CN106953317B - 电力设备的次/超同步耦合阻抗(导纳)模型的辨识方法 - Google Patents

电力设备的次/超同步耦合阻抗(导纳)模型的辨识方法 Download PDF

Info

Publication number
CN106953317B
CN106953317B CN201710153029.7A CN201710153029A CN106953317B CN 106953317 B CN106953317 B CN 106953317B CN 201710153029 A CN201710153029 A CN 201710153029A CN 106953317 B CN106953317 B CN 106953317B
Authority
CN
China
Prior art keywords
supersynchronous
component
model
impedance
power equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710153029.7A
Other languages
English (en)
Other versions
CN106953317A (zh
Inventor
谢小荣
张传宇
刘华坤
刘威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710153029.7A priority Critical patent/CN106953317B/zh
Publication of CN106953317A publication Critical patent/CN106953317A/zh
Application granted granted Critical
Publication of CN106953317B publication Critical patent/CN106953317B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明公开了一种电力设备的次/超同步耦合阻抗(导纳)模型的辨识方法,该阻抗模型的辨识方法包括:提供电力设备的次/超同步耦合阻抗模型;将所述电力设备接入电网中,并向所述电网施加次/超同步激励,并基于所述次/超同步耦合阻抗模型获取所述电力设备的次同步和超同步电压分量和电流分量;改变所述次/超同步激励的参数或外电网的参数,以获取所述电力设备的多组测量结果,并根据所述多组测量结果生成阻抗量测方程;对所述阻抗量测方程进行预设数值优化方法得到所述次/超同步耦合阻抗模型的阻抗参数。本发明具有如下优点:表征了两种相对工频的互补频率动态之间的不可分割性,能更好地分析和解释电力系统的次/超同步谐振和振荡问题。

Description

电力设备的次/超同步耦合阻抗(导纳)模型的辨识方法
技术领域
本发明涉及电力系统分析与控制技术领域,尤其涉及一种电力设备的次/超同步耦合阻抗(导纳)模型的辨识方法。
背景技术
在现代电力系统电力电子化程度日益加深的趋势下,电力电子变流技术不仅改变电网一次设备的形态,而且其特有的多尺度控制机制和低惯性宽频带响应特性,正显著改变电力系统的动态特征,带来新的稳定性分析与问题。近年来,尤其以风电、光伏等变流电源大规模接入电网引起的新型次/超同步振荡(Sub Synchronous Oscillation,SSO)问题尤为突出。此外,变流器式恒功率负载在次同步频率上体现的负电阻特性,相邻变流器的锁相环(PLL)回路耦合,以及变流器控制参与滤波电路和电网构成的串/并联谐振回路,都可能激发次/超同步振荡风险。这种海量变流器装置(风电、光伏、逆变器等)-电网相互作用引发的新型次/超同步振荡严重威胁现代电网的设备安全、系统稳定和用电质量,在我国已成为制约风光等新能源大规模消纳的瓶颈因素。
针对电力系统电力电子化带来的稳定性问题的分析方法大多沿用传统的电磁暂态仿真、特征值分析或简化条件下的阻抗分析方法。目前广泛应用的电磁暂态仿真软件(如PSCAD, EMTP)只支持单一步长(固定速率)的建模与分析,难以兼顾精度与效率以实现多变流器、复杂交直流网络、海量工况下的时域仿真;传统的特征值分析方法面临维数灾问题,难以适用于包括数千台变流器、数万个节点的实际大电网。
发明内容
本发明旨在至少解决上述技术问题之一。
为此,本发明的一个目的在于提出一种电力设备的次/超同步耦合阻抗模型的辨识方法。
为了实现上述目的,本发明的实施例公开了一种电力设备的次/超同步耦合阻抗模型的辨识方法,包括以下步骤:提供电力设备的次/超同步耦合阻抗模型,其中,所述次/超同步耦合阻抗模型包括电压向量、电流向量和阻抗参数;将所述电力设备接入电网中,并向所述电网施加次/超同步激励,并基于所述次/超同步耦合阻抗模型获取所述电力设备的次同步和超同步电压分量和电流分量;改变所述次/超同步激励的参数或外电网的参数,以获取所述电力设备的多组测量结果,并根据所述多组测量结果生成阻抗量测方程;对所述阻抗量测方程进行预设数值优化方法得到所述次/超同步耦合阻抗模型的阻抗参数。
进一步地,向所述电网施加次/超同步激励,并基于所述次/超同步耦合阻抗模型获取所述电力设备的次同步和超同步电压分量和电流分量进一步包括:向所述电网注入一定次同步和/或超同步频率电流源和/或电压源,并基于所述次/超同步耦合阻抗模型在所述电力设备的端口电压和端口电流中出现次同步分量和超同步分量,通过信号处理得到所述次同步和超同步电压分量和电流分量。
进一步地,改变所述次/超同步激励的参数包括改变注入所述电流源和所述电流源的幅值。
根据本发明实施例的电力设备的次/超同步耦合阻抗模型的辨识方法,表征了两种相对工频的互补频率动态之间的不可分割性,能更好地分析和解释电力系统的次/超同步谐振和振荡问题。
为此,本发明的一个目的在于提出一种电力设备的次/超同步耦合导纳模型的辨识方法。
为了实现上述目的,本发明的实施例公开了一种电力设备的次/超同步耦合导纳模型的辨识方法,包括以下步骤:提供电力设备的次/超同步耦合导纳模型,其中,所述次/超同步耦合导纳模型包括电压向量、电流向量和导纳参数;将所述电力设备接入电网中,并向所述电网施加次/超同步激励,并基于所述次/超同步耦合导纳模型获取所述电力设备的次同步和超同步电压分量和电流分量;改变所述次/超同步激励的参数或外电网的参数,以获取所述电力设备的多组测量结果,并根据所述多组测量结果生成导纳量测方程;对所述导纳量测方程进行预设数值优化方法得到所述次/超同步耦合导纳模型的导纳参数。
进一步地,向所述电网施加次/超同步激励,并基于所述次/超同步耦合导纳模型获取所述电力设备的次同步和超同步电压分量和电流分量进一步包括:向所述电网注入一定次同步和/或超同步频率电流源和/或电压源,并基于所述次/超同步耦合导纳模型在所述电力设备的端口电压和端口电流中出现次同步分量和超同步分量,通过信号处理得到所述次同步和超同步电压分量和电流分量。
进一步地,改变所述次/超同步激励的参数包括改变注入所述电流源和所述电流源的幅值。
根据本发明实施例的电力设备的次/超同步耦合导纳模型的辨识方法,表征了两种相对工频的互补频率动态之间的不可分割性,能更好地分析和解释电力系统的次/超同步谐振和振荡问题。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明实施例的电力设备的次/超同步耦合阻抗模型的辨识方法的流程图;
图2是本发明一个实施例的电力设备并联接入电网的示意图;
图3是本发明一个实施例的电力设备串联接入电网的示意图;
图4是本发明一个实施例的次/超同步耦合阻抗(导纳)模型的通用辨识方法的原理图;
图5是本发明一个实施例的次/超同步耦合阻抗(导纳)模型的实用化测量方法的原理图(测量点位于电力设备端口);
图6是本发明一个实施例的次/超同步耦合阻抗(导纳)模型的实用化测量方法的原理图(测量点位于连接阻抗靠近电网侧)
图7是本发明一个实施例的次/超同步耦合阻抗(导纳)模型的简化测量方法的原理图。
图8是本发明实施例的电力设备的次/超同步耦合导纳模型的辨识方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
参照下面的描述和附图,将清楚本发明的实施例的这些和其他方面。在这些描述和附图中,具体公开了本发明的实施例中的一些特定实施方式,来表示实施本发明的实施例的原理的一些方式,但是应当理解,本发明的实施例的范围不受此限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
以下结合附图描述本发明。
图1是本发明实施例的电力设备的次/超同步耦合阻抗模型的辨识方法的流程图。如图 1所示,根据本发明实施例的电力设备的次/超同步耦合阻抗模型的辨识方法,包括以下步骤:
S1:提供电力设备的次/超同步耦合阻抗模型。其中,次/超同步耦合阻抗模型包括电压向量、电流向量和阻抗参数。
对于如图2所示的并联接入电网的三相电力设备(如汽轮发电机、风力发电机、光伏发电、静止无功补偿器、三相变流器负载等)和图3所示的串联接入电网的三相电力设备(如输电线路、变压器、串联型柔性输电控制器、直流输电等),其正序次/超同步耦合阻抗模型定义为:
式中,分别表示电压和电流相量(以A相基频电压分量为相角参考值),z表示阻抗参数,下标sub和sup分别表示次同步和超同步分量,上标*表示相量取共轭,下同。
需要说明的是,本发明的实施例中所提到的耦合的次/超同步分量,其频率均满足互补关系,即
fsub+fsup=2f1 (2)
式中,f1是基波频率。
或,不用共轭的阻抗模型表达方式为:
式中,θu和θi表示以A相基频电压分量为相角参考值时,的相角值;
或,共轭放在不同地方的阻抗模型表达方式为:
以上是正序次同步和超同步分量的耦合,研究发现,负序的次、超同步分量和正序的高频分量之间也存在耦合关系。按照公式(2),负序分量的频率为负值,与其互补的频率将大于两倍基波频率,即为正序的高频分量,因此次/超同步耦合阻抗模型定义为
式中,分别表示电压和电流相量(以A相基频电压分量为相角参考值),z表示阻抗参数,下标p和n分别表示正序和负序分量,其频率也满足互补关系:
fp+fn=2f1(fp>0,fn<0) (6)
S2:将电力设备接入电网中,并向电网施加次/超同步激励,并基于次/超同步耦合阻抗模型获取电力设备的次同步和超同步电压分量和电流分量。
在本发明的一个实施例中,向电网施加次/超同步激励,并基于次/超同步耦合阻抗模型获取电力设备的次同步和超同步电压分量和电流分量进一步包括:
向电网注入一定次同步和/或超同步频率电流源和/或电压源,并基于次/超同步耦合阻抗模型在电力设备的端口电压和端口电流中出现次同步分量和超同步分量,通过信号处理得到次同步和超同步电压分量和电流分量。
在本发明的一个实施例中,改变次/超同步激励的参数包括改变注入电流源和电流源的幅值。
具体地,如图4所示,三相电力设备接入电网中,设采取某种试验手段(对电网进行次超同步激励),如向电网并联和/或串联注入一定次同步和/或超同步频率电流源和/或电压源(即图4中的扰动信号,ud1是扰动电压源,id2是扰动电流源),导致被测设备端口电压和端口电流中出现明显的次同步和超同步分量,通过信号处理方式(如滤波)将次同步和超同步电压和电流分量分别“滤取”出来,设为usub,usup,isub,isup(下标sub和sup分别表示次同步和超同步分量下同)。
以A相基频电压为基准(相位角设为0),将三相次/超电压和电流表示为相量形式,求取其正序分量,设为根据式(1)则有:
Itestz=Utest (7)
式中各矩阵或向量的定义如下:
是可以实测的电流构成的矩阵,上标*表示相量取共轭。
是可以实测的电压构成的向量。
z=[z11 z12 z21 z22]T,是将阻抗矩阵展开形成的阻抗参数列向量。
S3:改变次/超同步激励的参数或外电网的参数,以获取电力设备的多组测量结果,并根据多组测量结果生成阻抗量测方程。
具体地,当改变注入电压和/电流源的幅值或外电网的参数,使得待测设备端部电压和电流发生变化时,皆可以得到多组测量结果,将它们都整理成如式(7)所示的形式,并组合起来构成如下量测方程。
式中,上标(1)和(n)分别表示第一组和第n组测量结果。
如果得到了n组测量结果,则式中是2n×4维矩阵,是2n维向量。
S4:对阻抗量测方程进行预设数值优化方法得到次/超同步耦合阻抗模型的阻抗参数。
具体地,可以通过最小二乘方法或其他数值优化方法得到阻抗参数,从而实现对阻抗模型的精确辨识。
实际使用中,可以对前述通用辨识方法进行简化,得到次/超同步耦合阻抗(导纳)模型的实用化测量方法。如图5所示,扰动信号源(即前述的次同步和/或超同步频率电流源和/或电压源)经过一定的连接阻抗,注入被测设备的端口。对被测设备端口的电压和电流进行测量,通过信号处理方式(如滤波)将次同步和超同步电压和电流分量分别“滤取”出来。改变扰动信号源的大小和/或相位,再次测量,共得到两组测量结果。
根据公式(8),可直接求得阻抗矩阵参数如下:
如果不方便在被测设备端口进行测量且已知连接阻抗值,还可以将测量点移至连接阻抗靠近电网侧,如图6所示。计算阻抗时只需对电压测量结果(设为)进行预处理即可,如下式所示:
式中,Ztest是连接阻抗值。
再将电流测量结果和预处理后的电压测量结果代入公式(9)便可得到阻抗/导纳矩阵参数。
进一步地,如果可以将扰动信号直接施加在被测设备的端口,即连接阻抗为零,则可得到次/超同步耦合阻抗(导纳)模型的简化测量方法,如图7所示。
若扰动源为单一的次同步频率电压源,此时机端电压也只含有次同步频率信号,即改变扰动源为单一的超同步频率电压源,再次测量,此时机端电压也只含有超同步频率信号,即
根据公式(8),阻抗矩阵参数公式简化为
图8是本发明实施例的电力设备的次/超同步耦合阻抗模型的辨识方法的流程图。如图 8所示,本发明的实施例还提供了一种电力设备的次/超同步耦合导纳模型的辨识方法,包括以下步骤:
A:提供电力设备的次/超同步耦合导纳模型,其中,次/超同步耦合导纳模型包括电压向量、电流向量和导纳参数。
具体地,正序次/超同步耦合导纳模型表示方式为:
分别表示电压和电流相量(以A相基频电压分量为相角参考值),y表示导纳参数,下标sub和sup分别表示次同步和超同步分量,上标*表示相量取共轭,下同。
次/超同步耦合阻抗模型定义为:
B:将电力设备接入电网中,并向电网施加次/超同步激励,并基于次/超同步耦合导纳模型获取电力设备的次同步和超同步电压分量和电流分量。
在本发明的一个实施例中,向电网施加次/超同步激励,并基于次/超同步耦合导纳模型获取电力设备的次同步和超同步电压分量和电流分量进一步包括:
向电网注入一定次同步和/或超同步频率电流源和/或电压源,并基于次/超同步耦合导纳模型在电力设备的端口电压和端口电流中出现次同步分量和超同步分量,通过信号处理得到次同步和超同步电压分量和电流分量。
在本发明的一个实施例中,改变次/超同步激励的参数包括改变注入电流源和电流源的幅值。
以A相基频电压为基准(相位角设为0),将三相次/超电压和电流表示为相量形式,求取其正序分量,设为根据式(12)则有:
Itest=Utesty (14)
式中各矩阵或向量的定义如下:
是可以实测的电流构成的矩阵,上标*表示相量取共轭。
是可以实测的电压构成的向量。
y=[y11 y12 y21 y22]T,是将导纳矩阵展开形成的导纳参数列向量。
C:改变次/超同步激励的参数或外电网的参数,以获取电力设备的多组测量结果,并根据多组测量结果生成导纳量测方程。
具体地,导纳量测方程为:
D:对导纳量测方程进行预设数值优化方法得到次/超同步耦合导纳模型的导纳参数。
具体地,实际使用中,可以对前述通用辨识方法进行简化,得到次/超同步耦合阻抗(导纳)模型的实用化测量方法。如图5所示,扰动信号源(即前述的次同步和/或超同步频率电流源和/或电压源)经过一定的连接阻抗,注入被测设备的端口。对被测设备端口的电压和电流进行测量,通过信号处理方式(如滤波)将次同步和超同步电压和电流分量分别“滤取”出来。改变扰动信号源的大小和/或相位,再次测量,共得到两组测量结果。
导纳矩阵参数如下:
计算阻抗和导纳时只需对电压测量结果(设为)进行预处理即可,如下式所示:
再将电流测量结果和预处理后的电压测量结果代入公式(16)便可得到阻抗/导纳矩阵参数。
进一步地,如果可以将扰动信号直接施加在被测设备的端口,即连接阻抗为零,则可得到次/超同步耦合阻抗(导纳)模型的简化测量方法,如图7所示。
若扰动源为单一的次同步频率电压源,此时机端电压也只含有次同步频率信号,即改变扰动源为单一的超同步频率电压源,再次测量,此时机端电压也只含有超同步频率信号,即
根据公式(15),导纳矩阵参数公式简化为:
另外,本发明实施例的电力设备的次/超同步耦合模型的辨识方法的其它构成以及作用对于本领域的技术人员而言都是已知的,为了减少冗余,不做赘述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同限定。

Claims (6)

1.一种电力设备的次/超同步耦合阻抗模型的辨识方法,其特征在于,包括以下步骤:
提供电力设备的次/超同步耦合阻抗模型,其中,所述次/超同步耦合阻抗模型包括电压向量、电流向量和阻抗参数,所述次/超同步耦合阻抗模型为:
其中,分别表示电压和电流相量,z表示阻抗参数,下标sub和sup分别表示次同步和超同步分量,上标*表示相量取共轭,次/超同步分量频率均满足互补关系,即
fsub+fsup=2f1
式中,f1是基波频率;
将所述电力设备接入电网中,并向所述电网施加次/超同步激励,并基于所述次/超同步耦合阻抗模型获取所述电力设备的次同步和超同步电压分量和电流分量,以A相基频电压为基准,相位角设为0,将三相次/超同步电压和电流表示为相量形式,求取其正序分量,设为则有:
Itestz=Utest
式中各矩阵或向量的定义如下:
是实测的电流构成的矩阵,上标*表示相量取共轭;
是实测的电压构成的向量;
z=[z11 z12 z21 z22]T,是将阻抗矩阵展开形成的阻抗参数列向量;
改变所述次/超同步激励的参数或外电网的参数,以获取所述电力设备的多组测量结果,并根据所述多组测量结果生成阻抗量测方程,其中,所述阻抗量测方程为:
其中,上标(1)和(n)分别表示第一组和第n组测量结果,如果得到了n组测量结果,则式中是2n×4维矩阵,是2n维向量;
对所述阻抗量测方程进行预设数值优化方法得到所述次/超同步耦合阻抗模型的阻抗参数;所述预设数值优化方法为通过最小二乘方法得到阻抗参数,从而实现对阻抗模型的精确辨识。
2.根据权利要求1所述的电力设备的次/超同步耦合阻抗模型的辨识方法,其特征在于,向所述电网施加次/超同步激励,并基于所述次/超同步耦合阻抗模型获取所述电力设备的次同步和超同步电压分量和电流分量进一步包括:
向所述电网注入一定次/超同步频率电流源和/或电压源,并基于所述次/超同步耦合阻抗模型在所述电力设备的端口电压和端口电流中出现次同步分量和超同步分量,通过信号处理得到所述次同步和超同步电压分量和电流分量。
3.根据权利要求2所述的电力设备的次/超同步耦合阻抗模型的辨识方法,其特征在于,改变所述次/超同步激励的参数包括改变注入所述电流源的相位和所述电流源的幅值。
4.一种电力设备的次/超同步耦合导纳模型的辨识方法,其特征在于,包括以下步骤:
提供电力设备的次/超同步耦合导纳模型,其中,所述次/超同步耦合导纳模型包括电压向量、电流向量和导纳参数,所述次/超同步耦合导纳模型为:
其中,分别表示电压和电流相量,y表示导纳参数,下标sub和sup分别表示次同步和超同步分量,上标*表示相量取共轭;
次/超同步耦合导纳模型定义为:
下标p和n分别表示正序和负序分量
将所述电力设备接入电网中,并向所述电网施加次/超同步激励,并基于所述次/超同步耦合导纳模型获取所述电力设备的次同步和超同步电压分量和电流分量,以A相基频电压为基准,相位角设为0,将三相次/超同步电压和电流表示为相量形式,求取其正序分量,设为则有:
Itest=Utesty;
式中各矩阵或向量的定义如下:
是实测的电流构成的矩阵,上标*表示相量取共轭;
是实测的电压构成的向量;
y=[y11 y12 y21 y22]T,是将导纳矩阵展开形成的导纳参数列向量;
改变所述次/超同步激励的参数或外电网的参数,以获取所述电力设备的多组测量结果,并根据所述多组测量结果生成导纳量测方程,其中,所述导纳量测方程为:
其中,上标(1)和(n)分别表示第一组和第n组测量结果,如果得到了n组测量结果,则式中是2n×4维矩阵,是2n维向量;
对所述导纳量测方程进行预设数值优化方法得到所述次/超同步耦合导纳模型的导纳参数。
5.根据权利要求4所述的电力设备的次/超同步耦合导纳模型的辨识方法,其特征在于,向所述电网施加次/超同步激励,并基于所述次/超同步耦合导纳模型获取所述电力设备的次同步和超同步电压分量和电流分量进一步包括:
向所述电网注入一定次/超同步频率电流源和/或电压源,并基于所述次/超同步耦合导纳模型在所述电力设备的端口电压和端口电流中出现次同步分量和超同步分量,通过信号处理得到所述次同步和超同步电压分量和电流分量。
6.根据权利要求5所述的电力设备的次/超同步耦合导纳模型的辨识方法,其特征在于,改变所述次/超同步激励的参数包括改变注入所述电流源的相位和所述电流源的幅值。
CN201710153029.7A 2017-03-15 2017-03-15 电力设备的次/超同步耦合阻抗(导纳)模型的辨识方法 Active CN106953317B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710153029.7A CN106953317B (zh) 2017-03-15 2017-03-15 电力设备的次/超同步耦合阻抗(导纳)模型的辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710153029.7A CN106953317B (zh) 2017-03-15 2017-03-15 电力设备的次/超同步耦合阻抗(导纳)模型的辨识方法

Publications (2)

Publication Number Publication Date
CN106953317A CN106953317A (zh) 2017-07-14
CN106953317B true CN106953317B (zh) 2019-10-29

Family

ID=59471907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710153029.7A Active CN106953317B (zh) 2017-03-15 2017-03-15 电力设备的次/超同步耦合阻抗(导纳)模型的辨识方法

Country Status (1)

Country Link
CN (1) CN106953317B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107402334B (zh) * 2017-07-10 2019-08-09 清华大学 电力系统次/超同步耦合阻抗模型的频域辨识方法与系统
CN108134399B (zh) * 2018-01-12 2020-10-13 清华大学 网侧次同步阻尼控制器全工况优化方法及装置
CN110866338B (zh) * 2019-11-13 2021-08-17 清华大学 基于耦合阻抗模型求取视在阻抗模型的方法及装置
CN111679125B (zh) * 2020-06-04 2021-07-20 北京交通大学 一种电力系统振荡辨识的方法和装置
CN112014642B (zh) * 2020-08-03 2021-10-26 清华大学 静止坐标系下电网频率耦合阻抗模型聚合计算方法和装置
CN112865181B (zh) * 2021-03-02 2022-07-29 国网冀北电力有限公司电力科学研究院 基于端口阻抗特性的光伏逆变器参数辨识方法及装置
CN113962171B (zh) * 2021-10-13 2024-04-16 西安交通大学 一种有损地面上输电线路的高频耦合方法
CN114237045B (zh) * 2021-11-29 2022-08-02 哈尔滨工业大学 一种无传感器式压电驱动闭环控制方法
CN116264396A (zh) * 2021-12-15 2023-06-16 新疆金风科技股份有限公司 风力发电机组、风电变流器的控制方法和控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473528A (en) * 1991-09-18 1995-12-05 Kabushiki Kaisha Toshiba Parallel connection of different types of AC power supplies of differing capacities
CN103259472A (zh) * 2013-04-19 2013-08-21 上海交通大学 大型发电机组次同步振荡的反振荡自适应抑制系统
CN103986171A (zh) * 2014-06-03 2014-08-13 贵州电力试验研究院 抑制次同步振荡的ssdc和sedc协调控制优化方法
CN106526328A (zh) * 2016-12-08 2017-03-22 浙江大学 一种适用于电网及联网设备的广义阻抗测量与计算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473528A (en) * 1991-09-18 1995-12-05 Kabushiki Kaisha Toshiba Parallel connection of different types of AC power supplies of differing capacities
CN103259472A (zh) * 2013-04-19 2013-08-21 上海交通大学 大型发电机组次同步振荡的反振荡自适应抑制系统
CN103986171A (zh) * 2014-06-03 2014-08-13 贵州电力试验研究院 抑制次同步振荡的ssdc和sedc协调控制优化方法
CN106526328A (zh) * 2016-12-08 2017-03-22 浙江大学 一种适用于电网及联网设备的广义阻抗测量与计算方法

Also Published As

Publication number Publication date
CN106953317A (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
CN106953317B (zh) 电力设备的次/超同步耦合阻抗(导纳)模型的辨识方法
CN104953606B (zh) 一种孤岛微网公共耦合点电压不平衡网络化分层补偿方法
CN108667048A (zh) 新能源并网系统振荡稳定性的频域判稳方法及装置
CN102854486B (zh) 现场电压互感器误差主动检定系统及其方法
CN103592528B (zh) 一种基于动态轨迹灵敏度的光伏逆变器模型参数辨识方法
CN109802406A (zh) 一种分析柔性直流输电接入系统谐振稳定性的方法
CN107315112A (zh) 一种兆瓦级宽频带阻抗测量装置及其控制方法
CN104764952B (zh) 一种10kV电压等级的STATCOM检测平台及检测方法
Pandey et al. UPFC control parameter identification for effective power oscillation damping
CN102788902B (zh) 一种抗高感应电压干扰的高压输电线路工频参数实测装置
CN202948123U (zh) 一种现场电压互感器误差主动检定装置
CN107102568A (zh) 光伏虚拟同步机并网稳定性硬件在环测试系统及方法
Ge et al. A dynamic parameter model of harmonic source networks
CN109494722B (zh) 电网侧等效阻抗建模方法及系统
Chang A new method for determining reference compensating currents of the three-phase shunt active power filter
Wei et al. Research on harmonic transmission characteristics of capacitor voltage transformer
CN108347055B (zh) 一种并网滤波电感器参数评测电路及其控制方法
Ruddy et al. Harmonic stability of VSC connected Low Frequency AC offshore transmission with long HVAC cables
Tang et al. Reduction method of outlet voltage of transformer with unbalanced three-phase load
Shankar et al. Fuzzy based unified power quality conditioner
Ali A Norton model of a distribution network for harmonic evaluation
Zhang et al. Research on digital twin-based capacitive voltage transformer operating condition monitoring method
CN103995958B (zh) 一种谐波阻抗特征函数构建方法
Luhtala et al. Improved real-time stability assessment of grid-connected converters using mimo-identification methods
Peng et al. Analysis of modulation controllers of multi-infeed HVDC for CSG in 2008

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant