JP7108316B2 - Method for producing high-folate leafy vegetables - Google Patents

Method for producing high-folate leafy vegetables Download PDF

Info

Publication number
JP7108316B2
JP7108316B2 JP2019169460A JP2019169460A JP7108316B2 JP 7108316 B2 JP7108316 B2 JP 7108316B2 JP 2019169460 A JP2019169460 A JP 2019169460A JP 2019169460 A JP2019169460 A JP 2019169460A JP 7108316 B2 JP7108316 B2 JP 7108316B2
Authority
JP
Japan
Prior art keywords
period
folic acid
leafy vegetables
ppm
producing high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019169460A
Other languages
Japanese (ja)
Other versions
JP2021045066A (en
Inventor
剛 竹葉
Original Assignee
株式会社エコタイプ次世代植物工場
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エコタイプ次世代植物工場 filed Critical 株式会社エコタイプ次世代植物工場
Priority to JP2019169460A priority Critical patent/JP7108316B2/en
Publication of JP2021045066A publication Critical patent/JP2021045066A/en
Application granted granted Critical
Publication of JP7108316B2 publication Critical patent/JP7108316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高葉酸葉物野菜およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to high folic acid leafy vegetables and methods for producing the same.

葉酸はビタミンBの一種であり、ビタミンBとも呼ばれる。葉酸は、DNA、RNAを構成する塩基成分の生合成に必須のビタミンであり、また、心臓病、脳卒中、アルツハイマー病等の原因物質の一つであるホモシステインの血中含有量を低下させる機能を持つ重要なビタミンである。 Folic acid is a type of vitamin B, also called vitamin B9 . Folic acid is an essential vitamin for the biosynthesis of the base components that make up DNA and RNA, and also has the function of reducing the blood content of homocysteine, which is one of the causative substances of heart disease, stroke, Alzheimer's disease, etc. is an important vitamin with

18歳以上の成人男女における葉酸の一日の摂取推奨量は240μgとされているところ、日本人の一日の平均摂取量(推定)は200μgであり、諸外国に比べて摂取量が少ないと言われている。そのため、日本の成人男女の葉酸摂取量を高めることが課題となっている。 The recommended daily intake of folic acid for men and women aged 18 and over is 240 μg, but the average daily intake (estimated) for Japanese people is 200 μg, which is considered to be lower than in other countries. It is said. Therefore, increasing the folic acid intake of adult men and women in Japan has become an issue.

葉酸を多く含む食品の一つに緑黄色野菜がある。しかし、緑黄色野菜に含まれる葉酸の量は100~300μg/100gfw(fw: fresh weight)程度であり、しかも葉酸は熱に弱く加熱調理によって含有量が減少する。そこで、通常の緑黄色野菜に比べて葉酸を多く含む緑黄色野菜の開発が進められている。 Green and yellow vegetables are one of the foods rich in folic acid. However, the amount of folic acid contained in green and yellow vegetables is about 100 to 300 μg/100 gfw (fw: fresh weight). Therefore, green and yellow vegetables containing more folic acid than ordinary green and yellow vegetables are being developed.

例えば、特許文献1には、葉物野菜を水耕栽培する際に該葉物野菜に照射する光を構成する赤色光(R)、緑色光(G)、青色光(B)の比率を調整し、且つ照射光に遠赤色光を加えることにより、葉物野菜に含まれる葉酸の量を高める方法が開示されている。具体的には、赤色光、緑色光、青色光の光強度の比率を2.5:1:2に調整したRGB型LED照明と、赤色光の1/2の光強度の遠赤色光を発する遠赤色LED照明の両方を用いて葉物野菜に光を照射している。 For example, Patent Document 1 describes adjusting the ratio of red light (R), green light (G), and blue light (B) that constitute the light irradiated to leafy vegetables when the leafy vegetables are hydroponically cultivated. and adding far-red light to the irradiation light to increase the amount of folic acid contained in leafy vegetables. Specifically, it emits RGB type LED lighting in which the ratio of the light intensity of red light, green light, and blue light is adjusted to 2.5:1:2, and far-red light with a light intensity that is half that of red light. Both far-red LED lighting is used to illuminate leafy vegetables.

特開2015-112082号公報Japanese Patent Application Laid-Open No. 2015-112082 特開2017-063632号公報Japanese Patent Application Laid-Open No. 2017-063632

特許文献1に記載の方法によれば、葉物野菜一個体当たりの葉酸含有量は増えるものの、成長が促進されて大形化する。特に、十分に成熟させた成熟葉を食する葉物野菜では照射時間が長い分、大形化が顕著になり、単位重量当たりの葉酸含有量がかえって低下する場合があった。従って、特許文献1の方法は、短い照射時間(つまり、短い生育期間)で収穫されるベビーリーフの葉酸含有量を増加させるには有効であるが、成熟葉の葉酸含有量を増加させるには余り有効ではなかった。 According to the method described in Patent Document 1, although the folic acid content per individual leafy vegetable increases, the growth is promoted and the size of the leafy vegetable increases. In particular, in leafy vegetables that are eaten with fully matured leaves, the long irradiation time makes the size of the vegetables remarkably large, and the folic acid content per unit weight may rather decrease. Therefore, the method of Patent Document 1 is effective for increasing the folic acid content of baby leaves harvested with a short irradiation time (that is, a short growing period), but it is effective for increasing the folic acid content of mature leaves. was not very effective.

本発明が解決しようとする課題は、生育期間の長さに関係なく単位重量当たりの葉酸の含有量を増加させることができる葉物野菜を提供することである。 The problem to be solved by the present invention is to provide a leafy vegetable that can increase the folic acid content per unit weight regardless of the length of the growing period.

上記課題を解決するために成された本発明に係る高葉酸葉物野菜の製造方法は、
播種から収穫までの期間を葉物野菜の生育に必要な肥料成分を含む培養液を用いて栽培することにより葉物野菜を製造する方法であって、
前記期間のうち、所定の大きさに成長してから収穫するまでの栽培期間である生育期間において、亜鉛イオンの濃度範囲が0.1~20ppmであり、リンがポリリン酸イオンの形態で含まれる生育期間用培養液が用いられることを特徴とする。
The method for producing high folic acid leafy vegetables according to the present invention, which has been made to solve the above problems,
A method for producing leafy vegetables by cultivating the period from sowing to harvesting using a culture solution containing fertilizer components necessary for growing leafy vegetables,
Among the above-mentioned periods, in the growth period, which is the cultivation period from growth to a predetermined size to harvesting, the concentration range of zinc ions is 0.1 to 20 ppm, and phosphorus is contained in the form of polyphosphate ions. It is characterized in that a growth period medium is used.

本発明は、葉酸がDNA、RNAの生合成に関与する物質の一つであること、葉酸の代謝に亜鉛イオン(Zn2-)及びマグネシウムイオン(Mg2-)が関与すること、さらには、生育期間において植物に照射する光の強度を大きくするとDNA、RNAの生合成が促進され、葉酸の代謝が活性化されること、等に着目し、これら亜鉛イオン及びマグネシウムイオンの培養液中の濃度、及び生育期間における照射光の強度を、葉物野菜の葉酸含有量の増加に影響を及ぼす候補因子として培養液の組成に関する研究を進めた結果、なされたものである。 The present invention provides that folic acid is one of the substances involved in the biosynthesis of DNA and RNA, that zinc ions (Zn 2− ) and magnesium ions (Mg 2− ) are involved in folic acid metabolism, and further Focusing on the fact that the biosynthesis of DNA and RNA is promoted and the metabolism of folic acid is activated when the intensity of the light irradiated to the plant is increased during the growth period, the concentration of these zinc ions and magnesium ions in the culture medium is and the intensity of irradiation light during the growth period as candidate factors that affect the increase in the folic acid content of leafy vegetables.

植物の養液栽培で用いられる培養液には一般的に亜鉛イオン、マグネシウムイオンが含まれているが、その量は、長年にわたる植物の生育に関する試験研究の結果に基づき、ほぼ一定値に設定されている。特に肥料の三大成分の一つであるリン(P)が無機リン酸イオン(PO 3-)として培養液中に存在しており、無機リン酸イオンと亜鉛イオン、マグネシウムイオンが結合すると不溶性の塩(Zn(PO、Mg(PO)を形成することから、無機リン酸イオンと結合しても不溶性の塩を形成しないように、Zn、Mgの含有量は設定されている。 The culture solution used in hydroponics of plants generally contains zinc ions and magnesium ions, but the amount is set at a nearly constant value based on the results of long-term plant growth test research. ing. In particular, phosphorus (P), one of the three major components of fertilizers, exists as inorganic phosphate ions (PO 4 3- ) in the culture solution. (Zn 3 (PO 4 ) 2 , Mg 3 (PO 4 ) 2 ), the contents of Zn and Mg are is set.

これに対して、本発明者は培養液の組成を見直し、無機リン酸イオンに代えてポリリン酸イオンを用いることにより、亜鉛イオン、マグネシウムイオンの含有量を高めることができることを見出した。ポリリン酸は従来より食品添加剤として使用されているため、食品安全性上、問題がない。また、ポリリン酸イオンであれば、培養液中に高濃度の亜鉛イオン、高濃度のマグネシウムイオンが含まれていても不溶性の塩が形成されることがない。そこで、生育期間中の培養液(生育期間用培養液)中の亜鉛イオン及びマグネシウムイオンの濃度を変化させて、また、照射光の強度を変化させて実際に葉物野菜を養液栽培した結果、亜鉛イオンの濃度範囲が0.1~20ppmであるときに、収穫された葉物野菜の葉酸含量が増加した。本発明の高葉酸葉物野菜の製造方法は、上記の結果を反映している。なお、本発明で用いられるポリリン酸としては、2個以上のリン酸構造単位から成るものであれば良く、構造単位の数は問わないが、容易に入手できる点でトリポリリン酸が好ましい。 On the other hand, the present inventor reviewed the composition of the culture medium and found that the content of zinc ions and magnesium ions can be increased by using polyphosphate ions instead of inorganic phosphate ions. Polyphosphoric acid has been conventionally used as a food additive, so there is no problem with food safety. In addition, polyphosphate ions do not form insoluble salts even if the culture solution contains high concentrations of zinc ions and high concentrations of magnesium ions. Therefore, the concentration of zinc ions and magnesium ions in the culture solution during the growth period (culture solution for the growth period) was changed, and the intensity of the irradiation light was changed, and the results of actually hydroponic cultivation of leafy vegetables , the folic acid content of harvested leafy vegetables increased when the concentration range of zinc ions ranged from 0.1 to 20 ppm. The method for producing high-folate leafy vegetables of the present invention reflects the above results. The polyphosphoric acid used in the present invention may be composed of two or more phosphoric acid structural units, regardless of the number of structural units, but tripolyphosphoric acid is preferred because it is readily available.

従来一般的な培養液中の亜鉛イオンの濃度範囲は0.05~0.09ppmであり、これと比べると、本発明の製造方法に用いられる生育期間用培養液中の亜鉛イオンの濃度範囲は従来の約1.1倍~400倍となる。なお、このような高濃度の亜鉛イオンを含む培養液を用いて生育期間中、葉物野菜の養液栽培を行っても、成長量は従来の培養液を用いた場合と略同じであったことから、生育期間用培養液の亜鉛イオンの濃度を高くしたことが、葉物野菜の成長に及ぼす影響は小さいことが分かった。 Conventionally, the concentration range of zinc ions in a general culture medium is 0.05 to 0.09 ppm. It is about 1.1 times to 400 times the conventional one. It should be noted that even if leafy vegetables were hydroponic during the growth period using a culture solution containing such a high concentration of zinc ions, the amount of growth was substantially the same as when using a conventional culture solution. Therefore, it was found that increasing the concentration of zinc ions in the culture medium for the growing period had little effect on the growth of leafy vegetables.

本発明の高葉酸葉物野菜の製造方法においては、好ましくは、生育期間用培養液に含まれる亜鉛イオンの濃度範囲が1~10ppmである。 In the method for producing high-folate leafy vegetables of the present invention, the concentration range of zinc ions contained in the culture medium for the growing period is preferably 1 to 10 ppm.

さらに、本発明の高葉酸葉物野菜の製造方法においては、より好ましくは、生育期間用培養液に含まれる亜鉛イオンの濃度範囲が10~20ppmであり、マグネシウムイオンの濃度範囲が12~100ppmであるか、或いは亜鉛イオンの濃度範囲が0.1~20ppmであり、マグネシウムイオンの濃度範囲が48~100ppmである。 Furthermore, in the method for producing high-folate leafy vegetables of the present invention, more preferably, the zinc ion concentration range and the magnesium ion concentration range contained in the culture medium for the growth period are 10 to 20 ppm and 12 to 100 ppm, respectively. Alternatively, the concentration range of zinc ions is 0.1-20 ppm and the concentration range of magnesium ions is 48-100 ppm.

亜鉛イオンやマグネシウムイオンの濃度範囲が上記範囲にあるとき、従来の一般的な葉物野菜よりも葉中の葉酸含有量が多い高葉酸葉物野菜を得ることができる。
従来一般的な培養液中のマグネシウムイオンの濃度範囲は24ppmであり、これと比べると、上述した前記生育期間用培養液中のマグネシウムイオンの濃度範囲は従来の約0.5倍~4.2倍となる。
When the concentrations of zinc ions and magnesium ions are within the above ranges, it is possible to obtain high-folate leafy vegetables with a higher content of folic acid in the leaves than conventional general leafy vegetables.
Conventionally, the concentration range of magnesium ions in a general culture solution is 24 ppm, and compared with this, the concentration range of magnesium ions in the above-mentioned culture solution for the growth period is about 0.5 times to 4.2 times the conventional concentration range. be doubled.

さらに、本発明の高葉酸葉物野菜の製造方法においては、前記生育期間において、100μmol/m/s以上の光を照射すると、収穫された葉物野菜の葉酸含量が増加した。
従って、本発明の高葉酸葉物野菜の製造方法においては、前記生育期間において、100μmol/m/s以上の光を照射することが好ましい。
生育期間の栽培条件を上述した条件にすることにより、従来の葉物野菜よりも葉酸の含有量の多い葉物野菜を製造することができ、500μg/100g 生重以上の葉酸を含む高葉酸葉物野菜を得ることができる。
Furthermore, in the method for producing high-folate leafy vegetables of the present invention, the folic acid content of harvested leafy vegetables increased when irradiated with light of 100 μmol/m 2 /s or more during the growth period.
Therefore, in the method for producing high-folate leafy vegetables of the present invention, it is preferable to irradiate light at 100 μmol/m 2 /s or more during the growth period.
By setting the cultivation conditions during the growth period to the conditions described above, it is possible to produce leafy vegetables with a higher folic acid content than conventional leafy vegetables, and high-folate leaves containing folic acid of 500 μg/100 g fresh weight or more. You can get vegetables.

ところで、人体にとっても亜鉛は必須元素の一つであり、不足すると皮膚炎や味覚障害等を引き起こすことが知られている。そこで、葉物野菜中の亜鉛含有量を増加させることを目的として、2~10ppmという従来よりも高濃度の亜鉛を含む培養液を用いた葉物野菜の栽培方法が提案されている(例えば特許文献2)。特許文献2に記載の方法は、本発明とは目的が異なるものの、従来よりも亜鉛濃度の高い培養液を用いる点で本発明と共通する。 By the way, zinc is one of the essential elements for the human body, and its deficiency is known to cause dermatitis, dysgeusia, and the like. Therefore, for the purpose of increasing the zinc content in leafy vegetables, a method for cultivating leafy vegetables using a culture solution containing zinc at a concentration higher than conventionally, 2 to 10 ppm, has been proposed (for example, patent Reference 2). Although the method described in Patent Document 2 has a different purpose from that of the present invention, it is in common with the present invention in that it uses a culture solution with a zinc concentration higher than that of the conventional method.

しかし、特許文献2には、リン酸イオンの種類についての言及がないため、従来の一般的な培養液と同様、無機リン酸イオンとして含まれると考えられ、亜鉛イオンの濃度を高くすると不溶性の塩が形成されると推測される。従って、特許文献2に記載の方法では、本発明のような、葉物野菜中の葉酸含有量の増加作用は期待できないと思われる。 However, since Patent Document 2 does not mention the type of phosphate ions, it is thought that zinc ions are contained as inorganic phosphate ions, similar to conventional general culture solutions, and when the concentration of zinc ions is increased, the zinc ions become insoluble. It is assumed that salts are formed. Therefore, it seems that the method described in Patent Document 2 cannot be expected to have the effect of increasing the folic acid content in leafy vegetables as in the present invention.

本発明によれば、生育期間の長さに関係なく単位重量当たりの葉酸の含有量を増加させた葉物野菜を得ることができる。 According to the present invention, leafy vegetables with an increased folic acid content per unit weight can be obtained regardless of the length of the growing period.

本発明の一実施例に係る養液栽培方法の栽培期間の説明図。FIG. 4 is an explanatory diagram of a cultivation period of a hydroponic cultivation method according to an embodiment of the present invention; 実験1の結果の一つである、コマツナの葉中の葉酸含有量と光強度との関係を表すグラフ。1 is a graph showing the relationship between folic acid content in Komatsuna leaves and light intensity, which is one of the results of Experiment 1. FIG. 実験1の結果の一つである、コマツナの葉中の葉酸含有量量と培養液中のMg濃度との関係を表すグラフ。1 is a graph showing the relationship between the content of folic acid in Komatsuna leaves and the Mg concentration in the culture medium, which is one of the results of Experiment 1. FIG. 実験1の結果の一つである、コマツナの葉中の葉酸含有量と培養液中のZn濃度との関係を表すグラフ。A graph showing the relationship between the folic acid content in Komatsuna leaves and the Zn concentration in the culture medium, which is one of the results of Experiment 1. 実験1の結果の一つである、コマツナの葉中の葉酸含有量とZnの量との関係を表すグラフ。1 is a graph showing the relationship between the content of folic acid in Komatsuna leaves and the amount of Zn, which is one of the results of Experiment 1. FIG. 実験2の結果を示すものであり、グリーンバタビアの葉に含まれる葉酸の量とグリーンバタビアの葉に含まれるZnの量との関係を表すグラフ。FIG. 10 is a graph showing the results of Experiment 2 and showing the relationship between the amount of folic acid contained in green Batavia leaves and the amount of Zn contained in Green Batavia leaves. FIG. 実験3の結果を示すものであり、コマツナの葉中の葉酸含有量と生育期間の途中でZnを追加した後のZn濃度との関係を表すグラフ。Fig. 3 shows the results of Experiment 3, and is a graph showing the relationship between the folic acid content in Komatsuna leaves and the Zn concentration after Zn was added during the growth period. 実験4の結果である、コマツナ及びグリーンバタビアの葉中の葉酸含有量と、培養液中の窒素濃度との関係を示すグラフ。4 is a graph showing the relationship between the folic acid content in leaves of Komatsuna and Green Batavia and the nitrogen concentration in the culture medium, which is the result of Experiment 4. FIG. 実験5の結果である、コマツナ及びグリーンバタビアの葉に含まれる葉酸の種類を示す図。The figure which is a result of Experiment 5 and shows the kind of folic acid contained in the leaves of Komatsuna and Green Batavia. 実験6の結果の一つである、コマツナの葉中のリボフラビン含有量と培養液中のZn濃度及びMg濃度との関係を示すグラフ。A graph showing the relationship between the riboflavin content in Komatsuna leaves and the Zn concentration and Mg concentration in the culture medium, which is one of the results of Experiment 6. 実験6の結果の一つである、コマツナの葉中のピリドキシン含有量と培養液中のZn濃度及びMg濃度との関係を示すグラフ。10 is a graph showing the relationship between the pyridoxine content in Komatsuna leaves and the Zn and Mg concentrations in the culture medium, which is one of the results of Experiment 6. FIG. 実験6の結果の一つである、コマツナの葉中のナイアシン含有量と培養液中のZn濃度及びMg濃度との関係を示すグラフ。A graph showing the relationship between the niacin content in Komatsuna leaves and the Zn concentration and Mg concentration in the culture medium, which is one of the results of Experiment 6. 実験6の結果の一つである、コマツナの葉中のチアミン含有量と培養液中のZn濃度及びMg濃度との関係を示すグラフ。10 is a graph showing the relationship between the thiamin content in Komatsuna leaves and the Zn and Mg concentrations in the culture medium, which is one of the results of Experiment 6. FIG. 実験7の結果の一つである、コマツナ及びグリーンバタビアの葉中のリボフラビン含有量と照射光の種類、培養液中の窒素濃度との関係を示すグラフ。A graph showing the relationship between the riboflavin content in leaves of Komatsuna and Green Batavia, the type of irradiation light, and the nitrogen concentration in the culture medium, which is one of the results of Experiment 7. 実験7の結果の一つである、コマツナ及びグリーンバタビアの葉中のピリドキシン含有量と照射光の種類、培養液中の窒素濃度との関係を示すグラフ。10 is a graph showing the relationship between the content of pyridoxine in leaves of Komatsuna and Green Batavia, the type of irradiation light, and the nitrogen concentration in the culture medium, which is one of the results of Experiment 7. FIG. 実験7の結果の一つである、コマツナ及びグリーンバタビアの葉中のナイアシン含有量と照射光の種類、培養液中の窒素濃度との関係を示すグラフ。7 is a graph showing the relationship between the niacin content in leaves of Komatsuna and Green Batavia, the type of irradiation light, and the nitrogen concentration in the culture medium, which is one of the results of Experiment 7. FIG. 実験7の結果の一つである、コマツナ及びグリーンバタビアの葉中のチアミン含有量と照射光の種類、培養液中の窒素濃度との関係を示すグラフ。A graph showing the relationship between the thiamine content in leaves of Komatsuna and Green Batavia, the type of irradiation light, and the nitrogen concentration in the culture solution, which is one of the results of Experiment 7.

以下、本発明に係る高葉酸野菜の製造方法及び高葉酸野菜用培養液、高葉酸野菜について具体的な実施例を参照しつつ説明する。本発明は、養液栽培が可能な葉物野菜に適用可能である。 Hereinafter, the method for producing high-folate vegetables, the culture solution for high-folate vegetables, and the high-folate vegetables according to the present invention will be described with reference to specific examples. INDUSTRIAL APPLICABILITY The present invention is applicable to leafy vegetables that can be hydroponic.

以下の実施例では、葉物野菜であるコマツナ、グリーンバタビアを用いた。コマツナはアブラナ科の野菜であり、グリーンバタビアはキク科の野菜である。本発明は、コマツナ、グリーンバタビア以外の、例えば、アブラナ科の野菜であるチンゲンサイ、キク科の野菜であるチマサンチュ、コスレタス、リーフレタス、シュンギク、グリーンウェーブ等の葉物野菜にも適用可能である。 Komatsuna and green batavia, which are leafy vegetables, were used in the following examples. Komatsuna is a vegetable of the cruciferous family, and green batavia is a vegetable of the Asteraceae family. The present invention can also be applied to leafy vegetables other than Japanese mustard spinach and green batavia, such as bok choy, which is a vegetable of the cruciferous family, chima lettuce, which is a vegetable of the Asteraceous family, cos lettuce, leaf lettuce, chrysanthemum, and green wave.

(1)栽培装置
育苗装置:この装置は、培養液が貯留される容器本体と、その上に配置される複数の育苗ベースと、容器本体に接続された培養液の供給路及び排出路並びにポンプを備えて、供給路及び排出路によって容器本体内に対する培養液の供給や排出が行われる。各育苗ベースには播種用の穴を有し、その穴に1個ずつ種が収容される。育苗ベースはその下部が培養液内に浸漬しており、前記穴に入れられた種は培養液中に浸漬する。育苗装置は、野菜類の栽培期間のうち播種から発芽までの期間(発芽期間)及び発芽から所定の大きさに成長するまでの期間(育苗期間)、用いられる。
(1) Cultivation device Seedling raising device: This device consists of a container body in which a culture solution is stored, a plurality of seedling raising bases arranged thereon, a culture solution supply channel and discharge channel connected to the container body, and a pump. , the supply and discharge of the culture solution into and out of the container body are performed by the supply path and the discharge path. Each seedling base has a sowing hole, and one seed is accommodated in each hole. The lower part of the seedling base is immersed in the culture solution, and the seeds placed in the holes are immersed in the culture solution. The seedling-raising apparatus is used during the period from seeding to germination (germination period) and from germination to growth to a predetermined size (seedling-raising period) during the cultivation period of vegetables.

生育装置:この装置は、培養液が貯留される容器本体と、該容器本体の上に配置されるプラスチック製のパネルと、容器本体に接続された培養液の供給路及び排出路並びにポンプを備えている。育苗装置と同様、培養液の供給路及び排出路によって容器本体内に対する培養液の供給や排出が行われる。パネルは多数の孔を有し、各孔の上に上記育苗ベースが配置される。育苗ベースで成長した植物体の根は孔を通して培養液中に浸漬される。上述の育苗装置にて所定の大きさに成長した苗は生育装置に移植され、該生育装置にて収穫まで栽培される。つまり、生育装置は、野菜類の栽培期間のうち、所定の大きさに成長した苗を収穫するまで栽培する期間(生育期間)、用いられる。 Growth device: This device comprises a container body in which the culture solution is stored, a plastic panel placed on the container body, a culture solution supply and discharge channel and a pump connected to the container body. ing. As in the seedling-raising apparatus, the culture solution is supplied to and discharged from the container main body through the culture solution supply path and the culture solution discharge path. The panel has a number of holes and the seedling base is placed over each hole. The roots of plants grown on the seedling base are immersed in the culture medium through the holes. Seedlings grown to a predetermined size in the above seedling-raising apparatus are transplanted to a growing apparatus and cultivated in the growing apparatus until harvest. In other words, the growing apparatus is used during a period (growing period) during which the seedlings grown to a predetermined size are cultivated until they are harvested during the cultivation period of the vegetables.

(2)培養液の調製
本実施例では、生育期間の培養液として、以下の組成の培養液(本発明の生育期間用培養液に相当。以下「Mg・Zn調整培養液」という。)を用いた。
(2) Preparation of culture medium In this example, a culture medium having the following composition (corresponding to the growth period culture medium of the present invention; hereinafter referred to as "Mg-Zn adjusted culture medium") was used as the culture medium for the growth period. Using.

・NO (硝酸イオン):530~550ppm
・Ca(カルシウム): 150ppm
・K(カリウム) : 370ppm
・Na(ナトリウム): 17ppm
・S(イオウ): 80ppm
・P(リン): 25ppm
・Mg(マグネシウム): 5~72ppm
・B(ホウ素): 0.05ppm
・Cu(銅): 0.06ppm
・Fe(鉄): 2.7ppm
・Mn(マンガン): 0.08ppm
・Mo(モリブデン): 0.02ppm
・Zn(亜鉛) : 0.01~20ppm
・NO 3 - (nitrate ion): 530 to 550 ppm
・Ca (calcium): 150ppm
・K (potassium): 370 ppm
・Na (sodium): 17 ppm
・ S (sulfur): 80 ppm
・P (phosphorus): 25 ppm
・Mg (magnesium): 5 to 72 ppm
・B (boron): 0.05 ppm
・Cu (copper): 0.06 ppm
・Fe (iron): 2.7 ppm
・Mn (manganese): 0.08 ppm
・Mo (molybdenum): 0.02 ppm
・Zn (zinc): 0.01 to 20 ppm

上述した各組成物の単位であるppmは重量比率を示す。また、培養液中では、硝酸イオン以外の組成物も全てイオンとして存在するが、本明細書では、便宜上、両者を区別せずに同じ記号で表記する(つまり、マグネシウム及びマグネシウムイオンの両方を「Mg」と表記する)こととする。また、Mg・Zn調整培養液には、Pはトリポリリン酸カリウムとして添加され、Znは硝酸塩の形態で、Mgは硫酸塩の形態で添加されている。 The unit ppm of each composition described above indicates a weight ratio. In addition, in the culture medium, all compositions other than nitrate ions are present as ions, but in this specification, for convenience, they are denoted by the same symbol without distinguishing between them (that is, both magnesium and magnesium ions are referred to as " Mg”). In addition, P is added as potassium tripolyphosphate, Zn is added in the form of nitrate, and Mg is added in the form of sulfate to the Mg-Zn adjusted culture medium.

(3)栽培期間
図1に示すように、栽培期間を、播種から発芽までの期間(発芽期間)、発芽から移植までの期間(育苗期間)、移植から収穫までの期間(生育期間)に分けた。例えばコマツナの場合、発芽期間は約3~5日間、育苗期間は約9~10日間、生育期間は3~4週間程度であり、播種から収穫までは約5~6週間である。なお、複数の種子を育苗装置に播種した場合、全ての種子が一斉に発芽するわけではない。
(3) Cultivation period As shown in Fig. 1, the cultivation period is divided into the period from sowing to germination (germination period), the period from germination to transplantation (seedling period), and the period from transplantation to harvest (growth period). rice field. For example, in the case of Japanese mustard spinach, the germination period is about 3 to 5 days, the seedling raising period is about 9 to 10 days, the growth period is about 3 to 4 weeks, and the period from sowing to harvesting is about 5 to 6 weeks. Note that when a plurality of seeds are sown in the seedling-raising apparatus, not all the seeds germinate all at once.

そこで、以下の実験では、栽培日数を揃えるため、播種から4日目までを発芽期間とし、播種後4日目から14日目までを育苗期間とした。そして、播種後14日目に育苗装置で成長した植物体を該育苗装置から生育装置に移植し、その後3週間ないし4週間、生育装置で養液栽培した。つまり、播種後14日目からの3~4週間が生育期間となる。発芽期間では、発芽種子に対する培養液の成分組成の影響を揃えるため水を用い、育苗期間では従来一般的な普通処方培養液を用いた。また、生育期間ではMg・Zn調整培養液を用いた。 Therefore, in the following experiments, in order to arrange the cultivation days, the germination period was set to 4 days after sowing, and the seedling-raising period was set to 4 days to 14 days after sowing. Then, on the 14th day after sowing, the plants grown in the seedling-raising apparatus were transplanted from the seedling-raising apparatus to the growth apparatus, and then hydroponic in the growth apparatus for 3 to 4 weeks. In other words, the growth period is 3 to 4 weeks from the 14th day after sowing. During the germination period, water was used in order to equalize the effects of the composition of the culture medium on the germinated seeds, and during the seedling-raising period, a conventional, general formulation culture medium was used. Also, during the growth period, a Mg/Zn-conditioned medium was used.

なお、本実施例では、播種からの日数で栽培期間を発芽期間、育苗期間、生育期間に分けたが、植物体の草丈や本葉の枚数等、生育状態から発芽期間、育苗期間、生育期間に分けることも可能である。例えば、草丈が5cmを超えたことを条件に植物体を育苗装置から生育装置に移植することとしても良い。 In this example, the cultivation period was divided into a germination period, a seedling raising period, and a growing period based on the number of days from seeding. It is also possible to divide into For example, the plant body may be transplanted from the seedling-raising apparatus to the growing apparatus on condition that the plant height exceeds 5 cm.

<実験1>
(1)条件
上述した育苗装置及び生育装置を用いて、上述した栽培期間(発芽期間、育苗期間及び生育期間)にわたりコマツナの養液栽培を行った。
育苗期間の培養液として普通処方培養液、生育期間の培養液としてZn濃度が0.01~10ppm、Mg濃度が5~72ppmのMg・Zn調整培養液を用いた。
<Experiment 1>
(1) Conditions Hydroponics of Komatsuna was carried out over the above-described cultivation period (germination period, seedling-raising period, and growth period) using the seedling-raising apparatus and growing apparatus described above.
As the culture solution for the seedling-raising period, a normal prescription culture solution was used, and as the culture solution for the growth period, an Mg/Zn-adjusted culture solution with a Zn concentration of 0.01 to 10 ppm and an Mg concentration of 5 to 72 ppm was used.

また、栽培期間の全てにおいて、蛍光灯型LED照明(レイトロン株式会社製)による明期12時間-暗期12時間の条件で栽培した。ただし、発芽期間及び育苗期間ではLEDの光強度を80~100μmol/m/sに固定し、生育期間ではLEDの光強度の影響を調べるため、異なる5種類の光強度(40~60μmol/m/s、80~100μmol/m/s、120~150μmol/m/s、300~350μmol/m/s、600~700μmol/m/s)で栽培した。 In addition, during the entire cultivation period, the plants were cultivated under the conditions of 12 hours light period and 12 hours dark period using fluorescent LED lighting (manufactured by Raytron Co., Ltd.). However, the light intensity of the LED was fixed at 80-100 μmol/m 2 /s during the germination period and seedling raising period, and five different light intensities (40-60 μmol/m 2 /s, 80-100 μmol/m 2 /s, 120-150 μmol/m 2 /s, 300-350 μmol/m 2 /s, 600-700 μmol/m 2 /s).

(2)結果
(2-1)LED照明の光強度と葉酸含有量との関係
図2Aは、Zn濃度が10ppm、Mg濃度が48ppmのMg・Zn調整培養液を用いたときの、生育期間開始から2週間目に収穫したコマツナの葉に含まれる葉酸の量と光強度の関係を示している。葉酸含有量は微生物定量法を用いて測定した。
同図より、LED照明の光強度が大きくなるにつれて葉酸含有量が増加することが分かった。また、食品成分表(2016年)によると、一般的なコマツナの葉に含まれる葉酸の量は110μg/100g fwであるのに対して、光強度が80~100μmol/m/s以上のときの葉酸含有量は1000μg/100g fwを上回っており、葉酸含有量を9倍以上に増加させることができた。
(2) Results (2-1) Relationship between light intensity of LED lighting and folic acid content Fig. 2A shows the start of the growth period when using a Mg Zn adjusted culture solution with a Zn concentration of 10 ppm and a Mg concentration of 48 ppm. Fig. 2 shows the relationship between the amount of folic acid contained in Komatsuna leaves harvested two weeks after culturing and the light intensity. Folate content was determined using a microbial assay.
The figure shows that the folic acid content increases as the light intensity of the LED illumination increases. Also, according to the Food Composition Tables (2016), the amount of folic acid contained in common Komatsuna leaves is 110 μg/100 g fw. The folic acid content of was over 1000 μg/100 g fw, and the folic acid content could be increased more than 9-fold.

(2-2)培養液中のMg濃度と葉中の葉酸含有量との関係
図2Bは、Zn濃度が10ppm、Mg濃度が5~72ppmのMg・Zn調整培養液を用い、LED照明の光強度を250~270μmol/m/sに設定したときの、生育期間開始から2週間目に収穫したコマツナの葉に含まれる葉酸含有量とMg濃度の関係を示している。葉酸含有量は微生物定量法を用いて測定した。
同図より、培養液のMg濃度が5ppmのときの葉酸含有量は約400μg/100g fwであり、従来のコマツナの葉酸含有量を上回っていた。また、培養液のMg濃度が高くなるにつれて葉酸含有量は増加するものの、その増加率は、Mg濃度が5~36ppmに増加する間に比べると、36~72ppmに増加する間の方が小さかった。
(2-2) Relationship between Mg concentration in culture medium and folic acid content in leaves 2 shows the relationship between folic acid content and Mg concentration in Komatsuna leaves harvested two weeks after the start of the growth period when the intensity was set at 250 to 270 μmol/m 2 /s. Folate content was determined using a microbial assay.
From the figure, the folic acid content when the Mg concentration of the culture solution was 5 ppm was about 400 μg/100 g fw, which exceeded the folic acid content of the conventional Komatsuna. In addition, although the folic acid content increased as the Mg concentration of the culture medium increased, the rate of increase was smaller when the Mg concentration increased from 36 to 72 ppm compared to when the Mg concentration increased from 5 to 36 ppm. .

(2-3)培養液中のZn濃度と葉中の葉酸含有量との関係
図2Cは、Zn濃度が0.01~10ppm、Mg濃度が48ppmのMg・Zn調整培養液を用い、LED照明の光強度を250~270μmol/m/sに設定したときの、生育期間開始から2週間目に収穫したコマツナに含まれる葉酸含有量とZn濃度の関係を示している。葉酸含有量は微生物定量法を用いて測定した。
同図より、培養液中のZn濃度が0.1ppmのときの葉酸含有量は約800μg/100g fwであり、従来のコマツナの葉酸含有量を上回っていた。また、培養液中のZn濃度が高くなるにつれて葉酸含有量は増加するものの、その増加率は、Zn濃度が0.01~1ppmに増加する間に比べると、1~10ppmに増加する間の方が小さかった。
(2-3) Relationship between Zn concentration in culture medium and folic acid content in leaves 2 shows the relationship between the folic acid content and the Zn concentration contained in Japanese mustard spinach harvested two weeks after the start of the growth period when the light intensity was set to 250 to 270 μmol/m 2 /s. Folate content was determined using a microbial assay.
From the figure, the folic acid content when the Zn concentration in the culture solution was 0.1 ppm was about 800 μg/100 g fw, which exceeded the folic acid content of conventional Komatsuna. In addition, although the folic acid content increases as the Zn concentration in the culture solution increases, the rate of increase is higher during the period when the Zn concentration increases from 0.01 to 1 ppm, and during the period when the Zn concentration increases from 1 to 10 ppm. was small.

(2-4)葉中のZn濃度と葉中の葉酸含有量との関係
図2Dは、Mg濃度が48ppmであるMg・Zn調整培養液を用い、LED照明の光強度を250~270μmol/m/sに設定したときの、生育期間開始から2週間目に収穫したコマツナの葉に含まれる葉酸の量とZnの量との関係を示している。この実験では、生育期間開始から2週間の時点におけるコマツナの葉に含まれるZnの量が異なるように、Mg・Zn調整培養液のZn濃度を調整したため、該培養液中のZn濃度の正確な値は確認していない。葉酸含有量は微生物定量法を用いて測定し、Zn含有量はICP(Inductively Coupled Plasma)発光分析法を用いて測定した。
(2-4) Relationship between Zn concentration in leaves and folic acid content in leaves FIG. 2 /s, the relationship between the amount of folic acid and the amount of Zn contained in Komatsuna leaves harvested two weeks after the start of the growth period. In this experiment, the Zn concentration in the Mg/Zn-adjusted culture medium was adjusted so that the amount of Zn contained in Komatsuna leaves at the time of 2 weeks from the start of the growth period was different. I haven't checked the value. The folic acid content was measured using a microbial assay, and the Zn content was measured using ICP (Inductively Coupled Plasma) emission spectrometry.

同図より、葉中の葉酸の含有量とZnの含有量の間に正の相関が見られることが分かった。このことから、コマツナの葉中のZn含有量が増えたことが、葉酸の含有量の増加をもたらしたことが裏付けられた。 The figure shows that there is a positive correlation between the content of folic acid in the leaves and the content of Zn. This confirmed that the increase in the Zn content in Komatsuna leaves resulted in an increase in the folic acid content.

また、以上の実験結果(2-1)~(2-4)では、Mg・Zn調整培養液中のZn濃度やMg濃度が異なっていても、或いは、葉中のZn濃度が異なっていても、コマツナの成長量に大きな違いは見られなかった。このことから、生育期間の培養液中のZn濃度やMg濃度がコマツナの成長に及ぼす影響は小さいことが推測された。 In addition, in the above experimental results (2-1) to (2-4), even if the Zn concentration and Mg concentration in the Mg/Zn-adjusted culture medium are different, or even if the Zn concentration in the leaves is different, , no significant difference was observed in the amount of growth of Komatsuna. From this, it was presumed that the Zn concentration and Mg concentration in the culture solution during the growing period had little effect on the growth of Komatsuna.

<実験2>
(1)条件
実験1と同じ育苗装置及び生育装置を用い、上述した栽培期間(発芽期間、育苗期間及び生育期間)でグリーンバタビアの養液栽培を行った。
発芽期間及び育苗期間の栽培条件は実験1と同じにした。一方、生育期間では、Mg濃度が48ppmであるMg・Zn調整培養液を用い、LED照明の光強度を250~270μmol/m/sに設定した。また、この実験では、グリーンバタビアの葉に含まれるZnの量が異なるように、Mg・Zn調整培養液のZn濃度を適宜調整した。葉酸含有量は微生物定量法を用いて測定し、Zn含有量はICP(Inductively Coupled Plasma)発光分析法を用いて測定した。
<Experiment 2>
(1) Conditions Using the same seedling-raising apparatus and growing apparatus as in Experiment 1, hydroponics of Green Batavia was carried out during the aforementioned cultivation period (germination period, seedling-raising period and growth period).
Cultivation conditions during the germination period and seedling raising period were the same as in Experiment 1. On the other hand, during the growth period, a Mg·Zn-conditioned culture medium with a Mg concentration of 48 ppm was used, and the light intensity of the LED illumination was set to 250 to 270 μmol/m 2 /s. Also, in this experiment, the Zn concentration in the Mg-Zn-adjusted culture medium was appropriately adjusted so that the amount of Zn contained in the green batavia leaves was different. The folic acid content was measured using a microbial assay, and the Zn content was measured using ICP (Inductively Coupled Plasma) emission spectrometry.

(2)結果
図3は、生育期間開始から2週間目に収穫したグリーンバタビアの葉に含まれる葉酸の量とZnの量との関係を示している。葉酸含有量は微生物定量法を用いて測定し、Zn含有量はICP(Inductively Coupled Plasma)発光分析法を用いて測定した。
(2) Results FIG. 3 shows the relationship between the amount of folic acid and the amount of Zn contained in green batavia leaves harvested two weeks after the start of the growth period. The folic acid content was measured using a microbial assay, and the Zn content was measured using ICP (Inductively Coupled Plasma) emission spectrometry.

同図より、葉中のZn濃度が0.2~1.0mg/100g fwの範囲では葉酸の含有量とZnの含有量の間に正の相関が見られることが分かった。一方、葉中のZn濃度が1.0mg/100g fw以上のときの葉酸含有量は略一定であった。この結果より、グリーンバタビアの葉中の葉酸含有量を増加させるためには、葉中のZn濃度が1.0mg/100g fwあれば十分であることが推測された。 From the figure, it was found that there is a positive correlation between the folic acid content and the Zn content when the Zn concentration in the leaves is in the range of 0.2 to 1.0 mg/100 g fw. On the other hand, when the Zn concentration in leaves was 1.0 mg/100 g fw or more, the folic acid content was substantially constant. From this result, it was presumed that a Zn concentration of 1.0 mg/100 g fw in the leaves was sufficient to increase the folic acid content in the leaves of Green Batavia.

また、この実験では、葉中のZn濃度が異なっていても、グリーンバタビアの成長量に大きな違いは見られなかった。このことから、生育期間の培養液中のZn濃度がグリーンバタビアの成長に及ぼす影響は小さいことが推測された。 Moreover, in this experiment, even if the Zn concentration in the leaves was different, no significant difference was observed in the amount of growth of green batavia. From this, it was presumed that the Zn concentration in the culture solution during the growth period had little effect on the growth of green batavia.

<実験3>
(1)条件
実験1と同じ育苗装置及び生育装置を用い、上述した栽培期間(発芽期間、育苗期間及び生育期間)でコマツナの養液栽培を行った。
発芽期間及び育苗期間の栽培条件は実験1と同じにした。一方、生育期間では、Zn濃度を低濃度(0.01ppm)に、Mg濃度を48ppmに調整したMg・Zn調整培養液を用い、生育期間の開始から2週間目にZn(硝酸亜鉛)を追加して、培養液中のZn濃度を5ppm、10ppm、20ppmにして生育装置での栽培を続けた。また、LED照明の光強度を250~270μmol/m/sに設定した。
<Experiment 3>
(1) Conditions Using the same seedling-raising apparatus and growth apparatus as in Experiment 1, Komatsuna was cultivated in hydroponics during the cultivation period (germination period, seedling-raising period, and growth period) described above.
Cultivation conditions during the germination period and seedling raising period were the same as in Experiment 1. On the other hand, during the growth period, the Zn concentration was adjusted to a low concentration (0.01 ppm) and the Mg concentration was adjusted to 48 ppm. Then, the Zn concentration in the culture solution was changed to 5 ppm, 10 ppm, and 20 ppm, and cultivation in the growing apparatus was continued. Also, the light intensity of the LED lighting was set to 250 to 270 μmol/m 2 /s.

(2)結果
図4は、Znを追加してから1週間後(生育期間の開始から3週間目)に収穫したコマツナの葉に含まれる葉酸の量とZnの追加量との関係を示している。図4中「cont」は、途中でZnを追加せずに3週間栽培を継続した対照例の結果を示している。葉酸含有量は微生物定量法を用いて測定した。
(2) Results Fig. 4 shows the relationship between the amount of folic acid contained in Komatsuna leaves harvested one week after the addition of Zn (three weeks after the start of the growth period) and the amount of Zn added. there is In FIG. 4, "cont" indicates the results of a control example in which Zn was not added and cultivation was continued for 3 weeks. Folate content was determined using a microbial assay.

同図より、生育期間の途中で培養液中のZn濃度を高くした場合でも葉中の葉酸含有量が増加すること、Znの追加量が多いほど葉酸含有量の増加量が多くなることが分かった。 The figure shows that the folic acid content in the leaves increases even when the Zn concentration in the culture medium is increased during the growth period, and that the more Zn added, the greater the increase in the folic acid content. rice field.

なお、葉酸を構成する原子には窒素(N)が含まれる。そこで、生育期間の途中で追加した硝酸亜鉛を構成する窒素(N)の影響を調べるために、硝酸亜鉛に代えて硝酸カリウム(KNO)を追加したときのコマツナの葉に含まれる葉酸の量を調べた。その結果、硝酸カリウムを追加した場合は葉酸の含有量は増加しなかった。このことから、葉酸の含有量を増加させる作用は培養液中の亜鉛イオンによるものであることが実証された。 Nitrogen (N) is included in the atoms constituting folic acid. Therefore, in order to investigate the effect of nitrogen (N) that constitutes zinc nitrate added during the growth period, the amount of folic acid contained in Komatsuna leaves when potassium nitrate (KNO 3 ) was added instead of zinc nitrate was measured. Examined. As a result, addition of potassium nitrate did not increase folic acid content. From this, it was demonstrated that the effect of increasing the content of folic acid was due to zinc ions in the culture medium.

<実験4>
(1)条件
実験1と同じ育苗装置及び生育装置を用い、上述した栽培期間(発芽期間、育苗期間及び生育期間)でコマツナ及びグリーンバタビアの養液栽培を行った。
発芽期間及び育苗期間の栽培条件は実験1と同じにした。一方、生育期間では、Zn濃度を10ppmに、Mg濃度を48ppmに調整したMg・Zn調整培養液を用いた。LED照明の光強度を250~270μmol/m/sに設定した。また、実験の比較実験として、生育期間の培養液中の窒素(N)濃度を1/2に減量した以外は実験と同じ条件でコマツナ及びグリーンバタビアの養液栽培を行った。
<Experiment 4>
(1) Conditions Using the same seedling-raising apparatus and growth apparatus as in Experiment 1, Komatsuna and Green Batavia were hydroponic during the cultivation period (germination period, seedling-raising period, and growth period) described above.
Cultivation conditions during the germination period and seedling raising period were the same as in Experiment 1. On the other hand, during the growth period, an Mg/Zn-conditioned culture solution with a Zn concentration of 10 ppm and an Mg concentration of 48 ppm was used. The light intensity of the LED illumination was set at 250-270 μmol/m 2 /s. In addition, as a comparative experiment to Experiment 3 , Komatsuna and Green Batavia were hydroponic under the same conditions as in Experiment 3 , except that the nitrogen (N) concentration in the culture solution during the growth period was reduced to 1/2.

(2)結果
図5は、生育期間の開始から2週間目に収穫したコマツナ及びグリーンバタビアの葉に含まれる葉酸の量を示している。図5中、「N1/2」が付記されているのは比較実験の結果を、付記されていないのは実験の結果を示している。なお、葉酸含有量は微生物定量法を用いて測定した。
(2) Results FIG. 5 shows the amount of folic acid contained in leaves of Japanese mustard spinach and green batavia harvested two weeks after the start of the growing period. In FIG. 5, "N1/2" indicates the results of the comparative experiment, and those without "N1/2" indicate the results of Experiment 3 . The folic acid content was measured using the microbial assay method.

同図から、生育期間の培養液中の窒素濃度を半分に減らしても葉中の葉酸の含有量はほとんど変わらないことが分かった。この実験から、培養液中の窒素濃度は葉酸含有量の増加にほとんど影響しないことが確認された。 From the figure, it was found that even if the nitrogen concentration in the culture solution during the growth period was reduced by half, the folic acid content in the leaves remained almost unchanged. From this experiment, it was confirmed that the nitrogen concentration in the culture medium had little effect on the increase in folic acid content.

<実験5>
(1)条件
葉物野菜に含まれる葉酸の一部はポリグルタミン酸型であり、貯蔵型であると考えられている。ポリグルタミン酸型の葉酸は酵素コンジュガーゼによって遊離型の葉酸になる。そこで、上述した実験4で得られたコマツナ及びグリーンバタビアに含まれる葉酸が貯蔵型であるか遊離型であるかを調べるため、葉から抽出した葉酸を酵素を使って処理する前後の葉酸含有量を、微生物定量法を用いて測定した。酵素処理には、アクチナーゼE(37℃、2.5時間)とコンジュガーゼE(37℃、16時間)を用いた。酵素処理によって遊離型の葉酸は変化しないが、貯蔵型の葉酸は遊離型に変換される。微生物測定法では、遊離型の葉酸は検出されるが、貯蔵型の葉酸は検出されない。従って、酵素処理した後の葉酸含有量が酵素処理する前の葉酸含有量よりも増加する場合は、貯蔵型の葉酸が遊離型に変換されたことを意味する。
<Experiment 5>
(1) Conditions Part of the folic acid contained in leafy vegetables is in the form of polyglutamic acid, which is considered to be a storage form. Polyglutamic acid folic acid is converted to free folic acid by the enzyme conjugase. Therefore, in order to investigate whether the folic acid contained in Komatsuna and Green Batavia obtained in Experiment 4 described above is in the storage type or the free type, the folic acid content before and after the folic acid extracted from the leaves was treated with an enzyme was measured using a microbial assay. Actinase E (37°C, 2.5 hours) and Conjugase E (37°C, 16 hours) were used for the enzymatic treatment. The enzymatic treatment does not change the free form of folic acid, but converts the stored form of folic acid into the free form. Microbiological assays detect free folic acid but not stored folic acid. Therefore, when the folic acid content after enzyme treatment is higher than the folic acid content before enzyme treatment, it means that stored folic acid has been converted to free folic acid.

図6は、生育期間の開始から2週間後のコマツナ及びグリーンバタビアの葉から抽出した葉酸について酵素処理前後の測定結果を示している。図6より、グリーンバタビアに含まれる葉酸の約1/2が貯蔵型のポリグルタミン酸型であったのに対して、コマツナに含まれる葉酸の多くは遊離型のポリグルタミン酸型であった。 FIG. 6 shows the measurement results of folic acid extracted from Komatsuna and Green Batavia leaves two weeks after the beginning of the growth period before and after enzymatic treatment. From FIG. 6, about half of the folic acid contained in Green Batavia was in the storage polyglutamic acid form, whereas most of the folic acid contained in Komatsuna was in the free polyglutamic acid form.

葉酸(B9)以外のビタミンBとして、リボフラビン(B2)、ナイアシン(B3)、ピリドキシン(B6)、チアミン(B1)が知られており、これらビタミンBも葉酸と同様、DNA、RNAの生合成に関与することが分かっている。また、葉酸を含む上記5種類のビタミンBの生合成は連動している。そこで、上記4種類のビタミンBについても、コマツナの葉中の含有量の増加に影響を及ぼす因子を調べた。 As vitamin B other than folic acid (B9), riboflavin (B2), niacin (B3), pyridoxine (B6), and thiamine (B1) are known. known to be involved. In addition, the biosynthesis of the five B vitamins including folic acid is linked. Therefore, factors affecting the increase in content in Komatsuna leaves were also examined for the four types of vitamin B mentioned above.

<実験6>
(1)条件
実験1と同じ育苗装置及び生育装置を用い、上述した栽培期間(発芽期間、育苗期間及び生育期間)でコマツナの養液栽培を行った。
発芽期間及び育苗期間の栽培条件は実験1と同じにした。一方、生育期間では、Mg・Zn調整培養液中のZn濃度とMg濃度を以下のいずれかに設定して養液栽培を行った。
+Zn:5ppm
+Mg:48ppm
-Zn:0.5ppm
-Mg:14ppm
成分表:Zn=0.2ppm、Mg=12ppm
<Experiment 6>
(1) Conditions Using the same seedling-raising apparatus and growth apparatus as in Experiment 1, Komatsuna was cultivated in hydroponics during the cultivation period (germination period, seedling-raising period, and growth period) described above.
Cultivation conditions during the germination period and seedling raising period were the same as in Experiment 1. On the other hand, during the growth period, the Zn concentration and the Mg concentration in the Mg/Zn-adjusted culture solution were set to any of the following, and hydroponics was performed.
+Zn: 5 ppm
+Mg: 48 ppm
- Zn: 0.5 ppm
-Mg: 14ppm
Ingredient table: Zn = 0.2 ppm, Mg = 12 ppm

(2)結果
図7A~7Dは、それぞれ、リボフラビン、ピリドキシン、ナイアシン、チアミンの含有量と、培養液中のZn濃度、Mg濃度との関係を示している。これらの図において、例えば「+Zn、-Mg」と記載されている結果は、Zn濃度を5ppm、Mg濃度を14ppmに調整したMg・Zn調整培養液を用いた結果である。また、「成分表」と記載されている結果は、Zn濃度を0.2ppm、Mg濃度を12ppmに調整した従来の普通処方培養液を用いた結果である。
(2) Results FIGS. 7A to 7D show the relationship between the contents of riboflavin, pyridoxine, niacin, and thiamine, and the Zn concentration and Mg concentration in the culture medium, respectively. In these figures, the results described as, for example, "+Zn, -Mg" are the results of using an Mg/Zn-conditioned culture solution adjusted to a Zn concentration of 5 ppm and an Mg concentration of 14 ppm. Also, the results described as "ingredient table" are the results of using a conventional normal prescription culture medium adjusted to a Zn concentration of 0.2 ppm and an Mg concentration of 12 ppm.

これらの図から、リボフラビン、ピリドキシン、ナイアシン、チアミンのいずれについても、Zn濃度及びMg濃度のいずれかを普通処方培養液よりも高くしたMg・Zn調整培養液を用いることにより、葉中の含有量が増加することが分かった。 From these figures, it can be seen that the content of riboflavin, pyridoxine, niacin, and thiamine in leaves was reduced by using the Mg/Zn-adjusted culture medium in which either the Zn concentration or the Mg concentration was higher than that of the normal formulation culture medium. was found to increase.

<実験7>
(1)条件
実験1と同じ育苗装置及び生育装置を用い、上述した栽培期間(発芽期間、育苗期間及び生育期間)でコマツナ及びグリーンバタビアの養液栽培を行った。
発芽期間及び育苗期間の栽培条件は実験1と同じにした。一方、生育期間では、Zn濃度を5ppmに、Mg濃度を48ppmに調整したMg・Zn調整培養液を用い、青色光(Blue)のLED光源又はRGRB(Red,Green,Blue)光のLED光源(いずれも株式会社レイトロン製)を用いた。また、比較例では、Zn濃度を5ppmに、Mg濃度を48ppmに調整し、硝酸塩濃度を1/2にしたMg・Zn調整培養液を用い、RGRB光のLED光源を用いた。
<Experiment 7>
(1) Conditions Using the same seedling-raising apparatus and growth apparatus as in Experiment 1, Komatsuna and Green Batavia were hydroponic during the above-described cultivation period (germination period, seedling-raising period, and growth period).
Cultivation conditions during the germination period and seedling raising period were the same as in Experiment 1. On the other hand, during the growth period, the Zn concentration was adjusted to 5 ppm and the Mg concentration was adjusted to 48 ppm, using an Mg-Zn adjusted culture medium, and a blue LED light source or an RGRB (Red, Green, Blue) light LED light source ( All of them were manufactured by Raytron Co., Ltd.). In the comparative example, the Zn concentration was adjusted to 5 ppm, the Mg concentration was adjusted to 48 ppm, the nitrate concentration was adjusted to 1/2, and an RGRB LED light source was used.

(2)結果
図8A~8Dは、それぞれ、コマツナ及びグリーンバタビアの葉中のリボフラビン、ピリドキシン、ナイアシン、チアミンの含有量と、照射光の種類、培養液中の窒素濃度との関係を示している。これらの図において、例えば「/2」が付記されている結果は比較例の結果であり、それ以外は実験7の結果である。
(2) Results FIGS. 8A to 8D show the relationship between the contents of riboflavin, pyridoxine, niacin, and thiamine in Komatsuna and Green Batavia leaves, the type of irradiation light, and the nitrogen concentration in the culture solution, respectively. . In these figures, for example, the results marked with " N /2" are the results of the comparative example, and the others are the results of Experiment 7.

これらの図から分かるように、リボフラビン、ピリドキシン、ナイアシン、チアミンのいずれについても、培養液中の窒素濃度が葉中の含有量の増加に影響を及ぼすことが推測された。また、グリーンバタビアについては、青色光が葉中のリボフラビン含有量及びチアミン含有量の増加に影響を及ぼすことが推測された。 As can be seen from these figures, it was speculated that the nitrogen concentration in the culture medium affected the increase in the content of riboflavin, pyridoxine, niacin, and thiamine in the leaves. Also, for green batavia, it was speculated that blue light affects the increase of riboflavin content and thiamine content in leaves.

実験1~7の結果に基づき、ビタミンBのそれぞれについて、含有量の増加に影響を及ぼす因子とその影響の程度をまとめた結果を表1に示す。表1において「+」の数が多いほど影響が大きいことを示している。 Based on the results of Experiments 1 to 7, Table 1 shows the results of summarizing the factors that affect the increase in the content of each vitamin B and the degree of their influence. In Table 1, the greater the number of "+", the greater the influence.

Figure 0007108316000001
Figure 0007108316000001

表1より、生育期間の培養液中のZn濃度は、5種類のビタミンB全てについて、葉中の含有量の増加に影響を及ぼす因子であることが分かる。一方、培養液中のMg濃度、硝酸塩濃度、光強度、青色光は、ビタミンBの種類によって、含有量の増加に影響を及ぼす因子となる場合、影響因子とならない場合に分かれた。 From Table 1, it can be seen that the Zn concentration in the culture medium during the growth period is a factor that affects the increase in leaf content of all five types of B vitamins. On the other hand, depending on the type of vitamin B, the Mg concentration, nitrate concentration, light intensity, and blue light in the culture medium were divided into factors affecting the increase in vitamin B content and cases not affecting it.

Claims (8)

播種から収穫までの期間を葉物野菜の生育に必要な肥料成分を含む培養液を用いて栽培することにより葉物野菜を製造する方法であって、
前記期間のうち、所定の大きさに成長してから収穫するまでの栽培期間である生育期間において、亜鉛イオンの濃度範囲が0.1~20ppmであり、リンがポリリン酸イオンの形態で含まれる生育期間用培養液が用いられる、高葉酸葉物野菜の製造方法。
A method for producing leafy vegetables by cultivating the period from sowing to harvesting using a culture solution containing fertilizer components necessary for growing leafy vegetables,
Among the above-mentioned periods, in the growth period, which is the cultivation period from growth to a predetermined size to harvesting, the concentration range of zinc ions is 0.1 to 20 ppm, and phosphorus is contained in the form of polyphosphate ions. A method for producing high-folate leafy vegetables, wherein a growing season medium is used.
請求項1に記載の高葉酸葉物野菜の製造方法において、
前記生育期間用培養液に含まれる亜鉛イオンの濃度範囲が1~10ppmである、高葉酸葉物野菜の製造方法。
In the method for producing high folic acid leafy vegetables according to claim 1,
A method for producing high-folate leafy vegetables, wherein the concentration range of zinc ions contained in the culture solution for the growing period is 1 to 10 ppm.
請求項1に記載の高葉酸葉物野菜の製造方法において、
前記生育期間用培養液に含まれる亜鉛イオンの濃度範囲が10~20ppmであり、マグネシウムイオンの濃度範囲が12~100ppmである、高葉酸葉物野菜の製造方法。
In the method for producing high folic acid leafy vegetables according to claim 1,
A method for producing high-folate leafy vegetables, wherein the zinc ion concentration range and the magnesium ion concentration range contained in the growth period culture medium are 10 to 20 ppm and 12 to 100 ppm, respectively.
請求項1に記載の高葉酸葉物野菜の製造方法において、
前記生育期間用培養液に含まれるマグネシウムイオンの濃度範囲が48~100ppmである、高葉酸葉物野菜の製造方法。
In the method for producing high folic acid leafy vegetables according to claim 1,
A method for producing high-folate leafy vegetables, wherein the concentration range of magnesium ions contained in the culture solution for the growing period is 48 to 100 ppm.
請求項1~4のいずれかに記載の高葉酸葉物野菜の製造方法において、
前記生育期間用培養液に含まれるポリリン酸イオンがトリポリリン酸イオンである、高葉酸葉物野菜の製造方法。
In the method for producing high folic acid leafy vegetables according to any one of claims 1 to 4,
A method for producing high-folate leafy vegetables, wherein the polyphosphate ions contained in the culture solution for the growing period are tripolyphosphate ions.
請求項1~5のいずれかに記載の高葉酸葉物野菜の製造方法において、
前記生育期間において、100μmol/m2/s以上の光を照射することを特徴とする高葉酸葉物野菜の製造方法。
In the method for producing high folic acid leafy vegetables according to any one of claims 1 to 5,
A method for producing a high-folate leafy vegetable, characterized by irradiating with light of 100 μmol/m 2 /s or more during the growth period.
請求項1~6のいずれかに記載の高葉酸葉物野菜の製造方法において、
高葉酸葉物野菜が、葉中の葉酸含有量が500μg/100g生重以上である、高葉酸葉物野菜の製造方法。
In the method for producing high folic acid leafy vegetables according to any one of claims 1 to 6,
A method for producing a high-folate leafy vegetable, wherein the leafy vegetable has a folic acid content of 500 μg/100 g fresh weight or more.
播種から収穫までの期間、葉物野菜の生育に必要な肥料成分を含む培養液を用いて栽培することにより、高葉酸葉物野菜を製造する方法であって、
前記期間を、育苗装置にて播種から発芽まで栽培する期間である発芽期間、前記育苗装置にて発芽した苗を所定の大きさに成長するまで該育苗装置で栽培する期間である育苗期間、前記所定の大きさに成長した苗を前記育苗装置から生育装置に移植し、該生育装置にて収穫するまで栽培する期間である生育期間に分けたとき、
前記生育期間において、12~100ppmの濃度範囲にあるマグネシウムイオンと、0.1~20ppmの濃度範囲にある亜鉛イオンとを含み、リンがポリリン酸イオンの形態で含まれる生育期間用培養液が用いられる、高葉酸葉物野菜の製造方法。
A method for producing high-folate leafy vegetables by cultivating leafy vegetables using a culture solution containing fertilizer components necessary for growing leafy vegetables during the period from sowing to harvesting,
The period includes a germination period during which the seedlings are cultivated in the seedling-raising apparatus from sowing to germination, a seedling-raising period during which the seedlings germinated in the seedling-raising apparatus are cultivated in the seedling-raising apparatus until they grow to a predetermined size, and When a seedling grown to a predetermined size is transplanted from the seedling-raising apparatus to a growing apparatus and divided into growing periods, which are periods of cultivation until harvesting in the growing apparatus,
In the growth period, a growth period culture solution containing magnesium ions in the concentration range of 12 to 100 ppm, zinc ions in the concentration range of 0.1 to 20 ppm, and containing phosphorus in the form of polyphosphate ions is used. A method for producing high folic acid leafy vegetables.
JP2019169460A 2019-09-18 2019-09-18 Method for producing high-folate leafy vegetables Active JP7108316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019169460A JP7108316B2 (en) 2019-09-18 2019-09-18 Method for producing high-folate leafy vegetables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019169460A JP7108316B2 (en) 2019-09-18 2019-09-18 Method for producing high-folate leafy vegetables

Publications (2)

Publication Number Publication Date
JP2021045066A JP2021045066A (en) 2021-03-25
JP7108316B2 true JP7108316B2 (en) 2022-07-28

Family

ID=74876125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019169460A Active JP7108316B2 (en) 2019-09-18 2019-09-18 Method for producing high-folate leafy vegetables

Country Status (1)

Country Link
JP (1) JP7108316B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182672A (en) 2010-03-05 2011-09-22 National Agriculture & Food Research Organization Method for producing folic acid-containing edible plant, and folic acid-containing sprout
JP2012205514A (en) 2011-03-29 2012-10-25 Kurita Water Ind Ltd Method for producing cultivated crop
JP2015112082A (en) 2013-12-13 2015-06-22 株式会社タムロン Method for growing leaf vegetables, high concentration folic acid-containing lettuce obtained by using the method for growing, and continuous growing method of high concentration folic acid-containing lettuce
JP2016158623A (en) 2015-06-10 2016-09-05 株式会社タムロン Plant cultivation device, and plant factory
JP2017063632A (en) 2015-09-28 2017-04-06 公立大学法人秋田県立大学 Hydroponic method, leaf vegetables, culture liquid, and culture concentrate composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182672A (en) 2010-03-05 2011-09-22 National Agriculture & Food Research Organization Method for producing folic acid-containing edible plant, and folic acid-containing sprout
JP2012205514A (en) 2011-03-29 2012-10-25 Kurita Water Ind Ltd Method for producing cultivated crop
JP2015112082A (en) 2013-12-13 2015-06-22 株式会社タムロン Method for growing leaf vegetables, high concentration folic acid-containing lettuce obtained by using the method for growing, and continuous growing method of high concentration folic acid-containing lettuce
JP2016158623A (en) 2015-06-10 2016-09-05 株式会社タムロン Plant cultivation device, and plant factory
JP2017063632A (en) 2015-09-28 2017-04-06 公立大学法人秋田県立大学 Hydroponic method, leaf vegetables, culture liquid, and culture concentrate composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WATANEABE, S. et al.,Folate Biofortification in Hydroponically Cultivated Spinach by the Addition of Phenylalanine,Journal of Agricultural and Food Chemistry,2017年05月26日,Vol. 65,pp. 4605-4610

Also Published As

Publication number Publication date
JP2021045066A (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP7025045B2 (en) Hydroponic cultivation method for cultivated plants
KR101405390B1 (en) Method for Plant Formation of Blueberry cv. Bluegold,Eligabeth,Woodard or Tifblue through laminas culture
KR20200059488A (en) Method for cultivating barley sprout with increased saponarin content and barley sprout cultivated by the same
KR101120973B1 (en) Methods for improving growth and crop productivity of plants by adjusting plant hormone levels, ratios and/or co-factors
KR101916314B1 (en) Culturing method of Agastache rugosa
JP2017060426A (en) Hydroponic cultivation method, leaf vegetables, culture medium, and culture concentrate composition
JP6437781B2 (en) Soil cultivation method of low potassium melon
Lee et al. Shorter Wavelength Blue Light Promotes Growth of Green Perilla (Perilla frutescens).
Boehme et al. Iron supply of cucumbers in substrate culture with humate
CN106069787B (en) A kind of tissue culture propagation of Rhizoma Et Radix Notopterygii
Terabayashi et al. Relationship between the weekly nutrient uptake rate during fruiting stages and fruit weight of tomato (Lycopersicon esculentum Mill.) grown hydroponically
JP6775812B2 (en) Production method of vegetables with enhanced various antioxidant components by hydroponics
JP7108316B2 (en) Method for producing high-folate leafy vegetables
JP5828362B1 (en) Low potassium content fruits and vegetables and cultivation method thereof
KR101036401B1 (en) Culturing method of ice plant using sea water and the ice plant produced thereby
CN107873518B (en) A kind of tissue culture method of Fourstamen Stephania Root seedling
JP2011182672A (en) Method for producing folic acid-containing edible plant, and folic acid-containing sprout
Husen et al. Optimizing the Propagation of potato by stem cutting using different growing media
JP5906085B2 (en) Method for improving content of useful components in plants in hydroponics
KR101036423B1 (en) Culturing method of salicornia herbacea using sea water and the salicornia herbacea produced thereby
KR101159485B1 (en) Culturing method of salicornia herbacea using wasted sea water and the salicornia herbacea produced thereby
Nejadasgari Chokami et al. Evaluation the impact of different polyamines on some nutritional composition of basil (Ocimum basilicum L.) hydroponic culture conditions
Bhargaw et al. Photoperiod and light intensity influence on hydroponically grown leaf lettuce
Sima et al. The impact of culture system and fertilization type on yield and fruit quality of greenhouse tomatoes
KR101155721B1 (en) Culturing method of ice plant using wasted sea water and the ice plant produced thereby

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220210

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220708

R150 Certificate of patent or registration of utility model

Ref document number: 7108316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150