WO2019140969A1 - 一种基于液固化学反应沉积的3d打印机及其运行方法 - Google Patents

一种基于液固化学反应沉积的3d打印机及其运行方法 Download PDF

Info

Publication number
WO2019140969A1
WO2019140969A1 PCT/CN2018/111936 CN2018111936W WO2019140969A1 WO 2019140969 A1 WO2019140969 A1 WO 2019140969A1 CN 2018111936 W CN2018111936 W CN 2018111936W WO 2019140969 A1 WO2019140969 A1 WO 2019140969A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
powder
reaction
substance
nozzle
Prior art date
Application number
PCT/CN2018/111936
Other languages
English (en)
French (fr)
Inventor
杨永强
白玉超
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to JP2020539845A priority Critical patent/JP7042530B2/ja
Priority to US16/962,543 priority patent/US11969944B2/en
Priority to DE112018006874.9T priority patent/DE112018006874T5/de
Publication of WO2019140969A1 publication Critical patent/WO2019140969A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C20/00Chemical coating by decomposition of either solid compounds or suspensions of the coating forming compounds, without leaving reaction products of surface material in the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1039Sintering only by reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the field of additive manufacturing, in particular to a 3D printer based on liquid solidification reaction deposition and a running method thereof.
  • 3D printing is a popular name for additive manufacturing technology. It is a digital model file based on the use of powdered metal or plastic bonding materials. After connecting with a computer, the printing materials are stacked and accumulated by computer.
  • the technique of constructing an object ie, "stacking method"). It is often used in the manufacture of molds in the fields of mold manufacturing, industrial design, etc., and is gradually used for the direct manufacture of some products. There are already parts printed using this technology.
  • the technology is used in the jewelry, footwear, industrial design, construction, engineering and construction (AEC), automotive, aerospace, dental and medical industries, education, geographic information systems, civil engineering, firearms and other fields.
  • 3D printing technology includes laser selective melting technology, laser selective sintering technology, electron beam melting forming technology, fused deposition technology, digital light processing technology, three-dimensional lithography technology, etc., and has achieved remarkable results through continuous development.
  • the above 3D printing technology is realized by heating powder or wire, curing resin, cutting sheets, and the like.
  • a 3D printer based on liquid solidification reaction deposition comprising a sealing molding chamber 8, a powder cylinder 14, a molding cylinder 16, a dusting mechanism, and a three-axis linkage mechanism disposed in the sealing molding chamber 8; the three-axis linkage mechanism
  • the carrying nozzle moves in the X-axis, the Y-axis or the Z-axis direction in the sealing molding chamber 8;
  • the liquid supply device 1 is disposed outside the sealing molding chamber 8 in the liquid supply device 1 Containing a gel-like reaction material 3, the nozzle is a liquid nozzle 13, which is in communication with the liquid supply device 1 through the follower conduit 4; during operation, the liquid supply device 1 passes the gelatinous reaction material 3 therein
  • the follower conduit 4 is delivered to the liquid nozzle 13.
  • An electromagnetic valve 5 is disposed at the junction of the follower conduit 4 and the liquid supply device 1.
  • a molding base is disposed inside the molding cylinder 16, and the molding base is driven to be lifted and lowered by a screw mechanism at the bottom thereof.
  • a powder recovery cylinder 18 is disposed on the right side of the molding cylinder 16.
  • Step 1 According to the shape of the part to be processed, establish a three-dimensional digital model, and then save it as an STL format file, and slice the three-dimensional digital model using the slicing software.
  • the thickness of each slice is the same, and the slice contains the profile information of the part.
  • Step 2 According to the material properties of the parts to be processed, the gelatinous reaction substance 3 (catalyst) and the powder matrix substance are arranged, and the gelatinous reaction substance 3 should satisfy the material which can react with the powder matrix substance and produce the desired parts to be processed. Requires, then set the flow rate of the gelatinous reaction material 3 through the electromagnetic valve 5, and finally place the gelatinous reaction material 3 and the powder base material in the liquid supply tank of the liquid supply device 1 and the powder tank 14 respectively;
  • Step 3 adjusting the coordinate position of the liquid nozzle 13 by the three-axis linkage mechanism, and moving the nozzle of the liquid nozzle 13 to the molding base of the molding cylinder 16 in advance, and being separated from the molding base by a slice thickness;
  • Step 4 Starting the processing operation, the three-axis linkage mechanism according to the movement path planning of the 3D printer control system, carrying the liquid nozzle 13 selectively spraying the gel-like reaction substance 3 on the molding base according to the movement path data in the first step, the glue
  • the reaction material 3 is chemically reacted and deposited in contact with the powder matrix material to complete processing of a forming layer of the part;
  • Step 5 After the completion of the step 4, the forming abutment is lowered by a slice thickness, the powder of the powder cylinder 14 is raised by a slice height, and the powder matrix material is re-covered under the driving of the powder coating brush 12 of the powder laying mechanism.
  • the surface of the layer forms a new layer of powder matrix material, and the liquid nozzle 13 sprays the gelatinous reaction material 3 onto the new powder matrix material layer on the surface of the formed layer according to the moving path of the next layer, through the gelatinous reaction substance 3 and The chemical reaction of the new powder matrix material layer, the resulting material is deposited on the surface of the formed layer to complete the processing of another forming layer of the part;
  • Step 6 Repeat steps 4 through 5 until the entire part has been machined.
  • the gelatinous reaction material 3 is a liquid gelatinous reaction material; the powder matrix material is a powder.
  • the present invention has the following advantages and effects:
  • the invention successfully converts the chemical reaction precipitation effect into a processing method, and only needs to replace the laser system of the existing 3D printing additive manufacturing equipment (laser selection melting equipment) with the liquid supply device and the liquid nozzle connected with the pipeline thereof and the like.
  • a new type of 3D printing method is realized, and the molding purpose can be achieved by a simple structural configuration.
  • the entire molding process is spontaneously driven by the chemical reaction of the colloidal reaction substance sprayed from the liquid supply device and the powder matrix substance, and is gelatinous.
  • the reaction substance can produce a solid solution precipitated substance by a chemical reaction, and on the other hand, it is possible to bond the formed solid precipitated substance together.
  • the invention generates a solid precipitate by chemical reaction between the jelly and the powder material, according to the digitized model of the required part, according to the moving path after the treatment, controls the movement of the liquid nozzle selection area and continuously ejects the gel-like reaction substance and the matrix powder substance.
  • the chemical deposition reaction occurs, and the layer is accumulated and superimposed with the existing 3D printing additive manufacturing equipment, and after solidification, the entire part is finally formed.
  • the invention can be configured with different combinations to obtain parts of different materials such as metal, inorganic non-metal and solid organism.
  • the whole molding process of the invention is spontaneously promoted by the chemical energy of the two substances, so there is no need to introduce a heat source, a light source, etc., and the application potential and value are extremely high.
  • FIG. 1 is a schematic view showing the structure of a 3D printer deposited by a liquid solidification reaction according to the present invention.
  • FIG. 2 is a flow chart of an operation method based on liquid solidification reaction deposition of the present invention.
  • liquid supply device 1 liquid supply device 1; X guide rail 2; colloidal reaction material 3; follower conduit 4; electromagnetic valve 5; Y guide rail 6; slider 7; sealing molding chamber 8; clamping rod 9; Z guide rail 11; plastering brush 12; liquid nozzle 13; powder cylinder 14; powder 15; forming cylinder 16, molded part 17, and powder recovery cylinder 18.
  • the invention discloses a 3D printer based on liquid solidification reaction deposition, comprising a sealing molding chamber 8, a powder cylinder 14, a molding cylinder 16, a powder spreading mechanism, and a three-axis linkage mechanism disposed in the sealing molding chamber 8, and the like;
  • the three-axis linkage mechanism moves along the X-axis, the Y-axis or the Z-axis in the sealed molding chamber 8 according to the movement path planning of the 3D printer control system;
  • the present invention is different from the prior art laser selective melting apparatus in that the liquid supply device 1 is disposed outside the sealing molding chamber 8, and the liquid supply device 1 is filled with a gel-like reaction material 3, and the nozzle is a liquid nozzle 13, The liquid nozzle 13 is in communication with the liquid supply device 1 via the follower conduit 4; during operation, the liquid supply device 1 transports the gelled reaction material 3 therein to the liquid nozzle 13 through the follower conduit 4.
  • An electromagnetic valve 5 is disposed at the junction of the follower conduit 4 and the liquid supply device 1.
  • a molding base is disposed inside the molding cylinder 16, and the molding base is driven to be lifted and lowered by a screw mechanism at the bottom thereof.
  • a powder recovery cylinder 18 is disposed on the right side of the molding cylinder 16.
  • the operation method of the invention based on liquid solidification reaction deposition can be realized by the following steps:
  • Step 1 According to the shape of the part to be processed, establish a three-dimensional (CAD) digital model, and then save it as an STL format file, and slice the three-dimensional digital model using the slicing software. The thickness of each slice is the same, and the slice contains the parts. Section profile information, and the sliced file is imported into the movement path planning software to obtain the movement path data of the liquid nozzle 13;
  • CAD three-dimensional
  • Step 2 According to the material properties of the parts to be processed, the gelatinous reaction substance 3 (catalyst) and the powder matrix substance are arranged, and the gelatinous reaction substance 3 should satisfy the material which can react with the powder matrix substance and produce the desired parts to be processed. Requires, then set the flow rate of the gelatinous reaction material 3 through the electromagnetic valve 5, and finally place the gelatinous reaction material 3 and the powder base material in the liquid supply tank of the liquid supply device 1 and the powder tank 14 respectively;
  • Step 3 adjusting the coordinate position of the liquid nozzle 13 by the three-axis linkage mechanism, and moving the nozzle of the liquid nozzle 13 to the molding base of the molding cylinder 16 in advance, and being separated from the molding base by a slice thickness;
  • Step 4 Starting the processing operation, the three-axis linkage mechanism according to the movement path planning of the 3D printer control system, carrying the liquid nozzle 13 selectively spraying the gel-like reaction substance 3 on the molding base according to the movement path data in the first step, the glue
  • the reaction material 3 is chemically reacted and deposited in contact with the powder matrix material to complete processing of a forming layer of the part;
  • Step 5 After the completion of the step 4, the forming abutment is lowered by a slice thickness, the powder of the powder cylinder 14 is raised by a slice height, and the powder matrix material is re-covered under the driving of the powder coating brush 12 of the powder laying mechanism.
  • the surface of the layer forms a new layer of powder matrix material, and the liquid nozzle 13 sprays the gelatinous reaction material 3 onto the new powder matrix material layer on the surface of the formed layer according to the moving path of the next layer, through the gelatinous reaction substance 3 and The chemical reaction of the new powder matrix material layer, the resulting material is deposited on the surface of the formed layer to complete the processing of another forming layer of the part;
  • Step 6 Repeat steps 4 through 5 until the entire part has been machined.
  • the gelatinous reaction material 3 is a liquid gelatinous reaction substance such as a calcium chloride gel, a cerium chloride gel or the like; and the powder base material is a powder such as sodium carbonate powder, sodium sulfate powder or the like.
  • the thickness of the slice described in the above step 1 is set to be 0.05 to 0.3 mm in accordance with the molding precision of the part.
  • the colloidal reaction substance 3 described in the above step 2 should be subjected to a chemical precipitation reaction with the powder matrix substance to produce a desired solid material.
  • the nozzle diameter of the liquid nozzle 13 can be selected to be 0.1-1.0 mm according to the precision requirements of the molded parts; in practical applications, the liquid nozzle 13 can be provided with different nozzle diameters according to different requirements, and the nozzle can also be provided with a valve for regulating the gas flow.
  • the molding base is located in the molding chamber for fixing the first layer of the molded part; the molding base is located in the molding cylinder, and the forming base is vertically moved during the molding process, and the liquid nozzle 13 is moved in a plane.
  • the liquid nozzle 13 is raised by a slice thickness, and the specific value thereof is selected in the range of 0.05-0.3 mm according to the molding requirements.
  • the parts processed by the invention can be classified into inorganic non-metal parts, metal parts and organic parts according to the reaction products, that is, the gel-like reaction substance 3 and the powder base substance.
  • the present invention can be preferably implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种基于液固化学反应沉积的3D打印机及其运行方法;包括密封成型室(8)、粉料缸(14)、成型缸(16)、铺粉机构,以及设在密封成型室(8)内的三轴联动机构;该三轴联动机构根据3D打印机控制系统的移动路径规划,携带喷嘴在密封成型室(8)内运动;密封成型室(8)的外部设有供液装置(1),供液装置(1)内盛装有胶状反应物质(3),所述喷嘴为液体喷嘴(13),该液体喷嘴(13)通过随动导管(4)与供液装置(1)连通;通过胶状物(3)与粉末(15)物质发生化学反应产生固体沉淀的现象,根据所需零件数字化模型,按照处理后的移动路径,控制液体喷嘴(13)选区移动并不断喷出胶状反应物质(3)与基体粉末(15)物质发生化学沉积反应,经过与现有3D打印增材制造设备的层层累积叠加方式,待凝固后,最终实现整个零件的成型。

Description

一种基于液固化学反应沉积的3D打印机及其运行方法 技术领域
本发明涉及增材制造领域,尤其涉及一种基于液固化学反应沉积的3D打印机及其运行方法。
背景技术
3D打印是增材制造技术的通俗称谓,它是一种数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,与电脑连接后,通过电脑控制把打印材料逐层堆叠累积的方式来构造物体的技术(即“积层造形法”)。常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件。该技术在珠宝、鞋类、工业设计、建筑、工程和施工(AEC)、汽车,航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支以及其他领域都有所应用。
3D打印技术包括激光选区熔化技术、激光选区烧结技术、电子束熔化成型技术、熔融沉积技术、数字化光处理技术、立体平板印刷技术等等,经过不断的发展已经获得了显著的成果。以上3D打印技术均是通过加热粉料或丝材、固化树脂、切割薄片等方式来实现,
发明内容
本发明的目的在于克服上述现有技术的缺点和不足,提供一种基于液固化学反应沉积的3D打印机及其运行方法。
本发明通过下述技术方案实现:
一种基于液固化学反应沉积的3D打印机,包括密封成型室8、粉料缸14、成型缸16、铺粉机构,以及设置在密封成型室8内的三轴联动机构;该三轴联动机构根据3D打印机控制系统的移动路径规划,携带喷嘴在密封成型室8内沿X轴、Y轴或者Z轴方向运动;所述密封成型室8的外部设置有供液装置1,供液装置1内盛装有胶状反应物质3,所述喷嘴为液体喷嘴13,该液体喷嘴13通过随动导管4与供液装置1连通;作业过程中,供液装置1将其内的胶状反应物质3通过随动导管4输送至液体喷嘴13。
所述随动导管4与供液装置1的衔接处设置有电磁阀门5。
所述成型缸16内部设置有成型基台,成型基台由其底部的丝杆机构驱动其升降。
所述成型缸16的右侧设置有一粉末回收缸18。
一种基于液固化学反应沉积的运行方法,其包括如下步骤:
步骤一:根据待加工零件的形状,建立其三维数字模型,然后保存为STL格式文件,使用切片软件对三维数字模型进行切片处理,每层切片的厚度相同,切片中包含了零件的截面轮廓信息,将切片后的文件导入移动路径规划软件中,获得液体喷嘴13的移动路径数据;
步骤二:根据待加工零件的材料属性,配置胶状反应物质3(触媒)和粉末基体物质,胶状反应物质3应满足可与粉末基体物质发生化学沉淀反应并产生所需待加工零件的材料要求,然后通过电磁阀门5设定胶状反应物质3的流量,最后将胶状反应物质3和粉末基体物质分别放置于供液装置1的供液槽内和粉料缸14内;
步骤三:通过三轴联动机构调整液体喷嘴13的坐标位置,预先将液体喷嘴13的喷嘴移动至成型缸16的成型基台上,并与成型基台距离一个切片厚度;
步骤四:启动加工作业,三轴联动机构根据3D打印机控制系统的移动路径规划,携带液体喷嘴13按照步骤一中的移动路径数据,选择性的在成型基 台上喷射胶状反应物质3,胶状反应物质3与粉末基体物质接触发生化学反应沉积,完成零件的一个成型层的加工;
步骤五:步骤四完成后,成型基台下降一个切片层厚的高度,粉料缸14的粉末上升一个切片的高度,在铺粉机构的铺粉刷12驱动下,粉末基体物质重新覆盖在已成型层的表面,形成新的粉末基体物质层,液体喷嘴13按照下一层移动路径,将胶状反应物质3喷射到已成型层表面上新的粉末基体物质层上,通过胶状反应物质3与新的粉末基体物质层的化学反应,产生的物质沉积到已成型层表面,完成零件的又一个成型层的加工;
步骤六:重复步骤四至步骤五,直至整个零件加工完成。
步骤二所述胶状反应物质3为液态胶状反应物质;粉末基体物质为粉末。
本发明相对于现有技术,具有如下的优点及效果:
本发明将化学反应沉淀效应成功转化为加工方法,仅需将现有3D打印增材制造设备(激光选区熔化设备)的激光系统,替换为供液装置以及与其管路连接的液体喷嘴等相关部件,实现了一种新型的3D打印方式,通过简单的结构配置即可实现成型目的,整个成型过程在供液装置喷出的胶状反应物质与粉末基体物质的化学能驱动下自发进行,胶状反应物质一方面可以通过化学反应产生固溶沉淀物质,另一方面可以实现将生成的固体沉淀物质粘结在一起。
无需额外提供热源、光源等,除了具有现存3D打印技术的特点外,还具有结构简单、成本低廉、容易实现等特点。
本发明通过胶状物与粉末物质发生化学反应产生固体沉淀的现象,根据所需零件的数字化模型,按照处理后的移动路径,控制液体喷嘴选区移动并不断喷出胶状反应物质与基体粉末物质发生化学沉积反应,经过与现有3D打印增材制造设备的层层累积叠加方式,待凝固后,最终实现整个零件的成型。
本发明根据所需零件的材质,可以配置不同的组合,获得金属、无机非金属以及固体有机体等不同材质的零件。
本发明整个成型过程是由两种物质的化学能自发推动,因此无需引入热源、光源等,具有极高的应用潜力和价值。
附图说明
图1为本发明基于液固化学反应沉积的3D打印机结构示意图。
图2为本发明基于液固化学反应沉积的运行方法流程图。
图中:供液装置1;X导轨2;胶状反应物质3;随动导管4;电磁阀门5;Y导轨6;滑块7;密封成型室8;夹持杆9;铺粉导轨10;Z导轨11;铺粉刷12;液体喷嘴13;粉料缸14;粉末15;成型缸16;已成型零件17;粉末回收缸18。
具体实施方式
下面结合具体实施例对本发明作进一步具体详细描述。
实施例
如图1和图2所示。本发明公开了一种基于液固化学反应沉积的3D打印机,包括密封成型室8、粉料缸14、成型缸16、铺粉机构,以及设置在密封成型室8内的三轴联动机构等;该三轴联动机构根据3D打印机控制系统的移动路径规划,携带喷嘴在密封成型室8内沿X轴、Y轴或者Z轴方向运动;
本发明与现有的激光选区熔化设备不通指出在于,所述密封成型室8的外部设置有供液装置1,供液装置1内盛装有胶状反应物质3,所述喷嘴为液体喷嘴13,该液体喷嘴13通过随动导管4与供液装置1连通;作业过程中,供液装置1将其内的胶状反应物质3通过随动导管4输送至液体喷嘴13。
所述随动导管4与供液装置1的衔接处设置有电磁阀门5。
所述成型缸16内部设置有成型基台,成型基台由其底部的丝杆机构驱动其升降。
所述成型缸16的右侧设置有一粉末回收缸18。
本发明基于液固化学反应沉积的运行方法,可通过如下步骤实现:
步骤一:根据待加工零件的形状,建立其三维(CAD)数字模型,然后保存为STL格式文件,使用切片软件对三维数字模型进行切片处理,每层切片的厚度相同,切片中包含了零件的截面轮廓信息,将切片后的文件导入移动路径规划软件中,获得液体喷嘴13的移动路径数据;
步骤二:根据待加工零件的材料属性,配置胶状反应物质3(触媒)和粉末基体物质,胶状反应物质3应满足可与粉末基体物质发生化学沉淀反应并产生所需待加工零件的材料要求,然后通过电磁阀门5设定胶状反应物质3的流量,最后将胶状反应物质3和粉末基体物质分别放置于供液装置1的供液槽内和粉料缸14内;
步骤三:通过三轴联动机构调整液体喷嘴13的坐标位置,预先将液体喷嘴13的喷嘴移动至成型缸16的成型基台上,并与成型基台距离一个切片厚度;
步骤四:启动加工作业,三轴联动机构根据3D打印机控制系统的移动路径规划,携带液体喷嘴13按照步骤一中的移动路径数据,选择性的在成型基台上喷射胶状反应物质3,胶状反应物质3与粉末基体物质接触发生化学反应沉积,完成零件的一个成型层的加工;
步骤五:步骤四完成后,成型基台下降一个切片层厚的高度,粉料缸14的粉末上升一个切片的高度,在铺粉机构的铺粉刷12驱动下,粉末基体物质重新覆盖在已成型层的表面,形成新的粉末基体物质层,液体喷嘴13按照下一层移动路径,将胶状反应物质3喷射到已成型层表面上新的粉末基体物质层上,通过胶状反应物质3与新的粉末基体物质层的化学反应,产生的物质沉积到已成型层表面,完成零件的又一个成型层的加工;
步骤六:重复步骤四至步骤五,直至整个零件加工完成。
步骤二所述胶状反应物质3为液态胶状反应物质,如氯化钙凝胶、氯化 钡凝胶等;粉末基体物质为粉末,如碳酸钠粉末、硫酸钠粉末等。
上述步骤一中所述切片的厚度根据零件的成型精度求设置为0.05-0.3mm。
上述步骤二中所述的胶状反应物质3应可以与粉末基体物质发生化学沉淀反应,生产所需的固体材料。
液体喷嘴13的喷头口径根据成型零件精度要求可选取尺寸在0.1-1.0mm;实际应用中,液体喷嘴13可根据不同的要求,设置不同的喷口口径,喷头上也可设置调节气流量的阀门。
成型基台位于成型室内,用于固定成型零件的第一层实体;成型基台位于成型缸内,在成型过程中成型基台做垂直运动,液体喷嘴13做平面运动。
液体喷嘴13上升一个切片厚度,其具体数值需根据成型需要选0.05-0.3mm范围内。
本发明所加工的零件,可根据反应产物即,胶状反应物质3和粉末基体物质的不同,分为无机非金属零件、金属零件以及有机物零件。
如上所述,便可较好地实现本发明。
本发明的实施方式并不受上述实施例的限制,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

  1. 一种基于液固化学反应沉积的3D打印机,包括密封成型室(8)、粉料缸(14)、成型缸(16)、铺粉机构,以及设置在密封成型室(8)内的三轴联动机构;该三轴联动机构根据3D打印机控制系统的移动路径规划,携带喷嘴在密封成型室(8)内沿X轴、Y轴或者Z轴方向运动;其特征在于:所述密封成型室(8)的外部设置有供液装置(1),供液装置(1)内盛装有胶状反应物质(3),所述喷嘴为液体喷嘴(13),该液体喷嘴(13)通过随动导管(4)与供液装置(1)连通;作业过程中,供液装置(1)将其内的胶状反应物质(3)通过随动导管(4)输送至液体喷嘴(13)。
  2. 根据权利要求1所述基于液固化学反应沉积的3D打印机,其特征在于:所述随动导管(4)与供液装置(1)的衔接处设置有电磁阀门(5)。
  3. 根据权利要求1所述基于液固化学反应沉积的3D打印机,其特征在于:所述成型缸(16)内部设置有成型基台,成型基台由其底部的丝杆机构驱动其升降。
  4. 根据权利要求3所述基于液固化学反应沉积的3D打印机,其特征在于:所述成型缸(16)的右侧设置有一粉末回收缸(18)。
  5. 一种基于液固化学反应沉积的运行方法,其特征在于采用权利要求4所述基于液固化学反应沉积的3D打印机实现,其包括如下步骤:
    步骤一:根据待加工零件的形状,建立其三维数字模型,然后保存为STL格式文件,使用切片软件对三维数字模型进行切片处理,每层切片的厚度相同,切片中包含了零件的截面轮廓信息,将切片后的文件导入移动路径规划软件中,获得液体喷嘴(13)的移动路径数据;
    步骤二:根据待加工零件的材料属性,配置胶状反应物质(3)和粉末基体物质,胶状反应物质(3)应满足可与粉末基体物质发生化学沉淀反应并产生所需待加工零件的材料要求,然后通过电磁阀门(5)设定胶状反应物质(3)的流量,最后将胶状反应物质(3)和粉末基体物质分别放置于供液装置(1)的供液槽内和粉料缸(14)内;
    步骤三:通过三轴联动机构调整液体喷嘴(13)的坐标位置,预先将液体喷嘴(13)的喷嘴移动至成型缸(16)的成型基台上,并与成型基台距离一个切片厚度;
    步骤四:启动加工作业,三轴联动机构根据3D打印机控制系统的移动路径规划,携带液体喷嘴(13)按照步骤一中的移动路径数据,选择性的在成型基台上喷射胶状反应物质(3),胶状反应物质(3)与粉末基体物质接触发生化学反应沉积,完成零件的一个成型层的加工;
    步骤五:步骤四完成后,成型基台下降一个切片层厚的高度,粉料缸(14)的粉末上升一个切片的高度,在铺粉机构的铺粉刷12驱动下,粉末基体物质重新覆盖在已成型层的表面,形成新的粉末基体物质层,液体喷嘴(13)按照下一层移动路径,将胶状反应物质(3)喷射到已成型层表面上新的粉末基体物质层上,通过胶状反应物质(3)与新的粉末基体物质层的化学反应,产生的物质沉积到已成型层表面,完成零件的又一个成型层的加工;
    步骤六:重复步骤四至步骤五,直至整个零件加工完成。
  6. 根据权利要求5所述基于液固化学反应沉积的运行方法,其特征在于步骤二所述胶状反应物质(3)为液态胶状反应物质;粉末基体物质为粉末。
PCT/CN2018/111936 2018-01-17 2018-10-25 一种基于液固化学反应沉积的3d打印机及其运行方法 WO2019140969A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020539845A JP7042530B2 (ja) 2018-01-17 2018-10-25 3dプリンタおよびその動作方法
US16/962,543 US11969944B2 (en) 2018-01-17 2018-10-25 3D printer based on liquid-solid chemical reaction deposition and operating methods thereof
DE112018006874.9T DE112018006874T5 (de) 2018-01-17 2018-10-25 3D-Drucker basierend auf der Abscheidung einer chemischen Flüssig-Fest-Reaktion und dessen Betriebsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810042919.5A CN108165961A (zh) 2018-01-17 2018-01-17 一种基于液固化学反应沉积的3d打印机及其运行方法
CN201810042919.5 2018-01-17

Publications (1)

Publication Number Publication Date
WO2019140969A1 true WO2019140969A1 (zh) 2019-07-25

Family

ID=62515001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111936 WO2019140969A1 (zh) 2018-01-17 2018-10-25 一种基于液固化学反应沉积的3d打印机及其运行方法

Country Status (5)

Country Link
US (1) US11969944B2 (zh)
JP (1) JP7042530B2 (zh)
CN (1) CN108165961A (zh)
DE (1) DE112018006874T5 (zh)
WO (1) WO2019140969A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11969944B2 (en) 2018-01-17 2024-04-30 South China University Of Technology 3D printer based on liquid-solid chemical reaction deposition and operating methods thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110001055A (zh) * 2019-04-01 2019-07-12 共享智能铸造产业创新中心有限公司 3d打印设备及3d打印方法
JP7278420B2 (ja) * 2019-05-23 2023-05-19 ゼネラル・エレクトリック・カンパニイ アクチュエータアセンブリ
CN110142957B (zh) * 2019-06-03 2020-12-11 北京化工大学 一种基于固相析出分离工艺的聚合物3d打印成型方法
USD1002688S1 (en) * 2021-03-05 2023-10-24 Icon Technology, Inc. Print tower device
USD976973S1 (en) * 2021-03-05 2023-01-31 Icon Technology, Inc. Printing tower system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101326046A (zh) * 2005-09-20 2008-12-17 Pts软件公司 建造三维产品的设备以及建造三维产品的方法
CN104228067A (zh) * 2014-07-23 2014-12-24 中国科学院重庆绿色智能技术研究院 一种溶液固化快速成型制造方法
CN104260357A (zh) * 2014-10-17 2015-01-07 北京化工大学 醋酸纤维素制品的3d打印成形装置及方法
CN105128128A (zh) * 2015-09-16 2015-12-09 华中科技大学 一种无模材料成型方法及装置
CN105394801A (zh) * 2015-10-26 2016-03-16 暨南大学 一种食品3d打印的快速成型方法
WO2016137956A1 (en) * 2015-02-26 2016-09-01 Corning Incorporated Additive manufacturing processes for making transparent 3d parts from inorganic materials
CN108165961A (zh) * 2018-01-17 2018-06-15 华南理工大学 一种基于液固化学反应沉积的3d打印机及其运行方法
CN207828410U (zh) * 2018-01-17 2018-09-07 华南理工大学 一种基于液固化学反应沉积的3d打印机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7422713B2 (en) * 2003-10-14 2008-09-09 Hewlett-Packard Development Company, L.P. Hybrid organic-inorganic composition for solid freeform fabrication
TWI253379B (en) * 2004-04-08 2006-04-21 Wei-Hsiang Lai Method and apparatus for rapid prototyping using computer-printer aided to object realization
CN103480843A (zh) * 2013-09-18 2014-01-01 华南理工大学 一种基于三缸成型机的复合材料零件的3d打印方法
CN105082545B (zh) * 2014-05-10 2018-11-16 芜湖市智行天下工业设计有限公司 液粉同轴喷射增材制造
JP6305295B2 (ja) * 2014-09-19 2018-04-04 株式会社東芝 積層造形装置及び積層造形方法
US10414089B2 (en) * 2015-02-05 2019-09-17 Nathan Christopher Maier Cartridge feeder for additive manufacturing
EP3325191B1 (en) * 2015-07-24 2020-09-30 Hewlett-Packard Development Company, L.P. Stabilizing liquid functional material for three-dimensional (3d) printing
CN108472727A (zh) * 2015-11-17 2018-08-31 因帕瑟伯物体有限责任公司 用于生产增材制造的金属基复合材料的装置和方法及其制品
JP2017100292A (ja) * 2015-11-30 2017-06-08 株式会社リコー 立体造形装置および立体造形方法
US11541568B2 (en) * 2016-01-28 2023-01-03 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing with a detailing agent fluid and a liquid functional material
CN105543768A (zh) * 2016-03-03 2016-05-04 中研智能装备有限公司 一种轧辊等离子3d打印再制造设备及方法
US11090724B2 (en) * 2017-12-28 2021-08-17 Applied Materials, Inc. Additive manufacturing with powder dispensing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101326046A (zh) * 2005-09-20 2008-12-17 Pts软件公司 建造三维产品的设备以及建造三维产品的方法
CN104228067A (zh) * 2014-07-23 2014-12-24 中国科学院重庆绿色智能技术研究院 一种溶液固化快速成型制造方法
CN104260357A (zh) * 2014-10-17 2015-01-07 北京化工大学 醋酸纤维素制品的3d打印成形装置及方法
WO2016137956A1 (en) * 2015-02-26 2016-09-01 Corning Incorporated Additive manufacturing processes for making transparent 3d parts from inorganic materials
CN105128128A (zh) * 2015-09-16 2015-12-09 华中科技大学 一种无模材料成型方法及装置
CN105394801A (zh) * 2015-10-26 2016-03-16 暨南大学 一种食品3d打印的快速成型方法
CN108165961A (zh) * 2018-01-17 2018-06-15 华南理工大学 一种基于液固化学反应沉积的3d打印机及其运行方法
CN207828410U (zh) * 2018-01-17 2018-09-07 华南理工大学 一种基于液固化学反应沉积的3d打印机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11969944B2 (en) 2018-01-17 2024-04-30 South China University Of Technology 3D printer based on liquid-solid chemical reaction deposition and operating methods thereof

Also Published As

Publication number Publication date
US11969944B2 (en) 2024-04-30
DE112018006874T5 (de) 2020-09-24
US20200353683A1 (en) 2020-11-12
JP2021511230A (ja) 2021-05-06
CN108165961A (zh) 2018-06-15
JP7042530B2 (ja) 2022-03-28

Similar Documents

Publication Publication Date Title
WO2019140969A1 (zh) 一种基于液固化学反应沉积的3d打印机及其运行方法
US11014163B2 (en) Calibration of 3D printer via computer vision
US6405095B1 (en) Rapid prototyping and tooling system
CN103935035B (zh) 一种光源移动式面成型三维打印成型系统
CN106862570A (zh) 一种多喷头协同控制金属粉末3d成型方法
CN103407296A (zh) 一种激光熔融辅助纳米墨水实现高熔点材料3d打印的方法
WO2019140972A1 (zh) 一种基于气液化学反应沉积的3d打印装置与运行方法
CN103817767A (zh) 应用3d打印技术的陶瓷产品制作方法
CN106001568A (zh) 一种梯度材料金属模具3d打印一体化制备方法
CN108971482B (zh) 一种平面阵列式磁控增材制造方法
US20180036800A1 (en) Devices and methods for three-dimensional printing
CN109550959A (zh) 一种金属零件增材制造方法及装置
CN104388849A (zh) 一种金属基复合材料零部件的快速成形方法
CN103952698A (zh) 一种选择性激光熔化铺粉与气氛循环保护一体化装置
CN111356576A (zh) Dmlm构建平台和表面平坦化
US20180272604A1 (en) Recoater for additive layer manufacture
CN108312492A (zh) 一种基于化学反应沉积的3d打印装置与方法
JP2008291315A (ja) 三次元形状造形物の製造方法
CN103934456A (zh) 一种同步喷涂粘接的增材制造方法
CN207828410U (zh) 一种基于液固化学反应沉积的3d打印机
CN104875394A (zh) 一种3d器件打印设备及方法
CN208245814U (zh) 一种选区激光熔覆与磨削原位复合制造装置
CN104526836A (zh) 一种基于选择性激光熔化技术的固体无机物粉末3d打印方法
CN205888079U (zh) 金属工件的激光3d打印系统
CN204749277U (zh) 一种3d器件打印设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539845

Country of ref document: JP

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 18901100

Country of ref document: EP

Kind code of ref document: A1