WO2019136994A1 - 用于电动汽车直流充电的充电装置 - Google Patents
用于电动汽车直流充电的充电装置 Download PDFInfo
- Publication number
- WO2019136994A1 WO2019136994A1 PCT/CN2018/100028 CN2018100028W WO2019136994A1 WO 2019136994 A1 WO2019136994 A1 WO 2019136994A1 CN 2018100028 W CN2018100028 W CN 2018100028W WO 2019136994 A1 WO2019136994 A1 WO 2019136994A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charging
- battery module
- voltage
- dcdc converter
- vehicle
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/22—Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/53—Batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/57—Charging stations without connection to power networks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to the field of electric vehicle charging technology, and more particularly to a charging device for DC charging of an electric vehicle.
- the electric vehicle charging device can replenish electric energy for the vehicle, and provide electric power vehicle with a power loss rescue, so that the vehicle can continue to exercise to a nearby charging pile for charging. Therefore, the development of a simple, portable and practical electric vehicle charging device has become a technical problem to be solved.
- the technical problem to be solved by the present invention is to provide a charging device for DC charging of an electric vehicle, which can provide charging energy to the rescued vehicle according to the cruising range demand after the rescue, and integrates the electric vehicle energy storage battery feed rescue and Auxiliary power battery loss and rescue two rescue equipment, compact structure, efficient operation, improve the user experience.
- the present invention provides a charging device for DC charging of an electric vehicle, comprising:
- a battery module is detachably disposed in the battery module card slot, electrically connected to the battery module card slot, and outputs a voltage to the first DCDC converter;
- a first DCDC converter for converting an output voltage of the battery module into a first charging voltage
- a charging controller configured to control the first DCDC converter to output a first charging voltage and a first charging current for charging the charged vehicle.
- the battery module card slot is internally provided with a connector electrically connected to the battery module card slot, and the battery module card slot is electrically connected to the battery module through the connector, according to The battery module is replaced by the cruising range demand of the charged vehicle.
- the charging controller is further configured to acquire charging information of the powered vehicle power battery BMS, and send a first charging control instruction to the first DCDC converter according to the charging information of the power battery BMS, thereby controlling the The first DCDC converter outputs a first charging voltage and a first charging current.
- the charging controller is further configured to monitor the battery module, and when the battery module is abnormal, issue a power-off control command to perform power-off protection.
- the charging controller detects a single voltage, a single temperature, a module voltage, and a module current of the battery module in real time, and compares the detected value with a corresponding preset range value, if any one of the parameters If the detected value is no longer within the preset range, a power-off control command is sent.
- the charging device further includes a second DCDC converter that is connected to the battery module and the charging controller, and is configured to supply power to the BMS of the powered vehicle power battery under the control of the charging controller. Or charge the car's auxiliary power supply.
- the second DCDC converter includes two working modes: a constant voltage power supply mode and a constant current charging mode;
- the second DCDC converter When the second DCDC converter is in a constant voltage operation mode, it is configured to receive a constant voltage current limiting command sent by the charging controller, enter a voltage closed loop, and convert the output voltage of the battery module into a BMS power supply voltage, which is power Battery BMS constant voltage power supply;
- the second DCDC converter When the second DCDC converter is in the constant current charging mode, it is configured to receive a constant current limiting command sent by the charging controller, enter a current closed loop, and convert an output voltage of the battery module into a second charging voltage. , charging the vehicle auxiliary power supply.
- the second, second, second, further charging device further includes a DC charging gun connected to the first DCDC converter, the second DCDC converter, and a charge controller for connecting the A charging interface of the charging vehicle charges the charged vehicle and powers the BMS of the powered vehicle power battery.
- the charging device further includes a power output connector connected to the second DCDC converter for connecting the vehicle auxiliary power source to charge the vehicle auxiliary power source.
- the charging device for DC charging of an electric vehicle can achieve considerable technical advancement and practicability, and has wide industrial use value, and has at least the following advantages:
- the charging device can replace the battery module, and can provide charging energy to the rescued vehicle according to the subsequent mileage requirement after the rescue, thereby improving the economic benefit of the device and improving the user experience.
- the second DCDC converter of the charging device has two working modes, the power supply battery BMS is powered by the charging vehicle in the constant voltage power supply mode, and the vehicle auxiliary power source is charged in the constant current charging mode; the electric vehicle power battery is integrated.
- Two kinds of rescue equipments such as power failure rescue and vehicle auxiliary power supply battery loss and power rescue, are compact, efficient, and versatile.
- FIG. 1 is a schematic diagram of a charging device for DC charging of an electric vehicle according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of a switching mode of an operation mode of a second DCDC converter controlled by a charging controller of a charging device according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of a working principle of a second DCDC converter of a charging device according to an embodiment of the present invention.
- an embodiment of the present invention provides a charging device for DC charging of an electric vehicle, including a battery module card slot 1, a battery module 2, a first DCDC converter 3, and a charging controller 4, DCDC.
- the converter is a DC-to-DC converter.
- the battery module card slot 1 is used to set the battery module 2; the battery module 2 is detachably disposed in the battery module card slot 1, and is electrically connected with the battery module card slot 1 and is converted to the first DCDC.
- the output voltage of the third DCDC converter 3 is used to convert the output voltage of the battery module 2 into a first charging voltage; the charging controller 4 is configured to control the first DCDC converter 3 to output a first charging voltage and A charging current, a first charging voltage and a first charging current are used to charge the charged vehicle.
- the electric vehicle of the present invention generally refers to a vehicle that can be powered by an on-vehicle power source, and is not limited to a pure electric vehicle or a hybrid vehicle.
- the charging device can be used as an independent charging device for the vehicle owner to carry the spare, or can be provided on the vehicle for providing the charging service, as a movable charging car or the like.
- the battery module 2 is a standardized battery module, and the battery module in the power battery package can be used.
- the battery module card slot 1 is internally provided with a connector electrically connected to the battery module card slot 1 and a battery module card.
- the slot 1 can be electrically connected to the battery module 2 through a connector.
- the weight of the battery module 2 can be set to not exceed 15KG, and the carrying capacity does not exceed 3Kwh, if the electric vehicle is in a loss location far away from the available charging pile, or where the large charging device can be parked Farther, the battery module 2 can be replaced to obtain more power according to the cruising range demand of the charged vehicle.
- the charging device includes a battery module card slot 1.
- a vehicle to be charged needs to travel 10 kilometers to the target charging pile, and consumes 0.2 kWh per kilometer, the charging device needs to provide at least 2 kWh for the vehicle to be charged. If each battery module 2 contains 1 degree of electricity, at least two battery modules 2 need to be provided to charge the vehicle to be charged, and after one battery module 2 is exhausted, it is removed from the battery module card slot 1 and another A set of battery modules 2 can be quickly loaded into the battery module card slot 1 to continue charging the vehicle without replacing the battery module card slot 1.
- the charging device includes a plurality of battery module card slots 1.
- the plurality of battery module card slots 1 can be set to be used separately or in combination, and multiple devices can be used simultaneously by group policy.
- One battery module 2 can be disposed in each battery module card slot 1.
- it can be a dual battery module card slot 1 or three battery module card slots 1 and the like.
- the three battery module card slots 1 are taken as an example for description, and three battery module card slots 1 are respectively set as the first battery.
- the charging device needs to provide at least 3 kWh for the vehicle to be charged. If each battery module 2 contains 1 kWh, At least three battery modules 2 need to be provided to charge the vehicle to be charged, and the vehicle to be charged can be charged in two ways at this time:
- the first battery module card slot, the second battery module card slot, and the corresponding battery module 2 in the third battery module card slot are used to charge the vehicle to be charged, that is, the first battery module card slot is used first.
- the battery module 2 charges the vehicle to be charged, and then uses the battery module 2 in the second battery module card slot to charge the vehicle to be charged, and finally uses the battery module 2 in the third battery module card slot.
- the charging vehicle is charged, and it is not necessary to unplug the battery module 2 during charging.
- the first battery module card slot, the second battery module card slot and the third battery module card slot are combined and charged, wherein all combinations or partial combinations can be performed, for example, three groups of battery module card slots 1 can be directly
- the combination is to charge the vehicle to be charged, and as an example, the three can be combined in series.
- the first battery module card slot and the second battery module card slot are combined to be charged by the vehicle to be charged, and then the battery module 2 in the third battery module card slot is used to charge the vehicle to be charged. In this process, it is also unnecessary to unplug the battery module 2.
- the charging device of the present invention can replace the battery module 2. According to the above embodiment, it is not necessary to remove the battery module 2 when replacing the battery module 2, or between the plurality of battery modules 2 Combine and switch. According to the subsequent mileage requirement after the rescue, the rescued vehicle is provided with charging energy, which improves the economic benefit of the device and improves the user experience.
- the first DCDC converter 3 converts the voltage output from the battery module 2 into a voltage that can be charged by the charged vehicle, and outputs a corresponding charging current.
- the charging controller 4 acquires charging information of the battery management battery BMS (Battery Management System), specifically including the power battery voltage, current, and the like, and transmits the charging information to the first DCDC converter 3 according to the charging information of the power battery BMS.
- a charging control command thereby controlling the first DCDC converter 3 to output the first charging voltage and the first charging current.
- the charging controller 4 is further connected to the battery module 2 for monitoring the battery module 2.
- a power-off control command is issued to perform power-off protection.
- the charging controller 4 detects the cell voltage, the cell temperature, the module voltage and the module current of the battery module 2 in real time, and each parameter has a corresponding preset range value, and can work normally within the preset range value. Comparing the detected value with the corresponding preset range value, if the detected value of any one of the parameters is no longer within the preset range, sending a power-off control command to stop the charging device, thereby performing power-off protection and preventing The danger occurs.
- the charging device further includes a second DCDC converter 5, which is connected to the battery module 2 and the charging controller 4, and is used to supply power to the BMS of the powered vehicle power battery under the control of the charging controller 4. Or charge the car's auxiliary power supply.
- the charge controller 4 can control the second DCDC converter 5 to operate in a constant voltage power supply mode or a constant current charging mode, and the second DCDC converter 5 is used to receive the constant voltage limit sent by the charge controller 4 when the second DCDC converter 5 is in the constant voltage operation mode.
- the flow instruction enters the voltage closed loop, and converts the output voltage of the battery module 2 into the BMS supply voltage to supply the power battery BMS constant voltage; when the second DCDC converter 5 is in the constant current charging mode, it is used to receive the charge controller 4
- the transmitted constant current limiting command enters the current closed loop and converts the output voltage of the battery module 2 into a second charging voltage to charge the vehicle auxiliary power source.
- the vehicle auxiliary power supply can be a 12V vehicle lead-acid battery.
- the switching logic of the charging controller 4 controlling the operating mode of the second DCDC converter 5 is as shown in FIG. 2. After the charging controller 4 is powered on, it is detected whether a DC charging gun signal is received, and if so, the charging device is controlled. Entering the DC charging process of the vehicle, sending a constant voltage current limiting command to the second DCDC converter 5, and the second DCDC converter 5 enters the constant voltage power supply mode; otherwise, controlling the charging device to enter the process of charging the vehicle auxiliary power supply to the second The DCDC converter 5 transmits a constant current limit command, and the second DCDC converter 5 enters a constant current charging mode.
- FIG. 3 A schematic diagram of the working principle of the second DCDC converter 5, as shown in FIG. 3, if the second DCDC converter 5 receives the constant voltage current limiting command, enters the voltage closed loop, and converts the output voltage of the battery module 2 into the BMS power supply voltage.
- the power battery BMS performs constant voltage power supply. After entering the voltage closed loop, the current value of the second DCDC converter 5 needs to be monitored in real time. If the preset current limit value is not exceeded, the BMS of the vehicle power battery is continuously supplied with constant voltage, otherwise Enter the shutdown state to ensure that the charging device is in a safe working state.
- the second DCDC converter 5 receives the constant current limiting command, it enters the current closed loop, converts the output voltage of the battery module 2 into the second charging voltage, and charges the vehicle auxiliary power supply, and after entering the current closed loop, the sustainable monitoring is performed. If the voltage value of the two DCDC converters 5 does not exceed the preset voltage limit value, the vehicle auxiliary power supply is continuously charged, otherwise the power is turned off to ensure that the charging device is in a safe working state.
- the charging device further includes a power output connector 7 connected to the second DCDC converter 5, and when the charging device is used to charge the vehicle auxiliary power source, the second DCDC converter 5 is connected to the vehicle auxiliary power source to charge the vehicle auxiliary power source. .
- the charging device can not only charge the vehicle-mounted auxiliary power supply of the electric vehicle, but also charge the vehicle auxiliary power supply of the traditional petrochemical energy vehicle to perform vehicle auxiliary power supply rescue.
- the charging device further includes a DC charging gun 6, which is connected to the first DCDC converter 3, the second DCDC converter 5 and the charge controller 4 for connecting the charging interface of the charged vehicle, charging the charged vehicle, and being the vehicle being charged.
- the DC charging gun 6 can be a national standard charging gun, an American standard DC charging gun or an European standard DC charging gun. The charging of the electric vehicle by the DC charging gun 6 further improves the versatility of the charging device.
- Step 11 insert the battery module 2 into the battery module card slot 1, and connect the DC charging gun 6 to the vehicle charging port;
- Step 12 The charging controller 4 is powered on, receives a startup command, and detects whether a DC charging gun gun signal is received, and if yes, sends a constant voltage current limiting instruction to the second DCDC converter 5;
- Step 13 The second DCDC converter 5 supplies power to the charged vehicle power battery BMS.
- Step 14 the charging controller 4 obtains the charging demand from the power battery BMS, and sends a control command to the first DCDC converter 3 according to the charging demand;
- Step 15 The first DCDC converter 3 converts the voltage output by the battery module 2 into a first charging voltage according to the received control command, and outputs a first charging voltage and a first charging current to the DC charging gun to charge the vehicle.
- Step 21 insert the battery module 2 into the battery module card slot 1, and connect the power output connector 7 to the vehicle auxiliary power source;
- Step 22 the charging controller 4 is powered on, accepts a start command, detects whether the DC charging gun gun signal is received, and if not, proceeds to step 23;
- Step 23 the charging controller 4 sends a constant current limiting command to the second DCDC converter 5;
- Step 24 The second DCDC converter 5 converts the voltage outputted by the battery module 2 into a second charging voltage, and outputs a second charging voltage and a second charging current to the power output connector 7 to charge the vehicle auxiliary power source.
- the charging device of the embodiment of the invention can replace the battery module 2, and can provide charging energy to the rescued vehicle according to the subsequent cruising range demand after the rescue, thereby improving the economic benefit of the device and improving the user experience.
- the second DCDC converter 5 of the charging device has two working modes. In the constant voltage power supply mode, the power supply battery BMS is powered by the charging vehicle, and in the constant current charging mode, the vehicle auxiliary power source is charged; the electric vehicle power battery is integrated.
- Two kinds of rescue equipments, such as power failure rescue and vehicle auxiliary power supply battery loss and power rescue, are compact, efficient, and versatile.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种用于电动汽车直流充电的充电装置,包括电池模组卡槽(1),用于设置电池模组(2);电池模组(2),可拆卸地设置在电池模组卡槽(1)中,与电池模组卡槽(1)形成电连接,并向第一DCDC变换器(3)输出电压;第一DCDC变换器(3),用于将电池模组(2)的输出电压转换为第一充电电压;充电控制器(4),用于控制第一DCDC变换器(3)输出用于为被充电车辆充电的第一充电电压和第一充电电流。
Description
本发明涉及电动汽车充电技术领域,尤其涉及一种用于电动汽车直流充电的充电装置。
随着传统化石能源消耗带来的供应压力以及尾气的污染,在环保以及清洁能源概念的大趋势下,电动汽车对环境影响相对传统汽车较小,因此电动汽车近几年呈现了井喷式发展。随着电动汽车的大量普及,基础充电设施必不可少,电动汽车充电桩作为充电基础设施的一部分对应推进电动汽车的普及具有重要意义。但是电动汽充电桩设备通常固定在一个地点,不能移动。目前的电动汽车动力电池电量估算很难做到与传统汽车一样精确,因此,在电动车使用过程中,很可能出现实际电量耗尽而停在路途中的风险。
电动汽车充电装置可以为车辆补充电能,为电动汽车提供亏电救援,使车辆可以继续行使到附近的充电桩进行充电。因此,研制出一种简单便携,切实可行的电动汽车充电装置成为亟待解决的技术问题。
发明内容
本发明所要解决的技术问题在于,提供一种用于电动汽车直流充电的充电装置,可根据救援后的续航里程需求给被救援车辆提供充电电能,且集成了电动汽车储能电池馈电救援与辅助电源电池亏电救援两种救援设备,结构紧凑,运行高效,提升了用户体验。
为了解决上述技术问题,本发明提供一种用于电动汽车直流充电的充电装置,包括:
电池模组卡槽,用于设置电池模组;
电池模组,可拆卸地设置在所述电池模组卡槽中,与所述电池模组卡槽形成电连接,并向第一DCDC变换器输出电压;
第一DCDC变换器,用于将所述电池模组的输出电压转换为第一充电电压;
充电控制器,用于控制所述第一DCDC变换器输出用于为被充电车辆充电的第一充电电压和第一充电电流。
进一步的,所述电池模组卡槽内部设有与所述电池模组卡槽电连接的接插件,所述电池模组卡槽通过所述接插件与所述电池模组形成电连接, 根据被充电车辆的续航里程需求,更换所述电池模组。
进一步的,所述充电控制器还用于获取被充电车辆动力电池BMS的充电信息,并根据所述动力电池BMS的充电信息向所述第一DCDC变换器发送第一充电控制指令,从而控制所述第一DCDC变换器输出第一充电电压和第一充电电流。
进一步的,所述充电控制器还用于监控所述电池模组,当所述电池模组出现异常时,发出断电控制指令,进行断电保护。
进一步的,所述充电控制器实时检测所述电池模组的单体电压、单体温度、模组电压和模组电流,将检测值与对应的预设范围值进行比较,如果其中任意一个参数的检测值不再对应的预设范围内,则发送断电控制指令。
进一步的,所述充电装置还包括第二DCDC变换器,连接所述电池模组和充电控制器,在所述充电控制器的控制下,用于为所述被充电车辆动力电池的BMS供电,或者为车载辅助电源充电。
进一步的,所述第二DCDC变换器包括两种工作模式:恒压供电模式和恒流充电模式;
所述第二DCDC变换器为恒压工作模式时,用于接收所述充电控制器发送的恒压限流指令,进入电压闭环,并将电池模组的输出电压转换为BMS供电电压,为动力电池BMS恒压供电;
所述第二DCDC变换器为所述恒流充电模式时,用于接收所述充电控制器发送的恒流限压指令,进入电流闭环,并将电池模组的输出电压转换为第二充电电压,为车载辅助电源充电。
所述第二所述第二所述第二进一步的,所述充电装置还包括直流充电枪,连接所述第一DCDC变换器、第二DCDC变换器和充电控制器,用于连接所述被充电车辆的充电接口,为所述被充电车辆充电,以及为所述被充电车辆动力电池的BMS供电。
进一步的,所述充电装置还包括电源输出连接器,与所述第二DCDC变换器相连接,用于连接车载辅助电源,为所述车载辅助电源充电。
本发明与现有技术相比具有明显的优点和有益效果。借由上述技术方案,本发明一种用于电动汽车直流充电的充电装置可达到相当的技术进步性及实用性,并具有产业上的广泛利用价值,其至少具有下列优点:
(1)所述充电装置可更换电池模组,可根据救援后的后续续航里程需求来给被救援车辆提供充电电能,提高了设备的经济效益,同时提升了用户体验。
(2)所述充电装置的第二DCDC变换器具有两种工作模式,恒压供电模式下为被充电车辆动力电池BMS供电,恒流充电模式下给车载辅助电源充 电;集成了电动汽车动力电池亏电救援与车载辅助电源电池亏电救援两种救援设备,结构紧凑,运行高效,更具有通用性。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
图1为本发明一实施例提供用于电动汽车直流充电的充电装置示意图;
图2为本发明一实施例提供的充电装置的充电控制器控制第二DCDC变换器的工作模式切换逻辑示意图;
图3为本发明一实施例提供的充电装置的第二DCDC变换器工作原理示意图。
主要附图标记说明:
1:电池模组卡槽 2:电池模组
3:第一DCDC变换器 4:充电控制器
5:第二DCDC变换器 6:直流充电枪
7:电源输出连接器
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种用于电动汽车直流充电的充电装置的具体实施方式及其功效,详细说明如后。
如图1所示,本发明实施例提供了一种用于电动汽车直流充电的充电装置,包括电池模组卡槽1、电池模组2、第一DCDC变换器3和充电控制器4,DCDC变换器是指直流变直流的变流器。其中,电池模组卡槽1用于设置电池模组2;电池模组2可拆卸地设置在电池模组卡槽1中,与电池模组卡槽1形成电连接,并向第一DCDC变换器3输出电压;第一DCDC变换器3用于将所述电池模组2的输出电压转换为第一充电电压;充电控制器4用于控制第一DCDC变换器3输出第一充电电压和第一充电电流,第一充电电压和第一充电电流用于为被充电车辆充电。
需要说明的是,本发明的电动汽车泛指具有可以车载电源为动力的车辆,并不仅限定为纯电动汽车,也可以为混动汽车。所述充电装置可以作为独立的充电装置,供车主携带备用,也可以设于用于提供充电服务的车辆上,作为可移动的充电车等。
电池模组2为标准化的电池模组,可以采用动力电池包内的电池模组, 电池模组卡槽1内部设有与所述电池模组卡槽1电连接的接插件,电池模组卡槽1可通过接插件与电池模组2形成电连接。此外,为了达到便携的目的,电池模组2重量可设置为不超过15KG,携带电量不超过3Kwh,如果电动汽车亏电地点距离可用充电桩较远的情况下,或者大型充电设备能停放的地方较远,可以根据被充电车辆的续航里程需求,更换电池模组2获得更多的电量。
以下以两个实施例进行说明:
实施例一、
充电装置中包括一个电池模组卡槽1,当一个待充电车辆需要行驶10公里到目标充电桩,每公里消耗需消耗0.2度电,则至充电装置至少需要为待充车辆提供2度电,若每个电池模组2包含1度电,则至少需要配备2个电池模组2,为待充车辆充电,一个电池模组2电能耗尽后,将其移出电池模组卡槽1,另一组电池模组2可快速装入电池模组卡槽1中,继续为车辆充电,无需更换电池模组卡槽1。
实施例二、
充电装置中包括多个电池模组卡槽1,多个电池模组卡槽1可设置为单独分别使用,也可设置为通过组策略同时使用多个。每个电池模组卡槽1中可设置一个电池模组2。例如可以为双电池模组卡槽1,或三个电池模组卡槽1等,以三个电池模组卡槽1为例进行说明,设三个电池模组卡槽1分别为第一电池模组卡槽、第二电池模组卡槽和第三电池模组卡槽。
当一个待充电车辆需要行驶10公里到目标充电桩,每公里消耗需消耗0.3度电,则至充电装置至少需要为待充车辆提供3度电,若每个电池模组2包含1度电,则至少需要配备3个电池模组2,为待充车辆充电,此时可通过两种方式为待充电车辆充电:
方式一、
逐个使用第一电池模组卡槽、第二电池模组卡槽和第三电池模组卡槽中对应的电池模组2为待充车辆充电,即先使用第一电池模组卡槽中的电池模组2为待充电车辆进行充电,再使用第二电池模组卡槽中的电池模组2为待充电车辆进行充电,最后使用第三电池模组卡槽中的电池模组2为待充电车辆进行充电,充电过程中,无需拔掉电池模组2。
方式二、
将第一电池模组卡槽、第二电池模组卡槽和第三电池模组卡槽中进行组合充电,其中可进行全部组合或部分组合,例如可直接将三组电池模组卡槽1组合为待充电车辆进行充电,作为示例,可采用串联的方式将三者组合。或者先将第一电池模组卡槽和第二电池模组卡槽组合为待充电车辆进行充电,然后再使用第三电池模组卡槽中的电池模组2为待充电车辆充 电等等。此过程中,也无需拔掉电池模组2。
由此可知,本发明所述充电装置可更换电池模组2,通过上述实施例可知,更换电池模组2并非一定要拔掉电池模组2,也可以时多个电池模组2之间的组合和切换。根据救援后的后续续航里程需求来给被救援车辆提供充电电能,提高了设备的经济效益,同时提升了用户体验。
第一DCDC变换器3可将电池模组2输出的电压转换为能够适应被充电车辆充电的电压,并输出相应的充电电流。
充电控制器4获取被充电车辆动力电池BMS(Battery management system,电池管理系统)的充电信息,具体包括动力电池电压、电流等,并根据动力电池BMS的充电信息向第一DCDC变换器3发送第一充电控制指令,从而控制第一DCDC变换器3输出第一充电电压和第一充电电流。
充电控制器4还连接电池模组2,用于监控电池模组2,当电池模组2出现异常时,发出断电控制指令,进行断电保护。充电控制器4实时检测电池模组2的单体电压、单体温度、模组电压和模组电流,每个参数均设有对应的预设范围值,在预设范围值内可正常工作,将检测值与对应的预设范围值进行比较,如果其中任意一个参数的检测值不再对应的预设范围内,则发送断电控制指令,使充电装置停止工作,从而进行断电保护,防止危险发生。
此外,充电装置还包括第二DCDC变换器5,第二DCDC变换器5连接电池模组2和充电控制器4,在充电控制器4的控制下,用于为被充电车辆动力电池的BMS供电,或者为车载辅助电源充电。充电控制器4可以控制第二DCDC变换器5在恒压供电模式或恒流充电模式下工作,第二DCDC变换器5为恒压工作模式时,用于接收充电控制器4发送的恒压限流指令,进入电压闭环,并将电池模组2的输出电压转换为BMS供电电压,为动力电池BMS恒压供电;第二DCDC变换器5为恒流充电模式时,用于接收充电控制器4发送的恒流限压指令,进入电流闭环,并将电池模组2的输出电压转换为第二充电电压,为车载辅助电源充电。其中,车载辅助电源可以为12V的车载铅酸电池。
充电控制器4控制第二DCDC变换器5的工作模式的切换逻辑如图2所示,充电控制器4上电后,检测是否接收到直流充电插枪信号,若有,则控制所述充电装置进入车辆直流充电流程,向第二DCDC变换器5发送恒压限流指令,第二DCDC变换器5进入恒压供电模式;否则,控制所述充电装置进入车辆辅助电源充电的流程,向第二DCDC变换器5发送恒流限压指令,第二DCDC变换器5进入恒流充电模式。
第二DCDC变换器5工作原理示意图,如图3所示,若第二DCDC变换器5接收到恒压限流指令,进入电压闭环,将电池模组2的输出电压转换 为BMS供电电压,为动力电池BMS进行恒压供电,进入电压闭环后,还需实时监测第二DCDC变换器5的电流值,若不超过预设限流值,则持续为车辆动力电池的BMS进行恒压供电,否则进入关机状态,以确保所述充电装置处于安全工作状态。若第二DCDC变换器5接收到恒流限压指令,则进入电流闭环,将电池模组2的输出电压转换为第二充电电压,为车载辅助电源充电,进入电流闭环后,可持续监测第二DCDC变换器5的电压值,若不超过预设限压值,则持续为车载辅助电源充电,否则进入关机状态,以确保所述充电装置处于安全工作状态。
充电装置还包括电源输出连接器7,与第二DCDC变换器5相连接,当充电装置用于为车载辅助电源充电时,第二DCDC变换器5连接车载辅助电源,为所述车载辅助电源充电。充电装置不仅可以为电动汽车的车载辅助电源充电,也可为传统石化能源车的车载辅助电源充电,进行车辆辅助电源救援。
充电装置还包括直流充电枪6,连接第一DCDC变换器3、第二DCDC变换器5和充电控制器4,用于连接被充电车辆的充电接口,为被充电车辆充电,以及为被充电车辆动力电池的BMS供电。直流充电枪6可以为国标充电枪、美标直流充电枪或欧标直流充电枪等。通过直流充电枪6为电动车充电,进一步提高了充电装置的通用性。
采用本发明实施例所述充电装置为车辆直流充电的流程为:
步骤11、将电池模组2插入电池模组卡槽1中,将直流充电枪6连接车辆充电口;
步骤12、充电控制器4上电,接收启动指令,并检测是否接收到直流充电枪插枪信号,若是,则向第二DCDC变换器5发送恒压限流指令;
步骤13、第二DCDC变换器5为被充电车辆动力电池BMS供电;
步骤14、充电控制器4从动力电池BMS获取充电需求,并根据充电需求向第一DCDC变换器3发送控制指令;
步骤15、第一DCDC变换器3根据所接收的控制指令将电池模组2输出的电压转换为第一充电电压,并输出第一充电电压和第一充电电流给直流充电枪,为车辆充电。
采用本发明实施例所述充电装置为车辆辅助电源充电的流程为:
步骤21、将电池模组2插入电池模组卡槽1中,将电源输出连接器7连接车辆辅助电源;
步骤22、充电控制器4上电,接受启动指令,检测是否接受到直流充电枪插枪信号,如否,则进入步骤23;
步骤23、充电控制器4向第二DCDC变换器5发送恒流限压指令;
步骤24、第二DCDC变换器5将电池模组2输出的电压转换为第二充电 电压,并输出第二充电电压和第二充电电流给电源输出连接器7,为车辆辅助电源充电。
本发明实施例所述充电装置可更换电池模组2,可根据救援后的后续续航里程需求来给被救援车辆提供充电电能,提高了设备的经济效益,同时提升了用户体验。所述充电装置的第二DCDC变换器5具有两种工作模式,恒压供电模式下,为被充电车辆动力电池BMS供电,恒流充电模式下,给车载辅助电源充电;集成了电动汽车动力电池亏电救援与车载辅助电源电池亏电救援两种救援设备,结构紧凑,运行高效,更具有通用性。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
Claims (9)
- 一种用于电动汽车直流充电的充电装置,其特征在于:包括:电池模组卡槽,用于设置电池模组;电池模组,可拆卸地设置在所述电池模组卡槽中,与所述电池模组卡槽形成电连接,并向第一DCDC变换器输出电压;第一DCDC变换器,用于将所述电池模组的输出电压转换为第一充电电压;充电控制器,用于控制所述第一DCDC变换器输出用于为被充电车辆充电的第一充电电压和第一充电电流。
- 根据权利要求1所述的用于电动汽车直流充电的充电装置,其特征在于:所述电池模组卡槽内部设有与所述电池模组卡槽电连接的接插件,所述电池模组卡槽通过所述接插件与所述电池模组形成电连接,根据被充电车辆的续航里程需求,更换所述电池模组。
- 根据权利要求1所述的用于电动汽车直流充电的充电装置,其特征在于:所述充电控制器还用于获取被充电车辆动力电池BMS的充电信息,并根据所述动力电池BMS的充电信息向所述第一DCDC变换器发送第一充电控制指令,从而控制所述第一DCDC变换器输出第一充电电压和第一充电电流。
- 根据权利要求1所述的用于电动汽车直流充电的充电装置,其特征在于:所述充电控制器还用于监控所述电池模组,当所述电池模组出现异常时,发出断电控制指令,进行断电保护。
- 根据权利要求4所述的用于电动汽车直流充电的充电装置,其特征在于:所述充电控制器实时检测所述电池模组的单体电压、单体温度、模组电压和模组电流,将检测值与对应的预设范围值进行比较,如果其中任意一个参数的检测值不再对应的预设范围内,则发送断电控制指令。
- 根据权利要求1所述的用于电动汽车直流充电的充电装置,其特征在于:所述充电装置还包括第二DCDC变换器,连接所述电池模组和充电控制器,在所述充电控制器的控制下,用于为所述被充电车辆动力电池的BMS供电,或者为车载辅助电源充电。
- 根据权利要求6所述的用于电动汽车直流充电的充电装置,其特征在于:所述第二DCDC变换器包括两种工作模式:恒压供电模式和恒流充电模式;所述第二DCDC变换器为恒压工作模式时,用于接收所述充电控制器发送的恒压限流指令,进入电压闭环,并将电池模组的输出电压转换为BMS供电电压,为动力电池BMS恒压供电;所述第二DCDC变换器为所述恒流充电模式时,用于接收所述充电控制器发送的恒流限压指令,进入电流闭环,并将电池模组的输出电压转换为第二充电电压,为车载辅助电源充电。
- 根据权利要求6所述的用于电动汽车直流充电的充电装置,其特征在于:所述充电装置还包括直流充电枪,连接所述第一DCDC变换器、第二DCDC变换器和充电控制器,用于连接所述被充电车辆的充电接口,为所述被充电车辆充电,以及为所述被充电车辆动力电池的BMS供电。
- 根据权利要求6所述的用于电动汽车直流充电的充电装置,其特征在于:所述充电装置还包括电源输出连接器,与所述第二DCDC变换器相连接,用于连接车载辅助电源,为所述车载辅助电源充电。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18899791.0A EP3738817B1 (en) | 2018-01-09 | 2018-08-10 | Charging device for direct-current charging of electric vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810019368.0 | 2018-01-09 | ||
CN201810019368.0A CN108394288B (zh) | 2018-01-09 | 2018-01-09 | 用于电动汽车直流充电的充电装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019136994A1 true WO2019136994A1 (zh) | 2019-07-18 |
Family
ID=63093976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/100028 WO2019136994A1 (zh) | 2018-01-09 | 2018-08-10 | 用于电动汽车直流充电的充电装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3738817B1 (zh) |
CN (1) | CN108394288B (zh) |
WO (1) | WO2019136994A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110588385A (zh) * | 2019-10-11 | 2019-12-20 | 江苏创合新能源科技有限公司 | 一种多功能车载充电机 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110739612B (zh) * | 2019-11-01 | 2021-01-12 | 南京恒天领锐汽车有限公司 | 一种纯电动双源系统高压配电柜 |
EP3866294A1 (en) * | 2020-02-13 | 2021-08-18 | Ningbo Geely Automobile Research & Development Co. Ltd. | A portable rescue power bank |
US11745614B2 (en) * | 2020-10-26 | 2023-09-05 | Ford Global Technologies, Llc | Portable high-voltage vehicle charging system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102208826A (zh) * | 2010-03-30 | 2011-10-05 | 河南电力试验研究院 | 一种应急充电车和充电系统 |
JP2012080689A (ja) * | 2010-10-04 | 2012-04-19 | Panasonic Corp | 電気自動車用電源装置 |
US20120139487A1 (en) * | 2010-12-06 | 2012-06-07 | Egtronics Co., Ltd. | Charging system for mild hybrid vehicle |
CN103151476A (zh) * | 2013-03-05 | 2013-06-12 | 苏州恒知传感科技有限公司 | 供电模组以及具有该供电模组的电动汽车 |
CN105515113A (zh) * | 2016-01-12 | 2016-04-20 | 西安特锐德智能充电科技有限公司 | 一种移动充电系统及其控制方法 |
CN206426869U (zh) * | 2017-01-19 | 2017-08-22 | 东莞市青鑫新能源有限公司 | 一种可移动的电动汽车充电系统 |
CN107539151A (zh) * | 2017-08-31 | 2018-01-05 | 西安特锐德智能充电科技有限公司 | 充换电一体的动力电池系统和工作方法和应用 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202019221U (zh) * | 2011-04-18 | 2011-10-26 | 成都秦川科技发展有限公司 | 电动汽车pwm整流及变压变流脉冲充电系统 |
US9007020B2 (en) * | 2011-05-25 | 2015-04-14 | Green Charge Networks | Charging service vehicles with battery and generator sources |
CN205753477U (zh) * | 2016-04-28 | 2016-11-30 | 宝沃汽车(中国)有限公司 | 可移动式应急充电装置及应急充电车 |
KR20170126053A (ko) * | 2016-05-04 | 2017-11-16 | 현대자동차주식회사 | 양방향 파워링이 가능한 차량용 충전기, 이를 포함하는 차량 전력 공급 시스템 및 그 제어방법 |
CN106627190A (zh) * | 2016-08-12 | 2017-05-10 | 上海鼎研智能科技有限公司 | 一种具有多个独立电池组的电动汽车 |
CN106985696B (zh) * | 2017-04-19 | 2021-04-16 | 上海蔚来汽车有限公司 | 分布式移动充/换电车系统和储能式充电桩总成 |
CN107346836A (zh) * | 2017-06-29 | 2017-11-14 | 昆山市富众网络科技有限公司 | 一种用于电动汽车的分区段充电方法 |
CN207790378U (zh) * | 2018-01-09 | 2018-08-31 | 蔚来汽车有限公司 | 用于电动汽车直流充电的充电装置 |
-
2018
- 2018-01-09 CN CN201810019368.0A patent/CN108394288B/zh active Active
- 2018-08-10 EP EP18899791.0A patent/EP3738817B1/en active Active
- 2018-08-10 WO PCT/CN2018/100028 patent/WO2019136994A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102208826A (zh) * | 2010-03-30 | 2011-10-05 | 河南电力试验研究院 | 一种应急充电车和充电系统 |
JP2012080689A (ja) * | 2010-10-04 | 2012-04-19 | Panasonic Corp | 電気自動車用電源装置 |
US20120139487A1 (en) * | 2010-12-06 | 2012-06-07 | Egtronics Co., Ltd. | Charging system for mild hybrid vehicle |
CN103151476A (zh) * | 2013-03-05 | 2013-06-12 | 苏州恒知传感科技有限公司 | 供电模组以及具有该供电模组的电动汽车 |
CN105515113A (zh) * | 2016-01-12 | 2016-04-20 | 西安特锐德智能充电科技有限公司 | 一种移动充电系统及其控制方法 |
CN206426869U (zh) * | 2017-01-19 | 2017-08-22 | 东莞市青鑫新能源有限公司 | 一种可移动的电动汽车充电系统 |
CN107539151A (zh) * | 2017-08-31 | 2018-01-05 | 西安特锐德智能充电科技有限公司 | 充换电一体的动力电池系统和工作方法和应用 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110588385A (zh) * | 2019-10-11 | 2019-12-20 | 江苏创合新能源科技有限公司 | 一种多功能车载充电机 |
Also Published As
Publication number | Publication date |
---|---|
EP3738817A1 (en) | 2020-11-18 |
CN108394288A (zh) | 2018-08-14 |
CN108394288B (zh) | 2022-02-15 |
EP3738817B1 (en) | 2024-07-10 |
EP3738817A4 (en) | 2021-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019136994A1 (zh) | 用于电动汽车直流充电的充电装置 | |
JP5854242B2 (ja) | 電動車両を用いた電力供給装置 | |
JP2014150722A (ja) | 車両利用無停電電源装置用のシステム及び方法 | |
KR20120012660A (ko) | 전기자동차 및 그 보조배터리의 충전제어방법. | |
KR20080032454A (ko) | 자동차 배터리 관리 시스템 | |
US20160268820A1 (en) | Charging and discharging system and vehicle used therein | |
CN108995551B (zh) | 一种动车用蓄电池应急充电电路 | |
US20150372519A1 (en) | Charging and discharging device | |
CN110504721B (zh) | 移动充电站 | |
CN106887879A (zh) | 电动型移动充电车对外供电系统及移动充电车 | |
KR20140079626A (ko) | 차량의 배터리 충전시스템 및 충전방법 | |
CN106394300A (zh) | 一种电源管理系统 | |
CN109103984A (zh) | 飞轮储能与在线式工频双变换ups集成系统、控制方法 | |
WO2022166364A1 (zh) | 配电系统、配电系统的控制方法及新能源汽车 | |
JP2014050175A (ja) | 蓄電システム及び蓄電装置の制御装置 | |
CN107492919A (zh) | 电力系统及其控制方法 | |
CN214396436U (zh) | 一种燃料电池车用高压拓扑结构 | |
KR101905925B1 (ko) | 배터리 방전장치 | |
CN204687856U (zh) | 一种高可靠无低压蓄电池的电动汽车电气系统 | |
CN207790377U (zh) | 用于电动汽车交流充电的充电装置 | |
CN114763068B (zh) | 一种车用充电宝系统及充电方法 | |
CN207790378U (zh) | 用于电动汽车直流充电的充电装置 | |
US11349326B2 (en) | Electrical energy storage system and method for operating same | |
KR20180051012A (ko) | 수소차를 이용한 충전시스템 | |
KR20190023388A (ko) | 전기 자동차의 충전 제어장치 및 그 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018899791 Country of ref document: EP Effective date: 20200810 |