WO2019136944A1 - 网侧次同步阻尼控制器全工况优化方法及装置 - Google Patents

网侧次同步阻尼控制器全工况优化方法及装置 Download PDF

Info

Publication number
WO2019136944A1
WO2019136944A1 PCT/CN2018/094296 CN2018094296W WO2019136944A1 WO 2019136944 A1 WO2019136944 A1 WO 2019136944A1 CN 2018094296 W CN2018094296 W CN 2018094296W WO 2019136944 A1 WO2019136944 A1 WO 2019136944A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping controller
model
network side
working condition
grid
Prior art date
Application number
PCT/CN2018/094296
Other languages
English (en)
French (fr)
Inventor
谢小荣
张旭
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2019136944A1 publication Critical patent/WO2019136944A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks

Definitions

  • the invention relates to the technical field of power systems, in particular to a method and a device for optimizing a full working condition of a network side subsynchronous damping controller.
  • the method for improving the subsynchronous damping of a wind farm is mainly for a simple system under a single working condition, and lacks comprehensive considerations for various operating conditions of a complex system.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • an object of the present invention is to provide a method for optimizing the full working condition of the network side subsynchronous damping controller, which effectively improves the adaptability and robustness of the grid side damping controller under full working conditions, and
  • the grid side damping controller provides effective damping under all operating conditions.
  • Another object of the present invention is to provide a full-case optimization device for a network side sub-synchronous damping controller.
  • an embodiment of the present invention provides a method for optimizing a full-condition of a network-side subsynchronous damping controller, comprising the steps of: acquiring a network side subsynchronous damping according to a subsynchronous damping calculator and a subsynchronous current generator. a controlled current source model of the controller; obtaining an impedance network model of the controlled system according to the wind field and the power grid; obtaining a comprehensive performance evaluation index of the full working condition by using the controlled current source model and the impedance network model; The comprehensive performance evaluation index of the working condition obtains the specification of the full working condition optimization control problem of the network side subsynchronous damping controller.
  • the method for optimizing the whole working condition of the network side subsynchronous damping controller of the embodiment of the invention forms a controlled current source model of the grid side damping controller, which facilitates parameter optimization and design, and forms an impedance network model of the controlled system, which is convenient for consideration.
  • the comprehensive impact of wind turbines, transformers and lines has established a comprehensive performance evaluation index for all working conditions, which effectively improves the adaptability and robustness of the grid-side damping controller under full working conditions, and designs and optimizes the network side subsynchronous damping.
  • the controller's full working condition optimization goal enables the grid side damping controller to provide effective damping under all operating conditions.
  • network side sub-synchronous damping controller full working condition optimization method may further have the following additional technical features:
  • the controlled current source model of the mesh side subsynchronous damping controller is:
  • H F (s) is the filter model
  • H d (s) is the subsynchronous current generator model
  • H ci (s) is the current signal proportional phase shift
  • H cu (s) is the phase shift of the voltage signal
  • i in is the controlled system current feedback signal
  • u in is the controlled system voltage feedback signal.
  • the impedance network model is:
  • the Z wind farm is an overall equivalent aggregate impedance model including the wind turbine, the transformer, the wind farm inner line and the net side subsynchronous damping control, and the Z grid is the whole including the series compensation line, the non-string compensation line, the transformer and the receiving end system.
  • Equivalent polymeric impedance model is an overall equivalent aggregate impedance model including the wind turbine, the transformer, the wind farm inner line and the net side subsynchronous damping control, and the Z grid is the whole including the series compensation line, the non-string compensation line, the transformer and the receiving end system.
  • the comprehensive performance evaluation index of the full working condition is:
  • represents the real part
  • the weight coefficients corresponding to ⁇ 1 , ⁇ 2 , ... ⁇ N are respectively denoted as ⁇ 1 , ⁇ 2 , . . . ⁇ N to evaluate the worst damping condition.
  • the optimized parameters of the network side secondary synchronous damping controller are obtained.
  • the full working condition optimization control problem specification is a constraint optimization problem
  • the constraint optimization problem is:
  • Min f max ⁇ 1 ⁇ 1 , ⁇ 2 ⁇ 2 , ... ⁇ N ⁇ N ⁇ ,
  • K i , K u , T i , T u are the optimization parameters of the control system
  • K upi and K upu are the upper limits of K i and K u
  • T up is the upper limit of T i and T u .
  • another embodiment of the present invention provides a network-side sub-synchronous damping controller full-time condition optimization apparatus, including: a first acquisition module for using a sub-synchronous damping calculator and a sub-synchronous current generator Obtaining a controlled current source model of the network side secondary synchronous damping controller; a second obtaining module for acquiring an impedance network model of the controlled system according to the wind field and the power grid; and a calculating module for adopting the controlled current source model and The impedance network model obtains a comprehensive performance evaluation index of the full working condition; and a processing module is configured to obtain a specification of the full working condition optimal control problem of the network side secondary synchronous damping controller according to the comprehensive performance evaluation index of the full working condition.
  • the device-level subsynchronous damping controller full working condition optimization device of the embodiment of the invention forms a controlled current source model of the grid side damping controller, which facilitates parameter optimization and design, and forms an impedance network model of the controlled system, which is convenient for consideration.
  • the comprehensive impact of wind turbines, transformers and lines has established a comprehensive performance evaluation index for all working conditions, which effectively improves the adaptability and robustness of the grid-side damping controller under full working conditions, and designs and optimizes the network side subsynchronous damping.
  • the controller's full working condition optimization goal enables the grid side damping controller to provide effective damping under all operating conditions.
  • network side sub-synchronous damping controller full condition optimization device may further have the following additional technical features:
  • the controlled current source model of the mesh side subsynchronous damping controller is:
  • H F (s) is the filter model
  • H d (s) is the subsynchronous current generator model
  • H ci (s) is the current signal proportional phase shift
  • H cu (s) is the phase shift of the voltage signal
  • i in is the controlled system current feedback signal
  • u in is the controlled system voltage feedback signal.
  • the impedance network model is:
  • the Z wind farm is an overall equivalent aggregate impedance model including the wind turbine, the transformer, the wind farm inner line and the net side subsynchronous damping control, and the Z grid is the whole including the series compensation line, the non-string compensation line, the transformer and the receiving end system.
  • Equivalent polymeric impedance model is an overall equivalent aggregate impedance model including the wind turbine, the transformer, the wind farm inner line and the net side subsynchronous damping control, and the Z grid is the whole including the series compensation line, the non-string compensation line, the transformer and the receiving end system.
  • the comprehensive performance evaluation index of the full working condition is:
  • represents the real part
  • the weight coefficients corresponding to ⁇ 1 , ⁇ 2 , ... ⁇ N are respectively denoted as ⁇ 1 , ⁇ 2 , . . . ⁇ N to evaluate the worst damping condition.
  • the optimized parameters of the network side secondary synchronous damping controller are obtained.
  • the full working condition optimization control problem specification is a constraint optimization problem
  • the constraint optimization problem is:
  • Min f max ⁇ 1 ⁇ 1 , ⁇ 2 ⁇ 2 , ... ⁇ N ⁇ N ⁇ ,
  • K i , K u , T i , T u are the optimization parameters of the control system
  • K upi and K upu are the upper limits of K i and K u
  • T up is the upper limit of T i and T u .
  • FIG. 1 is a flow chart of a method for optimizing a full working condition of a network side subsynchronous damping controller according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a network side secondary synchronous damping controller according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a typical wind farm-grid system in accordance with one embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a full-case optimization device for a network side sub-synchronous damping controller according to an embodiment of the present invention.
  • FIG. 1 is a flow chart of a method for optimizing a full working condition of a network side subsynchronous damping controller according to an embodiment of the present invention.
  • the method for optimizing the full working condition of the network side sub-synchronous damping controller comprises the following steps:
  • step S101 a controlled current source model of the network side subsynchronous damping controller is acquired according to the subsynchronous damping calculator and the subsynchronous current generator.
  • the mesh side subsynchronous damping controller includes: a subsynchronous damping calculator and a subsynchronous current generator.
  • the subsynchronous damping calculator includes: 1) a filter for extracting a subsynchronous frequency signal from the feedback signal; 2) a proportional shift of the voltage signal, a phase shift of the current signal, and an adder for calculating a subsynchronization of the desired output Current.
  • the subsynchronous current generator comprises: 1) a converter device controller for controlling a current output of the converter device according to a reference current generated by the subsynchronous damping calculator; 2) a converter device for issuing a required Secondary synchronous current.
  • the controlled current source model of the mesh side subsynchronous damping controller is:
  • H F (s) is the filter model
  • H d (s) is the subsynchronous current generator model
  • H ci (s) is the current signal proportional phase shift
  • H cu (s) is the phase shift of the voltage signal
  • i in is the controlled system current feedback signal
  • u in is the controlled system voltage feedback signal.
  • i in represents the controlled system current feedback signal
  • u in represents the controlled system voltage feedback signal
  • i abc (s) represents the actual output current
  • the filter model can be any analog, digital (continuous or discrete) or mixed filter that implements band-pass filtering, band-stop filtering, high-pass filtering or low-pass filtering, and is intended to be from the feedback signal. Extract the secondary synchronization component.
  • H F (s) H P (s) H S (s), including a bandpass filter H P (s) and a band rejection filter H S (s).
  • Typical examples are as follows:
  • ⁇ P is the center frequency of the bandpass filter
  • ⁇ P is the bandpass filter damping coefficient
  • ⁇ S is the band rejection filter center frequency
  • ⁇ S is the band rejection filter damping coefficient
  • phase shift of the current signal is aimed at realizing the amplification and phase shifting operation of the current signal.
  • the typical implementation is as follows: K i represents the gain, and T i represents the time constant
  • phase shift of the voltage signal is aimed at realizing the amplification and phase shifting operation of the voltage signal.
  • the typical implementation is as follows: K u represents the gain, and T u represents the time constant
  • the subsynchronous current generator model represents the equipment capable of generating subsynchronous current realized by the power electronic converter.
  • the model is described by a proportional-lag link.
  • the typical model is: K d represents the amplitude gain of the output current i abc compared to the reference signal i * abc , and T d represents the time delay of the output current compared to the reference signal.
  • step S102 an impedance network model of the controlled system is acquired according to the wind field and the power grid.
  • the controlled system includes a wind farm and a power grid, wherein the wind farm includes a wind turbine, a transformer, and a wind farm inner line; the power grid includes a series compensation circuit, a non-string compensation circuit, a transformer, and a receiving end system.
  • Typical impedance models are as follows:
  • R WTG fan equivalent resistance
  • X WTG fan equivalent reactance
  • L T transformer equivalent inductance
  • R T transformer equivalent resistance
  • L T transformer equivalent inductance
  • R T transformer equivalent resistance
  • L FL non-string compensation line equivalent inductance
  • R FL non-string compensation line equivalent resistance
  • L CL series compensation line equivalent resistance
  • C CL series compensation line string Filling capacitor
  • L SYS system equivalent inductance
  • R SYS system equivalent resistance
  • K p represents the proportional constant of the fan rotor control link.
  • ⁇ r represents the fan rotor speed.
  • r r represents the fan rotor resistance.
  • L r represents the rotor inductance of the fan.
  • L m represents the excitation inductance of the fan.
  • R s represents the fan stator resistance.
  • L s represents the fan stator inductance.
  • R PMSG represents the equivalent resistance of the permanent magnet fan.
  • X PMSG represents the equivalent reactance of a permanent magnet fan and can be expressed as capacitive in the subsynchronous frequency range.
  • the impedance network model is:
  • the Z wind farm is an overall equivalent aggregate impedance model including the wind turbine, the transformer, the wind farm inner line and the net side subsynchronous damping control, and the Z grid is the whole including the series compensation line, the non-string compensation line, the transformer and the receiving end system.
  • Equivalent polymeric impedance model is an overall equivalent aggregate impedance model including the wind turbine, the transformer, the wind farm inner line and the net side subsynchronous damping control, and the Z grid is the whole including the series compensation line, the non-string compensation line, the transformer and the receiving end system.
  • the embodiment of the present invention interconnects according to the topology to form an impedance network model Z ⁇ , which is typically shown in FIG. 3 , and the corresponding Z ⁇ in FIG. 3 is as follows:
  • the Z wind field represents the overall equivalent aggregate impedance model including the fan, transformer, line and line side subsynchronous damping control in the wind field;
  • Z grid represents the overall equivalent of the series compensation line, non-string compensation line, transformer and receiver system Aggregate impedance model.
  • step S103 the comprehensive performance evaluation index of the whole working condition is obtained by the controlled current source model and the impedance network model.
  • n minWTG ⁇ n maxWTG .
  • the N WTG type of working condition is selected according to the range of the number of fans.
  • n minWTG represents the minimum number of fans.
  • n maxWTG represents the maximum number of fans.
  • Wind speed variation range W min ⁇ W max . Select N W conditions according to the range of wind speed variation. Where: W min represents the minimum wind speed. W max represents the maximum wind speed.
  • Range of series compensation ⁇ 0 represents the power frequency.
  • the N ⁇ condition is selected according to the range of the series complement variation.
  • ⁇ min represents the minimum value of the string complement.
  • ⁇ max represents the maximum value of the string complement.
  • Receiver system impedance variation range Z minSYS ⁇ Z maxSYS . Select the N sys case according to the system impedance variation range. Where: indicates that Z minSYS represents the minimum impedance of the receiver system. Z maxSYS represents the maximum impedance of the receiver system.
  • N N ⁇ N WTG N sys N W .
  • z SSR ⁇ ⁇ j ⁇
  • ⁇ and ⁇ represent the real part and the imaginary part, respectively.
  • the weight coefficients corresponding to ⁇ 1 , ... ⁇ N are respectively denoted as ⁇ 1 , ⁇ 2 , ... ⁇ N .
  • the comprehensive performance evaluation index of the whole working condition is:
  • represents the real part
  • the weight coefficients corresponding to ⁇ 1 , ⁇ 2 , ... ⁇ N are respectively denoted as ⁇ 1 , ⁇ 2 , . . . ⁇ N to evaluate the worst damping condition. Then, the optimization parameters of the network side secondary synchronous damping controller are obtained.
  • the comprehensive performance index of the full working condition is as shown in the following formula.
  • the index is used to evaluate the worst damping condition, thereby providing a basis for optimizing the parameters of the network side subsynchronous damping controller.
  • the formula is:
  • step S104 the full-case optimal control problem specification of the network-side subsynchronous damping controller is obtained according to the comprehensive performance evaluation index of the whole working condition.
  • the full working condition optimization control problem specification is a constraint optimization problem
  • the constraint optimization problem is:
  • Min f max ⁇ 1 ⁇ 1 , ⁇ 2 ⁇ 2 , ... ⁇ N ⁇ N ⁇ ,
  • K i , K u , T i , T u are the optimization parameters of the control system
  • K upi and K upu are the upper limits of K i and K u
  • T up is the upper limit of T i and T u .
  • the goal of the controller design is to provide as much damping as possible under the worst conditions of the wind farm, taking into account the constraints of the current signal proportional phase shift and the voltage signal proportional phase shift gain and time constant.
  • the problem of optimization of the full working condition of the network side subsynchronous damping controller is standardized as a constrained optimization problem, namely:
  • Min f max ⁇ 1 ⁇ 1 , ⁇ 2 ⁇ 2 , ... ⁇ N ⁇ N ⁇ , (1)
  • T up is the upper limit of T i , T u .
  • various heuristics or intelligent algorithms can be used, such as: genetic quasi-annealing algorithm and other optimization algorithms to achieve efficient solution of formula 1, and obtain K i , K u , T i , T u , which is the optimization parameter of the control system.
  • the controlled current source model of the network side subsynchronous damping controller, the impedance network model of the controlled system, and the comprehensive performance evaluation index of the full working condition may be varied, and based on the technical solution of the present invention, Improvements in the inventive concept should not be excluded from the scope of the present invention.
  • the embodiments of the present invention can achieve the purpose of improving the subsynchronous damping of the wind farm, and improve the stability of the wind farm, and the outstanding advantages are: considering the impedance of the network side subsynchronous damping controller and the controlled network under full working conditions.
  • the network model the network side subsynchronous damping controller can provide effective damping to suppress subsynchronous resonance under all working conditions.
  • the network side subsynchronous damping controller full working condition optimization method forms a controlled current source model of the grid side damping controller, which facilitates parameter optimization and design, and forms an impedance network model of the controlled system. It is easy to consider the comprehensive impact of wind turbines, transformers and lines, and establish a comprehensive performance evaluation index for full working conditions, which effectively improves the adaptability and robustness of the grid-side damping controller under full working conditions, and designs and optimizes the solution network side.
  • the full-mode optimization goal of the synchronous damping controller enables the grid-side damping controller to provide effective damping under all operating conditions.
  • FIG. 4 is a schematic structural diagram of a full-case optimization device for a network side sub-synchronous damping controller according to an embodiment of the present invention.
  • the network side sub-synchronous damping controller full working condition optimization apparatus 10 includes: a first obtaining module 100 , a second acquiring module 200 , a calculating module 300 , and a processing module 400 .
  • the first obtaining module 100 is configured to acquire a controlled current source model of the network side secondary synchronous damping controller according to the secondary synchronous damping calculator and the secondary synchronous current generator.
  • the second acquisition module 200 is configured to acquire an impedance network model of the controlled system according to the wind field and the power grid.
  • the calculation module 300 is configured to obtain a comprehensive performance evaluation index of the full working condition by using the controlled current source model and the impedance network model.
  • the processing module 400 is configured to obtain a specification of the full-case optimal control problem of the network-side sub-synchronous damping controller according to the comprehensive performance evaluation index of the whole working condition.
  • the device 10 of the embodiment of the present invention considers the impedance network model of the network side subsynchronous damping controller and the controlled network under full working condition, and the network side subsynchronous damping controller can provide effective damping suppression time under all working conditions. Synchronous resonance effectively improves the adaptability and robustness of the grid-side damping controller under full operating conditions.
  • the controlled current source model of the mesh side subsynchronous damping controller is:
  • H F (s) is the filter model
  • H ci (s) is the current signal proportional phase shift
  • H d (s) is the subsynchronous current generator model
  • H cu (s) is the phase shift of the voltage signal
  • i in is the controlled system current feedback signal
  • u in is the controlled system voltage feedback signal.
  • the impedance network model is:
  • the Z wind farm is an overall equivalent aggregate impedance model including the wind turbine, the transformer, the wind farm inner line and the net side subsynchronous damping control, and the Z grid is the whole including the series compensation line, the non-string compensation line, the transformer and the receiving end system.
  • Equivalent polymeric impedance model is an overall equivalent aggregate impedance model including the wind turbine, the transformer, the wind farm inner line and the net side subsynchronous damping control, and the Z grid is the whole including the series compensation line, the non-string compensation line, the transformer and the receiving end system.
  • the comprehensive performance evaluation index of the whole working condition is:
  • represents the real part
  • the weight coefficients corresponding to ⁇ 1 , ⁇ 2 , ... ⁇ N are respectively denoted as ⁇ 1 , ⁇ 2 , . . . ⁇ N to evaluate the worst damping condition. Then, the optimization parameters of the network side secondary synchronous damping controller are obtained.
  • the full working condition optimization control problem specification is a constraint optimization problem
  • the constraint optimization problem is:
  • Min f max ⁇ 1 ⁇ 1 , ⁇ 2 ⁇ 2 , ... ⁇ N ⁇ N ⁇ ,
  • K i , K u , T i , T u are the optimization parameters of the control system
  • K upi and K upu are the upper limits of K i and K u
  • T up is the upper limit of T i and T u .
  • the network side subsynchronous damping controller full working condition optimization device forms a controlled current source model of the grid side damping controller, which facilitates parameter optimization and design, and forms an impedance network model of the controlled system. It is easy to consider the comprehensive impact of wind turbines, transformers and lines, and establish a comprehensive performance evaluation index for full working conditions, which effectively improves the adaptability and robustness of the grid-side damping controller under full working conditions, and designs and optimizes the solution network side.
  • the full-mode optimization goal of the synchronous damping controller enables the grid-side damping controller to provide effective damping under all operating conditions.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种网侧次同步阻尼控制器全工况优化方法及装置,其中,方法包括:根据次同步阻尼计算器和次同步电流发生器获取网侧次同步阻尼控制器的受控电流源模型;根据风场和电网获取受控系统的阻抗网络模型;通过受控电流源模型和阻抗网络模型得到全工况综合性能评价指标;根据全工况综合性能评价指标得到网侧次同步阻尼控制器的全工况优化控制问题规范。该方法考虑了网侧次同步阻尼控制器和受控网络在全工况下的阻抗网络模型,以及网侧次同步阻尼控制器在全工况下都能提供有效阻尼抑制次同步谐振,有效的提高了网侧阻尼控制器在全工况下的适应性和鲁棒性。

Description

网侧次同步阻尼控制器全工况优化方法及装置
相关申请的交叉引用
本申请要求清华大学于2018年01月12日提交的、发明名称为“网侧次同步阻尼控制器全工况优化方法及装置”的、中国专利申请号“201810031072.0”的优先权。
技术领域
本发明涉及电力系统技术领域,特别涉及一种网侧次同步阻尼控制器全工况优化方法及装置。
背景技术
随着风电等新能源大规模接入电网,其汇集区域常常出现复杂的谐振现象。国内外已有多起关于风机等引起的次同步谐振事故发生。
然而,由于风电汇集区域风电机组数量较多,运行工况有较大差异,因此针对提高风电等新能源的次同步阻尼从而抑制次同步谐振缺乏有效解决措施。相关技术中,提高风电场次同步阻尼的方法主要针对单一工况下的简单系统,缺乏针对复杂系统多种运行工况的综合考虑。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种网侧次同步阻尼控制器全工况优化方法,该方法有效的提高了网侧阻尼控制器在全工况下的适应性和鲁棒性,并使得网侧阻尼控制器在全工况下都能提供有效阻尼。
本发明的另一个目的在于提出一种网侧次同步阻尼控制器全工况优化装置。
为达到上述目的,本发明一方面实施例提出了一种网侧次同步阻尼控制器全工况优化方法,包括以下步骤:根据次同步阻尼计算器和次同步电流发生器获取网侧次同步阻尼控制器的受控电流源模型;根据风场和电网获取受控系统的阻抗网络模型;通过所述受控电流源模型和所述阻抗网络模型得到全工况综合性能评价指标;根据所述全工况综合性能评价指标得到所述网侧次同步阻尼控制器的全工况优化控制问题规范。
本发明实施例的网侧次同步阻尼控制器全工况优化方法,形成了网侧阻尼控制器的受控电流源模型,方便参数优化和设计,形成了受控系统的阻抗网络模型,便于考虑风机、 变压器、线路的综合影响,建立了全工况综合性能评价指标,有效的提高了网侧阻尼控制器在全工况下的适应性和鲁棒性,设计并优化求解网侧次同步阻尼控制器的全工况优化目标,使得网侧阻尼控制器在全工况下都能提供有效阻尼。
另外,根据本发明上述实施例的网侧次同步阻尼控制器全工况优化方法还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所述网侧次同步阻尼控制器的受控电流源模型为:
i abc(s)=H F(s)H d(s)(H ci(s)i in(s)+H cu(s)u in(s)),
其中,i abc(s)为实际输出的电流,H F(s)为滤波器模型,H d(s)为次同步电流发生器模型,H ci(s)为电流信号比例移相,H cu(s)为电压信号比例移相,i in为受控系统电流反馈信号;u in为受控系统电压反馈信号。
进一步地,在本发明的一个实施例中,所述阻抗网络模型为:
Z Σ=Z 风场+Z 电网
其中,Z 风场为包括风机、变压器、风场内线路和网侧次同步阻尼控制的整体等效聚合阻抗模型,Z 电网为包括串补线路、非串补线路、变压器和受端系统的整体等效聚合阻抗模型。
进一步地,在本发明的一个实施例中,所述全工况综合性能评价指标为:
f=max{η 1σ 12σ 2,......η Nσ N},
其中,σ表示实部,σ 1、σ 2......σ N对应的权重系数分别记为η 1、η 2......η N,以评价阻尼最差的工况,进而获取所述网侧次同步阻尼控制器的优化参数。
进一步地,在本发明的一个实施例中,所述全工况优化控制问题规范为约束优化问题,所述约束优化问题为:
min f=max{η 1σ 12σ 2,......η Nσ N},
Figure PCTCN2018094296-appb-000001
其中,K i、K u、T i、T u为控制系统的优化参数,K upi、K upu为K i和K u的上限值,T up为T i,T u的上限值。
为达到上述目的,本发明另一方面实施例提出了一种网侧次同步阻尼控制器全工况优 化装置,包括:第一获取模块,用于根据次同步阻尼计算器和次同步电流发生器获取网侧次同步阻尼控制器的受控电流源模型;第二获取模块,用于根据风场和电网获取受控系统的阻抗网络模型;计算模块,用于通过所述受控电流源模型和所述阻抗网络模型得到全工况综合性能评价指标;处理模块,用于根据所述全工况综合性能评价指标得到所述网侧次同步阻尼控制器的全工况优化控制问题规范。
本发明实施例的网侧次同步阻尼控制器全工况优化装置,形成了网侧阻尼控制器的受控电流源模型,方便参数优化和设计,形成了受控系统的阻抗网络模型,便于考虑风机、变压器、线路的综合影响,建立了全工况综合性能评价指标,有效的提高了网侧阻尼控制器在全工况下的适应性和鲁棒性,设计并优化求解网侧次同步阻尼控制器的全工况优化目标,使得网侧阻尼控制器在全工况下都能提供有效阻尼。
另外,根据本发明上述实施例的网侧次同步阻尼控制器全工况优化装置还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所述网侧次同步阻尼控制器的受控电流源模型为:
i abc(s)=H F(s)H d(s)(H ci(s)i in(s)+H cu(s)u in(s)),
其中,i abc(s)为实际输出的电流,H F(s)为滤波器模型,H d(s)为次同步电流发生器模型,H ci(s)为电流信号比例移相,H cu(s)为电压信号比例移相,i in为受控系统电流反馈信号;u in为受控系统电压反馈信号。
进一步地,在本发明的一个实施例中,所述阻抗网络模型为:
Z Σ=Z 风场+Z 电网
其中,Z 风场为包括风机、变压器、风场内线路和网侧次同步阻尼控制的整体等效聚合阻抗模型,Z 电网为包括串补线路、非串补线路、变压器和受端系统的整体等效聚合阻抗模型。
进一步地,在本发明的一个实施例中,所述全工况综合性能评价指标为:
f=max{η 1σ 12σ 2,......η Nσ N},
其中,σ表示实部,σ 1、σ 2......σ N对应的权重系数分别记为η 1、η 2......η N,以评价阻尼最差的工况,进而获取所述网侧次同步阻尼控制器的优化参数。
进一步地,在本发明的一个实施例中,所述全工况优化控制问题规范为约束优化问题,所述约束优化问题为:
min f=max{η 1σ 12σ 2,......η Nσ N},
Figure PCTCN2018094296-appb-000002
其中,K i、K u、T i、T u为控制系统的优化参数,K upi、K upu为K i和K u的上限值,T up为T i,T u的上限值。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明一个实施例的网侧次同步阻尼控制器全工况优化方法的流程图;
图2为根据本发明一个实施例的网侧次同步阻尼控制器结构示意图;
图3为根据本发明一个实施例的典型风场-电网系统示意图;
图4为根据本发明一个实施例的网侧次同步阻尼控制器全工况优化装置的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图描述根据本发明实施例提出的网侧次同步阻尼控制器全工况优化方法及装置,首先将参照附图描述根据本发明实施例提出的网侧次同步阻尼控制器全工况优化方法。
图1是本发明一个实施例的网侧次同步阻尼控制器全工况优化方法的流程图。
如图1所示,该网侧次同步阻尼控制器全工况优化方法包括以下步骤:
在步骤S101中,根据次同步阻尼计算器和次同步电流发生器获取网侧次同步阻尼控制器的受控电流源模型。
具体而言,如图2所示,网侧次同步阻尼控制器包括:次同步阻尼计算器和次同步电流发生器两部分。次同步阻尼计算器包括:1)滤波器,用于从反馈信号中提取次同步频率信号;2)电压信号比例移相、电流信号比例移相、加法运算器,用于计算需要输出的次同步电流。次同步电流发生器包括:1)变流器装置控制器,用于根据次同步阻尼计算器生成 的参考电流控制变流器装置发出对应的电流;2)变流器装置,用于发出需要的次同步电流。
进一步地,在本发明的一个实施例中,网侧次同步阻尼控制器的受控电流源模型为:
i abc(s)=H F(s)H d(s)(H ci(s)i in(s)+H cu(s)u in(s)),
其中,i abc(s)为实际输出的电流,H F(s)为滤波器模型,H d(s)为次同步电流发生器模型,H ci(s)为电流信号比例移相,H cu(s)为电压信号比例移相,i in为受控系统电流反馈信号;u in为受控系统电压反馈信号。
具体而言,网侧次同步阻尼控制器的受控电流源模型:
i abc(s)=H F(s)H d(s)(H ci(s)i in(s)+H cu(s)u in(s)),
其中:i in表示受控系统电流反馈信号;u in表示受控系统电压反馈信号;i abc(s)表示实际输出的电流。
(1)滤波器模型可以是任何实现带通滤波、带阻滤波、高通滤波或低通滤波功能的模拟式、数字式(连续或离散)或其混合构成的滤波器,目的是从反馈信号中提取次同步分量。典型实现如:H F(s)=H P(s)H S(s),包含带通滤波器H P(s)和带阻滤波器H S(s)。典型的如下:
Figure PCTCN2018094296-appb-000003
其中,ω P是带通滤波器中心频率,ζ P是带通滤波器阻尼系数,ω S是带阻滤波器中心频率,ζ S是带阻滤波器阻尼系数,s=jω表示复频域。
(2)电流信号比例移相目的是实现对电流信号的放大和移相操作,典型实现为:
Figure PCTCN2018094296-appb-000004
K i表示增益,T i表示时间常数
(3)电压信号比例移相目的是实现对电压信号的放大和移相操作,典型实现为:
Figure PCTCN2018094296-appb-000005
K u表示增益,T u表示时间常数
(4)次同步电流发生器模型表示由电力电子变流器实现的能产生次同步电流的装备,其模型采用比例-滞后环节来描述,典型模型为:
Figure PCTCN2018094296-appb-000006
K d表示输出电流i abc相比于参考信号i * abc的幅值增益,T d表示输出电流相比于参考信号的时间延迟。
在步骤S102中,根据风场和电网获取受控系统的阻抗网络模型。
具体而言,受控系统包括风场和电网,其中,风场包括风机、变压器、风电场内线路;电网包括串补线路、非串补线路、变压器、受端系统。典型阻抗模型如下:
1)风机阻抗:Z WTG=R WTG+jX WTG,典型的风机阻抗模型如下:
对于双馈风机阻抗:
Figure PCTCN2018094296-appb-000007
对于异步风机阻抗:Z WTG=Z SEIG=(r rs(s-jω r) -1+sL r)//(sL m)+R s+sL s
对于永磁风机阻抗:Z WTG=Z PMSG=R PMSG+jX PMSG
2)变压器阻抗:Z T=sL T+R T
3)风场内线路阻抗和非串补线路阻抗:Z FL=sL FL+R FL
4)串补线路阻抗:Z CL=sL CL+R CL+1/(sC CL)。
5)受端系统阻抗:Z SYS=sL SYS+R SYS
其中,R WTG:风机等效电阻;X WTG:风机等效电抗;L T:变压器等效电感;R T:变压器等效电阻;L T:变压器等效电感;R T:变压器等效电阻;L FL:非串补线路等效电感;R FL:非串补线路等效电阻;L CL:串补线路等效电感;R CL:串补线路等效电阻;C CL:串补线路的串补电容;L SYS:系统等效电感;R SYS:系统等效电阻。下标WTG、DFIG、PMSG、SEIG分别表示风机、双馈风机、永磁风机、异步风机。K p表示风机转子控制环节比例常数。ω r表示风机转子转速。r r表示风机转子电阻。L r表示风机转子电感。L m表示风机励磁电感。R s表示风机定子电阻。L s表示风机定子电感。R PMSG表示永磁风机等效电阻。X PMSG表示永磁风机等效电抗,在次同步频率范围可以表现为容性。
进一步地,在本发明的一个实施例中,阻抗网络模型为:
Z Σ=Z 风场+Z 电网
其中,Z 风场为包括风机、变压器、风场内线路和网侧次同步阻尼控制的整体等效聚合阻抗模型,Z 电网为包括串补线路、非串补线路、变压器和受端系统的整体等效聚合阻抗模型。
可以理解的是,本发明实施例根据拓扑互联起来,形成阻抗网络模型Z Σ,典型的如图 3所示,图3对应的Z Σ下所示:
Z Σ=Z 风场+Z 电网
Z 风场表示包括风机、变压器、风场内线路和网侧次同步阻尼控制的整体等效聚合阻抗模型;Z 电网表示包括串补线路、非串补线路、变压器和受端系统的整体等效聚合阻抗模型。
在步骤S103中,通过受控电流源模型和阻抗网络模型得到全工况综合性能评价指标。
具体地,1)风机数量变化范围:n minWTG~n maxWTG。根据风机数量变化范围选择N WTG种工况。其中:n minWTG表示风机数量最小值。n maxWTG表示风机数量最大值。
2)风速变化范围:W min~W max。根据风速变化范围选择N W种工况。其中:W min表示风速最小值。W max表示风速最大值。
3)串补度变化范围:
Figure PCTCN2018094296-appb-000008
ω 0表示工频频率。根据串补度变化范围选择N δ种工况。其中:δ min表示串补度最小值。δ max表示串补度最大值。
4)受端系统阻抗变化范围:Z minSYS~Z maxSYS。根据系统阻抗变化范围选择N sys种工况。其中:表示Z minSYS表示受端系统阻抗最小值。Z maxSYS表示受端系统阻抗最大值。
并选择评价的工况总数:N=N δN WTGN sysN W
另外,Z Σ在次同步谐振频率下的零点记为z SSR=σ±jω,σ和ω分别表示实部和虚部。N种工况下的次同步谐振零点分别记为:z SSR1=σ 1±jω 1,......,z SSRN=σ N±jω N。σ 1,......σ N对应的权重系数分别记为η 1,η 2,......η N
进一步地,在本发明的一个实施例中,全工况综合性能评价指标为:
f=max{η 1σ 12σ 2,......η Nσ N},
其中,σ表示实部,σ 1、σ 2......σ N对应的权重系数分别记为η 1、η 2......η N,以评价阻尼最差的工况,进而获取网侧次同步阻尼控制器的优化参数。
可以理解的是,全工况综合性能指标如下式所示,该指标用于评价阻尼最差的工况,从而为优化网侧次同步阻尼控制器的参数提供依据,公式为:
f=max{η 1σ 12σ 2,......η Nσ N}。
在步骤S104中,根据全工况综合性能评价指标得到网侧次同步阻尼控制器的全工况优化控制问题规范。
进一步地,在本发明的一个实施例中,全工况优化控制问题规范为约束优化问题,约束优化问题为:
min f=max{η 1σ 12σ 2,......η Nσ N},
Figure PCTCN2018094296-appb-000009
其中,K i、K u、T i、T u为控制系统的优化参数,K upi、K upu为K i和K u的上限值,T up为T i,T u的上限值。
控制器设计的目标是在风场全工况中最差的工况下能够提供尽可能多的阻尼,同时得考虑电流信号比例移相和电压信号比例移相中增益和时间常数的约束条件,综合考虑,将网侧次同步阻尼控制器的全工况优化设计问题,规范为一个约束优化问题,即:
min f=max{η 1σ 12σ 2,......η Nσ N},(1)
Figure PCTCN2018094296-appb-000010
其中:K upi,K upu是K i和K u的上限值。T up为T i,T u的上限值。并且可使用各种启发式或智能算法,典型如:遗传拟退火算法等优化算法,实现公式1的高效求解,得到K i,K u,T i,T u,即为控制系统的优化参数。
需要说明的是,本发明实施例在具体实施中可采用多种方法来实现,包括但不限于:
(1)网侧次同步阻尼控制器的受控电流源模型;
(2)受控系统的阻抗网络模型;
(3)全工况综合性能评价指标;
(4)网侧次同步阻尼控制器的全工况优化控制问题规范;
(5)上述设计方法的组合应用。
并且,网侧次同步阻尼控制器的受控电流源模型、受控系统的阻抗网络模型、全工况综合性能评价指标是可以有所变化的,在本发明技术方案的基础上,凡根据本发明原理的改进,均不应排除在本发明的保护范围之外。
综上,本发明实施例可以达到改善风电场次同步阻尼的目的,并提高风电场的稳定性,并且突出优点是:考虑了网侧次同步阻尼控制器和受控网络在全工况下的阻抗网络模型,网侧次同步阻尼控制器在全工况下都能提供有效阻尼抑制次同步谐振。
根据本发明实施例提出的网侧次同步阻尼控制器全工况优化方法,形成了网侧阻尼控制器的受控电流源模型,方便参数优化和设计,形成了受控系统的阻抗网络模型,便于考虑风机、变压器、线路的综合影响,建立了全工况综合性能评价指标,有效的提高了网侧阻尼控制器在全工况下的适应性和鲁棒性,设计并优化求解网侧次同步阻尼控制器的全工况优化目标,使得网侧阻尼控制器在全工况下都能提供有效阻尼。
其次参照附图描述根据本发明实施例提出的网侧次同步阻尼控制器全工况优化装置。
图4是本发明一个实施例的网侧次同步阻尼控制器全工况优化装置的结构示意图。
如图4所示,该网侧次同步阻尼控制器全工况优化装置10包括:第一获取模块100、第二获取模块200、计算模块300和处理模块400。
其中,第一获取模块100用于根据次同步阻尼计算器和次同步电流发生器获取网侧次同步阻尼控制器的受控电流源模型。第二获取模块200用于根据风场和电网获取受控系统的阻抗网络模型。计算模块300用于通过受控电流源模型和阻抗网络模型得到全工况综合性能评价指标。处理模块400用于根据全工况综合性能评价指标得到网侧次同步阻尼控制器的全工况优化控制问题规范。本发明实施例的装置10考虑了网侧次同步阻尼控制器和受控网络在全工况下的阻抗网络模型,以及网侧次同步阻尼控制器在全工况下都能提供有效阻尼抑制次同步谐振,有效的提高了网侧阻尼控制器在全工况下的适应性和鲁棒性。
进一步地,在本发明的一个实施例中,网侧次同步阻尼控制器的受控电流源模型为:
i abc(s)=H F(s)H d(s)(H ci(s)i in(s)+H cu(s)u in(s)),
其中,i abc(s)为实际输出的电流,H F(s)为滤波器模型,H ci(s)为电流信号比例移相,H d(s)为次同步电流发生器模型,H cu(s)为电压信号比例移相,i in为受控系统电流反馈信号;u in为受控系统电压反馈信号。
进一步地,在本发明的一个实施例中,阻抗网络模型为:
Z Σ=Z 风场+Z 电网
其中,Z 风场为包括风机、变压器、风场内线路和网侧次同步阻尼控制的整体等效聚合阻抗模型,Z 电网为包括串补线路、非串补线路、变压器和受端系统的整体等效聚合阻抗模型。
进一步地,在本发明的一个实施例中,全工况综合性能评价指标为:
f=max{η 1σ 12σ 2,......η Nσ N},
其中,σ表示实部,σ 1、σ 2......σ N对应的权重系数分别记为η 1、η 2......η N,以评价阻 尼最差的工况,进而获取网侧次同步阻尼控制器的优化参数。
进一步地,在本发明的一个实施例中,全工况优化控制问题规范为约束优化问题,约束优化问题为:
min f=max{η 1σ 12σ 2,......η Nσ N},
Figure PCTCN2018094296-appb-000011
其中,K i、K u、T i、T u为控制系统的优化参数,K upi、K upu为K i和K u的上限值,T up为T i,T u的上限值。
需要说明的是,前述对网侧次同步阻尼控制器全工况优化方法实施例的解释说明也适用于该实施例的网侧次同步阻尼控制器全工况优化装置,此处不再赘述。
根据本发明实施例提出的网侧次同步阻尼控制器全工况优化装置,形成了网侧阻尼控制器的受控电流源模型,方便参数优化和设计,形成了受控系统的阻抗网络模型,便于考虑风机、变压器、线路的综合影响,建立了全工况综合性能评价指标,有效的提高了网侧阻尼控制器在全工况下的适应性和鲁棒性,设计并优化求解网侧次同步阻尼控制器的全工况优化目标,使得网侧阻尼控制器在全工况下都能提供有效阻尼。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特 征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种网侧次同步阻尼控制器全工况优化方法,其特征在于,包括以下步骤:
    根据次同步阻尼计算器和次同步电流发生器获取网侧次同步阻尼控制器的受控电流源模型;
    根据风场和电网获取受控系统的阻抗网络模型;
    通过所述受控电流源模型和所述阻抗网络模型得到全工况综合性能评价指标;以及
    根据所述全工况综合性能评价指标得到所述网侧次同步阻尼控制器的全工况优化控制问题规范。
  2. 根据权利要求1所述的网侧次同步阻尼控制器全工况优化方法,其特征在于,所述网侧次同步阻尼控制器的受控电流源模型为:
    i abc(s)=H F(s)H d(s)(H ci(s)i in(s)+H cu(s)u in(s)),
    其中,i abc(s)为实际输出的电流,H F(s)为滤波器模型,H d(s)为次同步电流发生器模型,H ci(s)为电流信号比例移相,H cu(s)为电压信号比例移相,i in为受控系统电流反馈信号;u in为受控系统电压反馈信号。
  3. 根据权利要求1所述的网侧次同步阻尼控制器全工况优化方法,其特征在于,所述阻抗网络模型为:
    Z Σ=Z 风场+Z 电网
    其中,Z 风场为包括风机、变压器、风场内线路和网侧次同步阻尼控制的整体等效聚合阻抗模型,Z 电网为包括串补线路、非串补线路、变压器和受端系统的整体等效聚合阻抗模型。
  4. 根据权利要求1所述的网侧次同步阻尼控制器全工况优化方法,其特征在于,所述全工况综合性能评价指标为:
    f=max{η 1σ 12σ 2,......η Nσ N},
    其中,σ表示实部,σ 1、σ 2......σ N对应的权重系数分别记为η 1、η 2......η N,以评价阻尼最差的工况,进而获取所述网侧次同步阻尼控制器的优化参数。
  5. 根据权利要求1所述的网侧次同步阻尼控制器全工况优化方法,其特征在于,所述全工况优化控制问题规范为约束优化问题,所述约束优化问题为:
    min f=max{η 1σ 12σ 2,......η Nσ N},
    Figure PCTCN2018094296-appb-100001
    其中,K i、K u、T i、T u为控制系统的优化参数,K upi、K upu为K i和K u的上限值,T up为T i,T u的上限值。
  6. 一种网侧次同步阻尼控制器全工况优化装置,其特征在于,包括:
    第一获取模块,用于根据次同步阻尼计算器和次同步电流发生器获取网侧次同步阻尼控制器的受控电流源模型;
    第二获取模块,用于根据风场和电网获取受控系统的阻抗网络模型;
    计算模块,用于通过所述受控电流源模型和所述阻抗网络模型得到全工况综合性能评价指标;以及
    处理模块,用于根据所述全工况综合性能评价指标得到所述网侧次同步阻尼控制器的全工况优化控制问题规范。
  7. 根据权利要求6所述的网侧次同步阻尼控制器全工况优化装置,其特征在于,所述网侧次同步阻尼控制器的受控电流源模型为:
    i abc(s)=H F(s)H d(s)(H ci(s)i in(s)+H cu(s)u in(s)),
    其中,i abc(s)为实际输出的电流,H F(s)为滤波器模型,H d(s)为次同步电流发生器模型,H ci(s)为电流信号比例移相,H cu(s)为电压信号比例移相,i in为受控系统电流反馈信号,u in为受控系统电压反馈信号。
  8. 根据权利要求6所述的网侧次同步阻尼控制器全工况优化装置,其特征在于,所述阻抗网络模型为:
    Z Σ=Z 风场+Z 电网
    其中,Z 风场为包括风机、变压器、风场内线路和网侧次同步阻尼控制的整体等效聚合阻抗模型,Z 电网为包括串补线路、非串补线路、变压器和受端系统的整体等效聚合阻抗模型。
  9. 根据权利要求6所述的网侧次同步阻尼控制器全工况优化装置,其特征在于,所述全工况综合性能评价指标为:
    f=max{η 1σ 12σ 2,......η Nσ N},
    其中,σ表示实部,σ 1、σ 2......σ N对应的权重系数分别记为η 1、η 2......η N,以评价阻 尼最差的工况,进而获取所述网侧次同步阻尼控制器的优化参数。
  10. 根据权利要求6所述的网侧次同步阻尼控制器全工况优化装置,其特征在于,所述全工况优化控制问题规范为约束优化问题,所述约束优化问题为:
    min f=max{η 1σ 12σ 2,......η Nσ N},
    Figure PCTCN2018094296-appb-100002
    其中,K i、K u、T i、T u为控制系统的优化参数,K upi、K upu为K i和K u的上限值,T up为T i,T u的上限值。
PCT/CN2018/094296 2018-01-12 2018-07-03 网侧次同步阻尼控制器全工况优化方法及装置 WO2019136944A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810031072.0 2018-01-12
CN201810031072.0A CN108134399B (zh) 2018-01-12 2018-01-12 网侧次同步阻尼控制器全工况优化方法及装置

Publications (1)

Publication Number Publication Date
WO2019136944A1 true WO2019136944A1 (zh) 2019-07-18

Family

ID=62400473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094296 WO2019136944A1 (zh) 2018-01-12 2018-07-03 网侧次同步阻尼控制器全工况优化方法及装置

Country Status (2)

Country Link
CN (1) CN108134399B (zh)
WO (1) WO2019136944A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110336305A (zh) * 2019-07-22 2019-10-15 华北电力大学(保定) 一种适合双馈风电机组在短路故障下参与系统频率调节的改进附加频率控制方法
CN113065766A (zh) * 2021-04-01 2021-07-02 中核核电运行管理有限公司 一种基于历史数据挖掘分析的汽机运行工况寻优方法
CN113937772A (zh) * 2021-09-03 2022-01-14 广东电网有限责任公司 一种用于控制分布式微网并网运行的方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134399B (zh) * 2018-01-12 2020-10-13 清华大学 网侧次同步阻尼控制器全工况优化方法及装置
CN109361226B (zh) * 2018-11-05 2020-08-28 上海交通大学 次同步阻尼控制器反馈信号和安装位置的选取方法
CN113378347B (zh) * 2020-12-25 2022-11-22 中国电建集团华东勘测设计研究院有限公司 一种基于模块化多端口的风电机组频域阻抗建模方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104410084A (zh) * 2014-11-20 2015-03-11 清华大学 一种控制风电场串补输电系统次同步谐振的方法
CN106532685A (zh) * 2016-10-26 2017-03-22 浙江大学 用于并网逆变器稳定分析的广义阻抗判据计算方法及应用
WO2017222588A1 (en) * 2016-06-21 2017-12-28 Intel Corporation In-plane current driven magnetic skyrmion spin oscillator
CN108134399A (zh) * 2018-01-12 2018-06-08 清华大学 网侧次同步阻尼控制器全工况优化方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106168994B (zh) * 2016-07-01 2019-03-01 华北电力大学 一种风电场次同步频率等值建模方法
CN106953317B (zh) * 2017-03-15 2019-10-29 清华大学 电力设备的次/超同步耦合阻抗(导纳)模型的辨识方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104410084A (zh) * 2014-11-20 2015-03-11 清华大学 一种控制风电场串补输电系统次同步谐振的方法
WO2017222588A1 (en) * 2016-06-21 2017-12-28 Intel Corporation In-plane current driven magnetic skyrmion spin oscillator
CN106532685A (zh) * 2016-10-26 2017-03-22 浙江大学 用于并网逆变器稳定分析的广义阻抗判据计算方法及应用
CN108134399A (zh) * 2018-01-12 2018-06-08 清华大学 网侧次同步阻尼控制器全工况优化方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110336305A (zh) * 2019-07-22 2019-10-15 华北电力大学(保定) 一种适合双馈风电机组在短路故障下参与系统频率调节的改进附加频率控制方法
CN110336305B (zh) * 2019-07-22 2023-07-25 华北电力大学(保定) 一种适合双馈风电机组在短路故障下参与系统频率调节的改进附加频率控制方法
CN113065766A (zh) * 2021-04-01 2021-07-02 中核核电运行管理有限公司 一种基于历史数据挖掘分析的汽机运行工况寻优方法
CN113065766B (zh) * 2021-04-01 2024-05-14 中核核电运行管理有限公司 一种基于历史数据挖掘分析的汽机运行工况寻优方法
CN113937772A (zh) * 2021-09-03 2022-01-14 广东电网有限责任公司 一种用于控制分布式微网并网运行的方法及系统
CN113937772B (zh) * 2021-09-03 2023-10-24 广东电网有限责任公司 一种用于控制分布式微网并网运行的方法及系统

Also Published As

Publication number Publication date
CN108134399A (zh) 2018-06-08
CN108134399B (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2019136944A1 (zh) 网侧次同步阻尼控制器全工况优化方法及装置
CN105932916B (zh) 用于稳定风力涡轮发电机的次同步交互的系统和方法
CN107181267B (zh) 风电场次同步谐振抑制方法及系统
CN107658904B (zh) 考虑虚拟同步机功角影响的阻抗自适应功率解耦控制方法
CN110797883B (zh) 基于阻抗法的风电场柔直并网系统次同步振荡抑制方法
WO2019091130A1 (zh) 次/超同步谐振/振荡的系统级保护系统及方法
CN105244919B (zh) 一种lcl型逆变器的鲁棒延时补偿并网控制方法
CN111355362B (zh) 一种电容电流fopi正反馈有源阻尼策略的fopi参数设计方法
CN109617121B (zh) 一种针对次同步振荡的风电并网系统安全运行方法及系统
CN105680460B (zh) 双馈风电场次同步相互作用抑制实现方法
CN111509714B (zh) 基于阻抗建模的海上风电机群并网谐振稳定性判别方法
Wyllie et al. Low frequency AC transmission-elements of a design for wind farm connection
CN110323775A (zh) 一种提高柔直电网直流端口稳定性的阻尼控制方法
CN104410084A (zh) 一种控制风电场串补输电系统次同步谐振的方法
CN109004657B (zh) 一种风电场次同步振荡抑制方法及系统
CN115800381A (zh) 一种适用于暂态支撑的并网逆变器虚拟同步优化控制方法
CN108448615A (zh) 新能源多机接入弱电网的两带阻滤波器高频振荡抑制方法
CN112332427A (zh) 基于积分控制的双馈风电场次同步振荡抑制方法
CN103199533A (zh) 基于两点式工况的无源滤波器优化设计方法
CN116760070A (zh) 直驱风机并网系统宽频振荡抑制方法、装置、介质及设备
CN109755941B (zh) 一种lcl滤波器有源阻尼控制方法及系统
CN106410820B (zh) 宽频带附加次/超同步振荡控制方法和控制系统
CN115000976B (zh) 基于有源阻尼的双馈风机交流并网高频振荡抑制方法
CN105071392A (zh) 一种永磁同步风电系统谐波分析与抑制方法
CN116826779A (zh) 基于自抗扰控制的经柔直并网系统次同步振荡抑制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900317

Country of ref document: EP

Kind code of ref document: A1