WO2019140717A1 - 一种显示电浆模组及其制造方法 - Google Patents

一种显示电浆模组及其制造方法 Download PDF

Info

Publication number
WO2019140717A1
WO2019140717A1 PCT/CN2018/075034 CN2018075034W WO2019140717A1 WO 2019140717 A1 WO2019140717 A1 WO 2019140717A1 CN 2018075034 W CN2018075034 W CN 2018075034W WO 2019140717 A1 WO2019140717 A1 WO 2019140717A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
pixel electrode
plasma
display plasma
transparent electrode
Prior art date
Application number
PCT/CN2018/075034
Other languages
English (en)
French (fr)
Inventor
包进
张磊
陈山
Original Assignee
无锡威峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡威峰科技股份有限公司 filed Critical 无锡威峰科技股份有限公司
Priority to JP2019520969A priority Critical patent/JP7010447B2/ja
Priority to EP18865379.4A priority patent/EP3543782A4/en
Priority to US16/335,262 priority patent/US11609473B2/en
Priority to KR1020197002973A priority patent/KR102242290B1/ko
Publication of WO2019140717A1 publication Critical patent/WO2019140717A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/32Disposition of the electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/261Sealing together parts of vessels the vessel being for a flat panel display

Definitions

  • the invention relates to a display plasma module and a manufacturing method thereof, and belongs to the technical field of electronic display.
  • Electrophoresis shows the phenomenon that the charged colloidal particles migrate under the action of an electric field, and the electrophoretic particles with different photoelectric properties are driven by the electric field to realize the display of images and characters.
  • the electrophoretic display has the following characteristics: flexibility Easy to bend, light weight, thin thickness, high contrast, low energy consumption, large viewing angle, readable under sunlight, image bistable, easy to produce in large areas.
  • Electrophoretic display technology was first proposed in the 1970s. The preparation of an electrophoretic display material comprising at least one electrophoretic particle is disclosed in US Pat. No. 3,892,568. An electrophoretic display system comprising at least one electrophoretic particle and the electrophoresis fluid coated with microcapsules is disclosed in the patent JP 1086116. An electrophoretic display unit for coating an electrophoretic fluid using a microcup structure is disclosed in US Pat. No. 6,930,818. Microencapsulated electrophoretic display units are disclosed in the patents US 593 0026, US Pat. No. 5,961, 804, US Pat. No. 6,017, 584, and US Pat. No.
  • microcup and microcapsule-type electronic ink displays are based on tiny cavity structures, namely microcups and microcapsules. The effect of these two microstructures is to disperse the coated display plasma.
  • microcapsules and the microcups do not have the display function themselves, and the constituent materials are mostly transparent, poor hiding power, and the amount of the whole electrophoretic display system is large, resulting in a decrease in the hiding power of the entire display screen, a decrease in contrast, and a resolution. Decreased rate and reduced service life;
  • the object of the present invention is to provide a display plasma module and a manufacturing method thereof, which can directly replace the existing microcup structure or microcapsule with the display plasma, compared with the conventional problems in the application process of the electronic display screen.
  • the microstructured electrophoretic display has a thinner thickness, a contrast increase of more than 10%, and a response time of less than 80 milliseconds. The process is simple, the yield is improved, and the manufacturing cost is reduced.
  • the technical solution of the present invention is: a display plasma module comprising a pixel electrode and a transparent electrode located above the pixel electrode, wherein the display electrode and the transparent electrode are provided with a display plasma And a pad frame located around the display plasma.
  • the display plasma and the pixel electrode, the pad frame and the pixel electrode are adhered through a light-shielding insulating glue layer.
  • a conductive layer is disposed between the display plasma and the transparent electrode, between the spacer frame and the transparent electrode, and between the spacer frame and the conductive layer, between the display plasma edge region and the conductive layer. Display area protection layer.
  • the material of the protective layer of the display area comprises polyurethane, acrylic resin, epoxy resin or natural polymer.
  • an IC integrated circuit module and a flexible circuit board are disposed on one side of the pad frame, and the IC integrated circuit module and the flexible circuit board are adhered to the pixel electrode through a conductive strip, the IC integrated circuit module, The flexible circuit board and the conductive strip are all sealed on the pixel electrode by blue glue.
  • the display plasma contains electrophoretic particles of at least two different optical properties, and the thickness of the plasma is between 2 and 300 microns.
  • the electrophoresis liquid in the display plasma has a viscosity of 100 to 100,000 cps.
  • supporting microspheres may be added to the pad frame and the display plasma, and the material of the supporting microspheres includes resin microspheres, glass microspheres, and the support ball has a diameter of 2-60 micrometers.
  • the present invention also provides a method for manufacturing a plasma module, which comprises the following steps:
  • Step 1 Place the pixel electrode of the shading insulating glue layer in advance on the dispensing platform;
  • Step two using a dispenser to point the sealant on the pixel electrode to form a pad frame;
  • Step three using a screen printing device to screen display plasma in the pad frame;
  • Step four coating the conductive silver paste in the pad frame
  • Step 5 The transparent electrode with the conductive layer and the display area are laminated on the entire pad frame and cured;
  • Step 6 Using a glass machine to cut off part of the transparent electrode and the display area protective layer to expose a predetermined position of the IC integrated circuit module on the pixel electrode;
  • Step 7 Insert an IC integrated circuit module and a flexible circuit board on the edge of the pixel electrode by a COG process
  • Step 9 Using the blue plastic printing process, the IC integrated circuit module and the flexible circuit board are sealed in the blue plastic to complete the manufacture of the electronic ink display.
  • the supporting microspheres may be pre-coated on the light-shielding insulating glue layer on the surface of the pixel electrode.
  • the present invention Compared with the conventional electronic ink display screen, the present invention has the following advantages:
  • the display effect is affected.
  • the present invention adopts the display plasma, and the micro-capsule or the micro-cup is removed, and the display effect is better.
  • the contrast is increased by more than 10%;
  • the display plasma of the present invention can reduce the thickness of the entire electrophoretic display layer, the response time drops below 80 milliseconds, the driving voltage is reduced to between plus and minus 1.5-8V, and the operating temperature range is widened to -30-70 degrees, while reducing Production cost;
  • the display area protective layer of the present invention protects the display plasma of the display area, and functions as a light shielding and insulation;
  • the insulating layer of the light-shielding layer of the present invention is used for protecting the pixel electrode from optical irradiation, isolating the display plasma and the pixel electrode, and preventing the display plasma from damaging the pixel electrode;
  • the process of the present invention can produce a large-scale display plasma module of 100 inches or more.
  • FIG. 1 is a schematic top plan view of an embodiment of the present invention.
  • FIG. 2 is a cross-sectional structural view of a portion A of FIG. 1.
  • a display plasma module includes a pixel electrode 7 and a transparent electrode 1 located above the pixel electrode 7 , wherein Between the pixel electrode 7 and the transparent electrode 1, a display plasma 3 and a spacer frame 6 located around the display plasma 3 are provided.
  • the display plasma 3 contains a plurality of white particles and a plurality of black particles, white particles.
  • the black and white particles can be made to display a black and white display by the IC integrated circuit module 11 due to the application of the electric field.
  • the pixel electrode 7 can include a segment code, a dot matrix, etc., and the substrate of the pixel electrode 7 can be glass. Plastics, etc., plastic substrates including PI, PEN, PET, etc.;
  • the spacer frame 6 and the pixel electrode 7 are adhered by the light-shielding insulating glue layer 5;
  • the material of the light-shielding insulating glue layer 5 comprises polyurethane, acrylic resin, epoxy resin. , the natural polymer, etc., the glue may be water type, solvent type, hot melt type, photocurable type, etc., wherein the water type, preferably photocurable type, is used to protect the pixel electrode 7 from being irradiated, affecting the display screen.
  • the performance and the service life are simultaneously separated from the display plasma 3 and the pixel electrode 7, preventing the display plasma 3 from damaging the pixel electrode 7.
  • a conductive layer 2 is disposed between the display plasma 3 and the transparent electrode 1 , and between the spacer frame 6 and the transparent electrode 1 , and a display area protection layer 8 is disposed between the spacer frame 6 and the conductive layer 2 ;
  • the conductive layer 2 of the transparent electrode 1 may be ITO, silver nanowires, graphene, carbon nanotubes, etc.
  • the substrate of the transparent electrode 1 includes glass, plastic, and glass or plastic with a protective layer, etc., the plastic base
  • the material includes PI, PEN, PET, etc.
  • the protective layer is evaporated to the surface of the substrate by evaporation, the protective layer has the function of waterproofing and ultraviolet protection;
  • the material of the protective layer 8 of the display area may be polyurethane, acrylic resin, epoxy Resin, natural polymer, etc., used to protect the display plasma 3 of the display area, and function as a light-shielding and insulation.
  • An IC integrated circuit module 11 and a flexible circuit board 12 are disposed on one side of the pad frame 6 , and the IC integrated circuit module 11 and the flexible circuit board 12 are adhered to the pixel electrode 7 through a conductive strip, and the IC is integrated.
  • the circuit module 11, the flexible circuit board 12 and the conductive strip are all sealed on the pixel electrode 5 by blue glue 9.
  • the thickness of the display plasma 3 is between 2 and 300 microns, preferably between 8 and 20 microns; the viscosity of the electrophoretic liquid in the plasma 3 is from 100 to 100,000 cps, preferably the viscosity is selected at 1000- 10,000 centipoise.
  • Supporting microspheres 4 may be added to the pad frame 6 and the display plasma 3, or the supporting microballoons 4 may be omitted. According to the application of the display module, the supporting microspheres 4 are pre-coated on the pixel electrodes 7.
  • the material of the surface of the light-shielding insulating glue layer 5 comprises resin microspheres, glass microspheres, and the support ball 4 has a diameter of 2 to 60 ⁇ m, preferably 5 to 30 ⁇ m.
  • Step 1 The pixel electrode 7 of the light-shielding insulating glue layer 5 is pre-printed on the dispensing platform; the supporting microspheres 4 may be pre-coated on the light-shielding insulating glue layer 5 on the surface of the pixel electrode 7;
  • Step 2 using a dispenser to seal the sealant on the pixel electrode 7 to form a liner frame 6;
  • the frame sealant material comprises an epoxy resin, an acrylic resin, a polyurethane resin, etc.
  • the curing method of the sealant can be Light curing and heat curing, moisture curing, etc., preferably in a photo-curing manner, the sealing frame material may include supporting microspheres 4, or may not include supporting microspheres 4, and the supporting microspheres 4 may be resin microspheres.
  • the liner frame 6 has a width of 2-300 micrometers, preferably a width of 50-200 micrometers, and a pad border 6 has a height of 5-150 microns, preferably a height of 15-60 microns;
  • Step 3 Displaying the plasma 3 in the pad frame 6 by using a screen printing device; the display plasma 3 can be added to the surface of the pixel electrode 7 or the transparent electrode 1 by printing, coating, printing, dispensing, or the like.
  • Preferred filling methods include screen printing, gravure printing, slit extrusion coating, etc.;
  • Step 4 Applying a conductive silver paste 10 in the pad frame 6, the conductive silver paste 10 may also be a conductive gold bead;
  • Step 5 The transparent electrode 1 with the conductive layer 2 and the protective layer 8 of the display area are pressed onto the entire spacer frame 6 and cured. At this time, the conductive silver paste 10 and the pixel electrode 7 are electrically connected while being electrically conductive. The layer 2 is electrically connected to the transparent electrode 1;
  • Step 6 Using a glass machine to cut off part of the transparent electrode 1 and the display area protection layer 8, exposing the predetermined position where the IC integrated circuit module 11 and the flexible circuit board 12 are bound on the pixel electrode 5;
  • Step 7 The IC integrated circuit module 11 and the flexible circuit board 12 are placed on the edge of the pixel electrode 5 by the COG process;
  • Step 9 Using the blue glue printing process, the IC integrated circuit module 11 and the flexible circuit board 12 are sealed in the blue glue 9 to complete the manufacture of the electronic ink display screen.
  • the display plasma 3 of the present invention comprises at least two kinds of electrophoretic particles having different optical properties, and electrophoretic particles having different photoelectric properties are used for displaying black and white, single color, double color, multi color and true color, and simultaneously display the plasma 3
  • the fluorescent material may be included in the fluorescent material, and the fluorescent material includes an inorganic fluorescent material and an organic fluorescent material, the inorganic fluorescent material includes a rare earth fluorescent material, a metal sulfide, and the like, and the organic fluorescent material includes a small molecule fluorescent material and a high molecular fluorescent material.
  • the display plasma module of the invention does not need to use a conventional micro structure such as a microcapsule or a microcup, and directly uses the display plasma 3.
  • the basic mechanism includes a transparent electrode 1, a display plasma 3 and a pixel electrode 7, and a driving peripheral, and has production.
  • the process is simplified, the display structure is simple, the thickness of the display layer is uniformly controllable, and the display effect is good; the module structure of the invention removes the micro structure such as the traditional microcapsule and the microcup, so that the production efficiency is improved and the yield is improved, and the improvement is improved. Show performance and longevity.

Abstract

一种显示电浆模组及其制造方法,显示电浆模组包括像素电极(7)及位于像素电极上方的透明电极(1),像素电极和透明电极间设有显示电浆(3)及位于显示电浆四周的衬垫边框(6);使用显示电浆替代现有的微杯结构或微胶囊,相较于传统的微结构电泳显示屏,厚度较薄,对比度提高10%以上,响应时间降到80毫秒以下,工艺过程简单,提升了良率,降低了制作成本。

Description

一种显示电浆模组及其制造方法 技术领域
本发明涉及一种显示电浆模组及其制造方法,属于电子显示技术领域。
背景技术
电泳显示利用带电的胶体颗粒在电场作用下发生泳动的现象,通过电场驱动不同光电性能的电泳粒子来实现图像和文字的显示,与已知的显示技术相比,电泳显示具备如下特点:柔性易弯曲,重量轻,厚度薄,对比度高,能耗低,可视角度大,阳光下可读,具备图像双稳态,容易大面积生产等特点。
电泳显示技术最初在上世纪70年代被提出。在专利US3892568中公开了至少包含一种电泳粒子的电泳显示材料的制备过程。在专利JP1086116中公开了至少含有一种电泳粒子,并且电泳液被微胶囊包覆的电泳显示系统。在US6930818中公开了使用微杯结构包覆电泳液的电泳显示单元。在专利US5930026,US5961804,US6017584和US6120588中,公开了微胶囊包覆的电泳显示单元,其中显示电浆包含两种或者两种以上不同光电性能的电泳粒子。纵观之前的已有技术,微杯和微胶囊型电子墨水显示屏都是基于微小的空腔结构,即微杯和微胶囊。这两种微结构的作用在于分散包覆显示电浆。
尽管两种结构的显示屏都在实际产品得以应用,但是两种结构具有如下缺点:
1)微胶囊和微杯本身不具备显示功能,其组成材料多是透明,遮盖力差的材料,并且在整个电泳显示体系中用量较大,导致整个显示屏的遮盖力降低,对比度下降,分辨率下降,以及使用寿命降低;
2)微胶囊和微杯结构的存在无疑加厚整个电泳显示材料层的厚度,使得显示屏对比度和分辨率下降,响应速度慢,驱动电压高,刷新慢,功耗大,工作温度范围窄;
3)微胶囊和微杯结构制备过程过于复杂,造成生产制造上的困难和浪费,造成良率下降,材料浪费,制造成本高。
发明内容
本发明的目的是针对目前电子显示屏应用过程中的问题,提供一种显示电浆模组及其制造方法,可以直接使用显示电浆替代现有的微杯结构或微胶囊,相较于传统的微结构电泳显示屏,厚度较薄,对比度提高10%以上,响应时间降到80毫秒以下,工艺过程简单,提升了良率,降低了制作成本。
为实现以上技术目的,本发明的技术方案是:一种显示电浆模组,包括像素电极及位于像素电极上方的透明电极,其特征在于,所述像素电极和透明电极间设有显示电浆及位于所述显示电浆四周的衬垫边框。
进一步地,所述显示电浆与像素电极间、所述衬垫边框与像素电极间均通 过遮光绝缘胶水层黏附。
进一步地,所述显示电浆与透明电极间、所述衬垫边框与透明电极间均设有导电层,所述衬垫边框与导电层间、显示电浆边缘区域与导电层间均设有显示区保护层。
进一步地,所述显示区保护层的材质包括聚氨酯、丙烯酸树脂、环氧树脂或天然高分子。
进一步地,所述衬垫边框一侧设有IC集成电路模块和柔性电路板,所述IC集成电路模块和柔性电路板均通过导电胶条粘附在像素电极上,所述IC集成电路模块、柔性电路板和导电胶条周围均通过蓝胶固封在像素电极上。
进一步地,所述显示电浆中包含至少两种不同光性能的电泳粒子,且显示电浆的厚度在2-300微米之间
进一步地,所述显示电浆中电泳液的粘度为100-100000厘泊。
进一步地,所述衬垫边框和显示电浆中可添加支撑微球,所述支撑微球的材料包括树脂微球、玻璃微球,且支撑位球的直径为2-60微米。
为实现以上技术目的,本发明还提出一种显示电浆模组制造方法,其特征是,包括如下步骤:
步骤一.将预先印刷好遮光绝缘胶水层的像素电极放在点胶平台上;
步骤二.利用点胶机在像素电极上点封框胶,形成衬垫边框;
步骤三.利用丝网印刷设备在衬垫边框内丝印显示电浆;
步骤四.在衬垫边框内涂覆导电银浆;
步骤五.将带有导电层的透明电极及显示区保护层压合在整个衬垫边框上,并进行固化;
步骤六.利用玻璃机切割掉部分透明电极和显示区保护层,露出像素电极上IC集成电路模块绑定的预定位置;
步骤七.通过COG工艺在像素电极的边缘打上IC集成电路模块和柔性电路板;
步骤九.使用蓝胶印刷工艺,将IC集成电路模块和柔性电路板固封在蓝胶内,完成电子墨水显示屏的制造。
进一步地,在所述像素电极表面的遮光绝缘胶水层上可预先涂覆好支撑微球。
与传统电子墨水显示屏相比,本发明具有以下优点:
1)相较于传统的微结构电泳显示屏,由于传统微胶囊或微杯不参与显示,因此会影响显示效果,本发明采用显示电浆,去掉了微胶囊或微杯,显示效果更好,对比度提高10%以上;
2)本发明的显示电浆能够降低整个电泳显示层的厚度,响应时间降到80毫秒以下,驱动电压降低到正负1.5-8V之间,工作温度范围拓宽为-30-70度,同时降低了制作成本;
3)本发明的显示区保护层对显示区的显示电浆进行保护,起到遮光和绝缘的作用;
4)本发明的遮光层绝缘胶水层用于保护像素电极不受光学照射,隔离显示电浆和像素电极,防止显示电浆损害像素电极;
5)本发明工艺可以生产100寸以上大尺度的显示电浆模组。
附图说明
图1为本发明实施例的俯视结构示意图。
图2为图1中A部分的剖视结构示意图。
附图标记说明:1—透明电极;2—导电层;3—显示电浆;4—支撑微球;5—遮光绝缘胶水层;6—衬垫边框;7—像素电极;8—显示区保护层;9—蓝胶;10—导电银浆;11—IC集成电路模块;12—柔性电路板。
具体实施方式
下面结合具体附图和实施例对本发明作进一步说明。
本发明不限于以下的实施方式,在以下的说明中所参照的各图是为了能够对本发明的内容进行理解而设置的,即本发明不限于各图所举例的电子墨水显示屏结构。
如附图1和图2所示,实施例以双粒子电子墨水显示屏为例,一种显示电浆模组,包括像素电极7及位于像素电极7上方的透明电极1,其特征在于,所述像素电极7和透明电极1间设有显示电浆3及位于所述显示电浆3四周的衬垫边框6,所述显示电浆3内含有若干个白色粒子和若干个黑色粒子,白色粒子和黑色粒子由于施加电场不同,在IC集成电路模块11的驱动下可以使显示屏实现显示黑白色,所述像素电极7可以包括段码,点矩阵等,像素电极7的基材可以是玻璃,塑料等,塑料基材包括PI,PEN,PET等;
所述显示电浆3与像素电极7间、所述衬垫边框6与像素电极7间均通过遮光绝缘胶水层5黏附;所述遮光绝缘胶水层5的材质包括聚氨酯,丙烯酸树脂,环氧树脂,天然高分子等,该胶水可以是水型,溶剂型,热熔型,光固化型等,其中水型,优选为光固化型,用于保护像素电极7不受学照射,影响显示屏的性能和使用寿命,同时隔离了显示电浆3和像素电极7,防止显示电浆3损害像素电极7。
所述显示电浆3与透明电极1间、所述衬垫边框6与透明电极1间均设有导电层2,所述衬垫边框6与导电层2间设有显示区保护层8;所述透明电极1的导电层2可以是ITO,银纳米线,石墨烯,碳纳米管等,透明电极1的基材包括玻璃,塑料,以及带有防护层的玻璃或塑料等,所述塑料基材包括PI,PEN,PET等,防护层是以蒸镀方式蒸镀到基材表面,防护层具备防水和防紫外的功能;显示区保护层8的材质,可以是聚氨酯,丙烯酸树脂,环氧树脂,天然高分子等,用于对显示区的显示电浆3进行保护,起到遮光和绝缘的作用。
所述衬垫边框6一侧设有IC集成电路模块11和柔性电路板12,所述IC集成电路模块11和柔性电路板12均通过导电胶条粘附在像素电极7上,所述IC集成电路模块11、柔性电路板12和导电胶条周围均通过蓝胶9固封在像素电极5上。
所述显示电浆3的厚度在2-300微米之间,优选厚度在8-20微米之间;所述显示电浆3中电泳液的粘度为100-100000厘泊,优选粘度选择在1000-10000厘泊。
所述衬垫边框6和显示电浆3中可添加支撑微球4,也可不加支撑微球4,根据显示模组应用情况而定,所述支撑微球4是预先涂覆在像素电极7表面的遮光绝缘胶水层5上的,其材料包括树脂微球、玻璃微球,且支撑位球4的直径为2-60微米,优选大小在5-30微米。
本发明实施例中的一种显示电浆模组制造方法,其特征是,包括如下步骤:
步骤一.将预先印刷好遮光绝缘胶水层5的像素电极7放在点胶平台上;在所述像素电极7表面的遮光绝缘胶水层5上可预先涂覆好支撑微球4;
步骤二.利用点胶机在像素电极7上点封框胶,形成衬垫边框6;所述封框胶材料包括环氧树脂,丙烯酸树脂,聚氨酯树脂等,且封框胶的固化方式可以是光固化和热固化,湿气固化等,优选为光固化方式,封框胶材料中可以包含支撑微球4,也可以不包括支撑微球4,包含的支撑微球4材料可以是树脂微球,玻璃微球等,优选为树脂微球,尤其是日本积水化学的Micropearl微球系列产品;所述衬垫边框6的宽度为2-300微米,优选宽度为50-200微米,衬垫边框6的高度为5-150微米,优选高度为15-60微米;
步骤三.利用丝网印刷设备在衬垫边框6内丝印显示电浆3;所述显示电浆3可以通过印刷,涂布,打印,点胶等方式加注在像素电极7或者透明电极1表面,优选的加注方式包括丝网印刷,凹版印刷,狭缝挤压式涂布等;
步骤四.在衬垫边框6内涂覆导电银浆10,所述导电银浆10也可以是导电金珠;
步骤五.将带有导电层2的透明电极1及显示区保护层8压合在整个衬垫边框6上,并进行固化,此时,导电银浆10和像素电极7电连接,同时通过导电层2与透明电极1电连接;
步骤六.利用玻璃机切割掉部分透明电极1和显示区保护层8,露出像素电极5上IC集成电路模块11和柔性电路板12绑定的预定位置;
步骤七.通过COG工艺在像素电极5的边缘打上IC集成电路模块11和柔性电路板12;
步骤九.使用蓝胶印刷工艺,将IC集成电路模块11和柔性电路板12固封在蓝胶9内,完成电子墨水显示屏的制造。
本发明的显示电浆3中包含至少两种不同光性能的电泳粒子,光电性能不同的电泳粒子,用来实现黑白、单彩色、双彩色、多彩色和真彩色等显示,同时显示电浆3中可以包含荧光材料,荧光材料包括无机荧光材料和有机荧光材料,无机荧光材料包括稀土荧光材料,金属硫化物等,有机荧光材料包括小分子荧光材料和高分子荧光材料等。
本发明的显示电浆模组不需要使用微胶囊或微杯等传统微结构,直接使用显示电浆3,基本机构包括透明电极1、显示电浆3和像素电极7以及驱动外设,具有生产工艺简化,显示结构简单,显示层厚度均一可控,显示效果好等特点; 本发明模组结构中去除了传统的微胶囊和微杯等微结构,使得生产效率提高和良率提升,同时提高了显示性能和使用寿命。
以上对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际结构并不局限于此。总而言之如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (10)

  1. 一种显示电浆模组,包括像素电极(7)及位于像素电极(7)上方的透明电极(1),其特征在于,所述像素电极(7)和透明电极(1)间设有显示电浆(3)及位于所述显示电浆(3)四周的衬垫边框(6)。
  2. 根据权利要求1所述的一种显示电浆模组,其特征在于:所述显示电浆(3)与像素电极(7)间、所述衬垫边框(6)与像素电极(7)间均通过遮光绝缘胶水层(5)黏附。
  3. 根据权利要求1所述的一种显示电浆模组,其特征在于:所述显示电浆(3)与透明电极(1)间、所述衬垫边框(6)与透明电极(1)间均设有导电层(2),所述衬垫边框(6)与导电层(2)间、显示电浆(3)边缘区域与导电层(2)间均设有显示区保护层(8)。
  4. 根据权利要求3所述的一种显示电浆模组,其特征在于:所述显示区保护层(8)的材质包括聚氨酯、丙烯酸树脂、环氧树脂或天然高分子。
  5. 根据权利要求1所述的一种显示电浆模组,其特征在于:所述衬垫边框(6)一侧设有IC集成电路模块(11)和柔性电路板(12),所述IC集成电路模块(11)和柔性电路板(12)均通过导电胶条粘附在像素电极(7)上,所述IC集成电路模块(11)、柔性电路板(12)和导电胶条周围均通过蓝胶(9)固封在像素电极(5)上。
  6. 根据权利要求1所述的一种显示电浆模组,其特征在于:所述显示电浆(3)中包含至少两种不同光性能的电泳粒子,且显示电浆(3)的厚度在2-300微米之间。
  7. 根据权利要求1所述的一种显示电浆模组,其特征在于:所述显示电浆(3)中电泳液的粘度为100-100000厘泊。
  8. 根据权利要求1所述的一种显示电浆模组,其特征在于:所述衬垫边框(6)和显示电浆(3)中可添加支撑微球(4),所述支撑微球(4)的材料包括树脂微球、玻璃微球,且支撑位球(4)的直径为2-60微米。
  9. 一种显示电浆模组制造方法,其特征是,包括如下步骤:
    步骤一.将预先印刷好遮光绝缘胶水层(5)的像素电极(7)放在点胶平台上;
    步骤二.利用点胶机在像素电极(7)上点封框胶,形成衬垫边框(6);
    步骤三.利用丝网印刷设备在衬垫边框(6)内丝印显示电浆(3);
    步骤四.在衬垫边框(6)内涂覆导电银浆(10);
    步骤五.将带有导电层(2)的透明电极(1)及显示区保护层(8)压合在整个衬垫边框(6)上,并进行固化;
    步骤六.利用玻璃机切割掉部分透明电极(1)和显示区保护层(8),露出像素电极(5)上IC集成电路模块(11)绑定的预定位置;
    步骤七.通过COG工艺在像素电极(5)的边缘打上IC集成电路模块(11)和柔性电路板(12);
    步骤九.使用蓝胶印刷工艺,将IC集成电路模块(11)和柔性电路板(12)固封在蓝胶(9)内,完成电子墨水显示屏的制造。
  10. 根据权利要求8所述的一种显示电浆模组制造方法,其特征在于:在所述像素电极(7)表面的遮光绝缘胶水层(5)上可预先涂覆好支撑微球(4)。
PCT/CN2018/075034 2018-01-19 2018-02-02 一种显示电浆模组及其制造方法 WO2019140717A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019520969A JP7010447B2 (ja) 2018-01-19 2018-02-02 電気泳動ディスプレイモジュールの製造方法
EP18865379.4A EP3543782A4 (en) 2018-01-19 2018-02-02 DISPLAY PLASMA MODULE AND MANUFACTURING METHOD THEREFOR
US16/335,262 US11609473B2 (en) 2018-01-19 2018-02-02 Display plasma module and manufacturing method thereof
KR1020197002973A KR102242290B1 (ko) 2018-01-19 2018-02-02 디스플레이 플라즈마 모듈과 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2018100541392 2018-01-19
CN201810054139.2A CN108227333A (zh) 2018-01-19 2018-01-19 一种显示电浆模组及其制造方法

Publications (1)

Publication Number Publication Date
WO2019140717A1 true WO2019140717A1 (zh) 2019-07-25

Family

ID=62668024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075034 WO2019140717A1 (zh) 2018-01-19 2018-02-02 一种显示电浆模组及其制造方法

Country Status (7)

Country Link
US (1) US11609473B2 (zh)
EP (1) EP3543782A4 (zh)
JP (1) JP7010447B2 (zh)
KR (1) KR102242290B1 (zh)
CN (1) CN108227333A (zh)
TW (1) TW201932956A (zh)
WO (1) WO2019140717A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748472B (zh) * 2020-04-30 2021-12-01 大陸商無錫威峰科技股份有限公司 具有反射結構的顯示模組及其製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108957898A (zh) * 2018-09-25 2018-12-07 无锡威峰科技股份有限公司 一种具有反射增强结构的显示电浆模组及其制造方法
CN109188822B (zh) * 2018-11-07 2024-04-12 无锡威峰科技股份有限公司 一种封闭式显示电浆模组及其制造方法
GB202007808D0 (en) * 2020-05-26 2020-07-08 Univ Manchester Multispectral electro-optical surfaces

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892568A (en) 1969-04-23 1975-07-01 Matsushita Electric Ind Co Ltd Electrophoretic image reproduction process
US4093534A (en) * 1974-02-12 1978-06-06 Plessey Handel Und Investments Ag Working fluids for electrophoretic image display devices
JPH1086116A (ja) 1996-09-18 1998-04-07 Matsushita Electric Works Ltd 無機質セメント板、及びその製造方法
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5961804A (en) 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6017584A (en) 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6120588A (en) 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6930818B1 (en) 2000-03-03 2005-08-16 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
CN102033381A (zh) * 2009-09-30 2011-04-27 比亚迪股份有限公司 一种电子墨水显示器制作方法
CN107357109A (zh) * 2017-08-21 2017-11-17 无锡威峰科技股份有限公司 一种电子墨水显示屏及制造方法
CN207718122U (zh) * 2018-01-19 2018-08-10 无锡威峰科技股份有限公司 一种显示电浆模组

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392786B1 (en) * 1999-07-01 2002-05-21 E Ink Corporation Electrophoretic medium provided with spacers
JP2004012829A (ja) 2002-06-07 2004-01-15 Canon Inc 電気泳動表示装置
KR100700523B1 (ko) * 2005-02-11 2007-03-29 엘지전자 주식회사 충돌 대전형 전자종이 표시소자 및 그 제조 방법
JP5125345B2 (ja) * 2007-09-19 2013-01-23 日立化成工業株式会社 液晶表示装置
TWI387831B (zh) * 2009-02-24 2013-03-01 Prime View Int Co Ltd 反射式顯示裝置
JP2011237770A (ja) 2010-04-12 2011-11-24 Seiko Epson Corp 電気泳動表示装置およびその駆動方法、電子機器
JP2013167916A (ja) * 2010-06-04 2013-08-29 Sharp Corp 表示装置および表示装置の製造方法
JP5499923B2 (ja) * 2010-06-14 2014-05-21 セイコーエプソン株式会社 表示シートの製造方法
KR101184434B1 (ko) * 2010-12-15 2012-09-20 한국과학기술연구원 색변환 발광시트 및 이의 제조 방법
US20120293857A1 (en) 2011-05-20 2012-11-22 Kwon Ohnam Electrophoretic Display Apparatus and Method for Manufacturing the Same
JP2013015560A (ja) 2011-06-30 2013-01-24 Ricoh Co Ltd 書換え可能な記録媒体、書換え可能な記録媒体の製造方法、画像記録セット、及び画像記録方法
EP3378901B1 (en) * 2012-05-09 2019-12-18 Sun Chemical Corporation Surface modified carbon black pigment particles and application thereof
JP2014081407A (ja) 2012-10-12 2014-05-08 Dainippon Printing Co Ltd 反射型表示装置及び反射型表示装置の製造方法
KR102092589B1 (ko) * 2014-04-23 2020-03-24 삼성전자주식회사 초음파 프로브 및 그 제조방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892568A (en) 1969-04-23 1975-07-01 Matsushita Electric Ind Co Ltd Electrophoretic image reproduction process
US4093534A (en) * 1974-02-12 1978-06-06 Plessey Handel Und Investments Ag Working fluids for electrophoretic image display devices
US6017584A (en) 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6120588A (en) 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
JPH1086116A (ja) 1996-09-18 1998-04-07 Matsushita Electric Works Ltd 無機質セメント板、及びその製造方法
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5961804A (en) 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6930818B1 (en) 2000-03-03 2005-08-16 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
CN102033381A (zh) * 2009-09-30 2011-04-27 比亚迪股份有限公司 一种电子墨水显示器制作方法
CN107357109A (zh) * 2017-08-21 2017-11-17 无锡威峰科技股份有限公司 一种电子墨水显示屏及制造方法
CN207718122U (zh) * 2018-01-19 2018-08-10 无锡威峰科技股份有限公司 一种显示电浆模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3543782A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748472B (zh) * 2020-04-30 2021-12-01 大陸商無錫威峰科技股份有限公司 具有反射結構的顯示模組及其製造方法

Also Published As

Publication number Publication date
EP3543782A4 (en) 2020-06-10
EP3543782A1 (en) 2019-09-25
US11609473B2 (en) 2023-03-21
US20210325757A1 (en) 2021-10-21
JP2020507790A (ja) 2020-03-12
TW201932956A (zh) 2019-08-16
JP7010447B2 (ja) 2022-02-10
CN108227333A (zh) 2018-06-29
KR20190089147A (ko) 2019-07-30
KR102242290B1 (ko) 2021-04-21

Similar Documents

Publication Publication Date Title
JP6989902B2 (ja) 電子インクディスプレイおよびその製造方法
KR102467078B1 (ko) 전자종이 디스플레이 장치 및 그 제조방법
TWI691775B (zh) 一種封閉式顯示電漿模組及其製造方法
WO2019140717A1 (zh) 一种显示电浆模组及其制造方法
TWI774884B (zh) 一種雙層微結構的顯示電漿模組及其製造方法
TWI740040B (zh) 一種圖案化結構的顯示電漿模組及其製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197002973

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019520969

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018865379

Country of ref document: EP

Effective date: 20190430

NENP Non-entry into the national phase

Ref country code: DE