines. However, these actual positions are not necessarily included in the result of the actual action prediction processing unit 5.
  • the vehicle trajectory planning process is performed on the microcomputer 21 using the predicted position of each object, and the vehicle trajectory is generated.
  • the processing of the main function of the autonomous driving ECU 2 is completed by generating and transmitting a control command value to the lower-level ECU group 3 so as to fill the vehicle track.
  • the sensor fusion processing unit 4, the behavior prediction processing unit 5, and the processing method for detecting abnormality of the sensor input value in the present invention in the main function processing flow of the automatic driving ECU 2 in the electronic control device described above will be described below.
  • the main function processing of the autonomous driving ECU 2 is cyclic processing, and after a series of processing started at a certain time T ends, the same processing is started again at the next time T + 1.
  • the peripheral object prediction map 8 at the time T + 1 calculated at the time T is a prediction storage unit as the processing result of the behavior prediction processing unit 5 It is stored in 101.
  • the time synchronization value (first sensor correction data 42) of the first sensor at time T + 1 obtained from the time synchronization value in the sensor fusion processing unit 4;
  • Three of the time synchronization value (second sensor correction data 43) of the second sensor at time T + 1 and the peripheral object prediction map 8 at time T + 1 calculated at time T stored in the prediction storage unit 101 A comparison is made in the first comparison unit 102.
  • the comparison operation in the first comparison unit 102 includes, for example, the peripheral object prediction map 8 at time T + 1 calculated at time T, the first sensor correction data 42 of the first sensor 11 at time T + 1, and the first sensor correction data 42 at time T + 1.
  • a method may be considered that is realized by processing using a threshold, such as determining whether or not three of the second sensor correction data 43 of the two sensors 12 are within a predetermined threshold.
  • a method is conceivable in which a central point obtained from position coordinates independently detected or predicted by three parties is assumed, and a deviation from the same central point is calculated.
  • an accuracy improvement method such as performing center point position correction weighted according to sensor characteristics such as a relative distance and an angle with the host vehicle when calculating the center point.
  • the first comparison unit 102 output 105 indicating the presence or absence of the outlier as the majority result and the input source when the outlier exists is obtained.
  • the second comparison unit 103 performs coincidence determination using a threshold for each object.
  • the matching determination that allows an error such as the process in the first comparing unit 102 is performed on the two data
  • a second comparator output 106 is obtained which indicates whether the two data match within a predetermined threshold.
  • the first sensor 11, the second sensor 12, and the sensor fusion processing unit 4 are based on the two outputs of the first comparison unit output 105 and the second comparison unit output 106 obtained by the above processing. It becomes possible to detect each of the abnormalities that have occurred in the action prediction processing unit 5.
  • FIG. 7 shows a method of judging an abnormal part according to the output of each comparison unit.
  • the validity of the peripheral object prediction map 8 at time T + 1 as a result of the action prediction processing unit 5 at time T by the first comparison unit 102 and its output 105, Validity of the sensor 11 and the second sensor 12 is simultaneously verified. Since the first comparison unit 102 performs majority decision determination that allows an error within the threshold value, the presence or absence of an abnormality and an abnormal point is output when an abnormality is detected.
  • the present invention assumes that the sensor fusion processing unit 4 at a certain time T is correctly completed, the behavior prediction processing unit 5 at the time T, the first sensor 11 at the time T + 1, the second sensor 12 and the sensor fusion processing unit
  • the configuration is to detect an abnormality at 4 and the reliability of the abnormality determination result 107 depends on the sensor fusion processing unit 4 at time T.
  • the verification method by the sensor fusion processing unit 4 does not exist only at the time of starting the automatic operation (time 0), and the subsequent verification can not be performed. Therefore, validity verification of the first sensor 11, the second sensor 12, and the sensor fusion processing unit 4 at time 0 is separately required.
  • peripheral landmarks are detected by the sensor fusion processing unit 4 using the map information 13 at time 0 and time 1 as a phase before the start of automatic driving, and the matching determination after taking into consideration the moving amount of the vehicle It is conceivable to verify the validity of the first sensor 11, the second sensor 12, and the sensor fusion processing unit 4 by constructing a time multiplex system.
  • the automatic operation is started at time 1, and the validity is not verified (mismatch is detected) In the latter case, the same detection is repeatedly performed until the automatic operation start time defined by the system, and the start of the automatic operation process is prohibited when the detection of the nonconformity continues.
  • the electronic control unit of the present embodiment described above includes a sensor fusion processing unit 4 that integrates a plurality of pieces of sensor information input from a plurality of first sensors 11 and a plurality of second sensors 12, and a self integrated by the sensor fusion processing unit 4.
  • the behavior prediction processing unit 5 for obtaining a surrounding object prediction map 8 which predicts the future behavior of the object based on the car periphery map 9, the surrounding object prediction map 8 predicted by the behavior prediction processing unit 5, and the prediction
  • a first comparison unit 102 that compares the output information of each of the first sensor 11 and the second sensor 12 of the sensor fusion processing unit 4 at time.
  • the external information observation device group 1 used for the autonomous driving ECU 2 and the sensor fusion processing unit 4 and the behavior prediction processing unit 5 in the autonomous driving ECU 2 are detected without detecting any abnormality occurring therein. Can.
  • the method is based on comparison operation processing using information obtained in the process of main function processing of the autonomous driving ECU 2, and the low heat generation electronic control device is realized by simplification of the system configuration and reduction of load of verification operation.
  • This electronic control unit is suitable for a system that can be realized and needs to verify the processing in the sensor and the ECU.
  • the first comparison unit 102 determines the majority between the input peripheral object prediction map 8 and the output information of each of the first sensor 11 and the second sensor 12 of the sensor fusion processing unit 4 at the predicted time. The presence or absence of an abnormality, and the determination of the abnormal part at the time of the abnormality detection can be performed with high accuracy.
  • the first comparison unit 102 further compares the input peripheral object prediction map 8 with the output information of the first sensor 11 and the second sensor 12 of the sensor fusion processing unit 4 at the predicted time. As a result, since the reliability of the peripheral object prediction map 8 is determined, the accuracy of the determination of the abnormality can be kept high.
  • a second comparison unit 103 that compares the input peripheral object prediction map 8 with the own vehicle peripheral map 9 of the sensor fusion processing unit 4 at the predicted time, determination of abnormality from a different viewpoint Can be further performed, and abnormality determination can be performed with higher accuracy.
  • the second comparison unit 103 compares the input surrounding object prediction map 8 with the own vehicle peripheral map 9 of the sensor fusion processing unit 4 at the predicted time, and thereby the own vehicle of the sensor fusion processing unit 4 By determining the reliability of the peripheral map 9, it is possible to keep the accuracy of the determination of abnormality higher.
  • the first comparison unit By further including the abnormal point determination unit 104 that determines which of the second comparison unit 103 and 102 is in the abnormal state, the effect of easily identifying the abnormal point can be obtained.
  • the accuracy of the abnormality determination is further added. It can be kept high.
  • the first comparison unit 102 or the second comparison unit 103 determines that the reliability has decreased when it is determined that the predetermined accuracy is equal to or more than the predetermined number of consecutive times. It becomes possible to exclude the resulting momentary abnormality, and it is possible to avoid the situation in which the abnormality handling process is frequently performed.
  • notification of a decrease in the reliability of the electronic control device to the outside of the device leads to abnormality response control being performed by a person or a person who is related to a system system using the electronic control device.
  • the device can be grasped, and prompt measures can be taken.
  • the storage device 10 that leaves the determination record at the time of the detection of the decrease in reliability, it becomes easy to execute the analysis of the cause of the abnormality when the abnormality occurs, and it is possible to more easily identify the abnormal part.
  • the storage device 10 can more easily execute analysis of the cause of abnormality by leaving the determination record of the prescribed time before and after the detection of the decrease in reliability, and it becomes easier to identify the abnormal point.
  • the electronic control unit is used in an automatic driving system of a car, and when a reduction in reliability is detected, the reduction in the reliability of the electronic control unit is notified to a passenger of the car using the display unit 15. It is possible to quickly perform measures such as stopping the vehicle, and provide a safe system.
  • the electronic control device of the present invention can be applied to a sensor frequently used for automatic operation by including at least one of a radar and a camera as the first sensor 11 and the second sensor 12 used. .
  • the abnormal point determination unit 104 is implemented independently of the first comparison unit 102 and the second comparison unit 103, but the first comparison unit 102 and the second comparison unit 103 are illustrated.
  • the like may be implemented as part of another operation part including the like, and can be appropriately changed in accordance with the circumstances at the time of design, the circumstances at the time of use, and the like.
  • the reference value (threshold) used for each comparison at time T is all different reference values It is desirable to use Moreover, since it is general that the deviation of prediction becomes larger as the time goes further, it is desirable to make the reference value larger as the time goes further.
  • the number of sensors is not limited to two, and the input may be three or more sensors.
  • time synchronization processing of three sensor inputs is performed in the sensor fusion processing unit 4 to obtain the vehicle peripheral maps 7, 9 and the peripheral object prediction map 8 at time T + 1, and the first comparison unit 102
  • the abnormality determination result 107 can be obtained by comparing or majority comparing the correction values at time T + 1 of the three sensors and the peripheral object prediction map 8 in.
  • the same processing as the above embodiment is performed in response to the input of any two sensors out of the three sensors, and the remaining one sensor and any one of the two sensors are In response to the inputs from the two sensors, the same processing as that of the above-described embodiment is performed, and the abnormality handling processing can be executed using the two abnormality determination results 107.
  • the input of all the input sensors may be used as it is, or a plurality of systems using any two inputs may be provided, and various modifications are possible. .
  • the application of the electronic control device of the present invention is not limited to the automatic driving system, and the sensors and The present invention can be applied to various electronic control devices that need to verify the processing in the ECU.
  • Bicycle position 74 at time T ...
  • Estimated rotation position 84 predicted walking position 101 at time T + 1 calculated at time T: predicted storage unit 102: first comparison unit 103: second comparison unit 104: abnormal point determination unit 105: first comparison unit output 106: Second comparison unit output 107 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

センサや演算の多重化を行わず、構成の単純化、および検証演算負荷の低減による低発熱の電子制御装置を提供する。 複数の第1センサ11,第2センサ12から入力された複数のセンサ情報を統合するセンサフュージョン処理部4と、センサフュージョン処理部4で統合された自車周辺地図9に基づき、対象物の将来の行動を予測した周辺物体予測地図8を求める行動予測処理部5と、行動予測処理部5により予測された周辺物体予測地図8と、この予測された時刻におけるセンサフュージョン処理部4のそれぞれの第1センサ11,第2センサ12の出力情報とを比較する第一比較部102と、を備えている。

Description

電子制御装置
 本発明は、電子制御装置、特には自動運転システム等に好適な電子制御装置に関する。
 主走行状態検出手段に異常が発生することで、異常な目標制御量に基づいて車速調整装置が作動されることを抑制することができる車両走行制御装置の一例として、特許文献1には、車両走行制御装置に、車輪速度センサの他に、車両の走行状態を検出する駆動系回転センサを設け、エンジンECUは、自動走行制御ECUにより自動走行制御を行っている際に、駆動系回転センサでの検出結果に基づいて算出した車速が異常判定条件を満たした場合には、自動走行制御は行わずに、エンジンの通常制御を行うことで、エンジンECUに、駆動系回転センサでの検出結果に基づいた異常判定条件を設定することにより、車輪速度センサに発生した異常を検出する技術が記載されている。
特開2009-61942号公報
 高度な自動運転システムの実現に向け、自動運転を制御する上位の制御装置である自動運転ECU(ECU: Electronic Control Unit)には、自動運転システムにおいて障害が発生したような場合においても、ドライバーに操作を引き継ぐまでの一定期間動作を継続することや、安全に停止させることが求められる。
 このような障害の一例として、例えば自動運転制御のための演算を行う演算処理装置(以下、マイコン)上での演算中に発生する異常や、センサに発生する異常が挙げられる。
 前述の一定期間の動作継続を実現するためには、これら異常を検出し、異常に対応した制御に切替えることが必要となる。
 このような障害や異常の検出にあたり、一般に演算処理やセンサを多重化し、出力を比較する方式、および演算結果やセンサ出力の値の妥当性を別のセンサ値や演算結果を用いて検証する方式が用いられる。
 このうち、多重化に関しては、センサ数増大によるシステムの大規模複雑化、演算負荷増大などの課題があり、妥当性検証を行う方式が必要となる。特許文献1では、自車状態量を検出するセンサ値ずれを、異種センサを用いて検出・補正する装置例が開示されており、センサ出力値の妥当性を評価することによる異常検出方式が示されている。
 一方で、特許文献1に示した検証方式は、あるセンサに発生した障害や異常を別のセンサを用いて検出することはできるものの、検証用のセンサに発生する異常を検出する手段は示されていない。
 自動運転ECUにおいては、複数のセンサを同時に用い、それぞれのセンサの特性を補完する形で周辺物体の認識が行われるため、各種センサを用いた相補的な検証、異常検出を行うことが必要となる。また、センサ検証のためにマイコンを用いた演算が必要となるが、この演算に関しても同様に検証が必要となる。
 これらの検証にあたり、特許文献1に記載の技術のように個別にセンサやロジックを追加すると、前述のようなシステムの大規模複雑化、演算負荷増大を招いてしまう。
 本発明の目的は、センサや演算の多重化を行わず、構成の単純化、および検証演算負荷の低減による低発熱の電子制御装置を提供することである。
 本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、複数のセンサから入力された複数のセンサ情報を統合するセンサフュージョン処理部と、前記センサフュージョン処理部で統合された結合情報に基づき、対象物の将来の行動を予測した将来値を求める行動予測処理部と、前記行動予測処理部により予測された将来値と、この予測された時刻における前記センサフュージョン処理部のそれぞれのセンサの出力情報とを比較する比較部と、を備えることを特徴とする。
 本発明によれば、センサおよびECU内部の演算処理に発生する異常検出を、多重化および追加センサを用いず、低演算負荷にて実現することができる。上記した以外の課題、構成および効果は、以下の実施例の説明により明らかにされる。
本発明の第1の実施例の電子制御装置におけるシステム構成を示すブロック図である。 本発明の第1の実施例の電子制御装置における、各構成と処理の流れの関係を示す図である。 本発明の第1の実施例の電子制御装置における自動運転ECU内で行われる処理手順を示すフローチャートである。 本発明の第1の実施例の電子制御装置における、センサフュージョン処理部内の処理フローを示す図である。 本発明の第1の実施例の電子制御装置における、センサフュージョン処理部により得られる自車周辺地図の例を示す図である。 本発明の第1の実施例の電子制御装置における、行動予測処理部により得られる周辺物体予測地図の例を示す図である。 本発明の第1の実施例の電子制御装置における、故障箇所判別方法を示す図である。
 本発明の電子制御装置の実施例について図1乃至図7を用いて説明する。なお、図1乃至図7においては、電子制御装置として自動車の自動運転や自動運転をサポートするための自動運転システムに適用される場合を例に挙げて説明する。
 [全体構成]
 最初に、本発明の電子制御装置が適用される自動運転システムの全体構成について図1を用いて説明する。図1に本実施例における自動運転システムの全体構成を示す。
 図1に示すように、本システムでは、ミリ波レーダやカメラを一例とする、各センサ個別で自車周辺情報を獲得可能な第1センサ11、および第2センサ12から成る外部情報観測機器群1から与えられる外界情報や、地図情報13、自車位置センサ14からの情報に基づき、自動運転ECU2内のマイコン21を用いて自動運転に関する演算処理が行われ、ブレーキ制御装置31やエンジン制御装置32、ステアリング制御装置33等から成る各種の下位ECU群3へそれぞれ制御指令値が送信される。
 なお、外部情報観測機器群1から自動運転ECU2に入力されるデータは、センサから直接出力される生データでも、各センサ専用のECUにより事前処理されたデータでも良い。
 用いる第1センサ11,第2センサ12は、レーダもしくはカメラの少なくともいずれか一方を含むが、それら以外の様々な公知のレーダーセンサや撮像装置とすることが可能である。また、その数も2つに限られず、3つ以上であってもよい。
 最初に、本発明特有の構成と関連する構成について図2を用いて説明する。図2に、本発明特有の構成を示す。
 図2に示すように、本実施例の電子制御装置では、図1に示すマイコン21内に、センサフュージョン処理部4、行動予測処理部5、自車軌道計画処理部6、予測保存部101、第一比較部102、第二比較部103、異常箇所判定部104を備えており、マイコン21外に記憶装置10および表示装置15を備えている。
 センサフュージョン処理部4は、第1センサ11および第2センサ12からそれぞれのセンサ検出値の入力を受け、複数のセンサ情報の時刻を同期する統合処理を実行する。時刻同期処理の結果作成した、時刻Tにおける自車周辺地図(結合情報、出力情報)7を行動予測処理部5に出力するとともに、時刻Tでの第1センサ補正データや第2センサ補正データを第一比較部102に出力する。時刻T+1秒では、時刻T+1秒における自車周辺地図(結合情報、出力情報)9を行動予測処理部5に出力するとともに、時刻T+1での第1センサ補正データ42や第2センサ補正データ43を第一比較部102に出力する。
 行動予測処理部5は、センサフュージョン処理部4から入力された時刻Tにおける自車周辺地図7に基づいて、対象物の時刻T+1での行動を予測した周辺物体予測地図(将来値)8を求める。求めた周辺物体予測地図8は、自車軌道計画処理部6および予測保存部101に出力する。
 自車軌道計画処理部6は、行動予測処理部5から入力された時刻T+1での周辺物体予測地図8に基づいて、自車軌道を生成する。生成した自車軌道情報は下位ECU群3に対して出力する。
 予測保存部101は、行動予測処理部5から入力された周辺物体予測地図8を一時保存し、適切なタイミングで第一比較部102および第二比較部103に対して一時保存していた周辺物体予測地図8を出力する。
 第一比較部102は、行動予測処理部5により予測された時刻Tに演算される,時刻T+1秒での周辺物体予測地図8と、この予測された時刻T+1秒におけるセンサフュージョン処理部4から入力された第1センサ補正データ42、時刻T+1秒での第2センサ補正データ43とを比較する。比較結果である第一比較部出力(出力情報)105を異常箇所判定部104に出力する。
 この第一比較部102では、入力された周辺物体予測地図8と、予測された時刻におけるセンサフュージョン処理部4のそれぞれの第1センサ11,第2センサ12の出力情報とを比較して周辺物体予測地図8の信頼性、すなわち、精度が充分に担保されて演算されているか否かを判定する。例えば、比較した結果、所定の基準値以上相違している場合、行動予測処理部5による周辺物体予測地図8の演算処理精度が低下しているとして、第一比較部出力105として異常を出力する。
 第二比較部103は、入力された時刻Tに演算される,時刻T+1での周辺物体予測地図8と、予測された時刻T+1における自車周辺地図9とを比較する。比較結果である第二比較部出力(出力情報)106を異常箇所判定部104に出力する。
 第二比較部103においても、入力された周辺物体予測地図8と、予測された時刻におけるセンサフュージョン処理部4の自車周辺地図9とを比較して自車周辺地図9の信頼性、すなわち、精度が充分に担保されて演算されているか否かを判定する。例えば、比較した結果、所定の基準値以上相違している場合、センサフュージョン処理部4による自車周辺地図9の演算処理精度が低下しているとして、第二比較部出力106として異常を出力する。
 これら第一比較部102や第二比較部103では、複数時刻に亘って異常を検知(例えば同じ物体や箇所に対して連続して5回以上検知)した場合に信頼性が低下した異常状態であると判定することができる。
 異常箇所判定部104は、入力された第一比較部出力105と第二比較部出力106とに基づいて、第一比較部102の第一比較部出力105および第二比較部103の第二比較部出力106に基づき、第1センサ11,第2センサ12、センサフュージョン処理部4、第一比較部102、第二比較部103のいずれで異常が生じているかの情報である異常判定結果107を求める。
 異常箇所判定部104は、求めた異常判定結果107が異常ありの場合は、異常ありの信号を各種の下位ECU群3へ出力し、異常対応処理を実行させる。また、自動車の搭乗者へ信頼性低下を通知するために表示装置15に電子制御装置の信頼性低下のメッセージを表示させる表示信号を出力する。同時に、信頼性低下検知時前後における規定時間の判定記録とその時刻の情報を記憶装置10に対して出力する。
 異常判定結果107が異常ありの場合、この異常の信号の入力を受けて、下位ECU群3は、各種の異常対応処理を実行する。
 異常対応処理としては、当該電子制御装置が搭載されている自動車が完全自動運転の場合は、安全に停止させるように速度を落としたり、道路外に停車させたり、等の各種制御を実行する。また、ドライバーが搭乗しており、ドライバーによって運転を継続することが可能な場合は、ドライバーに警告を発して、自動運転からドライバーによるマニュアル運転に切り替えるための各種制御を実行する。なお、異常対応処理は上記した制御に限定されず、様々な制御を実行することが可能である。
 記憶装置10は、異常箇所判定部104から異常ありの異常判定結果107の入力を受けた際には、信頼性低下検知時前後における規定時間の判定記録とその時刻の情報を記憶する。
 次に、自動運転処理の一例について図3を用いて説明する。図3に、マイコン21にて行われる自動運転の主機能処理についての処理フローを示す。
 図3に示すように、自動運転ECU2の運転中は、マイコン21では、センサフュージョン処理部4による外部情報観測機器群1から与えられる各種外部情報を統合するセンサフュージョン処理(ステップS4)、ステップS4のセンサフュージョン処理の結果得られる自車周辺地図を用いた行動予測処理部5による周辺物体の行動を予測する行動予測処理(ステップS5)、ステップS5の行動予測処理の結果得られる周辺物体の行動予測を基に自車軌道計画処理部6により自車軌道を生成する自車軌道計画処理(ステップS6)の各演算が実行される。
 上記ステップS4-ステップS6の処理は、自動運転ECU2の運転終了まで継続され(ステップS7のNo)、運転終了時に終了する(ステップS7のYes)。
 次に、センサフュージョン処理の詳細について図4を用いて説明する。図4に、センサフュージョン処理部4の内部処理の概要を示す。
 図4に示すように、第1センサ11や第2センサ12から自動運転ECU2へ与えられるセンサデータは時刻同期が取れていない。このため、センサフュージョン処理部4では、最初に、タイムスタンプを付与されたセンサデータを受信した後で、時刻同期処理部41による時刻同期処理を行うことが必要となる。
 その後、時刻同期処理部41による時刻同期処理を完了した第1センサ補正データ42、第2センサ補正データ43に基づき、各周辺物体の位置座標が出力される。この各周辺物体の位置座標に加え、自車位置センサ14によるセンサ値を用いて地図情報13から自車周辺の地図を引用することで、自車周辺物体位置がマッピングされる。なお、第1センサ補正データ42、第2センサ補正データ43は、時刻同期処理前後の各センサの入力値の内挿などの補間処理によって求めることができる。内挿の方法は様々な公知の方法によれば良い。
 図5に前述のセンサフュージョン処理部4を用いて第1センサ11および第2センサ12で検出した自車周辺物体の位置や大きさ、移動速度情報を統合し、自車周辺地図7上に各物体をプロットした例を示す。
 図5において、本実施例では、自車位置71に加え、他車位置72や自転車位置73、歩行者位置74が自車周辺地図7上にマッピングされたものとする。
 続いてマイコン21上で、センサフュージョン処理部4により生成された自車周辺地図7に基づき、行動予測処理が行われる。行動予測処理部5では、自車周辺地図7上にマッピングされた各種周辺物体の行動予測を行う。予測の方式としては、例えば現在の各周辺物体の位置と速度を基に、将来位置を外挿して求める方式が挙げられるが、この他の様々な公知の方法を用いることができる。
 行動予測処理部5により、図6に示すような自車周辺物体の将来予測を示す周辺物体予測地図8が求められ、他車予測位置82、自転車予測位置83、歩行予測位置84の予測位置が周辺物体予測地図8としてマッピングされる。
 図6では説明のため、行動予測処理部5による各物体の予測位置を点線で、センサフュージョン処理部4の結果である他車位置72、自転車位置73、歩行者位置74を実線で示しているが、実際の行動予測処理部5の結果にこれら実位置は必ずしも含まれない。
 また図6には各物体の予測位置を1つだけ示しているが、このような各物体の予測位置は、後の自車軌道計画処理部6に必要となる数だけ生成される。例えば、自車軌道計画処理部6において自車軌道が100ミリ秒毎に10秒分計画される場合、各物体における予測位置は最大で100個(100ミリ秒毎に10秒分)生成されることとなる。
 このような各物体における予測位置を用い、マイコン21上にて自車軌道計画処理が行われ、自車軌道が生成される。この自車軌道を満たすような、下位ECU群3への制御指令値が生成・送信されることで、自動運転ECU2の主機能の処理が完了する。
 以上に示した電子制御装置における自動運転ECU2の主機能処理フローにおける、本発明特有のセンサフュージョン処理部4、行動予測処理部5、およびセンサ入力値の異常検出の処理方式について、以下説明する。
 自動運転ECU2の主機能処理は周期的な処理となっており、ある時刻Tに開始される一連の処理の終了後、次の時刻T+1に再度同様の処理が開始される。
 本実施例の自動運転ECU2では、ある時刻Tにおいて上記一連の処理を行った際、行動予測処理部5の処理結果として、時刻Tに演算される時刻T+1における周辺物体予測地図8が予測保存部101に保存される。
 その後、時刻T+1において同様の一連の処理を行う際、センサフュージョン処理部4内での時刻同期値から得られる、時刻T+1での第1センサの時刻同期値(第1センサ補正データ42)、および時刻T+1での第2センサの時刻同期値(第2センサ補正データ43)と、予測保存部101に保存された時刻Tに演算される時刻T+1における周辺物体予測地図8との3者を、第一比較部102にて比較を行う。
 なお、第一比較部102における比較演算は、例えば時刻Tに演算される時刻T+1における周辺物体予測地図8、時刻T+1での第1センサ11の第1センサ補正データ42、および時刻T+1での第2センサ12の第2センサ補正データ43の3者が事前に定められる閾値内に存在するか否かを判定する等、閾値を用いた処理により実現する方法が考えられる。
 判定処理に当たっては、一例として3者により独立に検出もしくは予測される位置座標から得られる中心点を仮定し、同中心点からの乖離を計算する方法が考えられる。また、中心点計算に際し自車との相対距離や角度といったセンサ特性に応じた重みをつけた中心点位置補正を行うなどの精度向上方式も搭載可能である。
 このようにして、得られた距離と閾値との比較による範囲付きでの一致判定を行うことで、センサ誤差を踏まえた多数決判定を行うことが可能となる。
 これにより、第一比較部102の比較結果として、多数決結果としての外れ値の有無および外れ値が存在した場合の入力元を示す第一比較部出力105が得られる。
 同様に、予測保存部101に保存された時刻Tに演算される時刻T+1における周辺物体予測地図8と、センサフュージョン処理部4の演算結果である、時刻T+1における自車周辺地図9とを用いて、第二比較部103にて物体毎に閾値を用いた一致判定を行う。
 第一比較部102における処理と同様に、第二比較部103における処理では、例えば第一比較部102内の処理のような誤差を許容する一致判定を2つのデータに対して行うことで、2つのデータが事前に定められた閾値の範囲内で一致したか否かを示す第二比較部出力106が得られる。
 異常箇所判定部104では、以上の処理により得られる第一比較部出力105と、第二比較部出力106との2つの出力に基づき、第1センサ11、第2センサ12、センサフュージョン処理部4、行動予測処理部5に発生した異常それぞれを検出することが可能となる。
 図7に各比較部の出力に応じた異常箇所判定方法を示す。本発明では、同図にあるように、第一比較部102およびその出力105により、時刻Tにおける行動予測処理部5の結果としての、時刻T+1での周辺物体予測地図8の妥当性、第1センサ11、第2センサ12の妥当性を同時に検証する。第一比較部102では閾値内の誤差を許容した多数決判定が行われることから、異常の有無、および異常検出時には異常箇所が出力される。
 これにより、第二比較部103において同データと時刻T+1におけるセンサフュージョン処理部4の結果を比較することで、時刻T+1での周辺物体予測地図8の妥当性、すなわちセンサフュージョン処理部4の処理結果が検証される。
 以上から第1センサ11、第2センサ12、センサフュージョン処理部4、行動予測処理部5の各箇所における異常の有無および異常発生個所を、演算やセンサの多重化を行わずに検出することができる。
 ただし、本発明はある時刻Tにおけるセンサフュージョン処理部4が正しく完了したことを前提として、時刻Tにおける行動予測処理部5、時刻T+1における第1センサ11、第2センサ12、およびセンサフュージョン処理部4における異常を検出する構成であり、異常判定結果107の信頼性が時刻Tにおけるセンサフュージョン処理部4に依存する。
 そのため、自動運転を開始する時刻(時刻0とする)においてのみ、センサフュージョン処理部4による検証方式が存在せず、以降の検証を行うことができない。そのため、時刻0における第1センサ11、第2センサ12、センサフュージョン処理部4の妥当性検証が別途必要となる。
 この方式として、例えば自動運転開始前フェーズとして時刻0と時刻1において地図情報13を用いたセンサフュージョン処理部4により周辺ランドマークを検出し、自車の移動量を加味した上での一致判定を行い、第1センサ11、第2センサ12、およびセンサフュージョン処理部4の妥当性を時間的な多重系を構成することにより検証することが考えられる。
 その上で、第1センサ11、第2センサ12、およびセンサフュージョン処理部4の妥当性が検証された場合には時刻1において自動運転を開始し、妥当性が検証されなかった(不一致が検出された)場合には、システムにより規定される自動運転開始時刻まで同様の検出を繰り返し行い、不一致の検出が続く場合においては自動運転処理を開始することを禁止する。
 次に、本実施例の効果について説明する。
 上述した本実施例の電子制御装置は、複数の第1センサ11,第2センサ12から入力された複数のセンサ情報を統合するセンサフュージョン処理部4と、センサフュージョン処理部4で統合された自車周辺地図9に基づき、対象物の将来の行動を予測した周辺物体予測地図8を求める行動予測処理部5と、行動予測処理部5により予測された周辺物体予測地図8と、この予測された時刻におけるセンサフュージョン処理部4のそれぞれの第1センサ11,第2センサ12の出力情報とを比較する第一比較部102と、を備えている。
 以上の方式により、自動運転ECU2に用いられる外部情報観測機器群1、および自動運転ECU2におけるセンサフュージョン処理部4および行動予測処理部5を多重化することなく、それぞれに発生する異常を検出することができる。
 かつ、同方式は自動運転ECU2の主機能処理の過程において得られる情報を用いた比較演算処理に基づくものであり、システム構成の単純化、検証演算の負荷の低減による低発熱な電子制御装置を実現することができ、センサおよびECU内処理の検証を行う必要があるシステムに好適な電子制御装置となる。
 また、第一比較部102は、入力された周辺物体予測地図8と、予測された時刻におけるセンサフュージョン処理部4のそれぞれの第1センサ11,第2センサ12の出力情報との多数決を取るため、異常の有無、異常検出時の異常個所の判定を高精度に実行することができる。
 更に、第一比較部102は、更に、入力された周辺物体予測地図8と、予測された時刻におけるセンサフュージョン処理部4のそれぞれの第1センサ11,第2センサ12の出力情報とを比較することで、周辺物体予測地図8の信頼性を判定するため、異常の判定の精度を高く保つことができる。
 また、入力された周辺物体予測地図8と、予測された時刻におけるセンサフュージョン処理部4の自車周辺地図9とを比較する第二比較部103を更に備えることにより、異なる視点からの異常の判定を更に実行することができ、異常判定を更に高精度に実行することができる。
 更に、第二比較部103は、入力された周辺物体予測地図8と、予測された時刻におけるセンサフュージョン処理部4の自車周辺地図9とを比較することで、センサフュージョン処理部4の自車周辺地図9の信頼性を判定することで、異常の判定の精度を更に高く保つことができる。
 また、第一比較部102の第一比較部出力105および第二比較部103の第二比較部出力106に基づき、第1センサ11,第2センサ12、センサフュージョン処理部4、第一比較部102、第二比較部103のいずれで異常が生じているかを判定する異常箇所判定部104を更に備えることにより、異常個所の特定が容易になる、との効果が得られる。
 更に、第一比較部102または第二比較部103は、比較の結果が所定の精度以下であると判定される場合に、信頼性が低下したと判定することで、異常の判定の精度を更に高く保つことができる。
 また、第一比較部102または第二比較部103は、連続した所定回数以上、所定の精度以下であると判定されるときに信頼性が低下したと判定することにより、センサ特性やノイズ等に起因する瞬間的な異常を除外することが可能となり、頻繁に異常対応処理が実行される事態を避けることが可能となる。
 更に、信頼性低下が検知された際、電子制御装置の信頼性低下を装置外へ通知することで、異常対応制御がなされることを電子制御装置が用いられているシステム系に関係する人間や装置を把握することができ、速やかな対処が可能となる。
 また、信頼性低下検知時に判定記録を残す記憶装置10を更に備えることにより、異常発生時に異常原因の解析を実行することが容易となり、また異常個所の特定をより容易に行うことができる。
 更に、記憶装置10は、信頼性低下検知時前後における規定時間の判定記録を残すことにより、より容易に異常原因の解析を実行することができ、異常個所の特定が更に容易になる。
 また、電子制御装置は自動車の自動運転システムに用いられるものであり、信頼性低下が検知された際、電子制御装置の信頼性低下を自動車の搭乗者へ表示装置15を用いて通知することにより、自動車の停止などの処置を迅速に実行することが可能となり、安全なシステムを提供することができる。
 更に、用いる第1センサ11,第2センサ12は、レーダもしくはカメラの少なくともいずれか一方を含むことで、自動運転に頻繁に用いられるセンサに対して本発明の電子制御装置を適用することができる。
 <その他> 
 なお、本発明は上記の実施例に限られず、種々の変形、応用が可能なものである。上述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。
 以上説明した各実施形態や各種の変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。
 例えば、上述の実施例においては、異常箇所判定部104は、第一比較部102および第二比較部103と独立に実装される例を示したが、第一比較部102や第二比較部103などを含む他の演算箇所の一部として実装されていても構わず、設計時の事情や使用時の事情などに応じて適宜変更可能である。
 また、上述の実施例においては、時刻Tと時刻T+1における2つの時刻における演算結果の比較により異常箇所判定を行う方式を説明したが、例えば時刻T、T+1、T+2など、複数の時刻における位置情報、予測位置情報の比較による異常判定を行うことができる。
 この場合、時刻Tにおける各比較に用いる基準値(閾値)と、時刻T+1における各比較に用いる基準値(閾値)と、時刻T+2における各比較に用いる基準値(閾値)とでは、すべて異なる基準値を用いることが望ましい。また、時刻が遠ざかるほど予測のずれが大きくなることが一般的であるため、基準値は時刻が遠ざかるほど大きくすることが望ましい。
 また、外部情報観測機器群1が2つのセンサで構成される場合について説明したが、センサは2つの場合に限られず、3つ以上のセンサの入力を受けるものとすることができる。
 例えば、センサが3つの場合は、センサフュージョン処理部4において3つのセンサ入力の時刻同期処理を行って自車周辺地図7,9や時刻T+1における周辺物体予測地図8を求め、第一比較部102において3つのセンサの時刻T+1における補正値と周辺物体予測地図8とを比較、あるいは多数決比較することで異常判定結果107を求めることができる。
 また、これ以外にも、3つのセンサのうちいずれか2つのセンサの入力を受けて上述の実施例と同様の処理を行うとともに、残り1つのセンサといずれか2つのセンサのうち一方のセンサとの2つのセンサの入力を受けて上述の実施例と同様の処理を行い、2つの異常判定結果107を用いて異常対応処理を実行することができる。
 センサが4つ以上の場合についても、入力されるすべてのセンサの入力をそのまま利用してもよいし、いずれか2つの入力を利用する系を複数設けることができ、様々な変形が可能である。
 更には、上述の実施例では、電子制御装置が自動運転システム用の場合について説明したが、本発明の電子制御装置の用途は自動運転システムに限られず、複数のセンサの入力を受けてセンサおよびECU内処理の検証を行う必要がある様々な電子制御装置に適用することができる。
1…外部情報観測機器群
2…自動運転ECU
3…下位ECU群
4…センサフュージョン処理部
5…行動予測処理部
6…自車軌道計画処理部
7…時刻Tにおける自車周辺地図
8…時刻Tに演算される時刻T+1における周辺物体予測地図
9…時刻T+1における自車周辺地図
10…記憶装置
11…第1センサ
12…第2センサ
13…地図情報
14…自車位置センサ
15…表示装置
21…マイコン
31…ブレーキ制御装置
32…エンジン制御装置
33…ステアリング制御装置
41…時刻同期処理部
42…第1センサ補正データ
43…第2センサ補正データ
71…時刻Tにおける自車位置
72…時刻Tにおける他車位置
73…時刻Tにおける自転車位置
74…時刻Tにおける歩行者位置
82…時刻Tに演算される時刻T+1における他車予測位置
83…時刻Tに演算される時刻T+1における自転車予測位置
84…時刻Tに演算される時刻T+1における歩行予測位置
101…予測保存部
102…第一比較部
103…第二比較部
104…異常箇所判定部
105…第一比較部出力
106…第二比較部出力
107…異常判定結果

Claims (13)

  1.  複数のセンサから入力された複数のセンサ情報を統合するセンサフュージョン処理部と、
     前記センサフュージョン処理部で統合された結合情報に基づき、対象物の将来の行動を予測した将来値を求める行動予測処理部と、
     前記行動予測処理部により予測された将来値と、この予測された時刻における前記センサフュージョン処理部のそれぞれのセンサの出力情報とを比較する比較部と、を備える
     ことを特徴とする電子制御装置。
  2.  請求項1に記載の電子制御装置において、
     前記比較部は、入力された前記将来値と、予測された時刻における前記センサフュージョン処理部のそれぞれのセンサの出力情報との多数決を取る
     ことを特徴とする電子制御装置。
  3.  請求項1に記載の電子制御装置において、
     前記比較部は、更に、入力された前記将来値と、予測された時刻における前記センサフュージョン処理部のそれぞれのセンサの出力情報とを比較することで、前記将来値の信頼性を判定する
     ことを特徴とする電子制御装置。
  4.  請求項1に記載の電子制御装置において
     入力された前記将来値と、予測された時刻における前記センサフュージョン処理部の出力情報とを比較する第二比較部を更に備える
     ことを特徴とする電子制御装置。
  5.  請求項4に記載の電子制御装置において、
     前記第二比較部は、入力された前記将来値と、予測された時刻における前記センサフュージョン処理部の出力情報とを比較することで、前記センサフュージョン処理部の出力情報の信頼性を判定する
     ことを特徴とする電子制御装置。
  6.  請求項4または5に記載の電子制御装置において、
     前記比較部および前記第二比較部の出力情報に基づき、前記センサ、前記センサフュージョン処理部、前記比較部、前記第二比較部のいずれで異常が生じているかを判定する異常箇所判定部を更に備える
     ことを特徴とする電子制御装置。
  7.  請求項3または5に記載の電子制御装置において、
     前記比較部または前記第二比較部は、比較の結果が所定の精度以下であると判定されたときに、信頼性が低下したと判定する
     ことを特徴とする電子制御装置。
  8.  請求項7に記載の電子制御装置において、
     前記比較部または前記第二比較部は、連続した所定回数以上、所定の精度以下であると判定されたときに信頼性が低下したと判定する
     ことを特徴とする電子制御装置。
  9.  請求項7または8に記載の電子制御装置において、
     信頼性低下が検知された際、前記電子制御装置の信頼性低下を装置外へ通知する
     ことを特徴とする電子制御装置。
  10.  請求項7または8に記載の電子制御装置において、
     信頼性低下検知時に判定記録を残す記憶装置を更に備える
     ことを特徴とする電子制御装置。
  11.  請求項10に記載の電子制御装置において、
     前記記憶装置は、信頼性低下検知時前後における規定時間の判定記録を残す
     ことを特徴とする電子制御装置。
  12.  請求項7または8に記載の電子制御装置において、
     前記電子制御装置は自動車の自動運転システムに用いられるものであり、
     信頼性低下が検知された際、前記電子制御装置の信頼性低下を前記自動車の搭乗者へ通知する
     ことを特徴とする電子制御装置。
  13.  請求項12に記載の電子制御装置において、
     用いるセンサは、レーダもしくはカメラの少なくともいずれか一方を含む
     ことを特徴とする電子制御装置。
PCT/JP2018/046037 2018-01-22 2018-12-14 電子制御装置 WO2019142563A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018005858.1T DE112018005858T5 (de) 2018-01-22 2018-12-14 Elektronische steuervorrichtung
US16/963,314 US11511763B2 (en) 2018-01-22 2018-12-14 Electronic control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-008037 2018-01-22
JP2018008037A JP6923458B2 (ja) 2018-01-22 2018-01-22 電子制御装置

Publications (1)

Publication Number Publication Date
WO2019142563A1 true WO2019142563A1 (ja) 2019-07-25

Family

ID=67300998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046037 WO2019142563A1 (ja) 2018-01-22 2018-12-14 電子制御装置

Country Status (4)

Country Link
US (1) US11511763B2 (ja)
JP (1) JP6923458B2 (ja)
DE (1) DE112018005858T5 (ja)
WO (1) WO2019142563A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113313936A (zh) * 2020-02-26 2021-08-27 动态Ad有限责任公司 用于运载工具的交通灯检测系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7044000B2 (ja) * 2018-07-20 2022-03-30 株式会社デンソー 車両制御装置および車両制御方法
US11780460B2 (en) * 2019-09-30 2023-10-10 Ghost Autonomy Inc. Determining control operations for an autonomous vehicle
DE102019216517B3 (de) * 2019-10-25 2021-03-18 Daimler Ag Verfahren zur Synchronisation zumindest zweier Sensor-Systeme
JP7288393B2 (ja) * 2019-11-28 2023-06-07 株式会社日立製作所 演算システム、演算方法
US11639184B2 (en) * 2020-02-13 2023-05-02 Wipro Limited Method and system for diagnosing autonomous vehicles
US11312393B2 (en) * 2020-05-29 2022-04-26 Robert Bosch Gmbh Artificially falsifying sensor data to initiate a safety action for an autonomous vehicle
US11433920B2 (en) 2020-05-29 2022-09-06 Robert Bosch Gmbh Map-based prediction and mitigation of performance limitations for autonomous vehicles
CN112560972B (zh) * 2020-12-21 2021-10-08 北京航空航天大学 基于毫米波雷达先验定位和视觉特征融合的目标检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002794A (ja) * 2007-06-21 2009-01-08 Mitsubishi Electric Corp 航跡統合装置及びプログラム及び航跡統合方法
JP2016212872A (ja) * 2015-05-04 2016-12-15 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハーHonda Research Institute Europe GmbH 対象物体の将来状態を計算により予測する方法の性能を向上するための方法、運転者支援システム、そのような運転者支援システムを備える車両、並びに対応するプログラムの記憶媒体及びプログラム
JP2017227580A (ja) * 2016-06-24 2017-12-28 三菱電機株式会社 物体認識装置、物体認識方法および自動運転システム
WO2018198547A1 (ja) * 2017-04-24 2018-11-01 日立オートモティブシステムズ株式会社 車両の電子制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4976964B2 (ja) 2007-09-06 2012-07-18 トヨタ自動車株式会社 車両走行制御装置
JP2011002355A (ja) * 2009-06-19 2011-01-06 Clarion Co Ltd ナビゲーション装置および車両制御装置
US20110190972A1 (en) * 2010-02-02 2011-08-04 Gm Global Technology Operations, Inc. Grid unlock
WO2017199652A1 (ja) * 2016-05-16 2017-11-23 株式会社日立製作所 診断システム及び電子制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002794A (ja) * 2007-06-21 2009-01-08 Mitsubishi Electric Corp 航跡統合装置及びプログラム及び航跡統合方法
JP2016212872A (ja) * 2015-05-04 2016-12-15 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハーHonda Research Institute Europe GmbH 対象物体の将来状態を計算により予測する方法の性能を向上するための方法、運転者支援システム、そのような運転者支援システムを備える車両、並びに対応するプログラムの記憶媒体及びプログラム
JP2017227580A (ja) * 2016-06-24 2017-12-28 三菱電機株式会社 物体認識装置、物体認識方法および自動運転システム
WO2018198547A1 (ja) * 2017-04-24 2018-11-01 日立オートモティブシステムズ株式会社 車両の電子制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113313936A (zh) * 2020-02-26 2021-08-27 动态Ad有限责任公司 用于运载工具的交通灯检测系统

Also Published As

Publication number Publication date
JP2019128639A (ja) 2019-08-01
US11511763B2 (en) 2022-11-29
US20210053580A1 (en) 2021-02-25
JP6923458B2 (ja) 2021-08-18
DE112018005858T5 (de) 2020-08-20

Similar Documents

Publication Publication Date Title
WO2019142563A1 (ja) 電子制御装置
US11352019B2 (en) Electronic control device for vehicle
US9481374B2 (en) Method for a driver assistance application
CN110035939B (zh) 车辆控制装置
WO2020066304A1 (ja) 車載電子制御システム
US11220288B2 (en) Method and device for the control of a safety-relevant process and transportation vehicle
US11117575B2 (en) Driving assistance control system of vehicle
JP7281000B2 (ja) 車両制御方法および車両制御システム
US11247702B2 (en) Vehicle control device and electronic control system
US20120035750A1 (en) Control System for Safely Operating at Least One Functional Component
US11312387B2 (en) Integrated control apparatus and method for vehicle
US20210237770A1 (en) Vehicle control apparatus
KR20200022674A (ko) 차량 고장 처리 제어 장치 및 그 방법
US11066080B2 (en) Vehicle control device and electronic control system
US11225256B2 (en) Vehicle control system and control method of vehicle
US11472406B2 (en) Vehicle control apparatus, vehicle, and vehicle control method
US11529962B2 (en) Autonomous driving assistance system and operation method therefor
US20220032966A1 (en) On-vehicle control apparatus and on-vehicle control system
JP7252271B2 (ja) 接触検知装置
JP7064305B2 (ja) 電子制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901387

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18901387

Country of ref document: EP

Kind code of ref document: A1