KR102093373B1 - A method of increasing vitamin C in Brassicaceae sprout vegetables by means of conditioning LED light source - Google Patents

A method of increasing vitamin C in Brassicaceae sprout vegetables by means of conditioning LED light source Download PDF

Info

Publication number
KR102093373B1
KR102093373B1 KR1020170148339A KR20170148339A KR102093373B1 KR 102093373 B1 KR102093373 B1 KR 102093373B1 KR 1020170148339 A KR1020170148339 A KR 1020170148339A KR 20170148339 A KR20170148339 A KR 20170148339A KR 102093373 B1 KR102093373 B1 KR 102093373B1
Authority
KR
South Korea
Prior art keywords
light
cabbage
vitamin
content
dna
Prior art date
Application number
KR1020170148339A
Other languages
Korean (ko)
Other versions
KR20180054455A (en
Inventor
이수인
김진아
정미정
윤은경
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Publication of KR20180054455A publication Critical patent/KR20180054455A/en
Application granted granted Critical
Publication of KR102093373B1 publication Critical patent/KR102093373B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Abstract

본 발명은 LED 광원을 조건화하여 배추과 새싹채소의 비타민 C 함량을 증가시키는 방법에 관한 것으로, 보다 상세하게는 백색광, 청색광, 녹색광 또는 적색광 중 선택된 하나의 LED 단일광, 특히 청색광을 배추과 새싹채소에 조사함으로써 배추과 새싹채소의 비타민 C 함량을 증가시키는 방법에 관한 것이다.
본 발명에 따른, 특정 파장 범위의 LED 광원의 조사 및 재배 조건의 최적화를 통해 배추과 새싹채소의 항산화 물질, 특히 비타민 C 함량을 증가시킬 수 있는 재배 조건 확립과 더불어, 기능성 물질이 풍부한 고품질 채소 작물 생산에 적용함에 따라 농가소득 증대에 기여할 수 있다. 뿐만 아니라, 광과 대사조절 물질 간 상호 관계를 규명하여 기능성 물질이 생성되는 채소 작물의 기작 연구의 기초 자료 제공과, LED 광원을 이용한 시설재배지 및 식물공장 적합 광조사 시스템 구축에 유용하게 활용될 수 있다.
The present invention relates to a method of increasing the vitamin C content of cabbage and sprout vegetables by conditioning the LED light source, and more particularly, irradiating cabbage and sprout vegetables with a single LED selected from white light, blue light, green light or red light, especially blue light By doing this it relates to a method of increasing the vitamin C content of cabbage and sprouts.
According to the present invention, the production of high-quality vegetable crops rich in functional substances, along with the establishment of cultivation conditions capable of increasing the content of antioxidants, especially vitamin C, in cabbage and sprouts through irradiation of LED light sources in a specific wavelength range and optimization of cultivation conditions This can contribute to increasing farm income. In addition, it can be usefully used to provide basic data for research on the mechanism of vegetable crops in which functional substances are generated by identifying the mutual relationship between light and metabolic control substances, and to construct facilities suitable for plant cultivation using LED light sources and light irradiation systems suitable for plant factories. have.

Description

LED 광원 조건에 의한 배추과 새싹채소의 비타민 C 함량을 증가시키는 방법{A method of increasing vitamin C in Brassicaceae sprout vegetables by means of conditioning LED light source}A method of increasing vitamin C in Brassicaceae sprout vegetables by means of conditioning LED light source}

본 발명은 LED 광원을 조건화하여 배추과 새싹채소의 비타민 C 함량을 증가시키는 방법에 관한 것으로, 보다 상세하게는 백색광, 청색광, 녹색광 또는 적색광 중 선택된 하나의 LED 단일광, 특히 청색광을 배추과 새싹채소에 조사함으로써 배추과 새싹채소의 비타민 C 함량을 증가시키는 방법에 관한 것이다. The present invention relates to a method of increasing the vitamin C content of cabbage and sprout vegetables by conditioning the LED light source, and more particularly, irradiating cabbage and sprout vegetables with a single LED selected from white light, blue light, green light or red light, especially blue light By doing this it relates to a method of increasing the vitamin C content of cabbage and sprouts.

새싹채소(sprout vegetable)는 짧은 기간 동안에 종자에서 발생하는 싹을 키워 생육 초기의 어린 배축(胚軸)과 떡잎을 식용으로 하거나 숙근초 등의 뿌리나 줄기를 묻어 움을 트게 하여 그 싹을 식용으로 하는 채소를 일컫는다.Sprout vegetable is used to cultivate the buds generated from seeds for a short period of time to edible young embryonic axis and cotyledon at the early stage of growth, or to bury roots or stems of succulent roots, etc. Refers to vegetables.

새싹채소는 싹기름채소 또는 싹채소라고도 하는데 어떤 특정한 채소를 일컫는 것이 아니라 채소류나 곡물류의 종자를 파종하여 얻어진 어린 떡잎이나 잎 또는 줄기를 수확하여 신선한 상태로 식용하는 것을 총칭한다. 보통 종자에서 싹이 나와 본잎이 1~3개쯤 달린 어린 채소이다. Sprout vegetable is also called sprout vegetable or sprout vegetable. It does not refer to any specific vegetable, but collectively refers to harvesting young cotyledon or leaves or stems obtained by sowing seeds of vegetables or grains, and eating them fresh. It is a young vegetable with 1 ~ 3 main leaves, usually sprouted from seeds.

채소는 종자에서 싹이 트는 시기에 자신의 성장을 위하여 영양소 등 소중한 물질을 생합성하므로, 새싹채소의 비타민, 미네랄 함량은 다 자란 채소의 3~4배에 이른다. 깨끗하고 신선함이 가장 중요하므로 농약을 사용하지 않는다. Vegetables biosynthesize precious substances such as nutrients for their growth at the time of sprouting from seeds, so the vitamin and mineral content of sprout vegetables is 3 to 4 times that of grown vegetables. Clean and fresh are the most important, so do not use pesticides.

새싹채소의 종류는 매우 다양한데, 가장 흔히 접할 수 있는 것은 콩나물과 녹두이며, 배추, 홍빛열무, 무순, 청경채 등의 배추과(Brassicaceae) 작물과, 콩, 들깨, 완두 등도 새싹채소가 가능한 작물이다. 이들 종자에서 싹을 틔운 것들은 생식 또는 요리에 최소가공 형태로 소비되고, 아미노산, 탄수화물, 미네랄, 비타민 및 폴리페놀 등의 많은 영양성분들을 함유하고 있어 건강식으로서 높은 관심을 받고 있다.There are many types of sprout vegetables, most commonly encountered are sprouts and green beans, and cabbage, red radish, radish, and bok choy (Brassicaceae) crops, and soybean, perilla, and pea crops. The seeds sprouted from these seeds are consumed in the least processed form for reproduction or cooking, and contain many nutrients such as amino acids, carbohydrates, minerals, vitamins, and polyphenols, and are receiving high attention as a health food.

새싹채소는 종자에서 발아된 새싹을 이용하기 때문에 새싹채소의 효율적인 생산과 기능성 물질이 다량으로 포함될 수 있는 발아와 생장 환경조건 구명은 새싹채소의 생산과 소비의 효율성 측면에서 매우 중요하다(J. Bio-Environment Control., 17:116-123, 2008). 일반적으로 새싹의 발아와 생장에 영향을 미치는 환경요인은 수분, 온도 및 광조건 등이다. 이 중 광은 종자 발아에 중요한 영향을 미친다.Since sprouted vegetables use sprouts germinated from seeds, efficient production of sprouted vegetables and the identification of germination and growth environmental conditions that may contain large amounts of functional substances are very important in terms of efficiency of production and consumption of sprouted vegetables ( J. Bio -Environment Control. , 17: 116-123, 2008). In general, environmental factors affecting bud germination and growth are moisture, temperature, and light conditions. Of these, light has an important effect on seed germination.

종자에서 발아하는 새싹에서 광은 식물 체내의 피토크롬(phytochrome)이라는 광수용성 단백질에 영향을 미치고, 이것은 생장, 형태 및 색소형성의 에너지원과 조절인자로 작용하며, 생리활성 물질의 생성에도 영향을 미친다(Annu . Rev. Cell Dev. Biol ., 13:203-229, 1997). 이와 같이 새싹채소의 종자발아와 생장 그리고 기능성 물질의 함량에 미치는 광의 영향이 이처럼 큰데도 새싹채소의 생산시 다양한 광을 이용하는 사례나 연구결과는 국내외적으로 거의 없는 실정이다.In buds germinating from seeds, light affects the photoreceptive protein called phytochrome in the plant body, which acts as an energy source and regulator of growth, morphology and pigmentation, and also affects the production of bioactive substances. ( Annu . Rev. Cell Dev. Biol . , 13: 203-229, 1997). Thus, although the effect of light on the seed germination, growth, and content of functional substances in sprout vegetables is so great, there have been few cases or research results using various lights in the production of sprout vegetables at home and abroad.

광은 식물에게 있어 일차적인 에너지원으로 대부분의 식물 발달 단계를 조절하고 광합성 효율을 유지하는 역할을 한다(Plant Cell Environ., 20:796-800, 1997). 태양광은 식물재배에 있어서 최적의 조건이지만 일일 중 또는 일년 중 끊임없이 변하고 다양한 파장을 가지고 있기 때문에 식물의 광합성 작용에 사용되는 파장은 많지 않다(HortScience, 24:1609-1611, 2007). 조사된 광은 광질 별로 특이 수용체의 광화학적 반응에 의해 조절되며 식물의 발육에 서로 다른 역할을 한다(Biochem., 3:851-857, 1964)는 것이 밝혀진 이후 식물의 생육에 특정 파장의 광이 어떤 영향을 미치는 지에 대한 연구가 계속되어 왔다. 광 파장과 작물의 생육과의 관계에 대한 오랜 연구 결과 적색광은 식물체의 광합성에 영향을 미치고 청색광은 형태학적으로 식물체의 건전한 생장에 필수 요소임이 밝혀졌다(Acta Hort ., 440:111-116O, 1996). 또한 애기장대에 청색광을 조사하였을 때 하배축의 신장을 억제하고 자엽 확장을 유발하며, 적색광은 하배축 신장과 자엽 확장을 촉진한다는 보고가 있었다(Annual Plant Reviews, Volume 30. Blackwell Publishing Ltd. Oxford, 2007). 자연의 기후에 영향을 받지 않고 작물을 안정적으로 재배하기 위해 이용되는 다양한 시설 내에서의 식물의 생리는 피복재를 통해 투과되는 광량, 광질 및 광조사 시간 등에 의해 영향을 받는다(Plant Physiol ., 63:114-116, 1979). 식물이 필요로 하는 광을 인공조명장치로 대체하기도 하는데 태양광을 대신하여 식물에 유용한 광질과 광도를 조사할 수 있도록 고압나트륨등, 메탈헬라이드등, 형광등, LED등 등 다양한 인공광원을 개발하여 왔다(Food Chem., 119:423-428, 2010). Light is the primary source of energy for plants, controlling most stages of plant development and maintaining photosynthetic efficiency ( Plant Cell Environ. , 20: 796-800, 1997). Although sunlight is an optimal condition for plant cultivation, it is constantly used throughout the day or year and has various wavelengths, so there are not many wavelengths used for photosynthesis of plants ( HortScience , 24: 1609-1611, 2007). The irradiated light is regulated by the photochemical reaction of specific receptors for each light quality and plays a different role in plant growth ( Biochem. , 3: 851-857, 1964) . Research into how it affects has been continued. A long study of the relationship between light wavelength and growth of crops revealed that red light affects photosynthesis of plants and blue light is morphologically essential for healthy growth of plants ( Acta Hort . , 440: 111-116 O, 1996). Also, when irradiated with blue light on Arabidopsis thaliana, it has been reported that it inhibits elongation of the lower axis and causes cotyledon expansion, and red light promotes expansion of the lower axis and cotyledon ( Annual Plant Reviews , Volume 30. Blackwell Publishing Ltd. Oxford, 2007). . The physiology of plants within various facilities used to grow crops stably without being affected by the natural climate is influenced by the amount of light transmitted through the cladding material, the quality of light and the irradiation time ( Plant Physiol . , 63: 114-116, 1979). In order to replace the light required by plants with artificial lighting devices, we have developed a variety of artificial light sources such as high-pressure sodium lamps, metal halide lamps, fluorescent lamps, and LED lamps to irradiate useful light and luminous intensity to plants instead of sunlight. Came ( Food Chem. , 119: 423-428, 2010).

특히 LED등은 무 수은으로 환경친화적이고 경량이며, 전력 절감이 탁월하고 수명이 길면서도 구동회로가 간단하다는 것과 함께 특정 광질을 쉽게 만들 수 있는 장점이 있다(J Kor Ins Illumin Electric Install Eng ., 18:51-21, 2004). 또한 LED 전등의 발광 파장을 식물 엽록소의 흡수 피크와 거의 일치시킬 수 있어 광합성에 유리하고, 낮은 전압으로 작동할 수 있다(J Plant Biotechnol ., 37:442-455, 2010). 재배목적에 따라 맞춤식 광질로 특정한 광질을 이용할 수 있다는 장점을 이용하여 엽채류 재배에 LED 광원을 이용하는 사례가 늘어나고 있지만 식물의 발아와 생장 그리고 기능성 물질의 함유량과의 관계를 규명하고 이를 조절해 채소의 품질을 향상시키는 조사기술에 관한 연구는 아직 미비하다(J Bio- Env Cont ., 20:253-257, 2011; Kor J Hort Sci Technol ., 26:106-112, 2008; Protected Hort and Plant Factory, 23:19-25, 2014).In particular, LED lamps are mercury-free, environmentally friendly, lightweight, have excellent power savings, have a long life, and have a simple driving circuit, and have the advantage of easily making certain light quality ( J Kor Ins Illumin Electric Install Eng . , 18 : 51-21, 2004). In addition, the light emission wavelength of the LED lamp can be almost matched with the absorption peak of plant chlorophyll, which is advantageous for photosynthesis and can operate at a low voltage ( J Plant Biotechnol . , 37: 442-455, 2010). Depending on the purpose of cultivation, the use of LED light sources for cultivation of leafy vegetables has been increasing by taking advantage of the ability to use specific qualities with customized qualities, but the quality of vegetables by identifying and controlling the relationship between germination and growth of plants and the content of functional substances is controlled. Research on research techniques to improve the quality of the research is still incomplete ( J Bio- Env Cont . , 20: 253-257, 2011; Kor J Hort Sci Technol . , 26: 106-112, 2008; Protected Hort and Plant Factory , 23: 19-25, 2014).

이러한 배경하에서, 본 발명자들은 배추과 새싹채소에서 비타민 C(vitamin C)와 같은 기능성 물질의 함량을 증대시키기 위하여, LED 광원별 및 광량별 조사에 따른 배추과 새싹채소의 기능성 물질로서 비타민 C 함량 증가의 적정 조건을 확립하고, 이를 이용하여 LED 광원 조건에 의한 배추과 새싹채소의 비타민 C 함량을 증가시키는 방법을 개발하기 위해 예의 노력한 결과, LED 광원 중 청색광의 광량을 조절함에 따라 비타민 C 함량을 증대시킬 수 있음을 확인함으로써, 본 발명을 완성하게 되었다.Under this background, the present inventors titrated the increase of vitamin C content as a functional material of cabbage and sprout vegetables according to LED light source and light quantity irradiation in order to increase the content of a functional material such as vitamin C (vitamin C) in cabbage and sprout vegetables As a result of the efforts to establish the conditions and to develop a method of increasing the vitamin C content of cabbage and sprouts by the LED light source conditions using the result, it is possible to increase the vitamin C content by controlling the amount of blue light in the LED light source. By confirming, the present invention has been completed.

J. Bio-Environment Control., 17:116-123, 2008J. Bio-Environment Control., 17: 116-123, 2008 Annu. Rev. Cell Dev. Biol., 13:203-229, 1997Annu. Rev. Cell Dev. Biol., 13: 203-229, 1997 Plant Cell Environ., 20:796-800, 1997Plant Cell Environ., 20: 796-800, 1997 HortScience, 24:1609-1611, 2007HortScience, 24: 1609-1611, 2007 Biochem., 3:851-857, 1964Biochem., 3: 851-857, 1964 Acta Hort., 440:111-116O, 1996Acta Hort., 440: 111-116 O, 1996 Annual Plant Reviews, Volume 30. Blackwell Publishing Ltd. Oxford, 2007Annual Plant Reviews, Volume 30.Blackwell Publishing Ltd. Oxford, 2007 Plant Physiol., 63:114-116, 1979Plant Physiol., 63: 114-116, 1979 Food Chem., 119:423-428, 2010Food Chem., 119: 423-428, 2010 J Kor Ins Illumin Electric Install Eng., 18:51-21, 2004J Kor Ins Illumin Electric Install Eng., 18: 51-21, 2004 J Plant Biotechnol., 37:442-455, 2010J Plant Biotechnol., 37: 442-455, 2010 J Bio-Env Cont., 20:253-257, 2011J Bio-Env Cont., 20: 253-257, 2011 Kor J Hort Sci Technol., 26:106-112, 2008Kor J Hort Sci Technol., 26: 106-112, 2008 Protected Hort and Plant Factory, 23:19-25, 2014Protected Hort and Plant Factory, 23: 19-25, 2014

본 발명의 목적은 LED 단일광을 광량(μmolm-2s- 1)별로 조사하여 배추과 새싹채소의 비타민 C(vitamin C) 함량을 증가시키는 방법을 제공하기 위한 것이다.An object of the present invention is to provide a method for increasing the vitamin C content of cabbage and sprout vegetables by irradiating LED single light by light amount (μmolm -2 s - 1 ).

본 발명의 다른 목적은 LED 단일광을 광량(μmolm-2s- 1)별로 조사하여 비타민 C 함량이 증가된 배추과 새싹채소를 생산하는 방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for producing cabbage and sprout vegetables with increased vitamin C content by irradiating LED single light by light amount (μmolm -2 s - 1 ).

본 발명의 또 다른 목적은 비타민 C 함량이 증가된 배추과 새싹채소를 제공하기 위한 것이다.Another object of the present invention is to provide cabbage and sprout vegetables with increased vitamin C content.

상기의 목적을 달성하기 위한 하나의 양태로서, 본 발명은 배추과(Brassicaceae) 새싹채소(sprout vegetable) 종자를 파종하여 발아시키는 단계; 및 상기 발아한 배추과 새싹채소에 LED 단일광을 광량(μmolm-2s- 1)별로 조사하는 단계;를 포함하는, 배추과 새싹채소의 비타민 C(vitamin C) 함량을 증가시키는 방법을 제공한다.As one aspect for achieving the above object, the present invention comprises the steps of germinating the seed sprouts (Brassicaceae) sprout vegetable (sprout vegetable) seeds; And irradiating the germinated cabbage and sprout vegetables with LED single light by the amount of light (μmolm -2 s - 1 ); providing a method for increasing the vitamin C content of cabbage and sprout vegetables.

다른 하나의 양태로서, 본 발명은 LED 단일광을 광량(μmolm-2s- 1)별로 조사하여 비타민 C 함량이 증가된 배추과 새싹채소를 생산하는 방법을 제공한다.As another aspect, the present invention provides a method for producing cabbage and sprout vegetables with increased vitamin C content by irradiating LED single light by light amount (μmolm -2 s - 1 ).

또한, 본 발명은 상기 생산방법에 의해 생산된 비타민 C 함량이 증가된 배추과 새싹채소를 제공한다.In addition, the present invention provides cabbage and sprout vegetables with increased vitamin C content produced by the production method.

본 발명에 따른, 특정 파장 범위의 LED 광원의 조사 및 재배 조건의 최적화를 통해 배추과 새싹채소의 항산화 물질, 특히 비타민 C 함량을 증가시킬 수 있는 재배 조건 확립과 더불어, 기능성 물질이 풍부한 고품질 채소 작물 생산에 적용함에 따라 농가소득 증대에 기여할 수 있다. 뿐만 아니라, 광과 대사조절 물질 간 상호 관계를 규명하여 기능성 물질이 생성되는 채소 작물의 기작 연구의 기초 자료 제공과, LED 광원을 이용한 시설재배지 및 식물공장 적합 광조사 시스템 구축에 유용하게 활용될 수 있다.According to the present invention, the production of high-quality vegetable crops rich in functional substances, along with the establishment of cultivation conditions capable of increasing the content of antioxidants, especially vitamin C, in cabbage and sprouts through irradiation of LED light sources in a specific wavelength range and optimization of cultivation conditions This can contribute to increasing farm income. In addition, it can be usefully used to provide basic data for research on the mechanism of vegetable crops in which functional substances are generated by identifying the mutual relationship between light and metabolic control substances, and to construct facilities suitable for plant cultivation using LED light sources and suitable irradiation systems for plant factories. have.

도 1은 본 발명의 일실시예에 따라, LED 광원별로 다양한 광량의 조건하에서 생육한 DB 배추의 비타민 C 함량 분석 결과를 나타낸 그래프로, (A) 125μmolm-2s-1 광량으로 LED 단일광 처리, 즉, 백색광, 청색광, 녹색광, 적색광 처리에 따른 DB 배추의 비타민 C 함량 분석 결과 및 (B) 150μmolm-2s-1 광량으로 LED 단일광 처리, 즉, 백색광, 청색광, 녹색광, 적색광 처리에 따른 DB 배추의 비타민 C 함량 분석 결과를 나타낸 그래프이다.
도 2는 본 발명의 일실시예에 따라, 125μmolm-2s-1 광량으로 백색광, 청색광, 녹색광, 적색광의 LED 단일광 처리에 따른, 배추과 새싹채소, (A) 새싹배추, (B) 홍빛열무싹, (C) 무순이, 및 (D) 청경채 유묘의 표현형을 분석하여 나타낸 사진이다. 여기에서, W는 백색광(white light), B는 청색광(blue light), G는 녹색광(green light), R은 적색광(red light)이다.
도 3은 본 발명의 일실시예에 따라, 125μmolm-2s-1 광량으로 백색광, 청색광, 녹색광, 적색광의 LED 광원별 처리에 의한, 배추과 새싹채소, (A) 새싹배추, (B) 홍빛열무싹, (C) 무순이, 및 (D) 청경채의 하배축 성장 길이를 비교하여 나타낸 그래프이다.
도 4는 본 발명의 일실시예에 따라, 125μmolm-2s-1 광량으로 백색광, 청색광, 녹색광, 적색광의 LED 단일광 처리에 따른, 배추과 새싹채소, (A) 새싹배추, (B) 홍빛열무싹, (C) 무순이, 및 (D) 청경채 유묘의 비타민 C 함량 분석 결과를 나타낸 그래프이다.
도 5는 본 발명의 일실시예에 따라, LED 단일광 처리에 의한 (A) 아스코베이트 생합성 관련 유전자(ascorbate biosynthesis genes, ABGs) 및 (B) 아스코베이트 재순환 관련 유전자(ascorbate recycling genes, ARGs)의 발현 정도를 분석하여 나타낸 전기영동 사진이다. 여기에서, W는 백색광(white light), B는 청색광(blue light), G는 녹색광(green light), R은 적색광(red light)이며, BrPGI1은 Brassica phosphoglucose isomerase 1, BrPGI3는 Brassica phosphoglucose isomerase 3, BrPMI1은 Brassica phosphomannose isomerase 1, BrPMI3는 Brassica phosphomannose isomerase 3, BrPMM1은 Brassica phosphomannomutase 1, BrPMM3는 Brassica phosphomannomutase 3, BrGMP2는 Brassica GDP-D-mannose pyrophosphorylase 2, BrGMP3는 Brassica GDP-D-mannose pyrophosphorylase 3, BrGMP4는 Brassica GDP-D-mannose pyrophosphorylase 4, BrGMP5는 Brassica GDP-D-mannose pyrophosphorylase 5, BrGME1은 Brassica GDP-D-mannose 3,5-epimerase 1, BrGME2는 Brassica GDP-D-mannose 3,5-epimerase 2, BrGGP1은 Brassica GDP-Lgalactose phosphorylase 1, BrGGP3는 Brassica GDP-Lgalactose phosphorylase 3, BrGGP4는 Brassica GDP-Lgalactose phosphorylase 4, BrGPP는 Brassica L-galactose-1-P phosphatase, BrGalLDH는 Brassica L-galactose dehydrogenase, BrGLDH는 Brassica L-galactono-1,4-lactone dehydrogenase, BrAO2는 Brassica ascorbate oxidase 2, BrAO3는 Brassica ascorbate oxidase 3, BrAO6는 Brassica ascorbate oxidase 6, BrAPX2는 Brassica ascorbate peroxidase 2, BrAPX3는 Brassica ascorbate peroxidase 3, BrAPX4는 Brassica ascorbate peroxidase 4, BrAPX6는 Brassica ascorbate peroxidase 6, BrAPX7는 Brassica ascorbate peroxidase 7, BrAPX-R은 Brassica ascorbate peroxidase-R, BrSAPX는 Brassica S ascorbate peroxidase, BrTAPX는 Brassica T ascorbate peroxidase, BrDHAR3는 Brassica ehydroascorbate reductase 3, BrDHAR4는 Brassica ehydroascorbate reductase 4, BrMDHAR1은 Brassica monodehydroascorbate reductase 1, BrMDHAR2는 Brassica monodehydroascorbate reductase 2, BrMDHAR4는 Brassica monodehydroascorbate reductase 4, BrMDHAR5는 Brassica monodehydroascorbate reductase 5, BrMDHAR6는 Brassica monodehydroascorbate reductase 6, BrGR1은 Brassica glutathione reductase 1, BrGR2는 Brassica glutathione reductase 2, BrGR3는 Brassica glutathione reductase 3, BrGR4는 Brassica glutathione reductase 4이다. BrActin은 Brassica 내재유전자이다.
도 6은 본 발명의 일실시예에 따라, LED 광원별로 처리 기간 및 다양한 광량의 조건하에서 생육한 배추 모종의 비타민 C 함량 분석 결과를 나타낸 그래프로, (A) 125μmolm-2s-1 광량으로 5일, 7일 및 10일간 LED 단일광 처리, 즉, 백색광, 청색광, 적색광 처리에 따른 배추 모종의 비타민 C 함량 분석 결과 및 (B) 100μmolm-2s-1, 125μmolm-2s-1 및 150μmolm-2s-1 광량으로 LED 단일광 처리, 즉, 백색광, 청색광, 적색광 처리에 따른 배추 모종의 비타민 C 함량 분석 결과를 나타낸 그래프이다.
도 7은 본 발명의 일실시예에 따라, LED 광원별로 다양한 광량의 조건하에서 생육한 새싹배추, 홍빛열무싹 및 무순이의 비타민 C 함량 분석 결과를 나타낸 그래프이다.
도 8은 본 발명의 일실시예에 따라, LED 단일광 처리 기간에 따른 아스코베이트 생합성 관련 유전자(ascorbate biosynthesis genes, ABGs) 및 아스코베이트 재순환 관련 유전자(ascorbate recycling genes, ARGs)의 발현 정도를 분석하여 나타낸 그래프이다. 여기에서, White는 백색광(white light), Blue는 청색광(blue light), Red는 적색광(red light)이며, BrPGI1은 Brassica phosphoglucose isomerase 1, BrPMI1은 Brassica phosphomannose isomerase 1, BrPMM1은 Brassica phosphomannomutase 1, BrGMP1은 Brassica GDP-D-mannose pyrophosphorylase 1, BrGME1은 Brassica GDP-D-mannose 3,5-epimerase 1, BrGGP1은 Brassica GDP-Lgalactose phosphorylase 1, BrGPP는 Brassica L-galactose-1-P phosphatase, BrGalLDH는 Brassica L-galactose dehydrogenase, BrGLDH는 Brassica L-galactono-1,4-lactone dehydrogenase, BrAO6는 Brassica ascorbate oxidase 6, BrAPX6는 Brassica ascorbate peroxidase 6, BrMDAR1은 Brassica monodehydroascorbate reductase 1, BrDHAR1은 Brassica ehydroascorbate reductase 1, BrGR3는 Brassica glutathione reductase 3이다. 한편, 유전자의 상대적 발현 수준은 Brassica 내재유전자인 BrActin의 발현 수준을 기준으로 보정하여 나타내었다.
도 9는 본 발명의 일실시예에 따라, LED 광원별 처리에 따른 배추 모종에서의 활성산소종(ROS) 제거 효과를 분석하여 나타낸 도로, (A) 활성산소의 변화를 DAB 염색을 통해 확인한 배추 모종의 사진, (B) 과산화수소(H2O2)의 축적 함량을 정량화하여 나타낸 그래프, 및 (C) 슈퍼옥시드 디스무타아제(superoxide dismutase, SOD) 활성 정도를 측정하여 나타낸 그래프이다. 여기에서, (A)의 Control은 DAB 염색 없이 515 mM Na2HPO4만을 처리한 대조군이다.
도 10은 본 발명의 아스코베이트 생합성 및 재순환 경로를 간략하게 나타낸 모식도이다.
1 is a graph showing the analysis results of vitamin C content of DB cabbage grown under conditions of various light amounts for each LED light source according to an embodiment of the present invention, (A) 125μmolm -2 s -1 LED single light treatment , That is, the result of analyzing the vitamin C content of DB cabbage according to the treatment of white light, blue light, green light, and red light and (B) LED single light treatment with 150 μmolm -2 s -1 light amount, that is, white light, blue light, green light, red light treatment This is a graph showing the analysis results of vitamin C content in DB cabbage.
Figure 2, according to an embodiment of the present invention, according to the single light treatment of white light, blue light, green light, red light with a light amount of 125 μmolm -2 s -1 , cabbage and sprout vegetables, (A) sprout cabbage, (B) red light beet This is a photograph showing the phenotype of shoots, (C) radish, and (D) Chongkyungchae seedlings. Here, W is white light, B is blue light, G is green light, and R is red light.
Figure 3, according to an embodiment of the present invention, white light, blue light, green light, red light by treatment of each LED light source with a light amount of 125 μmolm -2 s -1 , cabbage and sprout vegetables, (A) sprout cabbage, (B) red radish It is a graph showing the growth length of the lower axis of shoots, (C) radish, and (D) Chungkyungchae.
Figure 4, according to an embodiment of the present invention, according to the LED single light treatment of white light, blue light, green light, red light with a light amount of 125μmolm -2 s -1 , cabbage and sprout vegetables, (A) sprout cabbage, (B) red beet It is a graph showing the results of vitamin C content analysis of sprouts, (C) radish, and (D) chunggyeongchae seedlings.
Figure 5, according to an embodiment of the present invention, (A) ascorbate biosynthesis genes (ABGs) and (B) ascorbate recycling genes (ARGs) by LED single light treatment This is an electrophoresis photograph showing the expression level. Here, W is white light, B is blue light, G is green light, R is red light, BrPGI1 is Brassica phosphoglucose isomerase 1, BrPGI3 is Brassica phosphoglucose isomerase 3, BrPMI1 is Brassica phosphomannose isomerase 1, BrPMI3 is Brassica phosphomannose isomerase 3, BrPMM1 is Brassica phosphomannomutase 1, BrPMM3 is Brassica phosphomannomutase 3, BrGMP2 is Brassica GDP-D-mannose pyrophosphorylase 2, BrGMP3 is Brassica GDP-D-mannose pyrophosphoryl Brassica GDP-D-mannose pyrophosphorylase 4, BrGMP5 for Brassica GDP-D-mannose pyrophosphorylase 5, BrGME1 for Brassica GDP-D-mannose 3,5-epimerase 1, BrGME2 for Brassica GDP-D-mannose 3,5-epimerase 2, BrGGP1 is Brassica GDP-Lgalactose phosphorylase 1, BrGGP3 is Brassica GDP-Lgalactose phosphorylase 3, BrGGP4 is Brassica GDP-Lgalactose phosphorylase 4, BrGPP is Brassica L-galactose-1-P phosphatase, BrGalLDH is Brassica L-galactose dehydrogenase, BrGLDH Brass L-galactono-1, 4-lactone dehydrogenase, BrAO2 is Brassica ascorbate oxidase 2, BrAO3 is Brassica ascorbate oxidase 3, BrAO6 is Brassica ascorbate oxidase 6, BrAPX2 is Brassica ascorbate peroxidase 2, BrAPX3 is Brassica ascorbate peroxidase 2, BrAPX3 is Brassica ascorbate peroxidase 3, BrAPX4 Brassica ascorbate peroxidase 6, BrAPX7 is Brassica ascorbate peroxidase 7, BrAPX-R is Brassica ascorbate peroxidase-R, BrSAPX is Brassica S ascorbate peroxidase, BrTAPX is Brassica T ascorbate peroxidase, BrDHAR3 is Brassica ehydroascorbate reductase 4, Brassica ehydroascorbate reductase 4 Brassica monodehydroascorbate reductase 1, BrMDHAR2 is Brassica monodehydroascorbate reductase 2, BrMDHAR4 is Brassica monodehydroascorbate reductase 4, BrMDHAR5 is Brassica monodehydroascorbate reductase 5, BrMDHAR6 is Brassica monodehydroascorbate reductase 6, BrGR 1 Brassica glutathione reductase 3, BrGR4 is Br It is assica glutathione reductase 4. BrActin is a Brassica intrinsic gene.
Figure 6 is a graph showing the results of the analysis of vitamin C content of cabbage seedlings grown under conditions of treatment duration and various light amounts for each LED light source according to an embodiment of the present invention, (A) 5 at 125 μmolm -2 s -1 light amount day, 7 days and 10 days a single LED light treatment, i.e., white light, blue light, analysis of vitamin C content of Chinese cabbage seedlings in accordance with the processing result and the red light (B) 100μmolm -2 s -1, 125μmolm -2 s -1 and 150μmolm - It is a graph showing the result of analyzing the vitamin C content of cabbage seedlings according to the treatment of LED single light with 2 s -1 light, that is, white light, blue light, and red light.
7 is a graph showing the results of vitamin C content analysis of sprouts, red radish buds and radish sprouts grown under conditions of various amounts of light for each LED light source, according to one embodiment of the present invention.
Figure 8, according to an embodiment of the present invention, analyzes the expression level of ascorbate biosynthesis genes (ABGs) and ascorbate recycling genes (ARGs) according to the duration of the LED single light treatment It is the graph shown. Here, White is white light, Blue is blue light, Red is red light, BrPGI1 is Brassica phosphoglucose isomerase 1, BrPMI1 is Brassica phosphomannose isomerase 1, BrPMM1 is Brassica phosphomannomutase 1, BrGMP1 is Brassica GDP-D-mannose pyrophosphorylase 1, BrGME1 for Brassica GDP-D-mannose 3,5-epimerase 1, BrGGP1 for Brassica GDP-Lgalactose phosphorylase 1, BrGPP for Brassica L-galactose-1-P phosphatase, BrGalLDH for Brassica L- galactose dehydrogenase, BrGLDH for Brassica L-galactono-1,4-lactone dehydrogenase, BrAO6 for Brassica ascorbate oxidase 6, BrAPX6 for Brassica ascorbate peroxidase 6, BrMDAR1 for Brassica monodehydroascorbate reductase 1, BrDHAR1 for Brassica ehydroascorb reductase It is 3. On the other hand, the relative expression level of the gene is expressed by correcting based on the expression level of BrActin, a Brassica intrinsic gene.
Figure 9, according to an embodiment of the present invention, the road shown by analyzing the effect of removing free radicals (ROS) in cabbage seedlings according to the treatment by LED light source, (A) cabbage confirmed changes in free radicals through DAB staining A picture of seedlings, (B) is a graph showing by quantifying the accumulation content of hydrogen peroxide (H 2 O 2 ), and (C) is a graph showing by measuring the degree of superoxide dismutase (SOD) activity. Here, the control of (A) is a control treated with only 515 mM Na 2 HPO 4 without DAB staining.
10 is a schematic diagram briefly showing the ascorbate biosynthesis and recirculation pathway of the present invention.

본 발명은 LED 광원을 조건화하여 배추과 새싹채소의 비타민 C 함량을 증가시키는 방법에 관한 것으로, 보다 상세하게는 백색광, 청색광, 녹색광 또는 적색광 중 선택된 하나의 LED 단일광, 특히 청색광을 배추과 새싹채소에 조사함으로써 배추과 새싹채소의 비타민 C 함량을 증가시키는 방법에 관한 것이다. The present invention relates to a method of increasing the vitamin C content of cabbage and sprout vegetables by conditioning the LED light source, and more particularly, irradiating cabbage and sprout vegetables with a single LED selected from white light, blue light, green light or red light, especially blue light By doing this it relates to a method of increasing the vitamin C content of cabbage and sprouts.

하나의 양태로서, 본 발명은 배추과(Brassicaceae) 새싹채소(sprout vegetable) 종자를 파종하여 발아시키는 단계; 및 상기 발아한 배추과 새싹채소에 LED 단일광을 광량(μmolm-2s- 1)별로 조사하는 단계;를 포함하는, 배추과 새싹채소의 비타민 C(vitamin C) 함량을 증가시키는 방법을 제공한다.In one aspect, the present invention comprises the steps of germinating the seeds of cabbage (Brassicaceae) sprout vegetables (sprout vegetable); And irradiating the germinated cabbage and sprout vegetables with LED single light by the amount of light (μmolm -2 s - 1 ); providing a method for increasing the vitamin C content of cabbage and sprout vegetables.

일반적으로 새싹채소는 씨앗에서 처음 발아한 어린 잎 또는 줄기를 의미하며, 본 발명의 배추과 새싹채소는 배추과(Brassicaceae)에 속하는 모든 종류의 새싹채소를 포함하며, 구체적으로는 배추, 홍빛열무, 무순, 청경채 일 수 있으나 이에 한정되는 것은 아니다.In general, sprout vegetable refers to a young leaf or stem that first germinates from a seed, and the cabbage and sprout vegetable of the present invention include all kinds of sprout vegetables belonging to the Brassica family, specifically Chinese cabbage, red radish, radish, It may be cheonggyeongchae, but is not limited thereto.

배추(Brassica rapa L. ssp. pekinensis, Chinese cabbage)는 배추과(Brassicaceae)에 속하는 두해살이 잎줄기채소로 우리나라에서 생산 및 소비가 높은 채소 중에 하나이며, 비타민 A, 카로틴, 비타민 B, 비타민 B2, 니코틴산, 비타민 C 등이 함유되어 있다.Chinese cabbage ( Brassica rapa L. ssp. Pekinensis , Chinese cabbage) is a leafy stem vegetable belonging to the cabbage family (Brassicaceae) and is one of the vegetables produced and consumed high in Korea, and contains vitamin A, carotene, vitamin B, vitamin B2, nicotinic acid, and vitamin C.

홍빛열무(Raphanus sativus L., red radish)는 배추과(Brassicaceae) 무속의 작물로, 홍빛열무 새싹은 일반 무 새싹과 달리 줄기가 붉은색을 띠며, 비타민 C 함량이 높다.Red Radish ( Raphanus sativus L., red radish) is a plant belonging to the family Brassisicaceae, and the red radish buds have reddish stems and high vitamin C content, unlike ordinary radish buds.

무순(Raphanus sativus L., radish sprouts)은 무순이라고도 하며, 배추과(Brassicaceae) 식물로, 무처럼 맵고 쌉싸래한 특유의 맛이 있으며 비타민 A 및 비타민 C와 미네랄이 풍부하여 근육의 부기를 가라앉혀주고 위액분비물을 자극하여 소화력을 개선시키는 효과가 있다. Raphanus sativus L., radish sprouts, is also known as radish, is a plant of the Brassica family, and has a peculiar, spicy, bitter taste and is rich in vitamin A and vitamin C and minerals, soothing muscle swelling and stimulating gastric secretions It has the effect of improving digestibility.

청경채(Brassica campestris L.)는 배추과(Brassicaceae)의 한해살이풀로 배추의 일종이다. 매우 연하며 특별한 향이나 맛이 없어 소스의 맛을 살리는 요리에 쓰이며, 쌈이나 샐러드로도 많이 섭취한다. 비타민 B 및 비타민 C 등이 풍부한 것으로 알려져 있다.Cheong Kyung Chae ( Brassica campestris L.) is an annual plant of the Brassica family, and is a type of Chinese cabbage. It is very light and has no special scent or taste, so it is used for cooking to enhance the flavor of the sauce. It is known to be rich in vitamin B and vitamin C.

본 발명의 LED 단일광을 광량(μmolm-2s- 1)별로 조사하여 배추과 새싹채소의 비타민 C(vitamin C) 함량을 증가시키는 방법에 있어서, 상기 LED 단일광은, 청색광(blue light), 백색광(white light), 녹색광(green light) 및 적색광(red light)으로 이루어진 군으로부터 하나 이상 선택되는 것일 수 있으며, 이에 제한되지는 않으나, 바람직하게는 청색광(blue light)일 수 있다.In the method for increasing the vitamin C content of cabbage and sprouts by irradiating the LED single light of the present invention by light amount (μmolm -2 s - 1 ), the LED single light is blue light, white light (white light), green light (green light) and may be one or more selected from the group consisting of red light (red light), but is not limited thereto, preferably blue light (blue light).

본 발명의 LED 단일광을 광량(μmolm-2s- 1)별로 조사하여 배추과 새싹채소의 비타민 C(vitamin C) 함량을 증가시키는 방법에 있어서, 상기 광량(μmolm-2s-1) 범위는, 이에 제한되지는 않으나, 100μmolm-2s-1 내지 150μmolm-2s-1일 수 있으며, 바람직하게는 125μmolm-2s-1 내지 150μmolm-2s-1일 수 있으며, 보다 더 바람직하게는 125μmolm-2s-1 일 수 있다.In the method for increasing the vitamin C content of cabbage and sprout vegetables by irradiating the LED single light of the present invention by light amount (μmolm -2 s - 1 ), the light amount (μmolm -2 s -1 ) range, but are not limited to, 100μmolm -2 s -1 to 150μmolm -2 s -1 may be, and preferably 125μmolm -2 s -1 to 150μmolm -2 s -1 may be, even more preferably 125μmolm - It can be 2 s -1 .

본 발명의 일 실시예에서, LED 광원 중 청색광의 광량을 조절함에 따라 비타민 C 함량이 백색광, 녹색광, 및 적색광과 비교하여 두드러지게 증대됨을 확인하였다(도 1, 도 4, 도 6 및 도 7).In one embodiment of the present invention, it was confirmed that as the amount of blue light in the LED light source is adjusted, the vitamin C content is significantly increased compared to white light, green light, and red light (FIGS. 1, 4, 6 and 7). .

다른 하나의 양태로서, 본 발명은 LED 단일광을 광량(μmolm-2s- 1)별로 조사하여 비타민 C 함량이 증가된 배추과 새싹채소를 생산하는 방법을 제공한다.As another aspect, the present invention provides a method for producing cabbage and sprout vegetables with increased vitamin C content by irradiating LED single light by light amount (μmolm -2 s - 1 ).

상기 배추과 새싹채소는 배추과(Brassicaceae)에 속하는 모든 종류의 새싹채소를 포함하며, 구체적으로는 배추, 홍빛열무, 무순, 청경채 일 수 있으나 이에 한정되는 것은 아니다.The cabbage and sprout vegetables include all kinds of sprout vegetables belonging to the cabbage family (Brassicaceae), and may be, in particular, cabbage, red radish, radish, bok choy, but are not limited thereto.

본 발명의 LED 단일광을 광량(μmolm-2s- 1)별로 조사하여 비타민 C 함량이 증가된 배추과 새싹채소를 생산하는 방법에 있어서, 상기 LED 단일광은, 청색광(blue light), 백색광(white light), 녹색광(green light) 및 적색광(red light)으로 이루어진 군으로부터 하나 이상 선택되는 것일 수 있으며, 이에 제한되지는 않으나, 바람직하게는 청색광(blue light)일 수 있다.In the method for producing cabbage and sprout vegetables with increased vitamin C content by irradiating the LED single light of the present invention by light amount (μmolm -2 s - 1 ), the LED single light is blue light, white light (white light) It may be one or more selected from the group consisting of light, green light, and red light, but is not limited thereto, but may preferably be blue light.

본 발명의 LED 단일광을 광량(μmolm-2s- 1)별로 조사하여 비타민 C 함량이 증가된 배추과 새싹채소를 생산하는 방법에 있어서, 상기 광량(μmolm-2s-1) 범위는, 이에 제한되지는 않으나, 100μmolm-2s-1 내지 150μmolm-2s-1일 수 있으며, 바람직하게는 125μmolm-2s-1 내지 150μmolm-2s-1일 수 있으며, 보다 더 바람직하게는 125μmolm-2s-1 일 수 있다.In the method for producing cabbage and sprout vegetables with increased vitamin C content by irradiating the LED single light of the present invention by light amount (μmolm -2 s - 1 ), the light amount (μmolm -2 s -1 ) range is limited to this include, but are not, 100μmolm -2 s -1 to 150μmolm -2 s -1 may be, and preferably 125μmolm -2 s -1 to 150μmolm -2 s -1 may be, it is 125μmolm -2 s and more preferably, It can be -1 .

또한, 본 발명은 상기 생산방법에 의해 생산된 비타민 C 함량이 증가된 배추과 새싹채소를 제공한다.In addition, the present invention provides cabbage and sprout vegetables with increased vitamin C content produced by the production method.

상기 배추과 새싹채소는 배추과(Brassicaceae)에 속하는 모든 종류의 새싹채소를 포함하며, 구체적으로는 배추, 홍빛열무, 무순, 청경채 일 수 있으나 이에 한정되는 것은 아니다.The cabbage and sprout vegetables include all kinds of sprout vegetables belonging to the cabbage family (Brassicaceae), and may be, in particular, cabbage, red radish, radish, bok choy, but are not limited thereto.

이하, 실시예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the configuration and effects of the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and the scope of the present invention is not limited by these examples.

실시예Example 1: LED(Light Emitting Diode)  1: LED (Light Emitting Diode) 단일광Single light 처리에 의한 DB 배추의 비타민 C 함량 분석 Analysis of vitamin C content in DB cabbage by treatment

LED 광원별 조사에 따른, 배추과 새싹채소의 비타민 C 함량 증가의 적정 조건을 확립하기 위해, DB 배추의 종자를 이용하여 LED 광원별로 다양한 광량의 조건하에서 생육하였다. 이후, 시료를 채취하여 비타민 C 함량 변화를 분석하고, 이를 기반으로 배추과 새싹채소의 비타민 C 함량 증대를 위한 적정 재배 조건을 구축하였다.In order to establish appropriate conditions for increasing the vitamin C content of cabbage and sprout vegetables according to the irradiation of each LED light source, it was grown under various light conditions for each LED light source using seeds of DB cabbage. Thereafter, a sample was collected to analyze the change in vitamin C content, and based on this, proper cultivation conditions were established to increase the vitamin C content in cabbage and sprout vegetables.

실시예Example 1-1: 시료 및  1-1: Sample and 광처리Light treatment

DB(Dongbu) 배추(순계, inbred line; 동부한농) 종자를 물이 포함된 페트리 디쉬(petri dish)에서 3일 동안 23℃의 온도조건 및 암상태(dark condition)의 조건으로 배양한 후, 상토에 옮겨 25℃의 온도조건에서 7일간 LED 챔버(chamber) 내에서 백색광(white light), 청색광(blue light), 녹색광(green light) 또는 적색광(red light)의 각각의 LED 단일광을 조사하였으며, 이후 시료를 채취하여 비타민 C 함량을 분석하였다. 이때, LED 단일광 조사 주기는 LED 단일광 하에서 16시간 그리고 암상태에서 8시간 주기로 조사하였으며, LED 단일광별로 광량은 각각 125μmolm-2s-1(LED 조사 거리 17 ㎝) 또는 150μmolm-2s-1(LED 조사 거리 15 ㎝)로 조사하였다. After incubating DB (Dongbu) Chinese cabbage (sun-based, inbred line; eastern Hannong) seeds in a petri dish containing water for 23 days at a temperature condition of 23 ° C. and dark condition Then, the LED single light of white light, blue light, green light or red light was irradiated in the LED chamber for 7 days at a temperature of 25 ° C. Then, a sample was taken to analyze the vitamin C content. In this case, a single LED illumination period is 16 hours and was irradiated to give 8 hours in darkness, by a single LED light intensity are respectively 125μmolm -2 s -1 (LED irradiation distance 17 ㎝) or 150μmolm -2 s under the single LED light- It irradiated with 1 (LED irradiation distance 15 cm).

실시예Example 1-2: DB 배추의 비타민 C 함량 분석 1-2: Analysis of vitamin C content in DB cabbage

상기 실시예 1-1에서 LED 광원별로 다양한 광량의 조건하에서, 즉 125μmolm-2s-1 또는 150μmolm-2s-1 광량으로, 백색광, 청색광, 녹색광, 적색광의 LED 단일광 조건하에서 생육하고, 채취한 각각의 시료의 비타민 C 함량을 분석하였다. 비타민 C 함량은 HPLC(high performance liquid chromatography) 분석을 통해 측정하였다.In Example 1-1, under the conditions of various light amounts for each LED light source, i.e., 125 μmolm -2 s -1 or 150 μmolm -2 s -1 light amount, grown under white light, blue light, green light, and red light single LED conditions, and collected The vitamin C content of each sample was analyzed. Vitamin C content was measured by HPLC (high performance liquid chromatography) analysis.

구체적으로, DB 배추 유묘 샘플을 채취하여 분쇄한 후, 시료 2g을 시험관 튜브에 칭량하여 5% 메타인산용액(metaphosphoric acid, Wako사) 20 ㎖을 넣고 시료를 균질화(Ultra-Turrax T25, IKA Labo)하여 총량 50 ㎖까지 정용하였다. 그 다음 20분간 200 rpm으로 쉐이킹(shaking)하였으며, 이후 초음파 추출기로 30분간 추출하고, 3,200 rpm으로 원심분리한 뒤 상등액을 취하여 0.20 ㎛ 시린지 필터(syringe filter)로 여과하여 시험용액으로 사용하였다.Specifically, after picking and grinding DB cabbage seedling samples, 2 g of the sample is weighed into a test tube tube, and 20 ml of 5% metaphosphoric acid (Wako) is added and the sample is homogenized (Ultra-Turrax T25, IKA Labo) And dissolved to a total amount of 50 ml. It was then shaken at 200 rpm for 20 minutes, then extracted for 30 minutes with an ultrasonic extractor, centrifuged at 3,200 rpm, and the supernatant was taken and filtered with a 0.20 μm syringe filter to use as a test solution.

이때, 비타민 C 분석을 위한 표준품은 아스코르빅산(Ascorbic acid)을 사용하였다. 구체적으로, 표준품은 Sigma사 아스코르빅산(St.Louis, Mo, USA) 0.1 g을 100 ㎖ 정량플라스크(volumetric flask)에 정확하게 칭량하여 1,000 ㎎/ℓ 용액을 만들고, 이를 희석하여 최종농도가 각각 1 ㎎/ℓ, 10 ㎎/ℓ, 50 ㎎/ℓ 및 100 ㎎/ℓ가 되도록 제조하여 사용하였다. 표준용액의 제조에는 HPLC 등급 물을 사용하였다.At this time, ascorbic acid (Ascorbic acid) was used as a standard for vitamin C analysis. Specifically, as a standard product, 0.1 g of Sigma ascorbic acid (St. Louis, Mo, USA) was accurately weighed in a 100 mL volumetric flask to make a 1,000 mg / L solution, and the final concentration was 1 each. It was prepared and used to be ㎎ / ℓ, 10 ㎎ / ℓ, 50 ㎎ / ℓ and 100 ㎎ / ℓ. HPLC grade water was used to prepare the standard solution.

비타민 C 분석을 위한 HPLC 분석 조건은 하기 표 1에 나타내었다.HPLC analysis conditions for vitamin C analysis are shown in Table 1 below.

항목Item 조건Condition 장비(instrument)Equipment NANOSPACE SI-2, SHISEIDO, JAPANNANOSPACE SI-2, SHISEIDO, JAPAN 검출기Detector PDA detector(Theromo Fisher, USA)PDA detector (Theromo Fisher, USA) 분석 컬럼Analytical Column SHISEIDO MG120 C18 4.6×250 ㎜SHISEIDO MG120 C18 4.6 × 250 mm 컬럼 오븐 온도Column oven temperature 40℃40 ℃ 이동상(mobile phase)Mobile phase 0.05M 인산칼륨(KH2PO4) : 아세토니트릴(ACN) = 98 : 20.05M potassium phosphate (KH 2 PO 4 ): acetonitrile (ACN) = 98: 2 흐름 속도(flow rate)Flow rate 0.5 ㎖/분(min)0.5 ml / min (min) 파장(wave length)[nm]Wavelength [nm] 254 nm254 nm 주입량(injection volume)Injection volume 5 ㎕5 μl

LED 광원별로 다양한 광량의 조건하에서 생육한 DB 배추 유묘의 비타민 C 함량 분석 결과, 하기 도 1에 나타낸 바와 같이, LED 단일광 중 청색광의 조건하에서 다른 광원, 즉 백색광, 녹색광 및 적색광에 비해 비타민 C 함량이 두드러지게 증가됨을 확인하였으며, 125μmolm-2s-1 광량으로 청색광을 조사한 경우에는 다른 광원에 비해 비타민 C 함량이 22~32% 증가되었고(도 1의 A), 150μmolm-2s-1 광량으로 청색광을 조사한 경우에는 다른 광원에 비해 비타민 C 함량이 28~36% 증가됨을 확인하였다(도 1의 B).As a result of analyzing the vitamin C content of DB cabbage seedlings grown under conditions of various amounts of light for each LED light source, as shown in FIG. 1, the vitamin C content compared to other light sources, that is, white light, green light and red light, under the condition of blue light among the LED single light It was confirmed that this is significantly increased, and when the blue light was irradiated with a 125 μmolm -2 s -1 light amount, the vitamin C content was increased by 22-32% compared to other light sources (A in FIG. 1), and a 150 μmolm -2 s -1 light amount. When irradiated with blue light, it was confirmed that the vitamin C content increased by 28-36% compared to other light sources (B in FIG. 1).

상기 결과를 통해, LED 광원 중 청색광의 광량을 조절함에 따라 비타민 C 함량을 증대시킬 수 있음을 확인할 수 있었다.Through the above results, it was confirmed that the vitamin C content can be increased by controlling the amount of blue light in the LED light source.

실시예Example 2: LED  2: LED 단일광Single light 처리에 의한 배추과 새싹채소의 표현형 및 비타민 C 함량 분석 Phenotype and Vitamin C Content Analysis of Chinese Cabbage and Sprout Vegetables by Treatment

상기 실시예 1에서 배추과 작물 중 하나인 DB 배추의 종자를 이용하여 125μmolm-2s-1 또는 150μmolm-2s-1 광량으로 LED 단일광, 즉 백색광, 청색광, 녹색광, 적색광을, 특히 청색광을 조사한 경우, 비타민 C 함량이 증대됨을 확인하였다.In Example 1, using a seed of DB cabbage, which is one of the cabbage family crops, LED single light, that is, white light, blue light, green light, and red light, was irradiated with blue light, in particular, with a light amount of 125 μmolm -2 s -1 or 150 μmolm -2 s -1 In case, it was confirmed that the vitamin C content is increased.

이에, 배추과 새싹채소의 비타민 C 함량 증대를 위한 적정 재배 조건을 구축하고자, 새싹배추를 비롯하여, 다른 여러 배추과 새싹채소, 구체적으로 홍빛열무싹, 무순이 및 청경채에 LED 단일광을 조사한 후, 시료를 채취하여 상기 배추과 새싹채소의 표현형 및 비타민 C 함량을 분석하였다.Accordingly, in order to establish appropriate cultivation conditions for increasing the vitamin C content of Chinese cabbage and sprout vegetables, after irradiating a single light of LED on several cabbage and other vegetables such as sprouts, radish radish buds, radish sprouts, and clear vegetables, samples Extracted and analyzed the phenotype and vitamin C content of the cabbage and sprouts.

실시예Example 2-1: 시료 및  2-1: Sample and 광처리Light treatment

새싹채소, 구체적으로 새싹배추, 홍빛열무싹, 무순이 및 청경채의 종자를 물이 포함된 새싹 재배기에서 5일 동안 22℃의 온도조건 및 암상태(dark condition)의 조건으로 배양한 후, 상기 새싹 재배기를 LED 챔버(chamber) 내로 옮겨 22℃의 온도조건에서 3일간 백색광(white light), 청색광(blue light), 녹색광(green light) 또는 적색광(red light)의 각각의 LED 단일광을 조사하였다. 이후 시료를 채취하여 상기 배추과 새싹채소 유묘의 표현형 및 비타민 C 함량을 분석하였다. 이때, LED 단일광 조사 주기는 LED 단일광 하에서 16시간 그리고 암상태에서 8시간 주기로 조사하였으며, LED 단일광별로 광량은 125μmolm-2s-1로 조사하였다.After cultivation of sprout vegetables, specifically sprout cabbage, red radish buds, radish sprouts, and bok choy, in a sprout cultivator containing water for 5 days under conditions of temperature and dark condition of 22 ° C. The cultivator was moved into the LED chamber for 3 days at a temperature of 22 ° C. Each single LED light of white light, blue light, green light or red light was irradiated. Subsequently, a sample was taken and the phenotype and vitamin C content of the cabbage and sprout vegetable seedlings were analyzed. At this time, the LED single light irradiation period was irradiated at a period of 16 hours under a single LED light and 8 hours at a dark state, and the amount of light per LED single light was irradiated to 125 μmolm -2 s -1 .

실시예Example 2-2: 배추과 새싹채소  2-2: Chinese cabbage and sprouts 유묘의Seedling 표현형 분석 Phenotypic analysis

상기 실시예 2-1에서 125μmolm-2s-1 광량의 조건으로, LED 광원별, 즉, 백색광, 청색광, 녹색광, 적색광의 LED 단일광을 조사하여 생육한 각각의 배추과 새싹채소 유묘의 표현형을 분석하였다.In Example 2-1, under the conditions of 125 μmolm -2 s -1 light, by analyzing the single light of each LED light source, that is, white light, blue light, green light, and red light, analyze the phenotype of each cabbage and sprout seedling grown Did.

LED 광원별로 125μmolm-2s-1 광량의 조건하에서 생육한 각각의 배추과 새싹채소 유묘의 표현형을 분석한 결과, 하기 도 2에 나타낸 바와 같이, 배추과 새싹채소 중 새싹배추, 홍빛열무싹은 녹색광의 조건하에서 하배축의 성장이 우수하였으며, 무순이는 백색광의 조건하에서 길게 자람을 확인하였다. As a result of analyzing the phenotype of each cabbage and sprout vegetable seedlings grown under the conditions of 125 μmolm -2 s -1 light intensity for each LED light source, as shown in FIG. 2 below, among the cabbage and sprout vegetables, sprout cabbage and red radish buds are in green light. Under the growth of the lower axis was excellent, and the radish was observed to grow under the condition of white light.

한편, 백색광, 녹색광 및 적색광에 비해 비타민 C 함량을 증가시킨 청색광을 조사한 경우에는 배추과 새싹채소의 길이 성장이 다른 광원에 비해 상대적으로 느린 것으로 분석되었다.On the other hand, when irradiating blue light with increased vitamin C content compared to white light, green light and red light, it was analyzed that the length growth of Chinese cabbage and sprouts was relatively slow compared to other light sources.

보다 구체적으로, LED 광원별 처리에 따른 새싹배추, 홍빛열무싹, 무순이 및 청경채싹, 상기 4가지 배추과 새싹채소의 하배축의 길이 성장 정도를 비교해 본 결과, 하기 도 3에 나타낸 바와 같이, 새싹배추는 녹색광에서 3.72 ㎝ 성장하여, 상대적으로 다른 광원에 비해 하배축의 길이 성장이 가장 우수함을 확인하였다. 또한, 홍빛열무싹도 녹색광에서 7.11 ㎝ 성장하여, 상대적으로 다른 광원에 비해 하배축의 길이 성장이 우수함을 확인하였으며, 무순이는 백색광과 적색광에서 각각 7.06 ㎝ 및 6.78 ㎝로 길게 자랐음을 확인하였다. 한편, 청색광 처리시 청경채는 하배축의 길이가 3.75 ㎝로 성장이 느렸으며, 새싹배추의 경우 청색광 처리시 하배축 길이가 2.54 ㎝로 더 작게 자람을 확인하였다.More specifically, as a result of comparing the length of growth of the lower cabbage axis of the sprout cabbage, red radish radish, radish radish and bok choy sprouts, the four cabbages and the sprout vegetables according to the treatment by LED light source, as shown in FIG. Grew by 3.72 cm in green light, and it was confirmed that the length growth of the lower axis was the best compared to other light sources. In addition, it was confirmed that the reddish radish buds also grew 7.11 cm in green light, so that the length of the lower axis was superior to other light sources, and it was confirmed that radish radish grew to 7.06 cm and 6.78 cm in white and red light, respectively. On the other hand, in the case of blue light treatment, Chongkyungchae was slow to grow to 3.75 cm in the length of the lower axis, and in the case of sprout cabbage, the length of the lower axis was 2.54 cm in the case of blue light, and it was confirmed to grow smaller.

상기 결과를 통해, 새싹배추, 홍빛열무싹, 무순이, 청경채와 같은 배추과 새싹채소는 LED 광원별에 따라 다양한 성장 패턴을 나타냄을 확인할 수 있었다.Through the above results, it could be confirmed that cabbages and sprouts such as sprout cabbage, red radish radish sprouts, radish sprouts, and chunggyeongchae exhibit various growth patterns according to each LED light source.

실시예Example 2-3: 배추과 새싹채소의 비타민 C 함량 분석 2-3: Analysis of vitamin C content in Chinese cabbage and sprout vegetables

상기 실시예 2-1에서 125μmolm-2s-1 광량의 조건으로, LED 광원별, 즉, 백색광, 청색광, 녹색광, 적색광의 LED 단일광을 조사하여 생육한 각각의 배추과 새싹채소 시료를 채취하여 비타민 C 함량을 분석하였다. 비타민 C 함량은 HPLC(high performance liquid chromatography) 분석을 통해 측정하였다.In Example 2-1, in the condition of 125 μmolm -2 s -1 light amount, each cabbage and bud vegetable sample grown by irradiating LED single light of each LED light source, that is, white light, blue light, green light, and red light, was collected and vitamins The C content was analyzed. Vitamin C content was measured by HPLC (high performance liquid chromatography) analysis.

구체적으로, 새싹배추, 홍빛열무싹, 무순이 및 청경채싹, 상기 4가지 배추과 새싹채소 유묘 샘플을 각각 채취하여 분쇄한 후, 각각의 시료 2g을 시험관 튜브에 칭량하여 5% 메타인산용액(metaphosphoric acid, Wako사) 20 ㎖을 넣고 각 시료를 균질화(Ultra-Turrax T25, IKA Labo)하여 총량 50 ㎖까지 정용하였다. 그 다음 20분간 200 rpm으로 쉐이킹(shaking)하였으며, 이후 초음파 추출기로 30분간 추출하고, 3,200 rpm으로 원심분리한 뒤 상등액을 취하여 0.20 ㎛ 시린지 필터(syringe filter)로 여과하여 시험용액으로 사용하였다.Specifically, after extracting and crushing the samples of the sprout cabbage, red radish radish, radish and bok choy sprouts, the above four cabbage and sprout vegetable seedlings, respectively, 2 g of each sample was weighed into a test tube tube, and 5% metaphosphoric acid solution (metaphosphoric acid , Wako) 20 ml was added and each sample was homogenized (Ultra-Turrax T25, IKA Labo), and the total amount was dissolved to 50 ml. It was then shaken at 200 rpm for 20 minutes, then extracted for 30 minutes with an ultrasonic extractor, centrifuged at 3,200 rpm, and the supernatant was taken and filtered with a 0.20 μm syringe filter to use as a test solution.

이때, 비타민 C 분석을 위한 표준품은 상기 실시예 1-2의 방법으로 제조한 아스코르빅산(Ascorbic acid)을 사용하였으며, 상기 실시예 1-2에 나타낸 HPLC 분석조건으로 비타민 C 함량을 측정하였다.At this time, as a standard for the analysis of vitamin C was used ascorbic acid (Ascorbic acid) prepared by the method of Example 1-2, the vitamin C content was measured by the HPLC analysis conditions shown in Example 1-2.

LED 광원별로 125μmolm-2s-1 광량의 조건하에서 생육한 각각의 배추과 새싹채소 유묘의 비타민 C 함량을 분석한 결과, 하기 도 4에 나타낸 바와 같이, 배추과 새싹채소 중 새싹배추는 청색광 처리시 백색광에 비해 비타민 C 함량이 31% 증가하였으며, 녹색광에 비해서는 25% 이상 함량이 증대되었음을 확인하였다(도 4의 A).As a result of analyzing the vitamin C content of each cabbage and sprout vegetable seedlings grown under the conditions of 125 μmolm -2 s -1 light intensity for each LED light source, as shown in FIG. 4 below, during the blue light treatment, sprout cabbage among the cabbage and sprout vegetables was treated with white light. Compared, the vitamin C content increased by 31%, and it was confirmed that the content increased by 25% or more compared to green light (A in FIG. 4).

또한, 홍빛열무싹의 경우 청색광 처리시 백색광에 비해 비타민 C 함량이 20% 증가하였으며, 녹색광에 비해서는 16% 이상 함량이 높음을 확인하였다(도 4의 B). 무순이의 비타민 C 함량은 청색광을 조사한 경우 백색광에 비해 28% 증가하고, 적색광에 비해서는 49% 이상 함량이 증가함을 확인하였다. 특히, 무순이의 경우 LED 광원 중 청색광에서 상대적으로 다른 광원, 즉 백색광, 녹색광, 적색광에 비해 가장 많은 비타민 C 합성량이 증가함을 나타내었다(도 4의 C). 마찬가지로, 청경채의 경우에도, 청색광을 조사한 경우 백색광에 비해 비타민 C 함량이 14% 증가하였으며, 적색광에 비해서는 27% 이상 함량이 높음을 확인하였다(도 4의 D).In addition, in the case of red radish radish buds, vitamin C content increased by 20% compared to white light when treated with blue light, and it was confirmed that the content was higher than that of green light by 16% or more (Fig. 4B). Vitamin C content of radish was increased by 28% compared to white light when irradiated with blue light, and increased by more than 49% compared to red light. In particular, in the case of radish, it was shown that the amount of vitamin C synthesis increased most compared to other light sources, that is, white light, green light, and red light, from blue light among LED light sources (C in FIG. 4). Likewise, in the case of cheonggyeongchae, vitamin C content increased by 14% compared to white light when irradiated with blue light, and it was confirmed that the content of 27% or more was higher than that of red light (D in FIG. 4).

상기 결과를 통해, 새싹배추, 홍빛열무싹, 무순이, 청경채와 같은 배추과 새싹채소는 LED 광원 중 청색광을 조사함에 따라 비타민 C 함량을 증대시킬 수 있음을 확인할 수 있었다.Through the above results, it was confirmed that the cabbage and sprout vegetables such as sprout cabbage, red radish radish sprout, radish radish, and chunggyeongchae can increase the vitamin C content by irradiating blue light among the LED light sources.

실시예Example 3: LED  3: LED 단일광Single light 처리에 의한 DB 배추 유래 비타민 C 생합성 및 재순환 관련 유전자의 발현 분석 Analysis of expression of genes related to vitamin C biosynthesis and recycling from DB cabbage by treatment

상기 실시예 1에서 배추과 작물 중 하나인 DB 배추의 종자를 이용하여 125μmolm-2s-1 또는 150μmolm-2s-1 광량으로 LED 단일광, 즉 백색광, 청색광, 녹색광, 적색광을, 특히 청색광을 조사한 경우, 비타민 C 함량이 증대됨을 확인하였다.In Example 1, using a seed of DB cabbage, which is one of the cabbage family crops, LED single light, that is, white light, blue light, green light, and red light, was irradiated with blue light, in particular, with a light amount of 125 μmolm -2 s -1 or 150 μmolm -2 s -1 In case, it was confirmed that the vitamin C content is increased.

이에, LED 광원별 처리에 따른 배추과 작물의 비타민 C 함량 증대와 관련된 유전자 발현 정도를 분석하고자, RT-PCR을 수행하였다. RT-PCR을 수행하여, LED 단일광 처리에 의한 DB 배추(순계, inbred line)의 아스코베이트 생합성 유전자(ascorbate biosynthesis genes, ABGs) 23개 중 18개 유전자의 발현 패턴을 분석하였으며, 아스코베이트 재순환 유전자(ascorbate recycling genes, ARGs) 29개 중 22개 유전자의 발현 패턴을 분석하였다.Thus, in order to analyze the gene expression level related to the increase in vitamin C content of Chinese cabbage crops according to the treatment by LED light source, RT-PCR was performed. RT-PCR was performed to analyze the expression patterns of 18 genes out of 23 ascorbate biosynthesis genes (ABGs) of DB cabbage (sun line, inbred line) by LED single light treatment, and ascorbate recycling gene (ascorbate recycling genes, ARGs) The expression pattern of 22 out of 29 genes was analyzed.

구체적으로, DB(Dongbu) 배추(순계, inbred line; 동부한농) 종자를 물이 포함된 페트리 디쉬(petri dish)에서 3일 동안 23℃의 온도조건 및 암상태(dark condition)의 조건으로 배양한 후, 상토에 옮겨 25℃의 온도조건에서 7일간 LED 챔버(chamber) 내에서 백색광(white light), 청색광(blue light), 녹색광(green light) 또는 적색광(red light)의 각각의 LED 단일광을 125μmolm-2s-1으로 조사하였다. 이후 시료를 채취한 후 즉시 액체질소에 얼려 막자사발로 마쇄하였다. 마쇄한 시료는 RNeasy plant mini kits(Qiagen, Germany)를 이용하여 총 RNA를 추출하고, 이를 주형으로 cDNA를 합성하고 PCR을 수행하였다. PCR 반응조건은 초기 98℃에서 3분간 실시한 후, 98℃에서 30초, 55℃~60℃에서 30초, 98℃에서 2분을 총 35회~45회(cycle) 반복하였으며, 마지막 단계는 98℃에서 5분간 더 가열하는 조건으로 진행하였다.Specifically, DB (Dongbu) cabbage (sun-based, inbred line; Dongbu Hannong) seeds were cultured in a petri dish containing water for 23 days at a temperature condition of 23 ° C. and dark condition. After that, each single LED light of white light, blue light, green light, or red light in the LED chamber was transferred to the soil for 7 days at a temperature of 25 ° C. It was irradiated with 125 μmolm -2 s -1 . Subsequently, the sample was taken and immediately frozen in liquid nitrogen and ground with a mortar. As for the ground sample, total RNA was extracted using RNeasy plant mini kits (Qiagen, Germany), cDNA was synthesized as a template, and PCR was performed. PCR reaction conditions were initially performed at 98 ° C for 3 minutes, and then repeated for 30 seconds at 98 ° C, 30 seconds at 55 ° C to 60 ° C, and 2 minutes at 98 ° C for a total of 35 to 45 cycles, and the final step was 98. It proceeded under the condition of further heating at 5 degreeC.

한편, DB 배추 유래 비타민 C 생합성 및 재순환 관련 유전자의 발현 분석을 위해 사용한 프라이머 세트 및 구체적 어닐링(annealing) 온도는 하기 표 2에 나타내었다.Meanwhile, primer sets and specific annealing temperatures used for analysis of expression of genes related to vitamin C biosynthesis and recycling from DB cabbage are shown in Table 2 below.

유전자gene
(Gene)(Gene)
정방향 Forward 프라이머primer
(forward primer)(forward primer)
서열번호Sequence number 역방향 Reverse 프라이머primer
(reverse primer)(reverse primer)
서열번호Sequence number 어닐링Annealing 온도 Temperature
(℃)(℃)
PGI1PGI1 CTTCTCCTTCTCTCAAACAGTCC CTTCTCCTTCTCTCAAACAGTCC 1One TAAAACGACCCGCAGGAGTAAAACGACCCGCAGGAG 22 5555 PGI3PGI3 GGCTGCACATTTGTCAGAGAGGCTGCACATTTGTCAGAGA 33 CAATGTCCTAGCGTTCAGCACAATGTCCTAGCGTTCAGCA 44 5555 PMI1PMI1 GGTTGTCGACGGCGTCTTGGTTGTCGACGGCGTCTT 55 ACTGGAGCCATCAGCATCC ACTGGAGCCATCAGCATCC 66 56.856.8 PMI3PMI3 GCGAATTCGGATCAACCAGCGAATTCGGATCAACCA 77 GGTGTTTCAGTTTGGATACGAT GGTGTTTCAGTTTGGATACGAT 88 5555 PMM1PMM1 TCAAAAAGCCCGGAGTGATCAAAAAGCCCGGAGTGA 99 ACATGAACAGAGCTTTGCATTTAACATGAACAGAGCTTTGCATTTA 1010 5555 PMM3PMM3 GCCAAGAAGCCAGGAGTGAGCCAAGAAGCCAGGAGTGA 1111 ACATGAATAGAGCCTTGCATTTCACATGAATAGAGCCTTGCATTTC 1212 5555 GMP2GMP2 ATGGAGGAGGAAGGTAAAGAAGAATGGAGGAGGAAGGTAAAGAAGA 1313 TAGAAGCCCCGCTGCTATAATAGAAGCCCCGCTGCTATAA 1414 5555 GMP3GMP3 ATGGAGAAAGAAGAAGCAAGAGTCATGGAGAAAGAAGAAGCAAGAGTC 1515 ATGATCTCTGGTTTCGCAGACATGATCTCTGGTTTCGCAGAC 1616 56.856.8 GMP4GMP4 TGGAGTTGATGAGGTGGTGTTTGGAGTTGATGAGGTGGTGTT 1717 TTATGTAGTCCTTGGGTTGTCCATTATGTAGTCCTTGGGTTGTCCA 1818 5555 GMP5GMP5 GGTTGATGAAGTGGTTTTGACAGGGTTGATGAAGTGGTTTTGACAG 1919 TCACGTGGTTGACCAATGTCTCACGTGGTTGACCAATGTC 2020 5555 GME1GME1 AAGCTCAAGATATCAATCACAGGAG AAGCTCAAGATATCAATCACAGGAG 2121 TTCCGAAAGGACCGTAAATG TTCCGAAAGGACCGTAAATG 2222 5555 GME2GME2 CCTTCCGAGAAGCTGAGGACCTTCCGAGAAGCTGAGGA 2323 GGTAAATGAACGGGTCTGAAGC GGTAAATGAACGGGTCTGAAGC 2424 5555 GGP1GGP1 GAAGCCGGTGGCTTTTCTTGAAGCCGGTGGCTTTTCTT 2525 CTTCGGCAGCCATGTGAACTTCGGCAGCCATGTGAA 2626 5555 GGP3GGP3 AGACTCCGGAGAGAAAGCTAGAGAGACTCCGGAGAGAAAGCTAGAG 2727 AGGCATGCAGGGTAAGACCTAGGCATGCAGGGTAAGACCT 2828 5555 GGP4GGP4 GATCAGCCACGAAGCTAAAGA GATCAGCCACGAAGCTAAAGA 2929 TCTCCTGGAGGCAAACACAGTCTCCTGGAGGCAAACACAG 3030 5555 GPPGPP GGAGGGAGGGAGGATCAAATGGAGGGAGGGAGGATCAAAT 3131 TGAGTTCATGAGGTGTGACCATGAGTTCATGAGGTGTGACCA 3232 5555 GalLDHGalLDH TGGCATGAAGCTTGTCACTC TGGCATGAAGCTTGTCACTC 3333 TCCCTGCTGTCAGGAGTCTTTCCCTGCTGTCAGGAGTCTT 3434 5555 GLDHGLDH TGGCATGAAGCTTGTCACTCTGGCATGAAGCTTGTCACTC 3535 TCCTGTCTTTCAACGCACTG TCCTGTCTTTCAACGCACTG 3636 58.858.8 AO2AO2 GCAGCACATCGTTACCAACAT GCAGCACATCGTTACCAACAT 3737 CAACCGTTCGTCGAATGTCCAACCGTTCGTCGAATGTC 3838 5555 AO3AO3 CACCTACAAATTCACTGTTGATAAGCCACCTACAAATTCACTGTTGATAAGC 3939 TTTGGCAGAAAGACCGAGTT TTTGGCAGAAAGACCGAGTT 4040 5555 AO6AO6 GGGTTGAACACGCTTAGCTACTTGGGTTGAACACGCTTAGCTACTT 4141 GTAACGGCGGATTCTTCAAAGTAACGGCGGATTCTTCAAA 4242 5555 APX2APX2 AATCAAGGTTCCAAACATCTGAAAATCAAGGTTCCAAACATCTGAA 4343 ATAGTGACTGTAGACGTTGGTGTGAATAGTGACTGTAGACGTTGGTGTGA 4444 5555 APX3APX3 CGGTGCCACTCTTCTTCTTCCGGTGCCACTCTTCTTCTTC 4545 AGCAGCTTTACCCTTCGTCAAGCAGCTTTACCCTTCGTCA 4646 5555 APX4APX4 GTCTGGCTTCGATGGACCTGTCTGGCTTCGATGGACCT 4747 TCCCTGAGCCAGAACAGTGTCCCTGAGCCAGAACAGTG 4848 5555 APX6APX6 TGAGGCCAACAGTGGTATCC TGAGGCCAACAGTGGTATCC 4949 AGAAAAAGGCGTCCTCATCAAGAAAAAGGCGTCCTCATCA 5050 5757 APX7APX7 TTGATGCTGAGCAAGGTCAC TTGATGCTGAGCAAGGTCAC 5151 TTGTCGGAAACAAGCTGAAGTTGTCGGAAACAAGCTGAAG 5252 5555 APX-RAPX-R AGGAAGCCAAGAAGGAGATTGAGGAAGCCAAGAAGGAGATTG 5353 ATCAGGACCCAAGAATGCAGATCAGGACCCAAGAATGCAG 5454 5555 SAPXSAPX CACCACCACTATGGCTTCCT CACCACCACTATGGCTTCCT 5555 CCGTAGCTGCTGTGCAGTGCCGTAGCTGCTGTGCAGTG 5656 5555 TAPXTAPX GGACAGTGAAATGGCTCAAGTGGACAGTGAAATGGCTCAAGT 5757 GTTAGTGGGCAATGGCTTGTGTTAGTGGGCAATGGCTTGT 5858 5555 DHAR3DHAR3 AGCGACGGATCCGAGAAGAGCGACGGATCCGAGAAG 5959 TTAGGGGTTAACCTTGTGTTCCTTAGGGGTTAACCTTGTGTTCC 6060 5555 DHAR4DHAR4 AGTGACGGTCCTTTGCTTCAAGTGACGGTCCTTTGCTTCA 6161 GTGGAGGGAGAACACAGCAT GTGGAGGGAGAACACAGCAT 6262 5555 MDHAR1MDHAR1 ACATGGGTAAAGGAGTGAAGTTTATCACATGGGTAAAGGAGTGAAGTTTATC 6363 ACCGTCACAAGACTCACAACTCTACCGTCACAAGACTCACAACTCT 6464 58.858.8 MDHAR2MDHAR2 ATGAGCTCGTGACTGCAATGATGAGCTCGTGACTGCAATG 6565 AGGTCTAGCGCCAACACCTAAGGTCTAGCGCCAACACCTA 6666 58.858.8 MDHAR4MDHAR4 CAGTGCTAAAGGAGTGGAGTTCA CAGTGCTAAAGGAGTGGAGTTCA 6767 GAGGCTTCTCCATCATCACCGAGGCTTCTCCATCATCACC 6868 5555 MDHAR5MDHAR5 CCGGATTGTCTCTTTGGTGTCCGGATTGTCTCTTTGGTGT 6969 AAAGCTGATCTTCGGGGAATAAAGCTGATCTTCGGGGAAT 7070 5555 MDHAR6MDHAR6 GCACATCCAAATGGAGAGGT GCACATCCAAATGGAGAGGT 7171 CAAACGAGCGGGAGTAGAAG CAAACGAGCGGGAGTAGAAG 7272 5555 GR1GR1 AAGCCACGGAGGCTCACTA AAGCCACGGAGGCTCACTA 7373 TTCCTAAAGAATAGATCCACTGTACCATTCCTAAAGAATAGATCCACTGTACCA 7474 5555 GR2GR2 ATGGGTGTTCCCTATTTCATTTCATGGGTGTTCCCTATTTCATTTC 7575 AATATAAGCTCTCCTGAGAATCTGGT AATATAAGCTCTCCTGAGAATCTGGT 7676 5555 GR3GR3 GGAGGAAGCTACAACCGAGACGGAGGAAGCTACAACCGAGAC 7777 AAATCTACAGTAGCACCCATTCCAAAATCTACAGTAGCACCCATTCCA 7878 5555 GR4GR4 TCAAACCACCGCTACTACTCCT TCAAACCACCGCTACTACTCCT 7979 CGGAAGAGATGGTGGAAAAGCGGAAGAGATGGTGGAAAAG 8080 58.858.8 ActinActin CTCAGTCCAAAAGAGGTATTCTCTCAGTCCAAAAGAGGTATTCT 8181 GTAGAATGTGTGATGCCAGATCGTAGAATGTGTGATGCCAGATC 8282 5555

RT-PCR을 수행하여, LED 광원별, 즉, 백색광, 청색광, 녹색광, 적색광의 LED 단일광 처리에 의한 DB 배추(순계, inbred line)의 아스코베이트 생합성 유전자(ascorbate biosynthesis genes, ABGs) 및 아스코베이트 재순환 유전자(ascorbate recycling genes, ARGs)의 발현 정도를 분석해 본 결과, 하기 도 5에 나타낸 바와 같이, 배추의 ABGs 중, BrPMI1(phosphomannose isomerase)은 청색광과 적색광에서 강하게 발현되었으나, 백색광과 녹색광에서는 발현되지 않음을 확인하였다. BrPMI1이 청색광에서 강하게 발현되는 것으로 보아 비타민 C 생합성 경로 중 초기 합성 단계에 중요한 역할을 할 것으로 유추되었다. By performing RT-PCR, ascorbate biosynthesis genes (ABGs) and ascorbate of DB cabbage (inbred line) by LED light source treatment by LED light source, that is, white light, blue light, green light, and red light As a result of analyzing the expression level of recycled genes (ascorbate recycling genes, ARGs), as shown in FIG. 5, among the ABGs of Chinese cabbage, BrPMI1 (phosphomannose isomerase) was strongly expressed in blue light and red light, but not in white light and green light. Was confirmed. Since BrPMI1 is strongly expressed in blue light, it has been inferred that it will play an important role in the initial synthesis stage of the vitamin C biosynthetic pathway.

또한, ABGs 중, BrPMM1(3 phosphomannose mutase)은 백색광과 녹색광에서, BrPMM3는 적색광에서 강하게 발현되었으며, BrGMP(GDP-mannose pyrophosphorylase) 유전자들은 광에 따라 발현 양상에 차이가 있음을 확인하였다. BrGME2(GDP-D-mannose 3,5-epimerase)는 청색광과 녹색광 처리 시 발현되었으나, 백색광과 적색광에서는 약하게 발현되었다. BrGLDH(L-galactono-1,4-lactone dehydrogenase)는 백색광과 청색광에서 강하게 발현되었으나, 적색광과 녹색광에서는 발현되지 않음을 확인하였다. BrGLDH는 청색광 처리 시 강하게 발현되는 것으로 보아 비타민 C 생합성 경로 중 후기 합성 단계에 중요한 역할을 할 것으로 유추되었다(도 5의 A).In addition, among ABGs, BrPMM1 (3 phosphomannose mutase) was strongly expressed in white light and green light, BrPMM3 was strongly expressed in red light, and BrGMP (GDP-mannose pyrophosphorylase) genes were found to have different expression patterns according to light. BrGME2 (GDP-D-mannose 3,5-epimerase) was expressed during blue light and green light treatment, but weakly expressed in white light and red light. It was confirmed that BrGLDH (L-galactono-1,4-lactone dehydrogenase) was strongly expressed in white light and blue light, but not in red light and green light. Since BrGLDH was strongly expressed during blue light treatment, it was inferred that it would play an important role in the late synthesis step of the vitamin C biosynthetic pathway (FIG. 5A).

한편, 대부분의 배추 유래 ARGs는 LED 광원별에 따라 동등하게 발현되었으나, BrAPX6(ascorbate peroxidase)와 BrMDHAR1(monodehydroascorbate reductase)은 청색광에서만 강하게 발현하는 것으로 나타났다. BrAPX6(ascorbate peroxidase)와 BrMDHAR1(monodehydroascorbate reductase) 청색광 처리 시 강하게 발현되는 것으로 보아 비타민 C 재순환 시 합성증가와 관련이 있을 것으로 유추되었다(도 5의 B).On the other hand, most of the cabbage-derived ARGs were expressed equally according to the LED light source, but BrAPX6 (ascorbate peroxidase) and BrMDHAR1 (monodehydroascorbate reductase) were strongly expressed only in blue light. As it was strongly expressed during blue light treatment of BrAPX6 (ascorbate peroxidase) and BrMDHAR1 (monodehydroascorbate reductase), it was inferred that it might be related to increase in synthesis when vitamin C is recycled (Fig. 5B).

상기 분자·생물학적 연구 결과를 토대로, LED 단일광 중, 청색광 처리에 의한 배추과 작물의 비타민 C 합성량 증가는 특이적으로 발현하는 아스코베이트 생합성 관련 유전자(ascorbate biosynthesis genes, ABGs) 및 아스코베이트 재순환 관련 유전자(ascorbate recycling genes, ARGs)의 기능을 밝히고, 이를 조절함에 따라 가능함을 유추할 수 있었다.Based on the results of the molecular and biological studies, the increase in the amount of vitamin C synthesis in Chinese cabbage and crops by blue light treatment among LED single light, ascorbate biosynthesis genes (ABGs) and ascorbate recycling related genes specifically expressed The functions of (ascorbate recycling genes, ARGs) were revealed, and the possibility was deduced by controlling them.

실시예Example 4: LED(Light Emitting Diode)  4: LED (Light Emitting Diode) 단일광Single light 처리 기간 및 처리 광량에 따른 배추 모종의 비타민 C 함량 분석 Analysis of vitamin C content in Chinese cabbage seedlings according to treatment duration and amount of light treated

배추과 새싹채소에서의 비타민 C 축적에 미치는 LED 단일광 처리 기간에 따른 영향을 조사하기 위해, LED 챔버(chamber) 내에서 배추 모종(chinese cabbage seedling)에 백색광(white light), 청색광(blue light) 또는 적색광(red light)의 각각의 LED 단일광을 125μmolm-2s-1(LED 조사 거리 17 ㎝)의 광량으로 5일, 7일, 또는 10일 동안 조사하고, 이후 시료를 채취하여 비타민 C 함량을 분석하였다(도 6의 A). To investigate the effect of LED single light treatment period on the accumulation of vitamin C in cabbage and sprout vegetables, white light, blue light, or blue light on Chinese cabbage seedling in the LED chamber Each single LED light of red light is irradiated for 5 days, 7 days, or 10 days at a light amount of 125 μmolm -2 s -1 (LED irradiation distance 17 cm), and then samples are taken to determine the vitamin C content. Analysis (A in Figure 6).

LED 단일광 처리 기간에 따른 배추 모종의 비타민 C 함량을 분석한 결과, 하기 도 6의 A에 나타낸 바와 같이, LED 단일광 중 청색광의 조건하에서 다른 광원, 즉 백색광 및 적색광에 비해 조사 기간에 관계없이 비타민 C 함량이 73.36~83.27 mg/100g으로 두드러지게 증가됨을 확인하였다. As a result of analyzing the vitamin C content of cabbage seedlings according to the duration of the LED single light treatment, as shown in A of FIG. It was confirmed that the vitamin C content was significantly increased to 73.36 ~ 83.27 mg / 100g.

또한, 배추과 새싹채소에서의 비타민 C 축적에 미치는 LED 단일광 처리 광량에 따른 영향을 조사하기 위해, 배추 모종에 백색광(white light), 청색광(blue light) 또는 적색광(red light)의 각각의 LED 단일광을 100μmolm-2s-1, 125μmolm-2s-1, 또는 150μmolm-2s-1 광량의 조건으로 7일간 조사하고, 이후 시료를 채취하여 비타민 C 함량을 분석하였다(도 6의 B). In addition, in order to investigate the effect of light intensity of LED single light on the accumulation of vitamin C in Chinese cabbage and sprout vegetables, each LED of white light, blue light, or red light on a cabbage seedling light to 100μmolm -2 s -1, 7 ilgan irradiated with 125μmolm -2 s -1, or 150μmolm -2 s -1 light intensity condition, and collected after the sample was analyzed for vitamin C content (B in Fig. 6).

LED 단일광 처리 광량에 따른 배추 모종의 비타민 C 함량을 분석한 결과, 하기 도 6의 B에 나타낸 바와 같이, 100μmolm-2s-1 광량의 조건하에서는 단일광 유형에 관계없이, 즉, 백색광, 청색광 또는 적색광에 상관없이 비타민 C의 축적을 향상시키는데 효과적이지 못하였다. 반면, 100μmolm-2s-1 광량 조건과 비교하여 125μmolm-2s-1 광량의 조건하에서는 비타민 C 축적 함량이 현저히 증가하였으며, 특히, 청색광이 다른 두 가지 단일광, 즉, 백색광 및 적색광에 비해 비타민 C 함량을 증가시키는데 가장 효과적임을 확인하였다. As a result of analyzing the vitamin C content of Chinese cabbage seedlings according to the light intensity of the LED single light treatment, as shown in B of FIG. 6 below, regardless of the type of single light, that is, white light, blue light under conditions of 100 μmolm -2 s -1 light amount Or it was not effective to improve the accumulation of vitamin C regardless of red light. On the other hand, 100μmolm -2 s -1 light conditions as compared to 125μmolm -2 s -1 under the conditions of the amount of light was the vitamin C content increased significantly accumulate, especially vitamin blue light than the other two single light, i.e., white light and red light It was confirmed that the most effective in increasing the C content.

상기 결과를 통해, 125μmolm-2s-1 광량 조건의 청색광이 새싹배추의 비타민 C 함량을 향상시키는데 가장 효과적임을 알 수 있었다. Through the above results, it was found that blue light having a light condition of 125 μmolm -2 s -1 was most effective in improving the vitamin C content of sprout cabbage.

한편, 100μmolm-2s-1 광량 조건의 경우 단일광의 유형에 관계없이 비타민 C 축적에 아무런 영향을 미치지 못하였으나, 125μmolm-2s-1 및 150μmolm-2s-1의 광량 조건에서는 백색광, 청색광 또는 적색광의 경우 비타민 C 함량을 모두 증가시킴을 알 수 있었다. 특히, 125μmolm-2s-1 및 150μmolm-2s-1의 광량 조건의 백색광 또는 적색광에 비해 청색광의 경우 비타민 C 함량 증가가 더 두드러짐을 알 수 있었다.On the other hand, in the case of 100 μmolm -2 s -1 light quantity condition, it had no effect on vitamin C accumulation regardless of the type of single light, but white light, blue light, or white light, under 125 μmolm -2 s -1 and 150 μmolm -2 s -1 light conditions In the case of red light, it was found that the vitamin C content was increased. In particular, it was found that the increase in vitamin C content was more pronounced in the case of blue light compared to white light or red light under the light conditions of 125 μmolm -2 s -1 and 150 μmolm -2 s -1 .

이로써, 청색광이 배추과 새싹채소의 비타민 C 함량을 증가시키는데 효과적이므로, 비타민 C 생합성을 조절하는 데 청색광을 유용한 도구로 사용할 수 있음을 유추할 수 있었다.As a result, since blue light is effective in increasing the vitamin C content of cabbage and sprouts, it can be inferred that blue light can be used as a useful tool to control vitamin C biosynthesis.

실시예Example 5: LED(Light Emitting Diode)  5: LED (Light Emitting Diode) 단일광Single light 처리 광량에 따른 배추과 새싹채소의 비타민 C 함량 분석 Analysis of vitamin C content in cabbage and sprout vegetables according to the amount of processed light

상기 실시예 4에서 LED 단일광, 즉, 백색광, 청색광 또는 적색광의 각각의 처리 광량에 따른 배추 모종의 비타민 C 함량 증진 정도를 확인한 결과, 100μmolm-2s-1 광량 조건을 제외한 125μmolm-2s-1 및 150μmolm-2s-1의 광량 조건에서는 비타민 C 함량이 증가함을 확인하였다. 특히, 125μmolm-2s-1 광량의 청색광 조건하에서 배추 모종의 비타민 C 함량이 현저히 증가함을 확인하였다.Example 4 LED single light, i.e., confirming the increase vitamin C content of Chinese cabbage seedlings in accordance with the degree of white light, blue light or red light resulting from the light amount of each processing, 100μmolm -2 s -1 125μmolm -2 s except for the light conditions - It was confirmed that the vitamin C content increased under light conditions of 1 and 150 μmolm -2 s -1 . In particular, it was confirmed that the vitamin C content of cabbage seedlings was significantly increased under the blue light condition of 125 μmolm -2 s -1 light amount.

이에, 상기 각각의 LED 단일광의 광량 조건을 조절함에 따라 비타민 C 함량이 높은 고품질 작물 개발에 광범위하게 적용할 수 있는지를 확인하고자, 배추과 새싹채소로서 새싹배추(chinese cabbage sprouts), 홍빛열무싹(red young radish sprouts), 무순이(radish sprouts)에 백색광(white light), 청색광(blue light) 또는 적색광(red light)의 각각의 LED 단일광을 100μmolm-2s-1, 125μmolm-2s-1, 또는 150μmolm-2s-1 광량의 조건으로 5일간 조사하고, 이후 시료를 채취하여 비타민 C 함량을 분석하였다(도 7). 이때, 상기 배추과 새싹채소는 암(dark) 조건에서 3일 동안 재배하고, 이후 5일 동안 각각의 LED 단일광을 조사하였다.Accordingly, in order to confirm whether it can be widely applied to the development of high-quality crops with high vitamin C content by controlling the light condition of each LED single light, Chinese cabbage sprouts, red cabbage radish (red) young radish sprouts), a random sequence is (radish sprouts) in white light (white light), the blue light (blue light) or red light (each of the single LED light 100μmolm -2 s -1 of red light), 125μmolm -2 s -1 , Alternatively, it was irradiated for 5 days under the condition of 150 μmolm -2 s -1 light amount, and then samples were taken to analyze the vitamin C content (FIG. 7). At this time, the cabbage and sprout vegetables were cultivated for 3 days in dark conditions, and then irradiated with each LED single light for 5 days.

LED 단일광 처리 광량에 따른 배추과 새싹채소의 비타민 C 함량을 분석한 결과, 하기 도 7에 나타낸 바와 같이, 새싹배추 및 홍빛열무싹의 경우 125μmolm-2s-1 광량의 청색광 조건에서 비타민 C 함량이 현저히 증가하였으며, 비타민 C 함량이 약 77 ㎎/100g 이었다. 이는 125μmolm-2s-1 광량의 청색광 조건에서 확인한 배추 모종(chinese cabbage seedling)의 비타민 C 함량 73.36~83.27 mg/100g 결과와 유사하였다.As a result of analyzing the vitamin C content of cabbage and sprout vegetables according to the light intensity of the LED single light treatment, as shown in FIG. 7, in the case of sprout cabbage and red radish radish, the vitamin C content in the blue light condition of 125 μmolm -2 s -1 light amount It increased significantly, and the vitamin C content was about 77 mg / 100g. This was similar to the result of 73.36 ~ 83.27 mg / 100g of vitamin C content of Chinese cabbage seedling confirmed under blue light condition of 125 μmolm -2 s -1 light.

한편, 새싹배추 및 홍빛열무싹과 달리 무순이의 경우에는 비타민 C 함량이 68 ㎎/100g으로 100μmolm-2s-1 광량의 청색광 조건에서 가장 높은 것으로 확인되었다. On the other hand, unlike sprouts and red radish buds, in the case of radish radish, it was found that the vitamin C content was 68 mg / 100 g, which was the highest in the blue light condition of 100 μmolm -2 s -1 light.

상기 결과를 통해, 청색광을 배추과 새싹채소로서 새싹배추 뿐만 아니라 홍빛열무싹 및 무순이와 같은 다른 식용 작물에서도 비타민 C 함량을 증가시키는데 효과적으로 사용할 수 있음을 알 수 있었다.Through the above results, it was found that blue light can be effectively used to increase vitamin C content in cabbages and sprouts as well as other edible crops such as red radish radish and radish radish.

실시예Example 6: LED  6: LED 단일광Single light 처리 기간에 따른 배추 모종에서의 비타민 C 생합성 및 재순환 관련 유전자의 발현 분석 Analysis of the expression of genes related to vitamin C biosynthesis and recycling in Chinese cabbage seedlings according to the treatment period

상기 실시예 4에서 LED 단일광, 즉, 백색광, 청색광 또는 적색광의 각각의 처리 기간에 따른 배추 모종의 비타민 C 함량 증진 정도를 확인한 결과, LED 단일광 중 청색광의 조건하에서 다른 광원, 즉 백색광 및 적색광에 비해 조사 기간에 관계없이 비타민 C 함량이 두드러지게 증가됨을 확인하였다.In Example 4, as a result of confirming the degree of vitamin C content enhancement of cabbage seedlings according to each treatment period of the LED single light, that is, white light, blue light, or red light, other light sources, that is, white light and red light, under the condition of blue light among the LED single light In comparison, it was confirmed that the vitamin C content was significantly increased regardless of the irradiation period.

이에, LED 광원별 처리 기간에 따른 배추 모종의 비타민 C 함량 증대와 관련된 유전자 발현 정도를 분석하고자, qPCR(Quantitative PCR)을 수행하였다. qPCR을 수행하여, LED 단일광 처리 기간, 구체적으로 5일, 7일, 및 10일간 LED 광원별 조사에 따른 배추 모종의 아스코베이트 생합성 유전자(ascorbate biosynthesis genes, ABGs) 23개 중 9개 유전자의 발현 패턴을 분석하였으며, 아스코베이트 재순환 유전자(ascorbate recycling genes, ARGs) 29개 중 5개 유전자의 발현 패턴을 분석하였다(도 8).Accordingly, qPCR (Quantitative PCR) was performed to analyze the gene expression level related to the increase in vitamin C content of cabbage seedlings according to the treatment period for each LED light source. By performing qPCR, the expression of 9 genes out of 23 ascorbate biosynthesis genes (ABGs) of cabbage seedlings according to the LED single light treatment period, specifically 5 days, 7 days, and 10 days by LED light source irradiation The patterns were analyzed, and the expression patterns of 5 genes out of 29 ascorbate recycling genes (ARGs) were analyzed (FIG. 8).

한편, LED 광원별 처리 기간에 따른 배추 모종의 비타민 C 생합성 및 재순환 관련 유전자의 발현 분석을 위해 사용한 프라이머 세트는 하기 표 3에 나타내었다.Meanwhile, primer sets used for analysis of the expression of genes related to vitamin C biosynthesis and recycling of cabbage seedlings according to the treatment period for each LED light source are shown in Table 3 below.

유전자gene
(Gene)(Gene)
정방향 Forward 프라이머primer (5'→3')(5 '→ 3')
(forward primer)(forward primer)
서열번호Sequence number 역방향 Reverse 프라이머primer (5'→3')(5 '→ 3')
(reverse primer)(reverse primer)
서열번호Sequence number
BrPGI1BrPGI1 CTTGCAAAAGCGTGTGTTGTCTTGCAAAAGCGTGTGTTGT 8383 GCAGACATGTGCGCTATGATGCAGACATGTGCGCTATGAT 8484 BrPMI1BrPMI1 TCTGTGCCAGGTCCTTCTCTTCTGTGCCAGGTCCTTCTCT 8585 TCTGCAGGCACAAACAGAACTCTGCAGGCACAAACAGAAC 8686 BrPMM1BrPMM1 ATGGAATGCTCAACGTGTCAATGGAATGCTCAACGTGTCA 8787 CGAAGTTCAGCCACCATCTTCGAAGTTCAGCCACCATCTT 8888 BrGMP1BrGMP1 GCAGTGGGCTAGGATTGAGAGCAGTGGGCTAGGATTGAGA 8989 TGATCTCCTTGTGTGGCAAATGATCTCCTTGTGTGGCAAA 9090 BrGME1BrGME1 TGGCCGTAACTCAGACAACATGGCCGTAACTCAGACAACA 9191 GCGACACATCACTGCCTTTAGCGACACATCACTGCCTTTA 9292 BrGGP1BrGGP1 AGGAGGAGCTTGAAGGAACCAGGAGGAGCTTGAAGGAACC 9393 ACAAGGCACTCAGAGGCAGTACAAGGCACTCAGAGGCAGT 9494 BrGPPBrGPP GATGGAACTGAAAGCGGCTAGATGGAACTGAAAGCGGCTA 9595 GCAGAGTCCTCGTCATCCTCGCAGAGTCCTCGTCATCCTC 9696 BrGalDHBrGalDH CGTTCCGACAAGGCATTAACCGTTCCGACAAGGCATTAAC 9797 TAACGTCCACACTTGGTTGCTAACGTCCACACTTGGTTGC 9898 BrGLDHBrGLDH TGGCATGAAGCTTGTCACTCTGGCATGAAGCTTGTCACTC 9999 TCCTGTCTTTCAACGCACTGTCCTGTCTTTCAACGCACTG 100100 BrAO6BrAO6 GGACGGCGTTAAGGTTTGTAGGACGGCGTTAAGGTTTGTA 101101 CAATCCGGTCTACTCCCTCACAATCCGGTCTACTCCCTCA 102102 BrAPX6BrAPX6 AAGGAACTCTTGAGCGGTGAAAGGAACTCTTGAGCGGTGA 103103 AGAAAAAGGCGTCCTCATCAAGAAAAAGGCGTCCTCATCA 104104 BrMDHAR1BrMDHAR1 GAAGGTGGGACCAAAGAACAGAAGGTGGGACCAAAGAACA 105105 ACCCGAGTCCTTCTCTTTCCACCCGAGTCCTTCTCTTTCC 106106 BrDHAR1BrDHAR1 CATTGGGGCATTACAAGGATCATTGGGGCATTACAAGGAT 107107 TGCTTGAGCTTGTGTTTTCGTGCTTGAGCTTGTGTTTTCG 108108 BrGR3BrGR3 GACCGGGGATATTTTGGTTTGACCGGGGATATTTTGGTTT 109109 TTGGTTGCTCCACACTTGAGTTGGTTGCTCCACACTTGAG 110110 BrActin2BrActin2 CTCAGTCCAAAAGAGGTATTCTCTCAGTCCAAAAGAGGTATTCT 111111 GTAGAATGTGTGATGCCAGATCGTAGAATGTGTGATGCCAGATC 112112

qPCR을 수행하여, LED 광원별, 즉, 백색광, 청색광, 적색광의 LED 단일광 처리 기간에 따른 배추 모종의 아스코베이트 생합성 유전자(ascorbate biosynthesis genes, ABGs) 및 아스코베이트 재순환 유전자(ascorbate recycling genes, ARGs)의 발현 정도를 분석해 본 결과, 하기 도 8에 나타낸 바와 같이, 배추의 ABGs 중 BrPGI1, BrPMI1, BrPMM1, BrGMP1, BrGME1, BrGGP1 및 BrGPP의 발현 수준이 LED 단일광 중 청색광을 5일 동안 조사한 경우에만 유의하게 증가함을 확인하였다. 반면, BrGalDH 및 BrGLDH의 발현 수준은 LED 단일광 유형에 관계없이, 즉, 백색광, 청색광, 적색광에 상관없이 현저하게 증가하지 않았다. 한편, 이와 유사하게, ARGs 중 BrAO6, BrAPX6, BrMDAR1, BrDHAR1 및 BrGR3의 발현 수준 또한 LED 단일광 중 청색광을 5일 동안 조사한 경우에만 유의하게 증가하였다. By performing qPCR, ascorbate biosynthesis genes (ABGs) and ascorbate recycling genes (ARGs) of cabbage seedlings according to the LED single light treatment period for each LED light source, that is, white light, blue light, and red light As a result of analyzing the expression level of, the expression level of BrPGI1, BrPMI1, BrPMM1, BrGMP1, BrGME1, BrGGP1 and BrGPP among the ABGs of Chinese cabbage was significant only when blue light was irradiated for 5 days among the LED single light. It was confirmed that the increase. On the other hand, the expression levels of BrGalDH and BrGLDH did not increase significantly regardless of the LED single light type, that is, regardless of white light, blue light or red light. On the other hand, similarly, the expression levels of BrAO6, BrAPX6, BrMDAR1, BrDHAR1 and BrGR3 in ARGs were also significantly increased only when blue light of LED single light was irradiated for 5 days.

상기 결과를 통해, LED 단일광 중, 청색광을 5일간 처리함에 따라 아스코베이트 생합성 및 재순환 경로(도 10)에서 상기 아스코베이트 생합성 관련 유전자(ascorbate biosynthesis genes, ABGs) 및 아스코베이트 재순환 관련 유전자(ascorbate recycling genes, ARGs)의 발현을 조절함으로써 배추 모종의 비타민 C 합성량을 증가시킬 수 있음을 알 수 있었다.Through the above results, ascorbate biosynthesis genes (ABGs) and ascorbate recycling related genes (ascorbate recycling) in the ascorbate biosynthesis and recirculation pathway (FIG. 10) as the LED single light and blue light are treated for 5 days genes, ARGs) to increase the amount of vitamin C synthesis in cabbage seedlings.

또한, 대부분의 아스코베이트 생합성 관련 유전자(ABGs) 및 아스코베이트 재순환 관련 유전자(ARGs)가 백색광 및 적색광에 비해 청색광 조사하에서 더 강하게 발현됨을 알 수 있었다. In addition, it was found that most ascorbate biosynthesis related genes (ABGs) and ascorbate recycling related genes (ARGs) were more strongly expressed under blue light irradiation than white light and red light.

한편, 아스코베이트 생합성 경로의 마지막 두 단계를 담당하는 BrGalDH 및 BrGLDH의 발현 수준은 각각의 LED 단일광, 즉, 백색광, 청색광 및 적색광의 영향을 받지 않음을 알 수 있었다. 즉, 상기 BrGalDH 및 BrGLDH 유전자 발현의 하향조절(down-regulation)이 비타민 C 생합성에 어떠한 영향도 미치지 않음을 알 수 있었다. On the other hand, it was found that the expression levels of BrGalDH and BrGLDH, which are responsible for the last two steps of the ascorbate biosynthetic pathway, are not affected by each LED single light, that is, white light, blue light and red light. That is, it was found that down-regulation of the BrGalDH and BrGLDH gene expression did not affect vitamin C biosynthesis.

실시예Example 7:  7: 청색광Blue light (blue light) 조사에 따른 비타민 C 함량 증가로 인한 활성산소종(ROS)의 축적 감소 효과 분석(blue light) Analysis of the effect of reducing the accumulation of free radicals (ROS) due to increased vitamin C content

상기 실시예 6에서 LED 단일광 중 청색광의 조건하에서 다른 광원, 즉 백색광 및 적색광에 비해 아스코베이트 생합성 관련 유전자(ABGs) 및 아스코베이트 재순환 관련 유전자(ARGs)의 발현을 조절함으로써 배추 모종의 비타민 C 합성량을 현저히 증가시킴을 확인하였다.Vitamin C synthesis of cabbage seedlings by controlling the expression of ascorbate biosynthesis related genes (ABGs) and ascorbate recycling related genes (ARGs) compared to other light sources, that is, white light and red light, under the condition of blue light among the LED single light in Example 6 above. It was confirmed that the amount was significantly increased.

한편, 비타민 C의 가장 중요한 기능 중 하나는 다양한 환경 스트레스에 의해 생성된 활성산소종(reactive oxygen species, ROS)으로부터 세포를 보호하는 항산화 작용이다.Meanwhile, one of the most important functions of vitamin C is an antioxidant action that protects cells from reactive oxygen species (ROS) generated by various environmental stresses.

이에, 청색광의 조사에 의한 배추 모종의 비타민 C 함량의 증가가 활성산소종 소거 활성과 관련이 있는지를 조사하기 위하여, LED 광원별, 구체적으로 125μmolm-2s-1 광량의 백색광, 청색광 또는 적색광의 조건하에서 7일 동안 재배한 배추 모종에서 대표적인 활성산소인 과산화수소(H2O2) 함량 및 초과산화 이온을 산소와 과산화수소로 변환해 주는 효소인 슈퍼옥시드 디스무타아제(superoxide dismutase, SOD) 활성을 측정하였다(도 9).Accordingly, in order to investigate whether the increase in the vitamin C content of cabbage seedlings by irradiation of blue light is related to the scavenging activity of free radicals, LED light sources, specifically, white light, blue light, or red light of 125 μmolm -2 s -1 light amount The superoxide dismutase (SOD) activity, which is an enzyme that converts hydrogen peroxide (H 2 O 2 ) content and superoxide ions, which are representative active oxygen, into cabbage and seedlings grown for 7 days under conditions, is converted into oxygen and hydrogen peroxide. It was measured (Fig. 9).

그 결과, 하기 도 9의 A 및 도 9의 B에 나타낸 바와 같이, 적색광 또는 백색광 조사 조건하에서 성장한 배추 모종보다 청색광 조사 조건하에서 성장한 배추 모종의 과산화수소(H2O2)의 축적 함량이 낮음을 확인하였다. As a result, as shown in Figs. 9A and 9B, the accumulation content of hydrogen peroxide (H 2 O 2 ) of the cabbage seedlings grown under blue light irradiation conditions was lower than that of the cabbage seedlings grown under red or white light irradiation conditions. Did.

또한, 도 9의 C에 나타낸 바와 같이, 초과산화이온을 산소와 과산화수소로 바꿔주는 불균등화 반응을 촉매 하는 효소인 슈퍼옥시드 디스무타아제(superoxide dismutase, SOD)의 활성이 백색광 또는 적색광 조사 조건하에서 성장한 배추 모종에 비해 청색광 조사 조건하에서 성장한 배추 모종에서 더 증가하였다. In addition, as shown in C of FIG. 9, the activity of superoxide dismutase (SOD), an enzyme that catalyzes the disproportionation reaction that converts superoxide ions into oxygen and hydrogen peroxide, is irradiated under white or red light irradiation conditions. Compared to the grown cabbage seedlings, the cabbage seedlings grown under blue light irradiation conditions increased more.

상기 결과를 통해, 청색광 조사에 의한 비타민 C 함량 증가가 ROS-소거 효소(ROS-scavenging enzyme)인 슈퍼옥시드 디스무타아제(superoxide dismutase, SOD)의 활성을 증진시키고, 결국 청색광 조사에 의한 비타민 C 함량 증가가 항산화 활성에 영향을 미침을 알 수 있었다. Through the above results, the increase in vitamin C content by blue light irradiation enhances the activity of superoxide dismutase (SOD), a ROS-scavenging enzyme, and eventually vitamin C by blue light irradiation It can be seen that the increase in content affects the antioxidant activity.

따라서, 슈퍼옥시드 디스무타아제(superoxide dismutase, SOD)의 활성 증가 및 과산화수소(H2O2)의 함량 감소를 확인함으로써, 청색광 조사에 의한 증가된 비타민 C 축적이 상승적으로(synergistically) 항산화 활성 증가를 유도함을 알 수 있었다.Therefore, by confirming an increase in the activity of superoxide dismutase (SOD) and a decrease in the content of hydrogen peroxide (H 2 O 2 ), increased vitamin C accumulation by blue light irradiation synergistically increases antioxidant activity It was found to induce.

상기 일련의 결과를 통하여, LED 광원별, 즉, 백색광, 청색광, 녹색광, 적색광의 LED 단일광을 조사하여 배추과 새싹채소의 비타민 C 함량을 증가시킴을 알 수 있었다. 특히, LED 단일광 중 청색광이 새싹배추, 홍빛열무싹, 무순이, 청경채와 같은 다양한 배추과 새싹채소의 비타민 C 함량을 현저히 증가시킴을 알 수 있었다. 또한, 청색광이 배추의 아스코베이트 생합성 유전자 및 아스코베이트 재순환 유전자의 발현 및 활성을 유도하여 비타민 C 축적을 증진시키고, SOD와 같은 주요 ROS-소거 항산화 효소를 활성화시킴으로써 항산화 활성을 증가시킴을 알 수 있었다.Through the series of results, it was found that the vitamin C content of Chinese cabbage and sprouts was increased by irradiating LED single light of each LED light source, that is, white light, blue light, green light, and red light. In particular, it was found that blue light among the single LEDs significantly increases the vitamin C content of various cabbages and sprouts such as sprout cabbage, red radish sprouts, radish sprouts, and cheonggyeongchae. In addition, it was found that blue light induces the expression and activity of the ascorbate biosynthetic gene and ascorbate recycle gene of Chinese cabbage, thereby enhancing vitamin C accumulation and increasing antioxidant activity by activating major ROS-erasing antioxidant enzymes such as SOD. .

이에, 배추과 새싹채소의 비타민 C 함량을 증진시키는데 있어, 유전자 조작이 아닌 특정 파장 범위의 LED 광원의 조사 및 재배 조건의 최적화를 통해 고품질 작물을 개발할 수 있다.Accordingly, in enhancing the vitamin C content of cabbage and sprouts, high-quality crops can be developed through optimization of cultivation conditions and irradiation of LED light sources in a specific wavelength range rather than genetic manipulation.

<110> Republic of Korea <120> A method of increasing vitamin C in Brassicaceae sprout vegetables by means of conditioning LED light source <130> P17R12C1011 <150> KR 10-2016-0151852 <151> 2016-11-15 <160> 112 <170> KoPatentIn 3.0 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PGI1_F <400> 1 cttctccttc tctcaaacag tcc 23 <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PGI1_R <400> 2 taaaacgacc cgcaggag 18 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PGI3_F <400> 3 ggctgcacat ttgtcagaga 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PGI3_R <400> 4 caatgtccta gcgttcagca 20 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PMI1_F <400> 5 ggttgtcgac ggcgtctt 18 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PMI1_R <400> 6 actggagcca tcagcatcc 19 <210> 7 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PMI3_F <400> 7 gcgaattcgg atcaacca 18 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PMI3_R <400> 8 ggtgtttcag tttggatacg at 22 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PMM1_F <400> 9 tcaaaaagcc cggagtga 18 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PMM1_R <400> 10 acatgaacag agctttgcat tta 23 <210> 11 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PMM3_F <400> 11 gccaagaagc caggagtga 19 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PMM3_R <400> 12 acatgaatag agccttgcat ttc 23 <210> 13 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> GMP2_F <400> 13 atggaggagg aaggtaaaga aga 23 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GMP2_R <400> 14 tagaagcccc gctgctataa 20 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> GMP3_F <400> 15 atggagaaag aagaagcaag agtc 24 <210> 16 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GMP3_R <400> 16 atgatctctg gtttcgcaga c 21 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GMP4_F <400> 17 tggagttgat gaggtggtgt t 21 <210> 18 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> GMP4_R <400> 18 ttatgtagtc cttgggttgt cca 23 <210> 19 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> GMP5_F <400> 19 ggttgatgaa gtggttttga cag 23 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GMP5_R <400> 20 tcacgtggtt gaccaatgtc 20 <210> 21 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> GME1_F <400> 21 aagctcaaga tatcaatcac aggag 25 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GME1_R <400> 22 ttccgaaagg accgtaaatg 20 <210> 23 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GME2_F <400> 23 ccttccgaga agctgagga 19 <210> 24 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GME2_R <400> 24 ggtaaatgaa cgggtctgaa gc 22 <210> 25 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GGP1_F <400> 25 gaagccggtg gcttttctt 19 <210> 26 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> GGP1_R <400> 26 cttcggcagc catgtgaa 18 <210> 27 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> GGP3_F <400> 27 agactccgga gagaaagcta gag 23 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GGP3_R <400> 28 aggcatgcag ggtaagacct 20 <210> 29 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GGP4_F <400> 29 gatcagccac gaagctaaag a 21 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GGP4_R <400> 30 tctcctggag gcaaacacag 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GPP_F <400> 31 ggagggaggg aggatcaaat 20 <210> 32 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GPP_R <400> 32 tgagttcatg aggtgtgacc a 21 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GalLDH_F <400> 33 tggcatgaag cttgtcactc 20 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GalLDH_R <400> 34 tccctgctgt caggagtctt 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GLDH_F <400> 35 tggcatgaag cttgtcactc 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GLDH_R <400> 36 tcctgtcttt caacgcactg 20 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> AO2_F <400> 37 gcagcacatc gttaccaaca t 21 <210> 38 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> AO2_R <400> 38 caaccgttcg tcgaatgtc 19 <210> 39 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> AO3_F <400> 39 cacctacaaa ttcactgttg ataagc 26 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> AO3_R <400> 40 tttggcagaa agaccgagtt 20 <210> 41 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> AO6_F <400> 41 gggttgaaca cgcttagcta ctt 23 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> AO6_R <400> 42 gtaacggcgg attcttcaaa 20 <210> 43 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> APX2_F <400> 43 aatcaaggtt ccaaacatct gaa 23 <210> 44 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> APX2_R <400> 44 atagtgactg tagacgttgg tgtga 25 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> APX3_F <400> 45 cggtgccact cttcttcttc 20 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> APX3_R <400> 46 agcagcttta cccttcgtca 20 <210> 47 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> APX4_F <400> 47 gtctggcttc gatggacct 19 <210> 48 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> APX4_R <400> 48 tccctgagcc agaacagtg 19 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> APX6_F <400> 49 tgaggccaac agtggtatcc 20 <210> 50 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> APX6_R <400> 50 agaaaaaggc gtcctcatca 20 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> APX7_F <400> 51 ttgatgctga gcaaggtcac 20 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> APX7_R <400> 52 ttgtcggaaa caagctgaag 20 <210> 53 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> APX-R_F <400> 53 aggaagccaa gaaggagatt g 21 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> APX-R_R <400> 54 atcaggaccc aagaatgcag 20 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SAPX_F <400> 55 caccaccact atggcttcct 20 <210> 56 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> SAPX_R <400> 56 ccgtagctgc tgtgcagtg 19 <210> 57 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> TAPX_F <400> 57 ggacagtgaa atggctcaag t 21 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TAPX_R <400> 58 gttagtgggc aatggcttgt 20 <210> 59 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> DHAR3_F <400> 59 agcgacggat ccgagaag 18 <210> 60 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> DHAR3_R <400> 60 ttaggggtta accttgtgtt cc 22 <210> 61 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DHAR4_F <400> 61 agtgacggtc ctttgcttca 20 <210> 62 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DHAR4_R <400> 62 gtggagggag aacacagcat 20 <210> 63 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> MDHAR1_F <400> 63 acatgggtaa aggagtgaag tttatc 26 <210> 64 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> MDHAR1_R <400> 64 accgtcacaa gactcacaac tct 23 <210> 65 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MDHAR2_F <400> 65 atgagctcgt gactgcaatg 20 <210> 66 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MDHAR2_R <400> 66 aggtctagcg ccaacaccta 20 <210> 67 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> MDHAR4_F <400> 67 cagtgctaaa ggagtggagt tca 23 <210> 68 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MDHAR4_R <400> 68 gaggcttctc catcatcacc 20 <210> 69 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MDHAR5_F <400> 69 ccggattgtc tctttggtgt 20 <210> 70 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MDHAR5_R <400> 70 aaagctgatc ttcggggaat 20 <210> 71 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MDHAR6_F <400> 71 gcacatccaa atggagaggt 20 <210> 72 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MDHAR6_R <400> 72 caaacgagcg ggagtagaag 20 <210> 73 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GR1_F <400> 73 aagccacgga ggctcacta 19 <210> 74 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> GR1_R <400> 74 ttcctaaaga atagatccac tgtacca 27 <210> 75 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> GR2_F <400> 75 atgggtgttc cctatttcat ttc 23 <210> 76 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> GR2_R <400> 76 aatataagct ctcctgagaa tctggt 26 <210> 77 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GR3_F <400> 77 ggaggaagct acaaccgaga c 21 <210> 78 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> GR3_R <400> 78 aaatctacag tagcacccat tcca 24 <210> 79 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GR4_F <400> 79 tcaaaccacc gctactactc ct 22 <210> 80 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GR4_R <400> 80 cggaagagat ggtggaaaag 20 <210> 81 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Actin_F <400> 81 ctcagtccaa aagaggtatt ct 22 <210> 82 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Actin_R <400> 82 gtagaatgtg tgatgccaga tc 22 <210> 83 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrPGI1_F <400> 83 cttgcaaaag cgtgtgttgt 20 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrPGI1_R <400> 84 gcagacatgt gcgctatgat 20 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrPMI1_F <400> 85 tctgtgccag gtccttctct 20 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrPMI1_R <400> 86 tctgcaggca caaacagaac 20 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrPMM1_F <400> 87 atggaatgct caacgtgtca 20 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrPMM1_R <400> 88 cgaagttcag ccaccatctt 20 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGMP1_F <400> 89 gcagtgggct aggattgaga 20 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGMP1_R <400> 90 tgatctcctt gtgtggcaaa 20 <210> 91 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGME1_F <400> 91 tggccgtaac tcagacaaca 20 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGME1_R <400> 92 gcgacacatc actgccttta 20 <210> 93 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGGP1_F <400> 93 aggaggagct tgaaggaacc 20 <210> 94 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGGP1_R <400> 94 acaaggcact cagaggcagt 20 <210> 95 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGPP_F <400> 95 gatggaactg aaagcggcta 20 <210> 96 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGPP_R <400> 96 gcagagtcct cgtcatcctc 20 <210> 97 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGalDH_F <400> 97 cgttccgaca aggcattaac 20 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGalDH_R <400> 98 taacgtccac acttggttgc 20 <210> 99 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGLDH_F <400> 99 tggcatgaag cttgtcactc 20 <210> 100 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGLDH_R <400> 100 tcctgtcttt caacgcactg 20 <210> 101 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrAO6_F <400> 101 ggacggcgtt aaggtttgta 20 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrAO6_R <400> 102 caatccggtc tactccctca 20 <210> 103 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrAPX6_F <400> 103 aaggaactct tgagcggtga 20 <210> 104 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrAPX6_R <400> 104 agaaaaaggc gtcctcatca 20 <210> 105 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrMDHAR1_F <400> 105 gaaggtggga ccaaagaaca 20 <210> 106 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrMDHAR1_R <400> 106 acccgagtcc ttctctttcc 20 <210> 107 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrDHAR1_F <400> 107 cattggggca ttacaaggat 20 <210> 108 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrDHAR1_R <400> 108 tgcttgagct tgtgttttcg 20 <210> 109 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGR3_F <400> 109 gaccggggat attttggttt 20 <210> 110 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGR3_R <400> 110 ttggttgctc cacacttgag 20 <210> 111 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> BrActin2_F <400> 111 ctcagtccaa aagaggtatt ct 22 <210> 112 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> BrActin2_R <400> 112 gtagaatgtg tgatgccaga tc 22 <110> Republic of Korea <120> A method of increasing vitamin C in Brassicaceae sprout          vegetables by means of conditioning LED light source <130> P17R12C1011 <150> KR 10-2016-0151852 <151> 2016-11-15 <160> 112 <170> KoPatentIn 3.0 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PGI1_F <400> 1 cttctccttc tctcaaacag tcc 23 <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PGI1_R <400> 2 taaaacgacc cgcaggag 18 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PGI3_F <400> 3 ggctgcacat ttgtcagaga 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PGI3_R <400> 4 caatgtccta gcgttcagca 20 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PMI1_F <400> 5 ggttgtcgac ggcgtctt 18 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PMI1_R <400> 6 actggagcca tcagcatcc 19 <210> 7 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PMI3_F <400> 7 gcgaattcgg atcaacca 18 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PMI3_R <400> 8 ggtgtttcag tttggatacg at 22 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PMM1_F <400> 9 tcaaaaagcc cggagtga 18 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PMM1_R <400> 10 acatgaacag agctttgcat tta 23 <210> 11 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PMM3_F <400> 11 gccaagaagc caggagtga 19 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PMM3_R <400> 12 acatgaatag agccttgcat ttc 23 <210> 13 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> GMP2_F <400> 13 atggaggagg aaggtaaaga aga 23 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GMP2_R <400> 14 tagaagcccc gctgctataa 20 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> GMP3_F <400> 15 atggagaaag aagaagcaag agtc 24 <210> 16 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GMP3_R <400> 16 atgatctctg gtttcgcaga c 21 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GMP4_F <400> 17 tggagttgat gaggtggtgt t 21 <210> 18 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> GMP4_R <400> 18 ttatgtagtc cttgggttgt cca 23 <210> 19 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> GMP5_F <400> 19 ggttgatgaa gtggttttga cag 23 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GMP5_R <400> 20 tcacgtggtt gaccaatgtc 20 <210> 21 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> GME1_F <400> 21 aagctcaaga tatcaatcac aggag 25 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GME1_R <400> 22 ttccgaaagg accgtaaatg 20 <210> 23 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GME2_F <400> 23 ccttccgaga agctgagga 19 <210> 24 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GME2_R <400> 24 ggtaaatgaa cgggtctgaa gc 22 <210> 25 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GGP1_F <400> 25 gaagccggtg gcttttctt 19 <210> 26 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> GGP1_R <400> 26 cttcggcagc catgtgaa 18 <210> 27 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> GGP3_F <400> 27 agactccgga gagaaagcta gag 23 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GGP3_R <400> 28 aggcatgcag ggtaagacct 20 <210> 29 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GGP4_F <400> 29 gatcagccac gaagctaaag a 21 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GGP4_R <400> 30 tctcctggag gcaaacacag 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GPP_F <400> 31 ggagggaggg aggatcaaat 20 <210> 32 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GPP_R <400> 32 tgagttcatg aggtgtgacc a 21 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GalLDH_F <400> 33 tggcatgaag cttgtcactc 20 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GalLDH_R <400> 34 tccctgctgt caggagtctt 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GLDH_F <400> 35 tggcatgaag cttgtcactc 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GLDH_R <400> 36 tcctgtcttt caacgcactg 20 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> AO2_F <400> 37 gcagcacatc gttaccaaca t 21 <210> 38 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> AO2_R <400> 38 caaccgttcg tcgaatgtc 19 <210> 39 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> AO3_F <400> 39 cacctacaaa ttcactgttg ataagc 26 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> AO3_R <400> 40 tttggcagaa agaccgagtt 20 <210> 41 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> AO6_F <400> 41 gggttgaaca cgcttagcta ctt 23 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> AO6_R <400> 42 gtaacggcgg attcttcaaa 20 <210> 43 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> APX2_F <400> 43 aatcaaggtt ccaaacatct gaa 23 <210> 44 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> APX2_R <400> 44 atagtgactg tagacgttgg tgtga 25 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> APX3_F <400> 45 cggtgccact cttcttcttc 20 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> APX3_R <400> 46 agcagcttta cccttcgtca 20 <210> 47 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> APX4_F <400> 47 gtctggcttc gatggacct 19 <210> 48 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> APX4_R <400> 48 tccctgagcc agaacagtg 19 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> APX6_F <400> 49 tgaggccaac agtggtatcc 20 <210> 50 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> APX6_R <400> 50 agaaaaaggc gtcctcatca 20 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> APX7_F <400> 51 ttgatgctga gcaaggtcac 20 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> APX7_R <400> 52 ttgtcggaaa caagctgaag 20 <210> 53 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> APX-R_F <400> 53 aggaagccaa gaaggagatt g 21 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> APX-R_R <400> 54 atcaggaccc aagaatgcag 20 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SAPX_F <400> 55 caccaccact atggcttcct 20 <210> 56 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> SAPX_R <400> 56 ccgtagctgc tgtgcagtg 19 <210> 57 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> TAPX_F <400> 57 ggacagtgaa atggctcaag t 21 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TAPX_R <400> 58 gttagtgggc aatggcttgt 20 <210> 59 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> DHAR3_F <400> 59 agcgacggat ccgagaag 18 <210> 60 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> DHAR3_R <400> 60 ttaggggtta accttgtgtt cc 22 <210> 61 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DHAR4_F <400> 61 agtgacggtc ctttgcttca 20 <210> 62 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DHAR4_R <400> 62 gtggagggag aacacagcat 20 <210> 63 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> MDHAR1_F <400> 63 acatgggtaa aggagtgaag tttatc 26 <210> 64 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> MDHAR1_R <400> 64 accgtcacaa gactcacaac tct 23 <210> 65 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MDHAR2_F <400> 65 atgagctcgt gactgcaatg 20 <210> 66 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MDHAR2_R <400> 66 aggtctagcg ccaacaccta 20 <210> 67 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> MDHAR4_F <400> 67 cagtgctaaa ggagtggagt tca 23 <210> 68 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MDHAR4_R <400> 68 gaggcttctc catcatcacc 20 <210> 69 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MDHAR5_F <400> 69 ccggattgtc tctttggtgt 20 <210> 70 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MDHAR5_R <400> 70 aaagctgatc ttcggggaat 20 <210> 71 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MDHAR6_F <400> 71 gcacatccaa atggagaggt 20 <210> 72 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MDHAR6_R <400> 72 caaacgagcg ggagtagaag 20 <210> 73 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GR1_F <400> 73 aagccacgga ggctcacta 19 <210> 74 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> GR1_R <400> 74 ttcctaaaga atagatccac tgtacca 27 <210> 75 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> GR2_F <400> 75 atgggtgttc cctatttcat ttc 23 <210> 76 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> GR2_R <400> 76 aatataagct ctcctgagaa tctggt 26 <210> 77 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GR3_F <400> 77 ggaggaagct acaaccgaga c 21 <210> 78 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> GR3_R <400> 78 aaatctacag tagcacccat tcca 24 <210> 79 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GR4_F <400> 79 tcaaaccacc gctactactc ct 22 <210> 80 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GR4_R <400> 80 cggaagagat ggtggaaaag 20 <210> 81 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Actin_F <400> 81 ctcagtccaa aagaggtatt ct 22 <210> 82 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Actin_R <400> 82 gtagaatgtg tgatgccaga tc 22 <210> 83 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrPGI1_F <400> 83 cttgcaaaag cgtgtgttgt 20 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrPGI1_R <400> 84 gcagacatgt gcgctatgat 20 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrPMI1_F <400> 85 tctgtgccag gtccttctct 20 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrPMI1_R <400> 86 tctgcaggca caaacagaac 20 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrPMM1_F <400> 87 atggaatgct caacgtgtca 20 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrPMM1_R <400> 88 cgaagttcag ccaccatctt 20 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGMP1_F <400> 89 gcagtgggct aggattgaga 20 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGMP1_R <400> 90 tgatctcctt gtgtggcaaa 20 <210> 91 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGME1_F <400> 91 tggccgtaac tcagacaaca 20 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGME1_R <400> 92 gcgacacatc actgccttta 20 <210> 93 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGGP1_F <400> 93 aggaggagct tgaaggaacc 20 <210> 94 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGGP1_R <400> 94 acaaggcact cagaggcagt 20 <210> 95 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGPP_F <400> 95 gatggaactg aaagcggcta 20 <210> 96 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGPP_R <400> 96 gcagagtcct cgtcatcctc 20 <210> 97 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGalDH_F <400> 97 cgttccgaca aggcattaac 20 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGalDH_R <400> 98 taacgtccac acttggttgc 20 <210> 99 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGLDH_F <400> 99 tggcatgaag cttgtcactc 20 <210> 100 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGLDH_R <400> 100 tcctgtcttt caacgcactg 20 <210> 101 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrAO6_F <400> 101 ggacggcgtt aaggtttgta 20 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrAO6_R <400> 102 caatccggtc tactccctca 20 <210> 103 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrAPX6_F <400> 103 aaggaactct tgagcggtga 20 <210> 104 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrAPX6_R <400> 104 agaaaaaggc gtcctcatca 20 <210> 105 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrMDHAR1_F <400> 105 gaaggtggga ccaaagaaca 20 <210> 106 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrMDHAR1_R <400> 106 acccgagtcc ttctctttcc 20 <210> 107 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrDHAR1_F <400> 107 cattggggca ttacaaggat 20 <210> 108 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrDHAR1_R <400> 108 tgcttgagct tgtgttttcg 20 <210> 109 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGR3_F <400> 109 gaccggggat attttggttt 20 <210> 110 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BrGR3_R <400> 110 ttggttgctc cacacttgag 20 <210> 111 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> BrActin2_F <400> 111 ctcagtccaa aagaggtatt ct 22 <210> 112 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> BrActin2_R <400> 112 gtagaatgtg tgatgccaga tc 22

Claims (9)

배추과(Brassicaceae) 새싹채소(sprout vegetable) 종자를 파종하여 발아시키는 단계; 및 상기 발아한 배추과 새싹채소에 LED 단일광을 광량(μmolm-2s-1)별로 조사하는 단계;를 포함하며,
상기 LED 단일광은 청색광(blue light), 백색광(white light), 녹색광(green light) 및 적색광(red light)으로 이루어진 군으로부터 선택된 어느 하나 이상이고,
상기 광량(μmolm-2s-1) 범위는 125μmolm-2s-1 내지 150μmolm-2s-1이며,
상기 LED 단일광의 처리 시간은 5일 내지 10일인 것인 배추과 새싹채소의 비타민 C(vitamin C) 함량을 증가시키는 방법.
Seeding and germinating sprouts (Brassicaceae) sprout vegetable; And irradiating the germinated cabbage and sprout vegetables with LED single light by light amount (μmolm -2 s -1 );
The LED single light is any one or more selected from the group consisting of blue light, white light, green light and red light,
The light amount (μmolm -2 s -1 ) range is 125 μmolm -2 s -1 to 150 μmolm -2 s -1 ,
Method for increasing the vitamin C content of the cabbage and sprout vegetables, the treatment time of the LED single light is 5 to 10 days.
제1항에 있어서, 상기 배추과 새싹채소는 배추, 홍빛열무, 무순 및 청경채로 이루어진 군으로부터 선택된 어느 하나 이상인 것인, 배추과 새싹채소의 비타민 C 함량을 증가시키는 방법.
The method of claim 1, wherein the cabbage and sprout vegetables are at least one selected from the group consisting of Chinese cabbage, red radish radish, radish and bok choy, and increase the vitamin C content of Chinese cabbage and sprout vegetables.
삭제delete 제1항에 있어서, 상기 LED 단일광은 청색광(blue light)인 것인, 배추과 새싹채소의 비타민 C 함량을 증가시키는 방법.
The method of claim 1, wherein the LED single light is blue light.
삭제delete 제1항 내지 제2항 및 제4항 중 어느 한 항의 방법을 포함하는 비타민 C 함량이 증가된, 배추과 새싹채소를 생산하는 방법.
A method for producing cabbage and sprout vegetables, wherein the vitamin C content is increased, including the method of any one of claims 1 to 2 and 4.
제6항에 있어서, 상기 배추과 새싹채소는 배추, 홍빛열무, 무순 및 청경채로 이루어진 군으로부터 선택된 어느 하나 이상인 것인, 배추과 새싹채소를 생산하는 방법.
The method of claim 6, wherein the cabbage and sprout vegetables are at least one selected from the group consisting of Chinese cabbage, red radish radish, radish and bok choy.
제6항에 따른 방법으로 생산된 비타민 C 함량이 증가된 배추과 새싹채소.
Chinese cabbage and sprouts with increased vitamin C content produced by the method according to claim 6.
제8항에 있어서, 상기 배추과 새싹채소는 배추, 홍빛열무, 무순 및 청경채로 이루어진 군으로부터 선택된 어느 하나 이상인 것인, 배추과 새싹채소.According to claim 8, wherein the cabbage and sprouts vegetables are cabbage, sprouts and radish, radish, and any one or more selected from the group consisting of bok choy, cabbage and sprouts.
KR1020170148339A 2016-11-15 2017-11-08 A method of increasing vitamin C in Brassicaceae sprout vegetables by means of conditioning LED light source KR102093373B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160151852 2016-11-15
KR20160151852 2016-11-15

Publications (2)

Publication Number Publication Date
KR20180054455A KR20180054455A (en) 2018-05-24
KR102093373B1 true KR102093373B1 (en) 2020-03-25

Family

ID=62296624

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170148339A KR102093373B1 (en) 2016-11-15 2017-11-08 A method of increasing vitamin C in Brassicaceae sprout vegetables by means of conditioning LED light source

Country Status (1)

Country Link
KR (1) KR102093373B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741085C1 (en) * 2020-09-11 2021-01-22 Автономная некоммерческая организация «Институт социально-экономических стратегий и технологий развития» Method of activating rape seed germination

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102566849B1 (en) * 2020-02-21 2023-08-24 정태성 Method for cultivating barley sprout with high saponarin content in plant factory
CN112273209B (en) * 2020-10-30 2022-06-21 普罗斯电器(中国)有限公司 Method for cultivating brussels sprouts with LEDs as supplementary light sources
CN113141905A (en) * 2020-12-29 2021-07-23 中国农业科学院都市农业研究所 Method for improving quality of facility Chinese cabbage before harvesting
KR20240020089A (en) 2022-08-05 2024-02-14 주식회사 칸파 Aeroponics-type plant cultivation apparatus and plant cultivation method using thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004026717D1 (en) * 2003-05-23 2010-06-02 Fotofresh Ltd METHODS OF CHANGING THE CONTENT OF PHYOCECHEMICAL COMPOUNDS IN PLANT CELLS, INCLUDING THE APPLICATION OF LIGHT OF THE WAVELENGTH OF 400-700 NM AND APPROPRIATE APPARATUS
KR101174495B1 (en) * 2010-04-13 2012-08-22 대한민국 Cultivation method of pink-colored tatary buckwehat sprout with high anthocyanin and vitamin C

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741085C1 (en) * 2020-09-11 2021-01-22 Автономная некоммерческая организация «Институт социально-экономических стратегий и технологий развития» Method of activating rape seed germination

Also Published As

Publication number Publication date
KR20180054455A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
KR102093373B1 (en) A method of increasing vitamin C in Brassicaceae sprout vegetables by means of conditioning LED light source
Eichhorn Bilodeau et al. An update on plant photobiology and implications for cannabis production
Izzo et al. The role of monochromatic red and blue light in tomato early photomorphogenesis and photosynthetic traits
Chen et al. Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation
Kim et al. Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes
Kim et al. Growth and antioxidant phenolic compounds in cherry tomato seedlings grown under monochromatic light-emitting diodes
Ji et al. Far-red radiation increases dry mass partitioning to fruits but reduces Botrytis cinerea resistance in tomato
Kang et al. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system
Gómez et al. Growth responses of tomato seedlings to different spectra of supplemental lighting
Massot et al. Fluctuations in sugar content are not determinant in explaining variations in vitamin C in tomato fruit
Samuolienė et al. The impact of red and blue light-emitting diode illumination on radish physiological indices
Goto Effects of light quality on growth of crop plants under artificial lighting
Son et al. Application of supplementary white and pulsed light-emitting diodes to lettuce grown in a plant factory with artificial lighting
Wollaeger et al. Growth responses of ornamental annual seedlings under different wavelengths of red light provided by light-emitting diodes
JP2022118185A (en) Production method of leaf vegetables and production device of leaf vegetables
Kim et al. Growth and phytochemicals of ice plant (Mesembryanthemum crystallinum L.) as affected by various combined ratios of red and blue LEDs in a closed-type plant production system
Xiaoying et al. Effect of light on growth and chlorophyll development in kiwifruit ex vitro and in vitro
Kowalczyk et al. Mineral nutrients needs of cucumber and its yield in protected winter cultivation, with HPS and LED supplementary lighting
Liu et al. Supplementary light source affects growth, metabolism, and physiology of Adenophora triphylla (Thunb.) A. DC. seedlings
Son et al. Growth and development of cherry tomato seedlings grown under various combined ratios of red to blue LED lights and fruit yield and quality after transplanting
Wang et al. Morphological, photosynthetic, and CAM physiological responses of the submerged macrophyte Ottelia alismoides to light quality
Dorokhov et al. The effect of far-red light on the productivity and photosynthetic activity of tomato
Zhong et al. Evaluation of vitamin C content in fruit and leaves of different strawberry genotypes
Zhang et al. Rice yield corresponding to the seedling growth under supplemental green light in mixed light-emitting diodes.
Hamada et al. Simulative effects of ascorbic acid, thiamin or pyridoxine on Vicia faba growth and some related metabolic activities

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant