JP2017221177A - Method of producing vegetables fortified with various antioxidant components by hydroponic cultivation - Google Patents

Method of producing vegetables fortified with various antioxidant components by hydroponic cultivation Download PDF

Info

Publication number
JP2017221177A
JP2017221177A JP2016121301A JP2016121301A JP2017221177A JP 2017221177 A JP2017221177 A JP 2017221177A JP 2016121301 A JP2016121301 A JP 2016121301A JP 2016121301 A JP2016121301 A JP 2016121301A JP 2017221177 A JP2017221177 A JP 2017221177A
Authority
JP
Japan
Prior art keywords
nutrient solution
antioxidant components
vegetables
light
various antioxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016121301A
Other languages
Japanese (ja)
Other versions
JP6775812B2 (en
Inventor
剛 竹葉
Takeshi Takeha
剛 竹葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Prefectural PUC
Original Assignee
Kyoto Prefectural PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Prefectural PUC filed Critical Kyoto Prefectural PUC
Priority to JP2016121301A priority Critical patent/JP6775812B2/en
Publication of JP2017221177A publication Critical patent/JP2017221177A/en
Application granted granted Critical
Publication of JP6775812B2 publication Critical patent/JP6775812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Hydroponics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing vegetables remarkably fortified with various antioxidant components by hydroponic cultivation.SOLUTION: This method of producing vegetables fortified with various antioxidant components by hydroponic cultivation secures metabolic pathways mainly for the biosynthesis of antioxidant components by using nutrient solution substantially not including nitrogen for a fixed period prior to harvesting, and promotes the induction of antioxidant components by adjusting the conditions for lighting and/or the nutrient solution. Furthermore, the vegetables are cultivated for a fixed period prior to harvesting using a nutrient solution substantially not including nitrogen but including calcium and irradiating with light including visible light of a wavelength of 490 nm or less.SELECTED DRAWING: Figure 1

Description

本発明は、水耕栽培による野菜の生産方法に関するものであり、特に、様々な抗酸化成分を増強することを目的とした水耕栽培による野菜の生産方法に関するものである。   The present invention relates to a method for producing vegetables by hydroponics, and more particularly, to a method for producing vegetables by hydroponics for the purpose of enhancing various antioxidant components.

水耕栽培は従来の土耕栽培に代わる栽培方法として期待されている。
水耕栽培は、連作障害といった問題がなく、管理もしやすい。
また、植物の成長スピードを速め、収穫量を向上させることも容易である。
さらに、養液成分や照明条件を最適化することで、栄養価を高めた農産物や、機能性農産物を作ることも可能である。
Hydroponics is expected as an alternative to conventional soil cultivation.
Hydroponics is easy to manage without problems such as continuous cropping problems.
It is also easy to increase the yield of plants by increasing the speed of plant growth.
Furthermore, by optimizing nutrient solution components and lighting conditions, it is possible to produce agricultural products with enhanced nutritional value and functional agricultural products.

例えば、生育させた野菜を,収穫直前に養液を水に置き換え、且つ日長時間を17時間以上とし、日長時間における光強度の上限を20000luxとして、1日以上7日以内の期間水耕栽培することで、アスコルビン酸含有量や糖度、全糖含有量等の有用成分の含有量を高め、硝酸イオン含有量を低減させることができる調整栽培法が提案されている(例えば、特許文献1)。   For example, for the grown vegetables, the nutrient solution is replaced with water just before harvesting, the day length is set to 17 hours or more, and the upper limit of the light intensity in the day length is set to 20000 lux. An adjusted cultivation method that can increase the content of useful components such as ascorbic acid content, sugar content, and total sugar content and reduce the nitrate ion content has been proposed (for example, Patent Document 1). ).

また、収穫前に、植物を別の栽培トレイに移動させ、水を吸収させたり、強い照度で光を照射したりすることで、植物内の硝酸態窒素の濃度を低減することが提案されている(例えば、特許文献2)。   In addition, it is proposed to reduce the concentration of nitrate nitrogen in plants by moving the plants to another cultivation tray before harvesting, absorbing water, or irradiating light with strong illuminance. (For example, Patent Document 2).

さらに、パセリの食味を改善するために、成長期には赤色を主成分とした光を照射し、成長後の収穫前には青色を主成分とした光を照射する栽培方法が提案されている(例えば、特許文献3)。   Furthermore, in order to improve the taste of parsley, a cultivation method has been proposed in which light is mainly composed of red during the growing season and light is composed mainly of blue before harvesting after the growth. (For example, patent document 3).

特開2015−192682JP2015-192682A 特開2013−123403JP2013-123403A 特開2013−162757JP2013-162757A

特許文献1に開示された発明では、アスコルビン酸含有量が対照群の1.7倍から3倍程度に増加しているものの、多様な抗酸化成分の増加は見られない。また、長時間の強光の照射が必要であり、生産コストの増加が懸念される。   In the invention disclosed in Patent Document 1, the ascorbic acid content is increased from 1.7 times to about 3 times that of the control group, but various antioxidant components are not increased. Moreover, it is necessary to irradiate intense light for a long time, and there is a concern about an increase in production cost.

特許文献2に開示された発明では、硝酸態窒素を低減できるものの、やはり多様な抗酸化成分を大きく増加させることはできない。
さらに、特許文献3に開示された発明においても、パセリの食味を改善することは可能であるが、抗酸化成分を大きく増加させることはできない。
In the invention disclosed in Patent Document 2, nitrate nitrogen can be reduced, but various antioxidant components cannot be greatly increased.
Furthermore, in the invention disclosed in Patent Document 3, it is possible to improve the taste of parsley, but the antioxidant component cannot be increased greatly.

本発明は上記の課題を解決するためになされたものであり、多様な抗酸化成分を著しく増強した野菜の生産方法を提供するものである。より具体的には、光合成で固定された炭素代謝の流れを抗酸化成分の生合成への流れへと、代謝の流れを変えることで、抗酸化成分の生合成量を増強することを目的としたものである。また、抗酸化成分の生合成量を増強するのに適した波長の光を照射することで、照射光のエネルギーコスト低減を図るものである。   The present invention has been made in order to solve the above-described problems, and provides a method for producing vegetables in which various antioxidant components are remarkably enhanced. More specifically, the aim is to increase the amount of biosynthesis of antioxidant components by changing the flow of carbon metabolism fixed by photosynthesis to the flow of biosynthesis of antioxidant components. It is a thing. Moreover, the energy cost of irradiation light is reduced by irradiating the light of the wavelength suitable for enhancing the biosynthesis amount of the antioxidant component.

本発明に係る水耕栽培による多様な抗酸化成分を増強した野菜の生産方法は、
収穫前の一定期間において、
窒素を略含有しない養液を用いることで、抗酸化成分の生合成を主とする代謝経路を確保し、
光照射条件および/または、養液条件を調整することで、抗酸化成分の誘導を促すことを特徴とする。
また、本発明に係る水耕栽培による多様な抗酸化成分を増強した野菜の生産方法は、
窒素を略含有せず、カルシウムを含有する養液を用い、
490nm以下の可視光を含む光を照射することで、
収穫前の一定期間、野菜を栽培することを特徴とするものである。
The method for producing vegetables with enhanced various antioxidant components by hydroponics according to the present invention,
In a certain period before harvest,
By using a nutrient solution that does not substantially contain nitrogen, a metabolic pathway mainly consisting of biosynthesis of antioxidant components is secured,
It is characterized by promoting the induction of antioxidant components by adjusting light irradiation conditions and / or nutrient solution conditions.
In addition, a method for producing vegetables with enhanced various antioxidant components by hydroponics according to the present invention,
Using nutrient solution that does not contain nitrogen and contains calcium,
By irradiating light including visible light of 490 nm or less,
It is characterized by growing vegetables for a certain period before harvesting.

本発明に係る水耕栽培による野菜の生産方法により、多様な抗酸化成分を著しく増強した野菜の生産が可能となり、それを食する人の健康増進に寄与し、老化、がん、心臓疾患、脳卒中、糖尿病と言った多くの疾病に対する予防効果を高めることが期待できる。また、硝酸態窒素含有量を減少させる効果もある。   The method for producing vegetables by hydroponics according to the present invention enables the production of vegetables with significantly enhanced various antioxidant components, contributes to the health promotion of those who eat it, aging, cancer, heart disease, It can be expected to improve the preventive effect against many diseases such as stroke and diabetes. It also has the effect of reducing the nitrate nitrogen content.

本発明の効果を説明するための図であり、(a)は養液が窒素を含む場合の代謝イメージ、(b)は養液が窒素を含まない場合の代謝イメージである。It is a figure for demonstrating the effect of this invention, (a) is a metabolic image in case a nutrient solution contains nitrogen, (b) is a metabolic image in case a nutrient solution does not contain nitrogen.

本発明に係る水耕栽培による野菜の生産方法の詳細、およびその新たな効能等を確認するために行った実験結果に関して、以下において説明する。なお、以下の説明は本発明に関する良好な一例を開示するものであり、本発明が当該実施の形態に限定されるものではない。   The details of the method for producing vegetables by hydroponics according to the present invention and the results of experiments conducted to confirm the new efficacy will be described below. The following description discloses a good example relating to the present invention, and the present invention is not limited to the embodiment.

本発明の生産方法は、多様な野菜に対して適用可能であり、特に葉物野菜に対して顕著な効果がある。その他の野菜に対しても、程度の差異はあるものの、同様の効果がある。   The production method of the present invention can be applied to various vegetables, and particularly has a remarkable effect on leafy vegetables. Other vegetables have similar effects, albeit with varying degrees.

<生産方法の特徴>
本発明の生産方法の特徴は、野菜の成長期と、収穫前とで、養液成分や照射光の条件を変えることである。
ここで、成長期とは、発芽した苗を移植後、葉が十分に展葉するまでの期間である。ただし、本発明においては、この期間に限定されることはない。例えば、ベビーリーフのように早期に収穫するケースにおいては、成長期とは、収穫前の数日までのことを指す。
収穫前の数日、例えば、収穫前の1日から5日においては、収穫前処理として、成長期とは異なった条件で栽培を行う。
<Features of production method>
The feature of the production method of the present invention is that the nutrient solution components and irradiation light conditions are changed between the vegetable growing season and before harvesting.
Here, the growth period is a period until the leaves are fully developed after transplanting the germinated seedlings. However, the present invention is not limited to this period. For example, in the case of early harvesting such as baby leaves, the growth period means up to several days before harvesting.
In several days before harvesting, for example, from 1st to 5th before harvesting, cultivation is performed under conditions different from the growth period as pre-harvest treatment.

<成長期における栽培条件の一例>
成長期における養液や光の照射条件に関しては、特に特別な条件は必要ではなく、一般的な養液を用い、一般的な照射条件で光を照射すればよい。
例えば、養液について述べると、大塚ハウス1号、2号、5号を使用し、さらに微量ミネラル等を添加すればよい。成長期における養液の具体的な一例を以下に示す。
<Example of cultivation conditions in the growing season>
Regarding the nutrient solution and light irradiation conditions during the growth period, no special conditions are required, and a general nutrient solution may be used and light may be irradiated under the general irradiation conditions.
For example, regarding nutrient solution, Otsuka House No. 1, No. 2, No. 5 may be used, and trace minerals may be added. A specific example of nutrient solution during the growth period is shown below.

養液はふたつのタンクに分けてられており、それぞれを水で希釈し、混合して使用する。

タンク1
大塚ハウス1号 80g/l
大塚ハウス5号 5g/l
EDTA−Fe(Na) 5g/l

タンク2
大塚ハウス2号 140g/0.98l
The nutrient solution is divided into two tanks, each diluted with water and mixed for use.

Tank 1
Otsuka House 1 80g / l
Otsuka House 5 5g / l
EDTA-Fe (Na) 5g / l

Tank 2
Otsuka House 2 140g / 0.98l

上記は、ホウレンソウやサラダ菜、コマツナやダイコン等の好硝酸塩野菜に適した養液である。レタスやセリ、イチゴといった好アンモニア性野菜の場合には、タンク1に硫酸アンモニウムを加えても良い。
いずれにしても、成長期における養液に関しては、栽培する野菜の成長に適した養液構成とすればよい。
The above is a nutrient solution suitable for spinach, salad vegetables, nitrite vegetables such as Komatsuna and Japanese radish. In the case of an ammoniaphilic vegetable such as lettuce, seri, and strawberry, ammonium sulfate may be added to the tank 1.
In any case, regarding the nutrient solution in the growth period, a nutrient solution configuration suitable for growing the cultivated vegetables may be used.

なお、カリウム、亜鉛、鉄といった有用なミネラルの野菜への含有量を増加させる目的で、これらの成分を養液に微量添加しても良い。   In addition, for the purpose of increasing the content of useful minerals such as potassium, zinc, and iron in vegetables, these components may be added in a small amount to the nutrient solution.

<収穫前処理>
次に、収穫前の処理に関して説明する。収穫前の処理は、上述したように、収穫前の1日から5日間行うのが良い。この期間は、野菜の種類により適宜決定される。
収穫前の処理として特に重要なことは3点あり、第一は、窒素成分をほぼゼロにすることである。硝酸態窒素だけだはなく、アンモニア態窒素も除去する。そのため、養液を完全に入れ替えることが必要となる。成長期に用いた養液をプランターから完全に除去した後に、収穫前処理に用いる養液をプランターに導入する。成長期に用いた養液がプランターに残留していないかに関しては、EC値を測定し、EC値が所定値以下であることを確認する等の確認作業を行えばよい。
<Pre-harvest treatment>
Next, the pre-harvest process will be described. As described above, the pre-harvest process is preferably performed for 1 to 5 days before the harvest. This period is appropriately determined depending on the type of vegetable.
There are three points that are particularly important as pre-harvest treatment, and the first is to make the nitrogen component almost zero. It removes not only nitrate nitrogen but also ammonia nitrogen. Therefore, it is necessary to completely replace the nutrient solution. After completely removing the nutrient solution used in the growth period from the planter, the nutrient solution used for pre-harvest treatment is introduced into the planter. As for whether the nutrient solution used in the growth period does not remain in the planter, the EC value may be measured and a confirmation operation such as confirming that the EC value is a predetermined value or less may be performed.

第二は、収穫前処理に用いる養液として、カルシウムを加えることである。適量のカルシウムを加えることで、抗酸化成分の生合成を促進できるためである。
第三は、短波長の可視光を照射することである。適切な波長の光を照射することで、抗酸化成分の生合成を促進できる。
The second is to add calcium as a nutrient solution used for pre-harvest treatment. This is because the biosynthesis of the antioxidant component can be promoted by adding an appropriate amount of calcium.
The third is to irradiate short wavelength visible light. Biosynthesis of antioxidant components can be promoted by irradiating with light of an appropriate wavelength.

収穫前処理として、これら3つの条件を満足することで、様々な抗酸化成分を大幅に増強した野菜を得ることができる。
以上に述べた収穫前処理の効果を実証するために、いくつかの実験を行った。以下においては、実証実験の詳細について説明する。
By satisfying these three conditions as pre-harvest treatment, vegetables with greatly enhanced various antioxidant components can be obtained.
Several experiments were conducted to demonstrate the effects of the pre-harvest treatment described above. Details of the demonstration experiment will be described below.

<実証実験1>
コマツナ、コマツナ紫、およびチマサンチュを用いて、収穫前処理の効果を実証するための実験を行った。
まず、成長期においては、一般的な条件で栽培し、葉が十分に展葉した時点で、養液の切り替えを行った。切り替え後の養液(収穫前処理の養液)は、硫酸カルシウムである。なお、切り替え後の養液中の窒素量は、2.0mg/lであった。収穫前処理は3日間行った。
また、光照射に関しては、青色LEDを用いた。照射量は、毎秒1平方メートル当たり200μmolの光量子密度であり、成長期と比べて強い光を照射した。
<Demonstration experiment 1>
Experiments were conducted to demonstrate the effects of pre-harvest treatment using Komatsuna, Komatsuna Purple, and Chimasanchu.
First, in the growing season, cultivation was carried out under general conditions, and the nutrient solution was switched when the leaves were fully spread. The nutrient solution after switching (nutrient solution for pre-harvest treatment) is calcium sulfate. In addition, the amount of nitrogen in the nutrient solution after switching was 2.0 mg / l. Pre-harvest treatment was performed for 3 days.
For light irradiation, a blue LED was used. The irradiation amount was a photon density of 200 μmol per square meter per second, and a stronger light was irradiated as compared to the growth period.

収穫前処理の養液におけるカリシウム量を0mg/lから140mg/lの範囲で変えた、6種類の養液を用いて3日間栽培後、それぞれについてORAC値を測定した。
ORAC値の測定法は、ORAC法を用いて、ビタミンC、ビタミンE、グルタオチン、システイン、ポリフェノール、含硫化合物といった、カロチノイド以外のすべての抗酸化成分の総量を測定した。
After cultivating for 3 days using 6 types of nutrient solution, the amount of calcium in the nutrient solution for pre-harvest treatment was changed in the range of 0 mg / l to 140 mg / l, the ORAC value was measured for each.
The ORAC method was used to measure the total amount of all antioxidant components other than carotenoids such as vitamin C, vitamin E, glutathione, cysteine, polyphenol, and sulfur-containing compounds, using the ORAC method.

結果を表1に示す。
コマツナ、コマツナ紫、チマサンチュのいずれにおいても、ORAC値はカルシウム量に大きく依存している。そして、カルシウム量が50mg/lから120mg/lの範囲で、ORAC値は大きく向上している。
The results are shown in Table 1.
In any of Komatsuna, Komatsuna purple, and Chimasanchu, the ORAC value greatly depends on the amount of calcium. The ORAC value is greatly improved when the calcium amount is in the range of 50 mg / l to 120 mg / l.

なお、リーフレタス、コスレタス、チンゲンサイ、カラシナ等においても、カルシウム量に対するORAC値は同様の傾向が得られた。
以上より、収穫前処理の養液におけるカルシウム量を所定の範囲とすることで、野菜に含まれる様々な抗酸化成分量を向上できることを確認できた。
In addition, the same tendency was obtained for the ORAC value with respect to the calcium amount in leaf lettuce, kosletus, chingensai, mustard, etc.
From the above, it has been confirmed that the amount of various antioxidant components contained in vegetables can be improved by setting the amount of calcium in the nutrient solution for pre-harvest treatment within a predetermined range.

<実証実験2>
実証実験1においては、ORAC値のカルシウム量依存性を調べたが、本検証実験においては、養液中のカルシウム量を100mg/lに固定し、養液中の窒素量を0mg/lから50mg/lの範囲で変化させた。この養液を用いて、3日間栽培後、それぞれについてORAC値を測定した。光の照射条件は、実証実験1と同様である。
<Verification experiment 2>
In the demonstration experiment 1, the dependency of the ORAC value on the calcium amount was examined. In this verification experiment, the calcium amount in the nutrient solution was fixed at 100 mg / l, and the nitrogen amount in the nutrient solution was changed from 0 mg / l to 50 mg. In the range of / l. Using this nutrient solution, the ORAC value was measured for each after 3 days of cultivation. The light irradiation conditions are the same as in the demonstration experiment 1.

結果を表2に示す。
コマツナ、コマツナ紫、チマサンチュのいずれにおいても、ORAC値は窒素量が少ないほど良好な結果を示した。特に、窒素量が2.2mg以下ではORAC値はほぼ飽和し、非常に高い値を示した。
The results are shown in Table 2.
In all of Komatsuna, Komatsuna purple, and Chimasanchu, the ORAC values showed better results as the amount of nitrogen was smaller. In particular, when the amount of nitrogen was 2.2 mg or less, the ORAC value was almost saturated and showed a very high value.

なお、リーフレタス、コスレタス、チンゲンサイ、カラシナ等においても、カルシウム量に対するORAC値は同様の傾向が得られた。
以上より、収穫前処理の養液における窒素量を微量とすることで、野菜に含まれる様々な抗酸化成分量を向上できることを確認できた。
また、実証実験1および実証実験2より、野菜のORAC値を大きく向上させるためには、収穫前処理の養液における窒素量が微量であり、且つカルシウム量が所定の範囲であることが必要であることを検証できた。
In addition, the same tendency was obtained for the ORAC value with respect to the calcium amount in leaf lettuce, kosletus, chingensai, mustard, etc.
From the above, it was confirmed that the amount of various antioxidant components contained in vegetables can be improved by making the amount of nitrogen in the nutrient solution for pre-harvest treatment a trace amount.
Further, from the demonstration experiment 1 and the demonstration experiment 2, in order to greatly improve the ORAC value of vegetables, it is necessary that the amount of nitrogen in the nutrient solution for pre-harvest treatment is very small and the amount of calcium is within a predetermined range. I was able to verify that there was.

<実証実験3>
実証実験1および実証実験2においては、収穫前処理の養液成分について検証を行った。本検証実験においては、収穫前処理時の光照射の影響について調べる。
収穫前処理の養液における窒素量は2.0mg/l、カリシウム量を100mg/lとした。
光の照射条件は、LEDを用い、青色光のみ照射した場合と、赤色光のみを照射した場合とを比較した。照射量はいずれの場合も、毎秒1平方メートル当たり200μmolの光量子密度とした。
以上の条件で3日間栽培後、それぞれについてORAC値を測定した。
<Demonstration experiment 3>
In the demonstration experiment 1 and the demonstration experiment 2, it verified about the nutrient solution component of the pre-harvest process. In this verification experiment, we investigate the effects of light irradiation during pre-harvest processing.
The amount of nitrogen in the nutrient solution for pre-harvest treatment was 2.0 mg / l, and the amount of calcium was 100 mg / l.
As the light irradiation conditions, an LED was used, and a case where only blue light was irradiated and a case where only red light was irradiated were compared. In any case, the irradiation amount was set to a photon density of 200 μmol per square meter per second.
After cultivation for 3 days under the above conditions, the ORAC value was measured for each.

結果を表3に示す。
いずれの野菜においても、青色光のみを照射した場合に、高いORAC値が得られた。
以上より、収穫前処理の養液においては、赤色光よりも、青色光が野菜に含まれる様々な抗酸化成分量を向上する効果が大きいことが分かった。
なお、アスコルビン酸の含有量は、赤色光の照度にはほとんど依存せず、青色光の照度のみに依存することを別の実験で確認している。
以上のように、ORAC値向上の観点においては、収穫前処理に使用する光源として490nm以下の波長の可視光だけを使用することが望ましい。照射光のエネルギー効率を高め、コストを低減できるからである。ただし、赤色等の光を併せて照射しても良い。赤色等の光は窒素同化を促進するため、硝酸態窒素を減少させる観点では有効な場合があるためである。
The results are shown in Table 3.
In any vegetable, a high ORAC value was obtained when only blue light was irradiated.
From the above, it was found that in the nutrient solution for pre-harvest treatment, blue light is more effective in improving the amount of various antioxidant components contained in vegetables than red light.
It has been confirmed by another experiment that the content of ascorbic acid hardly depends on the illuminance of red light and depends only on the illuminance of blue light.
As described above, from the viewpoint of improving the ORAC value, it is desirable to use only visible light having a wavelength of 490 nm or less as a light source used for pre-harvest processing. This is because the energy efficiency of irradiation light can be increased and the cost can be reduced. However, the light such as red may be irradiated together. This is because red light or the like promotes nitrogen assimilation and may be effective from the viewpoint of reducing nitrate nitrogen.

<実証実験4>
実証実験3においては、青色光により高いORAC値が得られることを確認した。本検証実験においては、高いORAC値が得られる照射光の波長領域について調べた。
高いORAC値が得られる照射光は、青色光だけではなく、紫色光でも同様の効果があった。一方、照射光の波長が480nmを超えると効果は減少し、500nm以上の光では、ほとんどORAC値向上の効果はなかった。
したがって、高いORAC値が得られる照射光は、490nm以下の可視光であり、特に、480nm以下の可視光が効果が高かった。このORAC値と照射光波長の関係は、どの野菜においてもほぼ同様であった。
<Demonstration experiment 4>
In demonstration experiment 3, it was confirmed that a high ORAC value was obtained with blue light. In this verification experiment, the wavelength region of the irradiation light in which a high ORAC value was obtained was examined.
Irradiation light with which a high ORAC value can be obtained is not only blue light, but also violet light has the same effect. On the other hand, when the wavelength of the irradiation light exceeds 480 nm, the effect is reduced, and when the wavelength is 500 nm or more, the ORAC value is hardly improved.
Therefore, the irradiation light with which a high ORAC value is obtained is visible light of 490 nm or less, and particularly visible light of 480 nm or less was highly effective. The relationship between the ORAC value and the irradiation light wavelength was almost the same for all vegetables.

<実証実験5>
次に、照射光強度とORAC値との関係について調べた。ビタミン菜を用いて行った実験結果について述べる。
収穫前処理の養液における窒素量は2.0mg/l、カルシウム量を100mg/lとした。
照射光としてLEDを用い、454nmの青色光のみ照射した。照射量は、毎秒1平方mあたり100から400マイクロmolの範囲で変化させ、1日12時間照射を行った。
以上の条件で4日間栽培後、それぞれについてORAC値を測定した。また、アスコルビン酸の含有量に関しても、別途測定を行った、
<Verification Experiment 5>
Next, the relationship between irradiation light intensity and ORAC value was investigated. The results of experiments conducted using vitamin vegetables are described.
The amount of nitrogen in the nutrient solution for pre-harvest treatment was 2.0 mg / l, and the amount of calcium was 100 mg / l.
An LED was used as irradiation light, and only 454 nm blue light was irradiated. The irradiation amount was changed in the range of 100 to 400 micromol per square meter per second, and irradiation was performed for 12 hours a day.
After cultivation for 4 days under the above conditions, ORAC values were measured for each. In addition, ascorbic acid content was also measured separately,

毎秒1平方mあたりの照射量が増加するほど、ORAC値が増加した。ただし、80から400マイクロmolにおいては、照射量とORAC値の関係は、ほぼ比例関係であったが、70マイクロmol以下においては、この比例関係よりもORAC値は、大きく下方に振れている。
また、照射量とアスコルビン酸量の関係も同様であった。
The ORAC value increased as the dose per square meter per second increased. However, from 80 to 400 micromol, the relationship between the irradiation dose and the ORAC value was almost proportional. However, at 70 micromol or less, the ORAC value fluctuated greatly below this proportional relationship.
The relationship between the irradiation amount and the ascorbic acid amount was also the same.

したがって、照射光のエネルギー効率を考慮すると、照射量は毎秒1平方mあたり80マイクロmol以上が望ましい。
また、380nmの紫色光を用いても、この傾向は同様であった。さらに、この傾向は、野菜の種類にはほとんど依存しなかった。
Therefore, in consideration of the energy efficiency of the irradiation light, the irradiation amount is desirably 80 micromol or more per square meter per second.
This tendency was the same even when 380 nm violet light was used. Furthermore, this tendency was almost independent of the type of vegetable.

上記の結果は、総照射時間48時間の結果であるが、照射時間を長くするほど、ORAC値は向上し、照射時間とORAC値との関係は、ほぼ比例関係であった。したがって、強い光を長い時間照射するほど、野菜のORAC値は増加することが分かった。ただし、収穫前処理の期間を長くしすぎると、収穫後の野菜の日持ちが悪くなるため、野菜の品種に応じて、収穫前処理の期間は、1日から5日の範囲で、適宜決定することが望ましい。   The above result is a result of a total irradiation time of 48 hours. The longer the irradiation time, the more the ORAC value was improved, and the relationship between the irradiation time and the ORAC value was almost proportional. Therefore, it was found that the ORAC value of vegetables increases as the light is irradiated for a longer time. However, if the pre-harvest treatment period is too long, the shelf life of the harvested vegetables will deteriorate, so the pre-harvest treatment period will be appropriately determined within the range of 1 to 5 days depending on the variety of vegetables. It is desirable.

この検証実験においては、ORAC値だけではなく、別途、アスコルビン酸の含有量についても測定を行った。いすれの光強度においても、アスコルビン酸量から推定される、アスコルビン酸のORAC値への寄与は、ORAC値の総量に対して10分の1か、それ以下である。したがって、アスコルビン酸以外に様々な抗酸化成分を増強した野菜が得られていることも検証できた。   In this verification experiment, not only the ORAC value but also the content of ascorbic acid was measured separately. Even in the light intensity of the chair, the contribution of the ascorbic acid to the ORAC value estimated from the amount of ascorbic acid is 1/10 or less of the total amount of ORAC values. Therefore, it was also verified that vegetables with enhanced various antioxidant components other than ascorbic acid were obtained.

<考察>
以上に説明した実証実験1〜5より、収穫前に特別な環境条件で野菜を栽培することで、野菜に含まれる抗酸化成分を大きく向上できることを確認できた。特別な環境条件とは、以下の3条件である。
(条件1)
養液に含まれる窒素量をできるだけ微量にする。望ましくは、2.2mg/l以下にする。

(条件2)
養液にカルシウムを含有させる。望ましくは、50mg/l以上、120mg/l以下の範囲で、カルシウムを含有させる。

(条件3)
波長が490nm以下の可視光を照射する。特に、480nm以下の可視光が望ましい。また、照射量は毎秒1平方mあたり80マイクロmol以上が望ましい。
<Discussion>
From the demonstration experiments 1 to 5 described above, it was confirmed that the antioxidant components contained in the vegetables can be greatly improved by cultivating the vegetables under special environmental conditions before harvesting. The special environmental conditions are the following three conditions.
(Condition 1)
Minimize the amount of nitrogen contained in the nutrient solution. Desirably, it is 2.2 mg / l or less.

(Condition 2)
Include calcium in the nutrient solution. Desirably, calcium is contained in the range of 50 mg / l or more and 120 mg / l or less.

(Condition 3)
Irradiate visible light having a wavelength of 490 nm or less. In particular, visible light of 480 nm or less is desirable. The irradiation dose is desirably 80 micromol or more per square meter per second.

以上の3条件のそれぞれが、どのようなメカニズムで抗酸化物質の生成に寄与しているかは不明である。しかし、ORAC値の顕著な向上から推察するに、それぞれが独立に作用しているのではなく、ある種の互いに関連する効果、あるいは相乗効果を持って作用していると考えられる。   It is unclear what mechanism each of the above three conditions contributes to the production of antioxidant substances. However, as inferred from the remarkable improvement of the ORAC value, it is considered that each of them does not act independently but acts with some kind of mutually related effect or synergistic effect.

図1は、本発明の効果を説明するための図であり、(a)は窒素が多量に存在する場合の代謝イメージ、(b)は窒素がほとんど存在しない場合の代謝イメージである。
図1(a)に示すように、植物において光合成で得られた炭素は、根から吸収される窒素を使ってアミノ酸に合成されることで、植物は成長する。一方、図1(b)に示すように、窒素が不足している場合には、光合成で固定された炭素代謝の流れは、抗酸化成分の生合成への流れが支配的となる。このように、養液に含まれる窒素量を制御することで、代謝の流れを制御できる。
1A and 1B are diagrams for explaining the effects of the present invention. FIG. 1A is a metabolic image when a large amount of nitrogen is present, and FIG. 1B is a metabolic image when there is almost no nitrogen.
As shown in FIG. 1 (a), carbon obtained by photosynthesis in a plant is synthesized into an amino acid using nitrogen absorbed from the root, so that the plant grows. On the other hand, as shown in FIG. 1 (b), when nitrogen is deficient, the flow of carbon metabolism fixed by photosynthesis is dominated by the flow of antioxidant components to biosynthesis. Thus, the flow of metabolism can be controlled by controlling the amount of nitrogen contained in the nutrient solution.

ただし、単に代謝の流れを制御するだけで、大量の抗酸化物質が生合成されるわけではない。抗酸化物質の生合成は、「生合成系への誘導」と「代謝の流れの制御」が組み合わされた際に、顕著に効率化され、大量の抗酸化物質が生み出される。
例えば、植物の細胞内においては、葉緑体、ミトコンドリア、小胞体といった細胞内小器官に、カルシウムは局在している。そして、何らかの刺激が与えられた際に細胞質内にカルシウムが放出され、放出されたカルシウムにより特定の酵素反応が制御されることが知られている。すなわち、カルシウムはシグナル伝達系に作用する役割を持つことが知られている。
However, simply controlling metabolic flow does not mean that large amounts of antioxidants are biosynthesized. Antioxidant biosynthesis is significantly more efficient when “induction into the biosynthetic system” and “control of metabolic flow” are combined, producing large amounts of antioxidants.
For example, in plant cells, calcium is localized in organelles such as chloroplasts, mitochondria, and endoplasmic reticulum. It is known that when some stimulus is given, calcium is released into the cytoplasm, and a specific enzyme reaction is controlled by the released calcium. That is, calcium is known to have a role of acting on a signal transduction system.

抗酸化物質の生合成系においても、カルシウムは何らかの生合成経路に関与するシグナル伝達系に作用することで、生合成系の誘導に寄与していると考えられる。これはひとつの仮説であるが、カルシウムを与えることで、抗酸化物質が大量に生成されることを説明できる有力な仮説であると考えている。   In the biosynthetic system of antioxidant substances, calcium is thought to contribute to the induction of the biosynthetic system by acting on a signal transduction system involved in some biosynthetic pathway. This is one hypothesis, but I think that it is a powerful hypothesis that can explain that a large amount of antioxidants are produced by giving calcium.

光照射についても、同様の効果があると考えられる。例えば、光合成の電子伝達系を介しない「青色シグナル伝達系」といったものが存在する可能性がある。
ORAC値と照射光の波長性の関係から推定されることは、同様の波長範囲に吸収領域を有する光受容体であるクリプトクロム(Cryptochrome)が、このシグナル伝達系に関与していることである。クリプトクロムは、植物だけではなく藻類も有するたんぱく質であり、進化の初期段階から、植物や藻類が有していたたんぱく質である。上記に示した検証実験において、ORAC値の波長や照射量依存性が、どの野菜においても同様であったことは、すべての植物が共通して持つクリプトクロムの性質に起因していると考えられる。
クリプトクロムのシグナル伝達には活性酸素が関与していることが知られている。したがって、490nm以下の可視光の照射は、酸化ストレスによる様々な抗酸化成分の生合成経路の誘導や活性化によるものと推測できる。
It is considered that the same effect can be obtained with light irradiation. For example, there may be a “blue signal transmission system” that does not go through a photosynthesis electron transmission system.
What is estimated from the relationship between the ORAC value and the wavelength property of the irradiated light is that Cryptochrome, a photoreceptor having an absorption region in the same wavelength range, is involved in this signal transmission system. . Cryptochrome is a protein that has not only plants but also algae, and is a protein that plants and algae had from the early stages of evolution. In the verification experiment shown above, the wavelength and irradiation dose dependency of the ORAC value was the same for all vegetables. This is considered to be due to the nature of cryptochrome common to all plants. .
It is known that active oxygen is involved in cryptochrome signal transduction. Therefore, it can be inferred that irradiation with visible light of 490 nm or less is due to induction or activation of biosynthetic pathways of various antioxidant components due to oxidative stress.

すなわち、本発明において、様々な抗酸化物質を著しく向上させた野菜が得られた要因は、

1)窒素をほとんど含まない養液を用いることで、植物体内における窒素が欠乏し、アミノ酸合成の流れから、抗酸化物質の生合成の流れへと、代謝の流れが変化すること
2)カルシウムや490nm以下の波長の光が、いくつかのシグナル伝達系に関与し、抗酸化物質が必要とされる状態を生み出す等の変化を植物にもたらすこと

という植物体内における異なる2つの変化が同時に生じることで、抗酸化物質の生合成が飛躍的に促進されるためと考えられる。すなわち、植物が抗酸化物質を必要とする状況等になり、且つ抗酸化物質を生合成できる代謝の経路が確保されているときに、様々な抗酸化物質が多量に合成されると考えられる。
That is, in the present invention, the factors that resulted in vegetables with significantly improved various antioxidants were:

1) By using a nutrient solution that contains almost no nitrogen, there is a deficiency of nitrogen in the plant, and the flow of metabolism changes from the flow of amino acid synthesis to the flow of biosynthesis of antioxidants. Light with a wavelength of 490 nm or less is involved in several signal transduction systems, causing changes in plants such as creating conditions where antioxidants are required

This is thought to be because the biosynthesis of antioxidant substances is dramatically accelerated by the simultaneous occurrence of two different changes in the plant body. That is, it is considered that various antioxidant substances are synthesized in large quantities when the plant is in a situation where it needs an antioxidant substance and a metabolic pathway capable of biosynthesizing the antioxidant substance is secured.

なお、養液へのカルシウム添加も、490nm以下の波長の光照射も、シグナル伝達系に関与すると考えられ、いずれか一方だけを用いても、「生合成系への誘導」に対する寄与は認められる。しかし、双方を同時に実施することで、その寄与は飛躍的に増大する。   In addition, it is thought that calcium addition to nutrient solution and light irradiation with a wavelength of 490 nm or less are involved in the signal transduction system, and even if only one of them is used, contribution to “induction to biosynthetic system” is recognized. . However, if both are implemented simultaneously, the contribution will increase dramatically.

<本発明のまとめ>
本発明に係る水耕栽培による野菜の生産方法により、多様な抗酸化成分を著しく増強した野菜の生産が可能となり、それを食する人の健康増進に寄与し、老化、がん、心臓疾患、脳卒中、糖尿病と言った多くの疾病に対する予防効果を高めることが期待できる。また、硝酸態窒素含有量を減少させる効果もある。
<Summary of the present invention>
The method for producing vegetables by hydroponics according to the present invention enables the production of vegetables with significantly enhanced various antioxidant components, contributes to the health promotion of those who eat it, aging, cancer, heart disease, It can be expected to improve the preventive effect against many diseases such as stroke and diabetes. It also has the effect of reducing the nitrate nitrogen content.

水耕栽培の収穫前処理に関しては、いくつかの報告があるが、主に、硝酸態窒素含有量の減少や、それに伴う味覚の向上を目的としたものである。アスコルビン酸の向上等についても報告はあるが、ORAC値の顕著な向上に関する報告はない。   There are several reports on pre-harvest treatment in hydroponics, but it is mainly aimed at reducing nitrate nitrogen content and improving the taste associated therewith. Although there are reports on the improvement of ascorbic acid and the like, there is no report on the remarkable improvement of the ORAC value.

これは、抗酸化物質の生合成系のメカニズムが十分に解明されていないことに起因すると考えられる。本発明においては、考察で示した仮定に基づき、様々な養液や光照射の条件を検討した結果、窒素をほとんど含まず、且つカルシウムを所定量含む養液を用いて収穫前処理を行うことで、多様な抗酸化成分を著しく増強した野菜を栽培できることを実証した。また、490nm以下の波長の可視光の役割についても検証し、抗酸化成分の生合成に大きな寄与があることを確認した。   This is thought to be due to the fact that the mechanism of the biosynthetic system of antioxidant substances has not been fully elucidated. In the present invention, as a result of examining various nutrient solutions and light irradiation conditions based on the assumptions shown in the discussion, the pre-harvest treatment is performed using a nutrient solution containing almost no nitrogen and a predetermined amount of calcium. It proved that vegetables with various antioxidant components remarkably enhanced can be cultivated. Moreover, the role of visible light having a wavelength of 490 nm or less was also verified, and it was confirmed that there was a great contribution to the biosynthesis of antioxidant components.

Claims (7)

収穫前の一定期間において、
窒素を略含有しない養液を用いることで、抗酸化成分の生合成を主とする代謝経路を確保し、
光照射条件および/または、養液条件を調整することで、抗酸化成分の誘導を促す
ことを特徴とする水耕栽培による多様な抗酸化成分を増強した野菜の生産方法。
In a certain period before harvest,
By using a nutrient solution that does not substantially contain nitrogen, a metabolic pathway mainly consisting of biosynthesis of antioxidant components is secured,
A method for producing vegetables with enhanced various antioxidant components by hydroponics, characterized by promoting induction of antioxidant components by adjusting light irradiation conditions and / or nutrient solution conditions.
窒素を略含有せず、カルシウムを含有する養液を用い、
波長が490nm以下の可視光を含む光を照射することで、
収穫前の一定期間、野菜を栽培する
ことを特徴とする水耕栽培による多様な抗酸化成分を増強した野菜の生産方法。
Using nutrient solution that does not contain nitrogen and contains calcium,
By irradiating light including visible light having a wavelength of 490 nm or less,
A method for producing vegetables with enhanced various antioxidant components by hydroponics, characterized by cultivating vegetables for a certain period before harvesting.
上記波長が490nm以下の可視光を含む光の強度は、1平方メートル当たり80マイクロmol以上である
ことを特徴とする請求項2に記載の水耕栽培による多様な抗酸化成分を増強した野菜の生産方法。
The intensity of light including visible light having a wavelength of 490 nm or less is 80 micromol or more per square meter. Production of vegetables with enhanced various antioxidant components by hydroponics according to claim 2. Method.
上記窒素含有量は、上記養液1L当たり2.2mg以下である
ことを特徴とする請求項2または3に記載の水耕栽培による多様な抗酸化成分を増強した生産方法。
The said nitrogen content is 2.2 mg or less per 1 L of said nutrient solution, The production method which strengthened the various antioxidant components by the hydroponic cultivation of Claim 2 or 3 characterized by the above-mentioned.
カルシウムの含有量は、上記養液1L当たり50mg以上120mg以下である
ことを特徴とする請求項2から4のいずれかに記載の水耕栽培による多様な抗酸化成分を増強した野菜の生産方法。
Content of calcium is 50 mg or more and 120 mg or less per 1 L of said nutrient solution. The production method of the vegetable which reinforced various antioxidant components by the hydroponic cultivation in any one of Claim 2 to 4 characterized by the above-mentioned.
上記一定期間は、1日から5日である
ことを特徴とする請求項1から5のいずれかに記載の水耕栽培による多様な抗酸化成分を増強した野菜の生産方法。
The method for producing vegetables with enhanced various antioxidant components by hydroponics according to any one of claims 1 to 5, wherein the predetermined period is 1 to 5 days.
上記養液に微量のミネラルを添加した
ことを特徴とする請求項1から6のいずれかに記載の水耕栽培による多様な抗酸化成分を増強した野菜の生産方法。
A method for producing vegetables with enhanced various antioxidant components by hydroponics according to any one of claims 1 to 6, wherein a trace amount of mineral is added to the nutrient solution.
JP2016121301A 2016-06-17 2016-06-17 Production method of vegetables with enhanced various antioxidant components by hydroponics Active JP6775812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016121301A JP6775812B2 (en) 2016-06-17 2016-06-17 Production method of vegetables with enhanced various antioxidant components by hydroponics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016121301A JP6775812B2 (en) 2016-06-17 2016-06-17 Production method of vegetables with enhanced various antioxidant components by hydroponics

Publications (2)

Publication Number Publication Date
JP2017221177A true JP2017221177A (en) 2017-12-21
JP6775812B2 JP6775812B2 (en) 2020-10-28

Family

ID=60685860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016121301A Active JP6775812B2 (en) 2016-06-17 2016-06-17 Production method of vegetables with enhanced various antioxidant components by hydroponics

Country Status (1)

Country Link
JP (1) JP6775812B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139031A1 (en) * 2018-01-15 2019-07-18 京都府公立大学法人 Nutrient liquid cultivation method for cultivated plant, and culture solution for nutrient liquid cultivation
CN114617033A (en) * 2022-04-02 2022-06-14 浙江东郁广陈果业有限公司 Method for prolonging preservation period of lettuce in plant factory
US11638405B2 (en) 2019-12-20 2023-05-02 Kyocera Corporation Vegetable production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169920A (en) * 1997-08-28 1999-03-16 Japan Tobacco Inc Production of low-nitric acid leaf vegetable by hydroponic
JP2010220558A (en) * 2009-03-24 2010-10-07 Yamaguchi Univ Method for enhancing nutrient component in plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169920A (en) * 1997-08-28 1999-03-16 Japan Tobacco Inc Production of low-nitric acid leaf vegetable by hydroponic
JP2010220558A (en) * 2009-03-24 2010-10-07 Yamaguchi Univ Method for enhancing nutrient component in plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139031A1 (en) * 2018-01-15 2019-07-18 京都府公立大学法人 Nutrient liquid cultivation method for cultivated plant, and culture solution for nutrient liquid cultivation
JPWO2019139031A1 (en) * 2018-01-15 2020-12-24 京都府公立大学法人 Hydroponic cultivation method of cultivated plants and culture solution for hydroponic cultivation
JP7025045B2 (en) 2018-01-15 2022-02-24 株式会社エコタイプ次世代植物工場 Hydroponic cultivation method for cultivated plants
US11638405B2 (en) 2019-12-20 2023-05-02 Kyocera Corporation Vegetable production method
CN114617033A (en) * 2022-04-02 2022-06-14 浙江东郁广陈果业有限公司 Method for prolonging preservation period of lettuce in plant factory
CN114617033B (en) * 2022-04-02 2023-09-26 浙江东郁广陈果业有限公司 Method for prolonging fresh-keeping period of lettuce in plant factory

Also Published As

Publication number Publication date
JP6775812B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
Al Murad et al. Light emitting diodes (LEDs) as agricultural lighting: Impact and its potential on improving physiology, flowering, and secondary metabolites of crops
Stagnari et al. Shading and nitrogen management affect quality, safety and yield of greenhouse-grown leaf lettuce
Chen et al. Growth and quality responses of ‘Green Oak Leaf’lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED)
Koltai et al. Light is a positive regulator of strigolactone levels in tomato roots
JP5988420B2 (en) Leafy vegetables production method
Brazaitytė et al. Light quality: growth and nutritional value of microgreens under indoor and greenhouse conditions
Buczkowska et al. Yield and fruit quality of sweet pepper depending on foliar application of calcium
JP7025045B2 (en) Hydroponic cultivation method for cultivated plants
JP2022118185A (en) Production method of leaf vegetables and production device of leaf vegetables
KR102093373B1 (en) A method of increasing vitamin C in Brassicaceae sprout vegetables by means of conditioning LED light source
JP6775812B2 (en) Production method of vegetables with enhanced various antioxidant components by hydroponics
JP2017060426A (en) Hydroponic cultivation method, leaf vegetables, culture medium, and culture concentrate composition
Sharma et al. Factors affecting production, nutrient translocation mechanisms, and LED emitted light in growth of microgreen plants in soilless culture
KR20180037451A (en) The hydroponic methods for leafy vegetables production with a low nitrate or potassium content
JP2011182672A (en) Method for producing folic acid-containing edible plant, and folic acid-containing sprout
US20220400619A1 (en) Device for improving the yield and quality of plants by exposure to uv, associated method and uses
JP2022118844A (en) Plant growth method
Kleiber Effect of titanium application on lettuce growth under Mn stress
CN106305058A (en) Transplanting method of cherry seedlings
Martirosyan et al. Photosynthetic apparatus of potato plants (Solanum tuberosum L.) grown in vitro as influenced by different spectral composition of led radiation
JP7108316B2 (en) Method for producing high-folate leafy vegetables
JP7166213B2 (en) Method for producing SGS-rich cruciferous vegetables, method for producing food and drink, and food and drink
Mahesh Response of high density spacing on physico-chemical quality and yield of guava (Psidium guajava L.) cv. Pant Prabhat
JP3242053U (en) leafy vegetable production equipment
JP5906085B2 (en) Method for improving content of useful components in plants in hydroponics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200107

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200528

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200930

R150 Certificate of patent or registration of utility model

Ref document number: 6775812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250