WO2019139031A1 - Nutrient liquid cultivation method for cultivated plant, and culture solution for nutrient liquid cultivation - Google Patents

Nutrient liquid cultivation method for cultivated plant, and culture solution for nutrient liquid cultivation Download PDF

Info

Publication number
WO2019139031A1
WO2019139031A1 PCT/JP2019/000333 JP2019000333W WO2019139031A1 WO 2019139031 A1 WO2019139031 A1 WO 2019139031A1 JP 2019000333 W JP2019000333 W JP 2019000333W WO 2019139031 A1 WO2019139031 A1 WO 2019139031A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
ppm
concentration
growing
seedling
Prior art date
Application number
PCT/JP2019/000333
Other languages
French (fr)
Japanese (ja)
Inventor
剛 竹葉
Original Assignee
京都府公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京都府公立大学法人 filed Critical 京都府公立大学法人
Priority to JP2019564716A priority Critical patent/JP7025045B2/en
Publication of WO2019139031A1 publication Critical patent/WO2019139031A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics

Definitions

  • the present invention relates to a method for hydroponic cultivation of cultivated plants such as vegetables and florets and a culture solution for hydroponic culture used for the same.
  • Magnesium is an element involved in protein synthesis (association of ribosome particles), DNA synthesis, RNA synthesis, regulation of 300 or more enzyme activities, stabilization of ATP, and is a constituent element of chlorophyll, and so on. It is known to be an essential element to support.
  • Magnesium is absorbed from the roots. Much of the magnesium absorbed from the roots is not transported directly to the shoot apical and root end meristems, but is first transferred to the leaves by transpirational flow, and then travels on a phloem flow to shoot apical meristems And supplied to the root end meristem. Since the phloem flow is from the side with high solute concentration to the side with low solute concentration, the magnesium concentration in the leaf on the supply side (source side) needs to be higher than the magnesium concentration required in the meristem (sink side) It becomes. That is, in order to maintain high cell division activity (and thus high growth rate), a difference between the magnesium concentration on the sink side and that on the source side is required.
  • Hydroponic cultivation is one of the cultivation methods of cultivation plants such as vegetables and flower buds (for example, Patent Document 1).
  • the component composition of these prescriptions are all three elements essential for the growth of cultivated plants (nitrogen, It is configured by combining appropriate fertilizer components according to the type of the cultivated plant to be targeted, centering on phosphoric acid and potassium).
  • Magnesium is one of the fertilizer components contained in the culture solution formulation next to three factors because it greatly contributes to the growth of plants.
  • the composition of the fertilizer component of each formulation is determined empirically with reference to the analysis results of cultivated plants and the absorption rate from the root regarding each fertilizer component, and it is considered as a composition by which normal growth is confirmed There is.
  • nitrogen, phosphoric acid and potassium which are essential three elements, have long been used as fertilizer components of various types of plants.
  • the conventional formulation was the best one empirically and there was no room to try any other formulation, so the conventional culture fluid formulation was not reviewed It is the fact that it continues to be used.
  • the present invention has been made in view of the above circumstances, and an object thereof is a culture solution for hydroponic culture having a component composition effective for promoting the growth of cultivated plants such as vegetables and florets, and a hydroponic culture method using the same. To provide.
  • the present invention has been found as a result of reviewing culture fluid formulations conventionally used in hydroponic cultivation of vegetables with the goal of improving the quality of vegetables and shortening the growing period (cultivation period) of vegetables. It is a thing. Although various indexes can be considered as indicators representing the quality of vegetables, the present inventors first aimed at increasing antioxidant components and decreasing residual nitrate. In addition, we aimed to shorten the growth period by 30 to 50%.
  • the magnesium ion contained in the culture solution for nutrient solution culture promotes the growth of vegetables, and furthermore, depending on the time of growth of vegetables, the presence of nitrate ion contained in the culture solution is the growth by magnesium ion It has been found that the promoting action is reduced, and the present invention has been completed.
  • the first aspect of the method for cultivating cultivated plants according to the present invention is a method for cultivating using a culture solution containing a fertilizer component necessary for growth of a plant during a period from sowing to harvesting.
  • a germination period which is a period in which the above-mentioned period is grown from seeding to germination in a seedling-growing device, a period in which the seedling-growing period is grown in the seedling-growing device until the sprouted seedlings are grown to a predetermined size.
  • a seedling grown to a predetermined size is transplanted from the above-mentioned seedling-growing device to a growing device and divided into growing periods which are periods until cultivation is carried out by the growing device, It is characterized by using a culture solution for raising seedlings wherein the concentration of magnesium ion is in the range of 24 ppm to 120 ppm and the concentration of nitrate nitrogen is in the range of 4 to 50 ppm in the growing period.
  • Cultivated plants generally refer to vegetables, florets, fruits, feed crops and the like, but in the present invention, cultivated plants for which hydroponic cultivation of vegetables, florets and the like are carried out due to their nature Point to.
  • the seedling-growing device may be any device capable of using the culture solution to germinate a cultivated plant from seeds and grow the seedling to a predetermined size.
  • the growing apparatus may be any apparatus as long as it can grow a seedling grown to a predetermined size in the seedling-growing apparatus to a harvestable state using a culture solution.
  • the nutrient solution cultivation method according to the present invention is applicable to any of nutrient broth cultivation of fixed medium cultivation, hydroponic cultivation and spray cultivation. In the present specification, "ppm" represents the concentration by weight.
  • the concentration of nitrate nitrogen contained in the culture medium for raising seedlings is lower than that in the conventional formulation.
  • the concentration of nitrate nitrogen is in the range of 60 to 240 ppm in a conventional culture solution for nutrient solution cultivation generally used for hydroponic cultivation of vegetables and florets, and in particular, for fruits and vegetables, leaf vegetables and floriculture
  • the concentration of nitrate nitrogen in the culture broth for raising seedlings is 4 to 50 ppm, which is lower than the conventional formulation.
  • the concentration of magnesium ion in the culture solution for raising seedlings is in the range of 24 ppm to 120 ppm. Since the concentration of magnesium ion in the culture solution for nutrient solution cultivation generally used in the nutrient solution cultivation of vegetables and florets is in the range of 10 to 40 ppm, it is used in the cultivation method of the cultivation plant according to the present invention
  • the value near the lower limit of the magnesium ion concentration range of the culture solution for raising seedlings to be grown is included in the concentration range of the conventional formulation.
  • the concentration of nitrate nitrogen contained in the culture solution for raising seedlings is lower than that in the conventional formulation, even if the concentration of magnesium ion is similar to that in the conventional formulation, plant growth is promoted more than in the conventional formulation. Furthermore, when the concentration of magnesium ion is higher than that of the conventional formulation, the growth promoting action is increased. It is considered that this is because cell division progressed in the meristem by reducing nitrate ion contained in the culture solution. That is, when the culture solution contains a large amount of nitrate ions, much energy is consumed for absorption and reduction of nitric acid, which is a high priority for plants, and energy required for cell division is insufficient.
  • the magnesium ion incorporated into the plant acts independently on the shoot apical and root end meristems to promote the growth and root elongation of the aerial part.
  • the optimum concentration of the magnesium ion which exerts the growth promoting action of the aerial part and the optimum concentration of the magnesium ion which exerts the action of promoting the elongation of the root are different. Therefore, it is preferable to adjust the concentration of magnesium ion in the culture solution for raising seedlings according to cultivated plants (for example, leafy vegetables) for which growth promotion in the above-ground part is desired or cultivated plants (for example, root vegetables) for which root growth is desired. Further, not only the concentration of magnesium ion but also the concentration of nitrate nitrogen may be adjusted according to the type of cultivated plants.
  • a second aspect of the method for producing a hydroponic solution of cultivated plants according to the present invention is a method of cultivating using a culture solution containing a fertilizer component necessary for plant growth during a period from sowing to harvesting.
  • a germination period which is a period in which the above-mentioned period is grown from seeding to germination in a seedling-growing device, a period in which the seedling-growing period is grown in the seedling-growing device until the sprouted seedlings are grown to a predetermined size.
  • a growth medium having a concentration of magnesium ion in the range of 48 ppm to 120 ppm and a concentration of nitrate nitrogen in the range of 150 ppm to 200 ppm is used.
  • the above-mentioned concentration range of nitrate nitrogen is a range where it is empirically considered that the growth efficiency of plants is excellent (that is, the concentration range of the conventional formulation).
  • the above-mentioned concentration range of magnesium ion is a range of concentration higher than the concentration range of the conventional prescription.
  • elements necessary for the growth of cultivated plants in the growing period are contained in the above-mentioned culture solution for raising seedlings and the culture solution for growing as required.
  • the culture solution for raising seedlings and the culture solution for growth may contain phosphorus and potassium which are three elements of fertilizer other than nitrogen.
  • ammonia nitrogen may be contained.
  • ions of metal elements other than magnesium such as calcium, boron, iron, zinc, manganese, copper, selenium, nickel, molybdenum, etc. may be contained.
  • the culture solution for raising seedlings may be used in the whole period of a raising seedling period, you may use it only in a partial period.
  • the culture broth for growth may be used for the entire growth period, but may be used for only a part of the growth period.
  • the cultivation method according to the present invention is effective when cultivating a plant that is a leafy vegetable whose leaves are edible and in which an increase in the content of magnesium contained in the leaf is desired.
  • Examples of plants for which it is desired to increase the content of magnesium contained in leaves include cruciferous vegetables including Komatsuna. Although Komatsuna originally has a high content of magnesium, the magnesium content can be further increased by using the method of hydroponic cultivation according to the present invention. In addition to Komatsuna, various leafy vegetables such as chima sanchu, cos lettuce, green batavia, etc. are cultivated using the above-mentioned cultivation method to obtain leafy vegetables having an increased amount of magnesium ions contained in the leaves. Can.
  • the third aspect of the method for producing a hydroponic solution of cultivated plants according to the present invention is a method of cultivating using a culture solution containing a fertilizer component necessary for plant growth during a period from sowing to harvesting.
  • a germination period which is a period in which the above-mentioned period is grown from seeding to germination in a seedling-growing device, a period in which the seedling-growing period is grown in the seedling-growing device until the sprouted seedlings are grown to a predetermined size.
  • Seedlings grown to a predetermined size are transplanted from the seedling raising apparatus to a growing apparatus, and the growing apparatus is a growing period which is a period during which a predetermined time before growing is harvested, the growing apparatus from the harvesting time
  • the pre-harvest period which is the period of cultivation from the predetermined time before to the harvest time
  • a culture solution for raising seedlings wherein the concentration of magnesium ions is in the range of 24 ppm to 120 ppm and the concentration of nitrate nitrogen is in the range of 4 to 50 ppm during the raising period;
  • the pre-harvest period it is characterized by using a calcium-containing nutrient solution containing no nitrogen and further irradiating visible light having a wavelength of 490 nm or less.
  • the 4th aspect of the nutrient solution cultivation method of the cultivation plant which concerns on this invention is a method of cultivating using the culture solution containing the fertilizer component required for the growth of a plant for the period from sowing to harvest,
  • a germination period which is a period in which the above-mentioned period is grown from seeding to germination in a seedling-growing device, a period in which the seedling-growing period is grown in the seedling-growing device until the sprouted seedlings are grown to a predetermined size.
  • Seedlings grown to a predetermined size are transplanted from the seedling raising apparatus to a growing apparatus, and the growing apparatus is a growing period which is a period during which a predetermined time before growing is harvested, the growing apparatus from the harvesting time When divided into the pre-harvest period which is the period of cultivation from the predetermined time before to the harvest time, In the growing period, a growth medium having a concentration of magnesium ion in the range of 48 ppm to 120 ppm and a concentration of nitrate nitrogen in the range of 150 ppm to 200 ppm is used. In the pre-harvest period, it is characterized by using a calcium-containing nutrient solution containing no nitrogen and further irradiating visible light having a wavelength of 490 nm or less.
  • the light intensity including visible light having a wavelength of 490 nm or less is 80 ⁇ mol or more per square meter.
  • the germination period, the nursery period, and the growth period in the cultivation methods of the third and fourth aspects are the same as those periods in the cultivation methods of the first and second aspects.
  • the pre-harvest period in the third and fourth aspects is about 1 day to 5 days.
  • the cultivation methods of the third and fourth aspects are different from the cultivation methods of the first and second aspects in that a pre-harvest period is provided. As described in detail below, hydroponic cultivation in the pre-harvest period is carried out to increase the content of antioxidant components contained in harvested cultivated plants. By providing the pre-harvest period, the cultivation period of the cultivation methods of the third and fourth aspects is longer than the cultivation period of the cultivation methods of the first and second aspects.
  • the cultivation method of the third aspect by using the culture solution for raising seedlings in the raising period, the growing period is shortened as compared with the case of performing nutrient solution cultivation in the raising period using the culture solution of the conventional prescription.
  • the growth period is shortened compared with the case where the nutrient solution cultivation of a growth period is performed using the culture solution of the conventional prescription by using the said culture solution for growth in a growth period.
  • the whole cultivation period is the same as the cultivation period by the conventional cultivation method Or, it can be shortened than the cultivation period by the conventional cultivation method.
  • the concentration of nitrate nitrogen is made lower than that of the conventional prescription culture solution for nutrient solution cultivation, and the concentration of magnesium ion is the same as that of the culture formulation for nutrient solution cultivation of the conventional formulation.
  • the concentration of nitrate nitrogen is set to a concentration range in which the growth efficiency of the plant is excellent, and the concentration of magnesium ions is higher than the conventional culture broth for nutrient solution cultivation.
  • a nitrogen-free, calcium-containing nutrient solution is used and the wavelength is further added.
  • Explanatory drawing of the cultivation period of the nutrient solution cultivation method which concerns on one Example of this invention. It shows the results of Experiment 1, and shows a state of growth two weeks after sowing of four types of vegetables (Chimasanthu, Komatsuna, Kos Lettuce, Green Batavia) hydroponically grown using a culture solution having an Mg concentration of 12 ppm. Photo. It shows the results of Experiment 1, and shows the state of growth two weeks after sowing of four types of vegetables (Chimasanthu, Komatsuna, Kos Lettuce, Green Batavia) hydroponically grown using a culture solution having an Mg concentration of 24 ppm. Photo.
  • a photograph showing the results of Experiment 2 showing a picture of the growth of Komatsuna grown by hydroponic culture in a nursery using a culture solution having an Mg concentration of 48 ppm and a nitrate N concentration of 3.05 to 78.2 ppm (a )-(F).
  • a photograph showing the results of Experiment 2 which is a photograph showing the state of growth of Komatsuna cultivated by hydroponic cultivation in a nursery using a culture solution having an Mg concentration of 12 ppm and a nitrate N concentration of 4.6 to 184 ppm.
  • a photograph showing the results of Experiment 2 which is a photograph showing the state of growth of Komatsuna cultivated by hydroponic cultivation with a nursery apparatus using a culture solution having an Mg concentration of 24 ppm and a nitrate N concentration of 4.6 to 184 ppm.
  • a photograph showing the results of Experiment 2 which is a photograph showing the state of growth of Komatsuna cultivated by hydroponic culture in a nursery using a culture solution having an Mg concentration of 48 ppm and a nitrate N concentration of 4.6 to 184 ppm.
  • the figure which shows the result of experiment 2 and shows the relationship between N ⁇ +> density
  • the graph which shows the result of Experiment 9 and shows the growth amount of green batavia in a growth period The figure which shows the result of Experiment 10, and shows Mg content and its increase multiple of four kinds of leafy vegetables (Chimasanthu, Komatsuna, Kos Lettuce, Green Batavia) harvested after 3 weeks of hydroponic culture with a growth apparatus .
  • the graph which shows the result of Experiment 13 and shows the content of the antioxidant component of the ORAC value of Komatsuna of an experiment area and a comparison area.
  • the graph which shows the result of Experiment 13, and shows the content of the ORAC value of a green batavia of an experiment area and a comparison area, and an antioxidant ingredient. Content of glutathione contained in vegetables obtained by ordinary cultivation methods. Shows the relationship between the amount of Ca in the culture solution and the harvested ORAC values of Komatsuna, Komatsuna purple and chimasanchu when hydroponically cultivated Komatsuna, purple and chimasanchu using the method described in Patent Document 2 Figure.
  • the cultivation method according to the present invention and the culture solution for nutrient solution cultivation will be described with reference to an example using vegetables
  • the present invention relates to cultivated plants capable of being subjected to nutrient solution cultivation of vegetables, florets etc. Applicable to the whole.
  • leafy vegetables chimasanchu, komatsuna, kos Lettuce, green batavia, bok choy, leaf lettuce, sungiku, and green wave were used as vegetables.
  • Chimasanthu, Kos Lettuce, Green Batavia, Leaf Lettuce, Sung chrysanthemum, Green Wave are the vegetables of the Asteraceae family
  • Komatsuna, Ting Gin Sai are vegetables of the Brassicaceae family.
  • Cultivation apparatus Seed raising apparatus comprises a container body in which a culture solution is stored, a plurality of seedling raising bases disposed thereon, a supply passage and a discharge passage of the culture solution connected to the container body, and a pump Supply and discharge of the culture solution to and from the container body is performed by the supply and discharge channels.
  • Each nursery base has a hole for sowing, in which one seed is stored. The lower part of the nursery base is immersed in the culture solution, and the species placed in the hole is immersed in the culture solution.
  • a period of time from sowing to germination (germination period) and a period of time until germination to a predetermined size (sourcing period) of vegetables are used.
  • This apparatus comprises a container body in which a culture solution is stored, a plastic panel disposed on the container body, a supply and discharge passage of the culture solution connected to the container body, and a pump. ing. Similar to the seedling raising apparatus, supply and discharge of the culture solution to and from the container main body are performed by the supply and discharge channels of the culture solution.
  • the panel has a number of holes, and the seedling base is disposed on each hole. The roots of plants grown on a nursery basis are immersed in the culture solution through the pores. Seedlings grown to a predetermined size by the above-described seedling-growing apparatus are transplanted to a growth apparatus, and are grown until harvest by the growth apparatus. That is, the growing apparatus is used during a growing period of vegetables (growth period) until the seedlings grown to a predetermined size are harvested.
  • Otsuka A prescription Otsuka agritechno A prescription
  • Otsuka A prescription culture solution The culture solution which changed the magnesium (Mg) concentration of Otsuka A prescription culture solution (hereinafter referred to as “Mg adjusted A prescription culture solution”), and the culture solution according to the inventor's own prescription (hereinafter “TO prescription culture solution ”) was used.
  • Mg adjusted A prescription culture solution The culture solution which changed the magnesium (Mg) concentration of Otsuka A prescription culture solution
  • TO prescription culture solution The nitrogen (N) concentration and Mg concentration of Otsuka A prescription are shown in Table 1 below. In Table 1, ppm indicates a weight ratio.
  • magnesium contained in the culture solution according to each formulation is present as ions (Mg 2+ )
  • both magnesium and magnesium ions are denoted as “Mg” for convenience.
  • magnesium chloride was added to the A prescription culture solution to change the Mg concentration.
  • a TO formulated culture solution was prepared according to the following procedure using the following drugs.
  • the Mg concentrations in the culture solution prepared using the first stock solution and the 2-1 to 2-3 stock solutions are 31.9 ppm, 47.8 ppm and 63.7 ppm, respectively.
  • the nitrate N concentration is 4.6 ppm in each case.
  • the nitrate N concentration in the TO formulated culture solution is adjusted by adding an appropriate amount of KNO 3 , or the KNO 3 concentration in the first stock solution Done by adjusting the
  • a plurality of second stock nutrient solutions were prepared by changing the ratio of Otsuka House No. 2 and MgCl 2 ⁇ 6 H 2 O, and these and one type of first stock nutrient solution with water 150 times
  • the culture broths of various Mg concentrations were prepared by dilution into.
  • the reason why the first stock solution is one type is to suppress the influence of the component composition contained in the first stock solution on the promoting effect of vegetables by magnesium, but the culture solution is prepared by a method other than the above. You may.
  • methods of preparing one type of first stock nutrient solution and second stock nutrient solution, respectively, and varying the dilution ratio in the case of diluting the first stock nutrient solution and the second stock nutrient solution with the same amount with water respectively
  • One kind of first stock nutrient solution and second stock nutrient solution are prepared, and the amount of the first stock nutrient solution and the amount of the second stock nutrient solution contained in the culture solution are made different (that is, the first stock nutrient solution)
  • the cultivation period is divided into a period from sowing to germination (germination period), a period from germination to transplantation (nursing period), and a period from transplantation to harvest (growth period)
  • the for example when Komatsuna is cultured by hydroponic culture using a culture solution having a conventional general composition, the germination period is about 3 to 5 days, the nursery period is about 9 to 10 days, and the growth period is about 4 weeks. It takes about six weeks. However, when a plurality of seeds are sown in the nursery apparatus, not all the seeds germinate at the same time.
  • the germination period is from the sowing to the 4th day, and from the 4th day to the 14th day after the sowing is the nursery period. Then, on the 14th day after sowing, the plants grown by the seedling raising apparatus were transplanted from the seedling raising apparatus to the growing apparatus, and thereafter, they were subjected to hydroponic cultivation with the growing apparatus for 3 weeks to 4 weeks. In other words, 3-4 weeks from the 14th day after seeding is the growing period.
  • nutrient solution cultivation was performed using a predetermined pre-harvest treatment nutrient solution for three days (pre-harvest period). The pre-harvest treatment solution will be described later.
  • Water was used to equalize the influence of the component composition of the culture solution on the germinated seeds in the germination period, and the TO prescription culture solution, the A prescription culture solution, or the Mg adjusted A prescription culture solution was used in the seedling breeding period and the growth period.
  • the nitrate N concentration of TO formulated culture solution is 4.6 ppm, and the nitrate N concentration of A formulated culture solution is 161 ppm. In addition, it grew on the conditions of 12 hours of light periods-12 hours of dark periods by fluorescent lamp lighting in all the cultivation periods.
  • FIGS. 2A to 2E show the growth of four types of vegetables hydroponically grown using a TO prescription culture solution with an Mg concentration of 12 ppm to 96 ppm during the nursery period, two weeks after sowing It is a photograph showing the situation. As is apparent from FIGS. 2A to 2E, both the above-ground part and the root are better in the case of using the TO formulated culture solution with an Mg concentration of 24-96 ppm than in the case of using the TO formulated culture solution with an Mg concentration of 12 ppm. Growth was good.
  • 3 (a) and 3 (b) show the fresh weight of the above-ground part and roots of Komatsuna harvested after the growing period (that is, Komatsuna harvested 3 weeks after transplanting to the growing apparatus), and used during the nursery period. It shows the relationship with the Mg concentration in the TO formulated culture solution.
  • the abscissa represents the Mg concentration (ppm)
  • the ordinate represents the fresh weight (g) three weeks after transplantation of the above-ground parts or roots.
  • Each point on the graph is the average value of 3 individuals.
  • FIG. 4 shows the relationship between the Mg concentration and the growth promoting effect of roots and above-ground parts obtained from the results of FIGS. 3 (a) and 3 (b).
  • the relative acceleration with respect to the growth amount when using the TO formulation culture solution at a Mg concentration of 12 ppm was represented by the number of “+”.
  • Mg concentration 24 ppm
  • the fresh weight increased with an increase in Mg concentration in the range of 12 to 72 ppm of Mg, and decreased with an increase in Mg concentration in the range of 72 to 120 ppm.
  • the fresh weight increased with the increase of the Mg concentration in the range of 12 to 48 ppm of Mg, and decreased with the increase of the Mg concentration in the range of 48 to 120 ppm. That is, it was found that the optimum Mg concentration showing the growth promoting effect was different between the root and the aerial part. This means that the growth promoting action of magnesium ions on the aerial parts does not extend to the roots and vice versa, in other words, magnesium ions act on the meristems of the aerial parts and on the root meristems, respectively. Growth was thought to be promoted.
  • FIG. 5 shows six culture solutions each having an Mg concentration of 48 ppm and a nitrate N concentration of 3.05 ppm, 4.6 ppm, 13.8 ppm, 23 ppm, 41.4 ppm and 78.2 ppm. It is a photograph which shows the appearance of the growth of Komatsuna after 2 weeks after seed sowing when it used. As shown in these photographs, the growth amount of the above-ground parts is large when the nitrate N concentration is 3.05 ppm, 41.4 ppm and 78.2 ppm, and when the nitrate N concentration is 4.6 to 23 ppm It was small.
  • the root elongation amount is large when the nitrate N concentration is 4.6 ppm to 23 ppm ((b) to (d) in FIG. 5), and the nitrate N concentration is 3.05 ppm, 41.4 ppm, 78 At 2 ppm ((a), (e) and (f) in FIG. 5).
  • 6A to 6C show that the Mg concentrations are 12 ppm, 24 ppm, and 48 ppm, and the nitrate N concentration is 4.6 ppm (5 g / L), 13.8 ppm (15 g / L), and 23 ppm (25 g) for each Mg concentration. / L), 41.4 ppm (45 g / L), 78.2 ppm (85 g / L), and 18 ppm (200 g / L), two weeks after seed sowing It is a photograph showing the state of the growth of Komatsuna.
  • FIG. 7 shows the relationship between nitrate N concentration and the amount of root elongation obtained from FIGS. 5 and 6C.
  • relative elongation amount to the root elongation amount at a nitrate N concentration of 184 ppm was represented by the number of “+” with reference to the root elongation amount. From FIG. 5 to FIG. 7, it was found that the growth amount in the above-ground parts and roots differs depending on the nitrate N concentration even if the Mg concentration is the same.
  • it grew on the conditions of 12 hours of light periods-12 hours of dark periods by fluorescent lamp lighting in all the cultivation periods.
  • FIG. 8 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the amount of growth of chimasanchu.
  • the experimental area grew faster than the comparison area after transplantation, and the experimental area exceeded the harvest line at about 2.5 weeks after transplantation, whereas the comparison area was transplanted in the comparison area.
  • the harvest line was crossed after 3.5 weeks. From the above results, it was found that the period from transplanting to the growth apparatus to harvesting can be shortened by increasing the Mg concentration in the culture solution during the nursery period.
  • cultivation is carried out under the condition of 12 hours of light period with fluorescent light illumination 12 hours in the whole experiment period, and in the second experiment area, LED (Raytron in all the cultivation period They were grown under the conditions of 12 hours of light period and 12 hours of dark period by lighting.
  • FIG. 9 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the amount of growth of chimasanchu.
  • the first and second experimental sections had faster growth and development after transplantation than the control section.
  • the second experimental group grew faster than the first experimental group, and in the second experimental group, the harvest line was exceeded about two weeks after transplantation, whereas the first experimental group In the ward, the harvest line was exceeded 2.5 weeks after transplantation. From the above results, it was found that the harvest time of chimasanchu can be advanced by increasing the Mg concentration in the culture solution during the nursery period.
  • FIG. 10 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the amount of growth of chimasanchu.
  • the experimental area grew faster than the comparison area after growth and development, and the experimental area exceeded the harvest line about two weeks after transplantation, while the comparison area received 3 days after transplantation. The harvest line was exceeded after 5 weeks.
  • cultivation was performed under the conditions of 12 hours of light period by 12 hours of dark period and 12 hours of dark period by fluorescent lamp illumination in all the cultivation periods.
  • FIG. 11 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the amount of growth of chimasanchu.
  • the first and second experimental sections had faster growth and development after transplantation than the control section.
  • the difference was slight, and both were 2.5 weeks after the transplantation.
  • the comparison area the harvest line was crossed around 3.6 weeks after transplantation.
  • the amount of growth after implantation into the growth apparatus also differs depending on the lighting fixture. Specifically, although the ++ Mg group in the experiments 4 to 6 used a culture solution having an Mg concentration of 48 ppm during the seedling raising period and the growth period, when a fluorescent lamp was used as a lighting fixture (experiment 6, FIG. 11) The growth amount is larger in the case where LED is used (experiment 4, FIG. 9, experiment 5 and FIG. 10) than in case of), and the case where LED manufactured by Raytron Ltd. is used (experiment 4, FIG. 9) The growth amount was larger in the case of using LED manufactured by Philips Japan (Experiment 5, FIG. 10).
  • FIG. 12 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the amount of growth of Komatsuna.
  • the elapsed time (weeks) after transplantation into the growth apparatus As apparent from FIG. 11, in the experimental area, the growth and development after transplantation was faster than in the comparative area, and in the experimental area, the harvest line was exceeded at around 2.7 weeks after transplantation, whereas in the comparative area, the transplantation was transplanted. The harvest line was crossed after 3.5 weeks. From the above results, it was found that the harvest time of Komatsuna can be advanced by using a culture solution having a high Mg concentration both in the nursery period and the growth period.
  • FIG. 13 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the amount of growth of Cos Lettuce.
  • the harvest line was exceeded at around 3.2 weeks after transplantation, while in the comparative area, the transplantation was transplanted. The harvest line was crossed four weeks later. From the above results, it was found that the harvest time of Cos Lettuce can be advanced by increasing the Mg concentration in the culture solution both in the nursery and growth periods.
  • FIG. 14 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the growth amount of Green Batavia.
  • the harvest line was exceeded at around 3.7 weeks after transplantation, whereas in the comparison area, the transplantation was performed. The harvest line was not exceeded even after 4 weeks. From the above results, it was found that the harvest time of Green Batavia can be advanced by increasing the Mg concentration in the culture solution in both the seedling raising period and the growth period.
  • FIG. 15 shows that three types of leafy vegetables are harvested three weeks after transplantation into the growth apparatus, and the amount of Mg (mg / 100 g fresh weight) contained in each leafy vegetable is ICP (Inductively) The result measured by (coupled plasma) luminescence analyzer is shown.
  • FIG. 15 shows the amount of Mg of each vegetable listed in the Japanese Food Standard Composition Table (2015), and each leaf harvested in this experiment for the amount of Mg listed in the Japanese Food Standard Composition Table It shows the ratio (increase rate) of the amount of Mg of vegetable. As can be seen from FIG. 15, an increase in the content of Mg was confirmed in all leafy vegetables.
  • FIG. 16 shows the amount of growth (raw weight (g fw / 3 W)) of Komatsuna harvested through the growing period (that is, Komatsuna harvested 3 weeks after transplanting to the growing apparatus) and the growing period
  • the graph shows the relationship between the concentration of Mg in the culture solution used and each point on the graph is the average value of three individuals, as can be seen from Fig. 16.
  • the concentration of Mg in the culture solution used during the growth period is 24 ppm. In the range of ⁇ 72 ppm, the growth amount increased with the increase of the Mg concentration, but in the range of 72 ppm ⁇ 120 ppm, the growth amount decreased with the increase of the Mg concentration.
  • the concentration of Mg in the culture solution of the conventional formulation is 10 to 40 ppm and the concentration of nitrate N is 60 to 240 ppm, at least in FIG. Growth is considered to be promoted more than conventional prescriptions. That is, it was speculated that the growth of Komatsuna can be advanced earlier than in the past by using a culture solution having an Mg concentration of 48 ppm to 120 ppm in the growing period.
  • the harvest line (the fresh weight suitable for harvest) of Komatsuna was about 80 g, and in this experiment, the Mg concentration at the 3rd week of the present week exceeded the harvest line in the range of 48 ppm to 120 ppm. From this, it can be seen that if a culture solution having an Mg concentration of 48 ppm to 120 ppm in the growth period is used, the harvest period of 4 weeks can usually be shortened to 3 weeks or shorter.
  • FIG. 17 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the amount of green wave growth.
  • the experimental group had faster growth and development after transplantation than the control group, and the experimental group exceeded the harvest line at about 2.3 weeks after transplantation, while the first experimental group was In the case of 3.7 weeks after transplantation, the harvest line was crossed. From the above results, it was found that the harvest time of green wave can be advanced by increasing the Mg concentration in the culture solution both in the seedling raising period and in the growth period.
  • pre-harvest treatment nutrient solution which is 50, 100, 120, 140 mg / L was used.
  • substantially free of nitrogen means that the content of nitrogen is 2.2 g / mL or less.
  • the quantity of nitrogen contained in pre-harvest treatment nutrient solution is as small as possible.
  • the container body and the supply path of the growing device were sufficiently washed so that the nitrogen contained in the culture solution used in the growing period did not remain in the growing device.
  • visible light with a wavelength of 490 nm or less was continuously illuminated for 24 hours using a blue LED.
  • the photon flux density at this time was 200 ⁇ mol / m 2 / sec.
  • the fresh weight of the above-ground parts did not differ greatly between the experimental area and the comparison area for either Komatsuna or Green Batavia.
  • the ORAC value and the amount of the antioxidant component were larger in the experimental section than in the comparative section.
  • FIGS. 18 and 19 show the amounts of antioxidant components and ORAC values contained in Komatsuna and Green Batavia in the comparison section.
  • Komatsuna and Green Batavia in the experimental section both contain more antioxidant components than the comparative section, and among the antioxidant components, the amount of glutathione (reduced type) is particularly high.
  • the amount of glutathione (reduced type) is particularly high.
  • 18 and 19 show an example using a pre-harvest solution with a calcium content of 50 mg / L, but if the calcium content is in the range of 50 to 120 mg / L, almost the same Results were obtained.
  • FIG. 20 shows the content of glutathione contained in vegetables obtained by a common cultivation method. From the numerical values shown in FIG. 20, it is clear that the content of glutathione contained in Komatsuna and Green Batavia obtained in this experiment is much higher than that of normal vegetables.
  • Glutathione (reduced form) is known to have the function of reducing and eliminating peroxides and reactive oxygen species, having a detoxifying effect, etc., and is used in medicines, cosmetics and supplements having the following effects.
  • A Pharmaceutical products: Improvement of liver function in chronic liver disease Treatment of acute eczema, chronic eczema, dermatitis, inflammation suppressing keratitis such as urticaria, senile cataract, treatment of corneal damage Parkinson's disease treatment (b) suppression of formation of melanin pigment (cosmetic component) Whitening effect) Vitamin C rejuvenation anti-aging (c) supplements Anti-harvest effect with alcohol that enhances liver detoxification
  • Komatsuna and Green Batavia obtained in Experiment 13 contain a large amount of glutathione, these vegetables are useful as materials for the above-mentioned pharmaceuticals, cosmetics, and supplements, and these vegetables themselves are useful as functional vegetables. Become. Furthermore, from the result of Experiment 10, Komatsuna and Green Batavia obtained in Experiment 13 are expected to contain more Mg than conventional vegetables. From this, Komatsuna and Green Batavia obtained in Experiment 13 can be excellent functional vegetables containing a large amount of both glutathione and Mg.
  • Fig. 21 After cultivating seedlings (from 4 to 14 days after sowing) and a growing period (4 weeks after transplantation) using a culture solution according to a general conventional formulation, Komatsuna, Komatsuna purple, Chimasanchu, The relationship between the amount of calcium (the amount of Ca) and the antioxidant capacity (ORAC (Oxygen Radical Absorbance Capacity) value) when the pre-harvest treatment is performed for 3 days is shown (see Patent Document 2).
  • the culture solution used in the pre-harvest treatment is prepared by dissolving calcium sulfate in water so that the amount of Ca is 0 to 140 mg / L and the amount of nitrogen is 2.0 mg / L.
  • the present invention is not limited to the above-described embodiments, and appropriate modifications are possible.
  • chimasanchu, komatsuna, kos Lettuce, green batavia, bok choy, leaf lettuce, shung chrysanthemum were used, but the present invention can be applied to leafy vegetables other than these.
  • root vegetables such as radish, carrot, turnip, burdock, lotus root, ginger, potato, taro, sweet potato, sweet potato, yam, onion, cucumber, pumpkin, watermelon, melon, tomato, eggplant, pepper, okra
  • the present invention is applicable to all kinds of vegetables such as green beans such as green beans, fava beans, peas, green beans and sweet peppers, and also applicable to, for example, flower buds other than vegetables.
  • the present invention is applicable to all cultivated plants capable of hydroponic culture.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydroponics (AREA)
  • Cultivation Of Plants (AREA)

Abstract

The present invention is a method for cultivating during the period from seeding to harvest using a culture liquid that includes the fertilizer components necessary for the maturation of a plant body. The method is characterized in that, when the abovementioned period is divided into a germination period in which a seedling-raising device is used for cultivation from seeding to germination, a seedling-raising period in which the seedling-raising device is used for cultivation until a seedling that has germinated at the seedling-raising device has grown to a prescribed size, and a maturation period in which the seedling that has been grown to the prescribed size is transplanted from the seedling-raising device to a maturation device and cultivated until being harvested from the maturation device, a seedling-raising culture solution that has a magnesium ion concentration of 24–120 ppm and a nitrate nitrogen concentration of 4–50 ppm is used during the seedling-raising period, or a maturation culture solution that has a magnesium ion concentration of 48–120 ppm and a nitrate nitrogen concentration of 150–200 ppm is used during the maturation period.

Description

栽培植物の養液栽培方法及び養液栽培用培養液Hydroponic culture method of cultivated plants and culture solution for hydroponic culture
 本発明は、野菜や花卉等の栽培植物の養液栽培方法及びこれに用いられる養液栽培用培養液に関する。 TECHNICAL FIELD The present invention relates to a method for hydroponic cultivation of cultivated plants such as vegetables and florets and a culture solution for hydroponic culture used for the same.
 マグネシウムは、タンパク質合成(リボソーム粒子の会合)、DNA合成、RNA合成、300以上の酵素活性の調節、ATPの安定化に関与する元素であり、また、クロロフィルの構成元素である等、生命活動を支える必須の元素であることが知られている。 Magnesium is an element involved in protein synthesis (association of ribosome particles), DNA synthesis, RNA synthesis, regulation of 300 or more enzyme activities, stabilization of ATP, and is a constituent element of chlorophyll, and so on. It is known to be an essential element to support.
 植物では、細胞が分裂する部位が茎頂分裂組織と根端分裂組織に局在しているため、高い細胞分裂の活性を維持するためには、それらの組織にマグネシウムが比較的高濃度で供給される必要がある。特に、細胞分裂に直接関わるDNAポリメラーゼは、その触媒活性に比較的高濃度のマグネシウムイオンを必要とすることが判明している(参考として、Taq DNAポリメラーゼの触媒活性に必要なマグネシウムの至適濃度は 4mM(=96ppm))。従って、茎頂分裂組織および根端分裂組織へのマグネシウムの供給が不十分であれば、細胞の分裂速度は遅くなり、ひいては植物個体としての成長速度が小さくなる。逆に、上記組織にマグネシウムが十分に供給されれば、植物個体の成長速度は大きくなる。 In plants, the site where cells divide is localized to the shoot apical and root end meristems, so in order to maintain high cell division activity, relatively high concentrations of magnesium are supplied to those tissues It needs to be done. In particular, DNA polymerase directly involved in cell division has been found to require a relatively high concentration of magnesium ion for its catalytic activity (for reference, the optimum concentration of magnesium required for the catalytic activity of Taq DNA polymerase) Is 4 mM (= 96 ppm)). Therefore, if the supply of magnesium to the shoot apical and root end meristems is insufficient, the cell division rate will be slow and thus the growth rate as a plant individual will be reduced. Conversely, if magnesium is sufficiently supplied to the above-mentioned tissue, the growth rate of the individual plant will be increased.
 マグネシウムは根から吸収される。根から吸収されたマグネシウムの多くは、茎頂分裂組織および根端分裂組織に直接運搬されるのではなく、まずは、蒸散流によって葉に移行し、その後、篩管流に乗って茎頂分裂組織および根端分裂組織に供給される。篩管流は溶質濃度の高い側から低い側へと流れるため、分裂組織(シンク側)で必要とされるマグネシウム濃度よりも、供給側である葉(ソース側)の方が高いマグネシウム濃度が必要となる。つまり、高い細胞分裂活性(ひいては速い成長速度)を維持するためには、シンク側とソース側のマグネシウム濃度の落差が必要となる。 Magnesium is absorbed from the roots. Much of the magnesium absorbed from the roots is not transported directly to the shoot apical and root end meristems, but is first transferred to the leaves by transpirational flow, and then travels on a phloem flow to shoot apical meristems And supplied to the root end meristem. Since the phloem flow is from the side with high solute concentration to the side with low solute concentration, the magnesium concentration in the leaf on the supply side (source side) needs to be higher than the magnesium concentration required in the meristem (sink side) It becomes. That is, in order to maintain high cell division activity (and thus high growth rate), a difference between the magnesium concentration on the sink side and that on the source side is required.
 野菜や花卉等の栽培植物の栽培方法の一つに養液栽培がある(例えば特許文献1)。養液栽培で用いられる培養液処方には、園芸試験場処方、山崎処方、大塚ハウスA処方などがあるが、これらの処方の成分組成はいずれも、栽培植物の生育に必須の三要素(窒素、リン酸、カリウム)を中心に、対象となる栽培植物の種類に応じた適宜の肥料成分を組み合わせて構成される。マグネシウムは、植物の成長に大きく寄与するという理由から、三要素に次いで培養液処方に多く含まれる肥料成分の一つである。 Hydroponic cultivation is one of the cultivation methods of cultivation plants such as vegetables and flower buds (for example, Patent Document 1). Although there are horticultural test place prescription, Yamazaki prescription, Otsuka House A prescription etc. in the culture solution prescription used in hydroponic culture, the component composition of these prescriptions are all three elements essential for the growth of cultivated plants (nitrogen, It is configured by combining appropriate fertilizer components according to the type of the cultivated plant to be targeted, centering on phosphoric acid and potassium). Magnesium is one of the fertilizer components contained in the culture solution formulation next to three factors because it greatly contributes to the growth of plants.
 各処方の肥料成分の組成は、各肥料成分に関する栽培植物の分析結果や根からの吸収速度などを参考に、経験的に定められたものであり、通常の発育が確認される組成とされている。特に、必須の三要素である窒素、リン酸、カリウムは、古くから様々な種類の植物の肥料成分として用いられている。養液栽培の事業者の間には、従来の処方は経験的にベストな処方であり、それ以外の処方を試す余地はないという強い思い込みがあったため、従来の培養液処方が見直されることなく、使用され続けているのが実状である。 The composition of the fertilizer component of each formulation is determined empirically with reference to the analysis results of cultivated plants and the absorption rate from the root regarding each fertilizer component, and it is considered as a composition by which normal growth is confirmed There is. In particular, nitrogen, phosphoric acid and potassium, which are essential three elements, have long been used as fertilizer components of various types of plants. Among the hydroponics operators, there was a strong belief that the conventional formulation was the best one empirically and there was no room to try any other formulation, so the conventional culture fluid formulation was not reviewed It is the fact that it continues to be used.
特開2003-174827号公報JP 2003-174827 特開2017-221177号公報JP, 2017-221177, A
 本発明は上記事情に鑑みてなされたものであり、その目的は、野菜や花卉等の栽培植物の成長の促進に有効な成分組成の養液栽培用培養液及びそれを用いた養液栽培方法を提供することである。 The present invention has been made in view of the above circumstances, and an object thereof is a culture solution for hydroponic culture having a component composition effective for promoting the growth of cultivated plants such as vegetables and florets, and a hydroponic culture method using the same. To provide.
 本発明は、野菜類の品質の向上、及び野菜類の生育期間(栽培期間)の短縮を目標に、野菜類の養液栽培において従来から用いられてきた培養液処方を見直した結果、見い出したものである。野菜類の品質を表す指標には様々なものが考えられるが、本発明者は、まずは、抗酸化成分増加、残留硝酸塩の低下を目標とした。また、生育期間を30~50%短縮することを目標とした。その結果、養液栽培用培養液に含まれるマグネシウムイオンが野菜類の成長を促進すること、さらには、野菜類の成長の時期によっては、培養液に含まれる硝酸イオンの存在がマグネシウムイオンによる成長促進作用を低下させることを見い出し、本発明を完成するに至った。 The present invention has been found as a result of reviewing culture fluid formulations conventionally used in hydroponic cultivation of vegetables with the goal of improving the quality of vegetables and shortening the growing period (cultivation period) of vegetables. It is a thing. Although various indexes can be considered as indicators representing the quality of vegetables, the present inventors first aimed at increasing antioxidant components and decreasing residual nitrate. In addition, we aimed to shorten the growth period by 30 to 50%. As a result, the magnesium ion contained in the culture solution for nutrient solution culture promotes the growth of vegetables, and furthermore, depending on the time of growth of vegetables, the presence of nitrate ion contained in the culture solution is the growth by magnesium ion It has been found that the promoting action is reduced, and the present invention has been completed.
 すなわち、本発明に係る栽培植物の栽培方法の第1態様は、播種から収穫までの期間、植物体の生育に必要な肥料成分を含む培養液を用いて栽培する方法であって、
 前記期間を、育苗装置にて播種から発芽まで栽培する期間である発芽期間、前記育苗装置にて発芽した苗を所定の大きさに成長するまで該育苗装置で栽培する期間である育苗期間、前記所定の大きさに成長した苗を前記育苗装置から生育装置に移植し、該生育装置にて収穫するまで栽培する期間である生育期間に分けたとき、
 前記育苗期間において、マグネシウムイオンの濃度が24ppm~120ppmの範囲にあり、硝酸性窒素の濃度が4~50ppmにある育苗用培養液を用いることを特徴とする。
That is, the first aspect of the method for cultivating cultivated plants according to the present invention is a method for cultivating using a culture solution containing a fertilizer component necessary for growth of a plant during a period from sowing to harvesting.
A germination period, which is a period in which the above-mentioned period is grown from seeding to germination in a seedling-growing device, a period in which the seedling-growing period is grown in the seedling-growing device until the sprouted seedlings are grown to a predetermined size. When a seedling grown to a predetermined size is transplanted from the above-mentioned seedling-growing device to a growing device and divided into growing periods which are periods until cultivation is carried out by the growing device,
It is characterized by using a culture solution for raising seedlings wherein the concentration of magnesium ion is in the range of 24 ppm to 120 ppm and the concentration of nitrate nitrogen is in the range of 4 to 50 ppm in the growing period.
 栽培植物とは、一般的には野菜類、花卉類、果樹類、飼料作物等をいうが、本発明においては、その性質上、野菜類、花卉類等の養液栽培が行われる栽培植物を指す。育苗装置は、培養液を用いて、栽培植物を種子から発芽させ、所定の大きさの苗まで成長させることができる装置であればどのようなものでも良い。また、生育装置は、育苗装置において所定の大きさまで成長した苗を、培養液を用いて、収穫可能な状態まで生育させることができる装置であればどのようなものでも良い。さらに、本発明に係る養液栽培方法は、固定培地耕、水耕、噴霧耕のいずれの養液栽培にも適用可能である。なお、本明細書では、「ppm」は重量比の濃度を表す。 Cultivated plants generally refer to vegetables, florets, fruits, feed crops and the like, but in the present invention, cultivated plants for which hydroponic cultivation of vegetables, florets and the like are carried out due to their nature Point to. The seedling-growing device may be any device capable of using the culture solution to germinate a cultivated plant from seeds and grow the seedling to a predetermined size. Further, the growing apparatus may be any apparatus as long as it can grow a seedling grown to a predetermined size in the seedling-growing apparatus to a harvestable state using a culture solution. Furthermore, the nutrient solution cultivation method according to the present invention is applicable to any of nutrient broth cultivation of fixed medium cultivation, hydroponic cultivation and spray cultivation. In the present specification, "ppm" represents the concentration by weight.
 本発明において注目すべきは、育苗用培養液に含まれる硝酸性窒素の濃度を従来処方よりも低くしたことである。野菜類や花卉類の養液栽培に用いられる一般的な従来処方の養液栽培用培養液における、硝酸性窒素の濃度は60~240ppmの範囲にあり、特に、果菜類、葉菜類、花卉類の養液栽培に広く使用されている大塚A処方(OATアグリオ株式会社)による培養液(EC=1.8)の硝酸性窒素の濃度は161ppmであるところ、本発明に係る栽培植物の栽培方法では、育苗用培養液の硝酸性窒素の濃度は4~50ppmと従来処方よりも低濃度の範囲にある。また、前記育苗用培養液のマグネシウムイオンの濃度は24ppm~120ppmの範囲にある。野菜類や花卉類の養液栽培に用いられる一般的な従来処方の養液栽培用培養液におけるマグネシウムイオンの濃度は10~40ppmの範囲にあるから、本発明に係る栽培植物の栽培方法で用いられる育苗用培養液のマグネシウムイオンの濃度範囲の下限付近の値は、従来処方の濃度範囲に含まれる。 It should be noted in the present invention that the concentration of nitrate nitrogen contained in the culture medium for raising seedlings is lower than that in the conventional formulation. The concentration of nitrate nitrogen is in the range of 60 to 240 ppm in a conventional culture solution for nutrient solution cultivation generally used for hydroponic cultivation of vegetables and florets, and in particular, for fruits and vegetables, leaf vegetables and floriculture In the cultivation method of the cultivated plant according to the present invention, the concentration of nitrate nitrogen in the culture solution (EC = 1.8) according to Otsuka A prescription (OAT AGRIO CO., LTD.) Widely used for hydroponics is 161 ppm. The concentration of nitrate nitrogen in the culture broth for raising seedlings is 4 to 50 ppm, which is lower than the conventional formulation. In addition, the concentration of magnesium ion in the culture solution for raising seedlings is in the range of 24 ppm to 120 ppm. Since the concentration of magnesium ion in the culture solution for nutrient solution cultivation generally used in the nutrient solution cultivation of vegetables and florets is in the range of 10 to 40 ppm, it is used in the cultivation method of the cultivation plant according to the present invention The value near the lower limit of the magnesium ion concentration range of the culture solution for raising seedlings to be grown is included in the concentration range of the conventional formulation.
 しかしながら、本発明では、育苗用培養液に含まれる硝酸性窒素の濃度が従来処方よりも低いため、マグネシウムイオンの濃度が従来処方と同程度であっても、従来処方よりも植物の成長を促進することができ、さらに、マグネシウムイオンの濃度が従来処方よりも高濃度であるときには、成長促進作用が増大する。
 これは、培養液中に含まれる硝酸イオンを少なくすることで、分裂組織において細胞分裂が進んだことが理由であると考えられる。つまり、培養液中に硝酸イオンが多く含まれると、植物にとって優先順位の高い硝酸の吸収・還元に多くのエネルギーが消費され、細胞分裂に必要なエネルギーが不足する結果、分裂組織における細胞分裂が抑えられるため、植物に取り込まれたマグネシウムイオンによる細胞分裂の促進作用が発揮されない。しかし、分裂組織において細胞分裂が進むと、植物に取り込まれたマグネシウムイオンによって細胞分裂が速められ、その結果、成長が促進される。
However, in the present invention, since the concentration of nitrate nitrogen contained in the culture solution for raising seedlings is lower than that in the conventional formulation, even if the concentration of magnesium ion is similar to that in the conventional formulation, plant growth is promoted more than in the conventional formulation. Furthermore, when the concentration of magnesium ion is higher than that of the conventional formulation, the growth promoting action is increased.
It is considered that this is because cell division progressed in the meristem by reducing nitrate ion contained in the culture solution. That is, when the culture solution contains a large amount of nitrate ions, much energy is consumed for absorption and reduction of nitric acid, which is a high priority for plants, and energy required for cell division is insufficient. Because it is suppressed, the action of promoting cell division by magnesium ions taken into plants is not exerted. However, when cell division progresses in the meristem, cell division is accelerated by magnesium ions incorporated into plants, and as a result, growth is promoted.
 なお、植物に取り込まれたマグネシウムイオンは茎頂分裂組織及び根端分裂組織に独立的に作用して地上部の成長及び根の伸長を促進する。このとき、地上部の成長促進作用を発揮するマグネシウムイオンの至適濃度と根の伸長促進作用を発揮するマグネシウムイオンの至適濃度が異なる。
 従って、地上部の成長促進が望まれる栽培植物(例えば葉物野菜)、或いは根の成長が望まれる栽培植物(例えば根菜類)によって、前記育苗用培養液のマグネシウムイオンの濃度を調整すると良い。また、マグネシウムイオンの濃度だけでなく、硝酸性窒素の濃度についても、栽培植物の種類によって調整すると良い。
The magnesium ion incorporated into the plant acts independently on the shoot apical and root end meristems to promote the growth and root elongation of the aerial part. At this time, the optimum concentration of the magnesium ion which exerts the growth promoting action of the aerial part and the optimum concentration of the magnesium ion which exerts the action of promoting the elongation of the root are different.
Therefore, it is preferable to adjust the concentration of magnesium ion in the culture solution for raising seedlings according to cultivated plants (for example, leafy vegetables) for which growth promotion in the above-ground part is desired or cultivated plants (for example, root vegetables) for which root growth is desired. Further, not only the concentration of magnesium ion but also the concentration of nitrate nitrogen may be adjusted according to the type of cultivated plants.
 ところで、植物が大きく成長すると光合成が活発になるため、硝酸の吸収・還元にエネルギーが消費されても、細胞分裂に必要なエネルギーが不足することがない。しかも、窒素は、植物の葉の成長に必要な肥料成分であることから、生育期間で用いる培養液には十分な量の窒素が含まれることが望ましい。 By the way, since photosynthesis becomes active when plants grow large, energy required for cell division does not run short even if energy is consumed for absorption and reduction of nitric acid. In addition, since nitrogen is a fertilizer component necessary for the growth of plant leaves, it is desirable that the culture solution used in the growth period contains a sufficient amount of nitrogen.
 そこで、本発明に係る栽培植物の養液栽培方法の第2態様は、播種から収穫までの期間、植物の生育に必要な肥料成分を含む培養液を用いて栽培する方法であって、
 前記期間を、育苗装置にて播種から発芽まで栽培する期間である発芽期間、前記育苗装置にて発芽した苗を所定の大きさに成長するまで該育苗装置で栽培する期間である育苗期間、前記所定の大きさに成長した苗を前記育苗装置から生育装置に移植し、該生育装置にて収穫するまで栽培する期間である生育期間に分けたとき、
 前記生育期間において、マグネシウムイオンの濃度が48ppm~120ppmの範囲にあり、硝酸性窒素の濃度が150ppm~200ppmの範囲にある生育用培養液を用いることを特徴とする。
 上述の硝酸性窒素の濃度範囲は、経験的に植物の生育効率が優れているとされている範囲(つまり従来処方の濃度範囲)である。一方、マグネシウムイオンの上記濃度範囲は、従来処方の濃度範囲よりも高濃度の範囲である。培養液中の硝酸性窒素及びマグネシウムイオンの濃度範囲を上記濃度範囲にすることにより、従来処方の培養液を用いたときよりも生育期間を短縮することができる。
Therefore, a second aspect of the method for producing a hydroponic solution of cultivated plants according to the present invention is a method of cultivating using a culture solution containing a fertilizer component necessary for plant growth during a period from sowing to harvesting.
A germination period, which is a period in which the above-mentioned period is grown from seeding to germination in a seedling-growing device, a period in which the seedling-growing period is grown in the seedling-growing device until the sprouted seedlings are grown to a predetermined size. When a seedling grown to a predetermined size is transplanted from the above-mentioned seedling-growing device to a growing device and divided into growing periods which are periods until cultivation is carried out by the growing device,
In the growing period, a growth medium having a concentration of magnesium ion in the range of 48 ppm to 120 ppm and a concentration of nitrate nitrogen in the range of 150 ppm to 200 ppm is used.
The above-mentioned concentration range of nitrate nitrogen is a range where it is empirically considered that the growth efficiency of plants is excellent (that is, the concentration range of the conventional formulation). On the other hand, the above-mentioned concentration range of magnesium ion is a range of concentration higher than the concentration range of the conventional prescription. By setting the concentration range of nitrate nitrogen and magnesium ions in the culture solution to the above concentration range, the growth period can be shortened as compared with the case of using the culture solution of the conventional formulation.
 なお、上述の育苗用培養液及び生育用培養液には、マグネシウムイオン及び硝酸性窒素以外に、育苗期間における栽培植物の生育に必要な元素が必要に応じて含まれる。例えば、上記育苗用培養液及び生育用培養液には窒素以外の肥料の三要素であるリン、カリウムが含まれていても良い。また、硝酸性窒素だけでなく、アンモニア性窒素が含まれていても良い。さらに、マグネシウム以外の金属元素(カルシウムやホウ素、鉄、亜鉛、マンガン、銅、セレン、ニッケル、モリブデン等)のイオンが含まれていても良い。 In addition to magnesium ions and nitrate nitrogen, elements necessary for the growth of cultivated plants in the growing period are contained in the above-mentioned culture solution for raising seedlings and the culture solution for growing as required. For example, the culture solution for raising seedlings and the culture solution for growth may contain phosphorus and potassium which are three elements of fertilizer other than nitrogen. In addition to nitrate nitrogen, ammonia nitrogen may be contained. Furthermore, ions of metal elements other than magnesium (such as calcium, boron, iron, zinc, manganese, copper, selenium, nickel, molybdenum, etc.) may be contained.
 また、育苗用培養液は、育苗期間の全期間において用いても良いが、一部の期間にのみ用いても良い。同様に、生育用培養液は、生育期間の全期間において用いても良いが、一部の期間にのみ用いても良い。 Moreover, although the culture solution for raising seedlings may be used in the whole period of a raising seedling period, you may use it only in a partial period. Similarly, the culture broth for growth may be used for the entire growth period, but may be used for only a part of the growth period.
 また、栽培植物の根から吸収されたマグネシウムイオンは蒸散流によって葉まで運ばれるため、葉に含まれるマグネシウムの含有量の増加を期待できる。従って葉を食用とする葉物野菜であって、葉に含まれるマグネシウムの含有量の増加が望まれる植物を栽培する場合に、本発明に係る栽培方法は有効である。 In addition, since magnesium ions absorbed from roots of cultivated plants are transported to the leaves by transpiration flow, an increase in the content of magnesium contained in the leaves can be expected. Therefore, the cultivation method according to the present invention is effective when cultivating a plant that is a leafy vegetable whose leaves are edible and in which an increase in the content of magnesium contained in the leaf is desired.
 葉に含まれるマグネシウムの含有量の増加が望まれる植物の例として、コマツナを含むアブラナ科の野菜類が挙げられる。コマツナは本来、マグネシウムの含有量が多いところ、本発明に係る養液栽培方法を用いることにより、マグネシウム含有量を一層多くすることができる。また、コマツナ以外にも、チマサンチュ、コスレタス、グリーンバタビア等、種々の葉物野菜を上述の栽培方法を用いて栽培することにより、葉に含まれるマグネシウムイオンの量を高めた葉物野菜を得ることができる。 Examples of plants for which it is desired to increase the content of magnesium contained in leaves include cruciferous vegetables including Komatsuna. Although Komatsuna originally has a high content of magnesium, the magnesium content can be further increased by using the method of hydroponic cultivation according to the present invention. In addition to Komatsuna, various leafy vegetables such as chima sanchu, cos lettuce, green batavia, etc. are cultivated using the above-mentioned cultivation method to obtain leafy vegetables having an increased amount of magnesium ions contained in the leaves. Can.
 また、本発明に係る栽培植物の養液栽培方法の第3態様は、播種から収穫までの期間、植物の生育に必要な肥料成分を含む培養液を用いて栽培する方法であって、
 前記期間を、育苗装置にて播種から発芽まで栽培する期間である発芽期間、前記育苗装置にて発芽した苗を所定の大きさに成長するまで該育苗装置で栽培する期間である育苗期間、前記所定の大きさに成長した苗を前記育苗装置から生育装置に移植し、該生育装置にて、収穫時よりも所定時間前まで生育する期間である生育期間、該生育装置にて前記収穫時よりも所定時間前から該収穫時まで栽培する期間である収穫前期間に分けたとき、
 前記育苗期間において、マグネシウムイオンの濃度が24ppm~120ppmの範囲にあり、硝酸性窒素の濃度が4~50ppmの範囲にある育苗用培養液を用い、
 前記収穫前期間において、窒素を含有せず、カルシウムを含有する養液を用い、さらに波長が490nm以下の可視光を照射することを特徴とする。
Moreover, the third aspect of the method for producing a hydroponic solution of cultivated plants according to the present invention is a method of cultivating using a culture solution containing a fertilizer component necessary for plant growth during a period from sowing to harvesting.
A germination period, which is a period in which the above-mentioned period is grown from seeding to germination in a seedling-growing device, a period in which the seedling-growing period is grown in the seedling-growing device until the sprouted seedlings are grown to a predetermined size. Seedlings grown to a predetermined size are transplanted from the seedling raising apparatus to a growing apparatus, and the growing apparatus is a growing period which is a period during which a predetermined time before growing is harvested, the growing apparatus from the harvesting time When divided into the pre-harvest period which is the period of cultivation from the predetermined time before to the harvest time,
Using a culture solution for raising seedlings wherein the concentration of magnesium ions is in the range of 24 ppm to 120 ppm and the concentration of nitrate nitrogen is in the range of 4 to 50 ppm during the raising period;
In the pre-harvest period, it is characterized by using a calcium-containing nutrient solution containing no nitrogen and further irradiating visible light having a wavelength of 490 nm or less.
 また、本発明に係る栽培植物の養液栽培方法の第4態様は、播種から収穫までの期間、植物の生育に必要な肥料成分を含む培養液を用いて栽培する方法であって、
 前記期間を、育苗装置にて播種から発芽まで栽培する期間である発芽期間、前記育苗装置にて発芽した苗を所定の大きさに成長するまで該育苗装置で栽培する期間である育苗期間、前記所定の大きさに成長した苗を前記育苗装置から生育装置に移植し、該生育装置にて、収穫時よりも所定時間前まで生育する期間である生育期間、該生育装置にて前記収穫時よりも所定時間前から該収穫時まで栽培する期間である収穫前期間に分けたとき、
 前記生育期間において、マグネシウムイオンの濃度が48ppm~120ppmの範囲にあり、硝酸性窒素の濃度が150ppm~200ppmの範囲にある生育用培養液を用い、
 前記収穫前期間において、窒素を含有せず、カルシウムを含有する養液を用い、さらに波長が490nm以下の可視光を照射することを特徴とする。
Moreover, the 4th aspect of the nutrient solution cultivation method of the cultivation plant which concerns on this invention is a method of cultivating using the culture solution containing the fertilizer component required for the growth of a plant for the period from sowing to harvest,
A germination period, which is a period in which the above-mentioned period is grown from seeding to germination in a seedling-growing device, a period in which the seedling-growing period is grown in the seedling-growing device until the sprouted seedlings are grown to a predetermined size. Seedlings grown to a predetermined size are transplanted from the seedling raising apparatus to a growing apparatus, and the growing apparatus is a growing period which is a period during which a predetermined time before growing is harvested, the growing apparatus from the harvesting time When divided into the pre-harvest period which is the period of cultivation from the predetermined time before to the harvest time,
In the growing period, a growth medium having a concentration of magnesium ion in the range of 48 ppm to 120 ppm and a concentration of nitrate nitrogen in the range of 150 ppm to 200 ppm is used.
In the pre-harvest period, it is characterized by using a calcium-containing nutrient solution containing no nitrogen and further irradiating visible light having a wavelength of 490 nm or less.
 第3及び第4態様の栽培方法においては、前記波長が490nm以下の可視光を含む光の強度が、1平方メートル当たり80μmol以上であることが好ましい。 In the cultivation methods of the third and fourth aspects, it is preferable that the light intensity including visible light having a wavelength of 490 nm or less is 80 μmol or more per square meter.
 第3及び第4態様の栽培方法における発芽期間、育苗期間、生育期間は、第1及び第2態様の栽培方法におけるそれらの期間と同じである。また、第3及び第4態様における収穫前期間は、1日間から5日間程度である。
 第3及び第4態様の栽培方法は、収穫前期間を設けた点が、第1及び第2態様の栽培方法と異なる。詳しくは後述するように、収穫前期間における養液栽培は、収穫された栽培植物に含まれる抗酸化成分の含有量を増大させるために行われる。収穫前期間を設けたことにより、第3及び第4態様の栽培方法の栽培期間は、第1及び第2態様の栽培方法の栽培期間よりも長くなる。しかしながら、第3態様の栽培方法では育苗期間において上記育苗用培養液を用いたことにより、従来処方の培養液を用いて育苗期間の養液栽培を行った場合よりも生育期間が短縮される。また、第4態様の栽培方法では生育期間において上記生育用培養液を用いたことにより、従来処方の培養液を用いて生育期間の養液栽培を行った場合よりも生育期間が短縮される。第3態様及び第4態様のいずれの栽培方法においても、生育期間の短縮分により収穫前期間による延長分が相殺されるため、栽培期間全体としてみると、従来の栽培方法による栽培期間と同じか、もしくは従来の栽培方法による栽培期間よりも短縮することができる。
The germination period, the nursery period, and the growth period in the cultivation methods of the third and fourth aspects are the same as those periods in the cultivation methods of the first and second aspects. Also, the pre-harvest period in the third and fourth aspects is about 1 day to 5 days.
The cultivation methods of the third and fourth aspects are different from the cultivation methods of the first and second aspects in that a pre-harvest period is provided. As described in detail below, hydroponic cultivation in the pre-harvest period is carried out to increase the content of antioxidant components contained in harvested cultivated plants. By providing the pre-harvest period, the cultivation period of the cultivation methods of the third and fourth aspects is longer than the cultivation period of the cultivation methods of the first and second aspects. However, in the cultivation method of the third aspect, by using the culture solution for raising seedlings in the raising period, the growing period is shortened as compared with the case of performing nutrient solution cultivation in the raising period using the culture solution of the conventional prescription. Moreover, in the cultivation method of the 4th aspect, the growth period is shortened compared with the case where the nutrient solution cultivation of a growth period is performed using the culture solution of the conventional prescription by using the said culture solution for growth in a growth period. In any of the cultivation methods of the third aspect and the fourth aspect, since the extension due to the pre-harvest period is offset by the shortening of the growth period, the whole cultivation period is the same as the cultivation period by the conventional cultivation method Or, it can be shortened than the cultivation period by the conventional cultivation method.
 本発明の第1態様の栽培方法では、硝酸性窒素の濃度を、従来処方の養液栽培用培養液よりも低くし、且つマグネシウムイオンの濃度を、従来処方の養液栽培用培養液と同程度か、それよりも高くした育苗用培養液を用いて育苗期間の養液栽培を行ったことにより、マグネシウムイオンによる植物の地上部の成長及び根の伸長の促進作用を有効に発揮することができる。特に、培養液に含まれるマグネシウムイオンの濃度を従来処方の培養液に含まれるマグネシウムイオンの濃度よりも高くしたときは、マグネシウムを多く含む植物を作り出すことができる。 In the cultivation method of the first aspect of the present invention, the concentration of nitrate nitrogen is made lower than that of the conventional prescription culture solution for nutrient solution cultivation, and the concentration of magnesium ion is the same as that of the culture formulation for nutrient solution cultivation of the conventional formulation. By carrying out hydroponic cultivation for the seedling raising period using the raising liquid for raising seedling that has been raised to a certain extent or more, it is possible to effectively exert the promoting effect of growth and root elongation of the above-ground part of the plant by magnesium ion it can. In particular, when the concentration of magnesium ion contained in the culture solution is higher than the concentration of magnesium ion contained in the culture solution of the conventional formulation, a plant containing a large amount of magnesium can be produced.
 本発明の第2態様の栽培方法では、硝酸性窒素の濃度を、植物の生育効率が優れている濃度範囲とし、且つ、マグネシウムイオンの濃度を、従来処方の養液栽培用培養液よりも高くした生育用培養液を用いて生育期間の養液栽培を行ったことにより、従来処方の養液栽培用培養液を用いたときよりも育成期間を短縮することができる。しかも、マグネシウムイオンの濃度を高めることで植物の成長を促進したため、植物の成長促進に加えて、マグネシウムを多く含む植物を作り出すことができるという効果が得られる。 In the cultivation method according to the second aspect of the present invention, the concentration of nitrate nitrogen is set to a concentration range in which the growth efficiency of the plant is excellent, and the concentration of magnesium ions is higher than the conventional culture broth for nutrient solution cultivation. By performing hydroponic culture for the growth period using the culture solution for growth, the growth period can be shortened compared to the case of using the conventional culture solution for hydroponic culture. Moreover, since the growth of plants is promoted by increasing the concentration of magnesium ions, in addition to the growth promotion of plants, an effect of being able to create a plant rich in magnesium can be obtained.
 また、本発明の第3及び第4態様の栽培方法は、第1及び第2態様の栽培方法において、さらに、収穫前に、窒素を含有せず、カルシウムを含有する養液を用い、さらに波長が490nm以下の可視光を照射して養液栽培を行う期間(収穫前期間)を設けたものである。このような収穫前期間を設けたことにより、本発明の第3及び第4態様の栽培方法では、上述した第1及び第2態様の栽培方法によって得られる効果に加えて、グルタチオンに代表される抗酸化成分を多く含む植物を作り出すことができるという効果が得られる。 In the cultivation methods of the third and fourth aspects of the present invention, in the cultivation methods of the first and second aspects, further, before harvesting, a nitrogen-free, calcium-containing nutrient solution is used and the wavelength is further added. Is a period (pre-harvest period) in which hydroponic cultivation is performed by irradiating visible light of 490 nm or less. By providing such a pre-harvest period, in the cultivation methods of the third and fourth aspects of the present invention, in addition to the effects obtained by the cultivation methods of the first and second aspects described above, glutathione is represented by The effect of being able to produce the plant which contains many antioxidant ingredients is acquired.
本発明の一実施例に係る養液栽培方法の栽培期間の説明図。Explanatory drawing of the cultivation period of the nutrient solution cultivation method which concerns on one Example of this invention. 実験1の結果を示すものであり、Mg濃度が12ppmの培養液を用いて養液栽培した4種類の野菜(チマサンチュ、コマツナ、コスレタス、グリーンバタビア)の播種から2週間後の発育の様子を示す写真。It shows the results of Experiment 1, and shows a state of growth two weeks after sowing of four types of vegetables (Chimasanthu, Komatsuna, Kos Lettuce, Green Batavia) hydroponically grown using a culture solution having an Mg concentration of 12 ppm. Photo. 実験1の結果を示すものであり、Mg濃度が24ppmの培養液を用いて養液栽培した4種類の野菜(チマサンチュ、コマツナ、コスレタス、グリーンバタビア)の播種から2週間後の発育の様子を示す写真。It shows the results of Experiment 1, and shows the state of growth two weeks after sowing of four types of vegetables (Chimasanthu, Komatsuna, Kos Lettuce, Green Batavia) hydroponically grown using a culture solution having an Mg concentration of 24 ppm. Photo. 実験1の結果を示すものであり、Mg濃度が36ppmの培養液を用いて養液栽培した4種類の野菜(チマサンチュ、コマツナ、コスレタス、グリーンバタビア)の播種から2週間後の発育の様子を示す写真。It shows the results of Experiment 1, and shows a state of growth two weeks after sowing of four types of vegetables (Chimasanthu, Komatsuna, Kos Lettuce, Green Batavia) hydroponically grown using a culture solution having an Mg concentration of 36 ppm. Photo. 実験1の結果を示すものであり、Mg濃度が48ppmの培養液を用いて養液栽培した4種類の野菜(チマサンチュ、コマツナ、コスレタス、グリーンバタビア)の播種から2週間後の発育の様子を示す写真。It shows the results of Experiment 1, and shows a state of growth two weeks after sowing of four types of vegetables (Chimasanthu, Komatsuna, Kos Lettuce, Green Batavia) hydroponically grown using a culture solution having an Mg concentration of 48 ppm. Photo. 実験1の結果を示すものであり、Mg濃度が96ppmの培養液を用いて養液栽培した4種類の野菜(チマサンチュ、コマツナ、コスレタス、グリーンバタビア)の播種から2週間後の発育の様子を示す写真。It shows the results of Experiment 1, and shows a state of growth two weeks after sowing of four types of vegetables (Chimasanthu, Komatsuna, Kos Lettuce, Green Batavia) hydroponically grown using a culture solution having an Mg concentration of 96 ppm. Photo. 実験1の結果を示すものであり、コマツナの地上部(a)と根(b)の生重量と培養液中のマグネシウムイオン濃度との関係を示すグラフ。The graph which shows the result of Experiment 1, and shows the relationship between the fresh weight of the aerial part (a) and the root (b) of Komatsuna, and the magnesium ion concentration in a culture solution. 実験1の結果を示すものであり、Mg濃度と根及び地上部の発育促進効果の関係を示す図。It is a figure which shows the result of Experiment 1, and shows the relationship between Mg density | concentration and the growth promotion effect of a root and an above-ground part. 実験2の結果を示すものであり、Mg濃度が48ppm、硝酸性N濃度が3.05~78.2ppmの培養液を用いて育苗装置で養液栽培したコマツナの成長の様子を示す写真(a)~(f)。A photograph showing the results of Experiment 2, showing a picture of the growth of Komatsuna grown by hydroponic culture in a nursery using a culture solution having an Mg concentration of 48 ppm and a nitrate N concentration of 3.05 to 78.2 ppm (a )-(F). 実験2の結果を示すものであり、Mg濃度が12ppm、硝酸性N濃度が4.6~184ppmの培養液を用いて育苗装置で養液栽培したコマツナの成長の様子を示す写真。A photograph showing the results of Experiment 2, which is a photograph showing the state of growth of Komatsuna cultivated by hydroponic cultivation in a nursery using a culture solution having an Mg concentration of 12 ppm and a nitrate N concentration of 4.6 to 184 ppm. 実験2の結果を示すものであり、Mg濃度が24ppm、硝酸性N濃度が4.6~184ppmの培養液を用いて育苗装置で養液栽培したコマツナの成長の様子を示す写真。A photograph showing the results of Experiment 2, which is a photograph showing the state of growth of Komatsuna cultivated by hydroponic cultivation with a nursery apparatus using a culture solution having an Mg concentration of 24 ppm and a nitrate N concentration of 4.6 to 184 ppm. 実験2の結果を示すものであり、Mg濃度が48ppm、硝酸性N濃度が4.6~184ppmの培養液を用いて育苗装置で養液栽培したコマツナの成長の様子を示す写真。A photograph showing the results of Experiment 2, which is a photograph showing the state of growth of Komatsuna cultivated by hydroponic culture in a nursery using a culture solution having an Mg concentration of 48 ppm and a nitrate N concentration of 4.6 to 184 ppm. 実験2の結果を示すものであり、N濃度と根の伸長促進効果の関係を示す図。The figure which shows the result of experiment 2, and shows the relationship between N <+> density | concentration and the extension | extension promotion effect of a root. 実験3の結果を示すものであり、生育期間におけるチマサンチュの成長量を示すグラフ。The graph which shows the result of experiment 3 and shows the growth amount of chimasangyu in a growth period. 実験4の結果を示すものであり、生育期間におけるチマサンチュの成長量を示すグラフ。It is a graph which shows the result of Experiment 4 and shows the amount of growth of Chimasanchu in a growth period. 実験5の結果を示すものであり、生育期間におけるチマサンチュの成長量を示すグラフ。It is a graph which shows the result of Experiment 5, and shows the growth amount of the chimasanthu in a growth period. 実験6の結果を示すものであり、生育期間におけるチマサンチュの成長量を示すグラフ。The graph which shows the result of Experiment 6 and shows the growth amount of the chimasanthu during a growth period. 実験7の結果を示すものであり、生育期間におけるコマツナの成長量を示すグラフ。The graph which shows the result of Experiment 7 and shows the growth amount of Komatsuna in a growth period. 実験8の結果を示すものであり、生育期間におけるコスレタスの成長量を示すグラフ。The graph which shows the result of Experiment 8 and shows the growth amount of Coss Lettuce in a growth period. 実験9の結果を示すものであり、生育期間におけるグリーンバタビアの成長量を示すグラフ。The graph which shows the result of Experiment 9 and shows the growth amount of green batavia in a growth period. 実験10の結果を示すものであり、生育装置で3週間養液栽培した後、収穫した4種類の葉物野菜(チマサンチュ、コマツナ、コスレタス、グリーンバタビア)のMg含有量とその増加倍数を示す図。The figure which shows the result of Experiment 10, and shows Mg content and its increase multiple of four kinds of leafy vegetables (Chimasanthu, Komatsuna, Kos Lettuce, Green Batavia) harvested after 3 weeks of hydroponic culture with a growth apparatus . 実験11の結果を示すものであり、生育期間におけるコマツナの成長量を示すグラフ。The graph which shows the result of Experiment 11 and shows the growth amount of Komatsuna in a growth period. 実験12の結果を示すものであり、生育期間におけるグリーンウェーブの成長量を示すグラフ。The graph which shows the result of Experiment 12 and shows the growth amount of the green wave in a growth period. 実験13の結果を示すものであり、実験区及び比較区のコマツナのORAC値と、抗酸化成分の含有量を示すグラフ。The graph which shows the result of Experiment 13, and shows the content of the antioxidant component of the ORAC value of Komatsuna of an experiment area and a comparison area. 実験13の結果を示すものであり、実験区及び比較区のグリーンバタビアのORAC値と、抗酸化成分の含有量を示すグラフ。The graph which shows the result of Experiment 13, and shows the content of the ORAC value of a green batavia of an experiment area and a comparison area, and an antioxidant ingredient. 通常の栽培方法で得られた野菜に含まれるグルタチオンの含有量。Content of glutathione contained in vegetables obtained by ordinary cultivation methods. 特許文献2に記載されている方法を用いてコマツナ、コマツナ紫、チマサンチュを養液栽培したときの、培養液中のCa量と収穫後のコマツナ、コマツナ紫、チマサンチュのORAC値との関係を示す図。Shows the relationship between the amount of Ca in the culture solution and the harvested ORAC values of Komatsuna, Komatsuna purple and chimasanchu when hydroponically cultivated Komatsuna, purple and chimasanchu using the method described in Patent Document 2 Figure.
 以下、本発明に係る栽培方法及び養液栽培用培養液について、野菜類を用いた実施例を参照しつつ説明するが、本発明は、野菜類、花卉などの養液栽培が可能な栽培植物全般に適用可能である。 Hereinafter, although the cultivation method according to the present invention and the culture solution for nutrient solution cultivation will be described with reference to an example using vegetables, the present invention relates to cultivated plants capable of being subjected to nutrient solution cultivation of vegetables, florets etc. Applicable to the whole.
 実施例では、野菜類として葉物野菜であるチマサンチュ、コマツナ、コスレタス、グリーンバタビア、チンゲンサイ、リーフレタス、シュンギク、グリーンウェーブを用いた。チマサンチュ、コスレタス、グリーンバタビア、リーフレタス、シュンギク、グリーンウェーブはキク科の野菜であり、コマツナ、チンゲンサイはアブラナ科の野菜である。 In the examples, leafy vegetables chimasanchu, komatsuna, kos Lettuce, green batavia, bok choy, leaf lettuce, sungiku, and green wave were used as vegetables. Chimasanthu, Kos Lettuce, Green Batavia, Leaf Lettuce, Sung chrysanthemum, Green Wave are the vegetables of the Asteraceae family, and Komatsuna, Ting Gin Sai are vegetables of the Brassicaceae family.
(1)栽培装置
 育苗装置:この装置は、培養液が貯留される容器本体と、その上に配置される複数の育苗ベースと、容器本体に接続された培養液の供給路及び排出路並びにポンプを備えて、供給路及び排出路によって容器本体内に対する培養液の供給や排出が行われる。各育苗ベースには播種用の穴を有し、その穴に1個ずつ種が収容される。育苗ベースはその下部が培養液内に浸漬しており、前記穴に入れられた種は培養液中に浸漬する。育苗装置は、野菜類の栽培期間のうち播種から発芽までの期間(発芽期間)及び発芽から所定の大きさに成長するまでの期間(育苗期間)、用いられる。
(1) Cultivation apparatus Seed raising apparatus: This apparatus comprises a container body in which a culture solution is stored, a plurality of seedling raising bases disposed thereon, a supply passage and a discharge passage of the culture solution connected to the container body, and a pump Supply and discharge of the culture solution to and from the container body is performed by the supply and discharge channels. Each nursery base has a hole for sowing, in which one seed is stored. The lower part of the nursery base is immersed in the culture solution, and the species placed in the hole is immersed in the culture solution. Among the cultivation periods of vegetables, a period of time from sowing to germination (germination period) and a period of time until germination to a predetermined size (sourcing period) of vegetables are used.
 生育装置:この装置は、培養液が貯留される容器本体と、該容器本体の上に配置されるプラスチック製のパネルと、容器本体に接続された培養液の供給路及び排出路並びにポンプを備えている。育苗装置と同様、培養液の供給路及び排出路によって容器本体内に対する培養液の供給や排出が行われる。パネルは多数の孔を有し、各孔の上に上記育苗ベースが配置される。育苗ベースで成長した植物体の根は孔を通して培養液中に浸漬される。上述の育苗装置にて所定の大きさに成長した苗は生育装置に移植され、該生育装置にて収穫まで栽培される。つまり、生育装置は、野菜類の栽培期間のうち、所定の大きさに成長した苗を収穫するまで栽培する期間(生育期間)、用いられる。 Growth apparatus: This apparatus comprises a container body in which a culture solution is stored, a plastic panel disposed on the container body, a supply and discharge passage of the culture solution connected to the container body, and a pump. ing. Similar to the seedling raising apparatus, supply and discharge of the culture solution to and from the container main body are performed by the supply and discharge channels of the culture solution. The panel has a number of holes, and the seedling base is disposed on each hole. The roots of plants grown on a nursery basis are immersed in the culture solution through the pores. Seedlings grown to a predetermined size by the above-described seedling-growing apparatus are transplanted to a growth apparatus, and are grown until harvest by the growth apparatus. That is, the growing apparatus is used during a growing period of vegetables (growth period) until the seedlings grown to a predetermined size are harvested.
(2)培養液の調製
 本実施例では、培養液として、大塚アグリテクノA処方(以下「大塚A処方」)を標準処方として、この大塚A処方による培養液(以下「大塚A処方培養液」という)、大塚A処方培養液のマグネシウム(Mg)濃度を変更した培養液(以下「Mg調整A処方培養液」という)、及び本発明者の独自の処方による培養液(以下「TO処方培養液」という)を用いた。以下の表1に大塚A処方の窒素(N)濃度及びMg濃度を示す。なお、表1中、ppmは、重量比率を示す。また、各処方による培養液に含まれるマグネシウムはイオン(Mg2+)として存在するが、本明細書では、便宜上、マグネシウム及びマグネシウムイオンの両方を「Mg」と表記することとする。
(2) Preparation of culture solution In this example, Otsuka agritechno A prescription (hereinafter "Otsuka A prescription") is used as a culture solution as a standard prescription, and the culture solution by this Otsuka A prescription (hereinafter "Otsuka A prescription culture solution") The culture solution which changed the magnesium (Mg) concentration of Otsuka A prescription culture solution (hereinafter referred to as “Mg adjusted A prescription culture solution”), and the culture solution according to the inventor's own prescription (hereinafter “TO prescription culture solution ") Was used. The nitrogen (N) concentration and Mg concentration of Otsuka A prescription are shown in Table 1 below. In Table 1, ppm indicates a weight ratio. Also, although magnesium contained in the culture solution according to each formulation is present as ions (Mg 2+ ), in the present specification, both magnesium and magnesium ions are denoted as “Mg” for convenience.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 Mg調整A処方培養液は、A処方培養液に塩化マグネシウムを添加してMg濃度を変更した。また、TO処方培養液は、以下に示す薬剤を用い、以下の手順で調製した。 In the Mg-adjusted A prescription culture solution, magnesium chloride was added to the A prescription culture solution to change the Mg concentration. In addition, a TO formulated culture solution was prepared according to the following procedure using the following drugs.
(2-1)ストック養液の調製
 2種類のストック養液を調製した。各ストック養液の成分組成は以下の通りである。
<第1ストック養液>
・KNO           5g/L
・KSO        50g/L
・リン酸カリウム     30g/L
・EDTA-Fe(Na) 20g/L
・微量元素溶液     10mL/L
なお、微量元素溶液は、銅、亜鉛、マンガン等の肥料成分として一般的な元素を含有する。
(2-1) Preparation of stock nutrient solution Two types of stock nutrient solutions were prepared. The composition of each stock nutrient solution is as follows.
<First stock nutrient solution>
KNO 3 5g / L
・ K 2 SO 4 50 g / L
-Potassium phosphate 30g / L
・ EDTA-Fe (Na) 20 g / L
・ 10 mL / L of trace element solution
The trace element solution contains an element common to fertilizer components such as copper, zinc and manganese.
<第2ストック養液>
・大塚ハウス2号    X g/L
・MgCl・6HO  Y g/L (X+Y=140g/L)
<Second stock nutrient solution>
・ Otsuka House No. 2 X g / L
· MgCl 2 · 6 H 2 O Y g / L (X + Y = 140 g / L)
 (2-2)TO処方培養液の調製
 XとYの比率を異ならせた複数の第2ストック養液を調製し、該第2ストック養液と1種類の第1ストック養液を同量ずつ水に加えて、各ストック溶液を約150倍に希釈することにより、様々なMg濃度の培養液を調製した。
 例えば、以下の表2に示すように、大塚ハウス2号を100g/L、80g/L、60g/L、MgCl・6HOを40g/L、60g/L、80g/L含有する3種類の第2ストック養液(第2-1~第2-3養液とする)を調製する。そして、約9Lの水に、第1ストック養液及び第2ストック養液をそれぞれ67mLずつ加えた後、全量が10Lとなるように水を追加する。この結果、第1ストック養液と第2-1~第2-3ストック養液を用いて調製された培養液中のMg濃度は、それぞれ、31.9ppm、47.8ppm、63.7ppmとなり、硝酸性N濃度は、いずれも4.6ppmとなる。
(2-2) Preparation of TO Formulation Culture Solution Prepare a plurality of second stock solutions with different ratios of X and Y, and equal amounts of the second stock solution and one type of first stock solution. Culture solutions of various Mg concentrations were prepared by diluting each stock solution by about 150 times in addition to water.
For example, as shown in Table 2 below, three types of Otsuka House No. 2 containing 100 g / L, 80 g / L, 60 g / L, and 40 g / L, 60 g / L, and 80 g / L of MgCl 2 · 6H 2 O Prepare a second stock solution (No. 2-1 to 2-3). Then, after adding 67 mL each of the first stock nutrient solution and the second stock nutrient solution to about 9 L of water, water is added so that the total amount becomes 10 L. As a result, the Mg concentrations in the culture solution prepared using the first stock solution and the 2-1 to 2-3 stock solutions are 31.9 ppm, 47.8 ppm and 63.7 ppm, respectively. The nitrate N concentration is 4.6 ppm in each case.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 一方、TO処方培養液中の硝酸性N濃度は、上述した方法でMg濃度を調整する際に、KNOを適量追加することにより調整するか、もしくは、第1ストック養液中のKNO濃度を調整することにより行った。 On the other hand, when adjusting the Mg concentration by the above-mentioned method, the nitrate N concentration in the TO formulated culture solution is adjusted by adding an appropriate amount of KNO 3 , or the KNO 3 concentration in the first stock solution Done by adjusting the
 なお、本実施例では、大塚ハウス2号とMgCl・6HOの比率を変更した複数種の第2ストック養液を作製し、これらと1種類の第1ストック養液を水で150倍に希釈することにより、種々のMg濃度の培養液を作製した。第1ストック養液を1種類にした理由は、マグネシウムによる野菜類の促進効果に対する第1ストック養液に含まれる成分組成の影響を抑えるためであるが、上述した以外の方法で培養液を調製しても良い。例えば、それぞれ1種類の第1ストック養液及び第2ストック養液を調製し、第1ストック養液と第2ストック養液を同量ずつ水で希釈する場合の希釈倍率を異ならせる方法、それぞれ1種類の第1ストック養液及び第2ストック養液を調製し、培養液中に含まれる第1ストック養液の量と第2ストック養液の量を異ならせる(つまり、第1ストック養液と第2ストック養液の希釈倍率を異ならせる)ことにより、Mgの濃度や硝酸性Nの濃度が異なる培養液を調製する方法、等が挙げられる。 In this example, a plurality of second stock nutrient solutions were prepared by changing the ratio of Otsuka House No. 2 and MgCl 2 · 6 H 2 O, and these and one type of first stock nutrient solution with water 150 times The culture broths of various Mg concentrations were prepared by dilution into. The reason why the first stock solution is one type is to suppress the influence of the component composition contained in the first stock solution on the promoting effect of vegetables by magnesium, but the culture solution is prepared by a method other than the above. You may. For example, methods of preparing one type of first stock nutrient solution and second stock nutrient solution, respectively, and varying the dilution ratio in the case of diluting the first stock nutrient solution and the second stock nutrient solution with the same amount with water, respectively One kind of first stock nutrient solution and second stock nutrient solution are prepared, and the amount of the first stock nutrient solution and the amount of the second stock nutrient solution contained in the culture solution are made different (that is, the first stock nutrient solution) And a method of preparing a culture solution in which the concentration of Mg and the concentration of nitrate N differ by making the dilution ratio of the second stock solution different).
(3)栽培期間
 図1に示すように、栽培期間を、播種から発芽までの期間(発芽期間)、発芽から移植までの期間(育苗期間)、移植から収穫までの期間(生育期間)に分けた。例えばコマツナを従来の一般的な成分組成の培養液で養液栽培した場合、発芽期間は約3~5日間、育苗期間は約9~10日間、生育期間は4週間程度であり、播種から収穫までは約6週間である。ただし、複数の種子を育苗装置に播種した場合、全ての種子が一斉に発芽するわけではない。
(3) Cultivation period As shown in FIG. 1, the cultivation period is divided into a period from sowing to germination (germination period), a period from germination to transplantation (nursing period), and a period from transplantation to harvest (growth period) The For example, when Komatsuna is cultured by hydroponic culture using a culture solution having a conventional general composition, the germination period is about 3 to 5 days, the nursery period is about 9 to 10 days, and the growth period is about 4 weeks. It takes about six weeks. However, when a plurality of seeds are sown in the nursery apparatus, not all the seeds germinate at the same time.
 そこで、以下の実験では、栽培日数を揃えるため、播種から4日目までを発芽期間とし、播種後4日目から14日目までを育苗期間とした。そして、播種後14日目に育苗装置で成長した植物体を該育苗装置から生育装置に移植し、その後3週間ないし4週間、生育装置で養液栽培した。つまり、播種後14日目からの3~4週間が生育期間となる。また、実験13では、生育期間の後、さらに3日間、所定の収穫前処理養液を用いて養液栽培を行った(収穫前期間)。収穫前処理溶液については後述する。発芽期間では、発芽種子に対する培養液の成分組成の影響を揃えるため、水を用い、育苗期間及び生育期間ではTO処方培養液、A処方培養液、又はMg調整A処方培養液を用いた。 Therefore, in the following experiment, in order to make the cultivation days uniform, the germination period is from the sowing to the 4th day, and from the 4th day to the 14th day after the sowing is the nursery period. Then, on the 14th day after sowing, the plants grown by the seedling raising apparatus were transplanted from the seedling raising apparatus to the growing apparatus, and thereafter, they were subjected to hydroponic cultivation with the growing apparatus for 3 weeks to 4 weeks. In other words, 3-4 weeks from the 14th day after seeding is the growing period. In Experiment 13, after the growing period, nutrient solution cultivation was performed using a predetermined pre-harvest treatment nutrient solution for three days (pre-harvest period). The pre-harvest treatment solution will be described later. Water was used to equalize the influence of the component composition of the culture solution on the germinated seeds in the germination period, and the TO prescription culture solution, the A prescription culture solution, or the Mg adjusted A prescription culture solution was used in the seedling breeding period and the growth period.
<実験1> 
(1)条件
 上述した育苗装置及び生育装置を用いて、上述した栽培期間(発芽期間、育苗期間及び生育期間)にわたり、4種類の野菜(チマサンチュ、コマツナ、コスレタス、グリーンバタビア)の養液栽培を行った。
 育苗期間の培養液として、Mg濃度が12ppm、24、36、48、96ppm、120ppmのTO処方培養液を用い、生育期間の培養液としてA処方培養液(EC=1.8)を用いた。TO処方培養液の硝酸性N濃度は4.6ppm、A処方培養液の硝酸性N濃度は161ppmである。
 なお、栽培期間の全てにおいて、蛍光灯照明による明期12時間-暗期12時間の条件で栽培した。
<Experiment 1>
(1) Conditions Using the above-described seedling raising apparatus and growing apparatus, hydroponic cultivation of four types of vegetables (Chimasanchu, Komatsuna, Kos Lettuce, Green Batavia) over the above-mentioned cultivation period (germination period, seedling emergence period and growth period) went.
As a culture solution for the seedling raising period, a TO prescription culture solution with an Mg concentration of 12 ppm, 24, 36, 48, 96 ppm, and 120 ppm was used, and an A prescription culture solution (EC = 1.8) was used as a culture solution for growth period. The nitrate N concentration of TO formulated culture solution is 4.6 ppm, and the nitrate N concentration of A formulated culture solution is 161 ppm.
In addition, it grew on the conditions of 12 hours of light periods-12 hours of dark periods by fluorescent lamp lighting in all the cultivation periods.
(2)結果
 図2A~図2Eは、育苗期間においてMg濃度が12ppm~96ppmのTO処方培養液を用いて養液栽培を行った4種類の野菜の、播種から2週間経過した時点における発育の様子を示す写真である。図2A~図2Eから明らかなように、Mg濃度が12ppmのTO処方培養液を用いた場合より、Mg濃度が24~96ppmのTO処方培養液を用いた場合の方が地上部及び根の両方の発育が良かった。
(2) Results FIGS. 2A to 2E show the growth of four types of vegetables hydroponically grown using a TO prescription culture solution with an Mg concentration of 12 ppm to 96 ppm during the nursery period, two weeks after sowing It is a photograph showing the situation. As is apparent from FIGS. 2A to 2E, both the above-ground part and the root are better in the case of using the TO formulated culture solution with an Mg concentration of 24-96 ppm than in the case of using the TO formulated culture solution with an Mg concentration of 12 ppm. Growth was good.
 図3(a)、(b)は、生育期間を経て収穫したコマツナ(つまり、生育装置に移植した後、3週間目に収穫したコマツナ)の地上部と根の生重量と、育苗期間に用いたTO処方培養液中のMg濃度との関係を示している。図3(a)、(b)のグラフにおいて横軸はMg濃度(ppm)を、縦軸は地上部又は根の移植後3週間目の生重量(g)を表している。グラフ上の各点は3個体の平均値である。 3 (a) and 3 (b) show the fresh weight of the above-ground part and roots of Komatsuna harvested after the growing period (that is, Komatsuna harvested 3 weeks after transplanting to the growing apparatus), and used during the nursery period. It shows the relationship with the Mg concentration in the TO formulated culture solution. In the graphs of FIGS. 3A and 3B, the abscissa represents the Mg concentration (ppm), and the ordinate represents the fresh weight (g) three weeks after transplantation of the above-ground parts or roots. Each point on the graph is the average value of 3 individuals.
 図4は、図3(a)、(b)の結果から求めた、Mg濃度と根及び地上部の発育促進効果の関係を示す。図4では、Mg濃度が12ppmのTO処方培養液を用いたときの発育量を基準とし、これに対する相対的促進度を「+」の数で表した。 FIG. 4 shows the relationship between the Mg concentration and the growth promoting effect of roots and above-ground parts obtained from the results of FIGS. 3 (a) and 3 (b). In FIG. 4, the relative acceleration with respect to the growth amount when using the TO formulation culture solution at a Mg concentration of 12 ppm was represented by the number of “+”.
 実験1では、育苗期間(発芽から移植まで)においてTO処方培養液を用い、生育期間においてA処方培養液(Mg濃度=24ppm)を用いた。つまり、生育装置に移植後の3週間は全ての野菜をMg濃度が同じ培養液で養液栽培しているにもかかわらず、育苗期間に用いた培養液のMg濃度の違いによって地上部及び根の発育量が異なる結果となった。このことから、育苗期間において根から取り込まれたMg(マグネシウムイオン)は、移植後の植物体の成長・発育にも関与していることが推測された。 In Experiment 1, the TO prescription culture solution was used in the nursery period (from germination to transplantation), and the A prescription culture solution (Mg concentration = 24 ppm) was used in the growth period. In other words, even though all vegetables are cultured in the same culture solution with the same Mg concentration for 3 weeks after transplantation to the growth apparatus, differences in Mg concentration in the culture solution used during the seedling raising period lead to above-ground parts and roots The growth rate of the plants was different. From this, it was inferred that Mg (magnesium ion) taken in from roots during the nursery period is also involved in the growth and development of the plant after transplantation.
 また、地上部については、Mg濃度が12~72ppmの範囲においてMg濃度の増加に伴い生重量が増加し、72~120ppmの範囲においてMg濃度の増加に伴い生重量が減少した。また、根についてはMg濃度が12~48ppmの範囲においてMg濃度の増加に伴い生重量が増加し、48~120ppmの範囲においてMg濃度の増加に伴い生重量が減少した。つまり、発育促進効果を示す至適Mg濃度は根と地上部とで異なることが分かった。このことは、地上部に対するマグネシウムイオンの成長促進作用が根に及ぶのではなく、また、その逆でもないこと、言い換えると、地上部の分裂組織及び根の分裂組織のそれぞれにマグネシウムイオンが作用して成長が促進されることを意味すると思われた。 In the above-ground parts, the fresh weight increased with an increase in Mg concentration in the range of 12 to 72 ppm of Mg, and decreased with an increase in Mg concentration in the range of 72 to 120 ppm. As for the root, the fresh weight increased with the increase of the Mg concentration in the range of 12 to 48 ppm of Mg, and decreased with the increase of the Mg concentration in the range of 48 to 120 ppm. That is, it was found that the optimum Mg concentration showing the growth promoting effect was different between the root and the aerial part. This means that the growth promoting action of magnesium ions on the aerial parts does not extend to the roots and vice versa, in other words, magnesium ions act on the meristems of the aerial parts and on the root meristems, respectively. Growth was thought to be promoted.
 従って、根の成長が地上部の成長に優先する時期、あるいはその逆の時期に応じて、培養液のMg濃度を適切な値に設定することにより、野菜の発育速度を調整することが可能であり、播種から収穫までの期間を短縮することができることが推測された。 Therefore, it is possible to adjust the growth rate of vegetables by setting the Mg concentration of the culture solution to an appropriate value according to the time when root growth takes precedence over the growth of aerial parts or vice versa. It was estimated that the time from sowing to harvest could be shortened.
<実験2>
(1)条件
 上述した育苗装置を用いて、発芽期間及び育苗期間、コマツナを養液栽培した。育苗期間では、Mg濃度を12ppm、24ppm、48ppmに調整するとともに、硝酸性N濃度を3.05ppm(KNO=3.8g/L)、4.6ppm(KNO=5g/L)、13.8ppm(KNO=15g/L)、23ppm(KNO=25g/L)、41.4ppm(KNO=45g/L)、78.2ppm(KNO=85g/L)、184ppm(KNO=200g/L)に調整したTO処方培養液を用いた。
 なお、発芽期間及び育苗期間では、蛍光灯照明による明期12時間-暗期12時間の条件で栽培した。
<Experiment 2>
(1) Conditions The sprouting period and the seedling raising period were hydroponically cultivated for Komatsuna using the above-described seedling raising apparatus. 13. In the seedling raising period, adjust the Mg concentration to 12 ppm, 24 ppm and 48 ppm, and the nitrate N concentration to 3.05 ppm (KNO 3 = 3.8 g / L), 4.6 ppm (KNO 3 = 5 g / L), 13. 8 ppm (KNO 3 = 15 g / L), 23 ppm (KNO 3 = 25 g / L), 41.4 ppm (KNO 3 = 45 g / L), 78.2 ppm (KNO 3 = 85 g / L), 184 ppm (KNO 3 = 200 g) TO formulated culture solution adjusted to / L) was used.
In the germination period and the seedling raising period, cultivation was carried out under the condition of 12 hours of light period by 12 hours of dark period with fluorescent light and 12 hours of dark period.
(2)結果
 図5は、Mg濃度が48ppmであり、且つ硝酸性N濃度が3.05ppm、4.6ppm、13.8ppm、23ppm、41.4ppm、78.2ppmである6種類の培養液を用いたときの、種子の播種から2週間経過後のコマツナの成長の様子を示す写真である。これらの写真に示すように、地上部の成長量については、硝酸性N濃度が3.05ppm、41.4ppm、78.2ppmのときに大きく、硝酸性N濃度が4.6~23ppmのときに小さかった。一方、根の伸長量については、硝酸性N濃度が4.6ppm~23ppmのとき(図5の(b)~(d))に大きく、硝酸性N濃度が3.05ppm、41.4ppm、78.2ppmのとき(図5の(a)、(e)、(f))に小さかった。
(2) Results FIG. 5 shows six culture solutions each having an Mg concentration of 48 ppm and a nitrate N concentration of 3.05 ppm, 4.6 ppm, 13.8 ppm, 23 ppm, 41.4 ppm and 78.2 ppm. It is a photograph which shows the appearance of the growth of Komatsuna after 2 weeks after seed sowing when it used. As shown in these photographs, the growth amount of the above-ground parts is large when the nitrate N concentration is 3.05 ppm, 41.4 ppm and 78.2 ppm, and when the nitrate N concentration is 4.6 to 23 ppm It was small. On the other hand, the root elongation amount is large when the nitrate N concentration is 4.6 ppm to 23 ppm ((b) to (d) in FIG. 5), and the nitrate N concentration is 3.05 ppm, 41.4 ppm, 78 At 2 ppm ((a), (e) and (f) in FIG. 5).
 図6A~図6Cは、Mg濃度が12ppm、24ppm、48ppmであり、且つそれぞれのMg濃度について硝酸性N濃度が4.6ppm(5g/L)、13.8ppm(15g/L)、23ppm(25g/L)、41.4ppm(45g/L)、78.2ppm(85g/L)、184ppm(200g/L)である18種類の培養液を用いたときの、種子の播種から2週間経過後のコマツナの成長の様子を示す写真である。 6A to 6C show that the Mg concentrations are 12 ppm, 24 ppm, and 48 ppm, and the nitrate N concentration is 4.6 ppm (5 g / L), 13.8 ppm (15 g / L), and 23 ppm (25 g) for each Mg concentration. / L), 41.4 ppm (45 g / L), 78.2 ppm (85 g / L), and 18 ppm (200 g / L), two weeks after seed sowing It is a photograph showing the state of the growth of Komatsuna.
 これらの写真から分かるように、Mg濃度に着目すると、低濃度(12ppm、24ppm)のときに比べて、高濃度(48ppm)のときの方が、全体的に地上部及び根の両方の成長量が大きくなる傾向がみられた。一方、硝酸性N濃度に着目すると、根の伸長量は、硝酸性N濃度が低いとき(4.6ppm、13.8ppm)の方が、高いとき(23ppm~184ppm)よりも大きくなる傾向がみられ、逆に、地上部の成長量は、硝酸性N濃度が低いとき(4.6ppm、13.8ppm)の方が、高いとき(23ppm~184ppm)よりも小さくなる傾向がみられた。 As can be seen from these photographs, focusing on the Mg concentration, overall growth of both above-ground parts and roots is higher at high concentration (48 ppm) than at low concentration (12 ppm, 24 ppm) Tended to increase. On the other hand, focusing on nitrate N concentration, it can be seen that root elongation tends to be greater at lower nitrate concentrations (4.6 ppm, 13.8 ppm) than at higher concentrations (23 ppm to 184 ppm). On the contrary, the growth amount of the above-ground part tended to be smaller at lower nitrate concentrations (4.6 ppm, 13.8 ppm) than at higher concentrations (23 ppm to 184 ppm).
 図7は、図5及び図6Cから求められた、硝酸性N濃度と根の伸長量との関係を示している。図7では、硝酸性N濃度が184ppmのときの根の伸長量を基準とし、これに対する相対的伸長量を「+」の数で表した。図5~図7より、Mg濃度が同じであっても、硝酸性N濃度によって地上部及び根における成長量が異なることが分かった。特に、硝酸性N濃度が41.4ppm~184ppmという高濃度のときのコマツナの成長量が小さかったことから、種子の播種から2週間という初期の成長においては、高濃度の窒素(あるいは硝酸イオン)は不要であることが推測された。 FIG. 7 shows the relationship between nitrate N concentration and the amount of root elongation obtained from FIGS. 5 and 6C. In FIG. 7, relative elongation amount to the root elongation amount at a nitrate N concentration of 184 ppm was represented by the number of “+” with reference to the root elongation amount. From FIG. 5 to FIG. 7, it was found that the growth amount in the above-ground parts and roots differs depending on the nitrate N concentration even if the Mg concentration is the same. In particular, since the amount of growth of Komatsuna was small when the concentration of nitrate N was high from 41.4 ppm to 184 ppm, high concentration of nitrogen (or nitrate ion) was observed in the initial growth of 2 weeks after seed sowing. Was presumed to be unnecessary.
 その理由として、(1)培養液中に硝酸イオンが多く含まれると、植物にとって優先順位の高い硝酸還元にエネルギーが消費され、細胞分裂に必要なエネルギーが不足した結果、細胞分裂が抑制されること、(2)窒素が十分量存在するときは根を伸長させない機構が存在すること、が考えられるが、詳細は不明である。 The reason is that (1) When the culture solution contains a large amount of nitrate ions, energy is consumed for nitrate reduction, which is a high priority for plants, and as a result, lack of energy necessary for cell division results in suppression of cell division (2) It is conceivable that there is a mechanism that does not extend the roots when a sufficient amount of nitrogen is present, but the details are unknown.
<実験3>
(1)条件
 上述した育苗装置及び生育装置を用いて、上述した栽培期間(発芽期間、育苗期間及び生育期間)にわたり、チマサンチュの養液栽培を行った。
 実験区(+Mg区)では、育苗期間にMg濃度を48ppmに調整したTO処方培養液を用いた。一方、比較区(Cont区)では、Mg濃度を12ppmに調整したTO処方培養液を用いた。実験区及び比較区のいずれにおいても培養液中の硝酸性N濃度は4.6ppmである。
 また、実験区及び比較区のいずれにおいても、生育期間はMg濃度を24ppmに調整したMg調整A処方培養液(EC=1.8、硝酸性N濃度=161ppm)を用いた。なお、栽培期間の全てにおいて、蛍光灯照明による明期12時間-暗期12時間の条件で栽培した。
<Experiment 3>
(1) Conditions The hydroponic cultivation of chimasanchu was carried out using the above-described nursery and growing apparatus for the above-mentioned cultivation period (germination period, nursery period and growth period).
In the experimental section (+ Mg section), a TO formulated culture solution in which the Mg concentration was adjusted to 48 ppm during the nursery period was used. On the other hand, in the comparison section (Cont section), a TO formulated culture solution in which the Mg concentration was adjusted to 12 ppm was used. The nitrate N concentration in the culture solution is 4.6 ppm in both the experimental section and the comparative section.
Further, in each of the experimental section and the comparative section, a Mg adjustment A prescription culture solution (EC = 1.8, nitrate N concentration = 161 ppm) in which the Mg concentration was adjusted to 24 ppm was used for the growth period. In addition, it grew on the conditions of 12 hours of light periods-12 hours of dark periods by fluorescent lamp lighting in all the cultivation periods.
(2)結果
 図8に、生育装置に移植した後の経過時間(週)と、チマサンチュの成長量との関係を示す。図8から明らかなように、実験区は比較区よりも移植後の成長及び発育が早く、実験区では移植後2.5週間目ほどで収穫ラインを超えたのに対して、比較区では移植後3.5週間を経過した時点で収穫ラインを超えた。以上の結果から、育苗期間における培養液中のMg濃度を増加させることにより、生育装置に移植してから収穫までの期間を短縮できることが分かった。
(2) Results FIG. 8 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the amount of growth of chimasanchu. As apparent from FIG. 8, the experimental area grew faster than the comparison area after transplantation, and the experimental area exceeded the harvest line at about 2.5 weeks after transplantation, whereas the comparison area was transplanted in the comparison area. The harvest line was crossed after 3.5 weeks. From the above results, it was found that the period from transplanting to the growth apparatus to harvesting can be shortened by increasing the Mg concentration in the culture solution during the nursery period.
<実験4>
(1)条件
 上述した育苗装置及び生育装置を用いて、上述した栽培期間(発芽期間、育苗期間及び生育期間)にわたり、チマサンチュの養液栽培を行った。
 第1実験区(+Mg区)では、育苗期間にMg濃度が48ppmのTO処方培養液を用い、生育期間にA処方培養液(EC=1.8、Mg濃度=24ppm)を用いた。
 第2実験区(++Mg区)では、育苗期間にMg濃度が48ppmのTO処方培養液を用い、生育期間にMg濃度を48ppmにしたMg調整A処方培養液(EC=1.8)を用いた。
 比較区(Cont区)では、育苗期間にMg濃度が12ppmのTO処方培養液を用い、生育期間にA処方培養液(EC=1.8、Mg濃度=24ppm)を用いた。
 また、第1実験区及び比較区では、栽培期間の全てにおいて、蛍光灯照明による明期12時間-暗期12時間の条件で栽培し、第2実験区では、栽培期間の全てにおいてLED(レイトロン株式会社製)照明による明期12時間-暗期12時間の条件で栽培した。
<Experiment 4>
(1) Conditions The hydroponic cultivation of chimasanchu was carried out using the above-described nursery and growing apparatus for the above-mentioned cultivation period (germination period, nursery period and growth period).
In the first experimental group (+ Mg group), a TO prescription culture solution with an Mg concentration of 48 ppm was used during the seedling raising period, and an A prescription culture solution (EC = 1.8, Mg concentration = 24 ppm) was used during the growth period.
In the second experiment group (++ Mg group), a Mg preparation A preparation culture solution (EC = 1.8) in which the Mg concentration was 48 ppm in the growth period was used using a TO preparation culture solution having a Mg concentration of 48 ppm in the nursery period. .
In the comparison section (Cont section), a TO prescription culture solution with an Mg concentration of 12 ppm was used during the seedling raising period, and an A prescription culture solution (EC = 1.8, Mg concentration = 24 ppm) was used during the growth period.
In addition, in the first experiment area and the comparison area, cultivation is carried out under the condition of 12 hours of light period with fluorescent light illumination 12 hours in the whole experiment period, and in the second experiment area, LED (Raytron in all the cultivation period They were grown under the conditions of 12 hours of light period and 12 hours of dark period by lighting.
(2)結果
 図9に、生育装置に移植した後の経過時間(週)と、チマサンチュの成長量との関係を示す。図9から明らかなように、第1及び第2実験区は比較区よりも移植後の成長及び発育が早かった。また、第1実験区よりも第2実験区の方が、移植後の成長及び発育が早く、第2実験区では移植後2週間目ほどで収穫ラインを超えたのに対して、第1実験区では移植後2.5週間を経過した時点で収穫ラインを超えた。以上の結果から、育苗期間において培養液中のMg濃度を増加させることにより、チマサンチュの収穫時期を早めることができることが分かった。また、育苗期間及び生育期間の両方において培養液中のMg濃度を高めることにより、チマサンチュの収穫時期をさらに早めることができ、特にこの場合は、生育装置に苗を移植した後の、収穫までの栽培期間を半減できることが分かった。
(2) Results FIG. 9 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the amount of growth of chimasanchu. As is clear from FIG. 9, the first and second experimental sections had faster growth and development after transplantation than the control section. In addition, in the second experimental group, the second experimental group grew faster than the first experimental group, and in the second experimental group, the harvest line was exceeded about two weeks after transplantation, whereas the first experimental group In the ward, the harvest line was exceeded 2.5 weeks after transplantation. From the above results, it was found that the harvest time of chimasanchu can be advanced by increasing the Mg concentration in the culture solution during the nursery period. In addition, by increasing the Mg concentration in the culture solution both in the seedling growth period and the growth period, it is possible to further accelerate the harvest time of chimasanchu, and in this case, in particular in this case, after transplanting the seedlings to the growth device, It turned out that the cultivation period can be halved.
<実験5>
 上述した育苗装置及び生育装置を用いて、上述した栽培期間(発芽期間、育苗期間及び生育期間)にわたり、チマサンチュの養液栽培を行った。
 実験区(++Mg区)では、育苗期間にMg濃度が48ppmのTO処方培養液(硝酸性N濃度=4.6ppm)を用いた。また、生育期間は、Mg濃度を48ppmにしたMg調整A処方培養液(EC=1.8、硝酸性N濃度=161ppm)を用いた。
 比較区(Cont区)では、Mg濃度が12ppmのTO処方培養液を用いた。また、生育期間は、A処方培養液(EC=1.8、Mg濃度=24ppm、硝酸性N濃度=161ppm)を用いた。
 また、実験区及び比較区のいずれにおいても、栽培期間の全てにおいて、LED(株式会社フィリップス・ジャパン製)照明による明期12時間-暗期12時間の条件で栽培した。
<Experiment 5>
Using the above-described seedling raising apparatus and growing apparatus, hydroponic cultivation of chimasanchu was carried out during the above-mentioned cultivation period (germination period, seedling raising period and growth period).
In the experimental section (++ Mg section), a TO prescription culture solution (nitrate N concentration = 4.6 ppm) having an Mg concentration of 48 ppm was used during the seedling raising period. In addition, for the growth period, a Mg-adjusted A formulated culture solution (EC = 1.8, nitrate N concentration = 161 ppm) in which the Mg concentration was 48 ppm was used.
In the comparison section (Cont section), a TO formulated culture solution with an Mg concentration of 12 ppm was used. In addition, for the growth period, A prescription culture solution (EC = 1.8, Mg concentration = 24 ppm, nitrate N concentration = 161 ppm) was used.
Further, in all of the experiment period and the comparison period, the cultivation was carried out under the conditions of 12 hours of light period by 12 hours of dark period and 12 hours of dark period by LED (manufactured by Philips Japan Co., Ltd.) lighting throughout the cultivation period.
(2)結果
 図10に、生育装置に移植した後の経過時間(週)と、チマサンチュの成長量との関係を示す。図10から明らかなように、実験区は比較区よりも移植後の成長及び発育が早く、実験区では移植後2週間目ほどで収穫ラインを超えたのに対して、比較区では移植後3.5週間を経過した時点で収穫ラインを超えた。
(2) Results FIG. 10 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the amount of growth of chimasanchu. As apparent from FIG. 10, the experimental area grew faster than the comparison area after growth and development, and the experimental area exceeded the harvest line about two weeks after transplantation, while the comparison area received 3 days after transplantation. The harvest line was exceeded after 5 weeks.
<実験6>
(1)条件
 上述した育苗装置及び生育装置を用いて、上述した栽培期間(発芽期間、育苗期間及び生育期間)にわたり、チマサンチュの養液栽培を行った。
 第1実験区(+Mg区)では、育苗期間にMg濃度が48ppmのTO処方培養液(硝酸性N濃度=4.6ppm)を用い、生育期間にA処方培養液(EC=1.8、Mg濃度=24ppm、硝酸性N濃度=161ppm)を用いた。
 第2実験区(++Mg区)では、育苗期間にMg濃度が48ppmのTO処方培養液(硝酸性N濃度=4.6ppm)を用い、生育期間(移植後)にMg濃度を48ppmに調整したMg調整A処方培養液(EC=1.8、硝酸性N濃度=161ppm)を用いた。
 比較区(Cont区)では、育苗期間にMg濃度が12ppmのTO処方培養液(硝酸性N濃度=4.6ppm)を用い、生育期間にA処方培養液(EC=1.8、Mg濃度=24ppm、硝酸性N濃度=161ppm)を用いた。
 また、第1実験区、第2実験区、及び比較区では、栽培期間の全てにおいて、蛍光灯照明による明期12時間-暗期12時間の条件で栽培した。
<Experiment 6>
(1) Conditions The hydroponic cultivation of chimasanchu was carried out using the above-described nursery and growing apparatus for the above-mentioned cultivation period (germination period, nursery period and growth period).
In the first experimental section (+ Mg section), a TO prescription culture solution (nitrate N concentration = 4.6 ppm) having an Mg concentration of 48 ppm in the nursery period and an A prescription culture solution (EC = 1.8, Mg) in the growth period Concentration = 24 ppm, Nitrate N concentration = 161 ppm) was used.
In the second experiment group (++ Mg group), the Mg concentration was adjusted to 48 ppm in the growth period (after transplantation) using a TO formulated culture solution (nitrate N concentration = 4.6 ppm) with an Mg concentration of 48 ppm in the nursery period Conditioned A prescription culture medium (EC = 1.8, nitrate N concentration = 161 ppm) was used.
In the comparison section (Cont section), using a TO prescription culture solution (nitrate N concentration = 4.6 ppm) with an Mg concentration of 12 ppm in the seedling raising period, an A prescription culture solution (EC = 1.8, Mg concentration = 24 ppm, Nitrate N concentration = 161 ppm) was used.
In addition, in the first experiment zone, the second experiment zone, and the comparison zone, cultivation was performed under the conditions of 12 hours of light period by 12 hours of dark period and 12 hours of dark period by fluorescent lamp illumination in all the cultivation periods.
(2)結果
 図11に、生育装置に移植した後の経過時間(週)と、チマサンチュの成長量との関係を示す。図11から明らかなように、第1及び第2実験区は比較区よりも移植後の成長及び発育が早かった。一方、第1実験区と第2実験区とでは、第2実験区の方が移植後の成長及び発育がやや早かったものの、その差はわずかであり、いずれも、移植後、2.5週目ほどで収穫ラインを超えた。これに対して比較区では、移植後3.6週間目ほどで収穫ラインを超えた。
(2) Results FIG. 11 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the amount of growth of chimasanchu. As is clear from FIG. 11, the first and second experimental sections had faster growth and development after transplantation than the control section. On the other hand, in the 1st and 2nd experimental groups, although the growth and development after the 2nd experimental group were a little faster after transplantation, the difference was slight, and both were 2.5 weeks after the transplantation. I crossed the harvest line with my eyes. On the other hand, in the comparison area, the harvest line was crossed around 3.6 weeks after transplantation.
 また、実験4~6の結果から、照明器具によっても生育装置に移植してからの成長量が異なることが分かった。具体的には、実験4~6の++Mg区はいずれも育苗期間、及び生育期間にMg濃度が48ppmの培養液を用いているが、照明器具として蛍光灯を用いた場合(実験6、図11)よりもLEDを用いた場合(実験4、図9、実験5、図10)の方が成長量が大きく、また、レイトロン株式会社製のLEDを用いた場合(実験4、図9)よりも株式会社フィリップス・ジャパン製のLEDを用いた場合(実験5、図10)の方が成長量が大きかった。 Further, from the results of Experiments 4 to 6, it was found that the amount of growth after implantation into the growth apparatus also differs depending on the lighting fixture. Specifically, although the ++ Mg group in the experiments 4 to 6 used a culture solution having an Mg concentration of 48 ppm during the seedling raising period and the growth period, when a fluorescent lamp was used as a lighting fixture (experiment 6, FIG. 11) The growth amount is larger in the case where LED is used (experiment 4, FIG. 9, experiment 5 and FIG. 10) than in case of), and the case where LED manufactured by Raytron Ltd. is used (experiment 4, FIG. 9) The growth amount was larger in the case of using LED manufactured by Philips Japan (Experiment 5, FIG. 10).
<実験7>
(1)条件
 上述した育苗装置及び生育装置を用いて、上述した栽培期間(発芽期間、育苗期間及び生育期間)にわたり、コマツナの養液栽培を行った。
 実験区(++Mg区)では、育苗期間にMg濃度が48ppmのTO処方培養液を用い(硝酸性N濃度=4.6ppm)、生育期間(移植後)にMg濃度を48ppmとしたMg調整A処方培養液(EC=1.8、硝酸性N濃度=161ppm)を用いた。
 比較区(Cont区)では、育苗期間にMg濃度が12ppmのTO処方培養液(硝酸性N濃度=4.6ppm)を用い、生育期間にA処方培養液(EC=1.8、Mg濃度=24ppm、硝酸性N濃度=161ppm)を用いた。
 実験区及び比較区では、栽培期間の全てにおいて、蛍光灯照明による明期12時間-暗期12時間の条件で栽培した。
<Experiment 7>
(1) Condition The hydroponic cultivation of Komatsuna was performed over the cultivation period (the germination period, the nursery period, and the growth period) mentioned above using the above-mentioned nursery equipment and growth device.
In the experimental section (++ Mg section), the Mg adjustment A prescription which made 48 ppm of Mg concentration in the growth period (after transplantation) using the TO prescription culture solution with 48 ppm of Mg concentration (nitrate N concentration = 4.6 ppm) A culture solution (EC = 1.8, nitrate N concentration = 161 ppm) was used.
In the comparison section (Cont section), using a TO prescription culture solution (nitrate N concentration = 4.6 ppm) with an Mg concentration of 12 ppm in the seedling raising period, an A prescription culture solution (EC = 1.8, Mg concentration = 24 ppm, Nitrate N concentration = 161 ppm) was used.
In the experimental section and the comparative section, the cultivation was carried out under the condition of 12 hours of light period by 12 hours of dark period by 12 hours of dark period by fluorescent lamp in all the cultivation period.
(2)結果
 図12に、生育装置に移植した後の経過時間(週)と、コマツナの成長量との関係を示す。図11から明らかなように、実験区では比較区よりも移植後の成長及び発育が早く、実験区では移植後2.7週間目ほどで収穫ラインを超えたのに対して、比較区では移植後3.5週間を経過した時点で収穫ラインを超えた。以上の結果から、育苗期間及び生育期間の両方においてMg濃度の高い培養液を用いることにより、コマツナの収穫時期を早めることができることが分かった。
(2) Results FIG. 12 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the amount of growth of Komatsuna. As apparent from FIG. 11, in the experimental area, the growth and development after transplantation was faster than in the comparative area, and in the experimental area, the harvest line was exceeded at around 2.7 weeks after transplantation, whereas in the comparative area, the transplantation was transplanted. The harvest line was crossed after 3.5 weeks. From the above results, it was found that the harvest time of Komatsuna can be advanced by using a culture solution having a high Mg concentration both in the nursery period and the growth period.
<実験8>
(1)条件
 上述した育苗装置及び生育装置を用いて、上述した栽培期間(発芽期間、育苗期間及び生育期間)にわたり、コスレタスの養液栽培を行った。
 実験区(++Mg区)では、育苗期間にMg濃度が48ppmのTO処方培養液(硝酸性N濃度=4.6ppm)を用い、生育期間(移植後)にMg濃度を48ppmとしたMg調整A処方培養液(EC=1.8、硝酸性N濃度=161ppm)を用いた。
 比較区(Cont区)では、育苗期間にMg濃度が12ppmのTO処方培養液(硝酸性N濃度=4.6ppm)を用い、生育期間にA処方培養液(EC=1.8、Mg濃度=24ppm、硝酸性N濃度=161ppm)を用いた。
 実験区及び比較区では、栽培期間の全てにおいて、蛍光灯照明による明期12時間-暗期12時間の条件で栽培した。
<Experiment 8>
(1) Conditions Using the above-described apparatus for growing seedlings and the apparatus for growing plants, hydroponics cultivation of Cos Lettuce was performed over the above-mentioned cultivation period (emergence period, period for raising seedlings and growth period).
In the experimental section (++ Mg section), Mg adjustment A prescription with the Mg concentration of 48 ppm in the growth period (after transplantation) using a TO prescription culture solution (nitrate N concentration = 4.6 ppm) with an Mg concentration of 48 ppm in the nursery period A culture solution (EC = 1.8, nitrate N concentration = 161 ppm) was used.
In the comparison section (Cont section), using a TO prescription culture solution (nitrate N concentration = 4.6 ppm) with an Mg concentration of 12 ppm in the seedling raising period, an A prescription culture solution (EC = 1.8, Mg concentration = 24 ppm, Nitrate N concentration = 161 ppm) was used.
In the experimental section and the comparative section, the cultivation was carried out under the condition of 12 hours of light period by 12 hours of dark period by 12 hours of dark period by fluorescent lamp in all the cultivation period.
(2)結果
 図13に、生育装置に移植した後の経過時間(週)と、コスレタスの成長量との関係を示す。図13から明らかなように、実験区では比較区よりも移植後の成長及び発育が早く、実験区では移植後3.2週目ほどで収穫ラインを超えたのに対して、比較区では移植後4週目で収穫ラインを超えた。以上の結果から、育苗期間及び生育期間の両方において培養液中のMg濃度を増加させることにより、コスレタスの収穫時期を早めることができることが分かった。
(2) Results FIG. 13 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the amount of growth of Cos Lettuce. As apparent from FIG. 13, in the experimental area, the growth and development after transplantation was faster than in the comparative area, and in the experimental area, the harvest line was exceeded at around 3.2 weeks after transplantation, while in the comparative area, the transplantation was transplanted. The harvest line was crossed four weeks later. From the above results, it was found that the harvest time of Cos Lettuce can be advanced by increasing the Mg concentration in the culture solution both in the nursery and growth periods.
<実験9>
(1)条件
 上述した育苗装置及び生育装置を用いて、上述した栽培期間(発芽期間、育苗期間及び生育期間)にわたり、グリーンバタビアの養液栽培を行った。
 実験区(++Mg区)では、育苗期間にMg濃度が48ppmのTO処方培養液(硝酸性N濃度=4.6ppm)を用い、生育期間(移植後)にMg濃度を48ppmとしたMg調整A処方培養液(EC=1.8、硝酸性N濃度=161ppm)を用いた。
 比較区(Cont区)では、育苗期間にMg濃度が12ppmのTO処方培養液(硝酸性N濃度=4.6ppm)を用い、生育期間にA処方培養液(EC=1.8、Mg濃度=24ppm、硝酸性N濃度=161ppm)を用いた。
 実験区及び比較区では、栽培期間の全てにおいて、蛍光灯照明による明期12時間-暗期12時間の条件で栽培した。
<Experiment 9>
(1) Conditions Using the above-described seedling raising apparatus and growing apparatus, hydroponic cultivation of Green Batavia was carried out over the above-mentioned cultivation period (germination period, seedling emergence period and growth period).
In the experimental section (++ Mg section), Mg adjustment A prescription with the Mg concentration of 48 ppm in the growth period (after transplantation) using a TO prescription culture solution (nitrate N concentration = 4.6 ppm) with an Mg concentration of 48 ppm in the nursery period A culture solution (EC = 1.8, nitrate N concentration = 161 ppm) was used.
In the comparison section (Cont section), using a TO prescription culture solution (nitrate N concentration = 4.6 ppm) with an Mg concentration of 12 ppm in the seedling raising period, an A prescription culture solution (EC = 1.8, Mg concentration = 24 ppm, Nitrate N concentration = 161 ppm) was used.
In the experimental section and the comparative section, the cultivation was carried out under the condition of 12 hours of light period by 12 hours of dark period by 12 hours of dark period by fluorescent lamp in all the cultivation period.
(2)結果
 図14に、生育装置に移植した後の経過時間(週)と、グリーンバタビアの成長量との関係を示す。図14から明らかなように、実験区では比較区よりも移植後の成長及び発育が早く、実験区では移植後3.7週目ほどで収穫ラインを超えたのに対して、比較区では移植後4週間を経過した時点でも収穫ラインを超えなかった。以上の結果から、育苗期間及び生育期間の両方において培養液中のMg濃度を増加させることにより、グリーンバタビアの収穫時期を早めることができることが分かった。
(2) Results FIG. 14 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the growth amount of Green Batavia. As apparent from FIG. 14, in the experimental area, the growth and development after transplantation was faster than in the comparison area, and in the experimental area, the harvest line was exceeded at around 3.7 weeks after transplantation, whereas in the comparison area, the transplantation was performed. The harvest line was not exceeded even after 4 weeks. From the above results, it was found that the harvest time of Green Batavia can be advanced by increasing the Mg concentration in the culture solution in both the seedling raising period and the growth period.
 実験1~9の結果から、程度の差はあるものの、種々の葉物野菜の養液栽培において従来、一般的に用いられてきたA処方培養液のMg濃度及び硝酸性N濃度と比べて、育苗期間に用いる培養液のMg濃度を高く、且つ、硝酸性N濃度が低くすることにより、生育装置に移植した後の成長量を高めることができることが確認された。さらに、育苗期間において上述した高Mg濃度・低硝酸性N濃度の培養液を用いた場合であって、生育期間において用いる培養液のMg濃度を高くし、且つ、硝酸性N濃度はA処方培養液と同程度もしくはそれ以上にすることにより、生育装置に移植した後の成長量を高めることができることが確認された。ここでは、チマサンチュ、コマツナ、コスレタス、グリーンバタビアを用いて実験を行ったが、これら以外の葉物野菜においても同様の効果が期待できることが推測された。 From the results of the experiments 1 to 9, although there is a difference, in comparison with the Mg concentration and the nitrate N concentration of the A prescription culture solution which has conventionally been generally used in hydroponic culture of various leafy vegetables, It was confirmed that the growth amount after transplantation into the growth apparatus can be increased by increasing the Mg concentration of the culture solution used for the seedling raising period and lowering the nitrate N concentration. Furthermore, in the case of using the culture solution of high Mg concentration and low nitrate N concentration described above in the nursery period, the Mg concentration of the culture solution used in the growth period is increased, and the nitrate N concentration is A prescription culture. It was confirmed that the amount of growth after transplantation into the growth apparatus can be increased by making the same as or higher than the liquid. Here, experiments were conducted using chima sanchu, komatsuna, cos lettuce, and green batavia, but it was speculated that similar effects could be expected with leafy vegetables other than these.
<実験10>
(1)条件
 上述した育苗装置及び生育装置を用いて、上述した栽培期間(発芽期間、育苗期間及び生育期間)にわたり、チマサンチュ、コマツナ、コスレタス、グリーンバタビアの養液栽培を行った。
 いずれの葉物野菜も、育苗期間にはMg濃度を48ppmにしたTO処方培養液(硝酸性N濃度=4.6ppm)を用い、生育期間にはMg濃度を48ppmにしたMg調整A処方培養液(EC=1.8、硝酸性N濃度=161ppm)を用いた。
<Experiment 10>
(1) Conditions The hydroponic cultivation of chimasanchu, komatsuna, cos lettuce, and green batavia was carried out using the above-described seedling raising apparatus and growing apparatus, over the aforementioned cultivation period (germination period, seedling emergence period and growth period).
For all leafy vegetables, a Mg preparation A preparation culture solution with a Mg concentration of 48 ppm in the growth period, using a TO formulation culture solution (nitrate N concentration = 4.6 ppm) with a Mg concentration of 48 ppm in the nursery period. (EC = 1.8, Nitrate N concentration = 161 ppm) was used.
(2)結果
 図15は、生育装置に移植してから3週間目に4種類の葉物野菜を収穫し、各葉物野菜に含まれるMgの量(mg/100g生重量)をICP(Inductively Coupled Plasma)発光分析装置で測定した結果を示す。図15には、日本食品標準成分表(2015年)に掲載されている各野菜のMgの量、及び、日本食品標準成分表に掲載されているMgの量に対する本実験で収穫された各葉物野菜のMgの量の比率(増加倍数)を示している。図15から分かるように、全ての葉物野菜においてMgの含有量の増加が確認された。
(2) Results FIG. 15 shows that three types of leafy vegetables are harvested three weeks after transplantation into the growth apparatus, and the amount of Mg (mg / 100 g fresh weight) contained in each leafy vegetable is ICP (Inductively) The result measured by (coupled plasma) luminescence analyzer is shown. FIG. 15 shows the amount of Mg of each vegetable listed in the Japanese Food Standard Composition Table (2015), and each leaf harvested in this experiment for the amount of Mg listed in the Japanese Food Standard Composition Table It shows the ratio (increase rate) of the amount of Mg of vegetable. As can be seen from FIG. 15, an increase in the content of Mg was confirmed in all leafy vegetables.
<実験11>
(1)条件
 上述した育苗装置及び生育装置を用いて、上述した栽培期間(発芽期間、育苗期間及び生育期間)にわたり、コマツナの養液栽培を行った。
 この実験では、育苗期間にMg濃度が48ppmのTO処方培養液を用い、生育期間にMg濃度を24-120ppmとしたMg調整A処方培養液(EC=1.8、硝酸性N濃度=161ppm)を用いた。
 実験では、栽培期間の全てにおいて、蛍光灯照明による明期12時間-暗期12時間の条件で栽培した。
<Experiment 11>
(1) Condition The hydroponic cultivation of Komatsuna was performed over the cultivation period (the germination period, the nursery period, and the growth period) mentioned above using the above-mentioned nursery equipment and growth device.
In this experiment, a Mg-adjusting A prescription culture solution (EC = 1.8, nitric acid N concentration = 161 ppm) in which the Mg concentration was 48 ppm and the Mg concentration was 24 to 120 ppm in the growth period was used. Was used.
In the experiment, the cultivation was carried out under the condition of 12 hours of light period by 12 hours of dark period and 12 hours of dark period by fluorescent light in all the cultivation period.
(2)結果
 図16は、生育期間を経て収穫したコマツナ(つまり、生育装置に移植した後、3週間目に収穫したコマツナ)の成長量(生重量(g fw/3W)と、生育期間に用いた培養液中のMg濃度との関係を示している。グラフ上の各点は3個体の平均値である。図16から分かるように、生育期間に用いられる培養液中のMg濃度が24ppm~72ppmの範囲ではMg濃度の増加に伴い成長量が増加したが、72ppm~120ppmの範囲ではMg濃度の増加に伴い成長量が低下した。
(2) Results FIG. 16 shows the amount of growth (raw weight (g fw / 3 W)) of Komatsuna harvested through the growing period (that is, Komatsuna harvested 3 weeks after transplanting to the growing apparatus) and the growing period The graph shows the relationship between the concentration of Mg in the culture solution used and each point on the graph is the average value of three individuals, as can be seen from Fig. 16. The concentration of Mg in the culture solution used during the growth period is 24 ppm. In the range of ̃72 ppm, the growth amount increased with the increase of the Mg concentration, but in the range of 72 ppm ̃120 ppm, the growth amount decreased with the increase of the Mg concentration.
 上述したように、従来処方の培養液中のMg濃度は10~40ppm、硝酸性N濃度は60~240ppmであることから、少なくとも図16において、Mg濃度が40ppmのときの成長量よりも多ければ、従来処方よりも成長が促進されたと考えられる。つまり、生育期間においては、Mg濃度が48ppm~120ppmの培養液を用いることにより、従来よりもコマツナの成長を早めることができることが推測された。 As described above, since the concentration of Mg in the culture solution of the conventional formulation is 10 to 40 ppm and the concentration of nitrate N is 60 to 240 ppm, at least in FIG. Growth is considered to be promoted more than conventional prescriptions. That is, it was speculated that the growth of Komatsuna can be advanced earlier than in the past by using a culture solution having an Mg concentration of 48 ppm to 120 ppm in the growing period.
 また、コマツナの収穫ライン(収穫に適した生重量)は約80gであるところ、本実験において3週間目の生重量が収穫ラインを超えるMg濃度は48ppm~120ppmの範囲であった。このことより、生育期間においてMg濃度が48ppm~120ppmの培養液を用いれば、通常は4週間の収穫期間を3週間もしくはそれよりも短い期間に短縮することができることが分かる。 Also, the harvest line (the fresh weight suitable for harvest) of Komatsuna was about 80 g, and in this experiment, the Mg concentration at the 3rd week of the present week exceeded the harvest line in the range of 48 ppm to 120 ppm. From this, it can be seen that if a culture solution having an Mg concentration of 48 ppm to 120 ppm in the growth period is used, the harvest period of 4 weeks can usually be shortened to 3 weeks or shorter.
<実験12>
(1)条件
 上述した育苗装置及び生育装置を用いて、上述した栽培期間(発芽期間、育苗期間及び生育期間)にわたり、リーフレタス(キク科)の一種であるグリーンウェーブの養液栽培を行った。
 実験区(++Mg区)では、育苗期間にMg濃度が48ppmのTO処方培養液(硝酸性N濃度=4.6ppm)を用い、生育期間にMg濃度を72ppmに調整したMg調整A処方培養液(EC=1.8、硝酸性N濃度=161ppm)を用いた。
 比較区(Cont区)では、育苗期間にMg濃度が12ppmのTO処方培養液(硝酸性N濃度=4.6ppm)を用い、生育期間にMg濃度が24ppmのA処方培養液(EC=1.8)を用いた。
 実験区及び比較区では、栽培期間の全てにおいて、LED(レイトロン株式会社製)照明による明期12時間-暗期12時間の条件で栽培した。
Experiment 12
(1) Conditions Using the above-described seedling raising apparatus and growing apparatus, hydroponic cultivation of Green Wave, which is a type of leaf lettuce (Asteraceae), was performed over the above-mentioned cultivation period (germination period, seedling emergence period and growth period). .
In the experimental section (++ Mg section), a Mg-adjusted A-prescription culture solution (Mg concentration was adjusted to 72 ppm using a TO prescription culture solution (nitrate N concentration = 4.6 ppm) with an Mg concentration of 48 ppm during the nursery period EC = 1.8, Nitrate N concentration = 161 ppm) was used.
In the comparison section (Cont section), using a TO prescription culture solution (nitrate N concentration = 4.6 ppm) with an Mg concentration of 12 ppm in the seedling raising period, an A prescription culture solution with an Mg concentration of 24 ppm in the growth period (EC = 1. 8) was used.
In the experimental section and the comparative section, cultivation was carried out under the conditions of 12 hours of light period by 12 hours of dark period and 12 hours of dark period by LED (manufactured by Raytron Co., Ltd.) lighting in all the cultivation period.
(2)結果
 図17に、生育装置に移植した後の経過時間(週)と、グリーンウェーブの成長量との関係を示す。図17から明らかなように、実験区は比較区よりも移植後の成長及び発育が早く、実験区では移植後2.3週間目ほどで収穫ラインを超えたのに対して、第1実験区では移植後3.7週間を経過した時点で収穫ラインを超えた。以上の結果から、育苗期間及び生育期間の両方において培養液中のMg濃度を増加させることにより、グリーンウェーブの収穫時期を早めることができることが分かった。
(2) Results FIG. 17 shows the relationship between the elapsed time (weeks) after transplantation into the growth apparatus and the amount of green wave growth. As apparent from FIG. 17, the experimental group had faster growth and development after transplantation than the control group, and the experimental group exceeded the harvest line at about 2.3 weeks after transplantation, while the first experimental group was In the case of 3.7 weeks after transplantation, the harvest line was crossed. From the above results, it was found that the harvest time of green wave can be advanced by increasing the Mg concentration in the culture solution both in the seedling raising period and in the growth period.
<実験13>
(1)条件
 上述した育苗装置及び生育装置を用いて、発芽期間、育苗期間、生育期間、及び収穫前期間(3日間)にわたり、コマツナ及びグリーンバタビアの養液栽培を行った。
 この実験では、上述した実験7の実験区(++Mg区)と同じ条件で、発芽期間、育苗期間及び生育期間の栽培を行った。そして、収穫前期間は、生育期間と同じ生育装置を用い、培養液及び照明条件を変更して養液栽培を行った。
<Experiment 13>
(1) Conditions Using the above-described apparatus for growing seedlings and a growing apparatus, hydroponic cultivation of Komatsuna and Green Batavia was carried out over a germination period, a period for raising seedlings, a growing period, and a period before harvesting (3 days).
In this experiment, cultivation of a germination period, a seedling raising period, and a growing period was performed under the same conditions as the experiment group (++ Mg group) of Experiment 7 described above. Then, in the pre-harvest period, using the same growth apparatus as in the growth period, the culture solution and the lighting conditions were changed to carry out hydroponic cultivation.
(2)収穫前期間の条件
 培養液として、上述したA処方培養液から硝酸性窒素及びアンモニア性窒素を除去するとともに、塩化カルシウムを添加して、窒素をほとんど含まず、カルシウムの含有量が30、50、100、120、140mg/Lである養液(収穫前処理養液)を用いた。ここで、「窒素をほとんど含まない」とは、窒素の含有量が2.2g/mL以下であることをいう。なお、収穫前処理養液に含まれる窒素の量はできるだけ少ないことが好ましい。従って、生育期間から収穫前期間に移行する際は、生育期間に用いた培養液に含まれていた窒素が生育装置に残存しないように、生育装置の容器本体及び供給路を十分に洗浄した。
 また、青色LEDを用いて波長が490nm以下の可視光を24時間、連続的に照明した。このときの光量子束密度は200μmol/m/秒であった。
(2) Conditions for pre-harvest period As the culture solution, nitrate nitrogen and ammonia nitrogen are removed from the above-mentioned A prescription culture solution, calcium chloride is added, and almost no nitrogen is contained, and the calcium content is 30 The nutrient solution (pre-harvest treatment nutrient solution) which is 50, 100, 120, 140 mg / L was used. Here, "substantially free of nitrogen" means that the content of nitrogen is 2.2 g / mL or less. In addition, it is preferable that the quantity of nitrogen contained in pre-harvest treatment nutrient solution is as small as possible. Therefore, when transitioning from the growing period to the pre-harvest period, the container body and the supply path of the growing device were sufficiently washed so that the nitrogen contained in the culture solution used in the growing period did not remain in the growing device.
In addition, visible light with a wavelength of 490 nm or less was continuously illuminated for 24 hours using a blue LED. The photon flux density at this time was 200 μmol / m 2 / sec.
(3)結果
 上述した収穫前処理液を用いて収穫前期間、養液栽培を行った後、収穫したコマツナ及びグリーンバタビア(以下、「実験区」)の地上部の生重量、ORAC(Oxygen Radical Absorbance Capacity:活性酸素吸収能力)値、及び抗酸化成分の量を測定した。また、比較のため、生育期間を経て(つまり、収穫前期間を経ずに)収穫したコマツナ及びグリーンバタビア(以下「比較区」とする)の地上部の生重量、ORAC値、及び抗酸化成分の量を測定した。
 その結果、地上部の生重量は、コマツナ及びグリーンバタビアのいずれについても、実験区と比較区の間で大きな差はなかった。一方、ORAC値及び抗酸化成分の量は、実験区の方が比較区よりも大きかった。
(3) Results After performing hydroponic cultivation for a period before harvest using the above-mentioned pre-harvest treatment solution, fresh weight of above-ground parts of Komatsuna and Green Batavia (hereinafter referred to as “experimental section”), ORAC (Oxygen Radical) Absorbance Capacity (active oxygen absorption capacity) value, and the amount of antioxidant component were measured. Also, for comparison, fresh weight, ORAC value, and antioxidant component of above-ground parts of Komatsuna and Green Batavia (hereinafter referred to as “comparative section”) harvested after the growing period (that is, without passing the pre-harvest period) The amount of was measured.
As a result, the fresh weight of the above-ground parts did not differ greatly between the experimental area and the comparison area for either Komatsuna or Green Batavia. On the other hand, the ORAC value and the amount of the antioxidant component were larger in the experimental section than in the comparative section.
 図18及び図19に、実験区の例として、カルシウムの含有量が50mg/Lの収穫前処理養液を用いて収穫前期間、養液栽培を行った後、収穫したコマツナ及びグリーンバタビアに含まれていた抗酸化成分の量及びORAC値を示す。図18及び図19には、比較区のコマツナ及びグリーンバタビアに含まれていた抗酸化成分の量及びORAC値も示している。 In Fig. 18 and Fig. 19, as an example of the experimental section, after being subjected to nutrient solution cultivation for a pre-harvest period using a pre-harvest treatment nutrient solution with a calcium content of 50 mg / L, it is included in harvested Komatsuna and Green Batavia It shows the amount of antioxidant component and the ORAC value. FIGS. 18 and 19 also show the amounts of antioxidant components and ORAC values contained in Komatsuna and Green Batavia in the comparison section.
 図18及び図19から明らかなように、実験区のコマツナ及びグリーンバタビアは、いずれも比較区に比べて抗酸化成分が多く含まれており、抗酸化成分の中でも特にグルタチオン(還元型)の量が増大していた。
 なお、図18及び図19では、カルシウムの含有量が50mg/Lの収穫前処理養液を用いた例を示したが、カルシウムの含有量が50~120mg/Lの範囲であれば、ほぼ同様の結果が得られた。
As is clear from FIG. 18 and FIG. 19, Komatsuna and Green Batavia in the experimental section both contain more antioxidant components than the comparative section, and among the antioxidant components, the amount of glutathione (reduced type) is particularly high. Was increasing.
18 and 19 show an example using a pre-harvest solution with a calcium content of 50 mg / L, but if the calcium content is in the range of 50 to 120 mg / L, almost the same Results were obtained.
 図20は、通常の栽培方法で得られた野菜に含まれるグルタチオンの含有量を示している。この図20に示されている数値から、本実験で得られたコマツナ及びグリーンバタビアに含まれるグルタチオンの含有量は、通常の野菜に比べて非常に多いことは明らかである。 FIG. 20 shows the content of glutathione contained in vegetables obtained by a common cultivation method. From the numerical values shown in FIG. 20, it is clear that the content of glutathione contained in Komatsuna and Green Batavia obtained in this experiment is much higher than that of normal vegetables.
 グルタチオン(還元型)は、過酸化物や活性酸素種を還元して消去する機能、解毒作用等を有することが知られており、以下に示す作用を有する医薬品、化粧品及びサプリメントに利用されている。
(a)医薬品:
慢性肝疾患における肝機能の改善
急性湿疹、慢性湿疹、皮膚炎、じんま疹などの炎症抑制
角膜炎、老人性白内障、角膜損傷の治療
パーキンソン病の治療
(b)化粧品成分
メラニン色素の形成抑制(美白効果)
ビタミンCの再生
アンチエイジング
(c)サプリメント
肝臓の解毒作用を高める
アルコールによる二日酔い防止
Glutathione (reduced form) is known to have the function of reducing and eliminating peroxides and reactive oxygen species, having a detoxifying effect, etc., and is used in medicines, cosmetics and supplements having the following effects. .
(A) Pharmaceutical products:
Improvement of liver function in chronic liver disease Treatment of acute eczema, chronic eczema, dermatitis, inflammation suppressing keratitis such as urticaria, senile cataract, treatment of corneal damage Parkinson's disease treatment (b) suppression of formation of melanin pigment (cosmetic component) Whitening effect)
Vitamin C rejuvenation anti-aging (c) supplements Anti-harvest effect with alcohol that enhances liver detoxification
 実験13で得られたコマツナ及びグリーンバタビアはグルタチオンを多く含むことから、これらの野菜は、上述した医薬品、化粧品、サプリメントの材料として有用であり、また、これらの野菜自身が機能性野菜として有用となる。さらに、実験10の結果より、実験13で得られたコマツナ及びグリーンバタビアは、従来の野菜に比べてMgを多く含むことが見込まれる。このことから、実験13で得られたコマツナ及びグリーンバタビアは、グルタチオン及びMgの両方を多く含む、優れた機能性野菜となり得る。 Since Komatsuna and Green Batavia obtained in Experiment 13 contain a large amount of glutathione, these vegetables are useful as materials for the above-mentioned pharmaceuticals, cosmetics, and supplements, and these vegetables themselves are useful as functional vegetables. Become. Furthermore, from the result of Experiment 10, Komatsuna and Green Batavia obtained in Experiment 13 are expected to contain more Mg than conventional vegetables. From this, Komatsuna and Green Batavia obtained in Experiment 13 can be excellent functional vegetables containing a large amount of both glutathione and Mg.
 図21は、コマツナ、コマツナ紫、チマサンチュを、一般的な従来処方による培養液を用いて育苗期間(播種後4日目から14日目まで)と生育期間(移植後4週間)栽培した後、3日間、収穫前処理を施したときのカルシウム量(Ca量)と抗酸化能力(ORAC(Oxygen Radical Absorbance Capacity)値)の関係を示している(特許文献2参照)。収穫前処理で用いた培養液は、Ca量が0~140mg/L、窒素量が2.0mg/Lとなるように、硫酸カルシウムを水に溶解して調製されたものである。 Fig. 21: After cultivating seedlings (from 4 to 14 days after sowing) and a growing period (4 weeks after transplantation) using a culture solution according to a general conventional formulation, Komatsuna, Komatsuna purple, Chimasanchu, The relationship between the amount of calcium (the amount of Ca) and the antioxidant capacity (ORAC (Oxygen Radical Absorbance Capacity) value) when the pre-harvest treatment is performed for 3 days is shown (see Patent Document 2). The culture solution used in the pre-harvest treatment is prepared by dissolving calcium sulfate in water so that the amount of Ca is 0 to 140 mg / L and the amount of nitrogen is 2.0 mg / L.
 図21から分かるように、一般的な従来処方による培養液を用いて育苗期間及び生育期間の養液栽培を行った場合でも、収穫前期間に収穫前処理養液を用いた養液栽培を行うことにより、コマツナ以外の野菜(チマサンチュ)についても、抗酸化成分が増加した。このことから、コマツナ、グリーンバタビア以外の野菜であっても、実験13と同様の結果が得られることが推測された。 As can be seen from FIG. 21, even when hydroponic cultivation is carried out using the culture solution according to the general conventional formulation, the hydroponic cultivation using the pre-harvest treatment hydroponic fluid is performed in the pre-harvest period. As a result, the antioxidant component of vegetables other than Komatsuna (Chimasanchu) also increased. From this, it was estimated that results similar to those of Experiment 13 were obtained even with vegetables other than Komatsuna and Green Batavia.
<その他>
 本発明は上記した実施例に限定されるものではなく、適宜の変更が可能である。
 例えば、上記実施例では、チマサンチュ、コマツナ、コスレタス、グリーンバタビア、チンゲンサイ、リーフレタス、シュンギクを用いたが、これら以外の葉物野菜にも本発明は適用可能である。また、葉物野菜に限らず、ダイコン、ニンジン、カブ、ゴボウ、レンコン、ショウガ、ジャガイモ、サトイモ、サツマイモ、ヤマイモ、タマネギ等の根菜類、キュウリ、カボチャ、スイカ、メロン、トマト、ナス、ピーマン、オクラ、サヤインゲン、ソラマメ、エンドウ、エダマメ、シシトウ等の果菜類等、野菜類全般に適用可能であり、野菜以外の例えば花卉にも適用可能である。要するに、植物生理学の原理を考えると、本発明は、養液栽培が可能な栽培植物全般に適用可能である。
<Others>
The present invention is not limited to the above-described embodiments, and appropriate modifications are possible.
For example, in the above examples, chimasanchu, komatsuna, kos Lettuce, green batavia, bok choy, leaf lettuce, shung chrysanthemum were used, but the present invention can be applied to leafy vegetables other than these. In addition, not only leafy vegetables, root vegetables such as radish, carrot, turnip, burdock, lotus root, ginger, potato, taro, sweet potato, sweet potato, yam, onion, cucumber, pumpkin, watermelon, melon, tomato, eggplant, pepper, okra The present invention is applicable to all kinds of vegetables such as green beans such as green beans, fava beans, peas, green beans and sweet peppers, and also applicable to, for example, flower buds other than vegetables. In short, considering the principle of plant physiology, the present invention is applicable to all cultivated plants capable of hydroponic culture.
 葉物野菜の葉に含まれるMgの量が多くなると、食したときに苦みを感じることが多い。従って、葉物野菜を養液栽培する場合であって、生育期間において従来処方よりもMg濃度が高い培養液を用いる場合は、例えば生育期間の前半にのみMg濃度の高い培養液を用い、後半(例えば収穫前の1週間程度)は従来処方のMg濃度の培養液を用いるようにしても良い。このようにすることで、収穫された葉物野菜の葉に含まれるMgの量を抑えることができる可能性がある。 When the amount of Mg contained in leaves of leafy vegetables is large, it often feels bitter when eaten. Therefore, when leafy vegetables are subjected to hydroponic culture and a culture solution having a Mg concentration higher than that of the conventional formulation is used during the growth period, for example, a culture solution having a high Mg concentration is used only in the first half of the growth period. For example (about one week before harvesting), a culture solution with a conventional formulation of Mg concentration may be used. By doing this, it is possible to reduce the amount of Mg contained in the leaves of harvested leafy vegetables.

Claims (8)

  1.  播種から収穫までの期間、植物の生育に必要な肥料成分を含む培養液を用いて栽培する栽培植物の養液栽培方法であって、
     前記期間を、育苗装置にて播種から発芽まで栽培する期間である発芽期間、前記育苗装置にて発芽した苗を所定の大きさに成長するまで該育苗装置で栽培する期間である育苗期間、前記所定の大きさに成長した苗を前記育苗装置から生育装置に移植し、該生育装置にて収穫するまで栽培する期間である生育期間に分けたとき、
     前記育苗期間において、マグネシウムイオンの濃度が24ppm~120ppmの範囲にあり、硝酸性窒素の濃度が4~50ppmの範囲にある育苗用培養液を用いることを特徴とする栽培植物の養液栽培方法。
    A method for cultivating cultivated plants using a culture solution containing a fertilizer component necessary for plant growth during the period from sowing to harvesting, which comprises:
    A germination period, which is a period in which the above-mentioned period is grown from seeding to germination in a seedling-growing device, a period in which the seedling-growing period is grown in the seedling-growing device until the sprouted seedlings are grown to a predetermined size. When a seedling grown to a predetermined size is transplanted from the above-mentioned seedling-growing device to a growing device and divided into growing periods which are periods until cultivation is carried out by the growing device,
    A method for cultivating cultivated plants, comprising using a culture solution for raising seedlings wherein the concentration of magnesium ions is in the range of 24 ppm to 120 ppm and the concentration of nitrate nitrogen is in the range of 4 to 50 ppm in the growing period.
  2.  播種から収穫までの期間、植物の生育に必要な肥料成分を含む培養液を用いて栽培する栽培植物の養液栽培方法であって、
     前記期間を、育苗装置にて播種から発芽まで栽培する期間である発芽期間、前記育苗装置にて発芽した苗を所定の大きさに成長するまで該育苗装置で栽培する期間である育苗期間、前記所定の大きさに成長した苗を前記育苗装置から生育装置に移植し、該生育装置にて収穫するまで栽培する期間である生育期間に分けたとき、
     前記生育期間において、マグネシウムイオンの濃度が48ppm~120ppmの範囲にあり、硝酸性窒素の濃度が150ppm~200ppmの範囲にある生育用培養液を用いる、栽培植物の養液栽培方法。
    A method for cultivating cultivated plants using a culture solution containing a fertilizer component necessary for plant growth during the period from sowing to harvesting, which comprises:
    A germination period, which is a period in which the above-mentioned period is grown from seeding to germination in a seedling-growing device, a period in which the seedling-growing period is grown in the seedling-growing device until the sprouted seedlings are grown to a predetermined size. When a seedling grown to a predetermined size is transplanted from the above-mentioned seedling-growing device to a growing device and divided into growing periods which are periods until cultivation is carried out by the growing device,
    A method for cultivating cultivated plants using the culture broth for growth, wherein the concentration of magnesium ions is in the range of 48 ppm to 120 ppm and the concentration of nitrate nitrogen is in the range of 150 ppm to 200 ppm in the growing period.
  3.  発芽した苗を所定の大きさに成長するまで育苗装置で養液栽培するときに用いられる培養液であって、マグネシウムイオンの濃度が24ppm~120ppmの範囲にあり、硝酸性窒素の濃度が4~50ppmの範囲にある、養液栽培用培養液。 A culture solution used for hydroponic cultivation with a nursery apparatus until the sprouted seedlings grow to a predetermined size, wherein the concentration of magnesium ion is in the range of 24 ppm to 120 ppm, and the concentration of nitrate nitrogen is 4 to Nutrient culture broth in the range of 50 ppm.
  4.  所定の大きさに成長した苗を生育装置で養液栽培するときに用いられる培養液であって、マグネシウムイオンの濃度が48ppm~120ppmの範囲にあり、硝酸性窒素の濃度が150ppm~200ppmの範囲にある、養液栽培用培養液。 A culture solution used for hydroponic cultivation of seedlings grown to a predetermined size with a growth apparatus, wherein the concentration of magnesium ion is in the range of 48 ppm to 120 ppm, and the concentration of nitrate nitrogen is in the range of 150 ppm to 200 ppm The culture broth for nutrient solution cultivation.
  5.  請求項1又は2に記載の養液栽培方法を用いて葉物野菜類を栽培することにより高マグネシウム葉物野菜類を製造する方法。 A method for producing high-magnesium leafy vegetables by cultivating leafy vegetables using the nutrient solution cultivation method according to claim 1 or 2.
  6.  播種から収穫までの期間、植物の生育に必要な肥料成分を含む培養液を用いて栽培する栽培植物の養液栽培方法であって、
     前記期間を、育苗装置にて播種から発芽まで栽培する期間である発芽期間、前記育苗装置にて発芽した苗を所定の大きさに成長するまで該育苗装置で栽培する期間である育苗期間、前記所定の大きさに成長した苗を前記育苗装置から生育装置に移植し、該生育装置にて、収穫時よりも所定時間前まで生育する期間である生育期間、該生育装置にて前記収穫時よりも所定時間前から該収穫時まで栽培する期間である収穫前期間に分けたとき、
     前記育苗期間において、マグネシウムイオンの濃度が24ppm~120ppmの範囲にあり、硝酸性窒素の濃度が4~50ppmの範囲にある育苗用培養液を用い、
     前記収穫前期間において、窒素を含有せず、カルシウムを含有する養液を用い、さらに波長が490nm以下の可視光を照射することを特徴とする栽培植物の養液栽培方法。
    A method for cultivating cultivated plants using a culture solution containing a fertilizer component necessary for plant growth during the period from sowing to harvesting, which comprises:
    A germination period, which is a period in which the above-mentioned period is grown from seeding to germination in a seedling-growing device, a period in which the seedling-growing period is grown in the seedling-growing device until the sprouted seedlings are grown to a predetermined size. Seedlings grown to a predetermined size are transplanted from the seedling raising apparatus to a growing apparatus, and the growing apparatus is a growing period which is a period during which a predetermined time before growing is harvested, the growing apparatus from the harvesting time When divided into the pre-harvest period which is the period of cultivation from the predetermined time before to the harvest time,
    Using a culture solution for raising seedlings wherein the concentration of magnesium ions is in the range of 24 ppm to 120 ppm and the concentration of nitrate nitrogen is in the range of 4 to 50 ppm during the raising period;
    In the pre-harvest period, using a nutrient solution not containing nitrogen but containing calcium, and further irradiating visible light having a wavelength of 490 nm or less, there is provided a method for cultivating cultivated plants, comprising the steps of:
  7.  播種から収穫までの期間、植物の生育に必要な肥料成分を含む培養液を用いて栽培する栽培植物の養液栽培方法であって、
     前記期間を、育苗装置にて播種から発芽まで栽培する期間である発芽期間、前記育苗装置にて発芽した苗を所定の大きさに成長するまで該育苗装置で栽培する期間である育苗期間、前記所定の大きさに成長した苗を前記育苗装置から生育装置に移植し、該生育装置にて、収穫時よりも所定時間前まで生育する期間である生育期間、該生育装置にて前記収穫時よりも所定時間前から該収穫時まで栽培する期間である収穫前期間に分けたとき、
     前記生育期間において、マグネシウムイオンの濃度が48ppm~120ppmの範囲にあり、硝酸性窒素の濃度が150ppm~200ppmの範囲にある生育用培養液を用い、
     前記収穫前期間において、窒素を含有せず、カルシウムを含有する養液を用い、さらに波長が490nm以下の可視光を照射することを特徴とする栽培植物の養液栽培方法。
    A method for cultivating cultivated plants using a culture solution containing a fertilizer component necessary for plant growth during the period from sowing to harvesting, which comprises:
    A germination period, which is a period in which the above-mentioned period is grown from seeding to germination in a seedling-growing device, a period in which the seedling-growing period is grown in the seedling-growing device until the sprouted seedlings are grown to a predetermined size. Seedlings grown to a predetermined size are transplanted from the seedling raising apparatus to a growing apparatus, and the growing apparatus is a growing period which is a period during which a predetermined time before growing is harvested, the growing apparatus from the harvesting time When divided into the pre-harvest period which is the period of cultivation from the predetermined time before to the harvest time,
    In the growing period, a growth medium having a concentration of magnesium ion in the range of 48 ppm to 120 ppm and a concentration of nitrate nitrogen in the range of 150 ppm to 200 ppm is used.
    In the pre-harvest period, using a nutrient solution not containing nitrogen but containing calcium, and further irradiating visible light having a wavelength of 490 nm or less, there is provided a method for cultivating cultivated plants, comprising the steps of:
  8.  請求項6又は7に記載の養液栽培法方を用いて葉物野菜類を栽培することにより高グルタチオン葉物野菜類を製造する方法。 A method for producing high glutathione leafy vegetables by cultivating leafy vegetables using the liquid nutrient cultivation method according to claim 6 or 7.
PCT/JP2019/000333 2018-01-15 2019-01-09 Nutrient liquid cultivation method for cultivated plant, and culture solution for nutrient liquid cultivation WO2019139031A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019564716A JP7025045B2 (en) 2018-01-15 2019-01-09 Hydroponic cultivation method for cultivated plants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018004568 2018-01-15
JP2018-004568 2018-01-15

Publications (1)

Publication Number Publication Date
WO2019139031A1 true WO2019139031A1 (en) 2019-07-18

Family

ID=67218688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000333 WO2019139031A1 (en) 2018-01-15 2019-01-09 Nutrient liquid cultivation method for cultivated plant, and culture solution for nutrient liquid cultivation

Country Status (2)

Country Link
JP (1) JP7025045B2 (en)
WO (1) WO2019139031A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113016591A (en) * 2019-12-25 2021-06-25 松下知识产权经营株式会社 Plant cultivation method
CN114532199A (en) * 2022-01-26 2022-05-27 河北农业大学 Nutrient solution efficient lettuce seedling growing method
JP2023001813A (en) * 2021-06-21 2023-01-06 株式会社エコタイプ次世代植物工場 Hydroponic culture method for Panax ginseng and nutrient solution for hydroponic culture
CN115572191A (en) * 2021-07-05 2023-01-06 广西百色国家农业科技园区管理委员会 Shellfish pumpkin soilless culture nutrient solution and culture method
US11638405B2 (en) 2019-12-20 2023-05-02 Kyocera Corporation Vegetable production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229921A (en) * 1985-02-21 1987-02-07 ニユ−トリエント フイルム テクノロジ− リミテツド Hydroponic method
JP2002153151A (en) * 2000-11-22 2002-05-28 Taiyo Kogyo Co Ltd Method for raising paddy rice seedling by hydroponics
JP2012183062A (en) * 2011-02-16 2012-09-27 Akita Prefectural Univ Fertilizer for hydroponics of low potassium vegetable and hydroponics method of low potassium vegetable using the fertilizer
CN104770180A (en) * 2015-04-22 2015-07-15 无锡市三阳生态农业发展有限公司 Seedling raising method for garden rocket
JP2017221177A (en) * 2016-06-17 2017-12-21 京都府公立大学法人 Method of producing vegetables fortified with various antioxidant components by hydroponic cultivation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229921A (en) * 1985-02-21 1987-02-07 ニユ−トリエント フイルム テクノロジ− リミテツド Hydroponic method
JP2002153151A (en) * 2000-11-22 2002-05-28 Taiyo Kogyo Co Ltd Method for raising paddy rice seedling by hydroponics
JP2012183062A (en) * 2011-02-16 2012-09-27 Akita Prefectural Univ Fertilizer for hydroponics of low potassium vegetable and hydroponics method of low potassium vegetable using the fertilizer
CN104770180A (en) * 2015-04-22 2015-07-15 无锡市三阳生态农业发展有限公司 Seedling raising method for garden rocket
JP2017221177A (en) * 2016-06-17 2017-12-21 京都府公立大学法人 Method of producing vegetables fortified with various antioxidant components by hydroponic cultivation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11638405B2 (en) 2019-12-20 2023-05-02 Kyocera Corporation Vegetable production method
CN113016591A (en) * 2019-12-25 2021-06-25 松下知识产权经营株式会社 Plant cultivation method
JP2023001813A (en) * 2021-06-21 2023-01-06 株式会社エコタイプ次世代植物工場 Hydroponic culture method for Panax ginseng and nutrient solution for hydroponic culture
JP7276907B2 (en) 2021-06-21 2023-05-18 株式会社エコタイプ次世代植物工場 Panax ginseng hydroponics method
CN115572191A (en) * 2021-07-05 2023-01-06 广西百色国家农业科技园区管理委员会 Shellfish pumpkin soilless culture nutrient solution and culture method
CN114532199A (en) * 2022-01-26 2022-05-27 河北农业大学 Nutrient solution efficient lettuce seedling growing method
CN114532199B (en) * 2022-01-26 2023-04-28 河北农业大学 Efficient lettuce seedling raising method with nutrient solution

Also Published As

Publication number Publication date
JP7025045B2 (en) 2022-02-24
JPWO2019139031A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
WO2019139031A1 (en) Nutrient liquid cultivation method for cultivated plant, and culture solution for nutrient liquid cultivation
JP5300993B2 (en) Hydroponics fertilizer for cultivating low potassium vegetables and hydroponic cultivation method of low potassium vegetables using the fertilizer
CN111837914B (en) Planting method of iced vegetables
KR101916314B1 (en) Culturing method of Agastache rugosa
JP2018121590A (en) Seedling growth method using artificial light
JP2012161313A (en) Method for producing leaf vegetable
CN112640681A (en) Full-artificial light cultivation method for herbaceous and aromatic plants
Jun et al. Optimum nutrient solution strength for Korean strawberry cultivar'Daewang'during seedling period
Terabayashi et al. Relationship between the weekly nutrient uptake rate during fruiting stages and fruit weight of tomato (Lycopersicon esculentum Mill.) grown hydroponically
KR101036401B1 (en) Culturing method of ice plant using sea water and the ice plant produced thereby
CN107873518B (en) A kind of tissue culture method of Fourstamen Stephania Root seedling
JP2017221177A (en) Method of producing vegetables fortified with various antioxidant components by hydroponic cultivation
JP2013162757A (en) Cultivation method of parsley and parsley with adjusted eating quality
CN109105168A (en) A kind of implantation methods of selenium-rich broccoli
JP7343872B2 (en) How to grow fruit trees
KR101137036B1 (en) Water culturing method of ice plant
Ross et al. Propagación masal de Vaccinium corymbosum en bioreactores
JP7108316B2 (en) Method for producing high-folate leafy vegetables
Lycoskoufis et al. Impact of salinity induced by high concentration of NaCl or by high concentration of nutrients on tomato plants
Becker et al. Productive behavior of strawberry from potted seedlings produced with application of prohexadione calcium in soilless cultivation
KR101036423B1 (en) Culturing method of salicornia herbacea using sea water and the salicornia herbacea produced thereby
KR101159485B1 (en) Culturing method of salicornia herbacea using wasted sea water and the salicornia herbacea produced thereby
TWI492705B (en) Manufacturing method of plant culture medium
JP7166213B2 (en) Method for producing SGS-rich cruciferous vegetables, method for producing food and drink, and food and drink
JP6849478B2 (en) Hydroponic cultivation method of spinach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19738360

Country of ref document: EP

Kind code of ref document: A1