WO2019138610A1 - 流体圧制御装置 - Google Patents

流体圧制御装置 Download PDF

Info

Publication number
WO2019138610A1
WO2019138610A1 PCT/JP2018/036402 JP2018036402W WO2019138610A1 WO 2019138610 A1 WO2019138610 A1 WO 2019138610A1 JP 2018036402 W JP2018036402 W JP 2018036402W WO 2019138610 A1 WO2019138610 A1 WO 2019138610A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
neutral
pilot
neutral passage
valve
Prior art date
Application number
PCT/JP2018/036402
Other languages
English (en)
French (fr)
Inventor
正成 小島
中村 雅之
剛 寺尾
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to US16/622,358 priority Critical patent/US20200200193A1/en
Publication of WO2019138610A1 publication Critical patent/WO2019138610A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40507Flow control characterised by the type of flow control means or valve with constant throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • F15B2211/40584Assemblies of multiple valves the flow control means arranged in parallel with a check valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/41Flow control characterised by the positions of the valve element
    • F15B2211/411Flow control characterised by the positions of the valve element the positions being discrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41509Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/428Flow control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/45Control of bleed-off flow, e.g. control of bypass flow to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5151Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7052Single-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders

Definitions

  • the present invention relates to a fluid pressure control device.
  • JP2006-298519A discloses a cargo handling control system of a forklift.
  • the cargo handling control system includes a hydraulic circuit for controlling the operation of the lift cylinder and the tilt cylinder.
  • the cargo handling control system (fluid pressure control device) disclosed in JP2006-298519A includes a lift flow control valve that controls the operation of the lift cylinder, and a tilt flow control valve that controls the operation of the tilt cylinder.
  • the lift flow control valve and the tilt flow control valve are sequentially provided from the upstream side (the pump side) in the neutral passage that leads the hydraulic fluid discharged from the pump to the tank.
  • the neutral passage is connected to the pump via a check valve.
  • the lift flow control valve and the tilt flow control valve each have a pair of pilot chambers.
  • the pressure of hydraulic fluid is introduced to the pilot chamber through a pilot passage branched from between the pump and the check valve in the neutral passage.
  • the pilot pressure is reduced according to the operation amount of the control lever by a proportional solenoid type pressure reducing valve, and the positions of the lift flow control valve and the tilt flow control valve are switched by the reduced pilot pressure.
  • a check valve is provided between the lift flow control valve and the pump. Therefore, even if the flow of hydraulic fluid in the neutral passage is permitted and the pressure in the neutral passage decreases to the tank pressure, the passage resistance caused by the valve opening pressure of the check valve is present in the passage between the pump and the check valve.
  • the pilot pressure is generated by
  • the lift flow control valve when the lift cylinder is contracted, the lift flow control valve opens the neutral passage.
  • the tilt flow control valve shuts off the neutral passage. Therefore, in a state in which the lift cylinder is contracted and the tilt cylinder is expanded and contracted, the pressure on the upstream side of the tilt flow control valve in the neutral passage is increased, and the pressure corresponding to the pressure in the neutral passage is guided to the pilot passage.
  • the tilt flow control valve is returned to the neutral position so as to contract only the lift cylinder in this state, the neutral passage blocked by the tilt flow control valve is opened, and the pressure in the neutral passage drops sharply.
  • the pressure in the pilot passage upstream of the check valve may also decrease depending on the delay in the operation of the check valve.
  • the pressure in the pilot passage decreases in this manner, the position of the lift flow control valve may be switched unintentionally, and the operation of the lift cylinder may become unstable.
  • An object of the present invention is to improve the stability of operation of a fluid pressure control device.
  • the fluid pressure control device is provided with a neutral passage connecting the pump and the tank, and a first actuator operated by working fluid provided in the neutral passage and led to the pair of first pilot chambers.
  • a second control valve provided in the neutral passage to control the operation of the second actuator, and provided upstream of the first control valve and the second control valve in the neutral passage, the pilot A switching valve whose position is switched by working fluid introduced into the chamber, a main pilot passage connected to the upstream side of the switching valve in the neutral passage and guiding the working fluid in the neutral passage to the pair of first pilot chambers, and a switching valve in the neutral passage
  • a sub-pilot passage connected to the upstream side of the valve for guiding the working fluid of the neutral passage to the pilot chamber, the first control valve being operated on the first actuator.
  • the first neutral position for blocking the supply and discharge of fluid and opening the neutral passage, and the pressure from one of the pair of first pilot chambers to switch from the first neutral position to shut off the neutral passage and the working fluid discharged from the pump
  • a feed position for guiding the first actuator to the first actuator, and a discharge position for switching the first neutral position by the pressure of the other of the pair of first pilot chambers to open the neutral passage and for guiding the working fluid discharged from the first actuator to the tank.
  • the second control valve blocks the supply and discharge of the working fluid to the second actuator and opens the neutral passage, and the working fluid discharged from the pump while blocking the neutral passage and blocking the neutral passage.
  • the switching valve has a block positive position that blocks the neutral passage.
  • the communication position for permitting the flow of the working fluid in the neutral passage and the working fluid is supplied from the neutral passage to the pilot chamber through the sub pilot passage along with the shutoff on the downstream side of the switching valve in the neutral passage.
  • the switching position is switched to the communication position, and the switching position is switched to the blocking position along with the opening on the downstream side of the switching valve in the neutral passage.
  • FIG. 1 is a circuit diagram of a fluid pressure control device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the switching valve, showing a state in which the switching valve is in the shutoff position.
  • FIG. 3 is a partially enlarged cross-sectional view of the switching valve.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG.
  • the fluid pressure control device 100 is used in a fluid pressure control system 1000 of a forklift.
  • the fluid pressure control system 1000 includes a tank 11 for storing hydraulic fluid as a hydraulic fluid, a pump 12 for sucking up and discharging hydraulic fluid from the tank 11, and a lift cylinder 1 as a first actuator. And a tilt cylinder 5 as a second actuator, and a fluid pressure control device 100 for controlling the operation of the lift cylinder 1 and the tilt cylinder 5.
  • the lift cylinder 1 raises and lowers the fork (not shown) of the forklift, and the tilt cylinder 5 changes the inclination angle of the mast (not shown) of the forklift.
  • the fluid pressure control system 1000 may include an actuator other than the lift cylinder 1 and the tilt cylinder 5, for example, a fork positioner that adjusts the distance between forks as a second actuator. The operation of such an actuator may be controlled by the fluid pressure control device 100.
  • the pump 12 is driven by a drive source (not shown) such as an engine or a motor.
  • the neutral passage 13 is connected to the discharge port of the pump 12, and the hydraulic fluid discharged from the pump 12 flows into the neutral passage 13.
  • the neutral passage 13 is connected to the tank 11, and the hydraulic fluid discharged from the pump 12 is discharged to the tank 11 through the neutral passage 13 when the flow of the hydraulic fluid in the neutral passage 13 is not blocked.
  • the lift cylinder 1 is a single-acting hydraulic cylinder having a piston 3 that divides the inside of the cylinder tube 2 into a rod side chamber 2 a and an opposite rod side chamber 2 b.
  • the piston rod 4 is connected to the piston 3.
  • the rod side chamber 2a is opened to the atmosphere, for example, and the opposite rod side chamber 2b is connected to the fluid pressure control device 100 through the main passage 1a.
  • the rod side chamber 2a is not restricted to the form open
  • the lift cylinder 1 When hydraulic fluid is supplied from the fluid pressure control device 100 to the non-rod side chamber 2b, the lift cylinder 1 extends and raises the fork. When the hydraulic oil is discharged from the opposite rod side chamber 2b by the weight of the fork, the piston rod 4 and the piston 3, the lift cylinder 1 contracts to lower the fork.
  • the tilt cylinder 5 is a double acting hydraulic cylinder having a piston 7 that divides the inside of the cylinder tube 6 into a rod side chamber 6a and an opposite rod side chamber 6b.
  • the piston rod 8 is connected to the piston 7.
  • the rod side chamber 6a is connected to the fluid pressure control device 100 through the first main passage 5a, and the opposite rod side chamber 6b is connected to the fluid pressure control device 100 through the second main passage 5b.
  • the tilt cylinder 5 contracts to tilt the mast backward.
  • the tilt cylinder 5 extends and tilts the mast forward.
  • the fluid pressure control device 100 includes a first control valve 20 that controls the flow of hydraulic fluid supplied to and discharged from the lift cylinder 1 and a second control valve 30 that controls the flow of hydraulic fluid supplied to and discharged from the tilt cylinder 5. And a switching valve 40 for controlling the flow of hydraulic fluid in the neutral passage 13.
  • the first control valve 20 is provided in the neutral passage 13
  • the second control valve 30 is provided downstream of the first control valve 20 in the neutral passage 13
  • the switching valve 40 is the first control valve in the neutral passage 13. It is provided on the upstream side of 20.
  • a relief passage 18 branched from the neutral passage 13 is connected to the upstream side of the switching valve 40 in the neutral passage 13, and a relief valve 50 is provided in the relief passage 18.
  • the pressure in the neutral passage 13 is maintained below the set pressure of the relief valve 50 by the relief valve 50.
  • the first control valve 20 is connected to the supply passage 14 in communication with the neutral passage 13 via the switching valve 40 and to which the hydraulic oil from the pump 12 is supplied according to the operation of the switching valve 40. It is connected to the tank 11 through the neutral passage 13.
  • the second control valve 30 is connected to the supply passage 14 and to the tank 11 through the return passage 16 and the neutral passage 13.
  • the supply passage 14 is provided with check valves 25 and 35 which allow only the flow of hydraulic fluid from the pump 12 to the first control valve 20 and the second control valve 30.
  • the return passages 15 and 16 are connected to the tank 11 through the neutral passage 13, the return passages 15 and 16 may be directly connected to the tank 11 without the neutral passage 13.
  • the first control valve 20 has a neutral position 20a as a first neutral position, a supply position 20b, and a discharge position 20c.
  • the neutral position 20 a the first control valve 20 blocks the supply and discharge of the hydraulic oil to the opposite rod side chamber 2 b of the lift cylinder 1 and opens the neutral passage 13.
  • the first control valve 20 shuts off the neutral passage 13 and guides the hydraulic oil discharged from the pump 12 to the opposite rod side chamber 2b through the main passage 1a.
  • the first control valve 20 opens the neutral passage 13 and guides the hydraulic oil discharged from the opposite rod side chamber 2 b to the tank 11 through the return passage 15.
  • the first control valve 20 includes a pilot chamber 21a, 21b as a pair of first pilot chambers, a proportional solenoid type solenoid valve 22a, 22b for controlling the pressure in the pilot chamber 21a, 21b, a centering spring 23a, And 23b.
  • the pilot chambers 21a and 21b are selectively connected to the pilot passage 17 or the tank 11 as the main pilot passage by solenoid valves 22a and 22b, and the hydraulic oil introduced through the pilot passage 17 causes the pressure in the pilot chambers 21a and 21b to To rise.
  • the solenoid valves 22 a and 22 b are electrically connected to the controller 9.
  • the controller 9 outputs an electric current according to the operation of the control lever (not shown) by the operator.
  • the solenoid valves 22a and 22b reduce the pilot pressure and supply the pilot chambers 21a and 21b.
  • the solenoid valves 22a and 22b shut off the supply of pilot pressure to the pilot chambers 21a and 21b and connect the pilot chambers 21a and 21b to the tank 11.
  • the solenoid valve 22a When current is supplied from the controller 9 to the solenoid valve 22a, the solenoid valve 22a cuts off the connection between the one pilot chamber 21a and the tank 11, and the pressure of the hydraulic fluid introduced from the pilot passage 17 is one pilot chamber 21a. Lead to As a result, the pressure in one pilot chamber 21a becomes higher than the pressure in the other pilot chamber 21b, and the first control valve 20 resists the biasing force of the centering spring 23b from the neutral position 20a to the supply position 20b. It is switched.
  • the solenoid valve 22b cuts off the connection between the other pilot chamber 21b and the tank 11, and the pressure of the hydraulic fluid introduced from the pilot passage 17 It leads to the pilot room 21b.
  • the pressure in the other pilot chamber 21b becomes higher than the pressure in one pilot chamber 21a, and the first control valve 20 resists the biasing force of the centering spring 23a from the neutral position 20a to the discharge position 20c. It is switched.
  • the second control valve 30 has a neutral position 30a as a second neutral position and operating positions 30b and 30c.
  • the neutral position 30a the second control valve 30 blocks the supply and discharge of hydraulic oil to the rod side chamber 6a and the non-rod side chamber 6b of the tilt cylinder 5, and opens the neutral passage 13.
  • the second control valve 30 blocks the neutral passage 13 and guides the hydraulic oil discharged from the pump 12 through the second main passage 5b to the opposite rod side chamber 6b and the hydraulic oil discharged from the rod side chamber 6a Are guided to the tank 11 through the return passage 16.
  • the second control valve 30 blocks the neutral passage 13 and guides the hydraulic oil discharged from the pump 12 through the first main passage 5a to the rod side chamber 6a and the hydraulic oil discharged from the opposite rod side chamber 6b. Are guided to the tank 11 through the return passage 16.
  • the second control valve 30 is a proportional solenoid type solenoid valve that controls the pressure in the pilot chambers 31a and 31b as a pair of second pilot chambers and the pilot chambers 31a and 31b. 32a and 32b, and centering springs 33a and 33b.
  • the pilot chambers 31a, 31b are selectively connected to the pilot passage 17 or the tank 11 by solenoid valves 32a, 32b.
  • the switching valve 40 has a blocking position 40 a that blocks the flow of hydraulic fluid in the neutral passage 13 and a communication position 40 b that allows the flow of hydraulic fluid in the neutral passage 13.
  • the switching valve 40 is connected to the first control valve 20 and the second control valve 30 through the supply passage 14. In the communication position 40 b, the switching valve 40 connects the neutral passage 13 and the supply passage 14.
  • the switching valve 40 has a pilot chamber 41 and a spring 42.
  • a pilot passage 43 as a sub pilot passage is connected to the pilot chamber 41, and the pressure in the pilot chamber 41 is controlled in accordance with the hydraulic oil introduced through the pilot passage 43.
  • the switching valve 40 When the pressure in the pilot chamber 41 becomes smaller than the biasing force of the spring 42, for example, substantially equal to the pressure in the tank 11, the switching valve 40 is kept in the blocking position 40a by the biasing force of the spring 42. When the pressure in the pilot chamber 41 rises, the switching valve 40 is switched to the communication position 40b against the biasing force of the spring 42.
  • the upstream side of the switching valve 40 in the neutral passage 13 is also referred to as “the upstream neutral passage 13a", and the downstream side of the switching valve 40 in the neutral passage 13 is also referred to as the “downstream neutral passage 13b”.
  • the pilot passage 17 is connected to the upstream neutral passage 13a, and guides the hydraulic oil of the upstream neutral passage 13a to the pilot chambers 21a, 21b, 31a, 31b.
  • the pilot passage 43 is connected to the upstream neutral passage 13 a and guides the hydraulic oil of the upstream neutral passage 13 a to the pilot chamber 41. That is, the first control valve 20, the second control valve 30, and the switching valve 40 operate with the hydraulic oil introduced from the upstream neutral passage 13a.
  • the switching valve 40 has a first throttle portion 47 as a throttle portion for throttling the flow of hydraulic fluid at the communication position 40b. Therefore, even when the downstream neutral passage 13b is opened and the switching valve 40 is in the communication position 40b, the flow of hydraulic oil in the neutral passage 13 is throttled.
  • the supply passage 14 is connected to the upstream neutral passage 13a. Therefore, the hydraulic oil from the pump 12 is supplied to the lift cylinder 1 without passing through the first throttle portion 47. Therefore, the load on the pump 12 can be reduced, and the fuel consumption can be improved.
  • the pilot passage 43 is provided with a second throttle portion 44 that throttles the flow of hydraulic oil.
  • the second throttle portion 44 restricts the flow of hydraulic oil in the pilot passage 43. Therefore, the pressure in the pilot chamber 41 can be prevented from rapidly rising, and the impact when the switching valve 40 is switched from the shutoff position 40a to the communication position 40b can be mitigated.
  • a check valve 46 is provided in parallel to the second throttle portion 44.
  • the pilot passage 43 has a bypass passage 45 that bypasses the second throttle portion 44, and the bypass passage 45 is provided with a check valve 46.
  • the check valve 46 blocks the flow of hydraulic fluid from the upstream neutral passage 13a to the pilot chamber 41, while permitting the flow of hydraulic fluid from the pilot chamber 41 to the upstream neutral passage 13a.
  • the check valve 46 Since the check valve 46 is provided in parallel with the second throttle portion 44, when the pressure in the upstream neutral passage 13a rises, hydraulic oil is conducted from the upstream neutral passage 13a to the pilot chamber 41 through the second throttle portion 44. It is eaten. When the pressure in the upstream neutral passage 13 a decreases and the switching valve 40 is biased by the spring 42, the hydraulic oil is discharged from the pilot chamber 41 to the upstream neutral passage 13 a through the check valve 46. Therefore, when the pressure in the upstream neutral passage 13a is decreased while the switching valve 40 is switched to the communication position 40b, the switching valve 40 is swiftly compared to the case where the check valve 46 is not provided. It is switched to the blocking position 40a.
  • the first control valve 20 is held at the neutral position 20a by the centering springs 23a and 23b.
  • the second control valve 30 is held in the neutral position 30a by the centering springs 33a, 33b.
  • the switching valve 40 is held by the spring 42 in the blocking position 40 a.
  • the first control valve 20 and the second control valve 30 operate by the pressure in the pilot passage 17 in response to the switching of the solenoid valves 22a, 22b, 32a, 32b.
  • the switching valve 40 is kept at the shutoff position 40a. Therefore, when the pump 12 starts driving, the neutral passage 13 is shut off, and the pressure in the upstream neutral passage 13a and the pilot passage 17 increases.
  • the pilot chamber 41 of the switching valve 40 is connected to the neutral passage 13 through the pilot passage 43, the position of the switching valve 40 can be switched according to the drive of the pump 12.
  • the switching valve 40 is switched to the communication position 40b.
  • the first control valve 20 opens the neutral passage 13 in both the discharge position 20c and the neutral position 20a. Therefore, when the first control valve 20 is switched between the neutral position 20a and the discharge position 20c, the pressure in the neutral passage 13 is maintained, and the position of the switching valve 40 is maintained.
  • the switching valve 40 is switched to the communication position 40 b, and the flow of hydraulic fluid in the neutral passage 13 is throttled by the first throttle portion 47. Therefore, the pressure in the upstream neutral passage 13a is maintained at a pressure higher than the pressure (tank pressure) in the downstream neutral passage 13b, and a drop in pressure in the pilot passage 17 can be prevented. Therefore, it is possible to prevent the first control valve 20 from being switched to the neutral position 20a unintentionally, and the stability of the operation of the fluid pressure control device 100 can be improved.
  • the hydraulic oil in the pilot chamber 41 is discharged to the neutral passage 13 through the check valve 46. Therefore, the pressure in the pilot chamber 41 decreases more quickly compared to the case where the hydraulic oil in the pilot chamber 41 is discharged only through the second throttle portion 44, and the opening of the first throttle portion 47 of the switching valve 40 is opened. The degree decreases. Therefore, the pressure in the upstream neutral passage 13a can be more reliably prevented from becoming the tank pressure, and the decrease in pressure in the pilot passage 17 can be further prevented. Thereby, it is possible to prevent the first control valve 20 from being switched to the neutral position 20a without intention, and the stability of the operation of the fluid pressure control device 100 can be further improved.
  • the fluid pressure control device does not include the first throttle portion 47, the bypass passage 45 and the check valve 46
  • the first control valve 20 is switched to the discharge position 20c and the second control valve 30 is switched to the operation position 30c.
  • the second control valve 30 is returned from the state to the neutral position 30a
  • the neutral passage 13 blocked by the second control valve 30 is opened, and the pressure in the neutral passage 13 decreases.
  • the hydraulic oil in the pilot chamber 41 of the switching valve is discharged to the neutral passage 13 through the second throttle portion 44. That is, the flow of the hydraulic oil discharged from the pilot chamber 41 of the switching valve is throttled by the second throttle portion 44. Therefore, it takes time for the switching valve to reach the blocking position 40a.
  • the switching valve opens the neutral passage 13, and the pressure in the pilot passage 17 decreases to the pressure in the tank 11. Therefore, although the current is supplied to the solenoid valve 22b of the first control valve 20, the pressure in the pilot chamber 21b decreases, and the first control valve 20 is switched to the neutral position 20a by the centering springs 23a and 23b. Be As a result, the operation of the lift cylinder 1 is momentarily stopped, and the fork lowering unintentionally stops.
  • the fluid pressure control device does not include the first throttle portion 47, the bypass passage 45, and the check valve 46, it takes time for the switching valve to switch from the communication position 40b to the blocking position 40a.
  • the pressure in the passage 17 decreases.
  • the first control valve 20 may perform an unintended operation.
  • the first throttle portion 47 throttles the flow of hydraulic fluid in the neutral passage 13 in a state where the switching valve 40 is switched to the communication position 40b. Therefore, when the second control valve 30 is switched from the operating position 30b, 30c to the neutral position 30a while the first control valve 20 is switched to the discharge position 20c, the pressure in the pilot passage 17 is prevented from lowering. It is possible to prevent the first control valve 20 from being switched unintentionally. Therefore, the stability of the operation of the fluid pressure control device 100 can be improved.
  • FIG. 2 is a cross-sectional view of the switching valve 40, showing a state in which the switching valve 40 is in the shutoff position 40a.
  • the switching valve 40 has a housing 60 having a hole 61 and a spool 70 slidably accommodated in the hole 61.
  • One opening of the hole 61 is closed by the plug 62a, and the other opening is closed by the plug 62b.
  • the spool 70 has a spool body 71 extending along the central axis of the hole 61 and a plug 76 attached to one end 71 a of the spool body 71.
  • the plug 76 faces the plug 62a, and the other end 71b of the spool body 71 faces the plug 62b.
  • the direction along the spool body 71 is referred to as “axial direction”
  • the radial direction around the spool body 71 is referred to as “radial direction”
  • the direction along the periphery of the spool body 71 is referred to as “circumferential direction”.
  • an upstream neutral port 60a as a neutral port connected to the upstream neutral passage 13a and a downstream neutral port 60b as a neutral port connected to the downstream neutral passage 13b
  • a supply port 60 c connected to the supply passage 14.
  • the pilot chamber 41 is divided into the hole 61 by the spool 70 and the plug 62 a.
  • the plug 76 of the spool 70 faces the pilot chamber 41.
  • the plug 76 of the spool 70 faces the plug 62a, the movement of the spool 70 in the direction of contracting the pilot chamber 41 is limited by the plug 62a. Since the other end face of the spool 70 faces the plug 62b, the movement of the spool 70 in the direction of expanding the pilot chamber 41 is limited by the plug 62b. That is, the plugs 62a and 62b function as a restriction unit that restricts the movement of the spool 70 in the direction of reducing and enlarging the pilot chamber 41, respectively.
  • the spool body 71 has first, second, third and fourth land portions 72a, 72b, 72c and 72d in sliding contact with the holes 61.
  • the first, second, third and fourth land portions 72a, 72b, 72c and 72d are formed at intervals in this order from one end 71a of the spool body 71 to the other end 71b.
  • a first annular groove 74a is formed between the first land portion 72a and the second land portion 72b.
  • a second annular groove 74b is formed between the second land portion 72b and the third land portion 72c
  • a third annular groove 74c is formed between the third land portion 72c and the fourth land portion 72d. It is formed.
  • the first, second and third annular grooves 74a, 74b and 74c respectively communicate with the downstream neutral port 60b, the upstream neutral port 60a and the supply port 60c regardless of the position of the spool 70.
  • a tapered portion 72e formed so that the outer diameter is reduced as the pilot chamber 41 is reduced is provided.
  • the spool main body 71 is provided with a small diameter portion 73 formed to project in the axial direction from the fourth land portion 72 d.
  • the small diameter portion 73 is inserted into a coil spring as a spring 42 housed in the hole 61 of the housing 60.
  • the spring 42 is provided in a compressed state between the plug 62b and the fourth land portion 72d, and biases the spool 70 in the direction of contracting the pilot chamber 41.
  • the plug 76 of the spool 70 is in contact with the plug 62a, and the pilot chamber 41 is in the most contracted state. At this time, the communication between the upstream neutral port 60a and the downstream neutral port 60b is blocked by the second land portion 72b. Communication between the upstream neutral port 60a and the supply port 60c is interrupted by the third land portion 72c.
  • the spool 70 moves in a direction to expand the pilot chamber 41 against the biasing force of the spring 42. Since the tapered portion 72e is formed in a part of the second land portion 72b, with the movement of the spool 70, the upstream neutral port 60a and the downstream pass through between the outer peripheral surface of the tapered portion 72e and the inner peripheral surface of the hole 61.
  • the side neutral port 60b is in communication, and the flow of hydraulic fluid in the neutral passage 13 is permitted. At this time, the flow of hydraulic fluid in the neutral passage 13 is throttled by the tapered portion 72e of the second land portion 72b. At this time, the communication between the upstream neutral port 60a and the supply port 60c is blocked by the third land portion 72c.
  • the spool 70 When the pressure in the pilot chamber 41 further increases, the spool 70 further moves in a direction to expand the pilot chamber 41 against the biasing force of the spring 42 and abuts on the plug 62 b. At this time, the second annular groove 74b reaches the supply port 60c, and the flow of hydraulic fluid from the upstream neutral port 60a to the supply port 60c is permitted.
  • the tapered portion 72e is formed so as to decrease in diameter from the upstream neutral port 60a to the downstream neutral port 60b, it is not limited in the state in which the movement of the spool 70 is restricted by the plug 62b.
  • the degree of opening of the first throttle portion 47 increases more than in the state. That is, the opening degree of the first throttle portion 47 increases when the pressure in the pilot chamber 41 increases.
  • the first narrowed portion 47 (see FIG. 1) is formed by the tapered portion 72e. Therefore, when the switching valve 40 is switched from the blocking position 40a to the communication position 40b, the opening degree of the first throttle portion 47 gradually changes. Therefore, the fluctuation of the pressure in the neutral passage 13 accompanying the movement of the spool 70 can be reduced, and the operation of the switching valve 40 can be stabilized.
  • the first throttle portion 47 increases in opening degree when the pressure in the pilot chamber 41 increases, for example, when the first control valve 20 is switched to the discharge position 20c, switching to the neutral passage 13 is performed. The influence of the throttling by the valve 40 is reduced. Therefore, pressure loss can be reduced and energy consumption can be suppressed.
  • a spool passage 75 corresponding to a part of the pilot passage 43 shown in FIG. 1 is formed.
  • the spool passage 75 extends between the hole 75a opened in the bottom surface of the second annular groove 74b, the recess 75b formed in one end face of the spool main body 71, and the hole 75a and the recess 75b.
  • FIG. 3 is an enlarged cross-sectional view showing the periphery of the recess 75 b of the spool body 71.
  • the plug 76 has a lid 76 a that covers the opening of the recess 75 b and a shaft 76 b that is screwed to the inner circumferential surface of the recess 75 b.
  • the lid 76a has an opposing surface 76c that faces the plug 62a, and a radially extending attachment negative groove 76d is formed on the opposing surface 76c.
  • a hole 76e having a circular cross section is formed in the tip end surface of the shaft 76b.
  • a hole 76f corresponding to a part of the pilot passage 43 is formed in the opposite surface 76c and in communication with the hole 76e.
  • the pilot chamber 41 communicates with the spool passage 75 through the hole 76 f. Since the spool passage 75 communicates with the upstream neutral port 60 a as shown in FIG. 2, the pilot chamber 41 communicates with the upstream neutral port 60 a through the hole 76 f and the spool passage 75. That is, the pilot passage 43 is formed by the hole 76f and the spool passage 75, and the upstream neutral port 60a and the pilot chamber 41 communicate with each other through the pilot passage 43 (the hole 76f and the spool passage 75).
  • the valve body 77 is slidably accommodated in the hole 76 e of the plug 76.
  • the valve body 77 is formed in a cylindrical shape with a bottom, the bottom of the valve body 77 faces the bottom surface of the hole 76 e of the plug 76, and the open end faces the bottom surface of the recess 75 b of the spool body 71.
  • the valve body 77 is formed with a throttle hole 77 a that penetrates the bottom in the axial direction.
  • the outer shape of the valve body 77 is formed in a substantially elliptical shape. Specifically, the outer peripheral surface of the valve body 77 has two flat parts 77 c connecting the two curved parts 77 b.
  • the valve body 77 is slidably supported by the inner circumferential surface of the hole 76e.
  • the valve body 77 receives a force toward the bottom surface of the hole 76e, the valve body 77 is seated on the bottom surface of the hole 76e. That is, the bottom surface of the plug 76 functions as a valve seat 76g formed in the spool passage 75 and on which the valve body 77 is seated.
  • the flat portion 77c of the valve body 77 is separated from the inner circumferential surface of the hole 76e of the plug 76, and the flat portion 77c and the inner circumferential surface of the hole 76e form a passage 78.
  • the valve body 77 is formed with a hole 77 d penetrating between the inner peripheral surface of the valve body 77 and the flat portion 77 c.
  • the bypass passage 45 (see FIG. 1) is formed by the hole 77d, the passage 78, and the space between the bottom of the valve body 77 and the valve seat 76g of the plug 76.
  • valve body 77 separates from the valve seat 76g of the plug 76 when the hydraulic fluid is discharged from the pilot chamber 41, and sits on the valve seat 76g of the plug 76 when the hydraulic fluid is supplied to the pilot chamber 41.
  • the flow of hydraulic oil in the spool passage 75 is throttled.
  • the check valve 46 shown in FIG. 1 is formed by the valve seat 76g provided in the spool passage 75 and the valve body 77 accommodated in the spool passage 75, and the throttle hole 77a of the valve body 77 is It functions as a two-diaphragm unit 44 (see FIG. 1).
  • the valve body 77 of the check valve 46 (see FIG. 1) is accommodated in the spool passage 75, and the throttle hole 77a as the second throttle portion 44 (see FIG. 1) is formed in the valve body 77.
  • the check valve 46 is accommodated in the housing 60 together with the spool 70. Therefore, by incorporating the spool 70 into the housing 60, the second throttle portion 44 and the check valve 46 can be incorporated into the housing 60, and the fluid pressure control device 100 (see FIG. 1) can be easily manufactured.
  • valve body 77 is provided between the spool main body 71 and the plug 76, the valve body 77 can be replaced simply by removing the plug 76. Since the valve body 77 functions as the check valve 46 and the throttle hole 77a of the valve body 77 functions as the second throttle portion 44, the second throttle portion 44 and the check valve 46 should be replaced by replacing the valve body 77. Can. Therefore, the second throttle portion 44 and the check valve 46 can be replaced without replacing the entire spool 70.
  • the fluid pressure control device 100 is provided in the neutral passage 13 connecting the pump 12 and the tank 11, and in the neutral passage 13, and is operated by the hydraulic oil guided to the pair of pilot chambers 21a and 21b to operate the lift cylinder 1
  • the first control valve 20 for controlling, the second control valve 30 provided on the downstream side of the first control valve 20 in the neutral passage 13 to control the operation of the tilt cylinder 5, the first control valve 20 and the first in the neutral passage 13 2)
  • a switching valve 40 provided on the upstream side of the control valve 30 and switched in position by the hydraulic fluid led to the pilot chamber 41, and connected on the upstream side of the switching valve 40 in the neutral passage 13 Hydraulic fluid of the neutral passage 13 connected to the pilot passage 17 leading to the pilot chambers 21a and 21b of the second embodiment and the upstream side of the switching valve 40 in the neutral passage 13
  • the first control valve 20 has a neutral position 20a for blocking the supply and discharge of hydraulic oil to the lift cylinder 1 and opening the neutral passage 13, and one pilot chamber 21a.
  • the supply position 20b is switched from the neutral position 20a by the internal pressure to shut off the neutral passage 13 and leads the hydraulic oil discharged from the pump 12 to the lift cylinder 1, and is switched from the neutral position 20a by the pressure in the other pilot chamber 21b.
  • Position the neutral passage 13 and the neutral passage 13 And the operating position 30b, 30c for guiding the hydraulic fluid discharged from the pump 12 to the tilt cylinder 5 and the switching valve 40 has a blocking position 40a for blocking the neutral passage 13 and the hydraulic fluid in the neutral passage 13
  • the communication position 40b is provided.
  • the switch is switched to 40b, and is switched to the shutoff position 40a along with the downstream opening of the switch valve 40 in the neutral passage 13.
  • the switch valve 40 is a first throttle that throttles the flow of hydraulic oil in the neutral passage 13 at the communication position 40b. It has a part 47.
  • the fluid pressure control device 100 is connected to the lift cylinder 1 via the first control valve 20, and the supply passage 14 for supplying hydraulic fluid from the pump 12 to the lift cylinder 1 in response to the switching of the first control valve 20. Furthermore, the supply passage 14 is connected to the upstream side of the first throttle portion 47 in the neutral passage 13.
  • the supply passage 14 is connected to the upstream side of the first throttle portion 47 in the neutral passage 13. Therefore, the hydraulic oil from the pump 12 bypasses the first throttle portion 47 and is supplied to the lift cylinder 1. Therefore, the load on the pump 12 can be reduced, and the fuel consumption can be improved.
  • the second control valve 30 also has a pair of pilot chambers 31 a and 31 b connected to the pilot passage 17, and operates with hydraulic oil guided to the pair of pilot chambers 31 a and 31 b through the pilot passage 17.
  • both the first control valve 20 and the second control valve 30 can be driven by the same pressure in the neutral passage 13 without being controlled by different pressures. Therefore, the fluid pressure control device 100 can be simplified while improving the stability of the operation of the fluid pressure control device 100.
  • the switching valve 40 is slidable on the housing 60 facing the pilot chamber 41 and in the housing 60 where the upstream and downstream neutral ports 60a and 60b connected to the neutral passage 13 and the pilot chamber 41 are formed.
  • a spool 70 is accommodated, and the spool 70 allows the flow of hydraulic fluid in the neutral passage 13 when the spool 70 moves in a direction to expand the pilot chamber 41, and the spool 70 shrinks the pilot chamber 41.
  • the second land portion 72b has a second land portion 72b that shuts off the flow of hydraulic oil in the neutral passage 13 when moving to the second direction, and the second land portion 72b is formed such that the outer diameter becomes smaller as the pilot chamber 41 is contracted.
  • a tapered portion 72e functioning as the first narrowed portion 47 is provided on the outer peripheral surface.
  • the second land portion 72b has a tapered portion 72e formed on the outer peripheral surface so as to decrease in outer diameter as the pilot chamber 41 is contracted and which functions as the first narrowed portion 47. Therefore, when the switching valve 40 is switched from the blocking position 40a to the communication position 40b, the opening degree of the first throttle portion 47 gradually changes. Therefore, the fluctuation of the pressure in the neutral passage 13 accompanying the movement of the spool 70 can be reduced, and the operation of the switching valve 40 can be stabilized.
  • the fluid pressure control device 100 uses a hydraulic oil as the hydraulic fluid, an incompressible fluid such as water or an aqueous solution may be used instead of the hydraulic oil.
  • the second control valve 30 has been described to control the operation of the tilt cylinder 5
  • the second control valve 30 is configured to control the operation of an actuator different from the tilt cylinder 5 as the second actuator. May be
  • the second throttle portion 44 and the check valve 46 are provided on the spool 70, the pilot passage 43 and the bypass passage 45 are formed in the housing 60, and the second throttle portion 44 and the check valve 46 It may be provided in the housing 60.
  • the second narrowed portion 44 may not be integrally formed with the check valve 46.
  • the second throttle portion 44 may be an orifice plug fixed to the housing 60, and the valve body of the check valve 46 may be provided in the housing 60 separately from the orifice plug.
  • the second control valve 30 is provided on the downstream side of the first control valve 20 in the neutral passage 13. However, the second control valve 30 is provided between the switching valve 40 and the first control valve 20 in the neutral passage 13. It may be done. In this case, in the state where the second control valve 30 is switched to the operating position 30b, 30c and the first control valve 20 is switched to the supply position 20b, a drop in pressure when returning the first control valve 20 to the neutral position 20a is prevented. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Sliding Valves (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

流体圧制御装置(100)は、切換弁(40)と、メインパイロット通路(17)と、サブパイロット通路(43)と、を備え、切換弁(40)は、パイロット室(41)に作動流体が供給されたときには、連通ポジション(40b)に切り換えられ、中立通路(13)における切換弁(40)の下流側の開放に伴って遮断ポジション(40a)に切り換えられ、切換弁(40)は、連通ポジション(40b)において、中立通路(13)における作動流体の流れを絞る絞り部(47)を有する。

Description

流体圧制御装置
 本発明は、流体圧制御装置に関する。
 JP2006-298519Aには、フォークリフトの荷役制御システムが開示される。この荷役制御システムは、リフトシリンダとチルトシリンダの動作を制御するための油圧回路を備える。
 JP2006-298519Aに開示される荷役制御システム(流体圧制御装置)は、リフトシリンダの動作を制御するリフト流量制御弁と、チルトシリンダの動作を制御するチルト流量制御弁と、を備える。リフト流量制御弁及びチルト流量制御弁は、ポンプから吐出された作動油をタンクへと導く中立通路に、上流側(ポンプ側)から順に設けられる。中立通路は、チェックバルブを介してポンプに接続される。
 リフト流量制御弁とチルト流量制御弁とは、それぞれ一対のパイロット室を有する。パイロット室には、ポンプと中立通路におけるチェックバルブとの間から分岐するパイロット通路を通じて作動油の圧力が導かれる。パイロット圧は、操作レバーの操作量に応じた圧力が比例ソレノイド式の減圧弁により減圧され、減圧されたパイロット圧によって、リフト流量制御弁及びチルト流量制御弁のポジションが切り換えられる。
 この流体圧制御装置では、リフト流量制御弁とポンプとの間にチェックバルブが設けられる。そのため、中立通路における作動油の流れが許容され中立通路内の圧力がタンク圧まで低下しても、ポンプとチェックバルブとの間の通路には、チェックバルブの開弁圧に起因する流路抵抗によってパイロット圧が生成される。
 また、この流体圧制御装置においては、リフトシリンダを収縮動作させる際には、リフト流量制御弁は中立通路を開放する。チルトシリンダを伸縮動作させる際には、チルト流量制御弁は、中立通路を遮断する。よって、リフトシリンダを収縮動作させかつチルトシリンダを伸縮動作させる状態では、中立通路におけるチルト流量制御弁の上流側の圧力が上昇するため、中立通路の圧力に応じた圧力がパイロット通路に導かれる。
 しかしながら、この状態でリフトシリンダのみを収縮動作するようにチルト流量制御弁を中立位置へ戻すと、チルト流量制御弁により遮断されていた中立通路が開放され中立通路内の圧力が急激に低下する。このような急激な圧力低下が生じると、チェックバルブの動作の遅れによっては、チェックバルブの上流側のパイロット通路内の圧力も低下するおそれがある。このようにしてパイロット通路内の圧力が低下すると、リフト流量制御弁のポジションが意図せずに切り換わり、リフトシリンダの動作が不安定になるおそれがある。
 本発明は、流体圧制御装置の動作の安定性を向上させることを目的とする。
 本発明のある態様によれば、流体圧制御装置は、ポンプとタンクとを接続する中立通路と、中立通路に設けられ、一対の第1パイロット室に導かれる作動流体によって動作して第1アクチュエータの動作を制御する第1制御弁と、中立通路に設けられ第2アクチュエータの動作を制御する第2制御弁と、中立通路における第1制御弁及び第2制御弁の上流側に設けられ、パイロット室に導かれる作動流体によってポジションが切り換えられる切換弁と、中立通路における切換弁の上流側に接続され中立通路の作動流体を一対の第1パイロット室に導くメインパイロット通路と、中立通路における切換弁の上流側に接続され中立通路の作動流体をパイロット室に導くサブパイロット通路と、を備え、第1制御弁は、第1アクチュエータへの作動流体の給排を遮断すると共に中立通路を開放する第1中立ポジションと、一対の第1パイロット室の一方の圧力によって第1中立ポジションから切り換えられ中立通路を遮断すると共にポンプから吐出される作動流体を第1アクチュエータに導く供給ポジションと、一対の第1パイロット室の他方の圧力によって第1中立ポジションから切り換えられ中立通路を開放すると共に第1アクチュエータから排出される作動流体をタンクに導く排出ポジションと、を有し、第2制御弁は、第2アクチュエータへの作動流体の給排を遮断すると共に中立通路を開放する第2中立ポジションと、中立通路を遮断すると共にポンプから吐出される作動流体を第2アクチュエータに導く動作ポジションと、を有し、切換弁は、中立通路を遮断する遮断ポジションと、中立通路における作動流体の流れを許容する連通ポジションと、を有し、中立通路における切換弁の下流側の遮断に伴って中立通路からサブパイロット通路を通じてパイロット室に作動流体が供給されたときには、連通ポジションに切り換えられ、中立通路における切換弁の下流側の開放に伴って遮断ポジションに切り換えられ、切換弁は、連通ポジションにおいて、中立通路における作動流体の流れを絞る絞り部を有する。
図1は、本発明の実施形態に係る流体圧制御装置の回路図である。 図2は、切換弁の断面図であり、遮断ポジションにある状態を示す。 図3は、切換弁の一部拡大断面図である。 図4は、図3に示すIV-IV線に沿う断面図である。
 以下、添付図面を参照しながら本発明の実施形態の流体圧制御装置100について説明する。流体圧制御装置100は、フォークリフトの流体圧制御システム1000に用いられる。
 図1に示すように、流体圧制御システム1000は、作動流体としての作動油を貯留するタンク11と、タンク11から作動油を吸い上げて吐出するポンプ12と、第1アクチュエータとしてのリフトシリンダ1と、第2アクチュエータとしてのチルトシリンダ5と、リフトシリンダ1及びチルトシリンダ5の動作を制御する流体圧制御装置100と、を備える。リフトシリンダ1は、フォークリフトのフォーク(図示省略)を昇降させ、チルトシリンダ5は、フォークリフトのマスト(図示省略)の傾斜角を変化させる。
 なお、図示を省略するが、流体圧制御システム1000は、リフトシリンダ1及びチルトシリンダ5以外のアクチュエータ、例えばフォークの間隔を調整するフォークポジショナーを第2アクチュエータとして備えていてもよい。このようなアクチュエータの動作を流体圧制御装置100により制御してもよい。
 ポンプ12は、エンジンやモータといった駆動源(図示省略)によって駆動される。ポンプ12の吐出口には中立通路13が接続され、ポンプ12から吐出される作動油は中立通路13に流入する。中立通路13はタンク11に接続され、中立通路13における作動油の流れが遮断されていない状態では、ポンプ12から吐出された作動油は、中立通路13を通じてタンク11に排出される。
 リフトシリンダ1は、シリンダチューブ2の内部をロッド側室2aと反ロッド側室2bとに区画するピストン3を有する単動型の油圧シリンダである。ピストン3にはピストンロッド4が連結される。ロッド側室2aは例えば大気に開放され、反ロッド側室2bはメイン通路1aを通じて流体圧制御装置100に接続される。なお、ロッド側室2aは、大気に開放された形態に限られず、例えばドレン通路を通じてタンク11に接続されてもよい。
 流体圧制御装置100から反ロッド側室2bに作動油が供給されると、リフトシリンダ1は伸長してフォークを上昇させる。フォーク、ピストンロッド4及びピストン3の自重によって反ロッド側室2bから作動油が排出されると、リフトシリンダ1は収縮してフォークを下降させる。
 チルトシリンダ5は、シリンダチューブ6の内部をロッド側室6aと反ロッド側室6bとに区画するピストン7を有する複動型の油圧シリンダである。ピストン7にはピストンロッド8が連結される。ロッド側室6aは第1メイン通路5aを通じて流体圧制御装置100に接続され、反ロッド側室6bは第2メイン通路5bを通じて流体圧制御装置100に接続される。
 流体圧制御装置100からロッド側室6aに作動油が供給され反ロッド側室6bから作動油が排出されると、チルトシリンダ5は収縮してマストを後傾させる。流体圧制御装置100から反ロッド側室6bに作動油が供給されロッド側室6aから作動油が排出されると、チルトシリンダ5は伸長してマストを前傾させる。
 流体圧制御装置100は、リフトシリンダ1に給排される作動油の流れを制御する第1制御弁20と、チルトシリンダ5に給排される作動油の流れを制御する第2制御弁30と、中立通路13における作動油の流れを制御する切換弁40と、を備える。第1制御弁20は、中立通路13に設けられ、第2制御弁30は、中立通路13における第1制御弁20の下流側に設けられ、切換弁40は、中立通路13における第1制御弁20の上流側に設けられる。
 中立通路13における切換弁40の上流側には中立通路13から分岐するリリーフ通路18が接続され、リリーフ通路18にはリリーフ弁50が設けられる。リリーフ弁50によって、中立通路13内の圧力がリリーフ弁50の設定圧以下に保たれる。
 第1制御弁20は、切換弁40を介して中立通路13と連通しポンプ12からの作動油が切換弁40の動作に応じて供給される供給通路14に接続されると共に、リターン通路15と中立通路13とを通じてタンク11に接続される。同様に、第2制御弁30は、供給通路14に接続されると共に、リターン通路16と中立通路13とを通じてタンク11に接続される。供給通路14には、ポンプ12から第1制御弁20及び第2制御弁30への作動油の流れのみを許容するチェック弁25,35が設けられる。なお、リターン通路15,16は、中立通路13を通じてタンク11に接続されているが、中立通路13を介さずにタンク11に直接接続されてもよい。
 第1制御弁20は、第1中立ポジションとしての中立ポジション20aと、供給ポジション20bと、排出ポジション20cと、を有する。中立ポジション20aでは、第1制御弁20は、リフトシリンダ1の反ロッド側室2bへの作動油の給排を遮断すると共に、中立通路13を開放する。供給ポジション20bでは、第1制御弁20は、中立通路13を遮断すると共に、ポンプ12から吐出される作動油をメイン通路1aを通じて反ロッド側室2bに導く。排出ポジション20cでは、第1制御弁20は、中立通路13を開放すると共に、反ロッド側室2bから排出される作動油をリターン通路15を通じてタンク11に導く。
 また、第1制御弁20は、一対の第1パイロット室としてのパイロット室21a,21bと、パイロット室21a,21b内の圧力を制御する比例ソレノイド式のソレノイド弁22a,22bと、センタリングスプリング23a,23bと、を有する。パイロット室21a,21bは、ソレノイド弁22a,22bによりメインパイロット通路としてのパイロット通路17又はタンク11に選択的に接続され、パイロット通路17を通じて導かれる作動油により、パイロット室21a,21b内の圧力が上昇する。
 ソレノイド弁22a,22bは、コントローラ9と電気的に接続される。コントローラ9は、作業者による操作レバー(図示省略)の操作に応じて電流を出力する。コントローラ9からの電流がソレノイド弁22a,22bに供給されると、ソレノイド弁22a,22bは、パイロット圧を減圧してパイロット室21a,21bに供給する。ソレノイド弁22a,22bに電流が供給されていない状態では、ソレノイド弁22a,22bは、パイロット室21a,21bへのパイロット圧の供給を遮断すると共にパイロット室21a,21bをタンク11に接続する。
 ソレノイド弁22a,22bの動作に伴う第1制御弁20の動作について、説明する。
 ソレノイド弁22aにコントローラ9から電流が供給されると、ソレノイド弁22aは、一方のパイロット室21aとタンク11との接続を遮断し、パイロット通路17から導かれる作動油の圧力を一方のパイロット室21aに導く。その結果、一方のパイロット室21a内の圧力が他方のパイロット室21b内の圧力よりも高くなり、第1制御弁20は、センタリングスプリング23bの付勢力に抗して中立ポジション20aから供給ポジション20bに切り換えられる。
 同様に、ソレノイド弁22bにコントローラ9から電流が供給されると、ソレノイド弁22bは、他方のパイロット室21bとタンク11との接続を遮断し、パイロット通路17から導かれる作動油の圧力を他方のパイロット室21bに導く。その結果、他方のパイロット室21b内の圧力が一方のパイロット室21a内の圧力よりも高くなり、第1制御弁20は、センタリングスプリング23aの付勢力に抗して中立ポジション20aから排出ポジション20cに切り換えられる。
 両方のソレノイド弁22a,22bにコントローラ9から電流が供給されない状態では、パイロット室21a,21bへの作動油の供給が遮断される。このとき、パイロット室21a,21bはタンク11に接続され、パイロット室21a,21b内の圧力はタンク11内の圧力と略同じになる。その結果、第1制御弁20は、センタリングスプリング23a,23bの付勢力によって中立ポジション20aに保たれる。
 第2制御弁30は、第2中立ポジションとしての中立ポジション30aと、動作ポジション30b,30cと、を有する。中立ポジション30aでは、第2制御弁30は、チルトシリンダ5のロッド側室6a及び反ロッド側室6bへの作動油の給排を遮断すると共に、中立通路13を開放する。動作ポジション30bでは、第2制御弁30は、中立通路13を遮断すると共に、ポンプ12から吐出される作動油を第2メイン通路5bを通じて反ロッド側室6bへ導きロッド側室6aから排出される作動油をリターン通路16を通じてタンク11に導く。動作ポジション30cでは、第2制御弁30は、中立通路13を遮断すると共に、ポンプ12から吐出される作動油を第1メイン通路5aを通じてロッド側室6aへ導き反ロッド側室6bから排出される作動油をリターン通路16を通じてタンク11に導く。
 また、第2制御弁30は、第1制御弁20と同様に、一対の第2パイロット室としてのパイロット室31a,31bと、パイロット室31a,31b内の圧力を制御する比例ソレノイド式のソレノイド弁32a,32bと、センタリングスプリング33a,33bと、を有する。パイロット室31a,31bは、ソレノイド弁32a,32bによりパイロット通路17又はタンク11に選択的に接続される。
 第2制御弁30の動作は、第1制御弁20の動作と略同じであるため、ここではその説明を省略する。
 切換弁40は、中立通路13における作動油の流れを遮断する遮断ポジション40aと、中立通路13における作動油の流れを許容する連通ポジション40bと、を有する。切換弁40は、供給通路14を通じて第1制御弁20及び第2制御弁30に接続される。連通ポジション40bでは、切換弁40は、中立通路13と供給通路14とを接続する。
 また、切換弁40は、パイロット室41とスプリング42とを有する。パイロット室41にはサブパイロット通路としてのパイロット通路43が接続され、パイロット通路43を通じて導かれる作動油に応じて、パイロット室41内の圧力が制御される。
 パイロット室41内の圧力がスプリング42の付勢力より小さくなったとき、例えばタンク11内の圧力と略等しいときには、切換弁40は、スプリング42の付勢力により、遮断ポジション40aに保たれる。パイロット室41内の圧力が上昇したときには、切換弁40は、スプリング42の付勢力に抗して連通ポジション40bに切り換えられる。
 以下において、中立通路13における切換弁40の上流側を「上流側中立通路13a」とも称し、中立通路13における切換弁40の下流側を「下流側中立通路13b」とも称する。
 パイロット通路17は、上流側中立通路13aに接続され、上流側中立通路13aの作動油をパイロット室21a,21b,31a,31bに導く。パイロット通路43は、上流側中立通路13aに接続され、上流側中立通路13aの作動油をパイロット室41に導く。つまり、第1制御弁20、第2制御弁30及び切換弁40は、上流側中立通路13aから導かれる作動油により動作する。
 切換弁40は、連通ポジション40bにおいて作動油の流れを絞る絞り部としての第1絞り部47を有する。そのため、下流側中立通路13bが開放されかつ切換弁40が連通ポジション40bにある状態においても、中立通路13における作動油の流れが絞られる。
 第1絞り部47は、下流側中立通路13bの開放に伴ってパイロット室41内の圧力が低下したときに開度が減少し、下流側中立通路13bの遮断に伴ってパイロット室41内の圧力が上昇したときに開度が増加する可変絞りである。そのため、下流側中立通路13bが開放され中立通路13内の圧力が低下するのに伴って、中立通路13における作動油の流れが第1絞り部47によってより絞られる。
 供給通路14は、上流側中立通路13aに接続される。そのため、ポンプ12からの作動油は、第1絞り部47を通ることなくリフトシリンダ1に供給される。したがって、ポンプ12の負荷を軽減することができ、燃費を向上させることができる。
 パイロット通路43には、作動油の流れを絞る第2絞り部44が設けられる。第2絞り部44によってパイロット通路43における作動油の流れが制限される。したがって、パイロット室41内の圧力の急激な上昇を防止することができ、切換弁40が遮断ポジション40aから連通ポジション40bに切り換えられる際の衝撃を和らげることができる。
 また、パイロット通路43には、逆止弁46が第2絞り部44に並列に設けられる。具体的には、パイロット通路43は、第2絞り部44を迂回する迂回通路45を有し、迂回通路45に逆止弁46が設けられる。逆止弁46は、上流側中立通路13aからパイロット室41への作動油の流れを遮断する一方で、パイロット室41から上流側中立通路13aへの作動油の流れを許容する。
 逆止弁46が第2絞り部44と並列に設けられるため、上流側中立通路13a内の圧力が上昇したときには、上流側中立通路13aから作動油が第2絞り部44を通じてパイロット室41に導かれる。上流側中立通路13a内の圧力が低下し切換弁40がスプリング42により付勢されたときには、パイロット室41から作動油が逆止弁46を通じて上流側中立通路13aに排出される。したがって、切換弁40が連通ポジション40bに切り換えられている状態において上流側中立通路13a内の圧力が低下したときには、逆止弁46が設けられていない場合と比較して、切換弁40は速やかに遮断ポジション40aに切り換えられる。
 次に、図1を参照して、流体圧制御装置100の動作について説明する。
 まず、流体圧制御装置100の起動について説明する。
 ポンプ12が停止した状態においては、パイロット通路17及びパイロット通路43には作動油が供給されない。そのため、第1制御弁20は、センタリングスプリング23a、23bによって中立ポジション20aに保たれる。同様に、第2制御弁30は、センタリングスプリング33a、33bによって中立ポジション30aに保たれる。切換弁40は、スプリング42によって遮断ポジション40aに保たれる。
 ポンプ12が駆動されると、ポンプ12から吐出される作動油により上流側中立通路13a内の圧力が上昇し、パイロット通路17内の圧力が上昇する。そのため、第1制御弁20及び第2制御弁30は、ソレノイド弁22a,22b,32a,32bの切り換えに応じてパイロット通路17内の圧力により動作する。
 流体圧制御装置100では、ポンプ12が停止した状態では、切換弁40は、遮断ポジション40aに保たれる。そのため、ポンプ12が駆動し始めた際には、中立通路13が遮断されており、上流側中立通路13a及びパイロット通路17内の圧力が上昇する。
 ポンプ12の駆動に伴って、パイロット通路43を通じてパイロット室41に作動油が導かれ、パイロット室41内の圧力が上昇する。その結果、切換弁40が連通ポジション40bに切り換えられる。切換弁40が連通ポジション40bに切り換えられた状態においても、中立通路13における作動油の流れが第1絞り部47によって絞られるので、上流側中立通路13a内の圧力はタンク11内の圧力よりも高い圧力に維持される。
 このように、流体圧制御装置100では、切換弁40のパイロット室41がパイロット通路43を通じて中立通路13に接続されるので、ポンプ12の駆動に応じて切換弁40のポジションを切り換えることができる。
 次に、第1制御弁20のみを動作させる場合を説明する。
 コントローラ9から第1制御弁20のソレノイド弁22aへ電流を供給して第1制御弁20を供給ポジション20bに切り換えると、中立通路13が第1制御弁20により遮断される。
 切換弁40が連通ポジション40bに切り換えられた状態で第1制御弁20が供給ポジション20bに切り換えられると、ポンプ12から吐出される作動油は、供給通路14、第1制御弁20及びメイン通路1aを通じてリフトシリンダ1の反ロッド側室2bに導かれる。その結果、リフトシリンダ1が伸長し、フォークが上昇する。
 第1制御弁20のソレノイド弁22aへの電流の供給を遮断すると、第1制御弁20が中立ポジション20aに切り換えられる。これにより、リフトシリンダ1の動作が停止する。
 コントローラ9から第1制御弁20のソレノイド弁22bへ電流を供給して第1制御弁20を排出ポジション20cに切り換えると、リフトシリンダ1の反ロッド側室2b内の作動油は、フォーク、ピストンロッド4及びピストン3の自重により、メイン通路1a、第1制御弁20及びリターン通路15を通じてタンク11に排出される。その結果、リフトシリンダ1が収縮し、フォークが降下する。
 なお、第1制御弁20が排出ポジション20cとなる場合、切換弁40は、連通ポジション40bに切り換えられている。
 第1制御弁20は、排出ポジション20cと中立ポジション20aとの両方において、中立通路13を開放する。そのため、第1制御弁20が中立ポジション20aと排出ポジション20cとの間で切り換えられる際に、中立通路13における圧力は維持され、切換弁40のポジションは保たれる。
 次に、第1制御弁20と第2制御弁30の両方を動作させる場合を説明する。
 第1制御弁20を排出ポジション20cに切り換えると共に第2制御弁30を動作ポジション30cに切り換えると、中立通路13が第2制御弁30により遮断される。中立通路13の遮断によって上流側中立通路13a内の圧力が上昇する。
 更に、第2制御弁30が動作ポジション30cに切り換えられた状態では、ポンプ12から吐出される作動油は、供給通路14、第2制御弁30及び第1メイン通路5aを通じてチルトシリンダ5のロッド側室6aに導かれる。このとき、チルトシリンダ5の反ロッド側室6b内の作動油は、第2メイン通路5b、第2制御弁30及びリターン通路16を通じてタンク11に排出される。その結果、チルトシリンダ5が収縮する。
 上記の同時操作時に第2制御弁30を動作ポジション30cから中立ポジション30aに戻すと、第2制御弁30により遮断されていた中立通路13が開放される。その結果、上流側中立通路13a内の圧力が低下し、スプリング42の付勢力により切換弁40が移動することで切換弁40のパイロット室41内の作動油が中立通路13に排出される。
 このとき、切換弁40は連通ポジション40bに切り換えられており、中立通路13における作動油の流れは、第1絞り部47によって絞られる。そのため、上流側中立通路13a内の圧力は下流側中立通路13b内の圧力(タンク圧)より高い圧力に維持され、パイロット通路17内の圧力の低下を防止することができる。したがって、第1制御弁20が意図せずに中立ポジション20aに切り換わるのを防ぐことができ、流体圧制御装置100の動作の安定性を向上させることができる。
 また、パイロット室41内の作動油は、逆止弁46を通じて中立通路13に排出される。そのため、パイロット室41内の圧力は、パイロット室41内の作動油が第2絞り部44のみを通じて排出される場合と比較して、速やかに低下し、切換弁40の第1絞り部47の開度は減少する。したがって、上流側中立通路13a内の圧力がタンク圧となるのをより確実に防止することができ、パイロット通路17内の圧力の低下を更に防止することができる。これにより、第1制御弁20が意図せずに中立ポジション20aに切り換わるのを防ぐことができ、流体圧制御装置100の動作の安定性をより向上させることができる。
 つまり、流体圧制御装置が第1絞り部47、迂回通路45及び逆止弁46を備えない場合では、第1制御弁20を排出ポジション20cに切り換え第2制御弁30を動作ポジション30cに切り換えた状態から第2制御弁30を中立ポジション30aに戻すと、第2制御弁30により遮断されていた中立通路13が開放され、中立通路13の圧力が低下する。このとき、切換弁のパイロット室41内の作動油は、第2絞り部44を通じて中立通路13に排出される。つまり、切換弁のパイロット室41から排出される作動油の流れが第2絞り部44により絞られる。そのため、切換弁が遮断ポジション40aに達するまでに時間がかかる。
 切換弁が遮断ポジション40aに達するまでは、切換弁は中立通路13を開放し、パイロット通路17内の圧力はタンク11内の圧力まで低下する。そのため、第1制御弁20のソレノイド弁22bへ電流を供給しているにも関わらず、パイロット室21b内の圧力が低下し、第1制御弁20はセンタリングスプリング23a、23bにより中立ポジション20aに切り換えられる。その結果、リフトシリンダ1の動作が瞬間的に停止し、フォークの降下が意図せずに停止する。
 このように、流体圧制御装置が第1絞り部47、迂回通路45及び逆止弁46を備えない場合では、切換弁が連通ポジション40bから遮断ポジション40aへの切り換わるのに時間がかかり、パイロット通路17内の圧力が低下する。その結果、第1制御弁20が意図しない動作をするおそれがある。
 本実施形態に係る流体圧制御装置100(図1等参照)では、切換弁40が連通ポジション40bに切り換えられた状態において、第1絞り部47が中立通路13における作動油の流れを絞る。そのため、第1制御弁20が排出ポジション20cに切り換えられた状態で第2制御弁30を動作ポジション30b,30cから中立ポジション30aに切り換える際には、パイロット通路17内の圧力の低下を防止することができ、第1制御弁20が意図せずに切り換わるのを防ぐことができる。したがって、流体圧制御装置100の動作の安定性を向上させることができる。
 次に、図2から図4を参照して、切換弁40の構造を具体的に説明する。
 図2は、切換弁40の断面図であり、遮断ポジション40aにある状態を示す。図2に示すように、切換弁40は、孔61を有するハウジング60と、孔61に摺動自在に収容されるスプール70と、を有する。孔61の一方の開口はプラグ62aによって閉塞され、他方の開口はプラグ62bによって閉塞される。
 スプール70は、孔61の中心軸に沿って延在するスプール本体71と、スプール本体71の一方の端部71aに取り付けられるプラグ76と、を有する。プラグ76がプラグ62aに対向し、スプール本体71の他方の端部71bがプラグ62bに対向する。
 以下において、スプール本体71に沿う方向を「軸方向」と称し、スプール本体71を中心とする放射方向を「径方向」と称し、スプール本体71の周りに沿う方向を「周方向」と称する。
 ハウジング60の孔61の内周面には、上流側中立通路13aに接続される中立ポートとしての上流側中立ポート60aと、下流側中立通路13bに接続される中立ポートとしての下流側中立ポート60bと、供給通路14に接続される供給ポート60cと、が形成される。また、スプール70及びプラグ62aによって孔61にパイロット室41が区画されている。スプール70のプラグ76はパイロット室41に臨む。
 スプール70のプラグ76がプラグ62aに対向するので、パイロット室41を縮小する方向へのスプール70の移動はプラグ62aによって制限される。スプール70の他方の端面がプラグ62bに対向するので、パイロット室41を拡大する方向へのスプール70の移動はプラグ62bによって制限される。つまり、プラグ62a,62bは、それぞれ、パイロット室41を縮小及び拡大する方向へのスプール70の移動を制限する制限部として機能する。
 スプール本体71は、孔61に摺接する第1、第2、第3及び第4ランド部72a、72b、72c、72dを有する。第1、第2、第3及び第4ランド部72a、72b、72c、72dは、スプール本体71の一方の端部71aから他方の端部71bに向ってこの順に間隔を空けて形成される。
 第1ランド部72aと第2ランド部72bとの間には第1環状溝74aが形成される。同様に、第2ランド部72bと第3ランド部72cとの間には第2環状溝74bが形成され、第3ランド部72cと第4ランド部72dとの間には第3環状溝74cが形成される。第1、第2及び第3環状溝74a,74b,74cは、それぞれ、スプール70の位置に関わらず、下流側中立ポート60b、上流側中立ポート60a、供給ポート60cに連通する。第2ランド部72bの一部には、パイロット室41を縮小する方向に向うにつれ外径が小さくなるように形成されるテーパ部72eが設けられる。
 スプール本体71には、第4ランド部72dから軸方向に突出するように形成される小径部73が設けられる。小径部73は、ハウジング60の孔61に収容されたスプリング42としてのコイルスプリングに挿入される。スプリング42は、プラグ62bと第4ランド部72dとの間で圧縮された状態で設けられ、パイロット室41を縮小する方向にスプール70を付勢する。
 図2に示す遮断ポジション40aでは、スプール70のプラグ76がプラグ62aに当接しており、パイロット室41は最も縮小された状態にある。このとき、上流側中立ポート60aと下流側中立ポート60bとの連通は、第2ランド部72bによって遮断される。上流側中立ポート60aと供給ポート60cとの連通は、第3ランド部72cによって遮断される。
 パイロット室41内の圧力が上昇すると、スプール70は、スプリング42の付勢力に抗して、パイロット室41を拡大する方向に移動する。第2ランド部72bの一部にテーパ部72eが形成されるので、スプール70の移動に伴って、テーパ部72eの外周面と孔61の内周面との間を通じて上流側中立ポート60aと下流側中立ポート60bが連通し、中立通路13における作動油の流れが許容される。このとき、中立通路13における作動油の流れは、第2ランド部72bのテーパ部72eによって絞られる。またこのとき、上流側中立ポート60aと供給ポート60cとの連通は、第3ランド部72cによって遮断される。
 パイロット室41内の圧力が更に上昇すると、スプール70は、スプリング42の付勢力に抗して、パイロット室41を拡大する方向に更に移動し、プラグ62bに当接する。このとき、第2環状溝74bが供給ポート60cに達し、上流側中立ポート60aから供給ポート60cへの作動油の流れが許容される。
 スプール70の移動がプラグ62bにより制限された状態においても、第1環状溝74aは上流側中立ポート60aに達せず、上流側中立ポート60aと第1環状溝74aとは、テーパ部72eの外周面と孔61の内周面との間を通じて連通する。したがって、中立通路13における作動油の流れは、第2ランド部72bのテーパ部72eによって絞られる。
 また、テーパ部72eは、上流側中立ポート60aから下流側中立ポート60bに向かって縮径するように形成されているため、スプール70の移動がプラグ62bにより制限された状態では、制限されていない状態よりも第1絞り部47の開度が増加する。つまり、第1絞り部47は、パイロット室41内の圧力が上昇したときに開度が増加する。
 このように、第1絞り部47(図1参照)は、テーパ部72eにより形成される。そのため、切換弁40が遮断ポジション40aから連通ポジション40bに切り換えられる際に、第1絞り部47の開度が徐々に変化する。したがって、スプール70の移動に伴う中立通路13内の圧力の変動を軽減することができ、切換弁40の動作を安定させることができる。
 また、第1絞り部47は、パイロット室41の圧力が上昇したときに開度が増加するため、例えば、第1制御弁20が排出ポジション20cに切り換えられた際には、中立通路13に対する切換弁40による絞りの影響が少なくなる。したがって、圧力損失を小さくすることができ、エネルギの消費を抑えることができる。
 切換弁40のスプール本体71には、図1に示すパイロット通路43の一部に相当するスプール通路75が形成される。スプール通路75は、第2環状溝74bの底面に開口する孔75aと、スプール本体71の一方の端面に形成される窪み部75bと、孔75aと窪み部75bとの間に亘ってスプール本体71の軸心に形成される穴75cと、によって形成される。孔75aが第2環状溝74bの底面に開口するので、スプール70の位置に関わらず、スプール通路75は上流側中立ポート60aと連通する。
 図3は、スプール本体71の窪み部75bの周辺を示す拡大断面図である。図3に示すように、プラグ76は、窪み部75bの開口を覆う蓋部76aと、窪み部75bの内周面に螺合する軸部76bと、を有する。蓋部76aはプラグ62aと対向する対向面76cを有し、対向面76cには、径方向に延びる取付用のマイナス溝76dが形成される。軸部76bの先端面には、断面円形の穴部76eが形成される。
 プラグ76には、対向面76cに開口し穴部76eと連通し、パイロット通路43の一部に相当する孔76fが形成される。孔76fを通じて、パイロット室41がスプール通路75に連通する。図2に示すようにスプール通路75が上流側中立ポート60aと連通するので、パイロット室41は、孔76f及びスプール通路75を通じて上流側中立ポート60aに連通する。つまり、パイロット通路43が孔76fとスプール通路75とにより形成され、上流側中立ポート60aとパイロット室41とがパイロット通路43(孔76fとスプール通路75)を通じて互いに連通する。
 プラグ76の穴部76eには、弁体77が摺動自在に収容される。弁体77は、有底筒状に形成され、弁体77の底部がプラグ76の穴部76eの底面に対向し、開口端がスプール本体71の窪み部75bの底面に対向する。弁体77には、軸方向に底部を貫通する絞り孔77aが形成される。
 図4に示すように、弁体77の外形は、略楕円形に形成される。具体的には、弁体77の外周面は、2つの曲面部77bどうしを接続する2つの平面部77cを有する。
 弁体77は、穴部76eの内周面により摺動自在に支持される。また、弁体77が穴部76eの底面に向けて力を受けたときには、弁体77は、穴部76eの底面に着座する。つまり、プラグ76の底面は、スプール通路75に形成され弁体77が離着座する弁座76gとして機能する。
 弁体77の平面部77cはプラグ76の穴部76eの内周面から離れており、平面部77cと穴部76eの内周面とによって通路78が形成される。弁体77には、弁体77の内周面と平面部77cとの間を貫通する孔77dが形成される。
 スプール通路75からパイロット室41に向かって作動油が流れるときには、図3に示すように、作動油の圧力により弁体77がプラグ76の弁座76gに着座する。そのため、スプール通路75の穴75cから孔77d及び通路78を通じて孔76fに導かれる作動油の流れが遮断される。したがって、スプール通路75からパイロット室41に導かれる作動油の流れは、絞り孔77aによって絞られる。
 パイロット室41からスプール通路75に向かって作動油が流れるときには、作動油の圧力により弁体77がプラグ76の弁座76gから離れ、弁体77の先端が窪み部75bの底面に当接する。そのため、弁体77の底部とプラグ76の弁座76gとの間における作動油の流れが許容される。したがって、パイロット室41内の作動油は、通路78及び孔77dを通じてスプール通路75の穴75cに流入する。つまり、パイロット室41からスプール通路75に導かれる作動油の流れは、絞り孔77aにより絞られない。
 上記のように、孔77dと、通路78と、弁体77の底部とプラグ76の弁座76gとの間と、により迂回通路45(図1参照)が形成される。
 このように、弁体77は、作動油がパイロット室41から排出されるときにはプラグ76の弁座76gから離れ、作動油がパイロット室41に供給されるときにはプラグ76の弁座76gに着座してスプール通路75における作動油の流れを絞る。換言すれば、図1に示す逆止弁46は、スプール通路75に設けられる弁座76gと、スプール通路75に収容される弁体77と、によって形成され、弁体77の絞り孔77aが第2絞り部44(図1参照)として機能する。
 逆止弁46(図1参照)の弁体77がスプール通路75に収容され第2絞り部44(図1参照)としての絞り孔77aが弁体77に形成されるので、第2絞り部44及び逆止弁46は、スプール70と共にハウジング60に収容される。したがって、スプール70をハウジング60に組み込むことによって第2絞り部44及び逆止弁46をハウジング60に組み込むことができ、流体圧制御装置100(図1参照)を容易に製造することができる。
 また、スプール本体71とプラグ76との間に弁体77が設けられるので、プラグ76を外すだけで弁体77を交換することができる。弁体77は逆止弁46として機能すると共に弁体77の絞り孔77aが第2絞り部44として機能するので、弁体77の交換により第2絞り部44及び逆止弁46を交換することができる。したがって、スプール70ごと交換することなく第2絞り部44及び逆止弁46を交換することができる。
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。
 流体圧制御装置100は、ポンプ12とタンク11とを接続する中立通路13と、中立通路13に設けられ、一対のパイロット室21a,21bに導かれる作動油によって動作してリフトシリンダ1の動作を制御する第1制御弁20と、中立通路13における第1制御弁20の下流側に設けられチルトシリンダ5の動作を制御する第2制御弁30と、中立通路13における第1制御弁20及び第2制御弁30の上流側に設けられ、パイロット室41に導かれる作動油によってポジションが切り換えられる切換弁40と、中立通路13における切換弁40の上流側に接続され中立通路13の作動油を一対のパイロット室21a,21bに導くパイロット通路17と、中立通路13における切換弁40の上流側に接続され中立通路13の作動油をパイロット室41に導くパイロット通路43と、を備え、第1制御弁20は、リフトシリンダ1への作動油の給排を遮断すると共に中立通路13を開放する中立ポジション20aと、一方のパイロット室21a内の圧力によって中立ポジション20aから切り換えられ中立通路13を遮断すると共にポンプ12から吐出される作動油をリフトシリンダ1に導く供給ポジション20bと、他方のパイロット室21b内の圧力によって中立ポジション20aから切り換えられ中立通路13を開放すると共にリフトシリンダ1から排出される作動油をタンク11に導く排出ポジション20cと、を有し、第2制御弁30は、チルトシリンダ5への作動油の給排を遮断すると共に中立通路13を開放する中立ポジション30aと、中立通路13を遮断すると共にポンプ12から吐出される作動油をチルトシリンダ5に導く動作ポジション30b,30cと、を有し、切換弁40は、中立通路13を遮断する遮断ポジション40aと、中立通路13における作動油の流れを許容する連通ポジション40bと、を有し、中立通路13における切換弁40の下流側の遮断に伴って中立通路13からパイロット通路43を通じてパイロット室41に作動油が供給されたときには、連通ポジション40bに切り換えられ、中立通路13における切換弁40の下流側の開放に伴って遮断ポジション40aに切り換えられ、切換弁40は、連通ポジション40bにおいて、中立通路13における作動油の流れを絞る第1絞り部47を有する。
 この構成では、中立通路13における切換弁40の下流側が開放されたときには、中立通路13における作動油の流れは第1絞り部47によって絞られる。したがって、第1制御弁20を排出ポジション20cに切り換え第2制御弁30を動作ポジション30b,30cに切り換えた状態において第2制御弁30を中立ポジション30aに切り換える際には、パイロット通路17内の圧力の低下を防止することができる。これにより、第1制御弁20が意図せずに切り換わるのを防ぐことができ、流体圧制御装置100の安定性を向上させることができる。
 また、第1絞り部47は、中立通路13における切換弁40の下流側の開放に伴ってパイロット室41内の圧力が低下したときに開度が減少し、中立通路13における切換弁40の下流側の遮断に伴ってパイロット室41内の圧力が上昇したときに開度が増加する可変絞りである。
 この構成では、中立通路13における切換弁40の下流側が開放され中立通路13内の圧力が低下するのに伴って、中立通路13における作動油の流れが第1絞り部47によってより絞られる。したがって、パイロット通路17内の圧力の低下を防止することができ、流体圧制御装置100の動作の安定性をより向上させることができる。また、第1絞り部47は、切換弁40のパイロット室41の圧力が上昇したときに開度が増加するため、例えば、第1制御弁20が排出ポジション20cに切り換えられた際には、中立通路13に対する切換弁40による絞りの影響が小さくなる。したがって、圧力損失を小さくすることができ、エネルギの消費を抑えることができる。
 また、流体圧制御装置100は、第1制御弁20を介してリフトシリンダ1に接続され、第1制御弁20の切り換えに応じてポンプ12からリフトシリンダ1に作動油を供給する供給通路14を更に有し、供給通路14は、中立通路13における第1絞り部47の上流側に接続される。
 この構成では、供給通路14は、中立通路13における第1絞り部47の上流側に接続される。そのため、ポンプ12からの作動油は、第1絞り部47を迂回してリフトシリンダ1に供給される。したがって、ポンプ12の負荷を軽減することができ、燃費を向上させることができる。
 また、第2制御弁30は、パイロット通路17に接続される一対のパイロット室31a,31bを有し、パイロット通路17を通じて一対のパイロット室31a,31bに導かれる作動油によって動作する。
 この構成では、第1制御弁20と第2制御弁30との両方を別々の圧力で制御することなく中立通路13における同一の圧力により駆動することができる。したがって、流体圧制御装置100の動作の安定性を向上させつつ流体圧制御装置100を簡素化することができる。
 また、切換弁40は、中立通路13に接続される上流側及び下流側中立ポート60a,60bとパイロット室41とが形成されるハウジング60と、パイロット室41に臨んでハウジング60に摺動自在に収容されるスプール70を有し、スプール70は、スプール70がパイロット室41を拡大する方向へ移動する際に中立通路13における作動油の流れを許容し、スプール70がパイロット室41を縮小する方向へ移動する際に中立通路13における作動油の流れを遮断する第2ランド部72bを有し、第2ランド部72bは、パイロット室41を縮小する方向に向かうにつれ外径が小さくなるように形成され第1絞り部47として機能するテーパ部72eを外周面に有する。
 この構成では、第2ランド部72bは、パイロット室41を縮小する方向に向かうにつれ外径が小さくなるように形成され第1絞り部47として機能するテーパ部72eを外周面に有する。そのため、切換弁40が遮断ポジション40aから連通ポジション40bに切り換えられる際に、第1絞り部47の開度が徐々に変化する。したがって、スプール70の移動に伴う中立通路13内の圧力の変動を軽減することができ、切換弁40の動作を安定させることができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 上記実施形態による流体圧制御装置100は、作動流体として、作動油を使用しているが、作動油の代わりに水や水溶液等の非圧縮性流体を使用してもよい。
 流体圧制御装置100では、第2制御弁30は、チルトシリンダ5の動作を制御することについて説明したが、第2アクチュエータとしてチルトシリンダ5とは別のアクチュエータの動作を制御するように形成されていてもよい。
 流体圧制御装置100では、第2絞り部44及び逆止弁46がスプール70に設けられるが、パイロット通路43及び迂回通路45をハウジング60に形成し、第2絞り部44及び逆止弁46がハウジング60に設けられていてもよい。また、第2絞り部44は、逆止弁46と一体に形成されていなくてもよい。例えば、第2絞り部44がハウジング60に固定されたオリフィスプラグからなり、逆止弁46の弁体がオリフィスプラグとは別にハウジング60に設けられていてもよい。
 流体圧制御装置100では、第2制御弁30は、中立通路13における第1制御弁20の下流側に設けられているが、中立通路13における切換弁40と第1制御弁20の間に設けられていてもよい。この場合、第2制御弁30を動作ポジション30b,30cに切り換えると共に第1制御弁20を供給ポジション20bに切り換えた状態において第1制御弁20を中立ポジション20aに戻す際の圧力の低下を防止することができる。
 本願は2018年1月12日に日本国特許庁に出願された特願2018-3776に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  流体圧制御装置であって、
     ポンプとタンクとを接続する中立通路と、
     前記中立通路に設けられ、一対の第1パイロット室に導かれる作動流体によって動作して第1アクチュエータの動作を制御する第1制御弁と、
     前記中立通路に設けられ第2アクチュエータの動作を制御する第2制御弁と、
     前記中立通路における前記第1制御弁及び前記第2制御弁の上流側に設けられ、パイロット室に導かれる作動流体によってポジションが切り換えられる切換弁と、
     前記中立通路における前記切換弁の上流側に接続され前記中立通路の作動流体を前記一対の第1パイロット室に導くメインパイロット通路と、
     前記中立通路における前記切換弁の上流側に接続され前記中立通路の作動流体を前記パイロット室に導くサブパイロット通路と、を備え、
     前記第1制御弁は、
     前記第1アクチュエータへの作動流体の給排を遮断すると共に前記中立通路を開放する第1中立ポジションと、
     前記一対の第1パイロット室の一方の圧力によって前記第1中立ポジションから切り換えられ前記中立通路を遮断すると共に前記ポンプから吐出される作動流体を前記第1アクチュエータに導く供給ポジションと、
     前記一対の第1パイロット室の他方の圧力によって前記第1中立ポジションから切り換えられ前記中立通路を開放すると共に前記第1アクチュエータから排出される作動流体を前記タンクに導く排出ポジションと、を有し、
     前記第2制御弁は、
     前記第2アクチュエータへの作動流体の給排を遮断すると共に前記中立通路を開放する第2中立ポジションと、
     前記中立通路を遮断すると共に前記ポンプから吐出される作動流体を前記第2アクチュエータに導く動作ポジションと、を有し、
     前記切換弁は、前記中立通路を遮断する遮断ポジションと、前記中立通路における作動流体の流れを許容する連通ポジションと、を有し、前記中立通路における前記切換弁の下流側の遮断に伴って前記中立通路から前記サブパイロット通路を通じて前記パイロット室に作動流体が供給されたときには、前記連通ポジションに切り換えられ、前記中立通路における前記切換弁の下流側の開放に伴って前記遮断ポジションに切り換えられ、
     前記切換弁は、前記連通ポジションにおいて、前記中立通路における作動流体の流れを絞る絞り部を有する
    流体圧制御装置。
  2.  請求項1に記載の流体圧制御装置であって、
     前記絞り部は、前記中立通路における前記切換弁の下流側の開放に伴って前記パイロット室内の圧力が低下したときに開度が減少し、前記中立通路における前記切換弁の下流側の遮断に伴って前記パイロット室内の圧力が上昇したときに開度が増加する可変絞りである
    流体圧制御装置。
  3.  請求項1に記載の流体圧制御装置であって、
     前記第1制御弁を介して前記第1アクチュエータに接続され、前記第1制御弁の切り換えに応じて前記ポンプから前記第1アクチュエータに作動流体を供給する供給通路を更に有し、
     前記供給通路は、前記中立通路における前記絞り部の上流側に接続される
    流体圧制御装置。
  4.  請求項1に記載の流体圧制御装置であって、
     前記第2制御弁は、前記メインパイロット通路に接続される一対の第2パイロット室を有し、前記メインパイロット通路を通じて前記一対の第2パイロット室に導かれる作動流体によって動作する
    流体圧制御装置。
  5.  請求項1に記載の流体圧制御装置であって、
     前記切換弁は、
     前記中立通路に接続される中立ポートと前記パイロット室とが形成されるハウジングと、
     前記パイロット室に臨んで前記ハウジングに摺動自在に収容されるスプールと、を有し、
     前記スプールは、前記スプールが前記パイロット室を拡大する方向へ移動する際に前記中立通路における作動流体の流れを許容し、前記スプールが前記パイロット室を縮小する方向へ移動する際に前記中立通路における作動流体の流れを遮断するランド部を有し、
     前記ランド部は、前記パイロット室を縮小する方向に向かうにつれ外径が小さくなるように形成され前記絞り部として機能するテーパ部を外周面に有する
    流体圧制御装置。
PCT/JP2018/036402 2018-01-12 2018-09-28 流体圧制御装置 WO2019138610A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/622,358 US20200200193A1 (en) 2018-01-12 2018-09-28 Fluid pressure control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018003776A JP2019124259A (ja) 2018-01-12 2018-01-12 流体圧制御装置
JP2018-003776 2018-01-12

Publications (1)

Publication Number Publication Date
WO2019138610A1 true WO2019138610A1 (ja) 2019-07-18

Family

ID=67219531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036402 WO2019138610A1 (ja) 2018-01-12 2018-09-28 流体圧制御装置

Country Status (3)

Country Link
US (1) US20200200193A1 (ja)
JP (1) JP2019124259A (ja)
WO (1) WO2019138610A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115605A (en) * 1979-02-26 1980-09-05 Komatsu Ltd Flow distributing valve
JPH03186600A (ja) * 1989-12-15 1991-08-14 Toyota Autom Loom Works Ltd 産業車両の油圧装置
JP2006298519A (ja) * 2005-04-18 2006-11-02 Mitsubishi Heavy Ind Ltd フォークリフトの荷役制御システムおよびフォークリフトの荷役制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115605A (en) * 1979-02-26 1980-09-05 Komatsu Ltd Flow distributing valve
JPH03186600A (ja) * 1989-12-15 1991-08-14 Toyota Autom Loom Works Ltd 産業車両の油圧装置
JP2006298519A (ja) * 2005-04-18 2006-11-02 Mitsubishi Heavy Ind Ltd フォークリフトの荷役制御システムおよびフォークリフトの荷役制御方法

Also Published As

Publication number Publication date
US20200200193A1 (en) 2020-06-25
JP2019124259A (ja) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6167004B2 (ja) コントロール弁
JP5948260B2 (ja) 流体圧制御装置
JP2009243669A (ja) ホールディングコントロール弁
US10816018B2 (en) Hydraulic driving device of industrial vehicle
EP1961973B1 (en) Actuator control device
WO2019138609A1 (ja) 流体圧制御装置
US11137081B2 (en) Control valve
WO2017130455A1 (ja) パイロット式切換弁
WO2019138610A1 (ja) 流体圧制御装置
WO2018193741A1 (ja) 流体圧制御装置およびこれを備えるフォークリフト
JP7084726B2 (ja) 流体圧制御装置
JP6895407B2 (ja) 産業車両の油圧駆動装置
JP4791823B2 (ja) ロードセンシング方式の油圧制御装置に用いられる油圧制御弁
WO2018193740A1 (ja) 流体圧制御装置およびこれを備えるフォークリフト
JP2018179215A (ja) 流体圧制御装置及びこれを備える作業機
JP7027469B2 (ja) 電動油圧回路及び航空機
WO2023176685A1 (ja) 流体圧制御装置
WO2020230362A1 (ja) 産業車両用コントロールバルブおよび産業車両
JP2002327706A (ja) 油圧制御装置
JP2018017377A (ja) 流体圧制御装置
JP2019027571A (ja) 産業車両の油圧駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900444

Country of ref document: EP

Kind code of ref document: A1