WO2018193741A1 - 流体圧制御装置およびこれを備えるフォークリフト - Google Patents

流体圧制御装置およびこれを備えるフォークリフト Download PDF

Info

Publication number
WO2018193741A1
WO2018193741A1 PCT/JP2018/008818 JP2018008818W WO2018193741A1 WO 2018193741 A1 WO2018193741 A1 WO 2018193741A1 JP 2018008818 W JP2018008818 W JP 2018008818W WO 2018193741 A1 WO2018193741 A1 WO 2018193741A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
passage
load
valve
low
Prior art date
Application number
PCT/JP2018/008818
Other languages
English (en)
French (fr)
Inventor
恒輝 石橋
中村 雅之
剛 寺尾
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2018193741A1 publication Critical patent/WO2018193741A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors

Definitions

  • the present invention relates to a fluid pressure control device and a forklift having the same.
  • JP 2007-239992A discloses a forklift equipped with a fluid pressure control device that controls the operation of a plurality of actuators.
  • This fluid pressure control device includes a high-pressure relief valve that limits the pressure of a working fluid supplied to a lift cylinder having a relatively high load pressure, and a pressure of the working fluid supplied to a tilt cylinder and an attachment actuator having a relatively low load pressure.
  • a low-pressure relief valve that restricts
  • the low-pressure relief valve in the fluid pressure control device described in JP2007-239992A limits the pressure of the working fluid after passing through the control valve that controls the operation of the tilt cylinder and the attachment actuator, and before being led to the control valve It does not limit the pressure of the working fluid, that is, the pressure in the supply passage. For this reason, the control valve that controls the operation of the tilt cylinder and the attachment actuator needs to have the same pressure resistance as the control valve that controls the operation of the lift cylinder. Thus, in order to improve the pressure resistance of the control valve, high machining accuracy is required, and as a result, the manufacturing cost of the fluid pressure control device and the forklift equipped with the device may increase.
  • An object of the present invention is to reduce the manufacturing cost of a fluid pressure control device that controls the operation of a plurality of actuators including a high load actuator and a forklift equipped with the fluid pressure control device.
  • a fluid pressure control device that controls operations of a plurality of actuators is connected to a supply passage into which a working fluid supplied from a working fluid supply source flows and a tank in which the working fluid is stored.
  • a low-load control valve that is connected to the supply passage on the downstream side and controls the flow rate of the working fluid that is supplied to the low-load actuator having a lower load pressure than the high-load actuator among the actuators through the supply passage;
  • FIG. 1 is a schematic diagram showing the configuration of the fluid pressure control apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of the fluid pressure control apparatus according to the second embodiment of the present invention.
  • the fluid pressure control device 100 controls the operation of an actuator that operates with fluid pressure
  • the fluid pressure system 10 indicates the entire system including the fluid pressure control device 100 and the actuator.
  • the fluid pressure system 10 is a part of the configuration of the forklift will be described as an example.
  • the fluid pressure system 10 includes a tank 12 that stores working oil as working fluid, a pump 11 that is driven by an engine or motor (not shown) and discharges working oil in the tank 12, and a fork (not shown).
  • Lift cylinder 15 as a high load actuator that moves up and down
  • tilt cylinder 16 as a low load actuator that changes the inclination angle of a mast (not shown)
  • attachment cylinder 17 as a low load actuator that drives a spare attachment (not shown)
  • the fluid pressure control device 100 that controls the operation of the cylinder 15, the tilt cylinder 16 and the attachment cylinder 17 and the fluid pressure control device 100 according to the operation input of the operator, the lift cylinder 15, the tilt cylinder 16 and the attachment series are controlled.
  • the lift cylinder 15 is a single acting cylinder having a piston that divides the inside of the cylinder tube into a rod side chamber 15a and an anti-rod side chamber 15b.
  • the lift cylinder 15 extends and raises the fork when hydraulic oil is supplied to the anti-rod side chamber 15b, and the lift cylinder 15 contracts and lowers the fork by discharging the hydraulic oil in the anti-rod side chamber 15b by its own weight.
  • the tilt cylinder 16 is a double-acting cylinder having a piston that divides the inside of the cylinder tube into a rod side chamber 16a and an anti-rod side chamber 16b.
  • the tilt cylinder 16 extends when hydraulic oil is supplied to the anti-rod side chamber 16b and is discharged from the rod side chamber 16a to tilt the mast forward, and the hydraulic oil is supplied to the rod side chamber 16a and from the anti-rod side chamber 16b. As the hydraulic oil is discharged, it contracts and tilts the mast backward.
  • the attachment cylinder 17 is a double-acting cylinder having a rod side chamber 17a and an anti-rod side chamber 17b, similarly to the tilt cylinder 16, its detailed description is omitted.
  • the attachment driven by the attachment cylinder 17 is, for example, a fork positioner that adjusts the distance between the forks.
  • the low-load actuator that drives the spare attachment is not limited to a double-acting cylinder, and may be a rotary fluid pressure motor.
  • the fluid pressure system 10 may further include a low-load actuator that drives another attachment.
  • the pump 11 is a swash plate type piston pump, and the discharge capacity is changed by changing the inclination of a swash plate (not shown) by the regulator 13.
  • the discharge capacity of the pump 11 is controlled by so-called load sensing control so that the differential pressure between the discharge pressure of the pump 11 guided to the regulator 13 and the maximum load pressure described later has a predetermined value.
  • the fluid pressure control device 100 includes a supply passage 21 that is connected to a discharge port of the pump 11 and into which hydraulic oil supplied from the pump 11 flows, a discharge passage 22 that is connected to the tank 12, and a first branch passage to the supply passage 21.
  • a first control valve 30 as a high load control valve that controls the flow of hydraulic oil connected to and discharged from the lift cylinder 15 through the second branch passage 24b on the downstream side of the first control valve 30.
  • a second control valve 40 serving as a low load control valve connected to the supply passage 21 to control the flow of hydraulic oil supplied to and discharged from the tilt cylinder 16, and a third branch passage on the downstream side of the second control valve 40
  • a third control valve 50 serving as a low load control valve connected to the supply passage 21 through 24c and controlling the flow of hydraulic oil supplied to and discharged from the attachment cylinder 17;
  • a back pressure valve 60 that is provided in the supply passage 21 upstream of the branch portion from which the first branch passage 24a branches and opens at a predetermined valve opening pressure, and a pilot that branches from the supply passage 21 upstream of the back pressure valve 60 And a passage 61.
  • the first control valve 30 is a four-port three-position switching valve.
  • the first control valve 30 includes a neutral position 30a that interrupts the supply and discharge of hydraulic oil to and from the lift cylinder 15, a supply position 30b that guides hydraulic oil discharged from the pump 11 to the anti-rod side chamber 15b of the lift cylinder 15, and a lift A discharge position 30c for guiding the hydraulic oil discharged from the non-rod side chamber 15b of the cylinder 15 to the tank 12.
  • the anti-rod side supply passage 36 branched from the anti-rod side passage 38 connected to the anti-rod side chamber 15b communicates with the first branch passage 24a branched from the supply passage 21, and the anti-rod side chamber 15b.
  • the lift cylinder 15 extends.
  • the first discharge passage 25a connected to the discharge passage 22 and the anti-rod side discharge passage 37 branched from the anti-rod side passage 38 communicate with each other, and the hydraulic oil in the anti-rod side chamber 15b is discharged. By being discharged into the passage 22, the lift cylinder 15 contracts.
  • the anti-rod side supply passage 36 and the first discharge passage 25 a partially communicate with each other through the minute communication passage 31.
  • the non-rod side supply passage 36 is provided with a check valve 36a that allows only the flow of hydraulic oil toward the anti-rod side chamber 15b and blocks the flow in the opposite direction. Therefore, the anti-rod side chamber 15b at the neutral position 30a is provided. The inside hydraulic oil is prevented from being discharged to the discharge passage 22 through the minute communication passage 31.
  • the first control valve 30 is configured to reduce the operating hydraulic pressure guided through the pair of pilot pressure chambers 32a and 32b facing both ends of a spool (not shown) and the pilot passage 61 and to guide the hydraulic pressure to the pair of pilot pressure chambers 32a and 32b, respectively.
  • Solenoid pressure reducing valves 33a and 33b, and a pair of centering springs 34a and 34b provided at both ends of the spool.
  • one of the pressure reducing valves 33a and 33b of the first control valve 30 is driven according to the operation, and one pilot pressure chamber 32a and 32b is driven.
  • the reduced pilot pressure is led to Thereby, the 1st control valve 30 is switched to the position according to an operator's operation.
  • the supply of pilot pressure to the pair of pilot pressure chambers 32a and 32b is shut off by the pressure reducing valves 33a and 33b, and the first control valve 30 is controlled by the centering spring 34a. , 34b is held at the neutral position 30a.
  • the second control valve 40 is a 6-port 3-position switching valve.
  • the second control valve 40 includes a neutral position 40a that interrupts the supply and discharge of hydraulic oil to and from the tilt cylinder 16, and an operating position that guides the hydraulic oil discharged from the pump 11 to the tilt cylinder 16 to extend and retract the tilt cylinder 16.
  • the operating position includes an extension position 40b for extending the tilt cylinder 16 and a contraction position 40c for contracting the tilt cylinder 16.
  • the anti-rod side passage 46 connected to the anti-rod side chamber 16 b of the tilt cylinder 16 and the second branch passage 24 b branched from the supply passage 21 communicate with each other and are connected to the rod side chamber 16 a of the tilt cylinder 16.
  • the rod side passage 47 and the second discharge passage 25b connected to the discharge passage 22 communicate with each other.
  • the anti-rod side passage 46 and the second discharge passage 25b communicate with each other, and the rod side passage 47 and the second branch passage 24b communicate with each other.
  • hydraulic oil is supplied into the rod side chamber 16a, and the hydraulic oil in the non-rod side chamber 16b is discharged to the discharge passage 22 so that the tilt cylinder 16 contracts.
  • the second control valve 40 reduces the operating hydraulic pressure guided through the pair of pilot pressure chambers 42 a and 42 b facing both ends of the spool (not shown) and the pilot passage 61 to reduce the pilot pressure chamber.
  • Proportional solenoid pressure reducing valves 43a and 43b led to 42a and 42b, and a pair of centering springs 44a and 44b provided at both ends of the spool are further provided.
  • one of the pressure reducing valves 43a and 43b of the second control valve 40 is driven according to the operation, and one pilot pressure chamber 42a and 42b is driven.
  • the reduced pilot pressure is led to Thereby, the 2nd control valve 40 is switched to the position according to an operator's operation.
  • the supply of pilot pressure to the pair of pilot pressure chambers 42a and 42b is shut off by the pressure reducing valves 43a and 43b, and the second control valve 40 is operated by the centering springs 44a and 44b. Is held at the neutral position 40a by the urging force.
  • the third control valve 50 is a 6-port three-position switching valve similar to the second control valve 40 and operates in the same manner as the second control valve 40, and thus detailed description thereof is omitted.
  • an operation lever not shown
  • one of the pressure reducing valves 53a and 53b of the third control valve 50 is driven according to the operation, and one pilot pressure chamber 52a and 52b is driven.
  • the reduced pilot pressure is led to Thereby, the 3rd control valve 50 is switched to the position according to an operator's operation.
  • the back pressure valve 60 is a check valve that allows only the flow of hydraulic oil from the pump 11 toward the control valves 30, 40, 50.
  • the back pressure valve 60 opens when the pressure of the hydraulic oil flowing from the pump 11 into the supply passage 21 becomes larger than a predetermined pressure, and guides the hydraulic oil discharged from the pump 11 to the control valves 30, 40, 50. Thus, the supply passage 21 is opened.
  • the pilot passage is immediately started when the pump 11 is started, that is, when the fluid pressure system 10 is started. The pressure in 61 will rise.
  • the pilot passage 61 is provided with a pressure reducing valve (not shown).
  • the pilot passage 61 is supplied with hydraulic oil whose pressure in the supply passage 21 is reduced to a predetermined pilot pressure.
  • the fluid pressure control apparatus 100 further includes a high load side load pressure passage 71 through which the load pressure of the lift cylinder 15 is guided, and a low load pressure through which the load pressure of the tilt cylinder 16 and the load pressure of the attachment cylinder 17 are higher.
  • a shuttle valve 73 as a high pressure selection valve that selects the load pressure that is higher in the load pressure that is guided to the load side load pressure passage 72 and the high load side load pressure passage 71 and the load pressure that is led to the low load side load pressure passage 72.
  • a maximum load pressure passage 78 through which the load pressure selected by the shuttle valve 73 is guided.
  • the load pressure of the lift cylinder 15, which is the high load actuator having the highest load pressure among the plurality of actuators controlled by the fluid pressure control device 100 is guided to the high load side load pressure passage 71.
  • the highest load pressure among the load pressures of the tilt cylinder 16 and the attachment cylinder 17, which are a plurality of low load actuators whose load pressure is lower than that of the lift cylinder 15, is guided to the load pressure passage 72.
  • the highest load pressure passage 78 is loaded by the higher load pressure, that is, the load pressure led to the high load side load pressure passage 71 and the load pressure led to the low load side load pressure passage 72, that is, by the fluid pressure control device 100.
  • the highest load pressure among the load pressures of the plurality of actuators to be controlled is derived.
  • the high load side load pressure passage 71 is connected to the non-rod side supply passage 36 through which the hydraulic oil supplied to the lift cylinder 15 flows.
  • the position where the high load side load pressure passage 71 is connected to the non-rod side supply passage 36 is closer to the first control valve 30 than the position where the check valve 36a is provided. Therefore, when the first control valve 30 is switched to the neutral position 30a, the high load side load pressure passage 71 communicates with the discharge passage 22 through the minute communication passage 31 and the first discharge passage 25a. When switched to the discharge position 30c, it communicates with the discharge passage 22 through the non-rod side discharge passage 37 and the first discharge passage 25a. That is, when hydraulic oil is not supplied to the lift cylinder 15, the pressure in the high load side load pressure passage 71 is the same as the pressure in the discharge passage 22.
  • the low load side load pressure passage 72 has a first load pressure acquisition passage 74 through which the hydraulic oil pressure supplied to the tilt cylinder 16 is guided, and a second load through which the hydraulic oil pressure supplied to the attachment cylinder 17 is guided.
  • the pressure acquisition passage 76 is connected via check valves 75 and 77, respectively. Therefore, the higher load pressure of the tilt cylinder 16 and the higher load pressure of the attachment cylinder 17 is led to the low load side load pressure passage 72 via the check valves 75 and 77.
  • the load pressure acquisition passages 74 and 76 through which the load pressures of the tilt cylinder 16 and the attachment cylinder 17 are guided via the check valves 75 and 77 are connected in parallel to the low load side load pressure passage 72.
  • the highest load pressure among the load pressures of the plurality of low load actuators can be easily guided to the low load side load pressure passage 72.
  • the load pressure of the tilt cylinder 16 and the load pressure of the attachment cylinder 17 are guided to the low load side load pressure passage 72 via the check valves 75 and 77, the load pressure of the tilt cylinder 16 and the attachment cylinder 17 Even after the load pressure is lowered, there is a possibility that the conventional load pressure is relatively high in the low load side load pressure passage 72. Therefore, by connecting the low load side load pressure passage 72 and the discharge passage 22 through the orifice 79 as a throttle portion, the load pressure of the tilt cylinder 16 or the load pressure of the attachment cylinder 17 is passed through the check valves 75 and 77.
  • the shuttle valve 73 is a maximum load pressure passage that is connected to the outflow port of the higher load side pressure passage 71 and the low load side load pressure passage 72 that are respectively connected to the pair of inflow ports. This is a so-called high pressure selection valve that communicates with 78.
  • the inlet to which the low load side load pressure passage 72 is connected is closed, and the low load side load pressure passage 72 and the maximum load pressure passage 78 are connected.
  • the inlet to which the high load side load pressure passage 71 is connected is closed.
  • the maximum load pressure passage 78 is connected to the regulator 13 provided outside the fluid pressure control device 100 together with the discharge pressure passage 28 that guides the discharge pressure of the pump 11 to the outside.
  • the load pressure led to the regulator 13 through the maximum load pressure passage 78 and the discharge pressure of the pump 11 led to the regulator 13 through the discharge pressure passage 28 are used for load sensing control of the pump 11 as described above.
  • the high load side load pressure passage 71 is connected to the low load side load pressure passage via the check valve in the same manner as the first load pressure acquisition passage 74 and the second load pressure acquisition passage 76. It is also conceivable that the low load side load pressure passage 72 is made the maximum load pressure passage by being connected to 72. However, as described above, the low load side load pressure passage 72 needs to communicate with the discharge passage 22 through the orifice 79. For this reason, when the high load side load pressure passage 71 is connected to the low load side load pressure passage 72 via the check valve, the hydraulic oil is supplied only to the lift cylinder 15 and the load pressure of the lift cylinder 15 increases.
  • the hydraulic oil to be supplied to the lift cylinder 15 flows into the discharge passage 22 through the high load side load pressure passage 71, the low load side load pressure passage 72, and the orifice 79. As a result, the operation speed of the lift cylinder 15 decreases. There is a risk that.
  • the high load side load pressure passage 71 and the low load side load pressure passage 72 are connected via the shuttle valve 73 as described above.
  • the shuttle valve 73 closes the inflow port to which the low load side load pressure passage 72 is connected, and causes the high load side load pressure passage 71 and the maximum load pressure passage 78 to communicate with each other.
  • the high load side load pressure passage 71 does not communicate with the low load side load pressure passage 72, and the hydraulic oil to be supplied to the lift cylinder 15 is discharged through the low load side load pressure passage 72. It is prevented from leaking into
  • the fluid pressure control device 100 further includes a first connection passage 26 that connects the supply passage 21 and the discharge passage 22 upstream of the branching portion where the first branch passage 24a branches from the supply passage 21, and a first connection passage. 26, a high-pressure relief valve 27 that restricts the pressure in the supply passage 21 to a predetermined first limiting pressure, and the discharge from the supply passage 21 downstream of the branch portion where the third branch passage 24c branches from the supply passage 21.
  • a low-pressure relief device 91 that limits the pressure in the supply passage 21 to a second limit pressure lower than the first limit pressure.
  • the high-pressure relief valve 27 is a pressure limiting valve that limits the pressure in the supply passage 21, and is supplied by opening the first connection passage 26 when the pressure in the supply passage 21 reaches a predetermined first limit pressure.
  • the pressure in the passage 21 is limited.
  • the first limiting pressure which is the limiting pressure of the high-pressure relief valve 27, is set in a range that does not exceed the allowable pressure of the lift cylinder 15 having the highest load pressure among the actuators.
  • the low-pressure relief device 91 is provided in the second connection passage 90 in series with the low-pressure relief valve 92 capable of limiting the pressure of the supply passage 21 to the second restriction pressure, and can open and close the second connection passage 90. And an on-off valve 93.
  • the low-pressure relief valve 92 restricts the pressure in the supply passage 21 by opening the second connection passage 90 when the pressure in the supply passage 21 reaches the second restriction pressure.
  • the second limiting pressure which is the limiting pressure of the low-pressure relief valve 92, is set in a range that does not exceed the allowable pressure of the tilt cylinder 16 and the attachment cylinder 17 of the actuator, where the load pressure is relatively low.
  • the on-off valve 93 is a valve body that opens and closes the second connection passage 90, and has a closed position 93a and an open position 93b.
  • the closed position 93a the hydraulic oil in the supply passage 21 is not guided to the low-pressure relief valve 92, and in the open position 93b, the hydraulic oil in the supply passage 21 is guided to the low-pressure relief valve 92. That is, when the on-off valve 93 is in the open position 93b, the pressure in the supply passage 21 is limited by the low-pressure relief valve 92, and when the on-off valve 93 is closed, the pressure in the supply passage 21 by the low-pressure relief valve 92. The pressure in the supply passage 21 at this time is limited by the high-pressure relief valve 27 described above.
  • the position of the on-off valve 93 is through the pressure of the low load side load pressure passage 72 guided through the first pilot passage 94 connected to the low load side load pressure passage 72 and through the second pilot passage 96 connected to the discharge passage 22.
  • the pressure is switched in accordance with the pressure of the guided discharge passage 22 and the biasing force of the spring 97.
  • the urging force due to the pressure in the low load side load pressure passage 72 guided through the first pilot passage 94 acts in a direction to set the position of the on-off valve 93 to the open position 93 b and is guided through the second pilot passage 96.
  • the biasing force due to the pressure of the discharge passage 22 and the biasing force of the spring 97 act in a direction to set the position of the on-off valve 93 to the closed position 93a.
  • the position of the on-off valve 93 is switched to the open position 93b.
  • the position of the on-off valve 93 is switched to the closed position 93a. That is, the on-off valve 93 is opened when the pressure in the low load side load pressure passage 72 is equal to or higher than a predetermined value, and is closed when the pressure in the low load side load pressure passage 72 is smaller than the predetermined value.
  • a throttle 95 is provided in the first pilot passage 94 that guides the pressure of the low load side load pressure passage 72 to the on-off valve 93. For this reason, even if the pressure in the low load side load pressure passage 72 suddenly increases, the action of the pressure in the low load side load pressure passage 72 on the on / off valve 93 is limited by the throttle 95, so that the on / off valve 93 is gradually opened. It will switch to 93b. As a result, the hydraulic oil is gradually guided to the low pressure relief valve 92, and the pressure in the supply passage 21 is stably limited by the low pressure relief valve 92 without greatly fluctuating.
  • the pressure of the supply passage 21 is limited to the first limit pressure by the high-pressure relief valve 27, so that the pressure of the hydraulic oil supplied to the lift cylinder 15 through the first control valve 30 is allowed by the lift cylinder 15. Limited to pressure not exceeding pressure. For this reason, it becomes possible to operate the lift cylinder 15 safely.
  • the pressure in the supply passage 21 is lower than the first limit pressure by the low pressure relief device 91. Limited to 2 limiting pressures. Accordingly, the pressure of the hydraulic oil supplied to the tilt cylinder 16 or the attachment cylinder 17 through the second control valve 40 or the third control valve 50 is limited to a pressure that does not exceed the allowable pressure of the tilt cylinder 16 and the attachment cylinder 17. For this reason, the tilt cylinder 16 and the attachment cylinder 17 can be operated safely.
  • the pressure of the hydraulic oil supplied to the lift cylinder 15 through the first control valve 30. Is limited to the second limit pressure by the low-pressure relief device 91.
  • the second limit pressure is a relatively low pressure because it is set in a range in which the load pressure does not exceed the allowable pressure of the tilt cylinder 16 and the attachment cylinder 17. Therefore, when the load acting on the lift cylinder 15 is large, it may be difficult to operate the lift cylinder 15 stably.
  • the fluid pressure control device 100 is provided in the supply passage 21 between the connection portion of the supply passage 21 and the first connection passage 26 and the connection portion of the supply passage 21 and the second connection passage 90.
  • a flow restriction valve 80 is further provided. By providing the flow restricting valve 80, the supply passage 21 is upstream of the flow restricting valve 80 and from the high load side supplying passage 21 a that supplies hydraulic oil to the first control valve 30, and the flow restricting valve 80. And the low load side supply passage 21b that supplies the hydraulic oil to the second control valve 40 and the third control valve 50 on the downstream side.
  • the flow restriction valve 80 flows toward the second control valve 40 and the third control valve 50, and the open position 80a that allows the flow of hydraulic oil toward the second control valve 40 and the third control valve 50 without restriction.
  • a restriction position 80b for restricting the flow rate of the hydraulic oil.
  • the flow passage cross-sectional area at the open position 80a is set to be equal to or larger than the flow passage cross-sectional area of the supply passage 21 so that no resistance is given to the hydraulic oil passing through the flow restriction valve 80.
  • the flow passage cross-sectional area at the restriction position 80b is supplied so that the flow rate of the hydraulic oil passing through the flow restriction valve 80 is restricted by applying resistance to the hydraulic oil passing through the flow restriction valve 80. It is set smaller than the flow path cross-sectional area of the passage 21.
  • the position of the flow restriction valve 80 is such that the pressure of the maximum load pressure passage 78 guided through the first pilot passage 82 connected to the maximum load pressure passage 78 and the second pilot passage 83 connected to the low load side load pressure passage 72.
  • the pressure is switched according to the pressure of the low load side load pressure passage 72 guided through and the urging force of the spring 84.
  • the urging force due to the pressure of the maximum load pressure passage 78 guided through the first pilot passage 82 acts in a direction in which the position of the flow restriction valve 80 is set to the restriction position 80 b and is guided through the second pilot passage 83.
  • the urging force due to the pressure in the low load side load pressure passage 72 and the urging force of the spring 84 act in a direction in which the position of the flow restriction valve 80 is set to the open position 80a.
  • the position of the flow restriction valve 80 is cut to the restriction position 80b.
  • the position of the flow restriction valve 80 is switched to the open position 80a. Change.
  • the load pressure of the lift cylinder 15 is the load pressure of the tilt cylinder 16 or the attachment cylinder 17. If the pressure is larger than the above, the urging force due to the load pressure of the lift cylinder 15 acts in the direction to set the position of the flow restriction valve 80 to the restriction position 80b, and the urging force due to the load pressure of the tilt cylinder 16 or the attachment cylinder 17 is The position of the valve 80 acts in the direction of the open position 80a.
  • the position of the flow restriction valve 80 is held at the open position 80 a by the biasing force of the spring 84. . That is, the load of the spring 84 can reliably hold the position of the flow restriction valve 80 at the open position 80a when the pressure in the maximum load pressure passage 78 and the pressure in the low load side load pressure passage 72 are the same. It is set to a size of about.
  • the flow rate in the supply passage 21 on the upstream side of the flow rate limiting valve 80 is limited to the first limit pressure by the high pressure relief valve 27, and the pressure in the supply passage 21 on the downstream side of the flow rate restriction valve 80 is reduced to a second limit pressure lower than the first limit pressure by the low pressure relief device 91. Limited.
  • the hydraulic oil is supplied to the tilt cylinder 16 or the attachment cylinder 17, and at the same time when the hydraulic oil is supplied to the lift cylinder 15, the lift is made through the first control valve 30.
  • the pressure of the hydraulic oil supplied to the cylinder 15 is limited by the high pressure relief valve 27. Therefore, the pressure of the hydraulic oil supplied to the lift cylinder 15 can be kept at a relatively high pressure that always exceeds the allowable pressure of the tilt cylinder 16 and the attachment cylinder 17, so that the load acting on the lift cylinder 15 is reduced. Even if it is large, the lift cylinder 15 can be operated stably.
  • the high load side load pressure passage 71 and the maximum load pressure passage 78 are communicated with each other in the shuttle valve 73, and the load pressure of the lift cylinder 15 is led to the regulator 13 as the maximum load pressure.
  • the load pressure of the lift cylinder 15 guided to the regulator 13 is used for load sensing control of the pump 11 together with the discharge pressure of the pump 11 guided to the regulator 13 through the discharge pressure passage 28.
  • the regulator 13 controls the tilt angle of the swash plate of the pump 11, that is, the discharge capacity of the pump 11 so that the pressure difference between the pressure of the lift cylinder 15 and the load pressure of the lift cylinder 15 becomes a predetermined magnitude.
  • the pressure of the low load side load pressure passage 72 guided to the on-off valve 93 through the first pilot passage 94 becomes equal to the pressure of the discharge passage 22 guided to the on-off valve 93 through the second pilot passage 96.
  • the on-off valve 93 is held at the closed position 93 a by the urging force of the spring 97.
  • the pressure in the supply passage 21 is limited by the high-pressure relief valve 27.
  • the pressure in the low load side supply passage 21b may exceed the allowable pressure of the tilt cylinder 16 and the attachment cylinder 17 where the load pressure is relatively low, but hydraulic oil is supplied to the tilt cylinder 16 and the attachment cylinder 17. Therefore, the pressure limitation by the high pressure relief valve 27 does not affect the safety of the tilt cylinder 16 and the attachment cylinder 17.
  • the pressure of the hydraulic oil supplied to the first control valve 30 is limited to a pressure that does not exceed the allowable pressure of the lift cylinder 15 because the pressure of the supply passage 21 is limited by the high-pressure relief valve 27. For this reason, the lift cylinder 15 can be operated safely.
  • the pressure in the supply passage 21 is limited not by the low pressure relief device 91 but by the high pressure relief valve 27. For this reason, the pressure of the hydraulic oil supplied to the lift cylinder 15 through the first control valve 30 can be set to a relatively high pressure that exceeds the allowable pressure of the tilt cylinder 16 and the attachment cylinder 17. As a result, even if the load acting on the lift cylinder 15 is large, the lift cylinder 15 can be stably operated.
  • the low load side load pressure passage 72 and the maximum load pressure passage 78 are communicated, and the load pressure of the tilt cylinder 16 is led to the regulator 13 as the maximum load pressure.
  • the load pressure of the tilt cylinder 16 guided to the regulator 13 is used for load sensing control of the pump 11 together with the discharge pressure of the pump 11 guided to the regulator 13 through the discharge pressure passage 28.
  • the regulator 13 controls the tilt angle of the swash plate of the pump 11, that is, the discharge capacity of the pump 11 so that the differential pressure between the pressure of the cylinder 11 and the load pressure of the tilt cylinder 16 becomes a predetermined magnitude.
  • the pressure in the maximum load pressure passage 78 guided to the flow restriction valve 80 through the first pilot passage 82 becomes equal to the pressure in the low load side load pressure passage 72 guided to the flow restriction valve 80 through the second pilot passage 83. .
  • the flow restriction valve 80 is held at the open position 80 a by the urging force of the spring 84.
  • the flow rate limiting valve 80 is in the open position 80a, the flow rate of the hydraulic oil flowing toward the second control valve 40 and the third control valve 50 is not limited, so that the tilt cylinder 16 can be operated at a desired speed as usual. it can.
  • the pressure of the low load side load pressure passage 72 guided to the on-off valve 93 through the first pilot passage 94 and the pressure of the discharge passage 22 guided to the on-off valve 93 through the second pilot passage 96 are compared. Since the pressure in the low load side load pressure passage 72 is higher, the on-off valve 93 is switched to the open position 93b. For this reason, the pressure in the supply passage 21 is limited by the low pressure relief valve 92. Therefore, since the pressure of the hydraulic oil supplied from the low load side supply passage 21b to the second control valve 40 is limited to a pressure that does not exceed the allowable pressure of the tilt cylinder 16, the tilt cylinder 16 can be operated safely. it can.
  • the attachment cylinder 17 when hydraulic oil is supplied to the attachment cylinder 17 instead of the tilt cylinder 16 or when hydraulic oil is supplied to the attachment cylinder 17 in addition to the tilt cylinder 16, the attachment cylinder is similar to the tilt cylinder 16. 17 can also be operated at the desired speed as usual.
  • the load pressure of the lift cylinder 15 is guided to the high load side load pressure passage 71, while the load pressure of the tilt cylinder 16 is guided to the low load side load pressure passage 72.
  • the load pressure of the lift cylinder 15 is larger than the load pressure of the tilt cylinder 16, so that the high load side load pressure passage 71 and the maximum load pressure passage 78 are communicated with each other in the shuttle valve 73. Is led to the regulator 13 as the maximum load pressure.
  • the load pressure of the lift cylinder 15 guided to the regulator 13 is used for load sensing control of the pump 11 together with the discharge pressure of the pump 11 guided to the regulator 13 through the discharge pressure passage 28.
  • the regulator 13 controls the tilt angle of the swash plate of the pump 11, that is, the discharge capacity of the pump 11 so that the pressure difference between the pressure of the lift cylinder 15 and the load pressure of the lift cylinder 15 becomes a predetermined magnitude.
  • the flow rate restriction valve 80 When the flow rate restriction valve 80 is switched to the restriction position 80b, the flow rate of the hydraulic oil flowing toward the second control valve 40 and the third control valve 50 is restricted, so that the operation speed of the tilt cylinder 16 is lower than usual. .
  • the tilt cylinder 16 since the tilt cylinder 16 has a relatively low load pressure and a smaller cylinder capacity than the lift cylinder 15, it is possible to avoid a significant decrease in operating speed even when the flow rate is limited.
  • the size of the flow path cross-sectional area at the restriction position 80b is such that the tilt cylinder 16 and the attachment cylinder 17 are operated at the minimum operating speed with respect to the second control valve 40 and the third control valve 50. It is preferable to set so as to supply as much hydraulic fluid as possible.
  • the supply of hydraulic oil to the downstream side of the flow restriction valve 80 is restricted by the flow restriction valve 80, so that the supply of hydraulic oil is ensured upstream from the flow restriction valve 80. That is, sufficient hydraulic oil is supplied to the lift cylinder 15 to which hydraulic oil is supplied from the supply passage 21 on the upstream side of the flow restriction valve 80. As a result, even if hydraulic oil is supplied to the lift cylinder 15 having the highest load pressure and the tilt cylinder 16 having a relatively low load pressure among the plurality of actuators, the lift cylinder 15 It becomes possible to operate stably.
  • the pressure of the low load side load pressure passage 72 guided to the on-off valve 93 through the first pilot passage 94 and the pressure of the discharge passage 22 guided to the on-off valve 93 through the second pilot passage 96 are compared. Since the pressure in the low load side load pressure passage 72 is higher, the on-off valve 93 is switched to the open position 93b. For this reason, the pressure of the low load side supply passage 21 b downstream of the flow rate restriction valve 80 is restricted by the low pressure relief valve 92. Accordingly, the pressure of the hydraulic oil supplied to the second control valve 40 is limited to a pressure that does not exceed the allowable pressure of the tilt cylinder 16, so that the tilt cylinder 16 can be operated safely.
  • the pressure in the high load side supply passage 21 a upstream of the flow rate restriction valve 80 is restricted by the high pressure relief valve 27. For this reason, since the pressure of the hydraulic oil supplied to the first control valve 30 is limited to a pressure that does not exceed the allowable pressure of the lift cylinder 15, the lift cylinder 15 can be operated safely.
  • the flow restricting valve 80 by switching the flow restricting valve 80 to the restricting position 80b, even if the low pressure relief valve 92 and the supply passage 21 are in communication, the high load side supply passage 21a upstream of the flow restricting valve 80 is provided.
  • the pressure is limited not by the low pressure relief device 91 but by the high pressure relief valve 27.
  • the pressure of the hydraulic oil supplied to the lift cylinder 15 through the first control valve 30 can be set to a relatively high pressure that exceeds the allowable pressure of the tilt cylinder 16 and the attachment cylinder 17.
  • the lift cylinder 15 can be stably operated.
  • the supply of the hydraulic oil was started also to the tilt cylinder 16 having a relatively low load pressure.
  • the supply of the hydraulic oil is also started to the lift cylinder 15 having a high load pressure. Also, as described above, the same state as when hydraulic oil is simultaneously supplied to the lift cylinder 15 having the highest load pressure and the tilt cylinder 16 having the relatively low load pressure among the plurality of actuators is obtained. .
  • a second connection passage 90 that connects the supply passage 21 and the discharge passage 22.
  • the pressure of the supply passage 21 is limited to the second limit pressure by the low-pressure relief device 91 provided in FIG.
  • the low pressure relief device 91 is not the hydraulic oil pressure after passing through the second control valve 40 and the third control valve 50, but the hydraulic oil before being led to the second control valve 40 and the third control valve 50.
  • the pressure of the supply passage 21 that is the pressure of is limited. That is, hydraulic oil having a pressure higher than the second limit pressure does not pass through the second control valve 40 and the third control valve 50.
  • the pressure resistance of the second control valve 40 and the third control valve 50 does not have to be the same as that of the first control valve 30 through which hydraulic oil having a relatively high pressure passes. For this reason, the processing of the sliding portions and the like of the second control valve 40 and the third control valve 50 does not require as high accuracy as the processing of the first control valve 30, and as a result, the fluid pressure control device 100 and this The manufacturing cost of a forklift provided with can be reduced.
  • the pressure limited by the low-pressure relief device 91 is not the pressure of the hydraulic oil after passing through the second control valve 40 and the third control valve 50 but the second control valve 40 and the third control valve 50. This is the pressure of the supply passage 21 for supplying hydraulic oil.
  • the low pressure relief device 91 limits the pressure in the supply passage 21 that the fluid pressure control device 100 has conventionally provided. Therefore, there is no need to newly form a passage for guiding the hydraulic oil to the low pressure relief device 91 from each of the control valves 40 and 50, for example. As a result, the manufacturing cost of the fluid pressure control device 100 and the forklift equipped with the fluid pressure control device 100 can be reduced.
  • the pressure in the supply passage 21 is limited by the low pressure relief device 91. And the attachment cylinder 17 can be operated safely.
  • the pressure in the supply passage 21 is limited not by the low pressure relief device 91 but by the high pressure relief valve 27. Is done.
  • the pressure of the hydraulic oil supplied to the lift cylinder 15 through the first control valve 30 is a relatively high pressure that exceeds the allowable pressure of the tilt cylinder 16 and the attachment cylinder 17, and the allowable pressure of the lift cylinder 15. It is possible to make the pressure not exceed. As a result, even if the load acting on the lift cylinder 15 is large, the lift cylinder 15 can be stably operated and the lift cylinder 15 can be operated safely.
  • a fluid pressure control device 200 according to the second embodiment of the present invention will be described with reference to FIG. below, it demonstrates centering on a different point from 1st Embodiment, the same code
  • the basic configuration of the fluid pressure control device 200 is the same as that of the fluid pressure control device 100 according to the above embodiment.
  • the first pilot passage 182 that guides the pressure acting in the direction in which the position of the flow restriction valve 80 is set to the restriction position 80 b is connected to the high load side load pressure passage 71 instead of the maximum load pressure passage 78. It is different from the fluid pressure control device 100 only in that it is.
  • the urging force due to the pressure of the high load side load pressure passage 71 guided through the first pilot passage 182 acts in the direction of setting the position of the flow restriction valve 80 to the restriction position 80 b, and through the second pilot passage 83.
  • the urging force due to the pressure of the low load side load pressure passage 72 and the urging force of the spring 84 are applied in the direction of setting the position of the flow restriction valve 80 to the open position 80a.
  • the position of the flow restricting valve 80 will be at the restricting position 80b.
  • the position of the flow restriction valve 80 is opened. Switch to position 80a.
  • hydraulic oil is supplied to the lift cylinder 15, and the biasing force due to the pressure in the high load side load pressure passage 71 exceeds the resultant force of the biasing force due to the pressure in the low load side load pressure passage 72 and the biasing force of the spring 84,
  • the position of the flow restriction valve 80 becomes the restriction position 80 b, the pressure of the high load side load pressure passage 71 is guided to the maximum load pressure passage 78 through the shuttle valve 73.
  • the pressure of the maximum load pressure passage 78 when the position of the flow restriction valve 80 is the restriction position 80b is the same as the pressure of the high load side load pressure passage 71. That is, in the fluid pressure control device 200, as in the first embodiment, when the load pressure guided to the maximum load pressure passage 78 is larger than the load pressure guided to the low load side load pressure passage 72, the flow rate restriction is performed. The position of the valve 80 is switched to the restriction position 80b, and the flow rate of the hydraulic oil is restricted.
  • the pressure of the maximum load pressure passage 78 when the position of the flow restriction valve 80 is the open position 80a is the same as the pressure of the low load side load pressure passage 72. That is, in the fluid pressure control apparatus 200, as in the first embodiment, when the load pressure guided to the maximum load pressure passage 78 is the same as the load pressure guided to the low load side load pressure passage 72, The position of the flow restriction valve 80 is switched to the open position 80a, and the flow rate of the hydraulic oil is not restricted.
  • the position of the flow restricting valve 80 in the second embodiment is switched under the same conditions as the flow restricting valve 80 in the first embodiment. Therefore, the second embodiment is similar to the first embodiment. There is an effect.
  • the back pressure valve 60 is a check valve.
  • the back pressure valve may be a switching valve or the like that provides a predetermined flow path resistance.
  • the flow restriction valve 80 has two positions: an open position 80a that does not restrict the flow of hydraulic oil, and a restriction position 80b that restricts the flow of hydraulic oil.
  • the flow restriction valve 80 is not limited to this, and the flow passage cross-sectional area through which hydraulic oil can pass between the open position 80a and the restriction position 80b may gradually decrease toward the restriction position 80b. .
  • the flow restriction valve 80 is displaced by the pressure of the hydraulic oil.
  • the flow restriction valve 80 may be displaced by a solenoid.
  • a differential pressure sensor for detecting a differential pressure between the pressure of the maximum load pressure passage 78 and the pressure of the low load side load pressure passage 72 is provided, and the solenoid is driven according to the output value of the differential pressure sensor, thereby As in each embodiment, the flow rate of hydraulic oil can be limited.
  • the amount of displacement of the flow restriction valve 80 can be changed stepwise or in a curve with respect to the differential pressure between the pressure in the maximum load pressure passage 78 and the pressure in the low load side load pressure passage 72.
  • a pressure sensor that detects the pressure in the maximum load pressure passage 78 and a pressure sensor that detects the pressure in the low load side load pressure passage 72 may be provided.
  • the low pressure relief device 91 is constituted by the low pressure relief valve 92 and the on-off valve 93.
  • the low pressure relief device 91 may be a combination of a solenoid and a relief valve, such as an electromagnetic relief valve, and exhibiting a relief function by driving the solenoid.
  • a differential pressure sensor for detecting the differential pressure between the pressure in the low load side load pressure passage 72 and the pressure in the discharge passage 22 is provided, and the solenoid is driven in accordance with the output value of the differential pressure sensor.
  • the pressure of the supply passage 21 can be limited similarly to the form.
  • a pressure sensor that detects the pressure in the low load side load pressure passage 72 and a pressure sensor that detects the pressure in the discharge passage 22 may be provided.
  • the on-off valve 93 is provided on the upstream side of the low-pressure relief valve 92.
  • the on-off valve 93 may be provided on the downstream side of the low-pressure relief valve 92.
  • the on-off valve 93 is opened and closed by the pressure of the hydraulic oil.
  • the on-off valve 93 may be opened and closed by a solenoid.
  • a differential pressure sensor for detecting the differential pressure between the pressure in the low load side load pressure passage 72 and the pressure in the discharge passage 22 is provided, and the solenoid is driven in accordance with the output value of the differential pressure sensor.
  • the opening / closing of the second connection passage 90 can be controlled in the same manner as the embodiment.
  • a pressure sensor that detects the pressure in the low load side load pressure passage 72 and a pressure sensor that detects the pressure in the discharge passage 22 may be provided.
  • the positions of the control valves 30, 40, 50 are switched by the pilot pressure. Instead, the position of each control valve 30, 40, 50 may be directly switched by an operator's operation, or the position may be switched by a solenoid.
  • hydraulic fluid is supplied to the fluid pressure control devices 100 and 200 from a swash plate type variable displacement piston pump.
  • the hydraulic oil may be supplied from a constant capacity pump such as a gear pump or a vane pump.
  • the fluid pressure control devices 100 and 200 are connected to the supply passage 21 into which the hydraulic oil supplied from the pump 11 flows, the discharge passage 22 connected to the tank 12 in which the hydraulic oil is stored, and the supply passage 21.
  • a first control valve 30 for controlling the flow rate of hydraulic oil supplied to the lift cylinder 15 having the highest load pressure among the actuators through the passage 21 and connected to the supply passage 21 on the downstream side of the first control valve 30 for supply
  • a second control valve 40 or a third control valve 50 for controlling the flow rate of hydraulic fluid supplied to the tilt cylinder 16 or the attachment cylinder 17 having a load pressure lower than that of the lift cylinder 15 among the actuators through the passage 21;
  • a high pressure relief that is provided in a first connection passage 26 that connects the discharge passage 22 and restricts the pressure in the supply passage 21 to a first limit pressure. 27, when the hydraulic oil is supplied to the tilt cylinder 16 or the attachment cylinder 17 through the second control valve 40 or the third control valve 50.
  • a low-pressure relief device 91 that limits the pressure of the supply passage 21 to
  • the hydraulic oil when hydraulic oil is supplied to the tilt cylinder 16 or the attachment cylinder 17 through the second control valve 40 or the third control valve 50, the hydraulic oil is provided in the second connection passage 90 that connects the supply passage 21 and the discharge passage 22.
  • the pressure in the supply passage 21 is limited to the second limit pressure by the low pressure relief device 91.
  • the low pressure relief device 91 is not the hydraulic oil pressure after passing through the second control valve 40 and the third control valve 50, but the hydraulic oil before being led to the second control valve 40 and the third control valve 50.
  • the pressure of the supply passage 21 that is the pressure of is limited. That is, hydraulic oil having a pressure higher than the second limit pressure does not pass through the second control valve 40 and the third control valve 50.
  • the pressure resistance of the second control valve 40 and the third control valve 50 does not have to be the same as that of the first control valve 30 through which hydraulic oil having a relatively high pressure passes. For this reason, the processing of the sliding portions of the second control valve 40 and the third control valve 50 does not require as high accuracy as the processing of the first control valve 30, and as a result, the fluid pressure control devices 100 and 200 And the manufacturing cost of a forklift provided with this can be reduced.
  • the pressure limited by the low pressure relief device 91 is not the pressure of the hydraulic oil after passing through the second control valve 40 and the third control valve 50, but the second control valve 40 and the third control valve. 50 is the pressure of the supply passage 21 for supplying hydraulic oil to 50.
  • the low-pressure relief device 91 limits the pressure in the supply passage 21 that the fluid pressure control devices 100 and 200 have conventionally provided. Therefore, there is no need to newly form a passage for guiding the hydraulic oil to the low pressure relief device 91 from each of the control valves 40 and 50, for example. As a result, it is possible to reduce the manufacturing cost of the fluid pressure control devices 100 and 200 and the forklift equipped with the same.
  • the pressure of the hydraulic oil supplied to the lift cylinder 15 through the first control valve 30 is a relatively high pressure that exceeds the allowable pressure of the tilt cylinder 16 and the attachment cylinder 17, and the allowable pressure of the lift cylinder 15. It is possible to make the pressure not exceed. As a result, even if the load acting on the lift cylinder 15 is large, the lift cylinder 15 can be stably operated and the lift cylinder 15 can be operated safely.
  • the low pressure relief device 91 is provided in the second connection passage 90 in series with the low pressure relief valve 92 capable of restricting the pressure in the supply passage 21 to the second restriction pressure, and opens and closes the second connection passage 90 in series with the low pressure relief valve 92.
  • the on-off valve 93 is opened when hydraulic oil is supplied to the tilt cylinder 16 or the attachment cylinder 17 through the second control valve 40 or the third control valve 50.
  • the tilt cylinder 16 and the attachment cylinder 17 can be operated safely only by controlling the opening / closing of the on-off valve 93 in accordance with the supply state of the hydraulic oil to the tilt cylinder 16 or the attachment cylinder 17, and the lift The cylinder 15 can be stably operated.
  • a low load side load pressure passage 72 through which the load pressure of the tilt cylinder 16 and the attachment cylinder 17 is guided is further provided, and the on-off valve 93 is provided when the pressure in the low load side load pressure passage 72 becomes a predetermined value or more. Open the valve.
  • the on-off valve 93 opens and closes according to the pressure in the low load side load pressure passage 72 to which the load pressures of the tilt cylinder 16 and the attachment cylinder 17 are guided.
  • the on-off valve 93 opens and closes according to the supply state of the hydraulic oil to the tilt cylinder 16 or the attachment cylinder 17, so that the tilt cylinder 16 and the attachment cylinder 17 can be operated more safely and the lift cylinder 15. Can be operated more stably.
  • an orifice 79 for communicating the low load side load pressure passage 72 and the discharge passage 22 is further provided, and the load pressure of the tilt cylinder 16 and the attachment cylinder 17 is transferred to the low load side load pressure passage 72 through the check valves 75 and 77. Led.
  • the load pressure acquisition passages 74 and 76 through which the load pressures of the tilt cylinder 16 and the attachment cylinder 17 are guided via the check valves 75 and 77 are connected in parallel to the low load side load pressure passage 72. .
  • the low load side load pressure passage 72 communicates with the discharge passage 22 through the orifice 79.
  • the pressure in the low load side load pressure passage 72 is high only when the load pressure of the tilt cylinder 16 or the load pressure of the attachment cylinder 17 is guided to the low load side load pressure passage 72 through the check valves 75 and 77.
  • the previous load pressure may be confined in the low load side load pressure passage 72.
  • the maximum load pressure according to the operating state of the tilt cylinder 16 and the attachment cylinder 17 can be always guided to the low load side load pressure passage 72.
  • a valve 73 is provided.
  • the higher load pressure led to the high load side load pressure passage 71 and the higher load pressure led to the low load side load pressure passage 72 are led to the maximum load pressure passage 78 through the shuttle valve 73.
  • the shuttle valve 73 opens the inlet to which the low load side load pressure passage 72 is connected.
  • the high load side load pressure passage 71 and the maximum load pressure passage 78 are communicated with each other. Since the high load side load pressure passage 71 does not communicate with the low load side load pressure passage 72 as described above, the hydraulic oil to be supplied to the lift cylinder 15 is discharged through the low load side load pressure passage 72 and the orifice 79. It is possible to prevent the liquid from flowing out to 22.
  • the supply passage 21 is provided between the first connection passage 26 and the second connection passage 90, and further includes a flow restriction valve 80 capable of restricting the flow rate of the hydraulic oil.
  • the flow restriction valve 80 has a maximum load pressure. When the load pressure led to the passage 78 is larger than the load pressure led to the low load side load pressure passage 72, the flow rate of hydraulic oil is limited.
  • the flow restriction valve 80 does not restrict the flow rate of the hydraulic oil.
  • the flow rate of the hydraulic oil is not restricted by the flow restriction valve 80. That is, hydraulic oil is supplied only to the tilt cylinder 16 and the attachment cylinder 17 with a low load pressure, and when hydraulic oil is not supplied to the lift cylinder 15 with a high load pressure, it is supplied to the tilt cylinder 16 and the attachment cylinder 17.
  • the flow rate of hydraulic oil is not limited. Therefore, in such a case, the tilt cylinder 16 and the attachment cylinder 17 can be stably operated.
  • the pump 11 is a variable displacement pump, and the load pressure guided to the maximum load pressure passage 78 is used for load sensing control of the pump 11.
  • the load pressure guided to the maximum load pressure passage 78 used for switching the flow restriction valve 80 is also used for load sensing control of the pump 11. That is, both the load pressure used for switching the flow restriction valve 80 and the load pressure used for load sensing control of the pump 11 are supplied from the maximum load pressure passage 78.
  • the configuration of the fluid pressure control device 100 can be simplified, and an increase in manufacturing cost of the fluid pressure control device 100 can be suppressed.
  • the first control valve 30 is a control valve that controls the flow rate of hydraulic oil supplied to the lift cylinder 15 that raises and lowers the fork, and the second control valve 40 is connected to the tilt cylinder 16 that changes the inclination angle of the mast. It is a control valve for controlling the flow rate of the supplied hydraulic oil.
  • the low pressure relief device 91 provided in the second connection passage 90 connecting the supply passage 21 and the discharge passage 22 causes the supply passage 21 to The pressure is limited to the second limiting pressure.
  • the low pressure relief device 91 limits the pressure of the supply passage 21 that is not the pressure of the hydraulic oil after passing through the second control valve 40 but the pressure of the hydraulic oil before being led to the second control valve 40. ing. That is, hydraulic oil having a pressure higher than the second limit pressure does not pass through the second control valve 40. Therefore, the pressure resistance of the second control valve 40 does not have to be the same as that of the first control valve 30 through which hydraulic oil having a relatively high pressure passes. For this reason, the machining of the sliding portion of the second control valve 40 does not require as high accuracy as the machining of the first control valve 30, and as a result, the manufacturing cost of the forklift including the fluid pressure control devices 100 and 200 is increased. Can be reduced.
  • hydraulic oil is used as the working fluid, but incompressible fluid such as water or aqueous solution may be used instead of the hydraulic oil.
  • the forklift was illustrated as what applies the fluid pressure control apparatus 100,200 and the fluid pressure system 10 by the said embodiment, what applies these is not limited to a forklift, The some driven by fluid pressure As long as the working machine is provided with the actuator, any type may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

流体圧制御装置(100,200)は、リフトシリンダ(15)に供給される作動油の流量を制御する第1制御弁(30)と、チルトシリンダ(16)に供給される作動油の流量を制御する第2制御弁(40)と、供給通路(21)の圧力を第1制限圧力に制限する高圧リリーフ弁(27)と、第2制御弁(40)を通じてチルトシリンダ(16)に作動油が供給されるときに供給通路(21)の圧力を第1制限圧力よりも低い第2制限圧力に制限する低圧リリーフ装置(91)と、を備える。

Description

流体圧制御装置およびこれを備えるフォークリフト
 本発明は、流体圧制御装置およびこれを備えるフォークリフトに関するものである。
 JP2007-239992Aには、複数のアクチュエータの動作を制御する流体圧制御装置を備えたフォークリフトが開示されている。この流体圧制御装置は、比較的負荷圧が高いリフトシリンダに供給される作動流体の圧力を制限する高圧リリーフ弁と、比較的負荷圧が低いチルトシリンダやアタッチメントアクチュエータに供給される作動流体の圧力を制限する低圧リリーフ弁と、を有する。
 JP2007-239992Aに記載の流体圧制御装置における低圧リリーフ弁は、チルトシリンダやアタッチメントアクチュエータの作動を制御する制御弁を通過した後の作動流体の圧力を制限するものであり、制御弁へ導かれる前の作動流体の圧力、すなわち供給通路における圧力を制限するものではない。このため、チルトシリンダやアタッチメントアクチュエータの作動を制御する制御弁は、リフトシリンダの作動を制御する制御弁と同等の耐圧性を有する必要がある。このように制御弁の耐圧性を向上させるには、高い加工精度が要求されるため、結果として、流体圧制御装置及びこれを備えるフォークリフトの製造コストが上昇するおそれがある。
 本発明は、高負荷アクチュエータを含む複数のアクチュエータの動作を制御する流体圧制御装置及びこれを備えるフォークリフトの製造コストを低減させることを目的とする。
 本発明のある態様によれば、複数のアクチュエータの動作を制御する流体圧制御装置は、作動流体供給源から供給される作動流体が流入する供給通路と、作動流体が貯留されるタンクに接続される排出通路と、前記供給通路に接続され、前記供給通路を通じて前記アクチュエータのうち最も負荷圧が高い高負荷アクチュエータに供給される作動流体の流量を制御する高負荷制御弁と、前記高負荷制御弁よりも下流側において前記供給通路に接続され、前記供給通路を通じて前記アクチュエータのうち前記高負荷アクチュエータよりも負荷圧が低い低負荷アクチュエータに供給される作動流体の流量を制御する低負荷制御弁と、前記供給通路と前記排出通路を接続する第1接続通路に設けられ、前記供給通路の圧力を第1制限圧力に制限する高圧リリーフ弁と、前記供給通路と前記排出通路を接続する第2接続通路に設けられ、前記低負荷制御弁を通じて前記低負荷アクチュエータに作動流体が供給されるときに前記供給通路の圧力を前記第1制限圧力よりも低い第2制限圧力に制限する低圧リリーフ装置と、を備える。
図1は、本発明の第1実施形態に係る流体圧制御装置の構成を示す概略図である。 図2は、本発明の第2実施形態に係る流体圧制御装置の構成を示す概略図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 <第1実施形態>
 図1を参照して、本発明の第1実施形態に係る流体圧制御装置100及びこれを備える流体圧システム10の構成について説明する。
 流体圧制御装置100は、流体圧で作動するアクチュエータの動作を制御するものであり、流体圧システム10は、流体圧制御装置100及びアクチュエータを含むシステム全体を指し示すものである。以下では、流体圧システム10がフォークリフトの構成の一部である場合を例に説明する。
 流体圧システム10は、作動流体としての作動油を貯留するタンク12と、図示しないエンジン又はモータによって駆動されタンク12内の作動油を吐出する作動流体供給源としてのポンプ11と、図示しないフォークを昇降させる高負荷アクチュエータとしてのリフトシリンダ15と、図示しないマストの傾斜角を変化させる低負荷アクチュエータとしてのチルトシリンダ16と、図示しない予備のアタッチメントを駆動する低負荷アクチュエータとしてのアタッチメントシリンダ17と、リフトシリンダ15,チルトシリンダ16及びアタッチメントシリンダ17の動作を制御する流体圧制御装置100と、作業者の操作入力に応じて流体圧制御装置100を制御し、リフトシリンダ15,チルトシリンダ16及びアタッチメントシリンダ17の作動状態を制御する図示しないコントローラと、を備える。
 リフトシリンダ15は、シリンダチューブの内部をロッド側室15aと反ロッド側室15bとに区画するピストンを有する単動形シリンダである。リフトシリンダ15は、反ロッド側室15bに作動油が供給されることにより伸長しフォークを上昇させ、フォークの自重により反ロッド側室15bの作動油が排出されることで収縮しフォークを下降させる。
 チルトシリンダ16は、シリンダチューブの内部をロッド側室16aと反ロッド側室16bとに区画するピストンを有する複動形シリンダである。チルトシリンダ16は、反ロッド側室16bに作動油が供給されロッド側室16aから作動油が排出されることにより伸長してマストを前傾させ、ロッド側室16aに作動油が供給され反ロッド側室16bから作動油が排出されることにより収縮してマストを後傾させる。
 アタッチメントシリンダ17は、チルトシリンダ16と同様に、ロッド側室17aと反ロッド側室17bとを有する複動形シリンダであるため、その詳細な説明を省略する。アタッチメントシリンダ17により駆動されるアタッチメントは、例えば、フォークの間隔を調整するフォークポジショナー等である。なお、予備のアタッチメントを駆動する低負荷アクチュエータとしては、複動形シリンダに限定されず、回転型の流体圧モータであってもよい。また、流体圧システム10は、別のアタッチメントを駆動する低負荷アクチュエータをさらに備えていてもよい。
 ポンプ11は、斜板式のピストンポンプであり、レギュレータ13により図示しない斜板の傾きが変更されることで吐出容量が変化する。ポンプ11の吐出容量は、レギュレータ13に導かれるポンプ11の吐出圧と後述の最高負荷圧との差圧が所定の値となるように、いわゆるロードセンシング制御によって制御される。
 流体圧制御装置100は、ポンプ11の吐出口に接続されポンプ11から供給される作動油が流入する供給通路21と、タンク12に接続される排出通路22と、供給通路21に第1分岐通路24aを通じて接続されリフトシリンダ15に対して給排される作動油の流れを制御する高負荷制御弁としての第1制御弁30と、第1制御弁30よりも下流側において第2分岐通路24bを通じて供給通路21に接続されチルトシリンダ16に対して給排される作動油の流れを制御する低負荷制御弁としての第2制御弁40と、第2制御弁40よりも下流側において第3分岐通路24cを通じて供給通路21に接続されアタッチメントシリンダ17に対して給排される作動油の流れを制御する低負荷制御弁としての第3制御弁50と、供給通路21から第1分岐通路24aが分岐する分岐部よりも上流側の供給通路21に設けられ所定の開弁圧で開弁する背圧弁60と、背圧弁60の上流側において供給通路21から分岐するパイロット通路61と、を備える。
 第1制御弁30は、4ポート3ポジションの切換弁である。第1制御弁30は、リフトシリンダ15への作動油の給排を遮断する中立ポジション30aと、ポンプ11から吐出される作動油をリフトシリンダ15の反ロッド側室15bに導く供給ポジション30bと、リフトシリンダ15の反ロッド側室15bから排出される作動油をタンク12へ導く排出ポジション30cと、を有する。
 供給ポジション30bでは、反ロッド側室15bに接続される反ロッド側通路38から分岐された反ロッド側供給通路36と供給通路21から分岐された第1分岐通路24aとが連通し、反ロッド側室15bに作動油が供給されることでリフトシリンダ15は伸長する。一方、排出ポジション30cでは、排出通路22に接続される第1排出通路25aと反ロッド側通路38から分岐された反ロッド側排出通路37とが連通し、反ロッド側室15b内の作動油が排出通路22へと排出されることでリフトシリンダ15は収縮する。
 また、中立ポジション30aでは、反ロッド側供給通路36と第1排出通路25aとが微小連通路31を通じて部分的に連通する。反ロッド側供給通路36には、反ロッド側室15bに向かう作動油の流れのみを許容し反対方向に向かう流れを遮断する逆止弁36aが設けられているため、中立ポジション30aにおいて反ロッド側室15b内の作動油が微小連通路31を通じて排出通路22へと排出されることは阻止される。
 また、第1制御弁30は、図示しないスプールの両端に臨む一対のパイロット圧室32a,32bと、パイロット通路61を通じて導かれる作動油圧を減圧して一対のパイロット圧室32a,32bにそれぞれ導く比例ソレノイド式の減圧弁33a,33bと、スプールの両端に設けられる一対のセンタリングスプリング34a,34bと、を有する。
 図示しない操作レバーを介して作業者によりフォークの昇降操作が行われると、操作に応じて第1制御弁30のいずれか一方の減圧弁33a,33bが駆動され、一方のパイロット圧室32a,32bに減圧されたパイロット圧が導かれる。これにより、第1制御弁30は、作業者の操作に応じた位置に切り換えられる。なお、作業者によりフォークの昇降操作が行われていないときには、一対のパイロット圧室32a,32bへのパイロット圧の供給が減圧弁33a,33bによって遮断され、第1制御弁30は、センタリングスプリング34a,34bの付勢力によって中立ポジション30aに保持される。
 第2制御弁40は、6ポート3ポジションの切換弁である。第2制御弁40は、チルトシリンダ16への作動油の給排を遮断する中立ポジション40aと、ポンプ11から吐出される作動油をチルトシリンダ16に導いてチルトシリンダ16を伸縮作動させる作動ポジションと、を有する。作動ポジションには、チルトシリンダ16を伸長させる伸長ポジション40bと、チルトシリンダ16を収縮させる収縮ポジション40cと、が含まれる。
 伸長ポジション40bでは、チルトシリンダ16の反ロッド側室16bに接続される反ロッド側通路46と供給通路21から分岐された第2分岐通路24bとが連通するとともに、チルトシリンダ16のロッド側室16aに接続されるロッド側通路47と排出通路22に接続される第2排出通路25bとが連通する。これにより反ロッド側室16bに作動油が供給されるとともに、ロッド側室16a内の作動油が排出通路22へと排出されることでチルトシリンダ16は伸長する。
 一方、収縮ポジション40cでは、反ロッド側通路46と第2排出通路25bとが連通するとともに、ロッド側通路47と第2分岐通路24bとが連通する。これによりロッド側室16a内に作動油が供給されるとともに、反ロッド側室16b内の作動油が排出通路22へと排出されることでチルトシリンダ16は収縮する。
 また、第2制御弁40は、第1制御弁30と同様に、図示しないスプールの両端に臨む一対のパイロット圧室42a,42bと、パイロット通路61を通じて導かれる作動油圧を減圧してパイロット圧室42a,42bに導く比例ソレノイド式の減圧弁43a,43bと、スプールの両端に設けられる一対のセンタリングスプリング44a,44bと、をさらに有する。
 図示しない操作レバーを介して作業者によりマストのチルト操作が行われると、操作に応じて第2制御弁40のいずれか一方の減圧弁43a,43bが駆動され、一方のパイロット圧室42a,42bに減圧されたパイロット圧が導かれる。これにより、第2制御弁40は、作業者の操作に応じた位置に切り換えられる。なお、作業者によりチルト操作が行われていないときには、一対のパイロット圧室42a,42bへのパイロット圧の供給が減圧弁43a,43bによって遮断され、第2制御弁40は、センタリングスプリング44a,44bの付勢力によって中立ポジション40aに保持される。
 第3制御弁50は、第2制御弁40と同様の6ポート3ポジションの切換弁であり、第2制御弁40と同様に作動するものであるため、その詳細な説明を省略する。図示しない操作レバーを介して作業者により予備アタッチメントの操作が行われると、操作に応じて第3制御弁50のいずれか一方の減圧弁53a,53bが駆動され、一方のパイロット圧室52a,52bに減圧されたパイロット圧が導かれる。これにより、第3制御弁50は、作業者の操作に応じた位置に切り換えられる。
 背圧弁60は、ポンプ11から各制御弁30,40,50へと向かう作動油の流れのみを許容するチェック弁である。背圧弁60は、ポンプ11から供給通路21に流入する作動油の圧力が所定の圧力よりも大きくなると開弁し、ポンプ11から吐出される作動油を各制御弁30,40,50へと導くように供給通路21を開放する。供給通路21からパイロット通路61が分岐する分岐部よりも下流側に背圧弁60が設けられることで、ポンプ11が始動される際、すなわち、流体圧システム10が始動される際に、直ちにパイロット通路61内の圧力が上昇することになる。このように、パイロット圧を供給するポンプをポンプ11とは別に備えていない場合であっても、始動時において十分なパイロット圧が確保されるため、各制御弁30,40,50を常に安定して作動させることができる。なお、パイロット通路61には図示しない減圧弁が設けられており、パイロット通路61には、供給通路21の圧力が減圧され所定のパイロット圧となった作動油が供給される。
 流体圧制御装置100は、さらに、リフトシリンダ15の負荷圧が導かれる高負荷側負荷圧通路71と、チルトシリンダ16の負荷圧及びアタッチメントシリンダ17の負荷圧の高い方の負荷圧が導かれる低負荷側負荷圧通路72と、高負荷側負荷圧通路71に導かれる負荷圧及び低負荷側負荷圧通路72に導かれる負荷圧の高い方の負荷圧を選択する高圧選択弁としてのシャトル弁73と、シャトル弁73で選択された負荷圧が導かれる最高負荷圧通路78と、を備える。
 換言すると、高負荷側負荷圧通路71には、流体圧制御装置100により制御される複数のアクチュエータのうち最も負荷圧が高い高負荷アクチュエータであるリフトシリンダ15の負荷圧が導かれ、低負荷側負荷圧通路72には、リフトシリンダ15よりも負荷圧が低い複数の低負荷アクチュエータであるチルトシリンダ16やアタッチメントシリンダ17の負荷圧のうちの最も高い負荷圧が導かれる。そして、最高負荷圧通路78には、高負荷側負荷圧通路71に導かれる負荷圧及び低負荷側負荷圧通路72に導かれる負荷圧の高い方の負荷圧、すなわち、流体圧制御装置100により制御される複数のアクチュエータの負荷圧の中で最も高い負荷圧が導かれる。
 高負荷側負荷圧通路71は、リフトシリンダ15に供給される作動油が流れる反ロッド側供給通路36に接続される。高負荷側負荷圧通路71が反ロッド側供給通路36に接続される位置は、逆止弁36aが設けられる位置よりも第1制御弁30側である。このため、高負荷側負荷圧通路71は、第1制御弁30が中立ポジション30aに切り換えられると、微小連通路31及び第1排出通路25aを通じて排出通路22と連通し、第1制御弁30が排出ポジション30cに切り換えられると、反ロッド側排出通路37及び第1排出通路25aを通じて排出通路22と連通する。つまり、リフトシリンダ15に対して作動油が供給されていないとき、高負荷側負荷圧通路71の圧力は排出通路22の圧力と同じ大きさになる。
 低負荷側負荷圧通路72には、チルトシリンダ16に供給される作動油の圧力が導かれる第1負荷圧取得通路74と、アタッチメントシリンダ17に供給される作動油の圧力が導かれる第2負荷圧取得通路76と、がそれぞれ逆止弁75,77を介して接続される。このため、低負荷側負荷圧通路72には、逆止弁75,77を介してチルトシリンダ16の負荷圧及びアタッチメントシリンダ17の負荷圧の高い方の負荷圧が導かれる。
 このように低負荷側負荷圧通路72に対して、逆止弁75,77を介してチルトシリンダ16及びアタッチメントシリンダ17の負荷圧が導かれる負荷圧取得通路74,76を並列に接続することで、複数の低負荷アクチュエータの負荷圧の中から最も高い負荷圧を容易に低負荷側負荷圧通路72へと導くことができる。
 ここで、チルトシリンダ16の負荷圧及びアタッチメントシリンダ17の負荷圧は、逆止弁75,77を介して低負荷側負荷圧通路72に導かれるため、チルトシリンダ16の負荷圧及びアタッチメントシリンダ17の負荷圧が低下した後も、低負荷側負荷圧通路72内には比較的圧力が高い従前の負荷圧がこもった状態になるおそれがある。このため、絞り部としてのオリフィス79を通じて低負荷側負荷圧通路72と排出通路22とを連通しておくことにより、逆止弁75,77を通じてチルトシリンダ16の負荷圧またはアタッチメントシリンダ17の負荷圧が低負荷側負荷圧通路72に導かれていないときには、オリフィス79を通じて低負荷側負荷圧通路72内の作動油を排出通路22に徐々に排出させることで低負荷側負荷圧通路72内の圧力を徐々に低下させている。
 シャトル弁73は、一対の流入口にそれぞれ接続される高負荷側負荷圧通路71と低負荷側負荷圧通路72とのうち圧力が高い方の通路を、流出口に接続される最高負荷圧通路78と連通させる、いわゆる高圧選択弁である。高負荷側負荷圧通路71と最高負荷圧通路78とが連通するときには、低負荷側負荷圧通路72が接続される流入口が閉塞され、低負荷側負荷圧通路72と最高負荷圧通路78とが連通するときには、高負荷側負荷圧通路71が接続される流入口が閉塞される。
 最高負荷圧通路78は、ポンプ11の吐出圧を外部へと導く吐出圧通路28とともに、流体圧制御装置100の外部に設けられたレギュレータ13に接続される。最高負荷圧通路78を通じてレギュレータ13に導かれた負荷圧と吐出圧通路28を通じてレギュレータ13に導かれたポンプ11の吐出圧とは、上述のようにポンプ11をロードセンシング制御するために用いられる。
 ここで、シャトル弁73を用いることなく、高負荷側負荷圧通路71を、第1負荷圧取得通路74や第2負荷圧取得通路76と同様に逆止弁を介して低負荷側負荷圧通路72に接続することで、低負荷側負荷圧通路72を最高負荷圧通路とすることも考えられる。しかしながら、上述のように、低負荷側負荷圧通路72は、オリフィス79を通じて排出通路22に連通させる必要がある。このため、逆止弁を介して高負荷側負荷圧通路71を低負荷側負荷圧通路72に接続させると、リフトシリンダ15のみに作動油が供給されリフトシリンダ15の負荷圧が高くなった場合に、リフトシリンダ15に供給されるべき作動油が高負荷側負荷圧通路71,低負荷側負荷圧通路72及びオリフィス79を通じて排出通路22に流出し、結果としてリフトシリンダ15の作動速度が低下してしまうおそれがある。
 このような状態を避けるために、本実施形態において高負荷側負荷圧通路71と低負荷側負荷圧通路72とは、上述のようにシャトル弁73を介して接続されている。リフトシリンダ15の負荷圧がチルトシリンダ16及びアタッチメントシリンダ17の負荷圧よりも高くなった場合、すなわち、高負荷側負荷圧通路71内の圧力が低負荷側負荷圧通路72内の圧力よりも高くなった場合、シャトル弁73は、低負荷側負荷圧通路72が接続される流入口を閉塞し、高負荷側負荷圧通路71と最高負荷圧通路78とを連通させる。このため、高負荷側負荷圧通路71が低負荷側負荷圧通路72に連通する状態となることはなく、リフトシリンダ15に供給されるべき作動油が低負荷側負荷圧通路72を通じて排出通路22に流出してしまうことは阻止される。
 流体圧制御装置100は、さらに、供給通路21から第1分岐通路24aが分岐する分岐部よりも上流側において供給通路21と排出通路22とを接続する第1接続通路26と、第1接続通路26に設けられ供給通路21内の圧力を所定の第1制限圧力に制限する高圧リリーフ弁27と、供給通路21から第3分岐通路24cが分岐する分岐部よりも下流側において供給通路21と排出通路22とを接続する第2接続通路90と、第2接続通路90に設けられ、第2制御弁40または第3制御弁50を通じてチルトシリンダ16またはアタッチメントシリンダ17に作動油が供給されるときに供給通路21内の圧力を第1制限圧力よりも低い第2制限圧力に制限する低圧リリーフ装置91と、を備える。
 高圧リリーフ弁27は、供給通路21内の圧力を制限する圧力制限弁であり、供給通路21内の圧力が所定の第1制限圧力に達した場合に第1接続通路26を開放することにより供給通路21内の圧力を制限している。高圧リリーフ弁27の制限圧力である第1制限圧力は、アクチュエータのうち最も負荷圧が高いリフトシリンダ15の許容圧力を超えない範囲で設定される。
 低圧リリーフ装置91は、供給通路21の圧力を第2制限圧力に制限可能な低圧リリーフ弁92と、低圧リリーフ弁92と直列に第2接続通路90に設けられ第2接続通路90を開閉可能な開閉弁93と、を有する。
 低圧リリーフ弁92は、供給通路21内の圧力が第2制限圧力に達した場合に第2接続通路90を開放することにより供給通路21内の圧力を制限している。低圧リリーフ弁92の制限圧力である第2制限圧力は、アクチュエータのうち比較的負荷圧が低いチルトシリンダ16及びアタッチメントシリンダ17の許容圧力を超えない範囲で設定される。
 開閉弁93は、第2接続通路90を開閉する弁体であって、閉位置93aと開位置93bとを有する。閉位置93aでは、供給通路21の作動油が低圧リリーフ弁92に導かれない状態とし、開位置93bでは、供給通路21の作動油が低圧リリーフ弁92に導かれる状態とする。つまり、開閉弁93が開位置93bにあるときには、低圧リリーフ弁92によって供給通路21内の圧力が制限され、開閉弁93が閉弁しているときには、低圧リリーフ弁92による供給通路21内の圧力の制限は行われず、このときの供給通路21内の圧力の制限は、上述の高圧リリーフ弁27によって行われる。
 開閉弁93の位置は、低負荷側負荷圧通路72に接続される第1パイロット通路94を通じて導かれる低負荷側負荷圧通路72の圧力と、排出通路22に接続される第2パイロット通路96を通じて導かれる排出通路22の圧力と、スプリング97の付勢力と、に応じて切り換わる。
 具体的には、第1パイロット通路94を通じて導かれる低負荷側負荷圧通路72の圧力による付勢力は、開閉弁93の位置を開位置93bとする方向に作用し、第2パイロット通路96を通じて導かれる排出通路22の圧力による付勢力及びスプリング97の付勢力は、開閉弁93の位置を閉位置93aとする方向に作用する。
 したがって、低負荷側負荷圧通路72の圧力による付勢力が排出通路22の圧力による付勢力とスプリング97の付勢力との合力を上回れば、開閉弁93の位置は開位置93bに切り換わり、排出通路22の圧力による付勢力とスプリング97の付勢力との合力が低負荷側負荷圧通路72の圧力による付勢力を上回れば、開閉弁93の位置は閉位置93aに切り換わる。つまり、開閉弁93は、低負荷側負荷圧通路72の圧力が所定値以上となったときに開弁し、低負荷側負荷圧通路72の圧力が所定値より小さいときには閉弁する。
 また、低負荷側負荷圧通路72の圧力が排出通路22の圧力と同じ大きさであるときは、開閉弁93の位置は、スプリング97の付勢力によって閉位置93aに保持される。つまり、スプリング97の荷重は、低負荷側負荷圧通路72の圧力と排出通路22の圧力とが同じ大きさであるときに、開閉弁93の位置を閉位置93aに確実に保持できる程度の大きさに設定される。
 また、開閉弁93に低負荷側負荷圧通路72の圧力を導く第1パイロット通路94には、絞り95が設けられる。このため、低負荷側負荷圧通路72の圧力が急上昇したとしても、開閉弁93に対する低負荷側負荷圧通路72の圧力の作用が絞り95によって制限されるため、開閉弁93は徐々に開位置93bに切り換わることになる。この結果、低圧リリーフ弁92に対して作動油が徐々に導かれ、供給通路21内の圧力は大きく変動することなく低圧リリーフ弁92によって安定して制限される。また、低負荷側負荷圧通路72の圧力が急激に低下したとしても、開閉弁93側から低負荷側負荷圧通路72への作動油の流出が絞り95によって制限されるため、開閉弁93は徐々に閉位置93aに切り換わることになる。このように絞り95を第1パイロット通路94に設けたことにより、低負荷側負荷圧通路72の圧力が急激に変動した場合であっても、開閉弁93が急激に切り換わることが防止される。
 このように、高圧リリーフ弁27によって供給通路21の圧力が第1制限圧力に制限されることで、第1制御弁30を通じてリフトシリンダ15に供給される作動油の圧力は、リフトシリンダ15の許容圧力を超えない圧力に制限される。このため、リフトシリンダ15を安全に作動させることが可能となる。
 また、第2制御弁40または第3制御弁50を通じてチルトシリンダ16またはアタッチメントシリンダ17に作動油が供給されるときには、低圧リリーフ装置91によって供給通路21内の圧力が第1制限圧力よりも低い第2制限圧力に制限される。したがって、第2制御弁40または第3制御弁50を通じてチルトシリンダ16またはアタッチメントシリンダ17に供給される作動油の圧力は、チルトシリンダ16及びアタッチメントシリンダ17の許容圧力を超えない圧力に制限される。このため、チルトシリンダ16及びアタッチメントシリンダ17を安全に作動させることが可能となる。
 一方で、チルトシリンダ16またはアタッチメントシリンダ17に作動油が供給されるのと同時に、リフトシリンダ15に作動油が供給される場合、第1制御弁30を通じてリフトシリンダ15に供給される作動油の圧力は、低圧リリーフ装置91によって第2制限圧力に制限される。第2制限圧力は、負荷圧が低いチルトシリンダ16及びアタッチメントシリンダ17の許容圧力を超えない範囲で設定されているため、比較的低い圧力である。したがって、リフトシリンダ15に作用する荷重が大きい場合、リフトシリンダ15を安定して作動させることが困難になるおそれがある。
 このような状況を避けるため、流体圧制御装置100は、供給通路21と第1接続通路26との接続部と供給通路21と第2接続通路90との接続部との間の供給通路21に設けられる流量制限弁80をさらに備える。流量制限弁80が設けられることで、供給通路21は、流量制限弁80よりも上流側であって第1制御弁30に作動油を供給する高負荷側供給通路21aと、流量制限弁80よりも下流側であって第2制御弁40及び第3制御弁50に作動油を供給する低負荷側供給通路21bと、に分けられる。
 流量制限弁80は、第2制御弁40及び第3制御弁50に向う作動油の流れを制限することなく許容する開放位置80aと、第2制御弁40及び第3制御弁50に向かって流れる作動油の流量を制限する制限位置80bと、を有する。開放位置80aにおける流路断面積は、流量制限弁80を通過する作動油に対して抵抗が付与されないように、供給通路21の流路断面積と同等またはそれ以上の大きさに設定される。一方、制限位置80bにおける流路断面積は、流量制限弁80を通過する作動油に対して抵抗が付与されることで流量制限弁80を通過する作動油の流量が制限されるように、供給通路21の流路断面積よりも小さく設定される。
 流量制限弁80の位置は、最高負荷圧通路78に接続される第1パイロット通路82を通じて導かれる最高負荷圧通路78の圧力と、低負荷側負荷圧通路72に接続される第2パイロット通路83を通じて導かれる低負荷側負荷圧通路72の圧力と、スプリング84の付勢力と、に応じて切り換わる。
 具体的には、第1パイロット通路82を通じて導かれる最高負荷圧通路78の圧力による付勢力は、流量制限弁80の位置を制限位置80bとする方向に作用し、第2パイロット通路83を通じて導かれる低負荷側負荷圧通路72の圧力による付勢力及びスプリング84の付勢力は、流量制限弁80の位置を開放位置80aとする方向に作用する。
 したがって、最高負荷圧通路78の圧力による付勢力が低負荷側負荷圧通路72の圧力による付勢力とスプリング84の付勢力との合力を上回れば、流量制限弁80の位置は制限位置80bに切り換わり、低負荷側負荷圧通路72の圧力による付勢力とスプリング84の付勢力との合力が最高負荷圧通路78の圧力による付勢力を上回れば、流量制限弁80の位置は開放位置80aに切り換わる。
 例えば、チルトシリンダ16またはアタッチメントシリンダ17に作動油が供給されるのと同時に、リフトシリンダ15に作動油が供給される場合において、リフトシリンダ15の負荷圧がチルトシリンダ16またはアタッチメントシリンダ17の負荷圧よりも大きくなると、リフトシリンダ15の負荷圧による付勢力が、流量制限弁80の位置を制限位置80bとする方向に作用し、チルトシリンダ16またはアタッチメントシリンダ17の負荷圧による付勢力が、流量制限弁80の位置を開放位置80aとする方向に作用することになる。そして、リフトシリンダ15の負荷圧による付勢力がチルトシリンダ16またはアタッチメントシリンダ17の負荷圧による付勢力とスプリング84の付勢力との合力を上回ると、流量制限弁80の位置は、制限位置80bに切り換えられる。
 また、最高負荷圧通路78の圧力と低負荷側負荷圧通路72の圧力とが同じ大きさであるときは、流量制限弁80の位置は、スプリング84の付勢力によって開放位置80aに保持される。つまり、スプリング84の荷重は、最高負荷圧通路78の圧力と低負荷側負荷圧通路72の圧力とが同じ大きさであるときに、流量制限弁80の位置を開放位置80aに確実に保持できる程度の大きさに設定される。
 このように、流量制限弁80によって、第2制御弁40及び第3制御弁50に向かって流れる作動油の流量が制限された状態では、流量制限弁80よりも上流側における供給通路21内の圧力は、高圧リリーフ弁27によって第1制限圧力に制限され、流量制限弁80よりも下流側における供給通路21内の圧力は、低圧リリーフ装置91によって第1制限圧力よりも低い第2制限圧力に制限される。
 つまり、流量制限弁80を設けることで、チルトシリンダ16またはアタッチメントシリンダ17に作動油が供給されるのと同時に、リフトシリンダ15に作動油が供給される場合には、第1制御弁30を通じてリフトシリンダ15に供給される作動油の圧力は、高圧リリーフ弁27によって制限されることになる。したがって、リフトシリンダ15に供給される作動油の圧力を常にチルトシリンダ16及びアタッチメントシリンダ17の許容圧力を超えるような比較的高い圧力とすることが可能となるため、リフトシリンダ15に作用する荷重が大きい場合であっても、リフトシリンダ15を安定して作動させることができる。
 次に、上記構成を備えた流体圧制御装置100及び流体圧システム10の作動について説明する。
 まず、複数のアクチュエータのうち最も負荷圧が高いリフトシリンダ15にのみ作動油が供給される場合について説明する。
 第1制御弁30が供給ポジション30bに切り換えられ、反ロッド側供給通路36及び反ロッド側通路38を通じてリフトシリンダ15に作動油が供給されると、リフトシリンダ15が伸長し、フォーク及びフォークに載せられた荷物が上昇する。このとき、高負荷側負荷圧通路71には、フォーク及びフォークに載せられた荷物等の荷重に応じたリフトシリンダ15の負荷圧が導かれる。一方で、チルトシリンダ16及びアタッチメントシリンダ17には作動油が供給されていないため、低負荷側負荷圧通路72には負荷圧が導かれず、低負荷側負荷圧通路72の圧力は排出通路22の圧力に等しくなる。このため、シャトル弁73において高負荷側負荷圧通路71と最高負荷圧通路78とが連通され、リフトシリンダ15の負荷圧が最高負荷圧としてレギュレータ13へと導かれる。レギュレータ13へと導かれたリフトシリンダ15の負荷圧は、吐出圧通路28を通じてレギュレータ13に導かれたポンプ11の吐出圧とともに、ポンプ11をロードセンシング制御するために用いられ、ポンプ11の吐出圧とリフトシリンダ15の負荷圧との差圧が所定の大きさとなるようにポンプ11の斜板の傾転角、すなわち、ポンプ11の吐出容量がレギュレータ13によって制御される。
 このとき、第1パイロット通路82を通じて流量制限弁80に導かれる最高負荷圧通路78の圧力と、第2パイロット通路83を通じて流量制限弁80に導かれる低負荷側負荷圧通路72の圧力と、を比較すると最高負荷圧通路78の圧力の方が高い。このため、流量制限弁80は、制限位置80bへと切り換えられる。
 流量制限弁80が制限位置80bに切り換えられると、第2制御弁40及び第3制御弁50に向かって流れる作動油の流量が制限される。しかし、第2制御弁40及び第3制御弁50はともに中立ポジション40a,50aにあり、チルトシリンダ16及びアタッチメントシリンダ17には作動油が供給されていないため、流量制限弁80による流量制限がチルトシリンダ16及びアタッチメントシリンダ17の作動に影響を及ぼすことはない。
 また、このとき、第1パイロット通路94を通じて開閉弁93に導かれる低負荷側負荷圧通路72の圧力は、第2パイロット通路96を通じて開閉弁93に導かれる排出通路22の圧力と等しくなるため、開閉弁93は、スプリング97の付勢力によって閉位置93aに保持される。このため、供給通路21の圧力は、高圧リリーフ弁27によって制限される。この場合、低負荷側供給通路21bの圧力は、比較的負荷圧が低いチルトシリンダ16及びアタッチメントシリンダ17の許容圧力を超えるおそれがあるが、チルトシリンダ16及びアタッチメントシリンダ17には作動油が供給されていないため、高圧リリーフ弁27による圧力制限がチルトシリンダ16及びアタッチメントシリンダ17の安全性に影響を及ぼすことはない。
 一方で、供給通路21の圧力が高圧リリーフ弁27によって制限されることで、第1制御弁30に供給される作動油の圧力は、リフトシリンダ15の許容圧力を超えない圧力に制限される。このため、リフトシリンダ15を安全に作動させることができる。
 また、供給通路21の圧力は、低圧リリーフ装置91ではなく、高圧リリーフ弁27によって制限される。このため、第1制御弁30を通じてリフトシリンダ15に供給される作動油の圧力を、チルトシリンダ16及びアタッチメントシリンダ17の許容圧力を超えるような比較的高い圧力とすることが可能となる。この結果、リフトシリンダ15に作用する荷重が大きい場合であっても、リフトシリンダ15を安定して作動させることができる。
 続いて、複数のアクチュエータのうち比較的に負荷圧が低いチルトシリンダ16にのみ作動油が供給される場合について説明する。
 第2制御弁40が伸長ポジション40bまたは収縮ポジション40cに切り換えられ、反ロッド側通路46またはロッド側通路47を通じてチルトシリンダ16に作動油が供給されると、チルトシリンダ16が伸縮し、マストの傾きが変化する。このとき、低負荷側負荷圧通路72には、第1負荷圧取得通路74を通じてチルトシリンダ16の負荷圧が導かれる。一方で、リフトシリンダ15には作動油が供給されていないため、高負荷側負荷圧通路71には負荷圧が導かれず、高負荷側負荷圧通路71の圧力は排出通路22の圧力に等しくなる。このため、シャトル弁73において低負荷側負荷圧通路72と最高負荷圧通路78とが連通され、チルトシリンダ16の負荷圧が最高負荷圧としてレギュレータ13へと導かれる。レギュレータ13へと導かれたチルトシリンダ16の負荷圧は、吐出圧通路28を通じてレギュレータ13に導かれたポンプ11の吐出圧とともに、ポンプ11をロードセンシング制御するために用いられ、ポンプ11の吐出圧とチルトシリンダ16の負荷圧との差圧が所定の大きさとなるようにポンプ11の斜板の傾転角、すなわち、ポンプ11の吐出容量がレギュレータ13によって制御される。
 このとき、第1パイロット通路82を通じて流量制限弁80に導かれる最高負荷圧通路78の圧力は、第2パイロット通路83を通じて流量制限弁80に導かれる低負荷側負荷圧通路72の圧力と等しくなる。このため、流量制限弁80は、スプリング84の付勢力によって開放位置80aに保持される。流量制限弁80が開放位置80aにある場合、第2制御弁40及び第3制御弁50に向かって流れる作動油の流量が制限されないため、チルトシリンダ16を通常通り所望の速度で作動させることができる。
 また、このとき、第1パイロット通路94を通じて開閉弁93に導かれる低負荷側負荷圧通路72の圧力と、第2パイロット通路96を通じて開閉弁93に導かれる排出通路22の圧力と、を比較すると低負荷側負荷圧通路72の圧力の方が高いため、開閉弁93は、開位置93bへと切り換えられる。このため、供給通路21の圧力は、低圧リリーフ弁92によって制限される。したがって、低負荷側供給通路21bから第2制御弁40に供給される作動油の圧力は、チルトシリンダ16の許容圧力を超えない圧力に制限されるため、チルトシリンダ16を安全に作動させることができる。
 なお、チルトシリンダ16に代えて、アタッチメントシリンダ17に作動油が供給される場合や、チルトシリンダ16に加えてアタッチメントシリンダ17にも作動油が供給される場合、チルトシリンダ16と同様に、アタッチメントシリンダ17も通常通り所望の速度で作動させることができる。
 次に、複数のアクチュエータのうち最も負荷圧が高いリフトシリンダ15と比較的に負荷圧が低いチルトシリンダ16とに対して同時に作動油が供給される場合について説明する。
 第1制御弁30が供給ポジション30bに切り換えられ、反ロッド側供給通路36及び反ロッド側通路38を通じてリフトシリンダ15に作動油が供給されると、リフトシリンダ15が伸長し、フォーク及びフォークに載せられた荷物が上昇する。これと同時に、第2制御弁40が伸長ポジション40bまたは収縮ポジション40cに切り換えられ、反ロッド側通路46またはロッド側通路47を通じてチルトシリンダ16に作動油が供給されると、チルトシリンダ16が伸縮し、マストの傾きが変化する。
 このとき、高負荷側負荷圧通路71には、リフトシリンダ15の負荷圧が導かれる一方、低負荷側負荷圧通路72にはチルトシリンダ16の負荷圧が導かれる。通常、チルトシリンダ16の負荷圧よりもリフトシリンダ15の負荷圧の方が大きいため、シャトル弁73において高負荷側負荷圧通路71と最高負荷圧通路78とが連通され、リフトシリンダ15の負荷圧が最高負荷圧としてレギュレータ13へと導かれる。レギュレータ13へと導かれたリフトシリンダ15の負荷圧は、吐出圧通路28を通じてレギュレータ13に導かれたポンプ11の吐出圧とともに、ポンプ11をロードセンシング制御するために用いられ、ポンプ11の吐出圧とリフトシリンダ15の負荷圧との差圧が所定の大きさとなるようにポンプ11の斜板の傾転角、すなわち、ポンプ11の吐出容量がレギュレータ13によって制御される。
 また、このとき、第1パイロット通路82を通じて流量制限弁80に導かれる最高負荷圧通路78の圧力と、第2パイロット通路83を通じて流量制限弁80に導かれる低負荷側負荷圧通路72の圧力と、を比較すると最高負荷圧通路78の圧力の方が高い。このため、流量制限弁80は、制限位置80bへと切り換えられる。
 流量制限弁80が制限位置80bに切り換えられると、第2制御弁40及び第3制御弁50に向かって流れる作動油の流量が制限されるため、チルトシリンダ16の作動速度は通常よりも低下する。しかし、チルトシリンダ16は、比較的負荷圧が低く、シリンダ容量もリフトシリンダ15と比較して小さいため、流量が制限された場合であっても大幅に作動速度が低下することは避けられる。
 なお、第2制御弁40及び第3制御弁50に向かって流れる作動油の流量をどの程度に制限するかは、制限位置80bにおいて作動油が通過可能な流路断面積の大きさによって変化する。このため、制限位置80bでの流路断面積の大きさは、第2制御弁40及び第3制御弁50に対して、チルトシリンダ16及びアタッチメントシリンダ17を最低限の作動速度で作動させることができる程度の作動油が供給されるように設定されることが好ましい。
 一方で、流量制限弁80によって、流量制限弁80の下流側への作動油の供給を制限したことによって、流量制限弁80よりも上流側では作動油の供給が確保される。つまり、流量制限弁80よりも上流側において供給通路21から作動油が供給されるリフトシリンダ15に対しては、十分な作動油が供給される。この結果、複数のアクチュエータのうち最も負荷圧が高いリフトシリンダ15と、比較的に負荷圧が低いチルトシリンダ16と、に対して同時に作動油が供給される場合であっても、リフトシリンダ15を安定して作動させることが可能となる。
 また、このとき、第1パイロット通路94を通じて開閉弁93に導かれる低負荷側負荷圧通路72の圧力と、第2パイロット通路96を通じて開閉弁93に導かれる排出通路22の圧力と、を比較すると低負荷側負荷圧通路72の圧力の方が高いため、開閉弁93は、開位置93bへと切り換えられる。このため、流量制限弁80よりも下流側の低負荷側供給通路21bの圧力は、低圧リリーフ弁92によって制限される。したがって、第2制御弁40に供給される作動油の圧力は、チルトシリンダ16の許容圧力を超えない圧力に制限されるため、チルトシリンダ16を安全に作動させることができる。
 一方で、流量制限弁80よりも上流側の高負荷側供給通路21aの圧力は、高圧リリーフ弁27によって制限される。このため、第1制御弁30に供給される作動油の圧力は、リフトシリンダ15の許容圧力を超えない圧力に制限されるため、リフトシリンダ15を安全に作動させることができる。
 また、流量制限弁80が制限位置80bに切り換えられることによって、低圧リリーフ弁92と供給通路21とが連通する状態であっても、流量制限弁80よりも上流側の高負荷側供給通路21aの圧力は、低圧リリーフ装置91ではなく、高圧リリーフ弁27によって制限される。このため、第1制御弁30を通じてリフトシリンダ15に供給される作動油の圧力を、チルトシリンダ16及びアタッチメントシリンダ17の許容圧力を超えるような比較的高い圧力とすることが可能となる。この結果、リフトシリンダ15とチルトシリンダ16とに対して同時に作動油が供給される場合であっても、リフトシリンダ15を安定して作動させることができる。
 なお、チルトシリンダ16に代えてアタッチメントシリンダ17に作動油が供給される場合や、チルトシリンダ16に加えてアタッチメントシリンダ17にも作動油が供給される場合であっても、同様に流量制限弁80よりも上流側の高負荷側供給通路21aの圧力は、低圧リリーフ装置91ではなく、高圧リリーフ弁27によって制限されるため、リフトシリンダ15を安定して作動させることができる。
 また、複数のアクチュエータのうち最も負荷圧が高いリフトシリンダ15にのみ作動油が供給されている最中に、比較的に負荷圧が低いチルトシリンダ16に対しても作動油の供給が開始されたときや、複数のアクチュエータのうち比較的に負荷圧が低いチルトシリンダ16にのみ作動油が供給されている最中に、負荷圧が高いリフトシリンダ15に対しても作動油の供給が開始されたときも、上述のように、複数のアクチュエータのうち最も負荷圧が高いリフトシリンダ15と比較的に負荷圧が低いチルトシリンダ16とに対して同時に作動油が供給されているときと同じ状態となる。
 以上の第1実施形態によれば、以下に示す効果を奏する。
 流体圧制御装置100では、第2制御弁40又は第3制御弁50を通じてチルトシリンダ16又はアタッチメントシリンダ17に作動油が供給されるときには、供給通路21と排出通路22を接続する第2接続通路90に設けられる低圧リリーフ装置91によって、供給通路21の圧力が第2制限圧力に制限される。このように低圧リリーフ装置91は、第2制御弁40及び第3制御弁50を通過した後の作動油の圧力ではなく、第2制御弁40及び第3制御弁50へ導かれる前の作動油の圧力である供給通路21の圧力を制限している。つまり、第2制限圧力よりも高い圧力の作動油が、第2制御弁40及び第3制御弁50を通過することはない。したがって、第2制御弁40及び第3制御弁50の耐圧性を比較的高い圧力の作動油が通過する第1制御弁30と同程度とする必要がない。このため、第2制御弁40及び第3制御弁50の摺動部等の加工には、第1制御弁30の加工ほどの高い精度が要求されないため、結果として、流体圧制御装置100及びこれを備えるフォークリフトの製造コストを低減させることができる。
 また、低圧リリーフ装置91により制限される圧力は、第2制御弁40及び第3制御弁50を通過した後の作動油の圧力ではなく、第2制御弁40及び第3制御弁50に対して作動油を供給する供給通路21の圧力である。このように、低圧リリーフ装置91は、流体圧制御装置100が従来から備える供給通路21の圧力を制限するものである。したがって、低圧リリーフ装置91へ作動油を導く通路を、例えば、各制御弁40,50からそれぞれ新たに形成する必要がない。この結果、流体圧制御装置100及びこれを備えるフォークリフトの製造コストを低減させることができる。
 また、第2制御弁40又は第3制御弁50を通じてチルトシリンダ16又はアタッチメントシリンダ17に作動油が供給されるときには、供給通路21の圧力は、低圧リリーフ装置91によって制限されるため、チルトシリンダ16及びアタッチメントシリンダ17を安全に作動させることができる。一方で、第2制御弁40又は第3制御弁50を通じてチルトシリンダ16又はアタッチメントシリンダ17に作動油が供給されないときには、供給通路21の圧力は、低圧リリーフ装置91ではなく、高圧リリーフ弁27によって制限される。このため、第1制御弁30を通じてリフトシリンダ15に供給される作動油の圧力を、チルトシリンダ16及びアタッチメントシリンダ17の許容圧力を超えるような比較的高い圧力であって、リフトシリンダ15の許容圧力を超えない圧力とすることが可能となる。この結果、リフトシリンダ15に作用する荷重が大きい場合であっても、リフトシリンダ15を安定して作動させることができるとともに、リフトシリンダ15を安全に作動させることができる。
 <第2実施形態>
 次に、図2を参照して、本発明の第2実施形態に係る流体圧制御装置200について説明する。以下では、第1実施形態と異なる点を中心に説明し、第1実施形態と同様の構成には、同一の符号を付し説明を省略する。
 流体圧制御装置200の基本的な構成は、上記実施形態に係る流体圧制御装置100と同様である。流体圧制御装置200は、流量制限弁80の位置を制限位置80bとする方向に作用する圧力を導く第1パイロット通路182が、最高負荷圧通路78ではなく、高負荷側負荷圧通路71に接続される点でのみ流体圧制御装置100と相違する。
 具体的には、第1パイロット通路182を通じて導かれる高負荷側負荷圧通路71の圧力による付勢力が、流量制限弁80の位置を制限位置80bとする方向に作用し、第2パイロット通路83を通じて導かれる低負荷側負荷圧通路72の圧力による付勢力及びスプリング84の付勢力が、流量制限弁80の位置を開放位置80aとする方向に作用する。
 したがって、高負荷側負荷圧通路71の圧力による付勢力が低負荷側負荷圧通路72の圧力による付勢力とスプリング84の付勢力との合力を上回れば、流量制限弁80の位置は制限位置80bに切り換わり、低負荷側負荷圧通路72の圧力による付勢力とスプリング84の付勢力との合力が高負荷側負荷圧通路71の圧力による付勢力を上回れば、流量制限弁80の位置は開放位置80aに切り換わる。
 ここで、リフトシリンダ15に作動油が供給され、高負荷側負荷圧通路71の圧力による付勢力が低負荷側負荷圧通路72の圧力による付勢力とスプリング84の付勢力との合力を上回り、流量制限弁80の位置が制限位置80bとなるとき、最高負荷圧通路78には、シャトル弁73を通じて高負荷側負荷圧通路71の圧力が導かれる。
 このように、流体圧制御装置200において流量制限弁80の位置が制限位置80bとなるときの最高負荷圧通路78の圧力は、高負荷側負荷圧通路71の圧力と同じ大きさとなる。つまり、流体圧制御装置200では、上記第1実施形態と同様に、最高負荷圧通路78に導かれる負荷圧が低負荷側負荷圧通路72に導かれる負荷圧よりも大きい場合には、流量制限弁80の位置が制限位置80bに切り換わり、作動油の通過流量が制限される。
 一方、チルトシリンダ16やアタッチメントシリンダ17のみに作動油が供給され、低負荷側負荷圧通路72の圧力による付勢力とスプリング84の付勢力との合力が高負荷側負荷圧通路71の圧力による付勢力を上回り、流量制限弁80の位置が開放位置80aとなるとき、最高負荷圧通路78には、シャトル弁73を通じて低負荷側負荷圧通路72の圧力が導かれる。
 このように、流体圧制御装置200において流量制限弁80の位置が開放位置80aとなるときの最高負荷圧通路78の圧力は、低負荷側負荷圧通路72の圧力と同じ大きさとなる。つまり、流体圧制御装置200では、上記第1実施形態と同様に、最高負荷圧通路78に導かれる負荷圧が低負荷側負荷圧通路72に導かれる負荷圧と同じ大きさである場合には、流量制限弁80の位置が開放位置80aに切り換わり、作動油の通過流量は制限されない。
 したがって、第2実施形態における流量制限弁80は、上記第1実施形態の流量制限弁80と同じ条件でその位置が切り換わることから、第2実施形態においても、上記第1実施形態と同様の効果を奏する。
 次に、上記各実施形態の変形例について説明する。
 上記各実施形態では、背圧弁60はチェック弁である。これに限らず、背圧弁は、所定の流路抵抗を付与する切換弁等であってもよい。
 また、上記各実施形態では、流量制限弁80は、作動油の流れを制限しない開放位置80aと、作動油の流れを制限する制限位置80bと、の二つの位置を有している。これに限らず、流量制限弁80は、開放位置80aと制限位置80bとの間において、作動油が通過可能な流路断面積が制限位置80bに向かって徐々に小さくなるものであってもよい。
 この場合、最高負荷圧通路78に導かれる負荷圧と低負荷側負荷圧通路72に導かれる負荷圧との差が大きくなるについて、作動油の通過流量が徐々に制限されることになる。このため、チルトシリンダ16やアタッチメントシリンダ17の負荷が比較的高くなった場合には、流量制限弁80による流量制限が低減されることで、チルトシリンダ16やアタッチメントシリンダ17を安定して作動させることが可能となる。一方、リフトシリンダ15の負荷が非常に大きい場合には、流量制限弁80による流量制限が最大となり、チルトシリンダ16やアタッチメントシリンダ17に供給される作動油の流量を最低限まで低下させることで、リフトシリンダ15を安定して作動させることが可能となる。
 また、上記各実施形態では、流量制限弁80は作動油の圧力によって変位するものである。これに代えて、流量制限弁80はソレノイドによって変位するものであってもよい。この場合、最高負荷圧通路78の圧力と低負荷側負荷圧通路72の圧力との差圧を検出する差圧センサを設け、差圧センサの出力値に応じてソレノイドを駆動させることで、上記各実施形態と同様に作動油の通過流量を制限することができる。また、この場合、最高負荷圧通路78の圧力と低負荷側負荷圧通路72の圧力との差圧に対して、流量制限弁80の変位量を段階的または曲線的に変化させることもできる。なお、差圧センサに代えて、最高負荷圧通路78の圧力を検出する圧力センサと低負荷側負荷圧通路72の圧力を検出する圧力センサとを設けてもよい。
 また、上記各実施形態では、低圧リリーフ装置91は、低圧リリーフ弁92と開閉弁93とにより構成されている。これに代えて、低圧リリーフ装置91は、電磁式リリーフ弁のように、ソレノイドとリリーフ弁とが組み合わされ、ソレノイドを駆動させることでリリーフ機能を発揮するものであってもよい。この場合、低負荷側負荷圧通路72の圧力と排出通路22の圧力との差圧を検出する差圧センサを設け、差圧センサの出力値に応じてソレノイドを駆動させることで、上記各実施形態と同様に供給通路21の圧力を制限することができる。なお、差圧センサに代えて、低負荷側負荷圧通路72の圧力を検出する圧力センサと排出通路22の圧力を検出する圧力センサとを設けてもよい。
 また、上記各実施形態では、開閉弁93は低圧リリーフ弁92の上流側に設けられている。これに代えて、開閉弁93は低圧リリーフ弁92の下流側に設けられていてもよい。
 また、上記各実施形態では、開閉弁93は作動油の圧力によって開閉するものである。これに代えて、開閉弁93はソレノイドによって開閉するものであってもよい。この場合、低負荷側負荷圧通路72の圧力と排出通路22の圧力との差圧を検出する差圧センサを設け、差圧センサの出力値に応じてソレノイドを駆動させることで、上記各実施形態と同様に第2接続通路90の開閉を制御することができる。なお、差圧センサに代えて、低負荷側負荷圧通路72の圧力を検出する圧力センサと排出通路22の圧力を検出する圧力センサとを設けてもよい。
 また、上記各実施形態では、各制御弁30,40,50は、パイロット圧によってその位置が切り換えられるものである。これに代えて、各制御弁30,40,50は、作業者の操作により直接その位置が切り換えられるものであってもよいし、ソレノイドによってその位置が切り換えられるものであってよい。
 また、上記各実施形態では、流体圧制御装置100,200に対して斜板式の可変容量ピストンポンプから作動油が供給されている。これに代えて、ギヤポンプやベーンポンプ等の定容量ポンプから作動油が供給されてもよい。
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。
 流体圧制御装置100,200は、ポンプ11から供給される作動油が流入する供給通路21と、作動油が貯留されるタンク12に接続される排出通路22と、供給通路21に接続され、供給通路21を通じてアクチュエータのうち最も負荷圧が高いリフトシリンダ15に供給される作動油の流量を制御する第1制御弁30と、第1制御弁30よりも下流側において供給通路21に接続され、供給通路21を通じてアクチュエータのうちリフトシリンダ15よりも負荷圧が低いチルトシリンダ16又はアタッチメントシリンダ17に供給される作動油の流量を制御する第2制御弁40又は第3制御弁50と、供給通路21と排出通路22を接続する第1接続通路26に設けられ、供給通路21の圧力を第1制限圧力に制限する高圧リリーフ弁27と、供給通路21と排出通路22を接続する第2接続通路90に設けられ、第2制御弁40又は第3制御弁50を通じてチルトシリンダ16又はアタッチメントシリンダ17に作動油が供給されるときに供給通路21の圧力を第1制限圧力よりも低い第2制限圧力に制限する低圧リリーフ装置91と、を備える。
 この構成では、第2制御弁40又は第3制御弁50を通じてチルトシリンダ16又はアタッチメントシリンダ17に作動油が供給されるときには、供給通路21と排出通路22を接続する第2接続通路90に設けられる低圧リリーフ装置91によって、供給通路21の圧力が第2制限圧力に制限される。このように低圧リリーフ装置91は、第2制御弁40及び第3制御弁50を通過した後の作動油の圧力ではなく、第2制御弁40及び第3制御弁50へ導かれる前の作動油の圧力である供給通路21の圧力を制限している。つまり、第2制限圧力よりも高い圧力の作動油が、第2制御弁40及び第3制御弁50を通過することはない。したがって、第2制御弁40及び第3制御弁50の耐圧性を比較的高い圧力の作動油が通過する第1制御弁30と同程度とする必要がない。このため、第2制御弁40及び第3制御弁50の摺動部等の加工には、第1制御弁30の加工ほどの高い精度が要求されないため、結果として、流体圧制御装置100,200及びこれを備えるフォークリフトの製造コストを低減させることができる。
 また、この構成において、低圧リリーフ装置91により制限される圧力は、第2制御弁40及び第3制御弁50を通過した後の作動油の圧力ではなく、第2制御弁40及び第3制御弁50に対して作動油を供給する供給通路21の圧力である。このように、低圧リリーフ装置91は、流体圧制御装置100,200が従来から備える供給通路21の圧力を制限するものである。したがって、低圧リリーフ装置91へ作動油を導く通路を、例えば、各制御弁40,50からそれぞれ新たに形成する必要がない。この結果、流体圧制御装置100,200及びこれを備えるフォークリフトの製造コストを低減させることができる。
 また、この構成では、第2制御弁40又は第3制御弁50を通じてチルトシリンダ16又はアタッチメントシリンダ17に作動油が供給されるときには、供給通路21の圧力は、低圧リリーフ装置91によって制限されるため、チルトシリンダ16及びアタッチメントシリンダ17を安全に作動させることができる。一方で、第2制御弁40又は第3制御弁50を通じてチルトシリンダ16又はアタッチメントシリンダ17に作動油が供給されないときには、供給通路21の圧力は、低圧リリーフ装置91ではなく、高圧リリーフ弁27によって制限される。このため、第1制御弁30を通じてリフトシリンダ15に供給される作動油の圧力を、チルトシリンダ16及びアタッチメントシリンダ17の許容圧力を超えるような比較的高い圧力であって、リフトシリンダ15の許容圧力を超えない圧力とすることが可能となる。この結果、リフトシリンダ15に作用する荷重が大きい場合であっても、リフトシリンダ15を安定して作動させることができるとともに、リフトシリンダ15を安全に作動させることができる。
 また、低圧リリーフ装置91は、供給通路21の圧力を第2制限圧力に制限可能な低圧リリーフ弁92と、低圧リリーフ弁92と直列に第2接続通路90に設けられ第2接続通路90を開閉可能な開閉弁93と、を有し、開閉弁93は、第2制御弁40又は第3制御弁50を通じてチルトシリンダ16又はアタッチメントシリンダ17に作動油が供給されるときに開弁される。
 この構成では、第2制御弁40又は第3制御弁50を通じてチルトシリンダ16又はアタッチメントシリンダ17に作動油が供給されるときには、開閉弁93が開弁されることによって供給通路21の圧力が低圧リリーフ弁92により制限され、第2制御弁40又は第3制御弁50を通じてチルトシリンダ16又はアタッチメントシリンダ17に作動油が供給されないときには、開閉弁93が閉弁されることによって供給通路21の圧力が高圧リリーフ弁27により制限される。このように、チルトシリンダ16又はアタッチメントシリンダ17への作動油の供給状態に応じて開閉弁93の開閉を制御するだけで、チルトシリンダ16及びアタッチメントシリンダ17を安全に作動させることができるとともに、リフトシリンダ15を安定して作動させることができる。
 また、チルトシリンダ16及びアタッチメントシリンダ17の負荷圧が導かれる低負荷側負荷圧通路72をさらに備え、開閉弁93は、低負荷側負荷圧通路72内の圧力が所定値以上となったときに開弁する。
 この構成では、開閉弁93は、チルトシリンダ16及びアタッチメントシリンダ17の負荷圧が導かれる低負荷側負荷圧通路72内の圧力に応じて開閉する。このように、チルトシリンダ16又はアタッチメントシリンダ17への作動油の供給状態に応じて開閉弁93が開閉するため、チルトシリンダ16及びアタッチメントシリンダ17をより安全に作動させることができるとともに、リフトシリンダ15をより安定して作動させることができる。
 また、低負荷側負荷圧通路72と排出通路22とを連通させるオリフィス79をさらに備え、チルトシリンダ16及びアタッチメントシリンダ17の負荷圧は、逆止弁75,77を通じて低負荷側負荷圧通路72に導かれる。
 この構成では、低負荷側負荷圧通路72に対して、逆止弁75,77を介してチルトシリンダ16及びアタッチメントシリンダ17の負荷圧が導かれる負荷圧取得通路74,76が並列に接続される。このため、複数の低負荷アクチュエータの負荷圧の中から最も高い負荷圧を簡素な構成によって容易に低負荷側負荷圧通路72へと導くことができる。また、この構成では、低負荷側負荷圧通路72はオリフィス79を通じて排出通路22と連通している。このため、低負荷側負荷圧通路72の圧力は、逆止弁75,77を通じてチルトシリンダ16の負荷圧またはアタッチメントシリンダ17の負荷圧が低負荷側負荷圧通路72に導かれているときのみ高くなる。したがって、逆止弁75,77を介して負荷圧が低負荷側負荷圧通路72に導かれる構成であっても、従前の負荷圧が低負荷側負荷圧通路72にこもった状態になることが避けられ、常に、チルトシリンダ16及びアタッチメントシリンダ17の作動状態に応じた最高負荷圧を低負荷側負荷圧通路72に導くことができる。
 また、リフトシリンダ15の負荷圧が導かれる高負荷側負荷圧通路71と、高負荷側負荷圧通路71に導かれる負荷圧及び低負荷側負荷圧通路72に導かれる負荷圧の高い方の負荷圧が導かれる最高負荷圧通路78と、一対の流入口に高負荷側負荷圧通路71と低負荷側負荷圧通路72とがそれぞれ接続され、流出口に最高負荷圧通路78が接続されるシャトル弁73と、をさらに備える。
 この構成では、高負荷側負荷圧通路71に導かれる負荷圧及び低負荷側負荷圧通路72に導かれる負荷圧の高い方の負荷圧がシャトル弁73を通じて最高負荷圧通路78に導かれる。このため、高負荷側負荷圧通路71内の圧力が低負荷側負荷圧通路72内の圧力よりも高くなった場合、シャトル弁73は、低負荷側負荷圧通路72が接続される流入口を閉塞し、高負荷側負荷圧通路71と最高負荷圧通路78とを連通させる。このように高負荷側負荷圧通路71は低負荷側負荷圧通路72と連通することがないため、リフトシリンダ15に供給されるべき作動油が低負荷側負荷圧通路72及びオリフィス79を通じて排出通路22に流出してしまうことを防止することができる。
 また、第1接続通路26と第2接続通路90との間において供給通路21に設けられ、作動油の通過流量を制限可能な流量制限弁80をさらに備え、流量制限弁80は、最高負荷圧通路78に導かれる負荷圧が低負荷側負荷圧通路72に導かれる負荷圧よりも大きい場合に作動油の通過流量を制限する。
 この構成では、リフトシリンダ15の負荷圧が比較的高いときには、流量制限弁80によって、チルトシリンダ16やアタッチメントシリンダ17に供給される作動油の流量が制限された状態となる。このため、チルトシリンダ16またはアタッチメントシリンダ17に作動油が供給されるのと同時に、リフトシリンダ15に作動油が供給される場合、流量制限弁80よりも下流側の低負荷側供給通路21bの圧力は、低圧リリーフ弁92によって制限され、流量制限弁80よりも上流側の高負荷側供給通路21aの圧力は、高圧リリーフ弁27によって制限される。このため、チルトシリンダ16やアタッチメントシリンダ17を安全に作動させることができるとともに、リフトシリンダ15を安全に作動させることができる。
 また、流量制限弁80は、最高負荷圧通路78に導かれる負荷圧が低負荷側負荷圧通路72に導かれる負荷圧と同じ大きさである場合には、作動油の通過流量を制限しない。
 この構成では、最高負荷圧通路78に導かれる負荷圧が低負荷側負荷圧通路72に導かれる負荷圧と同じ大きさである場合には、流量制限弁80によって作動油の通過流量が制限されない。つまり、負荷圧が低いチルトシリンダ16やアタッチメントシリンダ17にのみ作動油が供給され、負荷圧が高いリフトシリンダ15に対して作動油が供給されていないときには、チルトシリンダ16やアタッチメントシリンダ17に供給される作動油の流量が制限されない。したがって、このようなときには、チルトシリンダ16やアタッチメントシリンダ17を安定して作動させることができる。
 また、ポンプ11は、可変容量ポンプであり、最高負荷圧通路78に導かれる負荷圧は、ポンプ11をロードセンシング制御するために用いられる。
 この構成では、流量制限弁80の切り換えに用いられる最高負荷圧通路78に導かれる負荷圧が、ポンプ11のロードセンシング制御にも用いられている。つまり、流量制限弁80の切り換えに用いられる負荷圧と、ポンプ11のロードセンシング制御にも用いられる負荷圧とは、ともに最高負荷圧通路78から供給される。このように、負荷圧が導かれる通路を共用することによって、流体圧制御装置100の構成を簡素化することができるとともに、流体圧制御装置100の製造コストの上昇を抑制することができる。
 また、第1制御弁30は、フォークを昇降させるリフトシリンダ15に供給される作動油の流量を制御する制御弁であり、第2制御弁40は、マストの傾斜角を変化させるチルトシリンダ16に供給される作動油の流量を制御する制御弁である。
 この構成では、第2制御弁40を通じてチルトシリンダ16に作動油が供給されるときには、供給通路21と排出通路22を接続する第2接続通路90に設けられる低圧リリーフ装置91によって、供給通路21の圧力が第2制限圧力に制限される。このように低圧リリーフ装置91は、第2制御弁40を通過した後の作動油の圧力ではなく、第2制御弁40へ導かれる前の作動油の圧力である供給通路21の圧力を制限している。つまり、第2制限圧力よりも高い圧力の作動油が、第2制御弁40を通過することはない。したがって、第2制御弁40の耐圧性を比較的高い圧力の作動油が通過する第1制御弁30と同程度とする必要がない。このため、第2制御弁40の摺動部等の加工には、第1制御弁30の加工ほどの高い精度が要求されないため、結果として、流体圧制御装置100,200を備えるフォークリフトの製造コストを低減させることができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 上記実施形態による流体圧制御装置100,200は、作動流体として、作動油を使用しているが、作動油の代わりに水や水溶液等の非圧縮性流体を使用してもよい。
 また、上記実施形態による流体圧制御装置100,200及び流体圧システム10が適用されるものとしてフォークリフトを例示したが、これらが適用されるものはフォークリフトに限定されず、流体圧によって駆動される複数のアクチュエータを備える作業機であれば、どのような形式のものであってもよい。
 本願は2017年4月18日に日本国特許庁に出願された特願2017-082316に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (9)

  1.  複数のアクチュエータの動作を制御する流体圧制御装置であって、
     作動流体供給源から供給される作動流体が流入する供給通路と、
     作動流体が貯留されるタンクに接続される排出通路と、
     前記供給通路に接続され、前記供給通路を通じて前記アクチュエータのうち最も負荷圧が高い高負荷アクチュエータに供給される作動流体の流量を制御する高負荷制御弁と、
     前記高負荷制御弁よりも下流側において前記供給通路に接続され、前記供給通路を通じて前記アクチュエータのうち前記高負荷アクチュエータよりも負荷圧が低い低負荷アクチュエータに供給される作動流体の流量を制御する低負荷制御弁と、
     前記供給通路と前記排出通路を接続する第1接続通路に設けられ、前記供給通路の圧力を第1制限圧力に制限する高圧リリーフ弁と、
     前記供給通路と前記排出通路を接続する第2接続通路に設けられ、前記低負荷制御弁を通じて前記低負荷アクチュエータに作動流体が供給されるときに前記供給通路の圧力を前記第1制限圧力よりも低い第2制限圧力に制限する低圧リリーフ装置と、を備える流体圧制御装置。
  2.  請求項1に記載の流体圧制御装置であって、
     前記低圧リリーフ装置は、前記供給通路の圧力を前記第2制限圧力に制限可能な低圧リリーフ弁と、前記低圧リリーフ弁と直列に前記第2接続通路に設けられ前記第2接続通路を開閉可能な開閉弁と、を有し、
     前記開閉弁は、前記低負荷制御弁を通じて前記低負荷アクチュエータに作動流体が供給されるときに開弁される流体圧制御装置。
  3.  請求項2に記載の流体圧制御装置であって、
     前記低負荷アクチュエータの負荷圧が導かれる低負荷側負荷圧通路をさらに備え、
     前記開閉弁は、前記低負荷側負荷圧通路内の圧力が所定値以上となったときに開弁する流体圧制御装置。
  4.  請求項3に記載の流体圧制御装置であって、
     前記低負荷側負荷圧通路と前記排出通路とを連通させる絞り部をさらに備え、
     前記低負荷アクチュエータの負荷圧は、逆止弁を通じて前記低負荷側負荷圧通路に導かれる流体圧制御装置。
  5.  請求項4に記載の流体圧制御装置であって、
     前記高負荷アクチュエータの負荷圧が導かれる高負荷側負荷圧通路と、
     前記高負荷側負荷圧通路に導かれる負荷圧及び前記低負荷側負荷圧通路に導かれる負荷圧の高い方の負荷圧が導かれる最高負荷圧通路と、
     一対の流入口に前記高負荷側負荷圧通路と前記低負荷側負荷圧通路とがそれぞれ接続され、流出口に前記最高負荷圧通路が接続される高圧選択弁と、をさらに備える流体圧制御装置。
  6.  請求項5に記載の流体圧制御装置であって、
     前記第1接続通路と前記第2接続通路との間において前記供給通路に設けられ、作動流体の通過流量を制限可能な流量制限弁をさらに備え、
     前記流量制限弁は、前記最高負荷圧通路に導かれる負荷圧が前記低負荷側負荷圧通路に導かれる負荷圧よりも大きい場合に作動流体の通過流量を制限する流体圧制御装置。
  7.  請求項6に記載の流体圧制御装置であって、
     前記流量制限弁は、前記最高負荷圧通路に導かれる負荷圧が前記低負荷側負荷圧通路に導かれる負荷圧と同じ大きさである場合には、作動流体の通過流量を制限しない流体圧制御装置。
  8.  請求項5に記載の流体圧制御装置であって、
     前記作動流体供給源は、可変容量ポンプであり、
     前記最高負荷圧通路に導かれる負荷圧は、前記可変容量ポンプをロードセンシング制御するために用いられる流体圧制御装置。
  9.  請求項1に記載の流体圧制御装置を備えたフォークリフトであって、
     前記高負荷制御弁は、フォークを昇降させるリフトシリンダに供給される作動流体の流量を制御する制御弁であり、前記低負荷制御弁は、マストの傾斜角を変化させるチルトシリンダに供給される作動流体の流量を制御する制御弁であるフォークリフト。
PCT/JP2018/008818 2017-04-18 2018-03-07 流体圧制御装置およびこれを備えるフォークリフト WO2018193741A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-082316 2017-04-18
JP2017082316A JP2018179216A (ja) 2017-04-18 2017-04-18 流体圧制御装置およびこれを備えるフォークリフト

Publications (1)

Publication Number Publication Date
WO2018193741A1 true WO2018193741A1 (ja) 2018-10-25

Family

ID=63856289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008818 WO2018193741A1 (ja) 2017-04-18 2018-03-07 流体圧制御装置およびこれを備えるフォークリフト

Country Status (2)

Country Link
JP (1) JP2018179216A (ja)
WO (1) WO2018193741A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111075793A (zh) * 2019-12-16 2020-04-28 湖南联诚轨道装备有限公司 液压缸高温往复试验装置及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143167A1 (ja) * 2015-03-11 2016-09-15 Kyb株式会社 流体圧制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143167A1 (ja) * 2015-03-11 2016-09-15 Kyb株式会社 流体圧制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111075793A (zh) * 2019-12-16 2020-04-28 湖南联诚轨道装备有限公司 液压缸高温往复试验装置及方法

Also Published As

Publication number Publication date
JP2018179216A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
US7353744B2 (en) Hydraulic control
EP3306114B1 (en) Hydraulic energy regeneration system for work machine
US7614336B2 (en) Hydraulic system having augmented pressure compensation
EP3301229B1 (en) Hydraulic driving device of work machine
CN106837902B (zh) 液压驱动装置
JP6514522B2 (ja) アンロード弁および油圧ショベルの油圧駆動システム
JP4976920B2 (ja) ポンプ吐出量制御装置
US20220170241A1 (en) Flow Control Valve
US8915075B2 (en) Hydraulic control arrangement
KR20170038933A (ko) 로드 센싱 밸브 장치
WO2018193741A1 (ja) 流体圧制御装置およびこれを備えるフォークリフト
US20100043418A1 (en) Hydraulic system and method for control
JP2014148994A (ja) 作業機械の油圧制御装置
KR20120101614A (ko) 밸브 장치
WO2018193740A1 (ja) 流体圧制御装置およびこれを備えるフォークリフト
US3628424A (en) Hydraulic power circuits employing remotely controlled directional control valves
JP6427221B2 (ja) 流体圧制御装置及びこれを備える作業機
CN109196226B (zh) 泵装置
JP7418278B2 (ja) 油圧制御回路
JP4907098B2 (ja) フォークリフト用制御回路
JP2020197231A (ja) 流体圧装置
JP4649060B2 (ja) 産業用車両の油圧制御装置
JP4003644B2 (ja) 作業機械の油圧制御装置
JP4778721B2 (ja) フォークリフト用制御回路
JP4671408B2 (ja) アンロード弁が設けられた油圧回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788081

Country of ref document: EP

Kind code of ref document: A1